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Abstract

Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in
human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been
shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6,
CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the
protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent.
Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow
cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The
findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This
is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against
Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of
human infection and/or new therapeutic approaches.
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Introduction

Cutaneous, mucocutaneous and visceral leishmaniasis in hu-

mans are caused by several species of the intracellular protozoan

parasite Leishmania. The clinical picture and outcome of disease

depends on the particular Leishmania species that causes infection,

immunological status, and possibly also genetic factors of the host.

When the promastigote form of the parasite enters the

haemorrhagic pool caused by the bite of an infected sand fly, it

is rapidly taken up by dermal macrophages, neutrophils and other

antigen presenting cells. Within macrophages, the promastigote

transforms to the smaller amastigote form, which multiplies in the

phagosome/parasitophorous vacuole of the macrophage. When

the macrophage eventually ruptures, the amastigotes can be taken

up by other macrophages and continue to divide. Throughout its

life cycle, the Leishmania parasite has to withstand the immune

systems of both vector and host long enough to secure further

transmission through the next bite. It has therefore evolved

different ways to modulate the immune response of the

mammalian host outside and within the hostile environment of

the phagosomes of macrophages.

In order for the host to clear infection, a cellular immune

response is required, where a majority of the Leishmania-specific

CD4+ T-cells differentiate into T helper (Th) 1-cells. The Th1-

cells secrete IFN-c, TNF-a, activate macrophages, and are

important for parasite elimination. Many chemokines (CCL2,

CCL3, CXCL8, CXCL9, CXCL10) are important as chemotactic

agents and through their activation of different types of leukocytes

in leishmaniasis [1]. There is also evidence that certain

chemokines (CCL3, CCL4, CCL5, MCAF) are antiparasitic and

increase phagocytosis and NO-mediated killing of different

protozoa, but to date such effects have been attributed to indirect

activity on the macrophages and not to a possible direct effect on

the parasites [2,3,4,5].

Infection with Leishmania parasites alters expression of chemo-

kines and chemokine receptors in the host [6,7]. Leishmania major

has been shown to up-regulate genes for IL-8, CXCL2,

CXCL3,CCL20 and down-regulate CXCL9, CXCL10 and

CCL2 in human macrophages in vitro [7], possibly part of an

immune evasion response. Conversely, in skin lesions taken from

patients with localised (typically self-healing) cutaneous leishman-

iasis, CXCL9, CXCL10 and CCL2 are highly expressed, and

CCL3 is only present in low levels, this response perhaps being

part of an effective immune response. Supporting this idea, in the

more chronic and severe diffuse forms of cutaneous leishmaniasis,

the former chemokines are expressed in low levels, and there are

high amounts of CCL3 [8,9]. These and other data imply that
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chemokines are important players in immunity against Leishmania

parasites.

Antimicrobial peptides (AMPs) and chemokines have many

properties in common; they are small, cationic proteins, and both

groups are believed to be important components of the innate

immunity in a wide range of species. They are usually expressed in

low levels, but up-regulated in response to infectious or in-

flammatory stimuli [10]. The AMPs in the groups of a- and b-
defensins are chemotactic for leukocytes. b-defensins share their

receptor, CCR6, with the chemokine CCL20, which has also been

shown to have direct antimicrobial activity [11,12]. A number of

chemokines have, in addition to their different effects on human

cells, been shown to have antimicrobial activities on bacteria and

fungi (Table 1), and sometimes the term kinocidins is used for

these molecules [13,14,15]. Further, several AMPs from various

species are reported to have effects on different Leishmania species

[16]. The virulence factor Gp63, a multifunctional metallopro-

tease prominent on the surface of promastigotes, also protects

against antimicrobial peptide-induced killing of Leishmania major

[17].

To our knowledge, there are no previous reports of chemokines

having direct antimicrobial effects on parasites, independent of the

activation of leukocytes. As several chemokines have previously

been shown to exhibit antimicrobial effects on both bacteria and

the eukaryote Candida albicans, our aim was to screen the most

probable candidates for possible effects on a protozoan parasite,

Leishmania mexicana. For this study, we chose chemokines previously

tested for antimicrobial effect, some of which had also been shown

to be up or down regulated in leishmaniasis, and here we present

the evidence for antiparasitic activity of several of them.

Results

Several Chemokines Decrease the Mitochondrial Activity
of L. mexicana
Cytotoxicity was measured in an MTT-based assay, in which

viable actively respiring cells with functional mitochondria convert

3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide

(MTT) to purple formazan, measured in a spectrophotometer.

This method, which has been previously validated for Leishmania

parasites in both HBSS and sorbitol buffer systems [18,19], and in

our settings (Fig. S1), gives a measure of viable cells, but not the

mechanism of the cytotoxic effect. In three identical independent

experiments, cytotoxic activity was observed for several of the

chemokines that have previously shown antibacterial and antifun-

gal properties (Fig. 1). CXCL6, CXCL9 and CCL28 were the

most effective causing over 80% loss of viability, but substantial

decrease of mitochondrial activity (over 50%) was also observed

for CXCL2, CXCL10, and CCL20 (Table 2). Dose-response

assays were carried out for CXCL9 and CCL28, which showed

a dose-dependent activity for both (Fig. 2). CCL3 exerted

a marginal effect, whereas CXCL8, CCL2 and CCL27 did not

cause a statistically significant decrease in viability. These findings

were in concordance with pilot studies in which cells were

manually counted in a Neubauer chamber on days 0–3 after

incubation with the chemokines, corresponding well to survival of

cells on day 3 (Table S1). The most effective chemokines had an

activity comparable to that of Amphotericin B, a currently

deployed first-line antileishmanial drug that acts by forming pores

in the surface membrane. Additional assays, also performed in

sorbitol buffer with serum, or in HBSS (Hanks Balanced Salt

Solution) with or without serum did not show the same activity as

when performed in sorbitol buffer alone (Fig. S2, S3), but point

toward a possible effect in HBSS with serum.

Chemokines Make Leishmanial Membranes Permeable to
Vital Dyes
Membrane integrity can be assessed by the entry of vital dyes,

and entry of propidium iodide (PI) has previously been used to

study membrane damage in Leishmania.

Flow cytometry was used to detect entrance of PI and after 4

hours of incubation, the plasma membranes of L. mexicana

promastigotes were sufficiently permeabilized by several of the

chemokines to allow entrance of PI (Fig. 3), a molecule of relative

molecular mass 668 Da. Flow cytometry dot plots of cell

morphology (forward scatter versus side scatter) revealed that the

chemokines did generate some, but not gross morphology changes

in the cells (Fig. 3B–E). With few exceptions, the chemokines

yielding the highest percentage of PI-positive cells also showed the

largest decrease in mitochondrial function in the MTT-assay,

Table 1. Chemokines used in this study and previous reports of their antimicrobial activity.

Chemokine new/old name Main leukocyte targets Antimicrobial activity Calculated pI

CXCL2/GRO-b Neutr, Mo, Mast E. coli, S. aureus [12] 10.27

CXCL6/GCP-2 Neutr, Mo, Mast S. pyogenes, S. aureus, E. coli, P. aeruginosa,
S. dysgalactiae [26]

9.06

CXCL8/IL-8 Neutr, Mo, Mast S. aureus, S. typhimurium, C. albicans [13] 8.97

CXCL9/MIG Th1, NK, pDC, Mast E. coli, S. aureus, S. pyogenes, N. gonorrhoeae [12] 10.83

CXCL10/IP-10 Th1, NK, pDC, Mast E. coli, S. aureus [12] 10.52

CCL2/MCP-1 Mo, Bas, MemT No activity on E. coli, S. aureus [12] 9.58

CCL3/MIP-1a mDC, Mo, MemT, Th1, Treg, NK, pDC No activity on E. coli, S. aureus [12] 4.60

CCL20/MIP-3a BC, mDC, MemT E. coli, S. aureus, C. albicans [12] 10.08

CCL27/CTACK MemT C. albicans. No activity on E. coli, S. aureus [12,27] 9.11

CCL28/MEC MemT S.pyogenes, S.aureus, E.coli, C.albicans [27] 10.23

Chemokines are listed with their systematic/common names, main leukocyte targets [23] and antimicrobial activity previously reported. Bas, basophils;BC, B-cells; Mast,
mast cells; mDC, myeloid dendritic cells; MemT, memory T-cells; Mo, macrophages; NK, natural killer cells; Neut, Neutrophils; pDC, plasmacytoid dendritic cells; Th1, T-
helper 1 cells. Calculated pI may be important, as the cationic properties of the peptides, at least in part, may explain the interaction with the plasma membrane and the
antimicrobial activity. Theoretical pI for CCL28 was computed using the EXPASy primary structure analysis tool, others taken from Yang et al. 2003 and Svensson et al.
2010 [12,28].
doi:10.1371/journal.pone.0058129.t001
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indicating membrane damage as a likely cause of the cytotoxic

activity of the chemokines (Table 2).
Chemokines Cause Aggregation of Promastigote Cells
When promastigotes were incubated with 10 mM of the

chemokines in 1.5 mL tubes, an immediate aggregation of cells

Figure 1. Cytotoxic activity of chemokines against Leishmania promastigotes. Reduction of mitochondrial activity in the MTT assay, as
a measure of cytotoxic activity of the chemokines on the promastigotes after 4 hrs of incubation with 10 mM of the chemokines or 5 mM of
Amphotericin B. The MTT assay was performed in three independent experiments on different days, and each incubation performed in triplicate.
Horizontal lines represent mean values of individual measurements and are expressed as percentages of negative controls. P-values (for significant
difference to negative control) were calculated using the Wilcoxon Rank-Sum test, adjusted with the Hochberg procedure for multiple comparisons.
doi:10.1371/journal.pone.0058129.g001

Table 2. Overview of observed activity on the promastigotes by the chemokines.

Chemokine Cytotoxic activity Membrane damage Aggregation of cells Morphologic change in SEM

CXCL2 ++ ++ + +

CXCL6 +++ +++ + +

CXCL8 2 2 2 N.D.

CXCL9 +++ ++ 2 +

CXCL10 ++ ++ 2 2

CCL2 2 2 2 +

CCL3 2 2 2 N.D.

CCL20 ++ + ++ +

CCL27 2 2 + +

CCL28 +++ ++ +++ +

Amph.B +++ ++ 2 +

Cytotoxic activity in the MTT-assay (quantified – to +++), membrane damage measured by entry of PI in flow cytometry (quantified – to +++), aggregation of cells
observed by the eye and in light microscopy (semiquantified – to +++), and morphologic changes of the cells visible in SEM (- or +) are summarized. N.D. = not done.
doi:10.1371/journal.pone.0058129.t002
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was visible for many of the chemokines. The aggregation of cells

could be observed by the eye, and in light microscopy, where

apparently intact cells were clumped together with morphologi-

cally altered cells and cell debris. Not all chemokines caused

aggregation, and the degree of aggregation varied among those

that did (CXCL2, CXCL6, CCL20, CCL27, CCL28; Table 2).

Chemokines Cause Morphological Changes by Scanning
Electron Microscopy (SEM)
Previous studies have shown morphological changes of Leish-

mania promastigotes when treated with AMPs [17]. Electron

microscopy has been used for Leishmania and other protozoan

parasites to visualize cell surface alterations, cell shrinkage, and

changes of cytoskeleton as an effect of antiparasitic chemotherapy

[20]. In order to see if the chemokines used in our screen were

Figure 2. Dose-response of CXCL9 and CCL28 on promastigotes. Reduction of mitochondrial activity in the MTT-assay, as a measure of
cytotoxic activity of CXCL9 and CCL28 on the promastigotes after 4 hrs of incubation with the chemokines in concentrations from 25 to 0.16 mM,
with CCL3 for comparison, all assayed against negative controls. A dose-dependent response can be seen between 15 and 1,25 mM for both CXCL9
and CCL28.
doi:10.1371/journal.pone.0058129.g002

Figure 3. Damage to the promastigote surface membrane visualised by flow cytometry. PI-signal in flow cytometry, after incubation with
chemokines, positive cells as a percentage of gated cells (A). Plots showing side scatter (y-axis) and forward scatter (x-axis) of untreated promastigote
cells (B), and cells treated with Amphotericin B (C), CXCL9 (D) and CCL28 (E). Scatter plots (B-E) represent the whole population of (ungated) cells.
doi:10.1371/journal.pone.0058129.g003

Parasiticidal Activity of Human Chemokines
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inducing morphological changes, and in order to visualise the

aggregations observed, SEM was used to examine the chemokine-

treated promastigotes. In SEM (Fig. 4), promastigotes showed

different degrees of morphological changes. Many cells exhibited

shrinking/rounding up responses in a similar way as is seen after

treatment with Amphotericin B, itself known to act on plasma

membranes. This type of morphological effect on Leishmania

promastigotes has previously been shown for antimicrobial

peptides [17].

The aggregations which were visible macroscopically within

seconds of incubating the parasite with some of the peptides were

also visible in SEM for most of the chemokine-treated parasites

(CXCL2, CXCL6, CCL20, CCL28). Aggregations of apparently

intact and broken promastigotes were visible, sometimes with

a matrix or fibrillar network of possible cytoplasmic or nuclear

contents.

Parasiticidal Chemokine CCL28 is not Cytotoxic to
Human Cells
One potential concern with membrane active peptides is

cytotoxicity against human cells. We therefore tested one

chemokine (CCL28) with parasiticidal activity against L. mexicana,

and one without such activity (CCL3) for cytotoxicity against

human cells. CCL28 and CCL3 at 10–20 mM were tested in

a whole blood haemolysis assay and a lactate dehydrogenase

(LDH) release assay on cultured keratinocytes as previously

Figure 4. Damage to Leishmania promastigotes visualised by SEM. In scanning electron microscopy, untreated parasites retain their
elongated and fusiform shape (A), whereas treatment with amphotericin B, known to act on plasma membranes, causes the promastigotes to round
up and become smaller (B). This effect was also visible to varying degrees on promastigotes treated with many of the chemokines, here shown for
CXCL9 (C), CCL20 (D), CCL27 (E) and CCL28 (F). Several of the chemokines caused aggregation when incubated with the parasites, here shown for
CCL20 (D) and CCL28 (F), as was visible immediately after adding the chemokines when the incubation was made in 1.5 mL tubes (data not shown).
doi:10.1371/journal.pone.0058129.g004

Parasiticidal Activity of Human Chemokines
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described for other antimicrobial peptides [21]. This revealed that

no haemolysis was caused by CCL3, or CCL28 at concentrations

of 10–20 mM, and very little LDH-release from the keratinocytes

could be detected (Fig. 5). When HaCaT keratinocytes were

incubated with 10 mM, a concentration shown above to be

parasiticidal to the L.mexicana promastigotes, the LDH-release

from HaCaT keratinocytes was less than 5% of the positive

control.

Discussion

Leishmaniasis is a major health problem in tropical and

subtropical regions throughout the world. The clinical pre-

sentation ranges from self-healing cutaneous ulcers to systemic

disease affecting internal organs, leading to death if left untreated.

Treatment with the limited number of drugs available against

leishmaniasis is lengthy, costly, and frequently has side effects with

considerable morbidity and risks, and healing (with or without

treatment) requires an appropriate immune response evoked by

the host, in which chemokines are likely to play an important part.

Our results indicate a direct parasiticidal effect of several

chemokines on promastigotes of Leishmania mexicana.

AMPs are known to act in different ways on Leishmania parasites,

either directly on plasma membranes, causing lysis, or through

receptor-mediated disturbance of intracellular signalling events,

sometimes leading to apoptosis [16]. There is a possibility that

chemokines also use such ways to exert their action on

promastigotes of Leishmania mexicana (Table 2). CCL28 caused

substantial plasma membrane damage, which could explain why it

was the chemokine which, in our screen, had the highest cytotoxic

activity. As aggregation of cells was observed for most of the

samples which also showed plasma membrane damage, and the

clumps in SEM and light microscopy seemed to contain cell

debris, a likely explanation is that lysis of the cells released

cytoplasmic contents (e.g. DNA) which caused aggregation of the

cells that were still intact.

CXCL9, which was also very effective in the MTT assay did

not cause aggregation of cells. In preliminary experiments, in

which the cells were manually counted on days 0–3 after

incubation of CXCL9, the cells initially seemed intact, but were

not viable, and decreased rapidly in number from day 0–3, in

comparison to negative control (Table S1). CXCL9 may either

cause smaller breaches in the plasma membrane, large enough

to eventually kill the cell, but smaller than to allow immediate

lysis, or it may exert its action through another mechanism, e.g.

through induction of apoptosis. The least active of the

chemokines were CCL3, CCL2, CXCL8 and CCL27. As the

cationic properties of AMPs are considered important for their

antimicrobial activity, the lesser antiparasitic effect of these four

chemokines may partly, but not completely, be explained by the

lower pI of the peptides (Table 1).

The activity of the chemokines was affected by the presence of

higher salt concentrations (HBSS), or in sorbitol buffer with serum

(Fig. S2, S3), but some of the chemokines seem to be effective in

the combination of HBSS and serum. None of these in vitro

conditions can completely accurately mimic the in vivo situation,

although HBSS with serum may be considered to be the best

approximation of the conditions explored. Also, the concentrations

needed for chemotactic activity, as well as the concentrations

found in different body fluids is usually in the nanomolar range,

much lower than the ones used in our study, and in previous

studies of the antibacterial activity of the chemokines [14,15].

However, it should be noted that activity of the chemokines on the

parasites will occur in the specialised microenvironment of the

parasitophorous vacuole, or at the site of release of the

chemokines, and these micro-physiological conditions are not

known.

Although the mechanisms for the action of each chemokine

needs further investigation, our results demonstrate a direct

antimicrobial effect by several chemokines on Leishmania mexicana,

something that has not been shown for parasites before. Previous

studies have shown increased phagoctyosis and NO-mediated

killing of protozoa in the presence of chemokines (CCL2, CCL3

and CCL5) in macrophages [2,3,4,5]. Although our study did not

show cytotoxic activity of CCL2 and CCL3, and has not

investigated the effects on promastigotes of CCL5, it is possible

Figure 5. Cytotoxicity of CCL3 and CCL28 on human cells. Absorbance of haemoglobin release from erythrocytes following exposure to CCL3
and CCL28 is expressed as percent of positive control, 2% Triton X-100 (5A). Cytotoxicity on HaCaT keratinocytes were measured by cell-
permeabilizing effects of CCL3 and CCL28 in the LDH-based TOX-7 kit, and absorbance expressed as percent of positive control, 1% Triton X-100 (5B).
No haemolysis and very little cell-permeabilizing effects of CCL28 on keratinocytes could be seen at the concentrations used for the chemokine
screen on promastigotes (10 mM). Error bars represent the standard errors of the means (n = 3).
doi:10.1371/journal.pone.0058129.g005
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that increased phagocytosis of parasites may not only be explained

by chemokine-induced activation of the macrophage, but also, at

least in part, by direct interaction between the chemokines and

parasites prior to phagocytosis.

As an effective cellular immune response is needed to heal

the Leishmania infection, immunomodulatory drugs are being

evaluated, some of which have improved clinical outcome when

combined with antimonial therapy [22]. Chemokines and

chemokine receptors are also being extensively investigated as

drug targets against autoimmune diseases [23]. Plasmids

encoding CCL27 and CCL28 have, as adjuvants in a vaccine,

increased antigen specific humoral and cellular responses to

Influenza A in mice [24]. An effective prophylactic vaccine

against leishmaniasis has not yet been developed, and new,

better drugs for leishmaniasis are urgently needed. None of the

drugs available will, on its own lead to healing of Leishmania

infection in an immune-compromised host, as healing requires

a cellular immune response to the parasites. An adequate

immune response is facilitated if some of the parasite cells are

dead, which could mean that even if not all parasites are killed,

and perhaps fewer by physiological concentrations of chemo-

kines, there may still be a significant activity on the parasites

important for the cure of leishmaniasis. In that regard, our

results indicate that topically or systemically administered

chemokines, or chemokine-stimulators could be a promising

target for future studies.

Materials and Methods

Culture Procedures
Promastigotes of the strain L. mexicana MHOM/GT/2001/

U1103 [25], were cultured at 27uC in medium M199 (with Hank’s

salts and HEPES; Invitrogen, Lidingö, Sweden) supplemented

with 10% foetal calf serum (FCS), 16BME vitamins and 25 mg/
mL of Gentamicin sulphate (all from Sigma-Aldrich, Schnellen-

dorf, Germany).

1 mL from 10 mL cultures were passaged every 7 days to

new 25 mL sterile culture-flasks. Preparations of cells for the

different assays followed the protocol described by Luque-

Ortega et al. [19], with a few modifications. Cell counting was

performed before every experiment, using a Neubauer counting

chamber, and counts were always performed at least twice on

the same cells.

Assay for Antimicrobial Activity
All peptides used were recombinant human chemokines from

PeproTech, London, UK. Amphotericin B (Sigma-Aldrich) was

used as a positive control. Preparations of both the sorbitol buffer

(280 mM D-sorbitol, 4.0 mM Na2HPO4, 1.0 mM KCl, 4.8 mM

NaHCO3, 10 mM D-glucose, adjusted to pH 7.2) and HBSS

(Hanks Balanced Salt Solution, containing 137 mM NaCl, 5.

3 mM KCl, 0.4 mM KH2PO4, 4.2 mMNaHCO3, 0.

4 mMNa2HPO4, pH 7.2, 10 mM D-glucose, adjusted to pH 7.

2), followed protocols described by Luques-Ortega et. al. [19] All

assays were performed on mid-exponential phase promastigote

cultures harvested on day 5, centrifuged in 1,5006g, washed in

sorbitol buffer twice, and resuspended in sorbitol buffer at a final

concentration of 46107 cells/mL. Such cells were incubated at

27uC for 4 hrs in 100 mL reactions containing 10 mM of the

chemokine or 5 mM of Amphotericin B in sorbitol buffer,

alongside control suspensions, before use in downstream analyses.

Antimicrobial activity was measured as decrease in mitochondrial

metabolism in an MTT assay, essentially as described by Luque-

Ortega et al. [19]. Cell death/reduction of mitochondrial activity

(percentage of negative control) was calculated as follows:

1006(ODsample2ODmedium only/ODnegative control2ODmedium only).

The number of viable promastigotes was confirmed to correlate to

the OD in this assay (Fig. S1). Statistical analysis was made using

the Wilcoxon Rank-Sum test. For assays with human serum in

sorbitol buffer and in HBSS, 10% fresh frozen serum from

a healthy volunteer, not heat inactivated, was used (Fig. S2, S3).

Aggregation of Cells
Cells, cultured and washed as described above, were in-

cubated with 10 mM of the chemokines in 120 mL sorbitol

buffer in 1.5 mL tubes. After careful pipetting to mix the

sample, aggregation of cells was observed through the tubes,

held towards a lamp. The incubated cells were also observed in

light microscopy, directly after the incubation. The degree to

which promastigote cells were aggregated were scored as

follows; Not present (-) no change in turbidity, or present in

different degrees (+) aggregation of a minority of parasites, (++)
aggregation of significant proportion of parasites in light

microscopy, and visible aggregation to the eye, but not complete

clearing of the turbidity in the tube, (+++) aggregation of

majority of parasites in light microscopy, and rapid aggregation

to the eye, clearing the liquid from remaining turbidity.

(Table 2).

Flow Cytometry/entrance of Vital Dyes
Cells were incubated with chemokines in 100 mL sorbitol

buffer as described above and diluted 1:2 in PBS containing 4%

propidium iodide, giving a final concentration of 2% (Calcio-

biochem/Merck, Nottingham, UK), incubated in the dark on

ice for 30 min, and analysed with BD FACSCalibur, FL-2

(488 nm).

Scanning Electron Microscopy
For scanning electron microscopy (SEM), one million cells,

treated and incubated as described above, were centrifuged at

1,5006g, resuspended in fixation solution, and added to poly-L-

lysine coated glass cover slips for 1 hour. The cover slip was

carefully washed three times in phosphate-buffered saline (PBS),

followed by incubation in 3 ml of fixation solution (4% formal-

dehyde and 2.5% glutaraldehyde in PBS) at room temperature for

12 hours. Fixed specimens were dehydrated for 10 min at each

step of an ascending ethanol series and dried to the critical point in

a Balzers critical point dryer in liquid carbon dioxide using

absolute ethanol as an intermediate solvent. Samples were

examined in a Jeol J-330 scanning electron microscope at an

acceleration voltage of 5 kV and a working distance of 10 mm.

Cells from the same incubation were cultured and counted on days

0–3.

Cytotoxicity Assays
Haemolytic properties of the chemokines were investigated in

citrate-blood, diluted 1:1 in phosphate-buffered saline (PBS). In

a v-bottom shaped 96-well plate, with 100 mL of diluted blood

in each well, two of the chemokines (10 and 20 mM of CCL28

and CCL3), and Triton X-100 (2% Sigma-Aldrich, St Louis) as

positive control, were incubated with careful rotation in 37uC
for 1 h. The plates were then centrifuged at 8006g for 10 min.

Haemoglobin release was measured from the supernatant

(removed to another plate) at 540 nm, and expressed as the

percentage of Triton X-induced haemolysis. [21].

Lactate dehydrogenase (LDH) assay was carried out on

HaCaT-cells to investigate if the chemokines, in the concentra-
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tions used for the screen on the promastigotes, would have

membrane-damaging properties on human keratinocytes. Ha-

CaT-cells were grown in 96-well plates (3000 cells/well) in

serum-free keratinocyte medium (SFM) supplemented with

bovine pituitary extract and recombinant epidermal growth

factor (BPE-rEGF) (Invitrogen) to confluence. The medium was

removed, and 100 mL of 10/20 mM of CCL3/CCL28 in PBS

was added in triplicate wells of the plate. The LDH-based

TOX-7 kit (Sigma Aldrich, St Louis, MO) was used for

quantification of LDH release from the cells, as a measurement

of membrane damage to the cells. Triton X-100 (1%) was used

as positive control, and LDH release expressed as percent of

positive control. [21].

Supporting Information

Figure S1 Optical density in MTT assay corresponds to
the number of viable promastigotes. Promastigotes in

a dilution series were used in the MTT assay, to confirm that

absorbance correlates with the number of viable cells under the

assay conditions.

(TIFF)

Figure S2 Activity of chemokines against Leishmania
promastigotes in the presence of serum. MTT-assays

performed for all chemokines tested in sorbitol buffer (empty

columns), compared with sorbitol buffer containing 10% of human

serum (filled columns), showing decreased activity of several of the

chemokines in the presence of serum. Data shown are mean values

of duplicate experiments, in which the activity in sorbitol buffer

alone correspond to previous results.

(TIFF)

Figure S3 Activity of chemokines against Leishmania
promastigotes in salt-containing buffer, with or without

serum. MTT-assays performed for all screened chemokines in

HBSS (empty columns), compared with HBSS containing 10% of

human serum (filled columns), showing little activity of any of the

chemokines in the presence of higher salt-concentrations. CXCL6,

CXCL10, CCL20 and CCL28 seem to be more active in the

presence of both salt and serum, than in HBSS alone. Data shown

are mean values of duplicate assays.

(TIFF)

Table S1 In pilot studies, cells were prepared as described for

the MTT-assay, incubated with chemokines in 27uC for 2 h, after

which 50 mL of the incubation was transferred to 10 mL of culture

medium (previously described), and counted manually in a Neu-

bauer chamber day 0–3. Reactions were carried out in duplicate,

and are expressed as actual numbers. The pilot studies pointed

towards a differential cell survival, corresponding to reduction of

mitochondrial activity later observed in MTT-assays (Fig. 1).

Concentrations used were Amphotericin B (5 mM), chemokines

(10 mM), and Saponin (1%).

(TIF)
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