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Perturbation amplitude in isocurvature inflation scenarios
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We make a detailed calculation of the amplitude of isocurvature perturbations arising from inflationary
models in which the cold dark matter is represented by a scalar field which acquires perturbations during
inflation. We use this to compute the normalization to large-angle microwave background anisotropies. Unlike
the case of adiabatic perturbations, the normalization to COBE fixes the spectral index of the perturbations; if
adiabatic perturbations are negligible theg~0.4. Such blue spectra are also favored by other observational
data. Although the pure isocurvature models are unlikely to adequately fit the entire observational data set,
these results also have implications for models with mixed adiabatic and isocurvature perturbations.

PACS numbes): 98.80.Cq, 98.70.Vc

[. INTRODUCTION mass, which apart from its quantum fluctuations sits in the
vacuum state during the entire history of the Universe. Par-
There has been recent interg$t-6] in inflationary mod-  ticular implementations of that general statement have been
els which give rise to isocurvature perturbations in the Uni-given by Linde and Mukhanof4] and by Peeblef2]. It is
verse, rather than the traditional adiabatic ones. The simple¥ell known that a sufficiently massive scalar fiefd with
way to achieve this is to assume that the material presentlf>H whereH is the Hubble parameter, oscillates with de-
making up the cold dark matter takes the form of a massivéaying amplitude such that its energy densjiy>1/a®
scalar field, which during inflation received perturbations byWherea is the scale factor, and further that perturbations in
the usual mechanism. With suitable subsequent evolutiortiS field obey the same equations as perturbations in a pres-

these perturbations can be the dominant ones in the prese?Hreless fluid. Such a scalar field is therefore a viable cold
Universe dark matter candidate, the classic example being the axion

The familiar inflationary calculation for adiabatic pertur- (see Ref.[10] for an early treatment and Refl1] for a

. . . ; review.
bations is extremely smp!ésee Ref[7] for a review), be- Thvt\eb mass of the scalar field in such a scenario must have
cause once the perturbations have been stretched to way uite a complicated evolution in order to generate a viable
lengths greater than the Hubble length they become constanf, el
and no calculation is required until the much later epoch
when they cross back inside the Hubble radius, which for A. During inflation
scales of interest is well after nucleosynthesis. By contrast,
isocurvature perturbation8—10] are free to evolve on su-
perhorizon scales, and the amplitude at the present day d
pends on the details of the entire cosmological evolutio
from the time that they are formed. On the other hand, begy, 0 yring short-scale perturbatiorssually called a blue
cause all super-Hubble ra_dlus perturbations eV(_)Ive in th‘%pectrurm This can successfully be generatechiH at the
same way, theshapeof the isocurvature perturbation Spec- yejeyant stages of inflatiofi]; the mass causes perturbations
trum is preserved during this evolution and so need not bg, die away outside the horizon, and those which have been
calculated. In the literature, therefore, Comparison with Ob'outside the |0ngest receive the greatest Suppression. How-
servation[3,4] has largely focused on the spectral index ofever if m>H during inflation, then perturbations will be
the perturbations, and it has been assumed that the modeighly suppressed with ani,=3 spectrunt, which is also
parameters could always be tweaked to ensure the amplitudsatisfactory. One must therefore tune the mass to be close
is correct. However, as we will see the constraints on amplito H, perhaps best done by generating an effective mass
tude and slope are intimately related in these scenarios. Im2,= «H? where a is some coupling hoped to be of order
this paper, we compute the Sachs-Wolfe contribution toone.
large-angle microwave background anisotropies for a par-
ticular class of isocurvature models which give non-Gaussian B. After inflation
perturbations. Unlike the case of adiabatic perturbations, the
Sachs-Wolfe effect fixes the slope of the isocurvature pertur-
bations, as well as their amplitude, because the slope dete.
mines the matter density.

If the field is effectively masslesm<H, its perturbations
will be scale-invariant. Such a spectrum is excluded by com-
arison of Cosmic Background ExploréZOBE) data with
alaxy clustering; what is needed is a spectrum with a tilt

We are seeking to create isocurvature perturbations, of the
pe where the cold dark matté€DM) perturbation is can-

Il. MODEL DESCRIPTION We use conventions whereg,=0 corresponds to scale-
invariance. Unfortunately the literature features at least three differ-
The class of models we discuss is characterized by thent conventions, where scale-invariance can correspond to an index
cold dark matter being a scalar field with a time-dependenbdf —3, 0 or 1.
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celled by the collective perturbation of all other species. Inand the mean density is
fact, the perturbations we are discussing are actually isother- L g
mal, since the fluctuations ih are uncorrelated with those in — max
the inflaton field which ismwhat ultimately determines the p¢=§m2(<b2(x)>=m2<¢2(x)):mzfo Po(K)~ -
radiation density after reheating. These isothermal perturba- )
tions can be broken into an adiabatic and an isocurvature
part. However, as long as the energy density of the CDMn that last expressior® is the power spectrum af, defined
field is totally subdominant to that of the inflaton at the endgg
of inflation, the isocurvature perturbation will be by far the
dominant parf2]. K3

Another important point is that the inflaton must not de- Pyk)= —z(qﬁﬁ by, 3)
cay into the CDM field, which would destroy the isocurva- 2m
ture perturbations, and so must decay only into conventional .
particles. Therefore at the end of inflation the CDM field ha where ¢ are the Fourier components _d:f(x) andk=|k].
much less energy density than everything else, whereas Ey’e have included an upper Cut-fay, mtended to be the
the present it has to dominate the baryonic compofewgt orgest sg:;lle on V:/h'Ch thhere 3refp'e;ltur.bat|ons and estimated
the present Universe may hai®,y,~0.04,( ,~0.3 and a as_}_he I;u K € scadedattk een od n ?‘t'orr‘]- f h b
cosmological constant While the field has a significant e background dark matter density therefore has to be

mass hery <L’ a5 compared Lo the hermalzed fuig SP"=0 seconsisenty out of e perutbaton caolaton,
which at early times goes as, < 1/a*. However it turns out P ' '

that a more dramatic gain is required, which is achieved byg\rl;/:étsgsggi?mc; r[')S: ;Sgigg dt% Szzﬁasbclsktajﬁiﬁ;tgen the
having an epoch where the mass is small enough to be neg- Y y Rax

ligible. When this happens, the scalar field feels no force an dggir:';ltﬁegl\allz ggecggzggﬁg V?r:geléf?al?sucg:eonzlrlt);:g:tirgnaslsoone
s effectively fixed, leading to a constany, enabling it to can ima 'ine smoothin OL?'[ the sn?all—scalep erturbations to
“catch up” with the conventional matter. 9 9 P

obtain a genuinely smooth background. It is interesting,
though certainly not compelling, that the blue spectrum is
favoured both in order to obtain the correct dark matter den-
In order to preserve the successes of the standard cosmeity and to match large-scale structure observations.
ogy, the field preferably should already be acting as cold One should also note that the statistics of the perturba-
dark matter by the time of nucleosynthegisough there may tions are neither Gaussian nor strictly speaking chi-squared,
be no observational conflicts even if this behavior is delayedhough they are related to the latter. It is the total density
until sometime later This requires that the mass is greaterwhich is chi-squared distributed, not the density contrast
than_thg Hubblg parameter at that time, ar_1d this_ guaranteﬁx)z[p(b(x)_;d)]/;d)_
that it will act this way when any astrophysically-interesting
perturbations enter the horizon. Depending on whether ong, sAckGROUND AND PERTURBATION EVOLUTION
believes in a cosmological constant or not, the desired dark
matter density is between about 5 and 20 times the baryon The complete model needed to evaluate the amplitude of
density, so the field must start to scale ag®Jjust when it  perturbations therefore has two inputs. The first is the evolu-
reaches that relative density. This requires fine-tuning, bution of the Hubble parametéi(t). During inflation this is
that’s true of all dark matter models as they are all trying togoverned by the inflaton field, which is some other scalar
explain the same coincidence of dark matter and baryon derfield whose energy is dominating over the CDM field. After
sities. The simplest scenario is that the mass is the bare massglation, it is determined by whatever the matter content of
of the field; the effective mass was large during inflation duethe Universe is, and we shall be assuming the standard, sim-
to some coupling, and then the field evolved as effectivelyplest evolution of radiation domination after inflation giving
massless untiH fell to be of order this bare mass. way to matter domination. One could include a cosmological
An interesting feature of this model is that the perturba-constant too but we will ignore that minor complication. The
tions are crucial to define the background. In normal modelsecond input is the time-dependent mass of the CDM field.
there is a homogeneous background dengity, about As discussed, this will be of ordét during the late stages of
which the perturbations are defined, but here the homogenflation, then at the end of inflation drops to a small constant
neous background i$=0=p,=0. Instead, the mean den- value which is initially negligible. Then eventually the
sity of the dark matter is generated by the perturbationsHubble parameter drops below this value and the field begins
taking advantage of the density being proportional to thdruly to behave as CDM.
square of the field perturbation. At each point in space the The perturbations need to be tracked at various stages.
field ¢ is oscillating with some amplitude. If we defide(x) First the amplitude arising from quantum fluctuations needs
to be the maximum of the oscillation at poirf then the to be computed. Subsequently, the perturbation is outside the
energy density is Hubble radius, but still decays as it has a significant mass
m~H. At the end of inflation the mass becomes negligible
and the field freezes out, before eventually the mass becomes
important and the field begins to evolve again. For all the

C. At late times

1
po(X)= 5MEDZ(x) M
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earlier stages, it is simplest to define the evolution in termslowly varying, then at the end of inflation the solution for
of the scalar field itself. However, at the last stage we havéhe power spectrum for the modes which are already outside
exactly a standard isocurvature CDM model, and standarthe horizon iq1]
results(for example for the Sachs-Wolfe eff¢atan be ap-

plied. These are usually expressed not in terms of the field,

but rather in terms of the entropy perturbati®defined later P (k)= 8 | 5¢b |2~ 1 Hz( )2“/3 @

on. . ) ) o om2 K om2 e Heae '

To begin with we need to study perturbations in the CDM
field which is responsible for generating isocurvature fluc-
tuations. The background evolution is governed by the inflawhere the subscript “e” denotes the end of inflation.
ton field, which dictates that the Hubble expansion during This final expression, Eq7), is strictly correct only at the
inflation is H?=V/3M2,, where V is the potential for the end of inflation, and we have replaceg; with «H?, where
inflaton field andVl = \/1/8%G is the reduced Planck mass. « is a constant less than one. An alternative physical sce-
As explained earlier, we assume that energy density of thgario would be ifm; were constant rather than in which
CDM field ¢ is subdominant compared to that of the inflaton case the tilt will pick up an extra scale-dependence, depend-
during the slow-roll phase. We are interested in studying théng on the details of the explicit model. We will only con-
fluctuations generated in thg field. The fluctuations in the ~sider the situation whea is a constant. Even in that case, an
inflaton field cause perturbations in the curvature giving riseextra scale-dependence of the tilt arises because of variation
to adiabatic perturbations, but such perturbations are to bef H during inflation, but this contribution will be insignifi-
arranged to be negligible compared to the isocurvature onesant compared to the tilt induced by the mass.

There are various sources which would produce an effec- After inflation ends, the effective mass must drop precipi-
tive mass to the CDM field1l]. One possibility is the exis- tously from its value during inflation to the bare mass
tence of a time-varying coupling of the CDM to the inflaton which is then much less than. Initially then the mass can
field. During inflation such a coupling can be adjusted tobe neglected, and Ed4) has a simple solution on large
give an effective mass to the CDM which is proportional to scales:d¢y=const. As a result the power spectrum, EQ,
the Hubble parameter. Another possibility is the existence ofemains unchanged.

a non-minimal coupling of the CDM to gravity. Such aterm  This simple situation does not hold for ever, as the
appears as a correction to the mass of the CDM and does nbiubble parameter drops as ? during radiation era, where
alter the dynamics of the overall evolution as the CDM fieldis the scale factor of the Universe. Eventually the Hubble
is oscillating at the bottom of the potentigi=0. Such a parameter becomes equal to the bare masg ahd hence-
coupling gives a correction to the mass of the CDM field:forth the mass of the field cannot be neglected in EG}).
m2(H)=m?+ 12¢H? [1]. For our purposes, it does not mat- From this time onwards, the CDM field acts like a true mas-
ter what the source of the correction is as long as it fixes theive CDM field, and the amplitude of the perturbations falls
effective mass to be of the order of the Hubble parameteras a~ %2 during all subsequent phases of the Universe. Not-
During inflation the presence of such a term provides the tiling thatH(t) = Heaﬁla2 during radiation domination, we find

in the power spectrum and just after the end of inflation itthat at any time after mass turn on the spectrum of the fluc-
must switch off to avoid the CDM field dominating too early. tuations is given by

To study the perturbations we need the perturbation equa-
tion for the CDM

1 a -3 He 3/2 5 k 2al3
8 i+ 3H Sy + ;+m§ﬁ<t> S =0, 4
Preferably this transition should take place before the syn-
. . thesis of light elements, when the ratio between the photon
where the effective masseq(t) is and the baryon is already a fixed constant, though compat-
ibility with observations may still be maintained even if it
m2¢(t)=m?+ a(t)H?, (5)  happens some time afterwards. This expression for the spec-
trum continues to hold at all later epochs, including matter
domination.

wherem is the bare mass term of the CDM field. We assume
thatm?< a(t)H? during inflation. The solution of Ed4) for
k<aH is well known[12]

After mass turn-on, it is useful to consider an alternative
quantity, the entropy perturbatidhgiven by

— \J9/4—mZ, IH? Spy § 3

©) S i ©)

5¢k~H(Ha)3’Z[m

If the ratio of effective masmg(t) andH is constant during where the subscriptf®’ denotes radiation. Because the per-
the entire period of inflation, and assumihyis suitably turbations are actually isothermélbeit in a limit where
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isothermal and isocurvature are almost the same thing  Hence

have 5p,=0 and this can be written as
4

_ 1 m
dpy p¢()(_)—p¢ :5¢2(X)—(5¢2(X))' 10 Pg(k) = WPMZ('():;_;PMZ('()- (14)

o To evaluateC, we need to compute the power spectrum
wherep,, is the mean energy density and it is defined as thef §¢2. Its calculation is quite subtle, and we carry it out in
spatial average of the field f|uctuatiom¢(x) defines the the Appendix. The result, for the range of tilts we are inter-
total energy density of the fiel@ at any given time and itis ested in, is
determined using Eqg2) from the field fluctuations them-

S=

Iy (8¢2(x))

selves. The advantage of using the entropy perturbation is 1(2a/3) (a,\®(H:|® Hg k |4
that it is a standard resyli2,7] that on super-horizon scales P sg2= a4 \a) \m/) 1-2a/3\Heae :
it continues to be conserved even when the radiation is no (15)

longer dominant(at which point the radiation will acquire

perturbations from the influence of the CDM field fluctua- where 1(2a/3) is a constant described in the Appendix,
tions on the expansion ratend this conservation law can be which is of order 10 for the values af we will be interested
used to evolve the perturbations up to decoupling to computg, HereH, is the Hubble parameter at the end of inflation.

the Sachs-Wolfe effect. . Substituting Eq(15) into Eq. (12), we get the following
Now we have all the necessary formulas to determine th@xpression:

Sachs-Wolfe effect for the isocurvature fluctuations of ¢ghe

field. o _H2arym a| e He)3 He
=" 32 \a. T 12,3
IV. COMPARISON WITH OBSERVATIONS 25mpy e m/ 1-2af3
A. Normalization from the Sachs-Wolfe effect y 1 fw K a/3_2< 2k ) 16
. o T aam Iy
The anisotropy due to the entropy perturbation is given by (Heao)**"® Jo '"\H

the well-known formuld9,13,7
Equation(16) can be further simplified by performing the

AT(x) 2S integration
T -5 (11
21(2al3)m*H2
Following the same steps as for the adiabatic dase e.g. I(1+1D)C=—F
Ref.[7]), the spectrum of the cmb, denoted By, is given 25m°py(1=2al3)
by a_gH_g Hoag | 4 ﬁl(l+1)
167 [=dk .9 a® md\ 2Hea, 2
Ci=—5| TPKii\lg=]I: (12
25 Jo k Hoag
T[(2—4a/3)/2]T[1 +2a/3]
wherePg(k) s(k—k')=(S} S, )k3/272, andj, is a spherical I'[(3—4al3)I2]T'[1+(2—-2al3)]]"
Bessel function. We have taken the distance to the last- 17)

scattering surface as&H,, where the subscript 0 corre-

sponds to the present value. This formula is strictly true onlyjn fact, as long as>1 andl>2a/3, the complicated term

for a critical-density universe, but could be readily generalyyithin the braces can be approximated simplylB$/3 (see
ized to low-density. e.g. Ref[7]).

From Eq.(10), except for thek=0 mode we have Although in this expression the quantiti?g, anda were

1 given at the time of decoupling, sin@,&x 1/a® they can in

5 (84%)  (k#0). (13)  fact be evaluated at any epoch, including the present.

(6¢%) Next we can estimatp, by using Eqs(2) and (8), ob-
taining

S.=

2The definition ofSin Eq. (9) is gauge-invariant. The approxima- _ 3m? -3 2af3

tion in Eq.(10) is not, but will hold in any reasonable gauge which Pp=
has not been specifically chosen to make the scalar field perturba-

tions unnaturally smalian example of such a pathological gauge S ) )
would be to choose the spatial slices to makghomogeneoys ~ Substitutingp 4 in Eq. (17), and takingkmax—Hea, since we

For instance, one can consider this expression to be in the longittRssume that the shortest scale perturbations generated are at
dinal or comoving gauge. Having evaluated it in a gauge where théhe horizon scale at the end of inflation, one gets a simple
approximation is good, the result holds in all gauges. relation for a multipole of ordek, namely

a
Qe

kmax
H eae

2
e

m

H 3/2
) (18)

47l
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4al3 For critical density the Hubble parameter at matter-radiation
(19 equality is Heq=5.25x10°h°H,, where Hy=2.1hx 10" 42
GeV (with 0.5<h<0.75) is the present Hubble parameter.
Putting in characteristic values leads to

32w 1 (2al3) a?
I+ DC~ 255 1T-2a3

[Hoag
2Ha.

The COBE observationgl4] give the 10th multipole as

I(I+1)C,~7x10 0. Taking the ratio of Hubble scales at m o 1 4] 10%° GeV|3(10° GeV)|?
the present and at the end of inflation to be given by the 7 ggy~ 4420, N H T ;
usual estimate Iit{.a./Hoa,) ~50, this gives € i (24)
da whereg, ~100 is the number of particle species at reheat-
Niss™= ——=0.43, (20 ing.

3 The model appears compatible with observations for a

reasonable range of parameters. First, gravitational wave

wherenjg, refers to the slope oPs. production required <10 GeV, or gravitational waves

Predominantly, then, the Sachs-Wolfe effect for isocurvawould give the dominant contribution to the COBE anisotro-
ture perturbations fixes thelopeof the perturbations, rather pies(see e.g[7]). Indeed, it will need to be some way less
than the amplitude as one finds for adiabatic perturbationghan this to make sure that adiabatic perturbations do not
The reason is that the slope, favouring short wavelengths, isxceed the isocurvature ones which we presume to dominate.
what determines the matter density, and for the observe@he masan needs to be less that, for the scenario to be
perturbationsS=10"° to be achieved, the tilt must be steep consistent, and should not turn on too late if the standard
enough to favor short-scale perturbations in determining theosmology is to be recovered. Everything would be com-
matter density against which the perturbations are observegletely safe if turn on precedes nucleosynthesis, but may
Were the spectrum flatter, then the background densitgontinue to be permitted even if turn on is later, since the
would not be high enough, whereas if it were steeper thamlark matter density would be negligible during nucleosyn-
the large-scale perturbations would not give enough densitthesis. However, sinckl, =10 2* GeV this is unlikely to
contrast against the mean background derived from the shobe the situation. Finally, if ones assumes supersymmetry
scales. This argument was given in Rf]; our calculation then the reheat temperature is constrained by gravitino pro-
had given a precise quantification of the constraint. duction from two-body scattering processes in the thermal

It is intriguing that the slope required to give the correctbath. If the reheat temperature is too high then gravitinos are
magnitude of the Sachs-Wolfe effect is also in better agreeproduced with an abundance which destroys standard nu-
ment as to the slope of the large-an@lethan a flat spec- cleosynthesis. To avoid this, it should satisfy Bg= 10
trum, although it seems unlikely that a pure isocurvatureGeV [16]. This implies reheating should be inefficient,
model will be able to fit the complete set of observationalthough the problem is no different here to usual inflation
data[15,4]. models, and may indeed be less severe than some standard

models as we can accommodate a low energy density at the
B. The CDM matter density end of inflation.

. Parameters exist which satisfy all these constraints. For
We can constrain the bare massof the CDM from the example H =10 GeV, T,,=10° GeV andm~ 10" GeV is

present density a suitable combination.

;¢2Pcrit:3H(2)MI23I! (21)

where we continue to assume that we live in a critical- V. DISCUSSION AND CONCLUSIONS
density universe. With the help of E¢L8) we can derive a

) ] We have carried out a full calculation of the amplitude of
simple expression for the CDM mass

microwave anisotropies within a class of isocurvature infla-
tion models which includes models by Linde and Mukhanov
[1] and by Peeble§2]. We have not dwelt on the model-
building issues of obtaining the appropriate time dependence
of the CDM field’s mass, but under the assumption that it
can be made to behave as required we have evaluated the
model constraints. The key result is that the Sachs-Wolfe
effect in these models primarily constrains the slope, rather
than the amplitude, of the perturbations. Typically observa-
tional comparisons have assumed that the slope is a free

6

2o} (22

HG
ae

m=(47°a)’Mp—
e

where we tookk,,=Heae. To simplify this, we model the
Universe as matter-dominated during reheating udtil,
followed by the usual cosmology. During matter domination
axH 2" and during radiation dominatiom>=H ~*2 leading

0 parametefe.g.[4]), without taking this additional restriction
HY/ a2 8.\ H into account. _
m:167r4a2M‘,§|—0 0 Zeq Zrh =16m*a®ME—2 . A broad range of parameters appears capable of simulta-
HZ 8eq Arh 8e Hthg neously matching the COBE observations and the required

(23) CDM matter density. It is intriguing that the slopg,~0.4

123507-5



ANDREW R. LIDDLE AND ANUPAM MAZUMDAR PHYSICAL REVIEW D 61 123507

required to match the Sachs-Wolfe amplitude is also in the 8
right vicinity to have a chance of matching the slope of the ?
large-angle anisotropy spectrum. Nevertheless, it is probably
true that such pure isocurvature scenarios are unable to fit th
complete data sdtl5,4]. There does however remain scope

for mixed adiabatic and isocurvature scenalfi©s,6,17,4, [
and our results can be applied, with minor modification, in _ o |
those scenarios too. i

100
|

1(n)
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n
) FIG. 1. The result of numerical evaluation of the integral of Eq.
APPENDIX: THE POWER SPECTRUM OF é¢ (A8), for n in the range zero to one.

The entropy perturbation is given by the square of the
field perturbation, and so we need the spectrum of that quan-

252
tity. We assume that the power spectrumdef itself is given P sg2(K) = k_A LfaeHean
by (aH?" 1-nJo
kK \" X[|k=p[""*=(k+p)""*]dp.  (A5)
Poa(K)=A Heae (A1) Finally, settingu=p/k gives
L A2 k \2" ragHglk
The spectrum oB¢? is given by[18]® - f e n-2
p g Yy P sg2(K) -nlan. o u
k3 aeHeP5¢(|p|)P5¢(|k_p|) 3 X[ll—u|n_1—(l+u)n_1]du, (A6)
P spe(k)=5— 3 3 d°p, (A2) . : .
27 Jo Ip|°|k—p| where we are interested mpositive, and usually less than

one. This final integral has interesting properties. It is con-
o vergent asu~0. Forn<1 the integrand is divergent at
where [p| and [k—p| are the wave numbers. This integral —1" (e p=k) but it is integrable. Finally, at large the
needs to be carried out with some care concerning the angihtegrand goes as?" 4. If n=3/2, the upper limit dominates
lar part. We can use rotational symmetry to aligalong the  and one finds?;420k?; this limit appears for instance in the
z-axis to makgk —p| independent of the azimuthal angle, so analysis of preheating models in REF9] wheren=3. How-
that d®p=2mp?sindd@dp. Substituting in the spectrum ever for the smallen values we are interested in, the integral
from Eqg. (Al) gives is dominated byu~1. The upper limit of the integral be-
comes irrelevant and can be taken to infinity for modes with

k3A2 [aHe (7 k=<adH., so that the integral is independentlofThe spec-
P sp2= —ZnJ' f p" Y k—p|" 3sinedadp, trum therefore has tilP 542(k) <k?". For the range oh we
(agHe)™ /o Jo (A3) will be interested in, 822n<1, we can write
A?l(n)[ k \?"
wherep=|p| andk=|k|. Using P sg2(K) = 1-n \aH. (A7)
|k—p|?=[k|?+]|p|?—2|K] |p|cos6, (A4)  where
leads to the integral I(n)=f un | 1—u|" = (1+u)" tdu.  (A8)
0

We are not aware of an analytical evaluation of this integral
3In Ref.[18] an unusual mix of Fourier conventions is used, butexcept for special cases, but it is readily done numerically
the final result is correct. and we show the result in Fig. 1.
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