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Perturbation amplitude in isocurvature inflation scenarios
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We make a detailed calculation of the amplitude of isocurvature perturbations arising from inflationary
models in which the cold dark matter is represented by a scalar field which acquires perturbations during
inflation. We use this to compute the normalization to large-angle microwave background anisotropies. Unlike
the case of adiabatic perturbations, the normalization to COBE fixes the spectral index of the perturbations; if
adiabatic perturbations are negligible thenniso.0.4. Such blue spectra are also favored by other observational
data. Although the pure isocurvature models are unlikely to adequately fit the entire observational data set,
these results also have implications for models with mixed adiabatic and isocurvature perturbations.

PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

There has been recent interest@1–6# in inflationary mod-
els which give rise to isocurvature perturbations in the U
verse, rather than the traditional adiabatic ones. The simp
way to achieve this is to assume that the material prese
making up the cold dark matter takes the form of a mass
scalar field, which during inflation received perturbations
the usual mechanism. With suitable subsequent evolut
these perturbations can be the dominant ones in the pre
Universe.

The familiar inflationary calculation for adiabatic pertu
bations is extremely simple~see Ref.@7# for a review!, be-
cause once the perturbations have been stretched to w
lengths greater than the Hubble length they become cons
and no calculation is required until the much later epo
when they cross back inside the Hubble radius, which
scales of interest is well after nucleosynthesis. By contr
isocurvature perturbations@8–10# are free to evolve on su
perhorizon scales, and the amplitude at the present day
pends on the details of the entire cosmological evolut
from the time that they are formed. On the other hand,
cause all super-Hubble radius perturbations evolve in
same way, theshapeof the isocurvature perturbation spe
trum is preserved during this evolution and so need not
calculated. In the literature, therefore, comparison with
servation@3,4# has largely focused on the spectral index
the perturbations, and it has been assumed that the m
parameters could always be tweaked to ensure the ampl
is correct. However, as we will see the constraints on am
tude and slope are intimately related in these scenarios
this paper, we compute the Sachs-Wolfe contribution
large-angle microwave background anisotropies for a p
ticular class of isocurvature models which give non-Gauss
perturbations. Unlike the case of adiabatic perturbations,
Sachs-Wolfe effect fixes the slope of the isocurvature per
bations, as well as their amplitude, because the slope d
mines the matter density.

II. MODEL DESCRIPTION

The class of models we discuss is characterized by
cold dark matter being a scalar field with a time-depend
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mass, which apart from its quantum fluctuations sits in
vacuum state during the entire history of the Universe. P
ticular implementations of that general statement have b
given by Linde and Mukhanov@1# and by Peebles@2#. It is
well known that a sufficiently massive scalar fieldf, with
m@H whereH is the Hubble parameter, oscillates with d
caying amplitude such that its energy densityrf}1/a3

wherea is the scale factor, and further that perturbations
this field obey the same equations as perturbations in a p
sureless fluid. Such a scalar field is therefore a viable c
dark matter candidate, the classic example being the a
~see Ref.@10# for an early treatment and Ref.@11# for a
review!.

The mass of the scalar field in such a scenario must h
quite a complicated evolution in order to generate a via
model.

A. During inflation

If the field is effectively massless,m!H, its perturbations
will be scale-invariant. Such a spectrum is excluded by co
parison of Cosmic Background Explorer~COBE! data with
galaxy clustering; what is needed is a spectrum with a
favouring short-scale perturbations~usually called a blue
spectrum!. This can successfully be generated ifm.H at the
relevant stages of inflation@1#; the mass causes perturbatio
to die away outside the horizon, and those which have b
outside the longest receive the greatest suppression. H
ever if m@H during inflation, then perturbations will be
highly suppressed with anniso53 spectrum,1 which is also
unsatisfactory. One must therefore tune the mass to be c
to H, perhaps best done by generating an effective m
meff

2 5aH2 wherea is some coupling hoped to be of orde
one.

B. After inflation

We are seeking to create isocurvature perturbations, of
type where the cold dark matter~CDM! perturbation is can-

1We use conventions whereniso50 corresponds to scale
invariance. Unfortunately the literature features at least three dif
ent conventions, where scale-invariance can correspond to an i
of 23, 0 or 1.
©2000 The American Physical Society07-1
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celled by the collective perturbation of all other species.
fact, the perturbations we are discussing are actually isot
mal, since the fluctuations inf are uncorrelated with those i
the inflaton field which is what ultimately determines t
radiation density after reheating. These isothermal pertu
tions can be broken into an adiabatic and an isocurva
part. However, as long as the energy density of the CD
field is totally subdominant to that of the inflaton at the e
of inflation, the isocurvature perturbation will be by far th
dominant part@2#.

Another important point is that the inflaton must not d
cay into the CDM field, which would destroy the isocurv
ture perturbations, and so must decay only into conventio
particles. Therefore at the end of inflation the CDM field h
much less energy density than everything else, wherea
the present it has to dominate the baryonic component~e.g.
the present Universe may haveVbaryon.0.04,Vf.0.3 and a
cosmological constant!. While the field has a significan
mass thenrf}1/a3, as compared to the thermalized flu
which at early times goes asr rad}1/a4. However it turns out
that a more dramatic gain is required, which is achieved
having an epoch where the mass is small enough to be
ligible. When this happens, the scalar field feels no force
is effectively fixed, leading to a constantrf enabling it to
‘‘catch up’’ with the conventional matter.

C. At late times

In order to preserve the successes of the standard cos
ogy, the field preferably should already be acting as c
dark matter by the time of nucleosynthesis~though there may
be no observational conflicts even if this behavior is dela
until sometime later!. This requires that the mass is grea
than the Hubble parameter at that time, and this guaran
that it will act this way when any astrophysically-interesti
perturbations enter the horizon. Depending on whether
believes in a cosmological constant or not, the desired d
matter density is between about 5 and 20 times the bar
density, so the field must start to scale as 1/a3 just when it
reaches that relative density. This requires fine-tuning,
that’s true of all dark matter models as they are all trying
explain the same coincidence of dark matter and baryon d
sities. The simplest scenario is that the mass is the bare m
of the field; the effective mass was large during inflation d
to some coupling, and then the field evolved as effectiv
massless untilH fell to be of order this bare mass.

An interesting feature of this model is that the perturb
tions are crucial to define the background. In normal mod
there is a homogeneous background densityrCDM about
which the perturbations are defined, but here the homo
neous background isf50⇒rf50. Instead, the mean den
sity of the dark matter is generated by the perturbatio
taking advantage of the density being proportional to
square of the field perturbation. At each point in space
field f is oscillating with some amplitude. If we defineF(x)
to be the maximum of the oscillation at pointx, then the
energy density is

rf~x!5
1

2
m2F2~x! ~1!
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and the mean density is

r̄f5
1

2
m2^F2~x!&5m2^f2~x!&5m2E

0

kmaxPf~k!
dk

k
.

~2!

In that last expression,P is the power spectrum off, defined
as

Pf~k!5
k3

2p2
^fk* fk&, ~3!

wherefk are the Fourier components off(x) and k5uku.
We have included an upper cut-offkmax, intended to be the
shortest scale on which there are perturbations and estim
as the Hubble scale at the end of inflation.

The background dark matter density therefore has to
obtained self-consistently out of the perturbation calculati
Were the spectrum flat, this cannot be achieved; we need
power spectrum to rise sharply to short scales, as then
correct density can be obtained by suitable tuning ofkmax
andm to give the observed value. Calculationally this is al
desirable, as in considering the large-scale perturbations
can imagine smoothing out the small-scale perturbation
obtain a genuinely smooth background. It is interesti
though certainly not compelling, that the blue spectrum
favoured both in order to obtain the correct dark matter d
sity and to match large-scale structure observations.

One should also note that the statistics of the pertur
tions are neither Gaussian nor strictly speaking chi-squa
though they are related to the latter. It is the total densityrf
which is chi-squared distributed, not the density contr
d(x)[@rf(x)2 r̄f#/ r̄f .

III. BACKGROUND AND PERTURBATION EVOLUTION

The complete model needed to evaluate the amplitud
perturbations therefore has two inputs. The first is the evo
tion of the Hubble parameterH(t). During inflation this is
governed by the inflaton field, which is some other sca
field whose energy is dominating over the CDM field. Aft
inflation, it is determined by whatever the matter content
the Universe is, and we shall be assuming the standard,
plest evolution of radiation domination after inflation givin
way to matter domination. One could include a cosmologi
constant too but we will ignore that minor complication. Th
second input is the time-dependent mass of the CDM fie
As discussed, this will be of orderH during the late stages o
inflation, then at the end of inflation drops to a small const
value which is initially negligible. Then eventually th
Hubble parameter drops below this value and the field beg
truly to behave as CDM.

The perturbations need to be tracked at various sta
First the amplitude arising from quantum fluctuations nee
to be computed. Subsequently, the perturbation is outside
Hubble radius, but still decays as it has a significant m
m;H. At the end of inflation the mass becomes negligib
and the field freezes out, before eventually the mass beco
important and the field begins to evolve again. For all t
7-2



m
av
a

el

M
c

fla
in

s.
th

on
th

is

ne
fe

n
to
to
o

m
s n
ld

ld
t-
th
te
ti
i

y.
u

m

or
side

ce-

nd-
-
n
tion

pi-

e

he

ble

s-
lls
ot-

uc-

yn-
ton
pat-
it
pec-
ter

ive

r-

PERTURBATION AMPLITUDE IN ISOCURVATURE . . . PHYSICAL REVIEW D61 123507
earlier stages, it is simplest to define the evolution in ter
of the scalar field itself. However, at the last stage we h
exactly a standard isocurvature CDM model, and stand
results~for example for the Sachs-Wolfe effect! can be ap-
plied. These are usually expressed not in terms of the fi
but rather in terms of the entropy perturbationSdefined later
on.

To begin with we need to study perturbations in the CD
field which is responsible for generating isocurvature flu
tuations. The background evolution is governed by the in
ton field, which dictates that the Hubble expansion dur
inflation is H2.V/3MPl

2 , where V is the potential for the
inflaton field andMPl5A1/8pG is the reduced Planck mas
As explained earlier, we assume that energy density of
CDM field f is subdominant compared to that of the inflat
during the slow-roll phase. We are interested in studying
fluctuations generated in thef field. The fluctuations in the
inflaton field cause perturbations in the curvature giving r
to adiabatic perturbations, but such perturbations are to
arranged to be negligible compared to the isocurvature o

There are various sources which would produce an ef
tive mass to the CDM field@1#. One possibility is the exis-
tence of a time-varying coupling of the CDM to the inflato
field. During inflation such a coupling can be adjusted
give an effective mass to the CDM which is proportional
the Hubble parameter. Another possibility is the existence
a non-minimal coupling of the CDM to gravity. Such a ter
appears as a correction to the mass of the CDM and doe
alter the dynamics of the overall evolution as the CDM fie
is oscillating at the bottom of the potentialf50. Such a
coupling gives a correction to the mass of the CDM fie
m2(H)5m2112jH2 @1#. For our purposes, it does not ma
ter what the source of the correction is as long as it fixes
effective mass to be of the order of the Hubble parame
During inflation the presence of such a term provides the
in the power spectrum and just after the end of inflation
must switch off to avoid the CDM field dominating too earl

To study the perturbations we need the perturbation eq
tion for the CDM

d f̈k13Hdḟk1F k2

a2
1meff

2 ~ t !Gdfk50, ~4!

where the effective massmeff(t) is

meff
2 ~ t !5m21a~ t !H2, ~5!

wherem is the bare mass term of the CDM field. We assu
thatm2!a(t)H2 during inflation. The solution of Eq.~4! for
k!aH is well known @12#

dfk'H~Ha!23/2F k

HaG2A9/42meff
2 /H2

. ~6!

If the ratio of effective massmeff(t) andH is constant during
the entire period of inflation, and assumingH is suitably
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slowly varying, then at the end of inflation the solution f
the power spectrum for the modes which are already out
the horizon is@1#

Pdf~k![
k3

2p2
udfku2'

1

2p2
He

2S k

Heae
D 2a/3

, ~7!

where the subscript ‘‘e’’ denotes the end of inflation.
This final expression, Eq.~7!, is strictly correct only at the

end of inflation, and we have replacedmeff with aH2, where
a is a constant less than one. An alternative physical s
nario would be ifmeff were constant rather thana, in which
case the tilt will pick up an extra scale-dependence, depe
ing on the details of the explicit model. We will only con
sider the situation whena is a constant. Even in that case, a
extra scale-dependence of the tilt arises because of varia
of H during inflation, but this contribution will be insignifi-
cant compared to the tilt induced by the mass.

After inflation ends, the effective mass must drop preci
tously from its value during inflation to the bare massm
which is then much less thanH. Initially then the mass can
be neglected, and Eq.~4! has a simple solution on larg
scales:dfk5const. As a result the power spectrum, Eq.~7!,
remains unchanged.

This simple situation does not hold for ever, as t
Hubble parameter drops asa22 during radiation era, wherea
is the scale factor of the Universe. Eventually the Hub
parameter becomes equal to the bare mass off and hence-
forth the mass of thef field cannot be neglected in Eq.~4!.
From this time onwards, the CDM field acts like a true ma
sive CDM field, and the amplitude of the perturbations fa
asa23/2 during all subsequent phases of the Universe. N
ing thatH(t)5Heae

2/a2 during radiation domination, we find
that at any time after mass turn on the spectrum of the fl
tuations is given by

Pdf~k!'
1

2p2 S a

ae
D 23S He

m D 3/2

He
2S k

Heae
D 2a/3

. ~8!

Preferably this transition should take place before the s
thesis of light elements, when the ratio between the pho
and the baryon is already a fixed constant, though com
ibility with observations may still be maintained even if
happens some time afterwards. This expression for the s
trum continues to hold at all later epochs, including mat
domination.

After mass turn-on, it is useful to consider an alternat
quantity, the entropy perturbationS given by

S5
drf

rf
2

3

4

dr r

r r
, ~9!

where the subscript ‘‘r ’’ denotes radiation. Because the pe
turbations are actually isothermal~albeit in a limit where
7-3
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isothermal and isocurvature are almost the same thing!, we
havedr r50 and this can be written as2

S5
drf

rf
[

rf~x!2 r̄f

r̄f

5
df2~x!2^df2~x!&

^df2~x!&
, ~10!

wherer̄f is the mean energy density and it is defined as
spatial average of the field fluctuations.r̄f(x) defines the
total energy density of the fieldf at any given time and it is
determined using Eq.~2! from the field fluctuations them
selves. The advantage of using the entropy perturbatio
that it is a standard result@12,7# that on super-horizon scale
it continues to be conserved even when the radiation is
longer dominant~at which point the radiation will acquire
perturbations from the influence of the CDM field fluctu
tions on the expansion rate!, and this conservation law can b
used to evolve the perturbations up to decoupling to comp
the Sachs-Wolfe effect.

Now we have all the necessary formulas to determine
Sachs-Wolfe effect for the isocurvature fluctuations of thef
field.

IV. COMPARISON WITH OBSERVATIONS

A. Normalization from the Sachs-Wolfe effect

The anisotropy due to the entropy perturbation is given
the well-known formula@9,13,7#

DT~x!

T
52

2S

5
. ~11!

Following the same steps as for the adiabatic case~see e.g.
Ref. @7#!, the spectrum of the cmb, denoted byCl , is given
by

Cl5
16p

25 E
0

`dk

k
PS~k! j l

2S 2k

H0a0
D , ~12!

wherePS(k)d(k2k8)[^Sk* Sk8&k
3/2p2, and j l is a spherical

Bessel function. We have taken the distance to the l
scattering surface as 2/a0H0, where the subscript 0 corre
sponds to the present value. This formula is strictly true o
for a critical-density universe, but could be readily gener
ized to low-density.

From Eq.~10!, except for thek50 mode we have

Sk5
1

^df2&
~df2!k ~kÞ0!. ~13!

2The definition ofS in Eq. ~9! is gauge-invariant. The approxima
tion in Eq.~10! is not, but will hold in any reasonable gauge whic
has not been specifically chosen to make the scalar field pertu
tions unnaturally small~an example of such a pathological gau
would be to choose the spatial slices to makerf homogeneous!.
For instance, one can consider this expression to be in the lon
dinal or comoving gauge. Having evaluated it in a gauge where
approximation is good, the result holds in all gauges.
12350
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PS~k!5
1

^df2&2
P df2~k!5

m4

r̄f
2
P df2~k!. ~14!

To evaluateCl we need to compute the power spectru
of df2. Its calculation is quite subtle, and we carry it out
the Appendix. The result, for the range of tilts we are int
ested in, is

P df25
I ~2a/3!

4p4 S ae

a D 6S He

m D 3 He
4

122a/3 S k

Heae
D 4a/3

,

~15!

where I (2a/3) is a constant described in the Append
which is of order 10 for the values ofa we will be interested
in. HereHe is the Hubble parameter at the end of inflatio

Substituting Eq.~15! into Eq. ~12!, we get the following
expression:

Cl5
4I ~2a/3!m4

25p3r̄f
2 S a

ae
D 26S He

m D 3 He
4

122a/3

3
1

~Heae!
4a/3 E0

`

dkk4a/3j l
2S 2k

H0a0
D . ~16!

Equation ~16! can be further simplified by performing th
integration

l ~ l 11!Cl5
2I ~2a/3!m4He

4

25p3r̄f
2 ~122a/3!

3
ae

6

a6

He
3

m3S H0a0

2Heae
D 4a/3HAp

2
l ~ l 11!

3
G@~224a/3!/2#G@ l 12a/3#

G@~324a/3!/2#G@ l 1~222a/3!#J .

~17!

In fact, as long asl @1 and l @2a/3, the complicated term
within the braces can be approximated simply byl 4a/3 ~see
e.g. Ref.@7#!.

Although in this expression the quantitiesr̄f anda were
given at the time of decoupling, sincer̄f}1/a3 they can in
fact be evaluated at any epoch, including the present.

Next we can estimater̄f by using Eqs.~2! and ~8!, ob-
taining

r̄f5
3m2

4p2a
S a

ae
D 23S He

m D 3/2

He
2S kmax

Heae
D 2a/3

. ~18!

Substitutingr̄f in Eq. ~17!, and takingkmax;Heae since we
assume that the shortest scale perturbations generated
the horizon scale at the end of inflation, one gets a sim
relation for a multipole of orderl, namely

a-

u-
e

7-4
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l ~ l 11!Cl'
32p

255

I ~2a/3!a2

122a/3 F lH 0a0

2Heae
G4a/3

. ~19!

The COBE observations@14# give the 10th multipole as
l ( l 11)Cl;7310210. Taking the ratio of Hubble scales a
the present and at the end of inflation to be given by
usual estimate ln(Heae/H0a0)'50, this gives

niso.
4a

3
.0.43, ~20!

whereniso refers to the slope ofPS .
Predominantly, then, the Sachs-Wolfe effect for isocur

ture perturbations fixes theslopeof the perturbations, rathe
than the amplitude as one finds for adiabatic perturbatio
The reason is that the slope, favouring short wavelength
what determines the matter density, and for the obser
perturbationsS.1025 to be achieved, the tilt must be stee
enough to favor short-scale perturbations in determining
matter density against which the perturbations are obser
Were the spectrum flatter, then the background den
would not be high enough, whereas if it were steeper t
the large-scale perturbations would not give enough den
contrast against the mean background derived from the s
scales. This argument was given in Ref.@1#; our calculation
had given a precise quantification of the constraint.

It is intriguing that the slope required to give the corre
magnitude of the Sachs-Wolfe effect is also in better agr
ment as to the slope of the large-angleCl than a flat spec-
trum, although it seems unlikely that a pure isocurvat
model will be able to fit the complete set of observation
data@15,4#.

B. The CDM matter density

We can constrain the bare massm of the CDM from the
present density

r̄f.rcrit53H0
2MPl

2 , ~21!

where we continue to assume that we live in a critic
density universe. With the help of Eq.~18! we can derive a
simple expression for the CDM mass

m5~4p2a!2MPl
4

H0
4

He
7 S a0

ae
D 6

, ~22!

where we tookkmax5Heae. To simplify this, we model the
Universe as matter-dominated during reheating untilH rh ,
followed by the usual cosmology. During matter dominati
a}H22/3 and during radiation dominationa}H21/2, leading
to

m516p4a2MPl
4

H0
4

He
7 S a0

aeq

aeq

arh

arh

ae
D 6

516p4a2MPl
4 Heq

H rhHe
3

.

~23!
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For critical density the Hubble parameter at matter-radiat
equality is Heq55.253106h3H0 where H052.1h310242

GeV ~with 0.5,h,0.75) is the present Hubble paramete
Putting in characteristic values leads to

m

1 GeV
544a2g

*
21/2h4S 1013 GeV

He
D 3S 1010 GeV

Trh
D 2

,

~24!

whereg* ;100 is the number of particle species at rehe
ing.

The model appears compatible with observations fo
reasonable range of parameters. First, gravitational w
production requiresHe,1014 GeV, or gravitational waves
would give the dominant contribution to the COBE anisotr
pies ~see e.g.@7#!. Indeed, it will need to be some way les
than this to make sure that adiabatic perturbations do
exceed the isocurvature ones which we presume to domin
The massm needs to be less thanHe for the scenario to be
consistent, and should not turn on too late if the stand
cosmology is to be recovered. Everything would be co
pletely safe if turn on precedes nucleosynthesis, but m
continue to be permitted even if turn on is later, since
dark matter density would be negligible during nucleosy
thesis. However, sinceHnucl.10224 GeV this is unlikely to
be the situation. Finally, if ones assumes supersymm
then the reheat temperature is constrained by gravitino
duction from two-body scattering processes in the therm
bath. If the reheat temperature is too high then gravitinos
produced with an abundance which destroys standard
cleosynthesis. To avoid this, it should satisfy beTrh<1010

GeV @16#. This implies reheating should be inefficien
though the problem is no different here to usual inflati
models, and may indeed be less severe than some stan
models as we can accommodate a low energy density a
end of inflation.

Parameters exist which satisfy all these constraints.
example,He.1012 GeV, Trh.109 GeV andm;104 GeV is
a suitable combination.

V. DISCUSSION AND CONCLUSIONS

We have carried out a full calculation of the amplitude
microwave anisotropies within a class of isocurvature infl
tion models which includes models by Linde and Mukhan
@1# and by Peebles@2#. We have not dwelt on the mode
building issues of obtaining the appropriate time depende
of the CDM field’s mass, but under the assumption tha
can be made to behave as required we have evaluated
model constraints. The key result is that the Sachs-Wo
effect in these models primarily constrains the slope, rat
than the amplitude, of the perturbations. Typically obser
tional comparisons have assumed that the slope is a
parameter~e.g.@4#!, without taking this additional restriction
into account.

A broad range of parameters appears capable of simu
neously matching the COBE observations and the requ
CDM matter density. It is intriguing that the slopeniso.0.4
7-5
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required to match the Sachs-Wolfe amplitude is also in
right vicinity to have a chance of matching the slope of t
large-angle anisotropy spectrum. Nevertheless, it is prob
true that such pure isocurvature scenarios are unable to fi
complete data set@15,4#. There does however remain sco
for mixed adiabatic and isocurvature scenarios@15,6,17,4#,
and our results can be applied, with minor modification,
those scenarios too.
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APPENDIX: THE POWER SPECTRUM OF df2

The entropy perturbation is given by the square of
field perturbation, and so we need the spectrum of that qu
tity. We assume that the power spectrum ofdf itself is given
by

Pdf~k!5AS k

Heae
D n

. ~A1!

The spectrum ofdf2 is given by@18#3

P df2~k!5
k3

2pE0

aeHePdf~ upu!Pdf~ uk2pu!

upu3uk2pu3
d3p, ~A2!

where upu and uk2pu are the wave numbers. This integr
needs to be carried out with some care concerning the a
lar part. We can use rotational symmetry to alignk along the
z-axis to makeuk2pu independent of the azimuthal angle,
that d3p[2pp2sinu du dp. Substituting in the spectrum
from Eq. ~A1! gives

P df25
k3A2

~aeHe!
2nE0

aeHeE
0

p

pn21uk2pun23sinu du dp,

~A3!

wherep[upu andk5uku. Using

uk2pu25uku21upu222uku upucosu, ~A4!

leads to the integral

3In Ref. @18# an unusual mix of Fourier conventions is used, b
the final result is correct.
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P df2~k!5
k2A2

~aeHe!
2n

1

12nE0

aeHe
pn22

3@ uk2pun212~k1p!n21#dp. ~A5!

Finally, settingu5p/k gives

P df2~k!5
A2

12n S k

aeHe
D 2nE

0

aeHe /k

un22

3@ u12uun212~11u!n21#du, ~A6!

where we are interested inn positive, and usually less tha
one. This final integral has interesting properties. It is co
vergent asu;0. For n,1 the integrand is divergent atu
51 ~i.e. p5k) but it is integrable. Finally, at largeu the
integrand goes asu2n24. If n*3/2, the upper limit dominates
and one findsPdf2}k3; this limit appears for instance in th
analysis of preheating models in Ref.@19# wheren53. How-
ever for the smallern values we are interested in, the integr
is dominated byu;1. The upper limit of the integral be
comes irrelevant and can be taken to infinity for modes w
k&aeHe, so that the integral is independent ofk. The spec-
trum therefore has tiltP df2(k)}k2n. For the range ofn we
will be interested in, 0,2n,1, we can write

P df2~k!5
A2I ~n!

12n S k

aeHe
D 2n

, ~A7!

where

I ~n!5E
0

`

un22@ u12uun212~11u!n21#du. ~A8!

We are not aware of an analytical evaluation of this integ
except for special cases, but it is readily done numerica
and we show the result in Fig. 1.

t

FIG. 1. The result of numerical evaluation of the integral of E
~A8!, for n in the range zero to one.
7-6
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