
Recommending Tags for Images
Deep Learning Approaches for Personalized Tag Recommendation

A thesis submitted for the degree of

Doctor of Natural Science (Dr. rer. nat.)

In the subject of Computer Science

by

Thi Hong Hanh Nguyen

Department of Computer Science

Information Systems and Machine Learning Lab (ISMLL)

University of Hildesheim, Germany

Summer 2018

mailto:nthhanh@ismll.uni-hildesheim.de
http://www.uni-hildesheim.de
http://www.ismll.uni-hildesheim.de
http://www.uni-hildesheim.de




Acknowledgements

I am using this opportunity to express my gratitude to everyone who supported
me throughout my study at University of Hildesheim. First and foremost, I
want to thank my supervisor Prof. Dr. Dr. Lars Schmidt-Thieme for his
continuous support, patience, insightful advice and immense knowledge. His
guidance helped me in all the time of research and writing of the papers and this
thesis. Moreover, I would like to thank the rest of my thesis committee: Prof.
Dr.-Ing. Bodo Rosenhahn and Prof. Dr. Klaus Schmid, for their comments
encouragement, and hard questions.

I would like to thank all members of the Information Systems and Machine
Learning Lab (ISMLL) at University of Hildesheim. We have had a good time
period working together, not only in research but also in daily-life activities. I
especially thank Martin Wistuba, for his encouragement, sharing ideas, fruitful
comments and advice. My thanks also go to Dr. Lucas Rêgo Drumond, Dr.
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Abstract

Social media has become an integral part of numerous individuals as well as
organizations, with many services being used frequently by a majority of peo-
ple. Along with its widespread use, the amount of information explodes when
people use these services. This demands for efficient tools as well as methods
to assist data management and retrieval. Annotating resources by keywords,
known as the tagging task, is a solution to improve categorizability and find-
ability of resources. However, tagging is a human, time-consuming task, which
requires the user’s focus to figure out many keywords in a short moment and
manually enter them into the system. To encourage users to tag their resources
more correctly and frequently, tag recommendation is adopted into the social
tagging systems to suggest relevant keywords for resources.

In this thesis, we will address the problem of personalized tag recommendation
for images and present ways to solve this problem by combining the advan-
tages of the user relation with the images’ content. In order to suggest tags for
unobserved images, their visual contents are used to replace the index-based
information of the image entity in the tagging relations. Because the limita-
tion of low-level features does not show the “content” of images, we propose
to utilize a deep learning based approach to learn high-level visual features
concurrently with the scoring-tag estimator. For the tag predictor, a latent
factor model or a multi-layer perceptron is selected to compute scores of tags
by which the top selected tags are sorted in descending order. As a further
development upon our findings, we examine the inside and outside context
of images to enhance the accuracy of estimators. Regarding the image-inside
context, we are motivated by the fact that objects, such as cars or cats are in-
fluential on the user’s selection criteria. Regarding the image-outside context,
the image’s surrounding text contributes to the clarity of the image’s con-
tent for different users. We consider these contextual features as a supporting
part which is combined with the mainly visual representation to enhance the
tag recommendation performance. Finally, as an additional technique, trans-
fer learning is also adapted to support the proposed models to overcome the
limitations of too small training data and boost up their performance. This
thesis demonstrates the usefulness and versatility of deep learning approaches
for tag recommendation and highlights the importance of the learned image’s
content in predicting personalized tags. Directions for future work include se-
mantic enhancements to context-based representation and extensions of the
content-aware approaches to different recommendation scenarios.



Abstrakt

Die sozialen Medien sind zu einem integralen Bestandteil zahlreicher Einzelper-
sonen und Organisationen geworden, gemessen an der Häufigkeit mit der die
Dienste von einer Mehrheit von Menschen genutzt werden. Zusammen mit
seiner weitverbreiteten Verwendung explodiert die Menge an Informationen
nahezu, wenn viele Menschen diese Dienste nutzen. Dies erfordert effiziente
Tools sowie Methoden zur Unterstützung des Datenmanagements und des
Wiederfindendauffindens von Inhalten. Das Annotieren von Ressourcen durch
Schlüsselwörter, auch Tagging genannt, bietet eine Lösung die Kategorisier-
barkeit und Auffindbarkeit von Ressourcen zu verbessern. Es ist jedoch eine
Aufgabe die von Menschen ausgeführt wird und von diesem verlangt, passende
Tags innerhalb von einer kurzen Zeit zu finden. Um sowohl die Qualität aber
auch die Quantität an Tags zu verbessern werden Empfehlungssysteme verwen-
det, die Tags automatisch vorschlagen, die zu dem gegebenen Kontext passen.

In dieser Dissertation adressieren wir das Problem der personalisierten Tag-
Empfehlung für Bilddaten und zeigen Lösungswege auf, die darauf basieren
die Interaktion des Benutzers mit dem Bildinhalt zu modellieren. Um Tags
für bisher nicht observierte Bilder zu empfehlen nutzen wir die Information
des Bildes direkt innerhalb unseres Modells. Dafür schlagen wir vor Fak-
torisierungsmodelle oder neuronale Netze als Scoring Funktion für die entsprechen-
den Bilder zu lernen. Da Low-Level Features der Bilder nicht präzise den Inhalt
des Bildes abbilden, verwenden wir Methoden des Deep Learnings um direkt
für das Problem bessere Abstraktionen zu lernen. Darüber hinaus verwenden
wir den Kontext innerhalb als auch ausserhalb des Bildes, indem wir zum Einen
Methoden der Objekterkennung, beispielsweise indem Objekte wie Autos oder
Katzen abgebildet sind, als auch den äußeren Kontext der Bilder in Form von
Kommentaren oder Überschriften erkennen und nutzen.

Beide Aspekte des Kontexts verbinden wir als Unterstützung zur eigentlichen
Bildklassifikation um die Güte der Empfehlungen zu verbessern. Abschließend
zeigen wir, das Methoden des Transferlernens sowohl Probleme wie zu geringe
Datenmengen in der Zieldomäne löst und die Performanz im Allgemeinen
verbessert. Diese Arbeit zeigt die Nützlichkeit von Deep Learning Methoden
als Empfehlungssysteme, und hebt dabei die Bedeutung des Bildinhalts hervor.
Zukünftige Arbeit in diesem Gebiet umfasst neben besseren Feature Repräsen-
tationen von Text und Bildern auch die Anwendung bestehender Modelle in
anderen Szenarien von Empfehlungssystemen.



Notation

This thesis will adhere to the following notation and nomenclature:

N the set of natural numbers
R the set of real numbers
Rm the set of m-dimensional vectors over R
Rn×m the matrix of size n×m over R
Rn×m×c the 3-D tensor of size n×m× c over R
{0, 1}m the set of m-dimensional binary vectors

X matrix
(X)′ transposed matrix
‖X‖ matrix norm (subscript if any denotes what norm)
Xi,j the element at the position (i, j) of the matrix X
X�Y Hadamard (elementwise) product between matrices X and Y

x vector
(w)′ transposed vector
xi vector indexed for some purpose
(xi)j the j-th element of the vector xi
wj the j-th element of the vector w
a scalar

〈vi, vj〉 =
∑d

k=1(vi)k(vj)k (inner product)

P dataset
Ptrain, Ptest training, and test sets respectively
|P| the number of instances in the set D

L loss function for some purpose
f function for some purpose
∂f(w)
∂wi

the partial derivative of a function f : Rd → R at w w.r.t. wi
argmaxx∈C f(x) the set {x ∈ C : f(x) ≥ f(y),∀y ∈ Cx}
argmaxt∈T,K(ŷu,i)t the set of K tags t ∈ T having the largest values
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List of commonly used abbreviations

AIA Automatic Image Annotation
AUC Area Under the ROC Curve
BPR Bayesian Personalized Ranking
CNN Convolutional Neural Network
DL Deep Learning
FM Factorization Machine
IC Image Classification
PITF Pairwise Interaction Tensor Factorization
PTR Photo Tag Recommendation
MF Matrix Factorization
MLP Multi-Layer Perceptron
MP Most Popular Tags
MP-u Most popular tags by users
NN Neural Network
OD Object Detection
RGB Red, Green, Blue
ROC-curve Receiver Operating Characteristic curve
SGD Stochastic Gradient Descent
SVM Support Vector Machine
WARP Weighted Approximate Ranking
WE Word Embedding
tf-idf term frequency-inverse document frequency
w.r.t. with respect to
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1.1 Social Media

At the present time, along with the popularity of the Internet, the intended usage of in-
dividuals and organizations has also changed dramatically, from searching for information
towards socializing. The explosion of Web 2.0 has led to the birth and strong growth
of social media services, Internet-based applications, that promote people creating and
sharing user-generated contents [59]. Social media services can be categorized as social
networking, microblogging, blogging, photo sharing (e.g Instagram, Flickr), video sharing
(e.g. YouTube), and crowd sourcing [61]. In contrast to the traditional media when people
stand in a negative position to receive the information from content providers, social media
has changed the way people interacting with the resource as well as their communication.
Social media has introduced a virtual environment where people take initiative to generate,
publish, share and discuss contents. Undoubtedly, a numerous areas of life are significantly
impacted by social media, such as health and marketing promotion [23, 101, 155], climate
change [152], human relationship [15], digital government [60], human communication and
content sharing [12].

Overcoming the limitation of space and time, social media platforms, such as Face-
book, Twitter, or Flickr, give people power to connect and interact with anyone at any
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time. The use of these platforms has become widespread with a large number of indi-
viduals, organizations, and companies updating their activates on the platforms everyday.
Individuals use social media services to share their creative contents, such as photos or
videos, give opinions and seek information. In addition to improving the interaction with
customers, companies also use the platforms to harness information related to their prod-
ucts or brands from conversations on the Web. With the power ability to spread as
well as the innovative generating and managing large-scale data, social media platforms
have attracted a growing number of users with enormous and overwhelmingly available
information. The fact is exemplified through the following numbers:

• According to[134], around the world in 2016, 2.46 billion people use social media
services, accounting for 70 percent of Internet users. They estimated that the number
will be up to 2.77 billion in 2019.

• As a market leader, Facebook has around 1.45 billion active users everyday, and they
upload around 300 million photos per day [158]. Every minute, users post 510,000
comments and update 293,000 statuses.

• Flickr, a photo-sharing website, has over 90 million active users monthly, and around
75 million users registered as photographers. On a high traffic day, 25 million photos
are uploaded to Flickr. Every month, Flickr receives more than 7 billion requests to
access and retrieve information via the API kits.

The enormous amount of information has provided great opportunities for organizations to
mine and understand their clients in different aspects, such as what they are interested in
or what they expect from the companies. Based on the collected knowledge, organizations
or companies can optimize the marketing strategy or producing plans to satisfy their cur-
rent customers, and draw attention of potential consumers to their products. Moreover,
social media is a large source of data for researchers to learn precious knowledge about
humans, such as their behaviors or emotions. It provides an environment for researches in
various fields encompassing computer science, machine learning, social network analysis,
data mining, natural language processing, information retrieval, optimization, and math-
ematics, enabling to evaluate their methodologies or verify their assumption or theories.

1.2 The Demand for Tag Recommendation

Undeniably, social media has led the advancement of user-generated contents when it
comes to transforming the creating role towards individuals or organizations. However,
due to their magnitude and the poor notation, they have negative influences on the ac-
curacy and performance of search engines. In many social media services, an important
component, which empowers users to describe and categorize shared resources for their
own purposes by using tags, is social tagging, which was introduced to enables searching
for resources, such as websites or images. A tag makes reference to a keyword or term
assigned to a resource, such as a video or a digital photo, by a tagger. Taggers are not
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forced to choose tags from a built-in set of words; instead, they are free to express their
perception by using their own words to annotate items. They can be recognized as cat-
egorizers or describers [66]. Categorizers tag objects by their own vocabularies for their
future search, whereas describers use common words to annotate objects for communities’
search.

Summarizing from different works [4, 16, 40, 51, 62, 85, 126, 156], Gupta et al. [45]
identified several categories of tags based on their performing function including content-
based, context-based, attribute, ownership, organizational, purpose, factual, personal, self-
referential tags, and tag bundles. For instance, we try to figure out which objects, such
as dogs or cats, appear on an image without observing it thanks to assigned tags. With
ownership tags, the audience easily identifies who owns the resource. Although the core
inspiration of annotating items is to enhance the retrieval process and manage items, a
great deal of research has still learned why users tag items in different aspects, which
are recapped by Gupta et al. [45] in their survey. Obviously, future retrieval is the main
reason to tag objects, and taggers can share their opinions with their audiences by using
tags; for example, the “nice” word in Flickr is used to express the positive judgment of
a user to an image. Moreover, popular tags included in tag clouds may attract users to
access others’ resources without searching by keywords. Bringing back past memories is
also a reason for taggers annotating their resources, such as places or time taken photos.
Tagging data are used to improve the performance of many systems, such as information
retrieval or item recommendation.

However, tagging is a time-consuming task which discourages users annotating their
resources. Users need to be highly concentrated to figure out many possible words in a
short moment and type all words in a required space. When typing many words in a
short time, users easily make spelling mistakes, or they tend to use meaningless acronyms.
Moreover, due to the absence of guidelines, users may use different words for objects of the
same user-specific group leading the inaccuracy in the search process. Tag recommendation
of social media is an effective system to relieve users from the manual cost of tagging
[84, 148]; it will recommend a relevant list of tags, which can describe the content of
resources or reflect the favored vocabularies, to a user such that he just needs to click
them to select. As described in Figure 1.1, a simple method deployed in the Flickr system
is recommending all user’s words, which contain the user-provided characters. In addition,
with an efficient tag recommendation scheme, the system will appreciably help users avoid
incorrect spellings or vague words.

Many approaches have been proposed for tag recommendation based on contents of
resources, folksonomies, or contextual data. For the content-based approaches, we learn
the mapping between representations of training resources with their associated tags in
the training phase, and the model predicts which tag is relevant to a new resource [6, 75].
One example of folksonomy-based approaches is the tag recommendation scheme proposed
by Sigurbjörnsson & Van Zwol [130]. For a given image with several user-provided tags,
candidate tags are the most related tags with the initial tags with respect to similar scores
counting on the co-occurrence data. The external data, such as GPS data, are exploited
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Figure 1.1: An example of tag recommendation for Flickr images.

in the context-based approaches. Chen et al. [20] propose a model to extend video’s tags.
They construct a query with keywords surrounding a given video and use the query to
search textual data related to the video; then, the textual content is filtered to obtain
keywords suggested for the video.

1.3 Unveiling the Power of Deep Learning

The core of deep learning (DL), a machine learning technique developed from artificial
neural networks, is the layer concept. Formulated from the layer concept, a DL network is
a sequence of stacked layers in which data are passed through these layers. The first layer,
known as the input, receives the given data and the output returns useful estimation, such
as labels or geographical coordinates of an image. The layers between the input and output,
known as hidden layers, transform the given data into more abstract representations.

The first artificial neural networks were invented in 1940s [87] to simulate how neurons
in the brain might work to learn or respond to an interaction. In the networks, each node
receives data from other nodes, performs a specific computation, and forwards the new data
to other nodes. Neurons are gathered in different layers and their connections are known
as synapses which weight the transmitted data. Since the first multi-layer perceptron with
one hidden layer was introduced, neural networks presently contain dozens, even hundreds
of layers with more complex connections.

DL has really leaped forward with the explosion of big available data created a fully
conditioned environment in which deep networks having millions of parameters enable to
learn their knowledge. However, training DL on CPUs was computationally expensive until
GPUs were introduced and has been constantly improved. In addition, numerous studies
during the 2000s and early 2010s have accelerated the penetration of DL into various
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applications. The most prominent application of DL is in image classification, which seeks
to learn labels assigned for images. Deep networks have achieved the best performance
in many image datasets, especially in MNIST and CIFAR-10 with nearly 100 percent
accuracy [43, 145]. It has also received outstanding achievements in more complicated
areas including natural language processing (NLP), object recognition or detection. For
example, the DL-based system enables to recognize and localize different objects in images
or videos, such as cars, streets, or pedestrians, with high accuracy [113].

1.4 Summary of Problems Addressed

Certainly, depending on the social media services, objects of the tag recommendation are
diverse, such as images, videos, bookmarks or music tracks, but the focus of this thesis is
images. The tag recommendation for images is roughly divided into two categories: non-
personalized and personalized models. The non-personalized models suggest the same
set of tags for similar images, whereas in the personalized scenarios, different users are
recommended different tags to assign for the same image. In this thesis, we seek to learn
how to predict user-specific tags for images such that the recommended results reflect both
the user tagging history and the image’s content. We are primarily concerned with visual
features and two kinds of contextual representations including the image-inside context,
which is extracted from images’ pixel values, and the image-outside context, which is
obtained from images’ metadata.

Over the next sections, we provide a general overview of machine learning methods,
especially about the deep learning and factorization approaches, which serve as the base
of the proposed models. By concentrating on the key problems, one of our goals is to
analyze how the image content supports the tag recommendation. In addition, we develop
a content-aware architecture which takes advantage of deep learning in image-related areas.
We discuss some research contributions, publications and provide a chapter overview.

1.5 Main Research Contributions

During the research of this dissertation, we have made a number of contributions in tag
recommendation. Although many supervised studies for image tag recommendation have
been proposed in the last years, there are still several unexploited aspects which need to be
investigated to raise the system performance. The main goal is to provide a cohesive view
of tag recommendation techniques, identify unsolved problems or unexplored directions,
and propose models for tag recommendation. We can summarize the contributions of this
dissertation as follows:

• Content-aware tag recommendation with latent factor models. We propose
using a convolutional neural network (CNN) to implicitly take into account high-
level features of images in the first step. Since a user may tend to assign a set of tags
to similar images, we propose allowing for the correlations among visual description,
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users, and tags by using factorization machine (FM). This work was published in
[96].

• Personalized visual extracting. We introduce a personalized layer to fill the gap
between the personalized predictor and the multi-label classifier. It is an interme-
diate layer to transform a visual representation into a personalized form such that
the multi-label neural network is utilized to predict multi-tags. We published this
contribution in [98].

• Exploiting image-inside context effects in content-aware tag recommen-
dation. In addition to visual features, objects appearing in an image can model
properties of the entire image. To take into account the object-based factor, the
factorization based methods are proposed to receive different features such that pre-
dicted tags are capable to represent the correlation among users, visual properties
and objects appearing on images. This contribution appeared in [97].

• Exploiting effects of text based context in content-aware tag recommen-
dation. We study how effective the textual features are when they are used as a
contextual factor in the tag recommendation. Besides the extended factorization
based models, we proposed different personalized neural networks which allow pre-
dicting different tags for individuals.

The main goal of this thesis is to introduce the deep learning methods for predict-
ing personalized tags for images. Although some of the methods, for example, tensor
factorization-based approaches or the deep convolutional networks, are already existing
in tag recommendation or multi-label classification, bringing both approaches together to
solve content-aware tag recommendation is still a new approach for images.

1.6 Publications

The contributions of this thesis were published in several international peer-reviewed con-
ferences. The list of publications are as follows:

1. Nguyen, Hanh T. H. and Wistuba, Martin and Drumond, Lucas Rego and Schmidt-
Thieme, Lars (2017). CNN-FM: Personalized Content-Aware Image Tag Recommen-
dation. European Conference on Data Analysis (2015), in Archives of Data Science,
Series A, ISSN: 2363-9881.

2. Nguyen, Hanh TH and Wistuba, Martin and Grabocka, Josif and Drumond, Lucas
Rego and Schmidt-Thieme, Lars (2017). Personalized Deep Learning for Tag Rec-
ommendation. In Proceedings of Pacific-Asia Conference on Knowledge Discovery
and Data Mining (pp. 186-197).
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3. Nguyen, Hanh T. H., Wistuba, Martin, and Schmidt-Thieme, Lars (2017). Per-
sonalized Tag Recommendation for Images Using Deep Transfer Learning. In Pro-
ceedings of European Conference on Machine Learning and Knowledge Discovery in
Databases (pp. 705-720).

1.7 Chapter Overview

The thesis is organized as follows:

• In Chapter 2, we discuss several base methods, which are applied in our proposed
models. The main task in this dissertation is classified as supervised learning prob-
lems which seek to learn mapping an input to an output from labeled training data.
In addition, several techniques to construct the proposed models including deep
learning, factorization, and transfer learning are also summarized in this part.

• In Chapter 3, we formulate the problem of personalized tag recommendation that
we cover and solve in this thesis. We review the problem in several research scenarios:
purely personalized tag recommendation, content-aware case, using knowledge from
other systems to boost up the tag recommendation and integrating the context-based
data into the tag recommendation.

• In Chapter 4, we summarize the datasets and present our data-preprocessing pro-
cedures in general. The main dataset used in the implementation is the NUS-WIDE
dataset, which was collected from Flickr website. We also evaluate the performance
of several proposed models in Flickr-PTR, a similar dataset also crawled from Flickr.
The source datasets, which provide the “senior” knowledge to the proposed ap-
proaches, are also briefly described in this chapter.

• Chapter 5 investigates a simple but effective method to address the content-aware
tag recommendation for images. In this chapter, we develop a hybrid network based
on a CNN and a factorization model. With the strong ability to learn visual features,
the CNN is responsible to generate a high-level abstract representation of an image,
whereas a FM based layer is used to compute scores of tags. The modified pair-
wise criterion and optimization algorithm are also introduced to learn the model
parameters.

• Instead of borrowing the factorization model as the scoring function, in Chapter 6,
we propose a full neural network to estimate scores of tags. To build the network, we
introduce a new layer which captures the correlation between visual representation
and users. It receives the output of a CNN-based extractor, performs personalized
computations, and passes the new output to a neural network based estimator. We
also analyze where the personalized layer will be located to enhance the model’s
performance.
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• In Chapter 7, we open a new direction in which the inside context data of images
are mined to enrich input features. Due to the influence of objects on the user’s
tagging decision, we argue that objects are considered as a factor improving the
predicting capabilities. The object detection is employed to find the object-based
description of an image while the base of the visual extractor relies on an image
classification network. We extend the models proposed in Chapter 5 and build an-
other factorization-based model to compute tag scores based on the tagging records,
visual-, and object-based features.

To increase the performance of classification/object detection components, the trans-
fer learning techniques are employed in which a part or full knowledge of a pre-trained
model is passed to the target extractor. We propose putting transfer learning into
use so that the running time is mostly used to learn the scoring estimator, and the
richer features of images including visual and contextual forms are easily obtained.

• Chapter 8 continues extending the context-aware scenarios to the outside context
of an image, which is hidden under its surrounding text. Given a collection of photos
with their description, we aim to address how we can leverage the data to construct
a better tag recommendation. In addition to the visual feature generator, word
embedding techniques are hired as a textual feature extractor. We evaluate the
impact of different context- and visual- features obtained by several extractors to
the tag recommendation performance.

Beyond factorization-based models in Chapter 7, several neural network-based archi-
tectures are proposed. They inherit the personalized layer from Chapter 6 adding the
user information to visual- and textual-features. Individualizing weights of synapses
is also taken into account to replace for the user-bias approach such that we expect
to improve the performance of the network.

• Finally, we summarize all proposed approaches in Chapter 9. We also discuss an
outlook in the research area and the future works.
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Chapter 2

Technical Basics

Contents

2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Deep Feedforward Network . . . . . . . . . . . . . . . . . . . . . 10

2.3 Convolution Neural Network . . . . . . . . . . . . . . . . . . . . 12

2.4 Factorization Model . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

This chapter introduces a set of technical basics that are useful to understand theories
and implementation aspects conducted in this thesis. First, we briefly present supervised
learning models that support the tag recommendation in general. Next, the core concepts
of the proposed models are summarized including deep learning, factorization, and transfer
learning. This is not an introduction to the field of machine learning, instead it briefly
summarizes several concepts that are often mentioned in this thesis. In order to fully
understand the forthcoming concepts, we refer the reader to relevant textbooks [13, 17,
84, 86, 94, 108].

2.1 Supervised Learning

Given x ∈ X is a vector or generally a tensor representation of an item, such as an image
or a document, and a target y ∈ Y which is a value assigned to an instance, such as
the geographical information of the image or the type of the document. The goal of a
supervised learning model is to learn a function f mapping x to y

f : X → Y (2.1)

After the function finds the mapping f(x) for all tuple (x, y) ∈ Dtrain where Dtrain contains
all observed records, it will be used to predict the target ŷ for a given unobserved instance
x ∈ Dtest where Dtest is a set of all unlabeled instances.
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In supervised learning, classification and regression, which are distinguished based on
the value of outputs, have attracted the most attention of machine learning researchers.
If targets are real-valued variables, the problem is called regression. Otherwise, when
the response variables of instances are discrete, the problem is known as classification.
Classification models seek to find a label y ∈ C assigned to an instance x, where C is the
set of all classes with |C| being the number of classes. While the classification with |C| = 2
is known as binary classification, the multi-class classification has |C| > 2. If an instance is
assigned by a set of target labels y ∈ {yi|yi ∈ C}, the classification problem is categorized
as the multi-label classification.

In this thesis, we introduce a variant of multi-label classification methods for the tag
recommendation problem. The labels of this problem are known as tags which are assigned
to an image by a user, and the predicted label sets of a given image are individual for each
user. After initializing the parameters at random, a supervised model starts to learn how
to predict the set of tags which are close to the target labels on the training set containing
observed pairs of instances and targets. The model is evaluated on the test set in which
each unobserved instance is assigned by a set of predicted labels. The accuracy of the
model is measured by the similarity between the predicted and target label sets.

2.2 Deep Feedforward Network

A feedforward neural network, or multi-layer perceptron (MLP), can be seen as a sequence
of linear operations followed by a non-linear transformation. The goal of a neural network
(NN) seeks to learn an approximate function f∗ which is composed of several different
functions f i [42]. Each function, formed a layer, in the chain is formulated as the con-
catenation of several logistic regression models, named as nodes or perceptrons, probably
followed by nonlinear transformation. Given an input vector x ∈ Rm and the activation
used is a sigmoid function σ(a) = 1

1+exp(−a) . The function f i can be formulated as

f i(x) = [σ(wT
1 x + b1), . . . , σ(wT

nx + bn)] (2.2)

where wj ∈ Rm and bj ∈ R are the weight and bias values of a model j contributing to the
element j of the final output. We can redefine Equation 2.2 in terms of a matrix-based
formulation as

ai = f i(x) = σ(Wx + b) (2.3)

where the set of weights and bias belonging to n models are grouped in W ∈ Rn×m
and b ∈ Rn respectively. Depending on applications of the network, different types of
transformation can be applied to the linear combination of the weighted input. Typical
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activation functions include

Sigmoid function: sigmoid(x) =
1

1 + e−x
(2.4)

Hyperbolic Tangent function: tanh(x) =
(ex − e−x)

(ex + e−x)
(2.5)

Rectifier Linear [95]: ReLU(x) = max(0, x) (2.6)

Leaky Rectifier Linear[83]: LReLU(x) =

{
x if x > 0

0.01x otherwise
(2.7)

Exponential Linear Unit function [24]: ELU(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0
(2.8)

Another common non-linear operator, which is usually utilized in the output layer for
classification, is the softmax function. It is not a single fold function of each input unit
and it is defined as

softmax(xi) =
exi∑C
j=1 e

xj
(2.9)

where xi ∈ x and x ∈ RC are mutually an unit of input and an input vector containing C
elements.

To learn the parameter set Θ comprising parameters of all functions, the network
is trained with a back-propagation learning algorithm [69, 122]. Let us denote a loss
function L which defines the difference between the target output y and the predicted
value ŷ generated by the model f∗(x,Θ). We assume the activation function used in the
network is the sigmoid function. The derivation of the back-propagation algorithm begins
by applying the chain rule to the partial derivate of the loss function with respect to
weights W of the layer i

∂L
W

=
∂L
∂f∗

∂f∗

∂f i+1

∂f i+1

∂f i
∂f i

∂W
= δi

∂f i

∂W
= δi · ai · (1− ai) · xT (2.10)

where xT is the transpose of x; ai is the output of the layer i defined in Equation 2.3. The
term δi called error can be defined as

δi =
∂L
∂f i

= δi+1∂f
i+1

∂f i

Thus, the calculation of the error δi shown above depends on the values of error terms in
the next layer. The errors will proceed backwards from the last layer (the output layer)
down to the input layer. After the errors of all layers are known, the gradients of the
loss with respect to parameters W are computed according to Equation 2.10. Figure 2.1
presents a simple architecture of NNs which contains one hidden layer with three neurons
and it receives a 4-dimensional vector as an input. In case of 3-class classification, the
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Figure 2.1: A simple MLP
with one hidden layer

Figure 2.2: A CNN with one convolutional layer, one sub-
sampling layer and two fully connected layers

network will compute the probabilities of three classes corresponding to the given input
and the class, which has the highest score, will be selected as the final output. The depth
of a network can be defined by the number of layers. If a network is deeper than another, it
probably has more trainable layers, which contain training parameters, than the previous
one.

2.3 Convolution Neural Network

A CNN, a specialized kind of NNs, was introduced in [70, 71] and has become rather
popular recently. CNNs achieve an empirically good performance in practical applications,
especially image classification, recognition, or object detection [68, 131, 138, 145].

Similar to a simple MLP, a CNN is commonly built up by stacking several layers
on top of each other generally including convolutional layers, pooling layers, and fully-
connected layers. Fully-connected layers are similar to layers of MLPs in which each
output is computed by transforming non-linearly the sum of weighted inputs. However,
convolutional layers and pooling layers are constructed in a different way, where an output
neuron is partly connected with input neurons. In detail, convolutional layers generate
an output by combining the input’s blocks with weight matrices linearly and passing the
combination to a non-linear function. Nevertheless, the combined operator applied in the
layers is a convolution operator instead of a dot product. Given a matrix I and a weight
matrix K ∈ Rm×n, known as kernel or filter, the output matrix F that is generated by
convolving I and K is known as a feature map. Each pixel of the feature map is the sum
of elementwise multiplication between a pixel block of I and K. We can formulate the
convolved computation as the following

Fxy = (I ∗K)xy =

m∑
i=1

n∑
j=1

Ix+i−1,y+j−1 ·Kij (2.11)

The motivation of using the convolution operator is from the assumption that spatially
closer pixels can contribute to the generation of interesting latent features. Moreover, the
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sparse connection between inputs and outputs through small kernels, and sharing weights
of output functions support to reduce the number of kernel parameters for the network.
Compared to normal neural networks in which each output item connects to all input
neurons, a convolutional output connects to a small block of input pixels.

In practice, an input of a convolutional layer is a set of matrices, called a tensor,
I ∈ Rh×w×c where c is the number of channels and h,w are the size of each channel
matrix, known as a feature map. Kernels of the layer become a tensor with 4 dimensions
K ∈ Rd×m×n×c where d is the number of feature maps making up the output. Thus, the
output of a convolutional layer is also a tensor F ∈ Rh′×w′×d that includes the convolution
results between the input and kernels. If we assume that the stride of kernels is one pixel
when they move along the input, the equation 2.11 can be redefined as

Fxyz = (I ∗Kz)xy =
c∑

k=1

m∑
i=1

n∑
j=1

Ix+i−1,y+j−1,k ·Kz,i,j,k (2.12)

Similar to neural networks, an element-wise non-linear transformation is applied to each
output unit of feature maps. The most common-used operator is ReLU function which
appears in an abundance of CNN architectures for image classification and object detection
[50, 68, 78, 113, 131, 137].

In a common CNN, a pooling layer, which is also referred as a downsampling or
subsampling layer, goes after a convolutional layer or a block of convolutional layers to
reduce the dimension of feature maps and sharpen features. The layer does not contain
parameters and relies on an important operator, pooling. The pooling function will replace
an output at a specific position with a new value, which can be an average or maximum
value of its neighbors. It can be understood in a similar way as a convolution layer when
it convolves a filter to the input volume to get subregions of the input feature maps
and outputs average or maximum values of these subregions. For example, if the max()
operation is used to pool values for an output, the operation is named as max pooling.
When a 2× 2 filter is applied to pool values for an output and the pooling blocks are not
overlapped with the stride s = 2, it will take the largest value of four input elements in
the filtered area.

Fxyz = max(I2x−1,2y−1,z, I2x−1,2y,z, I2x,2y−1,z, I2x,2y,z) (2.13)

In contrast, if the average pooling function is applied, the output is the average value
of the pooling region.

Fxyz =
1

4
(I2x−1,2y−1,z + I2x−1,2y,z + I2x,2y−1,z + I2x,2y,z) (2.14)

A simple CNN with one convolution layer, one max pooling layer, and two fully-
connected layers is shown in Figure 2.2. The network receives a squared digital photo
having three channels as an input. After going through the convolutional layer and the
subsampling layer, a representative vector of the image is created and passed to fully
connected layers to estimate the output probabilities.
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The back-propagation algorithm is also adapted to carry errors backward from the
output to the input layer. If we assume the linear operator is used between different
learnable layers, we can illustrate the computation of errors at the layer l with respect to
a loss L and errors of the next layer from Equation 2.12 as

δla,b,k =
∂L

∂Ia,b,k
=

d∑
c=1

m∑
i=1

n∑
j=1

δl+1
a−i+1,b−j+1,c · Fc,i,j,k (2.15)

To avoid overfitting for deep models which contain a huge amount of parameters,
several regularization techniques can be applied to learn the models in addition to norm
penalty techniques such as Lasso Regression L1 or Ridge Regression L2. While in L2,
squared magnitudes of parameters are added to the loss function as the penalties, the
absolute values of parameters are used in L1 as the penalties.

A simple method to regularize deep learning models is Dropout [133] which temporarily
removes the contribution of several random units in a network during training. At the test
phase, the full model with all units is used to predict labels. In the training process, each
activation unit of the layer l is able to be dropped from the network with the probability
1− p where p is the probability of a unit being activated.

Given activations yl of a layer l, a switch of an activation is generated with a Bernoulli
distribution denoted as

mj ∼ Bernoulli(p)

These switches comprised into a vector ml, known as mask, multiply with activations in
a element-wise way to produce new outputs which are used as the input in the next layer
l + 1.

ỹl = ml � yl

yl+1 = σ(Wl+1ỹl + bl+1)

A variant of the dropout, which drops several random connections between the input
units and each output unit, is DropConnect method [145] that supports CNNs achieving
high performance in classification for MNIST dataset. Given a weight matrixW ∈ Rn×m of
connections between m outputs of layer l and n outputs of next layer l+ 1. The dropped
mask M l+1 ∈ {0, 1}n×m is also generated with Bernoulli distribution. The connection
mask is multiplied with the weight matrix to remove inactivate connections. The output
of the layer l + 1 using DropConnect during training can be denoted as

yl+1 = σ((W l+1 �M l+1)yl + bl+1)

In the testing phase, all output units are computed based on all connections.
Another mechanism to regularize a deep model is increasing the amount of training

data by adding augmented instances that are generated from the real data and are labeled
with the same value as the real. The technique is called Dataset Augmentation which
is usually applicable to classification and visual recognition tasks. In terms of images,
training data are enriched by adding more transformed images, such as rotated or scaled
images, having the same labels as the original training images.
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2.4 Factorization Model

Factorization approaches, which have attracted a large amount of research in machine
learning, demonstrate their powerful capabilities in different applications, especially in
the recommendation task. The approaches seek to learn latent features of various enti-
ties included in a dataset, such as users and movies in MovieLens dataset [46], or users,
resources and tags in Bibsonomy [9] such that the combination of these latent factors is
able to reconstruct the target data.

For two-way data, a well-known approach, known as matrix factorization (MF), de-
composes a data matrix X into two representative matrices P and Q associated with two
categorical entities such that the result of the dot product between P and Q approximately
reconstructs X [65]. The process captures the latent interactions between the participating
entities existing in the dataset to predict the values of these associations [135].

We use an image rating problem to illustrate the application of MF. All observed
relations between the finite user and image sets U and I form the data matrix X ∈ R|U |×|I|.
The matrix X is a sparse matrix in which elements having numerical values is associated
with the observed ratings. The target task is to predict the missing ratings of images by
users. When applying the matrix factorization method to solve the problem, we seek to
learn decomposed matrices P ∈ R|U |×d and Q ∈ R|I|×d where d, the factor dimension, is
much less than the number of users and images. The parameter sets P and Q are learned
based on the observed values such that their product is approximately the original matrix
X.

X ≈ X̂ = P ×QT

Instead of representing each user’s profile and image’s profile by |I|- and |U |-dimensional
rating vectors, the matrix factorization will exploit d latent features connected with the
user and the image where d � |U | and d � |I|. In other words, an image i is associated
with the row qi of Q and each user u is represented by the u-th row of P , pu [65]. The ap-
proximate value that the user u possibly rates the image i is the result of the dot product
between two latent feature vectors denoted as

r̂u,i = pTu qi

The model’s parameters including P and Q are optimized in such a way that the
reconstruction error is minimal. For example, the Frobenius norm of the difference is used
to measure the difference between the constructed and the original matrix. In addition,
weighted L2 regularization terms with respect to different categorized variables are added
to avoid overfitting.

L(X;P,Q) =‖ X − PQT ‖F +λP ‖ P ‖2 +λQ ‖ Q ‖2

where λP and λQ are the regularization hyper-parameters. A variant of the above fac-
torization model is the non-negative matrix factorization (NMF) approach that forces the
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factorized variables being positive. Similar to the MF, NMF factorizes the given matrix
into a product of two matrices as

X ≈ X̂ = P ×QT

where P ∈ R+|U |×d and Q ∈ R+|I|×d are non-negative matrices representing for the user
and item entities. NMF parameters are also found by solving an optimization problem
with a loss defined by the Frobenius norm, or the Kullback-Leibler divergence [72], or the
Fast Bregman divergence[76].

For high-dimensional, sparse data which contain more than two participating entities,
tensor factorization approaches are attempted to approximate the target tensor factor-
ized into several small N -order tensors. These approaches have proved their powerful
capabilities to deal with different problems such as tag recommendation or signal pro-
cessing [27, 63, 64, 129, 136]. Two popular tensor generalizations can be examined to
decompose a N -order tensor into a product of multiple low-rank tensors including the
canonical/parallel factor (CANDECOMP/PARAFAC) decomposition [47] and the Tucker
decomposition/higher-order singular value decomposition (TD) [27, 28, 142].

Tensors known as structures storing the relation of data entities are multi-dimensional
arrays with the number of their dimension, called the order, defined by the number of
participating objects such as users, movies and times. Let us use a third-order tensor
A = (au,i,t ∈ R|U |×|I|×|T |) describing the ternary relation among users, images and tags
as the example data. Each triplet (u, i, t) represents the assigning state having a binary
value. If the user u assigned the tag t to the image i, the assignment value is 1. The
unobserved assignments are set to 0.

With the TD, the approximation of A is found based on three low rank matrices Û ,
Î, T̂ , where Û ∈ R|U |×kU , Î ∈ R|I|×kI , T̂ ∈ R|T |×kT , and one small tensor Ĉ ∈ RkU×kI×kT ,
named as the core tensor. Each matrix, known as feature matrix, is estimated to represent
an associated entity. In fact, all factorized components contain the model parameters
which need to be learned during the training process. We can define the prediction as the
multiplication of all components as

âu,i,t :=

ku∑
ũ=1

kI∑
ĩ=1

kT∑
t̃=1

ĉũ,̃i,t̃ · ûu,ũ · îi,̃i · t̂t,t̃ (2.16)

The CANDECOMP/PARAFAC also estimates the tensorA by three low rank matrices
and one tensor as the TD. However, it assumes that the core tensor is a diagonal which
has the value defined as

cũ,̃i,t̃ =

{
1, if ũ = ĩ = t̃

0, otherwise

The decomposed feature matrices which represent three entities of the tag recommendation
have the same dimension d of the low-rank approximation. In detail, the low-rank matrix
of the user entity is defined as Û ∈ R|U |×k, the ones of the image is Î ∈ R|I|×k and
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T̂ ∈ R|T |×k is used to express the tag entity. Based on Equation 2.16, the prediction is
rewritten as

âu,i,t :=
k∑

f=1

ûu,f · îi,f · t̂t,f (2.17)

We can find the parameter set by minimizing the square loss showing the difference
between the target and estimated values.

argmin
Θ

∑
(u,i,t)

(au,i,t − âu,i,t)2 (2.18)

To avoid overfitting, the penalties of these parameters, such as L2 terms, are added to the
objective function during the training process. For the personalized tag recommendation
case, Rendle et al. [118, 119] proposed the usage of pairwise losses measuring the magnitude
of the difference between the observed and unobserved tags.

In the thesis, we adopt two variants of the factorization models involving factorization
machines (FM) [115, 116], which takes advantage of feature engineering technique and the
characteristic of the factorization models, and pairwise interaction tensor factorization
(PITF) [117], which factorizes the relation tensor into low-rank matrices representing the
participating entities but specifies different representations for the tag entity based on its
interactions.

2.5 Transfer Learning

Transfer learning has recently raised to resolve the difference of features spaces between
the training data and the future data [100, 150]. With respect to supervised learning,
it aims to use knowledge from a source domain containing high-quality labeled data to
improve a predictive function in a related target domain.

As Pan & Yang [100] described in their survey, we can formulate transfer learning in
respect of domain D and task T . While a domain D contains a feature space X of data
instances and a probability distribution of instances P (X), a task T includes a hypothesis
f(·) learned from the training data and a label space Y including all labels. Transfer
learning is a process that adapts related information from the source domain DS and its
task TS to the target domain DT to improve the predictive function f(·)T in the target
task TT . The constraint of transfer learning is DS 6= DT or TS 6= TT .

A transfer learning process can be categorized into a heterogeneous group if XS 6= XT .
In contrast, the case where XS = XT is defined as homogeneous transfer learning which
we mostly focus in this thesis. In the homogeneous case, certain parts of the source data
can be reused with a few target data and Pan & Yang [100] named the type of transfer
learning as the instance-transfer approach.

One example algorithm for this problem is TrAdaBoost, an extension of the AdaBoost
algorithm. It assumes that both source and target data have the same feature space and
the set of labels but the distributions of data are different. According to it, there is some
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source data being useless or harmful to learning the target predictive. It tries to reweight
the source domain data to gain the contribution of the “good” source data but reduce the
influence of the “bad” data.

Another approach which we adopt in the thesis is the parameter-transfer approach. It
assumes that some parameters can be shared between learning models for related tasks.
For example, we assume the multi-class image classification is considered as a source task
for which a model M having two parameter sets W and V is learn. We aim to find a target
model including W and U parameters to solve the multi-label classification for images.
Because the feature space of two tasks is the RGB color space and two predictive functions
have one similar set of parameter, W , it is possible to transfer the value of W learned in
the source domain to the target task. An advantage of the transfer technique is to save
training time for the target model comparing to learn this model from scratch.
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Chapter 3

Problem Description
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3.1 Personalized Tag Recommendation

Traditionally, tag recommendation learns how to recommend a list of relevant keywords
for a given user to annotate a new image. The model can profit from the user’s preferences,
the resource’s content or the context of the tagging task, such as the user’s contact, the
tagging time or the location of the resource. Simply, we can classify tag recommendation
models into two groups: the non-personalized ones, which are chiefly based on the content
of resources, and the personalized models depending on the user’s historical behaviors.
Practically, the recommended tags should reflect the individual characteristics; i.e, various
sets of tags are suggested for distinct users to assign the same image. The problem of
personalized tag recommendation is to predict a ranked list of tags for a user annotating
an image based on the observed tag assignments.

Consider a dataset D containing a binary tensor storing associations among users,
images, and tags, A ∈ {0, 1}|U |×|I|×|T | where sets of users, images, tags are denoted U ,
I, T respectively, and |U |, |I| and |T | are the number of users, images and tags in the
dataset. The value of its elements is defined as

au,i,t =

{
1, if the user u assigns the tag t to the image i

0, otherwise
(3.1)

The set of assignments S ⊂ U × I × T contains all triples reflecting which tags are
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assigned to images by users and is defined as

S := {(u, i, t)|u ∈ U ∧ i ∈ I ∧ t ∈ T ∧ au,i,t = 1} (3.2)

All pairs of users and images, called posts, are grouped in a set defined as

P := {(u, i)|∃t ∈ T : (u, i, t) ∈ S} (3.3)

In addition, the set of tags assigned to an image i by a given user u is known as a relevant
tag set denoted as

T+
u,i = {t|t ∈ T ∧ (u, i, t) ∈ S} (3.4)

Otherwise, the irrelevant tag set contains all un-assigned tags of the post (u, i)

T−u,i = {t|t ∈ T ∧ (u, i, t) /∈ S} (3.5)

Let us denote some training posts as Ptrain, where |Ptrain| is the number of training
posts, and some training triples as Strain, where |Strain| is the number of triples. To
solve the personalized tag recommendation, we seek to learn a predictive model with the
parameter set Θ

ŷu,i = f(pu,i; Θ) : U × I → R|T | (3.6)

which computes scores of tags such that the score of a relevant tag (ŷu,i)t+ is larger than
the score of any irrelevant tag (ŷu,i)t− .

For a new post pu,i ∈ Ptest, the learned model calculates scores of tags and then the
tags are sorted in descending order based on these scores. The top-K tags are selected
from the ranked list to recommend for the given post.

T̂Ku,i := argmax
t∈T,|T̂K

u,i|=K
(ŷu,i)t (3.7)

The problem can be reformed as classification formulation with X ∈ {0, 1}M×N en-
coding posts, where N = |U |+ |I| is the size of the input vector, M = |P| is the number
of post-based instances and Y ∈ {0, 1}|T | encrypting the observed tag sets. For example,
given a post pu,i of user u and image i, its feature vector xu,i ∈ X is a binary vector in
which elements at the positions associated with the user’s and image’s index are 1.

xu,i := (0, . . . ,

u︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|U |

, 0, . . . ,

i︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|I|

) (3.8)

The observed tag set of the post is denoted as Tu,i = {t1, t2, t3}, where t? ∈ {1, . . . .|T |}
is the index of a tag. The set is shown as a binary vector which contains only |Tu,i|
elements at the position t? being 1,

yu,i := (0, . . . ,

t1︷︸︸︷
1 , . . . ,

t2︷︸︸︷
1 , . . . ,

t3︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸

|T |

) (3.9)
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The scoring function is re-defined as

ŷu,i = f(xu,i; Θ) : {0, 1}N → R|T | (3.10)

To find the parameters Θ of the model, we can minimize the loss, such as binary
cross-entropy, or maximize the reward, such as the ranking statistic AUC (Area Under
the ROC-curve) [26]. For example, if we use the binary cross-entropy loss measuring the
difference between the predicted and real tags, the predicted values of tags are converted
to 0-1 range. Then, the loss can be presented as

L(yu,i, ŷu,i) = −
∑
t∈T

(yu,i)t log(ŷu,i)t − (1− (yu,i)t) log(1− (ŷu,i)t) (3.11)

In the pairwise case, to simplify the formulation, we use the relevant and irrelevant tag
set, T+

u,i and T−u,i, of the post instead of the binary representation yu,i. The AUC measure
for a post is defined as,

AUC(T+
u,i, T

−
u,i, ŷu,i) :=

1

|T+
u,i| · |T

−
u,i|

∑
t+∈T+

u,i

∑
t−∈T−u,i

H0.5

(
(ŷu,i)t+ − (ŷu,i)t−

)
(3.12)

where Hα is

Hα :=


0, x < 0

α, x = 0

1, x > 0

(3.13)

Usually, the Hα is replaced by the sigmoid function defined in Equation 2.4.

In some approaches [115, 117], the training process can be formulated with respect to
triples, and the task is slightly similar to regression. A given triple su,i,t is encoded into a
sparse vector in which elements at the position of u, i, t are 1.

xu,i,t := (0, . . . ,

u︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|U |

, 0, . . . ,

i︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|I|

, 0, . . . ,

t︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|T |

) (3.14)

Thus, the predictor will map a sparse vector to a real value as

(ŷu,i)t = f(xu,i,t; Θ) : RN → R (3.15)

where N = |U |+ |I|+ |T |. In the test phase, the model predicts |T | triples in associated
with the given post pu,i. Similar to the post-based model, top-K tags are selected from
the list of tags ranked based on their predicted values.
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3.2 Personalized Content-aware Tag Recommendation

While the broad folksonomies, such as del.icio.us, allow many people tagging the same
item, the narrow folksonomies, such as Flickr, limit the tagging rights to authorized people
[140]. Most resources are annotated by owners who upload and share them. Since an image
usually appears in one post, the relationship between it and other factors is not learned
if it is only found in the test set. For this reason, the model which has the index-based
input described in the above section, will not know its latent information which is used to
compute tag scores. This problem can be defined as the item-cold start problem.

To solve the problem, the content of an image is used to replace the one-hot features
encoding the image’s index. In image datasets, any image carries color information that
we can utilize to obtain visual features representing for it. Visual features can be extracted
by the hand-crafted techniques, such as color histogram, or machine learned extractors,
such as a CNN.

In addition to notations in Section 3.1, we denote the set of digital photos R associated
with image indices included in the dataset.

R := {Ri ∈ Rd×d×3|i ∈ I}

where |R| = |I| is the number of all images. Then, the prediction can be reformulated as

ŷu,i = f(pu,i; Θ) : U × Rd×d×3 → R|T | (3.16)

The post in this scenarios can be seen as the pair of the u-th user and the tensor Ri
associated with the i-th image, and it is expressed as pu,i = (u,Ri).

In fact, we tackle the content-aware tag recommendation task based on the relation
among users, abstract representations of images, and tags; e.g. given a ternary tag assign-
ment, we firstly aim to extract the visual features of the given image which is an entity of
the relation and predict the scores of tags based on the interaction among these features
and other entities. We have investigated different architectures to estimate scores of tags
and evaluated these models on several publicly available datasets. They are regarded as a
complex function built by two sequence models, known as the extractor and the predictor,
which are learned simultaneously. The extractor is responsible to map a tensor of a given
image to a representative vector

zi = fe(Ri; θ) : Rd×d×3 → Rm (3.17)

where θ is the parameter set of the extraction component, and m is the size of the feature
vector of the image i. The predictor which calculates scores of tags receives the identifi-
cation of the given user and the visual features of the image as its input and map it to a
score vector.

ŷu,i = fp(u, zi;ω) : U × Rm → R|T | (3.18)

where ω is the parameter set of the predictor. The whole of the parameter set Θ is the union
of θ and ω. The back-propagation algorithm is employed to transfer errors backward from
the predictor to the extractor, and the update of all parameters is executed concurrently.
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3.3 Personalized Content-aware Tag Recommendation with
Transferring Knowledge and Image-based Context

Instead of spending most of the time to learn the extractor, the knowledge of the extractor
can be earned from another model. A source model is often established successfully to
solve a specific task, such as image classification, that differs from the target task, such
as tag recommendation. Later, its extracting skills applied to obtain latent features are
passed to the target model to support it in deriving the representations of images. For
example, a source model g for image classification is trained in a source domain DS and it
learns how to extract visual features. Then, this skill is used in the tag recommendation to
acquire visual features of tagged images. Given source image data X = {Xi|Xi ∈ Rd×d×3}
and the respective labels Y ∈ RC , where C is the number of classes, the source model g
that is parameterized by two sets θ and τ predicts the probabilities of labels for a given
image

g(Xi; θ, τ) : Rd×d×3 → RC (3.19)

where θ is the parameter set of the extractor, and τ embraces parameters of the classifier.
We aim to boost the performance of the target model, which estimates scores of tags

for a given post, by the source’s knowledge. The overlapping component of the source
and the target is the visual feature extractor thus the extracting knowledge is practically
transferred from the source to the target. Given a target data P, as mentioned in the
previous section, we seek to learn a model

f(u,Ri; θ, ω) : U × Rd×d×3 → R|T | (3.20)

which maps posts to real-valued scores such that for any new post, scores of relevant tags
are larger than scores of irrelevant tags. The source extractor’s parameters are transferred
and frozen during the training process of the target. In other words, when the target is
trained on the tag recommendation dataset, the errors are solely propagated back through
the predictor’s layers and only their parameters are updated.

Additionally, we endeavor to improve the tag recommendation by exploiting different
kinds of the image’s contexts. The context extractor modeled by the set of parameters
ϑ seeks to learn a representation of the image context, which is concatenated with other
features to compute scores of tags. For instance, we assume the context is realized as a
vector ci ∈ O, which may be extended to a matrix or a tensor, and the vector has O units.
The set of context data associated with dataset images is known as

O := {ci ∈ RO|i ∈ I}

Then, the context extractor is defined as

fo(ci;ϑ) : RO → Rn

where n is the size of the contextual latent-features. We reformulate the prediction function
as

ŷu,i = f(u,Ri, ci; θ, ω, ϑ) : U × Rd×d×3 × RO → R|T | (3.21)
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As a result, the model parameters Θ are the union of θ, ϑ and ω.
In this thesis, we investigate several architectures to predict tags by using the knowl-

edge transferred from a variety of source models that were originally exploited for different
tasks, such as image classification or object detection. Depending on the size of the inter-
section, the sources contribute some or all of their parameters towards the target model.
Further, the context is approximately classified into the inside-image context, which can
be revealed through the pixel values of images, and the outside-image context, which can
be concealed in the external information source. To achieve reliable representations of
the contexts, transfer learning is also adapted in the proposed models, which are being
described in details in the later chapters.
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In this chapter, we first describe the original datasets that we have selected for exper-
iments. Then, we also present several datasets used to learn the pre-trained knowledge of
images and provide extra information. Finally, we show how to filter the original data so
that the data can be used for evaluating the proposed techniques.

4.1 Flickr Dataset

For testing the proposed approaches, we used the Flickr-based datasets which were crawled
from the Flickr image-sharing website, www.flickr.com. The site is a public storing and
sharing service of multimedia which allows users uploading their photos or videos without
paying any membership fee [144] for 1-terabyte storage. In this thesis, we focus on solving
a problem related to the visual content of digital images so the Flickr’s photos are the
object that we want to target. When a Flickr user, sometimes called a photographer,
associated with an identification number (id) uploads images, he can delineate his resources
by titles and descriptions. Moreover, only he or authorized users, who are given permission
by him, are able to assign keywords, called tags, which support for image retrieval or
organization. In addition to human tags, the Flickr system annotates uploaded photos
with its predicted words, named as machine tags. Users can decide to publish these photos
to be viewed by anyone or keep their images private and viewable by themselves. Varied
licensing parameters can be customized for images, such as All Rights Reserved or Creative
Commons.
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Aside from the original resolution, Flickr provides different sizes of photos, such as
thumbnail or square photos. Furthermore, we can work with Flickr to find and retrieve
information of a photo and its owner by using Flickr API1. For example, we can know
who has commented on a photo, its geographical data or all tags that a user has used
[74]. Depending on the application, various information can be extracted from the Flickr
archive. In this thesis, we aim to find the solution for personalized tag recommendation
that works with relations of three entities encompassing users, images, and tags, and the
image content including visual and textual features. For this reason, we only derive the
information of taggers, tags and digital images with their descriptions and titles from
Flickr based on the list of photo’s ids involved in two datasets, NUS-WIDE and Flickr-
PTR. Examples of the dataset instances are shown in Table 4.1.

Table 4.1: Examples of the Flickr-based dataset

User Image Tag Title Description

88585855@N00

125112126

dynamic,
paris, range,

metro, france,
high

Waternet
Amsterdam

The aliens have landed!
They choose Amsterdam,
wonder why? Shot with
multiple exposures merged
to HDR. 3 exposures. This
is accually an existing build-
ing and no render (boost-
ergemaal spaklerweg)

95681724@N00

2430302796

subway, train,
brooklyn

Waiting for a train back into
Manhattan after dinner at
Dumont in Brooklyn.

4.1.1 NUS-WIDE Dataset

The NUS-WIDE dataset [22] can be viewed as the set of multi-label classification data in
which an image is labeled by one or more tags. The authors used Flickr API to crawl more
than 300,000 images and removed images having inappropriate size. After removing tags
appearing less than 100 times, the authors continued discarding noise tags, which contain
spelling errors, names or meaningless words, by mapping them against WordNet[92]. The
total of remaining unique tags are 5,081 tags which have the semantic correlation. In addi-
tion, the authors also provided a collection of low-level features including color histogram,
color moments and bag of visual words which are detailed in [22].

However, the dataset does not include the relations among users, images and tags
which are crucial to perform the tag recommendation experiments. Therefore, we crawled
color images with their tags and taggers based on their ids recorded in the NUS-WIDE

1https://www.flickr.com/services/api/
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(a) The number of tags per pair of users and
images

(b) The distribution of tags with respect to
posts

Figure 4.1: The distribution of user-image pairs and tags in NUS-WIDE

dataset. Figure 4.1a illuminates the distribution of tags per pair of users and images while
Figure 4.1b exemplifies the frequencies of tags assigned per post. Through these figures,
we can recognize that most user-image pairs consist of less than 20 tags including noise
words, and around 90 percent of tags appear less than 10 times in the entire dataset. The
distribution of users and images is described in Figure 4.2. As displayed in Figure 4.2a, a
user annotates around 10 images with unique tags, whilst the number of users assigning
tags for an image is limited due to the tagging authority as seen in Figure 4.2b. In fact,
more than 50 percent of images are annotated only by their owners who share them on
Flickr site.

(a) The distribution of images per user (b) The number of users tagging per image

Figure 4.2: The distribution of users and images in NUS-WIDE

According to the distribution of this dataset, we can see that the data are really sparse,
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and they contain rarely used tags and an abundance of users occurring in few times. To
conduct the experiments, we filtered the dataset through several steps including keeping
English tags and removing inappropriate users, images and tags so that the proposed
models have enough training samples to be learned. The general filtering steps are being
described in Section 4.3.

4.1.2 Flickr-PTR Dataset

(a) The number of tags per pair of users and
images

(b) The distribution of tags with respect to
posts

Figure 4.3: The distribution of user-image pairs and tags in Flickr-PTR

The other dataset where we carried out the experiments for several proposed ap-
proaches is Flickr-PTR (Flickr-Photo Tag Recommendation) published in [88]. The au-
thors provided two datasets for different tasks: automatic image annotation (AIA) and
photo tag recommendation (PTR). These datasets were accomplished in a similar way to
NUS-WIDE in which images were crawled from Flickr through the Flickr API. However,
they did not drag randomly, but they searched and retrieved images based on 2000 pop-
ular nouns of WordNet. From the top 2000 images of each searching category, they also
eliminated images, which did not satisfy several requirements, such as not containing the
creative common license or tags. Instead of removing noisy tags, such as tags describing
camera meta-data or Flickr awards, like Flickr-AIA, the authors skipped the cleaning tags
process when they produced Flickr-PTR. They collected around 2 million images in total
with a set of one million tags in which there are a large number of noisy words. The details
of the original dataset are reported in [88].

For the reason that the proposed approaches require using color images which are not
enclosed in the published dataset, we crawled again these images based on their ids through
Flickr API. Initially, we retrieved 1,263,836 images with 62,267 tags used by 211,015 users,
and the total of user-image pairs considered as instances used for tag recommendation are
1,291,717 pairs. The distribution of tags over all user-image pairs is displayed in Figure
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4.3a, and the frequencies of tags assigned to each pair are illustrated in 4.3b. In addition,
the distribution of users and images shown in Figure 4.4 indicates that most images are
annotated by few users and a large number of users assign tags less than 10 times. Similar
to the NUS-WIDE case, several pre-processing stages were taken to remove the noisy
instances and generate the useful data used for the model evaluation.

(a) The distribution of images per user (b) The number of users tagging per image

Figure 4.4: The distribution of users and images in Flickr-PTR

4.2 Knowledge-Transfer Dataset

To improve the quality of feature extractors in the proposed models, the transfer learning
technique was adopted to pass the feature-representation knowledge from source datasets
to tag recommendation datasets. We have worked with two image datasets which act as
the sources providing knowledge for the extractor of tag recommendation models.

ImageNet

The image classification dataset is one of three main datasets designed for an annual
challenge of object category classification and detection, known as ImageNet Large Scale
Visual Recognition Challenge. The construction of ImageNet is based on the semantic
WordNet hierarchy in which images are grouped in each node of the tree presenting a set
of synonyms [31]. Each image is labeled by one of 1000 categories which are selected from
all synsets such that these synsets do not overlap with each other. There are approxi-
mately 1.2 million train images, 50 thousand validation images, and 100 thousand test
images. The details of the collection and the cleaning process are provided in [123]. Table
4.2 shows several examples of the ImageNet dataset in which each image is identified with
a single label, such as tiger or hog.
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Table 4.2: Examples of ImageNet
instances for the image classifica-
tion task

Image Class

tiger

hog

Table 4.3: Examples of COCO instances
for the object detection task

Image
Bounding
Box

Category

473.07
395.93
38.65
28.67

dog

204.01
235.08
60.84
177.36

person

Microsoft COCO

The dataset is designed to illustrate the object recognition problem. It comprises around
91 object categories labeled for more than 2.5 million labeled instances in 328 thousand
images [79]. Depending on the version of the dataset, the categories of labeled objects can
be 91 or 80, and the splitting protocol is approximately 50 percent images located in the
training set, 25 percent for the validation set and 25 percent for the test set. We worked
with the 2014’s subset that contains 82,783 training images annotated with 80 objects.
Examples of the COCO dataset in Table 4.3 show that each object detected in an image
is put into a specific category, such as dog, and its location is illustrated by a bounding
box with four coordinate values.

4.3 Data Preprocessing

As mentioned in Section 4.1.1 and 4.1.2, we crawled images according to the identification
numbers of images given by the original datasets. We gathered not only the information of
tags and taggers but also color photos and their text data including their descriptions and
titles. Because we focused on the content and context of digital images comprising visual
and textual information, we ignored another contextual data, such as time, geographical
data or the meta-data of users, such as their followers, contacts or groups where they
belong to. Thanks to Flickr API allowing users to retrieve color images with different
sizes in addition to the original size, we utilized small resolution images with the square
dimension of 75 pixels for experiments in Chapter 5 and large square images with the
150-pixel dimension in Chapter 6 while medium resolution images were used in Chapter 7
and 8. Additionally, to increase the number of image instances for training processes, we
generated four alternatives including scale, top-left, center and bottom-right patches for
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each image in Chapter 6. Indeed, the size of each NUS-WIDE patch was 75 × 75 pixels,
and each Flickr-PTR patch was 55 × 55. Since we intend to evaluate the effectiveness of
supervised features against hand-crafted features, we culled several subsets of low-level
features, such as color histogram, from the hand-crafted feature collection provided by
the NUS-WIDE authors. However, we obtained color histogram features of Flickr-PTR
images by ourselves because they are not supplied by the dataset’s authors.

Compared to the visual information of an image, textual data can be viewed as a
string of characters reflecting the additional content and context knowledge of an image,
such as time or location. In the raw form, a textual representation belonging to an image
corresponds to a sequence of characters, which can contain some meaningless words, such
as misspelled words or hyperlinks, and noisy words, such as camera meta-data or overused
punctuation marks. We cleaned texts retrieved from Flickr by removing hyperlinks, blocks
of punctuation, stop-words, names and replacing emoticons with the associated words.
After those steps, there are around 90 percent of images involving textual information to
be used for generating vector-space representation later.

To remove the noisy tags, we relied on the most popular tags provided by the dataset
authors or we mapped received tags against WordNet. The 1000 and 100 most popular
tags were applied in Chapter 5 and in Chapter 6 respectively while in Chapter 7 and
8, by matching with WordNet, only English tags were kept. Afterward, we eliminated
images having no tags and users who did not annotate any image. Further, because we
are going to use the index-based values, such as the user’s and tag’s indices, in the tag
recommendation models, the datasets should be encoded in terms of values of indices and
all of them are started from zero. The proposed models are easily able to convert users’
and items’ indices to one-hot vectors, which contain zero for all elements except the index
position, to use as feature vectors during training and testing processes.

Since the datasets are very sparse, we concentrated to evaluate the performance of the
proposed approaches in their dense parts. To retrieve the useful data for experiments, we
applied the p-core at level k protocol to filter datasets [56] such that each user, tag and
image occur at least k times. Since most images are assigned by few users, we did not
apply the p-core filter at the same level for all entities. Instead, the p-core at level k1 and
k2 were employed for users and tags so that each user annotates at least k1 images, and
each tag is used at least k2 times. In addition, there are many tags which dominate all
images of a user and do not illustrate the specific characteristic of the user. For this reason,
we filtered tags which are assigned to more than 50 percent images by a user. To assess
the performance of the proposed models, we used a variant of the evaluation methodology,
called LeavePostOut or leave-one-post-out, described in [57]. Instead of picking randomly
one image of each user to put into the test set, we picked more than one image such that
instances of the test set are 10 to 20 percent of the whole dataset.

Depending on the filter levels, we generated four subsets of the NUS-WIDE dataset,
named as LOPO, NUS-WIDE-1, NUS-WIDE-2, and NUS-WIDE-3, while one subset of
the Flickr-PTR was created for the evaluation. In LOPO, the data refining process relied
on the p-core protocol at the same level k = 2 for all entities, and the dominant tags were
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Table 4.4: Characteristics of datasets used to evaluate the performance of the proposed
models

Characteristics LOPO
NUS-
WIDE-
1

NUS-
WIDE-
2

NUS-
WIDE-
3

Flickr-
PTR

Users |U | 3,009 1,000 1,999 4,476 323

Images |I| 13,334 27,662 90,483 122,958 29,095

Tags |T | 983 100 1,661 2,078 133

Triples |S| 111,407 81,263 634,739 858,762 94,387

Posts |P | 29,089 27,858 95,130 129,223 29,096

Training posts
|P train|

26,048
(LOPO-2 )
27,946
(LOPO-5 )

25,858 76,842 101,622 23,402

Test posts |P test|

3,009
(LOPO-2 )
1,143
(LOPO-5 )

2,000 18,288 27,601 5,694

still kept. Two variants of LOPO, which are known as LOPO-2 and LOPO-5, were made
based on how we split the train/test set; the original protocol LeavePostOut was applied
to create LOPO-2 while only images of users having at least five posts in LOPO-5 were
considered during the division process. To produce the NUS-WIDE-? sets, we utilized the
p-core at different levels for users and tags as well as eliminated the dominant tags. The
filter levels k1 = 20 for users and k2 = 100 for tags were used to produce NUS-WIDE-
2 while k1 = 10 and k2 = 100 were found in the NUS-WIDE-3 generation process.
Moreover, the adapted LeavePostOut protocol was deployed for the train/test division;
for each user, 20 percent of posts were selected for the test set. For NUS-WIDE-1, we
sampled 1000 users before refining to get a 10-core dataset referring to users and tags
whereas we applied k1 = 40 and k2 = 400 to filter Flickr-PTR and then picked 500 users
with their associated images and tags to get the final dataset. For each NUS-WIDE-1
user, two posts were randomly selected to put into the test set, and 20 percent of Flickr-
PTR posts for each user were comprised in the test set. These subdivided datasets can
be described with respect to users, images, tags, triples and posts as in Table 4.4.
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Factorization Content-Aware Tag
Recommendation
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5.1 Introduction

As already discussed in Chapter 1, the explosion of social networks has been connected
with the proliferation of digital resources created and shared by users of these networks.
Tag recommendation systems enable users to escape from a time-consuming task, which is
thinking of tags for their resources. These systems suggest a set of relevant tags to the user
and can be dependent or independent on the user’s tagging behaviors. In an independent
scenario, the systems are founded on the contents of resources, such as objects appearing
in images, to predict candidate tags for given images. On the contrary, in a dependent
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situation, they consider the user’s historical behaviors to estimate a specific set of tags for
a given user to annotate a new image.

Actually, different taggers prefer to use their words to describe images in their own
ways. An example of the fact is shown in Figure 5.1. For this reason, it is practical to

(a) The user 10431071@N02 annotates the im-
age with tags: cats, cat, and kitten.

(b) The user 10604163@N00 annotates the im-
age with tags: animal, and kitty.

Figure 5.1: Two people use dissimilar words to assign for two similar images.

recommend a personalized list containing the user’s favorite tags to annotate a new image.
In the Flickr domain, where we want to study the tagging task, the social tagging system
allows users to tag their friends’ photos, but small subsets of 58 million observed tags
were used by another except owners of images [85]. Therefore, the system usually has to
anticipate relevant tags for new images, which are not learned by the model. Instead of
using the index-based relations, we look for a substitute connection among three entities of
tag recommendation so that for any new image, the similar relation is already discovered by
the system. Along with that, users often annotate their images with vocabularies relating
to the contents or contexts of images [130], hence the visual information is likely considered
as an important factor that enables to improve the performance of tag recommendation,
especially for unobserved images. If recommended tags illustrate both the characteristics
of users and images, they are more relevant to a given user-image pair.

From this motivation, we propose a personalized tag recommendation approach using
the visual content of images and the users’ historical tagging information to predict an
applicable tag set for a given image. Through the performance of the proposed model,
we prove the capability of image features in enhancing the recommendation performance.
Unlike several state-of-the-art approaches which ignore visual features or use low-level
image representations, our approach firstly extracts visual features of images with a CNN.
Then, these features are fed to the factorization model to predict a ranked list of tags that
is built upon pairs of users and images.

5.2 Review of Tag Recommendation

A vast amount of studies have been launched to explore various aspects of tag recom-
mendation. Recommending tags in accordance with the content of images is the most
natural approach; however, the selected tags are not solely based on the image but also
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depend on the user. A simple approach proposed by Abbasi et al. [1] is a cluster-based
model which groups images in different clusters. Each cluster is associated with a set of
characteristic tags which are achieved by ranking tags based on user frequencies. A new
image is assigned to the closest cluster, and the top representative tags of this cluster are
recommended to the image. Chen et al. [18] presented a system named SheepDog using a
Support Vector Machine (SVM) to learn the confidence of concepts which an image can
belong to. In the inference phase, the top-ranked concepts are extracted for a new image.
These concepts are used as keywords to search related groups and tags to recommend for
this image. Another approach offered by Lee et al. [73] is to recommend tags on the basis
of posterior probabilities that are computed according to the similarity between images in
terms of their visual features. In [77], the authors introduced a neighbor voting algorithm
to accumulate relevant scores from the votes of similar images. For a given image anno-
tated by a user, several nearest neighbors which are visually similar to the target image
are selected, and only images of other users can contribute their tags conjoined with voting
values.

Several researchers have chosen to exploit user-provided tags as their direction. Gen-
erally, a set of initial tags is required at the beginning of the predicting process, and
candidate tags for each provided tag are specified by the correlation measures. These can-
didates are aggregated to bring forth the final list for the image. A clear example of this
direction is the collective knowledge approach proposed by Sigurbjörnsson & Van Zwol
[130]. They assembled candidate tags for each user-provided tag based upon the concur-
rent occurrence of these tags and the initial one in the same image. After the candidate
list was generated, they employed an aggregation strategy, voting or summing, to filter the
list. Finally, the promotion scheme, which weighs the reliability of recommended tags in
keeping with the user-defined tags, was applied to select the top tags counted on their final
scores. Garg & Weber [35] put forth a personalized approach that combines the individual
suggestion and the global tag co-occurrence to narrow down recommendations for a given
user. Wu et al. [154] propounded an approach depending on three methods to measure
the correlation of tags: (1) tag co-occurrence computed in the similar way to [130], (2) tag
content correlation estimating the similarity between tags based on the visual information
of image sets marked with tags and (3) image conditioned tag correlation measuring the
similarity of tags in regard to the target image.

Several approaches combine both content-based and user-provided tag techniques to
predict the promising tags. An example of these methods is the model introduced by
Sevil et al. [127]. First, they retrieved several images, which contained the initial tags,
and collected tags from these images to form a unique tag set. Next, the candidate tags
were selected from the set according to their weights, which were computed based on the
visual-based similarity of the target image and the retrieved images.

The meta-data of images have attracted the attention of many researchers. Tagging
photos using users’ vocabularies [106] is an approach in which the candidate tags of a given
image are collected from its neighbors appearing in the user’s tagging history. The neighbor
retrieval protocol relies on the similarity between the query image and the database im-
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ages according to GPS, time and visual features. The model will choose the most frequent
tags from the list to recommend to the user. Rae et al. [107] integrated the information
extracted from personalized and collective contexts including the user’s own photos, pho-
tos retrieved from his contacts or from his groups, and all photos of the system. The
recommendations generated for each context were consolidated in a final recommended
set of tags.

Factorization models applied for tag recommendation show a good performance by
exploiting the relation among users, images, and tags to find the interaction weights for
a new instance. One of the state-of-the-art approaches is Pairwise Interaction Tensor
Factorization (PITF) [117] that models all pairwise interactions of three entities. Factor-
ization Machine (FM) proposed by Rendle [115] takes advantage of the feature engineering
flexibility and strong prediction capability of factorization to suggest a ranked list of tags
for a user.

Multi-label image classification can be seen as the content-based tag recommendation
which predicts labels associated with an image. For this reason, we are able to adapt
these models for the tag recommendation problem. The CNNs were reconstructed in
[41, 149] to predict candidate labels for a given image. They learned parameters of the
predictor based on pairwise or Weighted Approximate Ranking (WARP) loss functions [41]
or predicted labels from arbitrary trained objects [149]. However, these kinds of methods
do not consider personalization when suggesting labels for images.

In our research, we aim to learn a personalized tag recommendation that relies on
the tagging history, like factorization models, and the content of images, like multi-label
classification models. The proposed approach integrates the strength of factorization ap-
proaches, which successfully capture the personalized tags, and the advantage of deep
learning models, which predict tags connected to visual contents.

5.3 Problem Extension

As we have already mentioned in Chapter 3, the problem that we want to address is to
predict a set of the user’s tags revealing his preferences. Instead of simply exploiting
the relation of users, images and tags based on their identification numbers, the RGB
information of images is adapted to derive the representation of images. Then, the image
features replace the image’s index in the relation to compute scores of tags.

Each image i is represented by a tensor Ri containing pixel values of the image. The
collection of all tensors is defined as R := {Ri|Ri ∈ Rd×d×3 ∧ i ∈ I} where d is the
dimension of the given square image. With respect to a given user and a digital image,
a post pu,i = (u, i) can be re-written in terms of a user u and a RGB image Ri as
pu,i = (u,Ri). The two terms are used interchangeable in this section.

Given a training post pu,i and its observed tags Tu,i represented by a binary vector
yu,i ∈ {0, 1}|T |, we seek to learn a model f defined as

ŷu,i = f(u,Ri; Θ) : U × Rd×d×3 → R|T | (5.1)
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where Θ is the parameter set of the proposed model. The model guarantees that for
any pair (u,Ri), the difference between scores of relevant tags (ŷu,i)t+ and irrelevant tags
(ŷu,i)t− is maximized. We can decompose f into two sub-functions fe and fp

f(u,Ri; Θ) = fp(u, fe(Ri; θ);ω) (5.2)

where fe is the extractor that derives the visual representation of the image Ri, and fp

computes the tag scores based on values of fe and u. Additionally, θ and ω are the
parameter sets of the extractor and the predictor respectively and are also the subsets of
the model parameters Θ.

By splitting this way, it is easy to see that our goal is to find both the extractor
fe : Rd×d×3 → Rm, which provides a m-dimensional feature vector describing the content
of the given image, and the predictor fp : U ×Rm → R|T |, which computes scores of tags.

5.4 Content-Aware Factorization Model for Tag Recommen-
dation

5.4.1 Factorization Machines

The advantages of factorization models and feature engineering are incorporated in a
FM model, which can be successfully applied to solve classification, regression or ranking
problems [115, 116], especially for personalized tag recommendation. In the case of tag
recommendation, an input of a FM model, which is entirely established on triadic rela-
tionships of users, images and tags, is a sparse vector x ∈ RN characterizing the triplet
(u, i, t) where N = |U |+ |I|+ |T |.

xu,i,t =

(
0, . . . ,

u︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|U |

, 0, . . . ,

i︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|I|

, 0, . . . ,

t︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
|T |

)
(5.3)

The scoring function of the FM model is generally formulated as:

(ŷu,i)t = f(xu,i,t) = w0 +

N∑
j=1

xjwj +

N−1∑
j=1

N∑
j′=j+1

xjxj′

p∑
q=1

vj,qvj′,q (5.4)

where w0 ∈ R is the global bias, w ∈ RN is the weights of input features, and 〈vj , vj′〉
is the interaction between the j-th and j′-th variables. Each interaction variable vj is a
p-dimensional vector and can be interpreted as a row of an embedding matrix V ∈ RN×p
where p is the number of factors.

With the configuration of the input, the FM is limited to solve the tag recommendation
which is purely dependent on the historical tag assignments of users and images. However,
owing to the strength to encrypt diverse kinds of features, the FM is a pragmatic approach
to be applied for the content-aware tag recommendation. To predict tag scores counting
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on both the relations between different entities and the content of images, a hand-crafted
or trainable extractor should be included in the recommendation model to produce the
visual representation of images. The FM will act as a prediction layer, which receives the
extracted image features and computes the score of a tag based on the interaction between
these features, the tags, and the given user.

5.4.2 Convolutional neural networks

As mentioned in Chapter 2, a CNN is a special kind of neural networks, which enables
to represent high-level abstractions of images. It has demonstrated the strong capability
to classify images in multiclass datasets, such as MNIST [145], CIFAR-10/100 [78] or
ImageNet [68]. Ordinarily, the model involves one or more convolutional layers generating
multiple 2-dimensional feature maps by sliding learnable filters across the input volume.
A sub-sampling layer, which comes after a convolutional layer, pools a rectangular block of
pixels in the previous feature maps to produce an output. After several convolutional and
subsampling layers, a few fully-connected layers follow the last convolutional or pooling
layer to identify a relevant label for the input image.

In a classification case with C labels, the model can be defined as

f(X; Ω) : Rd×d×3 → RC

where X is an image instance and Ω contains parameters of the CNN. The function is
probably seen as a chain of the extractor fe, and the predictor fp as we described in the
previous section where

zi =fe(Xi; θ) : Rd×d×3 → Rm

ŷi =fp(zi;κ) : Rm → RC

In these functions, θ and κ are parameters that need to be learned simultaneously during
the training process. The extractor is a sequence of convolutional and subsampling layers,
sometimes called a convolutional block, and the predictor or classifier is a merger of fully-
connected layers.

Compared to the problem we intend to solve, the predictor is the different part between
the classification model and the tag recommendation model. While the user information
is not manipulated to estimate labels’ probabilities in image classification, the tag recom-
mendation approach allows the predictor to compute the tag scores on the basis of the
user’s and the image’s representations. The convolutional block of the CNN fe is capably
adopted in a tag recommendation model in which it supplies visual features of an image
for the predictor. Indeed, given a post pu,i, the extractor fe receives the tensor Ri as its
input to generate the visual representation of the i-th image.

zi = fe(Ri; θ) : Rd×d×3 → Rm (5.5)

The output of fe is a m-dimensional dense vector z ∈ Rm which is aggregated with the
user’s and the tag’s information to procedure the post-based or triple-based input for the
tag predictor.

38



5.4 Content-Aware Factorization Model for Tag Recommendation

5.4.3 Content-aware Factorization Machines

In our approach, we aim at taking advantage of the FM that allows the encoding of any
additional data to extend the input features and the strong capability of a CNN to learn
visual contents of images. The model architecture is described by Figure 5.2. According

Figure 5.2: The architecture of CNN-FM and CNN-DenseFM

to the proposed architectures, a convolutional block, which consists of a series of three
convolutional layers interspersed with two max pooling layers, is used as a visual feature
generator fe and an adaptive FM fp following the block to compute scores of tags.

Candidate tags are recommended for a post (u,Ri) according to historical tagging
information of the user u and visual contents of image i. For each pair (u,Ri), a tensor
Ri involving RGB values of the image i is passed through the CNN extractor to obtain
a feature vector zi ∈ Rm. In addition, the user index, u, is converted to a one-hot vector
defined as

xu = φ(u) : N+ → {0, 1}|U | (5.6)

Then, the representations of both the given user u and image i, xu and zi, are concatenated
as an input, which is fed to a FM-based predictor to calculate all tags’ scores directly or
indirectly. The predictive process is summarized as

ŷu,i = fp((xu, zi);ω) : R|U |+m → R|T | (5.7)

The output of the predictor is a score vector of tags in which each element is calculated
based on the adapted FM function.

We examine the input description in Equation 5.3 as the combination of three sub-
vectors associated with users, images and tags xu,i,t = (xu, xi, xt) where xu, xi and xt
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are binary vectors encoding user’s, image’s and tag’s indices. In addition, the interaction
weights V in Equation 5.4 can be broken into three sub-variables VU ∈ R|U |×p, VI ∈ R|I|×p
and VT ∈ R|T |×p connected to users, images and tags.

Similarly, the weights of input features w are subdivided into wU ∈ R|U |, wI ∈ R|I|
and wT ∈ R|T |. We use the ′ character to indicate the transpose operation. For exam-
ple, x′u, x

′
i, x
′
t are the transposes of xu, xi, xt, and (V U )′, (V I)′, (V T )′ are the transposes of

V U , V I , V T . Equation 5.4 is rewritten as

(ŷu,i)t = w0 + x′uwU + x′iw
I + x′tw

T +
(
x′uV

U
)(

(V I)′xi
)

+ (x′uV
U + x′iV

I)
(
(V T )′xt

)
(5.8)

Because vectors xu, xi, and xt are one-hot encoding vectors which have a single 1 value
at u, i or t position and 0 at others, the product between these vectors and factor variables
V are the u-th, i-th or t-th rows of V. Similarly, the product of these vectors and weight
vector w are u-th or t-th elements of w. The one-hot encoding steps of users and tags are
not necessary, and they are removed from the general process. The equation 5.8 can be
shortened as

(ŷu,i)t = w0 + wUu + wIi + wTt +

p∑
k=1

(
V U
u,kV

I
i,k + V U

u,kV
T
t,k + V T

t,kV
I
i,k

)
(5.9)

It is applied to estimate each scoring element of the predicted output in our proposed
approach through two possibly different methods.

1. Direct way: The model applied in this case is notated CNN-FM, which receives
the aggregation of the visual image features, the user’s and tag’s one-hot represen-
tations as its input.

The visual vector zi replaces the one-hot vector xi in the input x of the predictor.
The length of the weight vector w and the projection V are changed according to
the size of visual features z, i.e. wI ∈ Rm and V I ∈ Rm×p. The scoring function in
Equation 5.9 becomes:

(ŷu,i)t =w0 + wUu +

m∑
a=1

(zi)a w
I
a + wTt

+

p∑
k=1

(
V U
u,k

m∑
j=1

(zi)jV
I
j,k + V U

u,kV
T
t,k + V T

t,k

m∑
j=1

(zi)jV
I
j,k

)
+ ϕi

(5.10)

where ϕi is the interaction of visual features which does not appear in Equation
5.9. The reason is that the xi has only one non-zero element, but zi, a dense vector,
contains many non-zero pairs of elements. The ϕi can be denoted as

ϕi =
m−1∑
a=1

m∑
b=a+1

(zi)a(zi)b

p∑
k=1

V I
a,kV

I
b,k (5.11)

where V I
a,k, V

I
b,k are elements at the position (a, k) and (b, k) of V I .
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2. Indirect way: The model applied in this case is called CNN-DenseFM, which
obtains the representative features for both the user and the image before feeding
them to the scoring function with the one-hot representation of the tag.

Instead of using the one-hot vector xu and the visual vector zi, we seek to learn latent
features representing the combination of these features hu,i. To find the features, we
find a transfer function

ou,i = f tr((xu, zi);W, b) : R|U |+m → Rn (5.12)

where n is the size of latent features; W and b parameterize the function. In fact,
the function is considered as a fully-connected layer that has an half-sparse input
hu,i = (xu, zi). The layer can be defined as

ou,i = f tr(hu,i) = σ(Whu,i + b) (5.13)

where W ∈ Rn×(|U |+m) is a weight matrix and b ∈ Rn is the bias of the input hu,i; σ
is an activation function. In the proposed approach, ReLU is used as the activation
function. The weight vector wUI ∈ Rn replaces two weight vectors of users wU and
images wI . Similarly, V UI ∈ Rn×p puts in place of V U and V I . Later, the scoring
function is derived from Equation 5.9 as

(ŷu,i)t = w0 +
n∑
j=1

(ou,i)j wUI
j + wTt +

p∑
k=1

V T
t,k

n∑
j=1

(ou,i)j V
UI
j,k + ϕui (5.14)

where ϕui is the interaction of latent features with respect to the representation of
the post. It is defined as

ϕui =
n−1∑
a=1

n∑
b=a+1

(ou,i)a · (ou,i)b
p∑

k=1

V UI
a,k · V UI

b,k (5.15)

5.4.4 Optimization

The parameters Θ of the recommendation model are learned by maximizing the Bayesian
Personalized Ranking (BPR) optimization criterion [119]. According to this approach, the
criterion with respect to the predicted scores of relevant and irrelevant tags is defined as:

BPR-OPT(Θ̂) :=
∑

(u,i,t+,t−)∈Dtrain

lnσ((ŷu,i)t+ − (ŷu,i)t−) (5.16)

The criterion is built with respect to the quadruple (u, i, t+, t−) where the tag t+ is assigned
to the post (u, i) and the unobserved tag t− is not used to annotate this post.

The proposed approach receives a post (u, i) as its input and the output is a |T |-
dimensional vector including scores of all tags in the dataset. For this reason, we adapt
the criterion with respect to posts and define it as

BPR-OPT(Θ̂) :=
∑

(u,Ri)∈Ptrain

1

|T+
u,i||T

−
u,i|

∑
t+∈T+

u,i

∑
t−∈T−u,i

lnσ((ŷu,i)t+ − (ŷu,i)t−) (5.17)
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5. FACTORIZATION CONTENT-AWARE TAG RECOMMENDATION

The set of tags that the user u has assigned to the image i is denoted as T+
u,i := {t ∈

T |(u, i, t) ∈ Strain} and the set of unobserved tags is defined as T−u,i := {t ∈ T |(u, i, t) /∈
Strain}.

When the pairwise loss is applied, the overlapping part in the predictive function is
dismissed. As the result, Equation 5.10 can be re-formulated as

(ŷu,i)t = wTt +

p∑
k=1

(
V U
u,k +

m∑
j=1

(zi)jV
I
j,k

)
V T
t,k (5.18)

Similarly, Equation 5.14 can be re-written as

(ŷu,i)t = wTt +

p∑
k=1

V T
t,k

n∑
j=1

(ou,i)j V
UI
j,k (5.19)

A stochastic gradient descent optimizer (SGD) is applied in the training process, where
the gradient used for updating parameters is calculated per post (u, i) drawn randomly
from the training set. The parameters of both the extractor θ and predictor ω are updated
based on the derivative of BPR-OPT given a case (u, i) with respect to these parameters

θt+1 = θt + αe
∂ BPR-OPT

∂θt
(5.20)

ωt+1 = ωt + αp
∂ BPR-OPT

∂ωt
(5.21)

where αe and αp are the learning rate values used to update the extraction and prediction
parameters. The derivative of BPR-OPT for the given post with respect to a parameter
ω included in the predictor is

∂ BPR-OPT

∂ω
=

1

|T+
u,i||T

−
u,i|
∑
t+

∑
t−

(1− σ(ŷt+,t−))

(
∂(ŷu,i)t+

∂ω
− ∂(ŷu,i)t−

∂ω

)
(5.22)

where ŷt+,t− = (ŷu,i)t+ − (ŷu,i)t− .
The derivative of the loss with respect to a parameter being in a specific layer depends

on the error which is transferred backward from the next layer. For example, a parameter
θl of the last convolutional layer will receive the error term defined as

δi =
∂ BPR-OPT

∂zi
=

1

|T+
u,i||T

−
u,i|︸ ︷︷ ︸

Γu,i

∑
t+

∑
t−

(1− σ(ŷt+,t−))︸ ︷︷ ︸
Ψu,i,t+,t−

(
∂(ŷu,i)t+

∂zi
− ∂(ŷu,i)t−

∂zi
)

= Γu,i
∑
t+

∑
t−

Ψu,i,t+,t−V
I(V T

t+ − V
T
t−)

(5.23)

Then, the derivative of θl will be presented as

∂ BPR-OPT

∂θl
= δi

∂zi
∂θl
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In the case of CNN-DenseFM, visual features zi are transferred through a fully-
connected layer before going to the FM-based predictor. For this reason, the error which
the last convolutional layer gets from the predictor can be seen as

δi = Γu,i
∑
t+

∑
t−

Ψu,i,t+,t−

(
∂(ŷu,i)t+

∂ou,i
− ∂(ŷu,i)t−

∂ou,i

)
∂ou,i
∂zi

= Γu,i
∑
t+

∑
t−

Ψu,i,t+,t−V
UI(V T

t+ − V
T
t−)

∂ou,i
∂zi

The learning process is described in Algorithm 1. For each crawled post, the model predicts
the tag scores for the post. The gradients of the loss with respect to the model parameters
are found and used to update the parameters.

Algorithm 1 Learning BPR

1: Input: Ptrain, Strain αe, αp
2: Output: θ, ω

3: θ ← N (0, 0.1)
4: ω ← N (0, 0.1)
5: repeat
6: Pick (u,Ri) ∈ Ptrain randomly
7: Get T+

u,i and T−u,i
8: zi ← fe(Ri)
9: for t ∈ 1, . . . , |T | do

10: Compute (ŷu,i)t
11: end for
12: Compute BPRu,i according to Equation 5.17
13: 4ω ← ∂ BPR

∂ω

14: 4θ ← ∂ BPR
∂θ

15: Update θ ← θ + αe4θ

16: Update ω ← ω + αp4ω

17: until convergence
18: return θ, ω

5.5 Evaluation

We performed experiments addressing the impact of visual contents on the recommen-
dation process. In Section 5.5.2, we describe the CNN architecture adopted for feature
extraction, the evaluation methodology and settings of the proposed models. The results
of the evaluation are detailed in Section 5.5.3.
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5. FACTORIZATION CONTENT-AWARE TAG RECOMMENDATION

5.5.1 Dataset

We conducted experiments on LOPO-2 and LOPO-5, which were implemented in Chap-
ter 4. Sine LOPO-2 contains several rare users, which occur once during the learning
process, LOPO-5 are used to evaluate the proposed models so that each user in the test
set has been learned through at least four instances.

5.5.2 Experimental Setup

The CNN architecture used in the experiments contains 3 convolutional layers. The first
layer filters a 75 × 75 × 3 input image with 10 kernels of size 6 × 6 × 3 with a stride of
3 pixels. The input of the second layer is the output of the pooling layer that takes the
maximum value of a square block 2× 2 from the first convolutional layer to generate one
value of each feature map. It uses 30 kernels of size 6× 6× 10 with a stride of 2 pixels to
produce feature maps for the next connected pooling layer. The following pooling layer
also uses max pooling to produce values of feature maps. The last convolutional layer
filters 30 feature maps with 128 kernels of size 2×2×30 to provide a feature vector for the
predictor. In the CNN-DenseFM, a fully-connected layer that extracts the combination
features of a post (u, i) produces a dense vector having 128 elements for the recommender.

Due to scalability issues, we evaluated the CNN-DenseFM model only on the LOPO-5
protocol. On the other hand, the CNN-FM model was evaluated in both LOPO-2 and
LOPO-5 protocols. For the evaluation, we used three metrics to capture the performance
of the models as proposed by Rendle & Schmidt-Thieme [117].

• Precision at rank K

Precision@K = avg
(u,i)∈Stest

|T̂Ku,i ∩ T
+
u,i|

K

• Recall at rank K

Recall@K = avg
(u,i)∈Stest

|T̂Ku,i ∩ T
+
u,i|

|T+
u,i|

• F1-measure at rank K

F1@K =
2 · Precision@K ·Recall@K

Precision@K + Recall@K
(5.24)

The number and the size of CNN kernels are fixed like above. We applied a grid search
mechanism for looking for the best learning rate α, regularization λ and factor dimension
p. The learning rate is selected among the range of αcnn/full ∈ {1e− 2, 1e− 3, 1e− 4} for
all convolutional layers and the fully-connected layer, αfm ∈ {1e−2, 1e−3, 1e−4} for the
FM layer. The values of the regularization hyperparameter for all convolutional layers,
the fully-connected layer and the FM layer are selected from λcnn/full ∈ {1e − 03, 1e −
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04, 1e − 05} and λfm ∈ {1e − 05, 1e − 06, 1e − 07}. The factor dimensions are searched
among the range of p ∈ {64, 128, 256}.

We compare the proposed models with the following tag recommendation models:
PITF [117], FM [115], Most popular tags (MP) [56], Adapted PageRank (AP) [55],
FolkRank (FR) [56].

We used the Tagrec framework built by Kowald et al. [67] to learn MP, FR and AP while
the Tag recommender software1 was used to learn PITF and FM. We also implemented
a convolutional neural network with a multilayer perceptron network placed as the last
layer (CNN-MLP) to recommend tags based on the content of images. The convolutional
block having the same architecture used in the CNN-FM is deployed in the first step to
extract a feature vector, then its values are fed to a multilayer perceptron network as the
input to calculate scores of all tags. The parameters of this model are learned based on
the pairwise loss function.

5.5.3 Results

The MP recommends the top tags having the highest usage frequencies according to all
images and ignores the user’s preferences and the content of resources be tagged. It does
not recommend specific tags for a particular user or image so many tags are irrelevant to
a given post. For this reason, the performance of the MP is the worst compared to other
approaches, as shown in Figure 5.3 and Figure 5.4.

Although the content-based tag recommendation (CNN-MLP), which predicts tags
associated with the visual information of images, works better than the MP, its recom-
mended tags are not specific for users, i.e the tag sets suggested for similar images are
the same. However, in practice, different users assign distinct keywords to related images
depending on their personality. For this reason, its performance cannot compete with
other personalized models. This means that the content-based tag recommendation is not
really effective in the case of personalized tag recommendation.

On the contrary, visual features strongly support the personalized models to achieve
higher performance indicated by Figure 5.3, Figure 5.4 and Table 5.1. For example, the
recommender using visual contents improves the performance by 7.2 percent of precision
at 1 in LOPO-2 and 3.8 percent in LOPO-5 if compared to FM. Although Rendle [115]
discussed that the performance of the FM and the PITF are comparable in ECML Dis-
covery Challenge 2009 (task 2), the PITF achieves higher performance than the FM does
in this narrow folksonomy when the latent features of tags are specified for different in-
teractions between them and users or images. Feeding a FM with CNN-extracted visual
features boosts its performance, and it is comparable to a PITF. The result also opens
the direction of using visual contents with the PITF model.

The proposed approach relies on the interaction of visual features and tags as well as
users and tags; additionally, any image is able to be represented by a visual feature vector.
For a new image, the model is still capable to capture the interaction between it and tags

1http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/
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Figure 5.3: Precision, Recall and F1-Measure for LOPO-2 from rank 1 to 10

besides the relationship of a given user and tags while the FM or PITF mostly counts on
the user-tag relation to predict tags. From this point of view, the proposed approach can
be considered to solve the cold-start image recommendation problem.

Depending on the feeding types, the direct or indirect way, the combination of users
and visual features can improve the prediction capability of the recommender in different
level. It is clearly visible through the performance of CNN-DenseFM in Figure 5.4. When
the intermediate step is used to combine user’s and visual features into a general repre-
sentation, the performance of the recommender is worse than the recommender receiving
these features directly. One reason for this problem can be that the visual values over-
whelm the one-hot user values during the combining process. The generated features are
more related to the contents of images and loose user information.
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Figure 5.4: Precision, Recall and F1-Measure for LOPO-5 from rank 1 to 10

5.6 Discussion

We proposed a hybrid model, which depends on the CNN and FM architectures, to cal-
culate scores of tags. Empirically, the learnable features of images strengthen the perfor-
mance of the tag recommendation, which captures the interaction among users, image’s
features, and tags. The representation of a given post, which is generated by aggregating
a one-hot and a visual representation, does not boost up the performance of the model.
However, it raises a question whether the interaction between each feature of a user and
an image used as the post representation is useful for the tag recommendation. Moreover,
instead of using the combined model to predict tags, a full CNN architecture, in which
a multi-layer perceptron replaces the FM’s mission, is a promising method for the per-
sonalized tag recommendation. Additionally, the experiments show that PITF is a next
candidate to combine with CNN-based models so that the performance will be expected
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Table 5.1: F1-measure at 5 and 10

Models LOPO-2
(F1@5)

LOPO-2
(F1@10)

LOPO-5
(F1@5)

LOPO-5
(F1@10)

MP 0.1135 0.1059 0.142 0.1197
CNN-MLP 0.1389 0.1181 0.165 0.1344
AP 0.2366 0.2018 0.2686 0.2193
FR 0.24 0.2021 0.2772 0.2356
CNN-DenseFM (N/A) (N/A) 0.2778 0.2241
FM 0.2671 0.224 0.3281 0.2611
PITF 0.2786 0.2242 0.3432 0.2675
CNN-FM 0.2866 0.2293 0.3491 0.2771

better than history-based models.
The learning time is also an issue for the model when most time is spent on backprop-

agation and updating the convolutional block. Furthermore, the training data size also
limits the depth of the CNN. A supporting technique should be aggregated with the tag
recommendation so that it allows a very deep model to be applied as the extractor, and
the time will be concentrated for learning the predictor.
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Chapter 6

Personalized Deep Learning for
Tag Recommendation

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Problem Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Personalized Content-aware Tag Recommendation . . . . . . . 52

6.3.1 Convolutional Neural Network as the Extractor . . . . . . . . . . 52

6.3.2 Personalized Fully-connected Layer . . . . . . . . . . . . . . . . . 53

6.3.3 Multilayer Perceptron as the Predictor . . . . . . . . . . . . . . . 54

6.3.4 Personalized Convolutional Layer . . . . . . . . . . . . . . . . . . 54

6.3.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Introduction

In the previous chapter, we have shown that good results can be achieved by employing
visual representation of images in a tag recommendation model. A FM is adapted to
compute scores of tags based on capturing the interaction among users, visual features
of images and tags. A plainly personalized model, such as PITF, has difficulties to pre-
dict tags for new images because of the missing of the relation between them and other
entities. Mostly, it suggests the most popular tags of a given user to an image. On the
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contrary, the earlier proposed approach (CNN-FM) seeks to learn the relation between vi-
sual features and others, and any image can be represented by a feature vector, even new
images that have not appeared in the training data. Recommended tags of a personalized
content-aware tag recommendation, like CNN-FM, express personal and content-aware
characteristics as in Figure 6.1. Tags recommended for u1 contain his favorite word italy,
a word mountain related to the content of the image and a word nature from u3 being
similar to u1.

Figure 6.1: Characteristics of tags predicted by a personalized content-aware approach

This approach can be seen as a hybrid model taking advantage of both the state-of-art
approaches in tag recommendation and image classification. Compared to CNN-based
architectures which are used to solve the multi-label classification or content-based tag
recommendation [41, 109, 147, 149], the model also have a convolutional block to extract
visual features of images to be used in the predictor. While the model proposed by Wei
et al. [149] aggregates the scores of labels from different segment hypotheses by using
the max pooling, Gong et al. [41] proposed to learn the CNN model for the multi-label
classification with respect to different losses including the pairwise loss and a ranking loss,
WARP [151]. The combination of a deep CNN and a recurrent neural network is used
by Wang et al. [147] to learn the dependencies of labels in an image. Recently, Rawat &
Kankanhalli [109] combine a deep CNN with a neural network to enrich the visual image
features with the context information extracted from the meta-data including time and
geographical data.

These approaches are based on the image’s information to predict probabilities of labels
so recommended tags only reflect the content of images and do not have any connection
with the user’s preferences. Differently, the prediction layer of the proposed approach
allows user information going through such that the interaction among users, image rep-
resentation, and tags is captured. If a CNN model is capable to obtain personalized visual
features, it can predict a set of tags related to both the user’s preferences and the image’s
contents.

In this chapter, we show how a deep learning approach can be adapted to solve a
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personalized image tag recommendation. For a personalized problem, features used in a
deep learning model have to include the information of a user and an associated image. We
propose a new way to add the user’s information into the CNN models. A new layer that
captures the interaction between users and visual features plays a bridging role between
a CNN image extractor and a multilayer perceptron predictor as in Figure 6.2.

Figure 6.2: The architecture of CNN-PerMLP

In addition, we adopt the BPR in a different way to put the model into use. Empirically,
our experiments were conducted in two real datasets, namely NUS-WIDE and Flickr-
PTR, show that the proposed model outperforms the state-of-the-art personalized tag
recommendation models, which are purely based on tagging history, up to at least four
percent. The experiments also indicate the stronger support of the supervised features to
increase the prediction quality up to at least two percent compared to low-level features.

6.2 Problem Extension

As the previous formulation for the tag recommendation problem, we are exploiting the
relation between users, images represented by visual features and tags.

To increase instances of the dataset, we crop images at different positions to generate
several patches and denote Rqi being a patch q of an image i. So, a post (u, i) has Q
variants based on patches of images, and the total number of training instances will be
Q× |Ptrain|. The color image set is re-defined as

R = {Rqi |i ∈ I ∧R
q
i ∈ Rd×d×3} (6.1)

Each post is annotated with a set of tags, known as relevant tags, T+
u,i ∈ T and the rest

of unobserved tags are grouped in the irrelevant tag set T−u,i ∈ T\T
+
u,i.

We also seek to learn a machine learning model

ŷu,i,q = f(u,Rqi ; Θ) : U × Rd×d×3 → R|T | (6.2)
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which maps an instance of a given post to real-valued scores of tags. Scores of a post are
the average scores of its instances according to the patches of the used image

ŷu,i =
1

Q

Q∑
q=1

ŷu,i,q (6.3)

6.3 Personalized Content-aware Tag Recommendation

The architecture of the proposed model, called CNN-PerMLP, based on the relation
between the user and the visual features of the given image is illustrated in Figure 6.2.
The supervised visual features are computed by passing a patch q of the image i through
the CNN feature extractor. To personalize the visual features, a proposed specific layer
called the personalized fully-connected layer is employed following the extractor. The layer
captures the interaction between the user and each visual feature to generate the latent
features for the post pu,i. A neural network is deployed as a predictor to compute the
relevant probabilities of tags. The network receives the user-image features as the input
and its outputs are used to derive a ranking of recommended tags.

According to the architecture, we can describe the model function f by a sequence of
operations

ŷu,i,q = f(u,Rqi ; Θ) = fp
(
fu
(
u, fe(Rqi ; θ); ϑ

)
; ω

)
(6.4)

where fe is the extractor which provides visual features of an image Rqi , f
u is responsible

to capture the interaction between users and visual features and fp is used to compute
scores of tags for the given post. Moreover, θ, ϑ, and ω are parameters of the extractor,
the personalized layer, and the predictor respectively.

Besides, several alternative forms of the proposed model, which personalize feature
maps at the different levels instead of adding the user’s information into the last represen-
tation of an image, are exploited to demonstrate the effectiveness of the personalization
level. The processes can be formulated as

ŷu,i,q = f(u,Rqi ; Θ) = fp
(
fue(u,Rqi ; θ, ϑ);ω

)
(6.5)

where fue is the personalized extractor which outputs the representation of a post (u,Rqi ).
In the test phase, we average scores of all instances correlated with the given post as
mentioned in Equation 6.3.

6.3.1 Convolutional Neural Network as the Extractor

Proving the powerful capability to extract visual features of images through a variety of
studies [50, 68, 131] and the previous section results, we continue using a CNN as the
feature extractor. For the later reference, we re-formulate the extracting process based on
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the convolutional network. Generally, more than one convolutional layers are employed to
generate several feature maps by moving kernel windows smoothly across images.

For example, the k-th feature map of a given layer is denoted as τk, the weights and
the biases of the filters for τk are W k ∈ Rp1 ×Rp2 ×Rp2 and bk where p1 is the number of
the previous layer’s feature maps and p2 is the dimension of kernel windows. The element
at the position (i, j) of τk is acquired as

τkij = σ

(
bk +

p1∑
a=1

(W k
a ∗ ξa)ij

)
(6.6)

with ∗ being the convolution operator, ξa being the a-th feature map of the previous
layer and σ being the activation function. The pooling layer, which maximizes or averages
a rectangular block of the previous layer to provide an element for the current feature
map, follows the convolutional layer. If the max pooling operator is used, the element at
the position (i, j) of the k-th feature map τk is denoted as

τkij = max
a,b

(ξk)a,b (6.7)

where a and b are the positions of the element associating to the pooled block. The output
of the CNN feature extractor is a dense feature vector representing the visual content of
the image. We define the extraction process of the patch q of the i-th image by

zi,q = fe(Rqi ; θ) : Rd×d×3 → Rm (6.8)

where θ is the parameter set of the extractor. These features only contain the visual values
of the given image and there is no user’s information included in the representation. To
personalize visual features, a layer should be employed immediately after the extractor.

6.3.2 Personalized Fully-connected Layer

As we mentioned in the above section, the extracted features from the convolutional block
only contain the information of a given image i. To make visual features specific for a given
user, the user’s information has to be added or combined with them. For this reason, a
layer between the feature extractor and the predictor is utilized to generate the user-aware
features that are used as the input of the predictor.

In the previous chapter, the concatenation between the visual and one-hot features
does not create a useful representation for the predictor. In this proposed approach, the
user’s index is used to obtain latent features paired with the image’s ones. Given a u-th
user described as a one-hot vector encoding the user’s id and being represented as

xu = φ(u) : N+ → {0, 1}|U |

both the visual feature vector zqi and the sparse vector xu are the inputs of this layer.
The layer seeks to learn a function to map each pair of users and image features to a
personalized feature vector and it can be denoted as

hu,i,q = fu(zi,q, xu; ϑ) : Rm × {0, 1}|U | → Rm (6.9)

53



6. PERSONALIZED DEEP LEARNING FOR TAG RECOMMENDATION

In fact, it will capture the association between the user and each visual feature, and it is
obtained as follows

hu,i,q = fu(zi,q, xu; ϑ) = σ(bu + wu � zi,q + V xu) (6.10)

where wu ∈ Rm is the weights of the visual features, V ∈ Rm×|U | is the weights of the
user features and � is Hadamard product. As in the convolutional layer, the elementwise
activation function σ is applied to the linear combination of the weighted visual feature
and the user’s features. The output elements representing both the user’s and image’s
characteristics are ready to be transferred to the predictor in which scores of tags are
estimated.

6.3.3 Multilayer Perceptron as the Predictor

To compute scores of tags, a multilayer perceptron with one hidden layer is adopted as the
predictor and its input is the output of the personalized fully-connected layer hu,i,q. The
output of the network is a |T |-dimensional vector containing score values of tags associated
with the post (u, i) and the patch q of the image i. In summary, the model maps a post
(u, i) represented by a personalized feature vector hu,i,q to real-valued scores of tags and
it is defined as

ŷu,i,q = fp(hu,i,q; ω) : Rm → R|T | (6.11)

Similar to other neural networks, the prediction function can be expanded as the chain
of non-linear functions. For simplicity, h replacing hu,i,q will be used in the following
denotation of the predictor and we define the scoring function of the predictor as

ŷu,i,q = fp(hu,i,q; ω) = σ

(
W out · σ(W hidhT + bhid)T + bout

)
(6.12)

where W hid ∈ Rn×m and bhid ∈ Rn are weights and biases of the hidden layer having n
neurons; W out ∈ R|T |×n and bout ∈ R|T | are weights and biases of the output layer. σ is
the activation function which is often used in most neural networks.

6.3.4 Personalized Convolutional Layer

The aggregating protocol relying on the personalized fully-connected layer can be applied
to personalize feature maps which are the output elements of a convolutional layer. Instead
of using the personal layer after the last convolution layer, the architecture can be modified
by moving this layer backward. By doing in this way, the personalized fully connected
layer is adjusted so that it can take a 4-dimensional tensor ξ as an input and it is named
the personalized convolutional layer.

It will personalize all feature maps by adding the user information to each pixel of
feature maps ξl in the layer l. The process can be presented as

τ lu,i = fu(xu, ξ
l; ϑ) : Rh×w×c × {0, 1}|U | → Rh×w×c
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where h,w are the height and width of a feature map, and c is the number of feature
maps. Normally, feature maps are squared so h = w. In addition, ξ ∈ Rh×w×c consists of
feature maps generated by the previous convolution layer. The weights of the given user
and pixels are shared between elements of the same feature map. In detail, if we denote
the output of this layer as τ , it can be computed as

τ lu,i = fu(u, ξl; ϑ) = σ(bu + wu � ξl + V xu) (6.13)

where wu ∈ Rc is the weights of feature maps and V ∈ Rc×|U | is the weights of users. The
kind of layers can follow several convolutional layers to guarantee that the user information
will not be lost in the feedforward route.

6.3.5 Optimization

We adopt the BPR optimization criterion in a different way so that the algorithm can
be applied to learn the deep learning personalized image tag recommendation. In the

Algorithm 2 Learning BPR

1: Input: PStrain , Strain R, N , α
2: Output: Θ

3: Initialize Θ← N (0, 0.1)
4: repeat
5: Pick (u, i) ∈ PStrain and Rqi ∈ R randomly
6: Get T+

u,i := {t ∈ T | (u, i, t) ∈ Strain}
7: Sample T̃−u,i := {t ∈ T | (u, i, t) /∈ Strain} where | T̃−u,i |= N
8: zi,q ← fe(Rqi )
9: hu,i,q ← fu(zi,q, xu)

10: ŷu,i,q ← fp(hu,i,q)
11: Initialize BPR(Θ)u,i,q = 0
12: for t+ ∈ T+

u,i do

13: for t− ∈ T̃−u,i do
14: BPR(Θ)u,i,q ← BPR(Θ)u,i,q + lnσ((ŷu,i,q)t+ − (ŷu,i,q)t−)
15: end for
16: end for
17: BPR(Θ)u,i,q ← BPR(Θ)u,i,q

|T+
u,i|·|T̃

−
u,i|

18: Backpropagate the error δ? of all layers w.r.t BPR(Θ)u,i,q

19: 4Θ ← ∂ BPR(Θ)u,i,q
∂Θ

20: Update Θ← Θ + α4Θ

21: until convergence
22: return Θ

proposed approach, the backpropagation algorithm is applied in which the errors will be
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transferred backward to the input. If the original BPR is applied, the errors relying on
the difference of two tags become smaller through several layers and the gradients of the
loss with respect to convolution parameters are too small to update. The optimization
of the criterion is not sufficient if applied directly to the model. The BPR criterion with
respect to posts is proposed to use, and in terms of an instance q of a given post (u, i), it
is defined as in Equation 5.17.

Motivated by Dropout techniques where several nodes are dropped from the network,
we remove a subset of irrelevant outputs instead of dropping out hidden units. In fact,
we sample N tags from the unobserved set T−u,i, rather than using the entire rest, and

only compute the loss based on these sampled tags. For simplicity, T̃−u,i is a denotation

for the sampled irrelevant tags and |T̃−u,i| = N . The learning process is described in
Algorithm 2. For each random post, an arbitrary patch of the associated image is chosen
to extract the visual features. An irrelevant set having N tags is selected at random from
the unobserved tags of the post. The system computes the scores of all relevant tags and
the drawn irrelevant tags. From Equation 5.17, the gradient of BPR with respect to the
model parameters is obtained as follows:

∂ BPR

∂Θ
= Ω

∑
t+∈T+

u,i

∑
t−∈T̃−u,i

Γt+,t−

(
∂(ŷu,i,q)t+

∂Θ
− ∂(ŷu,i,q)t−

∂Θ

)
(6.14)

where

Ω =
1

| T+
u,i || T̃

−
u,i |

Γt+,t− = 1− σ((ŷu,i,q)t+ − (ŷu,i,q)t−) (6.15)

To learn the model, the gradients
∂(ŷu,i,q)t+

∂Θ and
∂(ŷu,i,q)t−

∂Θ have to be computed. De-
pending on the weights in the different layers, one or both the gradients are computed.
For example, if the parameter θl depends on the relevant tags t+, Equation (6.14) becomes

∂ BPR

∂θl
=

∂ BPR

∂(ŷu,i,q)t+
× ∂(ŷu,i,q)t+

∂θl
=
∂(ŷu,i,q)t+

∂θl
· Ω

∑
t−∈T̃−u,i

Γt+j ,t−
(6.16)

To find the gradients of the CNN parameters, the derivatives with respect to the visual
features are propagated backward to the CNN block. From the Equation 6.10 and 6.14, if
we assume that the activation layer used in the layer is a linear function, the derivatives
are defined by

∂ BPR

∂zi,q
= Ω

∑
t+∈T+

u,i

∑
t−∈T̃−u,i

Γt+,t−

(
∂(ŷu,i,q)t+

∂hu,i,q
− ∂(ŷu,i,q)t−

∂hu,i,q

)
� wper (6.17)

6.4 Evaluation

In the evaluation, we performed experiments addressing the impact of supervised visual
features and the personal factor on the tag recommendation process.

56



6.4 Evaluation

Table 6.1: The set of 10 most frequent
tags in NUS-WIDE-1

blue 2.956 sky 2.810
water 2.667 clouds 2.255
green 2.227 red 2.137
sunset 1.818 nature 1.792
light 1.785 landscape 1.499

Table 6.2: The set of 10 most frequent
tags in Flickr-PTR

white 2.139 blue 2.122
red 1.900 green 1.794
light 1.745 sky 1.583
water 1.578 bw 1.553
black 1.489 art 1.472

6.4.1 Dataset

We conducted the experiments on the NUS-WIDE-1 and Flickr-PTR dataset described in
Chapter 4. For each digital image, four patches were generated as mentioned in Section
4.3. With the above filtering and splitting, the test set of NUS-WIDE contains around 99
percent unobserved images and in Flickr-PTR, images in the test set are completely new.
Moreover, in these datasets, the color tags have high frequencies compared to other tags
as shown in Table 6.1 and 6.2.

6.4.2 Experimental Setup

Table 6.3: Layer characteristics of the convolutional architectures

Layer NUS-WIDE-1 Flickr-PTR

The first convolutional layer 6× 6× 3 (stride: 3) 5× 5× 3 (stride: 2)

The first max pooling layer 2× 2 2× 2

The second convolutional
layer

6× 6× 10 (stride: 2) 5× 5× 10 (stride: 1)

The second max pooling layer 2× 2 3× 3

The third convolutional layer 2× 2× 30 (stride: 1) 3× 3× 30 (stride: 1)

The architectures used for both datasets contain 3 convolutional layers alternated with
2 max-pooling layers. The convolutional layers, ConvLs, in these architectures have the
same number of kernels that are 10 for the first, 30 for the second and 128 for the third.
Because of the difference of the image size, the dimensions of convolutional kernels and
pooling blocks in these architectures are divergently shown in Table 6.3. The hidden layers
of the predictor have the dimension 128 for both architectures and the ReLU function is
used as the activation function.

The evaluation metric used in this chapter is F1-measure in top K tag lists as described
in Equation 5.24. The grid search mechanism was used to find the best learning rate α
among the range {1e− 3, 1e− 4, 1e− 5} for all ConvLs and {1e− 2, 1e− 3, 1e− 4} for all
fully-connected layers, the best L2-regularization λ from the range λ ∈ {0.0, 1e−4, 1e−5}
while the momentum value µ was fixed to 0.9. The 64-dimensional color histogram (CH)
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and 225-dimensional block-wise color moments (CM55) provided by NUS-WIDE’s authors
and the 64-dimensional CH of Flickr-PTR images are used for comparison.

The proposed model CNN-PerMLP is compared to the following personalized tag
recommendation methods that use only the users’ preference information and do not
consider the visual features: PITF, FM, most popular tags by users (MP-u) [56].

In addition to CNN-PerMLP architecture, several configurations in which we alter the
personalized fully-connected layer by a personalized convolutional layer and its position
is behind the first and second convolutional layer respectively. These models are named
as CNN-1PerMLP and CNN-2PerMLP. Moreover, an architecture, called as CNN-
2BlockMLP, with two personalized layers following the first and second convolved layers
is also employed for the evaluation.

It is also compared to the non-personalized models including most popluar tags(MP)
[56], the multilabel neural networks (BP-MLLs) [159] that have low-level visual features as
the input (CH-BPMLL, CM55-BPMLL), CNNs utilized for image annotation which
optimizes the pairwise ranking loss to learn the parameters as the loss used by Zhang and
Zhou [159]. The adjusted models (CH-PerMLP and CM55-PerMLP) of the proposed
model using low-level features were obtained for the comparison. We used the Tagrec
framework [67] to learn MP and MP-u, and the Mulan library [141] to learn CH-BPMLL
and CM55-BPMLL.

6.4.3 Results

Similar to the result in Chapter 5, the MP model, which recommends the global most pop-
ular tags to any post, is the worst model. All given images receive the same recommended
list of tags which have the highest frequencies of use by all users. Because this set does not
connect to any specific user’s historical behaviors or contents of images, the performance
of this model is certainly worse than other models, which can catch the relation between
tags and other entities as we can see in Figure 6.3. In this figure, the non-personalized

Figure 6.3: Comparison of non-personalized and personalized models

models which are based on visual features of images to predict tags cannot capture the
user’s interests and they just recommend tags related to the content. They can capture
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common content-based tags used by most users, such as blue or green, to annotate their
resources. So, their recommendation is more relevant to posts than the most popular
tags. The assumption is clearly presented in the figure where their result lines go above
MP. Clearly, when applying this approach to solve the personalized problem, the predic-
tion quality of these models is lower than that of the personalized model. If we compare
between the high-level features learned by a CNN and the low-level features, the model
used learnable features captures more information leading to the boosted performance by
around 2 percent.

Figure 6.4: Comparison of personalized models

The claim that visual features improve the prediction quality is more evident in Figure
6.4. In the test set having most new images, the weights associated with them are not
learned in the training process. So the prediction of personalized content-ignored models
like FM and PITF solely depends on users and their results are clearly comparable to
the prediction of MP-u. On the other hand, the personalized content-aware models work
better than them in this case and recommended tags rely on both users and visual image
information. Weights of images in these models are associated with visual features and
all images are capably represented by feature vectors. These models will not face the
similar issue which the purely personalized models have in the cold-start image scenario.
Generally, visual features help to increase the prediction quality around four percent.
Similar to the non-personalized models, the supervised features used in the personalized
frameworks also prove their strength in the recommendation quality compared to the low-
level features. The performance is improved around two to three percent as a result of
using the learned visual features.

Figures 6.5 and 6.6 show the efficiency of adding the personalized layer in different
levels. If feature maps of the first convolutional layer are personalized, the user’s infor-
mation is lost through several layers. Features achieved by the personalized extractor
are overwhelmed by visual elements and they are weaker than features obtained by other
configurations. This results of CNN-1PerMLP in these figures prove the above discussion.
Although their features enriched by user’s information are better than purely visual fea-
tures to boost up the accuracy, they are still not enough to capture personalized tags. We
can also see in Figure 6.7 that personalized feature maps at the first level are not different
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Figure 6.5: The results of personalizing images at different levels for NUS-WIDE-1

obviously.

Figure 6.6: The results of personalizing images at different levels for Flickr-PTR

When the personalized layers are shipped forward, the performance of these models
is enhanced. In other words, if the user’s information is added to features retrieved by
the second convolutional layer, the model based on them works better than a model using
first personalized features. Feature maps added the user’s data at the second level CNN-
2PerMLP are more specific to different users compared to the first level as shown in Figure
6.7. When we personalize feature maps of two first convolutional layers, the accuracy of
the tag recommendation model is truly enhanced. However, its performance is still far
behind the performance of the model based on the personalized fully-connected layer. The
model CNN-PerMLP in which visual outputs of the last convolutional layer are aggregated
with the user’s latent features achieves the best performance.

Examples in Table 6.4 show that the proposed model can predict both personal tags and
content tags compared to MP-u that purely predicts personal tags and CNN recommending
content tags. As a result, the CNN-PerMLP suggests more relevant tags to the image. For
example, in the first photo, the recommender can catch personal tags as flowers, flower,
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Figure 6.7: Feature maps are different based on users.

orange and content tags as white or red.

Table 6.4: Examples of top 5 recommended tags of CNN-PerMLP, CNN and MP-u

Image
Ground
truth

CNN-
PerMLP

CNN MP-u

flower
red
orange
white

red
white
flowers
orange
flower

red
woman
girl
white
people

flowers
white
orange
pink
flower

green
grass
landscape
park

landscape
green
sky
park
grass

green
bravo
blue
nature
flowers

beautiful
park
landscape
color
animal

Through Table 6.5 and 6.6, CNN-PerMLP works well in the case that people use their
frequent tags or tags related to the image’s content to annotate a new image. However,
the prediction quality of the model is poor if the users assign tags that are new and do
not relate to the content.
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Table 6.5: Examples having the highest
accuracy of top 5 recommended tags

Image
Ground
truth

Prediction

lake
sunset
water
blue
sun

sunset
water
lake
blue
sun

water
man
river

river
water
woman
old
man

Table 6.6: Examples having the lowest ac-
curacy of top 5 recommended tags

Image
Ground
truth

Prediction

green sea
beach
sunset
clouds
ocean

people reflection
water
light
window
night

6.5 Discussion

In this chapter, we propose a deep learning approach using supervised visual features
for personalized image tag recommendation. The experiments show that the proposed
method has advantages over the state-of-the-art personalized tag recommendation purely
based on tagging history. Moreover, high-level features learned with the predictor have
stronger effects compared to low-level features. The additional levels of user data also
affect the accuracy of the models in different ways in which adding users to the last layer
of the extractor is the best option.

One assumption we can consider to build the neural network based tag recommendation
is that we personalize synapses of the network instead of adding a “user bias” to the
model. That is like generating |U | networks for users, but it requires that each network
has numerous posts for the training process. If we enable to decompose the large user-
based parameter set into smaller subsets, it is feasible to train the model in a limited
dataset.

The running time and the lack of data are still issues of the models. To train the
proposed models based on a shallow convolutional network, it is required that the number
of posts per tags is nearly 1000. If the network has more trainable parameters, this
number becomes very large that the current tag recommendation data cannot satisfy.
Additionally, most running time of the model is used to learn the extractor although the
depth of its network is not large compared to other classification models. It brings us
to several questions about whether it is possible to use the knowledge of another very
deep classification model, which is learned in the huge domain, to obtain wealthy visual
features.
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7.1 Introduction

So far, in Chapter 5, we have presented the hybrid approaches based on the factorization
and deep learning techniques to predict personalized tags for a given image, while in
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Chapter 6, we have introduced the CNN architectures to implicitly encode the personalized
visual features in estimating the tag’s scores. The similarity of these approaches is the
CNN module, which extracts features from the image, while the factorization-based or the
multi-layer perceptron module is utilized in predicting the probabilities of tags.

Compared to recent CNN architectures [68, 131, 137], the CNN extractor is shallower
in both the connection types and the number of layers. Because of the limitation of the tag
recommendation dataset, it is difficult to learn a large network with millions of parameters.
Moreover, although we aim to improve the accuracy of the score predictor, most of the
time is spent on backpropagating the error through the CNN layers and updating their
parameters.

In this chapter, we exploit how to leverage a deeper CNN model to enhance the tag
recommendation by using knowledge found in a large scale vision dataset. As a result,
most efforts are used to learn the predictor, and it allows us to free the extractor from
the learning process in the limited dataset. A deep network is selected as a base network,
which is employed as the visual extractor in the tag recommendation model. To overcome
the limitation of training data, it learns the extracting skills on a large dataset and uses
the knowledge to extract features for images of the smaller dataset.

Besides the visual features, object-based features are also covered in this chapter. The
motivation for our approach can be explained easily and follows the way how human beings
tag images. Let us have a look at Figure 7.1. The user tagged this image with “urban”,
“motorcycle” and “downtown”. While the COCO dataset only allows us to distinguish 80
different objects which are completely unrelated to our task, we can nevertheless detect a
person, a motorbike, a car and few further objects. This is also what a human being does
and the appearance of the motorbike likely resulted in the tag “motorcycle”. However,
object detection can also help to recommend tags such as “urban”. This tag is obviously no
object which you see on the image, but the recommender system can learn that whenever
motorbikes, cars, and people are detected on an image that an urban area or city is
pictured. In a similar way, the classification algorithm can extract image features such as
specific shapes, colors and so on. Thus, the combination of these features will be used as
the image’s factor such that the performance of the recommender is improved compared
to the models that rely on only one kind of features or ignored contents of images.

In Chapter 5, a FM model is modified to receive the visual information as its input
instead of the index. It acts as an output layer in the network to predict scores of tags
reflecting the user’s preference and the image’s content. The FM-based method in this
chapter is a variant of the previously proposed approach, which recommends tags related
to the given user, the image content, and the object-based context of the image. A
PITF model, which also belongs to the family of latent factor models and shares some
characteristics with FM, would be a promising approach to deal with the content-aware
tag recommendation. Instead of using only index-based inputs, we propose an approach
that allows the model accepting dense values as its input. Furthermore, the object mode
is added to the PITF-based model such that the context information is utilized to boost
up the model’s performance.
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Figure 7.1: When tagging an image, the user is highly influenced by what she sees on the
image. In this example, the user chooses “motorcycle” due to its occurrence. Furthermore,
the tag “urban” is chosen since the image shows a street, people, cars and other things
typical for cities. Our idea is to create an automatic system that uses object detection as
a part of it to improve the tag recommendation performance.

Our experiments are conducted on a real-world dataset, namely NUS-WIDE, and we
can show that our proposed way of extracting image features improves the accuracy of the
tag recommender by at least one percent.

7.2 Background Review

Beyond various modeling methods, the usage of context has more become popular for en-
hancing the performance of the models for different tasks. For example, Gantner et al. [34]
proposed a context-aware item prediction, which encodes time as one mode to construct a
3-dimensional tensor of interactions among users, items, and time-based contexts. Then,
a factorization model was employed to predict scores of items.

Employing the context factor is also considered in order to improve object detection and
classification, and many studies have demonstrated its positive influence on the predictor’s
performance [11, 32, 44, 52, 54]. The context information is retrieved from the external
source with traditional image descriptors, such as geographic coordinates [5, 10, 139], texts
from Internet [146], user-provided tags [44].

One popular image task which has drawn the attention of many researchers recently
is the image classification [68, 78, 157]. Likewise, object detection is also a task for image
understanding and has attracted numerous studies to solve the problem, especially in the
deep learning field [36, 37, 38, 110, 112, 113, 137]. While the image classifier predicts one
or more labels belonging a category to assign for an image, the object detection is defined
as the task of localizing and classifying objects in an image. Because they are obviously
related, some research [19, 48] is investigated to combine object detection and image
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classification. It means that the output of one task is used as a context to improve the
performance of the other task. Their experiment results proved that the object detection
impressively supports improving the image classification.

In the thesis, we seek to learn the methods to solve the tag recommendation task, which
can be seen as a variant of multi-label classification. Because of the interdependence of
image classification and tag recommendation, it raises the possibility of using objects
detected in an image as a context for our aiming task. However, the difference between
our target and the studies [19, 48] is that we will leverage the object detection in a source
dataset and use its results as the inputs to promote the tag recommendation, instead of
mutual boosting both tasks.

7.3 Problem Extension

Similar to previous chapters, the purpose of a personalized tag recommendation is to
discover a sorted list of tags reflecting the user’s preference and item’s content. Digital
images appearing in the dataset are composed of the set R, which are the input of visual
and object-based feature extractors. Generally, the prediction process banked on a given
post is formulated as

ŷu,i = f(u,Ri; Θ) = f(xu, f
I(Ri; θ), f

O(Ri;ϑ); ω) (7.1)

where f I maps the given digital image to a dense visual representation; fO is also an
extractor to generate object-based features for the given image.

The above data are organized in the target domain and two source domains in which
the extractors learn their extracting skills contain auxiliary datasets DI , DO. Apparently,
both the target data and the source data are regarding images, but their tasks are defined
differently; i.e. the target is tag recommendation while the source is image classification
or object detection.

Consider the classification task in the source domain containing the set of |X I | images.
For a given image XI

i , the source model predicts probabilities of classes and assigns the
class having the highest probability to the image,

g(XI
i ; θ, ζ) : Rd×d×3 → R|C1| (7.2)

where |C1| is the number of classes. In this network, the extractor parameterized by θ
is in charge of generating the visual representation, which is the input of the classifier
characterized by ζ to estimate probabilities of labels.

The object detection task aims to localize and classify objects existing in an image. Let
XO denote the set of images in the detection dataset. For a given image XO

i , the source
detection model predicts the set of detected objects with their coordinates and labels.

g(XO
i ;ϑ) : Rd×d×3 → {C2 × R4} (7.3)

where C2 is the set of object categories existing in the source dataset.
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The auxiliary models share some or all parameters with the target model such that
similar parameters learned in the source models are carried to the target model to raise its
performance. The transferred parameters are mostly fixed to the extractors including the
object-based or the visual branches. So, our goal is to learn an accurate predictor f(·;ω)
from Strain or Ptrain such that the distances between observed and unobserved tags are
maximized.

7.4 The Proposed Architecture

Our personalized image-aware tag recommendation aims at taking benefit of deep learning
methods to extract representations of images and improve the recommendation capability
of factorization models. In the previous architectures described in Chapter 5 and 6, the
visual information of images is mainly used with the user’s index to compute scores of tags.
The proposed model in this chapter exploits the image-inside context concatenated with
the visual features to improve the performance of the tag recommender. Our proposed
architecture is illustrated in Figure 7.2.

According to that figure, there are two deep network branches adopted to elicit the
image’s contents/contexts and a factorization layer acts as an estimator, which computes
scores of tags found in the dataset. In addition, other two deep networks having the similar
architectures with the extractors are pre-trained in larger datasets to solve different tasks
such that their knowledge will support the performance improvement of the target model,
the tag recommendation. Indeed, one of them is trained on the ImageNet dataset for the
image classification task, and the other is trained on the COCO dataset for the task of
object detection. Their parameters are transferred partly or fully to the target and fixed
during the training process. The tag recommendation is trained on the target domain to
determine parameters of the factorization layer.

7.4.1 Visual Feature Extraction

In this approach, we again adopt a CNN to derive a visual representation of an image as
Chapter 5 and 6. In the previous architectures, a CNN, which has three convolutional
layers interconnected by two max pooling layers in a sequential order, is utilized as the
extractor. Compared to vast amounts of CNN architectures for image-related tasks, the
architecture is tiny and may miss some contents because of low-resolution inputs.

To achieve richer visual features, we take into account a deeper architecture, which has
numerous convolutional layers stacked sequentially, replacing for the shallower extractors
in the previous models. One of the state-of-the CNN approaches for image classification is
the VGG network [131]. Its architecture contains multiple convolutional layers located in
five sequential blocks and several max pooling layers are alternated between these blocks.
The predictor block involves several fully-connected layers to predict the probabilities
of different labels. The arrangement of the network’s layers is illustrated in Figure 7.3.
VGG-based models are not only used to predict image’s labels or localize objects in images
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Figure 7.2: The proposed architecture for personalized content-aware tag recommendation.
We train one network for the task of image classification and one network for the task
of object detection on two different datasets. These networks are finally used to extract
image features or detect objects. These features and predictions are used as visual features
in order to train a factorization model.

Figure 7.3: The architecture of VGG-16 that having 16 weighted layers

directly but also reused partly as a visual extracting block in a new deep model [81, 82,
99, 102, 114]. Hence, it is a good candidate for the visual branch in the proposed model,
which allows a higher resolution image entering the network.

Due to the abundant trainable parameters, the deep network needs to be trained on a
large dataset, but we conducted the experiments on a smaller dataset having around less
than 80 thousands instances. Moreover, most running time to train the proposed models
from scratch is principally spent on updating the extractor’s weights while the predictor
is our main focus in the approach. As a common practice [37, 49, 81], the pre-trained
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weights of the base network on a large image dataset are transferred to the target model
to boost up the performance of its extractor.

Among several variants of VGG networks, we picked the 16-layer version, which in-
cludes 16 trainable layers described as the D version in [131], as the base network. Firstly,
we train the full network on 1000-labels ImageNet dataset for the image classification.
Later, all fully connected layers and the softmax output are removed and replaced by a
global average pooling to produce a dense output with the length 512. Finally, the weights
of the subnetwork are fixed and used as the feature extractor in the tag recommender sys-
tem. The extracting features process is formulated as:

zi := f Ivgg16(Ri; θ) : R224×224×3 → Rm

7.4.2 Object Detection

Deep learning not only achieves state-of-the-art performance for image classification but
also is applied successfully for the task of object detection. In principle, the object detec-
tion ascertains the location identified by a rectangle and predicts the class of each object
appearing in an image. One of basic models for the deep learning-based object detection
is Faster R-CNN [113] promoted from the R-CNN [37] and Fast R-CNN [36]. In the first
variant of the R-CNN group, the region proposals based on the selective search algorithm
determine possible regions covering objects and a CNN-based network is applied to extract
visual features for each region. The representation is fed to a SVM classifier to predict
labels of the region and to a linear regressor to optimize the bounding box of the object.
Instead of extracting multiple visual representations of images based on region proposals,
an upgraded R-CNN, named as Fast R-CNN, is extracting the visual features over the im-
age before finding proposed regions and replacing SVM with a softmax layer. The Faster
R-CNN [113] replaces the slow selective search with a Region Proposal Network (RPN) to
generate a fixed set of regions, which will go to the RoI pooling layer of the Fast R-CNN
to predict labels and bounding boxes.

Another approach, called the YOLO model [110, 111, 112], looks upon the detection as
a regression problem, which passes a given image once through the convolutional network
to predict probabilities of classes and coordinates of bounding boxes. In the first variant
of the model, each image is divided into a m × m grid, and for each cell, the network
predicts N bounding boxes with their confident scores, which reflect how likely any object
will appear in the boxes. For each box, the model also predicts probabilities of classes
assigned for the recognized object.

The second generation of YOLO, YOLOv2, is based on the DarkNet-19 architecture
that is described in Table 7.1. The network comprises multiple convolutional layers mostly
having 3 × 3 filters, and the number of feature maps is doubled after each pooling step.
The authors integrated a variety of techniques into the network, such as adding batch
normalization layers, fine-tuning the classification network at the higher resolution in
several epochs, etc (see [110] for details). The model outperforms several state-of-the-art
deep learning models on the standard detection tasks like PASCAL VOC and MS COCO
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Table 7.1: YOLOv2 is a fully convolutional network and is based on the Darknet-19
architecture sketched below.

Type Filters Size/Stride Output

Convolutional 32 3× 3 224× 224
Maxpool 2× 2/2 112× 112

Convolutional 64 3× 3 112× 112
Maxpool 2× 2/2 56× 56

Convolutional 128 3× 3 56× 56
Convolutional 64 1× 1 56× 56
Convolutional 128 3× 3 56× 56

Maxpool 2× 2/2 28× 28
Convolutional 256 3× 3 28× 28
Convolutional 128 1× 1 28× 28
Convolutional 256 3× 3 28× 28

Maxpool 2× 2/2 14× 14
Convolutional 512 3× 3 14× 14
Convolutional 256 1× 1 14× 14
Convolutional 512 3× 3 14× 14
Convolutional 256 1× 1 14× 14
Convolutional 512 3× 3 14× 14

Maxpool 2× 2/2 7× 7
Convolutional 1024 3× 3 7× 7
Convolutional 512 1× 1 7× 7
Convolutional 1024 3× 3 7× 7
Convolutional 512 1× 1 7× 7
Convolutional 1024 3× 3 7× 7

Convolutional 1000 1× 1 7× 7
Avgpool Global 1000
Softmax

with shorter running time.

To obtain the object-based context information for an image, we adopt the YOLOv2
as the object-based generation. In the general case, the output of a given image is a set
of detected objects Oi, and each object is presented by a specific label c with its confident
probability p, and 4 values of its bounding box, as Oi = {(c, p, x, y, w, h)|c ∈ C2}, where C2

is the set of object categories, and |C2| = n is the number of existed objects. The context
of an image is represented by probabilities of objects appearing in the image encoded in
a n-dimensional vector. Because one categorical object possibly appears multiple times
with different probabilities, we select the highest value for the object category. Moreover,
the information of bounding boxes is not used in the models, and it is passed over during
the extraction process.
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Figure 7.4: While the detector cannot recognize any object in the left image, it detects
several objects, such as person or boat, in the right image.

The tag recommendation dataset does not have labeled data for the detection task,
so it is necessary to borrow the knowledge from another detection dataset. In reality, we
train YOLOv2 on the COCO dataset, which contains 80 categories of objects, to learn
the detecting skills. Then, for each image in the target dataset, the network extracts
probabilities of 80 categorical objects detected in the image. The values are encoded in a
sparse vector representing for the image-inside context depending on the number of objects
detected. The process is denoted as,

oi := fOyolo(Ri;ϑ) : R448×448×3 → Rn (7.4)

However, unlike the visual extractor where any image is depicted by a visual vector,
several images which include the vague difference between objects and the background or
unobserved objects, possibly have no object-based context information. One example is
shown in Figure 7.4. The extractor is not able to obtain object-based features of the left
image which has an unobserved object, the ladder, in the source dataset. On the other
hands, for common objects, it comfortably recognizes and localizes them as in the right
image.

7.4.3 Factorization Models

As mentioned in the above sections, two state-of-the-art factorization models applied
widely for tag recommendation are FMs and PITFs that model the interaction between
different entities of tag assignments. While the PITF model distinguishes latent features
of tags for different pairs of interaction, the FM model shares these features between all
pairs of interaction. In more detail, with the input defined as Equation 5.3, the scoring
function in FM model is denoted as in the similar way to Equation 5.4.

Because exactly one xu, xi and xt are one and all others are zero, and we are applying
a pair-wise loss function, the prediction function of the FM can be simplified to

(ŷu,i)t = wt +

q∑
j=1

(V U
u,j + V I

i,j)V
T
t,j (7.5)
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where p is the number of latent features, V U ∈ R|U |×p, V I ∈ R|I|×p and V T ∈ R|T |×p
are the latent feature matrices of users, images and tags respectively. Similarly, the PITF
prediction model is simplified as

(ŷu,i)t =

p∑
j=1

V U
u,j · V TU

t,j + V I
i,j · V T I

t,j (7.6)

where model parameters are denoted as V U ∈ R|U |×p, V I ∈ R|I|×p, V TU ∈ R|T |×p and
V T I ∈ R|T |×p.

With the configuration, the models are plainly based on the relation among different
elements, and use the indices of all elements as their input. We cannot directly apply
these models to content-aware recommendation where the input contains information of
images representing in feature vectors, especially for PITF model.

7.4.4 Factorization Models for Image-Aware Tag Recommendation

The aforementioned factorization models focus on using users’ preferences, instead of us-
ing contents of images. To feed image-based features to the factorization models, the part
representing the image in Equation 5.3 is replaced by its image-based features. Depending
on the types of image’s representation, the input is expanded by the combination of multi-
ple features or is shrunk to the given feature category. For example, the tag recommender
consumes the visual features as the image factor of its input,

xu,i,t =

(
. . . ,

u︷︸︸︷
1 , . . .︸ ︷︷ ︸
|U |

, (zi)1, . . . , (zi)m︸ ︷︷ ︸
m

, . . . ,

t︷︸︸︷
1 , . . .︸ ︷︷ ︸
|T |

)

If the concatenation of visual and object-based features is used to characterize the
given image, the input is extended as:

xu,i,t =

(
. . . ,

u︷︸︸︷
1 , . . .︸ ︷︷ ︸
|U |

, (zi)1, . . . , (zi)m︸ ︷︷ ︸
m

, (oi)1, . . . , (oi)n︸ ︷︷ ︸
n

, . . . ,

t︷︸︸︷
1 , . . .︸ ︷︷ ︸
|T |

)

With the advantage of the feature engineering, the FM-based model allows changing,
removing or adding features to the input. However, the PITF model was originally created
to work with one-hot features, so it is modified to work with the content-aware tag recom-
mendation task. Based on the description of the input, we propose different factorization
models based on FM and PITF to generate the scoring functions.

If both types of features are used to predict the relevant tags, the scoring functions
are formulated as:

• The FM-based formula is

(ŷu,i)t = wt +

p∑
j=1

(
V U
u,j +

m∑
a=1

(zi)a · V I
a,j +

n∑
a=1

(oi)a · V O
a,j

)
V T
t,j (7.7)
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where w ∈ R|T | is the weights of tags; V U ∈ R|U |×p, V I ∈ Rm×p, V O ∈ Rn×p,
V T ∈ R|T |×p are the factorized parameters associated with the user, visual, object,
and tag factor respectively.

• The PITF-based function is

(ŷu,i)t = wt +

p∑
j=1

V U
u,j · V TU

t,j +

( m∑
a=1

(zi)a · V I
a,j

)
V T I

t,j +

( n∑
a=1

(oi)a · V O
a,j

)
V TO

t,j (7.8)

where the factorized weights of the tag factor are separated for different interactions
V TU

, V T I
, V TO

, and all matrices have the same dimension V T ∗ ∈ R|T |×p.

These prediction functions are easily changed to accommodate different types of im-
age’s properties by removing the addends and parameters associated with the unused
features. For example, if the PITF-based predictor only receives the visual features as the
image representation, the Equation 7.8 is adjusted as

(ŷu,i)t = wt +

p∑
j=1

V U
u,j · V TU

t,j +

( m∑
a=1

(zi)a · V I
a,j

)
V T I

t,j (7.9)

Depending on the types of image-based features and the scoring function, the models
are named differently. In detail, we can denote them as

• Based on the object-based features: FM-OD for the FM-based model and PITF-
OD for the PITF-based

• Based on the visual features: FM-IC and PITF-IC

• Based on the combined features: FM-IC-OD and PITF-IC-OD

7.4.5 Personalized Multilayer Perceptron for Image-Aware Tag Recomme-
dation

For the comparison purpose, we implement a neural network CNN-PerMLP as the
predictor replacing the factorization. However, the object-based data of images are quite
sparse depending on the number of objects detected in an image. In Chapter 5, the neural
network-based predictors do not perform as expected for the sparse-dense concatenated
features. For this reason, we only compare the proposed approaches with the MLP-based
model in regard to using visual features.

We reuse the layer described in Equation 6.10 to personalize each visual elements by
adding the user bias to the weighted features, as

(hu,i)j = bj + (zi)j · wj + Vu,j (7.10)

where b ∈ Rm is the bias term; w ∈ Rm is the weights of the visual factor; V ∈ R|U |×m is
the user bias term. The output of the layer is a vector having the same dimension as the
visual vector, h ∈ Rm.
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The two-layer MLP is used to compute scores of tags based on the generated features,

ŷu,i = f(hu,i;ω) : Rm → R|T | (7.11)

We also use the ReLU activation function to transform the linear sum of weighted inputs,
and do not apply the softmax operator in the output layer.

7.4.6 Optimization

For the factorization-based models, we also adopt BPR criterion to find the parameters
such that the difference between the relevant and irrelevant tags are maximal. The stochas-
tic gradient descent applied to BPR is in respect of quadruples (u, i, t+, t−); i.e, for each
(u, i, t+) ∈ Strain and an unobserved tag of the post pu,i drawn at random t−, the loss is
computed and is used to update the model’s parameters.

BPR(u, i, t+, t−) := lnσ

(
(ŷu,i)t+ − (ŷu,i)t−

)
(7.12)

where σ is the sigmoid function. For later use, the difference between two tags is denoted
as

(ŷu,i)t+,t− = (ŷu,i)t+ − (ŷu,i)t−

The learning algorithm is described in Algorithm 3. For each random post, the given digital
image is passed to the extractors to obtain the visual and object-based representations.
Besides, a relevant tag and an irrelevant tag are sampled, and the scores of these tags are
computed. Later, the gradients of the cost function in Equation 7.12 with respect to the
model’s parameters are obtained as follows:

∂ BPR

∂ω
=

e−(ŷu,i)t+,t−

1 + e−(ŷu,i)t+,t−︸ ︷︷ ︸
ψu,i,t+,t−

×
(
∂(ŷu,i)t+

∂ω
− ∂(ŷu,i)t−

∂ω

)
(7.13)

In order to learn the model, the derivatives
∂(ŷu,i)t+

∂ω and
∂(ŷu,i)t−

∂ω have to be computed.
Several parameters rely on one score value, but numerous variables contribute to both
scores. Depending on the connection between the parameters and score values, the gradi-
ents of the cost with respect of the parameters contain one or both the above derivatives.
For examples, from Equation (7.7), the gradients of the loss with respect to parameters of
the positive tag are found by

∂ BPR

∂V T
t+,j

= ψu,i,t+,t−

(
V U
u,j +

m∑
a=1

(zi)a · V I
a,j +

n∑
a=1

(oi)a · V O
a,j

)
On the other hand, the gradients with respect to user’s parameters are denoted as

∂ BPR

∂V U
u,j

= ψu,i,t+,t−

(
V T
t+,j − V

T
t−,j

)
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Algorithm 3 Learning BPR based on the SGD with respect to quadruples

1: Input: PStrain , Strain, θ, ϑ, α
2: Output: ω

3: Initialize ω ← N (0, 0.01)
4: repeat
5: Pick pu,i ∈ PStrain randomly
6: Ri ← resize(Ri)
7: zi ← fvgg(Ri; θ)
8: oi ← fyolo(Ri;ϑ)
9: Get t+u,i ∈ T whereas (u, i, t) ∈ Strain

10: Sample t−u,i ∈ T whereas (u, i, t) /∈ Strain
11: (ŷu,i)t+ ← f(u, i;ω)t+
12: (ŷu,i)t− ← f(u, i;ω)t−

13: BPR(u, i, t+, t−)← lnσ

(
(ŷu,i)t+ − (ŷu,i)t−

)
14: ∆ω ← ∂ BPR(u,i,t+,t−)

∂ω
15: Update ω ← ω + α∆ω

16: until convergence
17: return ω

The gradients with respect to the image parameters are defined by

∂ BPR

∂V I
a,j

= ψu,i,t+,t− · (zi)a ·
(
V T
t+,j − V

T
t−,j

)
For the MLP-based predictor, we follow the protocol described in Chapter 6. Indeed,

we applied the SGD with respect to posts, in which a set of negative tags are sampled
instead of selecting one irrelevant tag. The cost function is used as Equation 5.17 to
measure the difference between all relevant tags of the post and a subset of irrelevant
tags. The backpropagation algorithm is applied to distribute the error back through the
predictor’s layers. Because the extractors’ parameters are fixed, the error is not transferred
backward to the convolutional layers.

7.5 Evaluation

7.5.1 Dataset

We conducted experiments on the NUS-WIDE-1 and NUS-WIDE-2 datasets implemented
in Chapter 4. The color images used to extract visual features were rescaled into 224×224
dimension while to obtain object-based features, they were resized into 448 × 448 pixels.
The distribution of posts per tag in NUS-WIDE-1 is more balanced than in NUS-WIDE-2
which has more than 50 percent of tags appearing less than 500 times.
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7.5.2 Experimental Setup

The visual features extracted are combined in a 512-dimensional vector while the object
recognition probabilities of a given image are appended in an 80-dimensional vector. The
factor dimension for both factorization architecture is fixed in 128. For the MLP-based
model, the number of hidden units are also set to 128. The evaluation metric used in this
chapter is the F1-measure in top K tag lists as described in Equation 5.24.

The best learning rate α are searched within the range {10−2, 10−3, 10−4} and the best
L2-regularization λ are found from the range {10−5, 10−6, 10−7}. The proposed models
FM-IC-OD and PITF-IC-OD are compared to following personalized tag recommen-
dation approaches that are based only on the users’ preference: PITF and FM. Moreover,
these models are also compared to the factorization models using visual features or object
detection features: FM-OD, PITF-OD, FM-IC and PITF-IC. We evaluate the pro-
posed approaches with the MLP-based models proposed in the previous chapter: CNN-
PerMLP. Through Chapter 5 and Chapter 6, the non-personalized CNN-based models
achieves the worse performance than the personalized models, so we will not evaluate the
models in this chapter.

7.5.3 Results

As shown in Figure 7.5 and Figure 7.6, we make the observation that the personalized
models FM and PITF, which do not consider content information, have the worst per-
formance. They solely depend on the users’ preferences and their power in catching the
interaction between new images with other elements is not effective. In the NUS-WIDE
dataset, most images in the test set do not appear in the training set and their latent
parameters are not learned.

The claim that image-features improve the prediction quality is again shown in these
figures. These features boost the performance from one percent to more than three per-
cent. Despite improving the model performance substantially, the object-detected features,
which sparsely represent an image by a group of specific objects, are less effective than
visual representation. Among personalized content-aware models, the models FM-OD
and PITF-OD achieve the lowest accuracies although they perform better than FM or
PITF. One reason may be that the extractor is unable to depict a few images; i.e, they
are represented by zero vectors. In addition, images comprising the similar objects can be
represented by similar feature vectors although they have different contexts. For example,
zebras appear in both the zoo’s and wildlife’s pictures with different numbers, as in Figure
7.7. With the object-based approach, the number of objects is not counted on to generate
the image’s features such that the extractor cannot abstract the zoo and wildlife from the
number of animals. Moreover, because the most popular tags in these datasets are related
to color such as blue or green, the object detection cannot capture this information and
the models using them will miss these tags.

Otherwise, the visual features capture more unique information of a given image which
is able to be represented by a dense vector. The color information is also encoded by the
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Figure 7.5: F1-measure and Precision-Recall for NUS-WIDE-1

extractor in feature vectors, so compared to object-based features, visual features are quite
richer. Not surprisingly, the performance of the models, FM-IC and PITF-IC, using vi-
sual features is better than the models using only the information of object detection. The
combination of image-based features prove the powerful abilities in boosting performance.
They can capture general object information and unique visual features of a given image.
So these features are richer than the others, and the accuracy of the FM-IC-OD and
PITF-IC-OD model provide the best results.

Moreover, the PITF-based models generally work better than the FM-based in most
cases. They separate the latent features of tags depending on the elements that they
interact with. So they can capture the different representations of tags and combine the
scores computing for each interaction into the final score. The difference between the
PITF-based and FM-based approaches is clearly in the models using visual or object
features; i.e, the FM-based results are always under the PITF-based results.
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Figure 7.6: F1-measure and Precision-Recall for NUS-WIDE-2

Figure 7.7: For the same object ”zebra”, while the left image is tagged by ”zoo”, the
”wildlife” tag is assigned for the right image.

When the content-aware models are enriched by the context information, they achieve
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superior results compared to their family models; i.e, the FM-IC-OD using both visual and
object-based features are better than FM-IC using only visual description. Similar to the
visual case, the FM-based model still loses the PITF-models on F1-measure. Interestingly,
the MLP-based model based on the personalized visual features, CNN-PerMLP outper-
forms the FM-IC and is even comparable to FM-IC-OD in the top-1 evaluation. However,
it drops out if we measure the accuracies in the top-5 set; i.e, at top-5, its performance is
equal to the FM-IC.

Examples in Table 7.2 show that the proposed models can capture the visual-based
tags and object-tags compared to the models that are purely based on one type of image
features. For example, FM-IC-OD recommends to a given user the object-based tag as
“bird” and the visual-based tag as “black” in the third images.

Table 7.2: Examples top recommended tags of factorization models using different types
of features

Image
Ground
truth

FM-OD FM-IC
FM-IC-
OD

wildlife
cute
squirrel

animal
wildlife
cat
eating
squirrel

cat
pet
dog
wildlife
lion

wildlife
squirrel
animal
cat
eating

mountain
sheep

sheep
germany
landscape
field
deutschland

germany
deutschland
landscape
green
england

sheep
germany
landscape
field
france

clouds
gothic
stone
bird
dark
castle
wall

bird
sun
sky
water
tree
blue
silhouette
beautiful
prey
sunset

wales
cloud
water
black
fresh
silhouette
sun
fab
mountain
waterfall

bird
water
lens
black
white
sun
aqua
sky
fab
wales

7.6 Discussion

In this chapter, considerable attention has been focused on the question of whether the
image-inside context supports improving the image’s feature quality used in tag recom-
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mendation. We argue that the context representations, known as objected-based features,
strengthen the performance of the tag recommendation when they are used along with the
user’s tagging information or combined with the visual features. Moreover, we showed how
to use pre-trained knowledge to boost up the performance of the tag recommendation. The
extension of the factorization models for tag recommendations is able to recommend tags
related to objects in images, tags representing visual attributes and tags which are typi-
cally chosen by a user. The experiments show that different types of image-based features
increase the accuracy of tag recommendation on different levels. Additionally, an open
issue is that the image-outside contexts, such as text, would also improve the prediction
results, and compared to object-based features, how the text-aware tag recommendation
performs. We will introduce this approach in the next chapter.
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Chapter 8

Personalized Tag Recommendation
Using Text Transfer Learning
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In the previous chapter, we have shown that good results can be achieved by casting
the implicit image context, the object-based representations of images, to predict scores
of tags. Moreover, to save running time for the predictor, transfer learning techniques are
utilized to supply the valuable knowledge of a senior deep network for the target model.
Comparing to a shallow network trained in the limited dataset, the deep extractor with
the pre-trained knowledge is capable to provide richer features such that the performance
of the latent factor models are impressively boosted up.
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In practice, the external information, such as the text source, also provides the fruitful
support to improve the performance of the predictor. Although there are noisy words
included in the image’s descriptions, such as camera meta-data or Flickr groups, and
images do not always contain textual information, tokens extracted from images reflect
the “dictionary” of users and the semantic connection to tags. For this reason, textual
features retrieved from available tokens are considered to append with visual features such
that image features can represent both the visual content of the image and its descriptive
words. In this chapter, we propose incorporating the word embedding technique to retrieve
the textual context into the latent factor models and the neural networks. Moreover,
instead of learning embeddings from scratch in a small target dataset, we continue using
the transfer learning techniques to learn embeddings of tokens in a large corpus and reuse
the generated dictionary in the tag recommendation models.

8.1 Related Work

Different contexts have been examined in many studies of tag recommendation. In [35],
both the tagging history and the text-based global information, a variant of the tf-idf
features, are compromised to construct tag recommendation. The hand-crafted visual
features are integrated with time and geolocation as three searching factor in [106]. For
a new image, its neighboring images are selected in terms of visual features, geographical
coordinates, and the image taken time. These candidate images contribute their tags with
voting scores to the center decision so that the most frequent tags are chosen to assign to
the image.

Liu et al. [80] continue mining the geographical information with the textual and visual
resources. The authors construct the user-specific space for the visual and textual features,
and the geo-specific space towards tags. For a new image, the candidate tags based on the
user and the geographic information are found in the subspaces. These tags are used as
keywords to search similar images from the photo set, and the visually similar photos are
kept to retrieve the votes for relevant tags. The neighboring voting approach based on the
visual context, textual meta-data, and user’s preference is also used by Shah et al. [128]. In
their method, they group users based on the tagging behavior, generate lists of candidate
tags with their scores based on co-occurrence information and votes of neighbors, and
apply the random walk to find the final list.

In [109], the context information comes from the geo-coordinates and image taken time.
A deep network, ConTagNet with two components is employed to concatenate visual and
contextual features, and predict multi-labels for an image. While the CNN extracts visual
features from image pixels, the NN provides latent features of the context. We can consider
the tag-based information as one contextual factor to improve the predictor. In [147], the
visual representation and label embeddings are joined in one network. The semantic
representation of a label is obtained by a Long Short-Term Memory Network (LSTM)
[53, 103], whereas a CNN acts as the visual extractor. These features are combined to
make a visual-semantic representation by a projection layer, and then the probabilities of
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labels are computed based on it.

The context we used in the proposed approaches is the textual information, which
is represented by a dense vector. These features are concatenated with visual features
generated by a CNN-based extractor to be passed to a latent factor model. The time
and geographical information are temporarily ignored in the current work, but they are
the next step in our future research. In other approaches, we come up with predicting
scores of tags individually with respect to the image content and the textual context and
aggregating these scores to find tags with the best scores.

8.2 Problem Extension

In Chapter 7, we have formulated the recommending tag problem in terms of two repre-
sentations of an image, visual and object-detected features. In this chapter, we are going
to propose an extended approach which attains textual features combined with visual ones
in a content-aware scenario. Indeed, when compared to previous methods, the difference
here is the additional steps which obtain textual features of an image. These features
are exploited from the image’s descriptions and titles that can be viewed as strings of
characters. Similar to the previous chapter, the proposed models also rely on the ternary
relationships S among users U , images I, and tags T ; additionally, the set of posts which
are pairs of users and images is denoted as P.

The pixel values of an image i are comprised in a tensor Rvisi ∈ Rd×d×3 that is used
to extract a visual vector zvisi ∈ Rm. In addition to the RGB information of the image’s
pixels, an image may be described by a sequence of characters, which are elicited from its
description and title. The cleaning step is applied to remove noise, such as misspelling
words or the hyperlinks, from the string of characters such that an image will be delineated
by a set of tokens/words with their frequencies

Rtxti = {(wtxti , nwtxt
i

)|wtxti ∈ D ∧ nwtxt
i
∈ N+}

where D is the vocabulary set of the dataset. We can encode the textual data of the image
as a sparse |D|-dimensional vector which has only |Rtxti | nonzero elements. The highly
sparse representation will be transformed to a smaller dense vector ztxti ∈ Rn capturing
the semantic correlation among words.

We also seek to learn a machine learning model

ŷu,i = f(u,Rvisi , Rtxti ; Θ) : U × Rd×d×3 × R|D| → R|T | (8.1)

where Θ is the parameter set of the model. In a similar way to the previous chapter,
knowledge in the source tasks is transferred to the target so that the performance of the
tag recommendation model is improved in both the accuracy and the training time aspects.
To be more precise, the visual extractor

zici = f ic(Rvisi ; θ) : Rd×d×3 → Rm (8.2)
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gains the extracting skill θ from a classification model

fSC (θ, γ) : Rd×d×3 → RC (8.3)

where C is the number of classes, to produce the visual representation zici .
Likewise, the textual extractor

zwei = fwe(Rtxti ;ϑ) : R|D| → Rn (8.4)

maps the expected words into the pre-learned dictionary ϑ ∈ R|D|×n, which is achieved
from a source word-embedding model, to generate a dense semantic representation.

8.3 The Proposed Approach

The proposed tag recommendation aims taking benefit of deep learning methods to extract
visual information and word embedding techniques to retrieve textual information so that
the recommendation based on the factorization models achieves better performance. The
architecture is illustrated in Figure 8.1. The predictors are not limited to the factorized

Figure 8.1: The architecture of a content-aware tag recommendation based on the visual
and textual features of images.

models, but are possibly replaced by a personalized multi-layer perception.
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The proposed hypothesis can be also viewed as a composition of two functions: the
feature extractor fe and the score estimator fp. In particular, the extractor is formed of
two sub-functions, the visual extractor, and the textual mapping function. We can denote
the process as

ŷu,i = f(u,Rvisi , Rtxti ; Θ) = fp
(
u, fe(Rvisi , Rtxti ; θ, ϑ); ω

)
= fp

(
u, f ic(Rvisi ; θ), fwe(Rtxti ;ϑ); ω

) (8.5)

where f ic derives the visual features zici of the image i and fwe produces the average se-
mantic values of textual features zwei for this image. In addition, θ, ϑ and ω are parameters
of these extractors and the predictors, which can be learned during the training phase or
retrieved from the “teacher” models. Additionally, θ and ϑ are knowledge received from
the other models, so they will not be updated in the training process.

8.3.1 Visual Feature Extraction

As the previous models, the visual extractor also inherits the extracting knowledge from a
source deep CNN model, which is built to solve the classification task. In general, a deep
CNN model for classification is composed of several blocks of stacked convolutional layers
and a few fully-connected layers close the deep network with the probabilities of labels. An
example of this stacking type is the VGG [131], one of the state-of-the-art architectures
in image classification, containing five sequential convolutional blocks interleaved by max
pooling layers. For the classification task, a multilayer perceptron network having two
hidden layers and one softmax output layer is employed to predict the classes’ probabilities.
Two main variants of the VGG depend on the number of weighted layers including the
extractor and the predictor blocks: VGG-16 with 16 weighted layers and VGG-19 having
19 parameterized layers. The architectures of these networks are illustrated in Figure 8.2
and Figure 8.3.

Figure 8.2: The architecture of VGG-16 that has 16 weighted layers

Besides the subsequent connections between layers or blocks, He et al. [50] proposed
shortcut connections in a deep residual learning model known as ResNet. Assume the
expected output of a stacked block as H(x) and the stacked mapping of the block can be
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Figure 8.3: The architecture of VGG-19 that has 19 weighted layers

reformed as a residual function of the input and the output of this block F(x) := H(x)−x.
The desired output can be approximated based on the residual and the input as F(x) + x.
Similar to VGG models, a ResNet can be relatively seen as a combination of five convolu-
tional blocks and one fully-connected output layer. However, it contains several residual
sub-blocks inside each component as illustrated in the Figure 8.4. Depending on the num-

Figure 8.4: The architecture of ResNet-50 that has 50 weighted layers

ber of trainable layers, the depth of the network is different. In the proposed approach, we
apply the convolution block of a ResNet-50, which consists of 50 trainable layers including
the convolutional and full-connected layers, as a feature extractor. Because of the large
number of parameters, these models are required to be trained on sizeable labeled data
which are the limitation of the dataset used to conduct the tag recommendation experi-
ments. In addition, the running time of these deep models is painful so that we mostly
concentrate on learning the extractor.

As in the previous chapter, the deep transfer learning technique is employed to improve
the performance of the extractor. Firstly, a deep network, such as VGG-16 or ResNet-50,
is trained on the ImageNet dataset for the image classification. Then, the classifier, a
stack of fully-connected layers, is replaced by a global average pooling to extract visual
features for the new task, the tag recommendation task. The constructed extractor is
fixed with the transferred knowledge when it is adapted for dissolving the personalized
tag recommendation. We denote the extraction process as

zici := f icvgg16/vgg19/resnet50(Rvisi ) : R224×224×3 → Rm (8.6)

where m is the feature size; m = 512 if the extractor is a VGG-based architecture while
m = 2048 if the ResNet-50 extractor is used.
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8.3.2 Textual Feature Extraction

A valuable resource which the tag recommender probably relies on to estimate tags is
the textual source of an image including its title and description. In the raw form, an
image is formed in a sequence of characters which people can easily read and understand.
However, for purpose of using its information to predict tags, the discrete, categorical data
are encoded into a numerical format.

One of the most simple, fundamental techniques to obtain document representation
is term frequency-inverse document frequency (tf-idf) [120, 124, 132, 153]. The repre-
sentation of a document contains weights of terms or words which measure the relative
importance of terms in the document. Scores of words in a document are computed by
multiplying two factors including frequencies of terms (tf) and the inverse frequency of the
given document (idf). In fact, the frequency of a word w in a document d, which is the
number of times the word appears in that document, measures how important the word is
to the document. The tf score is commonly computed by normalizing the counting value
in the document as

tf(w, d) =
nw,d
|d|

where nw,d is the number of times w appears in d; |d| is the length of the document or
the number of words appearing in the document. To reduce the influence of meaningless,
common words, such as stop-words, the idf scores are multiplied to the tf scores to diminish
the weight of repeated words and gain the weight of rare words in the corpus. Unlike the
tf scores calculated on a specific document, the idf score of a word w is computed on the
entire document set and it is defined as

idf(w,D) = log
|D|
nw

where |D| is the total number of documents in the corpus, and nw is the number of
documents containing the word w. As the result, the tf-idf score of the word w occurring
in the document d is calculated as

tf-idf(w, d,D) = tf(w, d)× idf(w,D)

However, when applying the tf-idf method to generate the image’s textual representation,
the feature vector is high-dimensional and very sparse, and its values do not reflect the
semantic meaning.

Apparently, word representation acts as a basic block to build text representation and
the context of words, such as co-occurrence of words in documents, affect the similarity
of word meanings [93]. Instead of representing each word as the sparse and count-based
vector, word embeddings [8, 25, 143] represent words as dense, low-dimensional and real-
valued vectors, known as word features. Embedding vectors can be generated from the
co-occurrence data through several reduction techniques, such as singular value decompo-
sition (SVD) [29, 30, 125] and models generating these representations are known as count
models. Other methods, which learn embeddings for a target word through the training
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process in a specific corpus, are known as predict models. Baroni et al. [7] compared two
types of embedding methods and proved that the predict models outperform the count
ones. Thus, the predict models are candidate methods to obtain useful word representa-
tion for the proposed approaches.

Word2Vec

One of the most popular approaches, which is inspired by neural networks, is quoted
as word2vec. Actually, it is a group of two one-hidden neural networks: Skip-Gram and
CBOW (continuous bag of words) [89, 90].

In general, their input and output data have the same dimension and are formed
in one-hot vectors encoding words’ indices. Word embeddings are learned during their
training process to predict neighbors of a given word, including its past and future words.
Different from a neural network, the non-linear/linear layer of the networks is replaced by
a projection layer to obtain latent features of the input words.

While the Skip-gram is based on a given word to predict its context, the CBOW
estimates a missing word based on its given neighboring words. The simple CBOW and
Skip-gram networks taking care of one word behind and one word ahead of a given word
as the context are illustrated in Figure 8.5.

Figure 8.5: The simple architectures of the CBOW and Skip-gram network.

Let us consider a dictionary holding V vocabularies. As seen in the figure, both models
seek to learn two parameter matrices: W ∈ R|V|×d, in which each row is an embedding of
a word in the dictionary, and C ∈ Rd×|V| used to predict an expected word. The layers of
those networks are fully-connected and their hidden layer has d neurons.

In the CBOW model, the neighboring words of a target word detected by a context
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window having size L are fed to the network and the average values of their embeddings
are used to predict the probabilities of the target work. For instance, the context window
contains one word before and after a given word wt, denoted as wt+1 and wt−1. In addition,
the indices of wt, wt+1, wt−1 in V are i, j, k respectively. The hidden latent features of
the context are the average product of the context inputs and the embedding weights as

h =
1

2
WT (wt−1 + wt+1)

The score of each word is the product of the average embeddings and the context weights
as

u = CTh

The probability of the target word is estimated via softmax function which generates a
multinomial distribution.

ŷwt = p(wt|wt−1,wt+1) =
exp(ui)∑|V |
i′=1 exp(ui′)

In contrast, the skip-gram predicts L context words before and after a target word so its
process is like the reverse of the CBOW model. Now, the input of the network is the given
center word, and the output layer is expected to predict probabilities of its neighboring
words. The embedding hw of the target word wt is the i-th row of the embedding matrix
W and it is computed by multiplying the one-hot vector and the parameter matrix. The
context embeddings of the surroundings, named as the context vectors, are columns of C
at the associated positions. For examples, the context vectors of wt+1 and wt−1 are C:,j

and C:,k. The probability of a context word is computed by applying the softmax operator
to normalize the dot product of the target embedding and its context vector.

The goal of the training process is to maximize the probability of the actual target
word given its surrounding words or the probability of the context given its center word.
We refer the reader to relevant papers [39, 89, 90, 121].

Glove

While the architectures of the word2vec family depend on the neural networks, the heart
of Glove (Global Vectors for Word Representation) [104] is word co-occurrence data within
a text corpus. In the co-occurrence matrix X ∈ R|V |×|V |, each cell Xij indicates the fre-
quency of a word wi appearing in some context wj . Similar to the matrix factorization,
the high-dimensional input matrix is decomposed into a product of lower-dimensional ma-
trices. In fact, the factorization matrix can be understood as the embedding component
in which each row is the representation of a word. The embedding values are learned
to minimize the difference between the co-occurrence frequencies and the products of all
word pairs in the corpus.

Instead of measuring directly the error of the embedding product and the co-occurrence
value, the author proposed a soft constraint for each word pair of i-th and j-th words such
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that

W T
i Wj + bi + bj = logXij (8.7)

where bi and bj are bias terms associated with two words. Then, the cost function which is
minimized to find parameters evaluates all squared errors based on the weighted constraints

L =

|V |∑
i,j=1

f(Xij)(W
T
i Wj + bi + bj − logXij)

2 (8.8)

To prevent the dominance of common words during the learning process, the weighting
function is defined as

f(Xij) =


(

Xij

xmax

)α
if Xij < xmax

1 otherwise
(8.9)

where xmax and α are hyper-parameters.

FastText

Most word embedding models learn representations of complete words in the training
corpus and ignore the internal structure of these words. Literally, the corpus can contain
large or rare vocabularies appearing infrequently, which can be divided into sub-words
found more often in the corpus. Thus, we can possibly obtain their embeddings by aggre-
gating their sub-words’ features, which are learned by some embedding extractor. FastText
[14, 58], an extension of word2vec, represents a word by averaging the representations of
its n-gram sub-words. For example, given a word w and Gw is the set of n-gram words
appearing in w. For each n-gram g, the embedding vector zg represents the property of g
and each context c of the word w has a embeddings denoted as vc. The score of the word
w given the context c is the product of the aggregation of n-grams and the representation
of the context defined as

s(w, c) =
∑
g∈Gw

zTg vc (8.10)

Word Embedding Models as Textual Extractors

Consider a text modeling architecture Tglove/w2v/fastt, such as Glove, Word2Vec or Fast-
Text, in which each word is mapped to a dense n-dimensional vector. A j-th row, wj , of
the embedding matrix W ∈ R|DS |×n, which is obtained by learning the semantic correla-
tion of |DS | words, represents a j-th vocabulary appearing in the source dictionary DS .
While the source dataset is a large corpus with |DS | vocabularies, the target collection
contains less unique words than the source with |D| vocabularies where |D| � |DS | and

90



8.3 The Proposed Approach

the DS comprises nearly all of D’s vocabularies. For this reason, the source embeddings
are used to provide the textual representations for all target words.

The pre-learned embeddings are used for the target task, the tag recommendation,
in a static way; i.e, the embedding weights are fixed when we use them to project the
representation of target words. The target embedding matrix ϑ ∈ R|D|×n is earned by
mapping each target vocabulary with the source dictionary. If the k-th target word is found
in the source dictionary associated with the representation νj , the values are transferred
to the k-th row of ϑ. Otherwise, the representative values are zeros if the k-th word does
not appear in the source dictionary.

To obtain the textual features of a given image, the average values of embeddings
associated with tokens of the image is computed according to the frequencies and ϑ. In
the word co-occurrence perspective, each image is characterized by a high dimensional
sparse vector rwei ∈ R|D|. The textual features of the image are the projection of the
sparse vector into a low dimensional space according to the dictionary ϑ.

zwei := fweglove/w2v/fastt(r
we
i ;ϑ) : R|D| → Rn

where

fweglove/w2v/fastt(r
we
i ;ϑ) =

ϑT rwei∑|D|
j=1(rwei )j

and n = 300 is the length of textual feature vector. Before employed to the tag recommen-
dation, the word embedding models are trained in various domains to learn the teacher’s
knowledge. In particular, for the word2vec-based model, Google News dataset containing
around 100 billion words is used to generate embeddings for 3 million words. For the
Glove-based extractor, Common Crawl dataset consisting of 42 billion words is considered
as the source knowledge of 1.9 million embeddings. FastText is also pre-learned 2 million
embeddings on Common Crawl originally including 600 billion tokens [91].

8.3.3 Object-Detected Feature Extraction

For the comparison between different combinations of features, the representation, which
is illustrated for objects captured in images, is applied in a similar way to the previous
approach. As in Chapter 7, a member of YOLO family[110, 111, 112], YOLO9000, is
adapted as an object-based feature extractor. While detected objects are labeled by a few
common and general categories, classification datasets have a wider range of labels. By
combining detection and classification dataset, the authors want to expand categories of
detected objects such that the models are capable to assign objects to more particular
classes, such as watermelon instead of fruit.

The authors construct a tree of visual concepts based on the WordNet, named WordTree.
Instead of applying a softmax for all labels, the models perform multiple softmax opera-
tions over a group of words with the same hyponym, and the probability of a label is the
multiplication of conditional probabilities with regard to the tree route associated with
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the label. After combining data from various sources and training Darknet19 on ImageNet
and COCO, YOLO9000 can detect more than 9000 object categories.

We adopt the YOLO9000 pre-trained model to study object-based features of the tag
recommendation dataset. The final object-based representation of an image, which is used
as an image-based factor in the proposed model, is probabilities of objects detected in the
image. Furthermore, there are less categorical objects than 9000 classes revealed in the
source dataset so the length of object-feature vectors is small, around less than 200 units.
We denote the process as

zodi := fodyolo(R
obj
i ) : R448×448×3 → Rq (8.11)

where q � 9000 is the number object categories included in the tag recommendation data

8.3.4 Factorization Models

A factorization model based on FM or PITF model, which captures the interaction between
user’s/image’s and tag’s latent features, enables to be modified so that it will receive
multiple dense and sparse values as an input of the estimator. In general, an input of
the predictor is the concatenation of different features describing three dataset entities
including users, images, and tags.

xu,i,t =

(
. . . ,

u︷︸︸︷
1 , . . .︸ ︷︷ ︸
|U |

, (zici )1, . . . , (z
ic
i )m︸ ︷︷ ︸

m

, (zwei )1, . . . , (z
we
i )n︸ ︷︷ ︸

n

, . . . ,

t︷︸︸︷
1 , . . .︸ ︷︷ ︸
|T |

)
= [xUu , z

ic
i , z

we
i , xTt ]

(8.12)

where xUu , xTt are one-hot vectors encoding the user’s and tag’s indicators.
The FM-based and PITF-based functions described in Equation 7.7 and 7.8 are em-

ployed to predict scores of tags. Depending on the types of feature’s combinations including
the visual-textual, visual-object and textual-object concatenations, the associated parts
are replaced by the appropriate values. For example, if both visual and textual features
are aggregated as the representation of an image, the FM-based function is rewritten as

(ŷu,i)t = wt +

p∑
j=1

(
V U
u,j +

m∑
a=1

(zici )a · V ic
a,j +

n∑
a=1

(zwei )a · V we
a,j

)
V T
t,j (8.13)

where wt is the global weight of the tag t, and V U ∈ R|U |×p, V ic ∈ Rm×p, V we ∈ Rn×p
and V T ∈ R|T |×p are factorization weights. Similar to Chapter 7, the proposed models are
named based on their base models, such as FM or PITF, and the image’s features. Besides
some models defined in the previous section, such as FM-IC-OD and PITF-IC-OD, we
denote several additional models as

• Using textual features of images: FM-WE and PITF-WE

• Using the combination of visual and textual features: FM-IC-WE, PITF-IC-WE
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8.3.5 Factorization Machine with Tag Features

Instead of representing tags by one-hot feature vectors associated with tags’ indices, they
can be constituted by textual features through the textual feature extraction. Let rtagt ∈
R|D| be a one-hot |D|-dimensional vector of the tag t where the element associated with
the tag found in the dictionary D is 1, and 0 otherwise. If the tag is not found in the
dictionary, the rtagt is a zero vector. The tag’s features are obtained in a similar way as
the feature extraction process by multiplying the one-hot vector and the textual weights.

zTwe
t := fweglove/w2v/fastt(r

tag
t ;ϑ) : R|D| → Rn

where
fweglove/w2v/fastt(r

T
tag;ϑ) = ϑT rtagt

The input of the factorized predictor is extended by adding the tag’s features into
Equation 8.12 to produce a new input as

xu,i,t = [xUu , z
ic
i , z

we
i , xTt , z

Twe
t ] (8.14)

Based on the FM-based predictor described in Equation 8.13 and the similarity between
feature domains of the textual image-based and tag-based features, the interaction between
images, and tags are segregated in regard to the feature domain. Namely, the visual image
elements interact with the one-hot tag element while the textual features of images reach
out to the textual components of tags. Thus, the score estimator is formulated as

(ŷu,i)t = wt +

p∑
j=1

(
V U
u,j +

m∑
a=1

(zici )a · V ic
a,j

)
V T
t,j

+ (zTwe
t )′wTwe +

p∑
j=1

( n∑
a=1

(zwei )a · V we
a,j

)
·
( n∑
b=1

(zTwe
t )b · V Twe

b,j

)

+

n−1∑
a=1

n∑
b=a+1

(zTwe
t )a (zTwe

t )b

p∑
j=1

V Twe
a,j V Twe

b,j

(8.15)

where (zTwe
t )′ is the transposed vector of the tag features; V U , V ic, V we are factorized

weights associated with users, visual and textual factors of images; V T ∈ R|T |×p and
V Twe ∈ Rn×p are factorization parameters belonging to the index-based and semantic-
based representation of tags. The model is called FM-IC-WE-TAG reference for the
model’s name during the later evaluation section.

8.3.6 Personalized Neural Networks

In the approach, we again employ the personalized multi-layer perceptron as the predictor,
as described in Chapter 6. The personalized layer can be applied individually to each of
image features, or applied to the composite representation of images.

93



8. PERSONALIZED TAG RECOMMENDATION USING TEXT
TRANSFER LEARNING

8.3.6.1 The One-Branch Neural Network

The proposed network with a one-branch MLP to predict scores of tags is illustrated in
Figure 8.6. In this model, known as 1PerMLP, we will utilize the modification of the

Figure 8.6: The neural network personalizes the visual-textual features to predict scores
of tags.

personalized fully-connected layer described in Equation 6.10. The user-bias term is added
to each element of visual features, along with adding a textual value. Before textual latent
values are fed to the personalized layer to enrich the visual representation of the image,
the textual input is converted to the similar space with the visual input via the projection
as

hwei = H · zwei (8.16)

where H ∈ Rm×n is the projected weights of the textual input vector. For the purpose of
enhancing each element of the visual features by the textual factor during the personalizing
process, Equation 6.10 is extended by the weighted textual values defined as

zu,i = fper(zici , h
we
i , xUu ;ψ) = σ(b+ V UxUu + wic � zici + wwe � hwei ) (8.17)

where b ∈ Rm is the bias vector; wic ∈ Rm, wwe ∈ Rm, V U ∈ Rm×|U | are the weights of the
visual, textual and user factors. The linear combination of various elements is followed by
an elementwise non-linear function σ as in the fully-connected layer of a neural network.
The output of the layer is a feature vector standing for the given post including the visual,
textual and user information, and is fed to a one-hidden network to obtain scores of tags.
The prediction function can be re-formulated as

ŷu,i = f(xUu , z
ic
i , z

we
i ;ω) = fmlp(zu,i; ξ) (8.18)

where ω = {H, ψ, ξ} is the trainable parameter set of the proposed model. Scores of tags
are computed in reference to the representation of a given post; i.e, parameters associated
with tags are shared to all types of image’s features and users as the FM-based model.
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8.3.6.2 The Two-Branch Neural Networks

Instead of merging all features of users and images by utilizing a personalized layer, the
visual and textual representations of images are fed to two branches of a neural network to
predict tag scores, and the computed values of these branches are summed to obtain the
final tag scores. Depending on how the user’s information is employed to personalize the
image’s features, we construct the two-branch networks in two different ways: adding the
user’s representation to each element of the image’s features and multiplying the network’s
weights by the user’s weighting values.

User-bias as the adding element

The main idea of the proposed networks is using different user-bias variables for distinct
image features and applying two non-shared MLPs to predict scores of tags in accordance
with the image properties. Directly, each branch of the network gains personalized fea-
tures of one given image’s property by adding user-bias information to each element of
the feature vector. From that idea, the architecture of the predictor, called 2PerMLP,
is modeled as in Figure 8.7. Founded on the Equation 6.10, the personalizing process for

Figure 8.7: The neural network composed of two prediction branches in accordance with
different types of image’s features.

each element of image’s feature can be defined as

hicu,i = fper(zici , x
U
u ;ψic) = σ(bic + wic � zi,q + V icxUu )

hweu,i = fper(zwei , xUu ;ψwe) = σ(bwe + wwe � zi,q + V wexUu )
(8.19)

where the personalized parameters associated with visual elements ψic contain the bias
parameters bic ∈ Rm, the weights of visual features wic ∈ Rm, the projected parameters
of the user’s factors V ic ∈ Rm×|U |. For the textual branch, the personalized textual-
parameters ψwe include bwe ∈ Rn, wwe ∈ Rn, and V we ∈ Rn×|U |.
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These produced features are fed to several fully-connected layers to predict different
scores of tags conjoined with the assorted combination of users and image features. The
final prediction function can be seen as the aggregation of two functions associated with
two branches of the network.

ŷu,i = f(xUu , z
ic
i , z

we
i ;ω) = f ic(xUu , z

ic
i ;ωic) + fwe(xUu , z

we
i ;ωwe)

= f ic(hicu,i; ξ
ic) + fwe(hweu,i; ξ

we)
(8.20)

where ωic, ωwe are parameters of these sub-networks correspondingly including person-
alized parameters and parameters related to predicted tags’ scores. In the network, the
factorized tag’s parameters are separately defined for each of the image representations.
Through the configuration, the proposed model expresses similarities to the PITF-based
model so that the performances of the model is expected to be equal or possibly higher
than that of the PITF-based model.

In order to take advantage of the support from other image properties, a version of
the two-branch network, named as 2PerMLP-3fa, is offered in which the personalization
process is formulated as the one-branch network, described in Figure 8.8. Indeed, each

Figure 8.8: The neural network is also composed of two prediction branches in which each
element of an image property interacts with other factors to obtain the new representative
element.

image property, visual or textual, acts as the primary features fed to a branch and other
inputs are converted to its similar space. The process is summed up as

hwei = Hwe · zwei hici = Hic · zici (8.21)

where Hwe ∈ Rm×n, Hic ∈ Rn×m are the converted weights of the textual input and visual
input.

A personalized layer, which is build based on Equation 8.17, follows the projection
to capture the interaction between users and images. The output of each personalized
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layer is the individual representation of each image’s property under the influence of the
remaining property.

zicu,i = fper(zici , h
we
i , xUu ;ψic) = σ(bic + U ic · xUu + wic � zici + vic � hwei )

zweu,i = fper(zwei , hici , x
U
u ;ψwe) = σ(bwe + Uwe · xUu + wwe � zwei + vwe � hici )

(8.22)

where the personalized parameter set of the visual branch ψic contains the user-related
variables U ic ∈ Rm×|U |, the visual weights wic ∈ Rm, the textual contribution weights
vic ∈ Rm, and the bias parameters bic ∈ Rm. Likewise, in the textual branch, parameters
ψwe include Uwe ∈ Rn×|U |, wwe ∈ Rn, vwe ∈ Rn and bwe ∈ Rn. To compute scores of tags,
these individualized features in each branch are fed to a particular MLP network and the
sum of two branches’ scores is the final expected output.

User-bias as the weighting element

In preference to adding the user’s information to each image features, it is possible to
personalize the network parameters; i.e, each user owns a network with image data used
as the input. However, it is not a good choice because of the limitation of training data for
each network. We propose an approach, which personalizes synaptic weights of the input
and hidden by two weighting factors, as illustrated in Figure 8.9. To cope with this, we

Figure 8.9: The network contains two non-shared image’s information branches in which
the weights of hidden layers are personalized throught two element-wise steps.

weight the input and the hidden output by multiplying them with different user’s values
in the element-wise way. The forward process now becomes

h∗u,i = σ

(
U∗u �

(
b∗ +W∗(V∗u � z∗)

))
(8.23)
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where ∗ takes the place of ic or we; U ic ∈ R|U |×m, Uwe ∈ R|U |×n, V |U |×p are the personal
weights of the visual input, textual input, and the hidden output; p is the number of
hidden neurons; W ic ∈ Rm×p, Wwe ∈ Rn×p are the synaptic weights between the input
and the hidden layer. Then, a fully-connected layer known as the output layer of the
network receives the latent features from the hidden to estimate scores of tags.

8.3.7 Optimization

BPR criterion is also used to learn the model’s parameters such that the difference between
scores of relevant and irrelevant tags is maximal. The gradient descent optimization
algorithms with respect to quadruples (u, i, t+, t−) or posts (u, i) are utilized to learn
parameters of the predictor. While SGD with Momentum [105] with respect to posts
(u, i) is used for the MLP-based models, the Adagrad [33] algorithm, which adapts the
learning rate to the parameters, is utilized to find parameters of the factorization-based
models.

In SGD with momentum optimization as described in Algorithm 4, for each post
selected randomly from the training post set, the sparse |D|-dimensional vector is created
in relation to the frequency mapping of the given image Rtxti . In addition, we sample
a subset T̃−u,i of irrelevant tags connected with the given post. Visual features zici are

extracted based on the color image Rvisi and the fixed visual extractor f ic, while textual
features ztxti is obtained by the extracting function fwe receiving the token-frequency vector
rwei as its input. The loss value BPRu,i of the post is computed based on the relevant set
T+
u,i and irrelevant subset T̃−u,i, as in Equation 5.17. The derivative of BPRu,i with respect

to the predictor’s parameters ω is found to update the momentum and the parameters.
From another point of view, in Algorithm 5, a random triple (u, i, t+) is selected from

the training assignment set Strain. Then, an irrelevant tag is arbitrarily drawn out of the
irrelevant tag set of the post. The discrepancy of two tags’ scores described in Equation
7.12 is computed such that the predictor’s parameters are updated by the gradients of
BPRu,i,t+,t− with respect to these variables. Moreover, the learning rate is adopted in
accordance with these gradients. In both algorithms, parameters of the extractors are
fixed with the knowledge received from the source models so the optimization process
solely seeks to learn parameters of the predictor.

8.4 Evaluation

8.4.1 Dataset

We obtained experiments on NUS-WIDE-3 described in Chapter 4. Similar to Chapter 7,
color photos were scaled into 224×224 pixels used to extract visual features and 448×448
pixels for the object-detected feature extraction. After cleaning text, nearly 97 percent
of images contain text used to obtain textual features. Totally, more than 95 percent of
images are tagged by one user, and there are averagely six tags assigned to an image by
a specific user.
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Algorithm 4 Learning BPR with respect to posts

1: Input: PS , Rvis, Rtxt, θ, ϑ, α, µ, N
2: Output: ω

3: Initialize ω ← N (0, 0.1)
4: M← 0
5: repeat
6: Pick randomly (u, i) ∈ PStrain

7: Get RGB data Rvisi ∈ Rvis, token’s frequencies Rtxti ∈ Rtxt of the image i
8: rwei ← convert to vector(Rtxti )
9: Sample T̃−u,i ⊂ T

−
u,i, where |T̃−u,i| = N

10: zici ← f ic(Rici ; θ)
11: zwei ← fwe(rwei ;ϑ)
12: ŷu,i ← f(xu, z

we
i , zici ;ω)

13: BPRu,i ← 0
14: for t+ ∈ T+

u,i do

15: for t− ∈ T̃−u,i do

16: BPRu,i ← BPRu,i + lnσ

(
(ŷu,i)t+ − (ŷu,i)t−

)
17: end for
18: end for
19: BPRu,i ← BPRu,i

|T+
u,i|·|T̃

−
u,i|

20: g← α

(
∂ BPRu,i

∂ω

)
+ µ · M

21: Update ω ← ω + g
22: Update M← g
23: until convergence
24: return ω

8.4.2 Experimental Setup

The VGG-based extractors including VGG-16 and VGG-19 provide 512-dimensional vi-
sual feature vectors while the extractor relying on the ResNet50 network generates 2048-
dimensional vectors representing images. Furthermore, the textual features extracted by
the word-embedding models are included in 300-dimensional vectors. For comparison
purposes, we work with object-detected features comprised in 186-dimensional vectors in-
volving probabilities of objects appearing in images. The factor dimension for factorization
architectures and the size of hidden layers are fixed in 128.

The evaluation metric used in this paper is the F1-measure as described in Equation
5.24. For factorization predictors, the learning rate α were searched within the range
{0.1, 0.01, 0.001}, and the search range is {0.01, 0.001} for MLP predictors. In both types
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Algorithm 5 Learning BPR with respect to triples

1: Input: S, Rvis, Rtxt, θ, ϑ, α, ε, N
2: Output: ω

3: Initialize ω ← N (0, 0.1)
4: G ← 0
5: repeat
6: Pick randomly (u, i, t+) ∈ Strain
7: Get RGB data Rvisi ∈ Rvis, token’s frequencies Rtxti ∈ Rtxt of the image i
8: rwei ← convert to vector(Rtxti )
9: Sample t− ∈ T−u,i

10: zici ← f ic(Rici ; θ)
11: zwei ← fwe(rwei ;ϑ)
12: Compute (ŷu,i)t+ and (ŷu,i)t−

13: BPRu,i,t+,t− ← lnσ

(
(ŷu,i)t+ − (ŷu,i)t−

)
14: ∆← ∂ BPRu,i,t+,t−

∂ω
15: Update G ← G + ∆2

16: Update ω ← ω + α√
G+ε
·∆

17: until convergence
18: return ω

of predictor architectures, the L2-regularization is used to avoid the over-fitting with the
searching range {1e−4, 1e−5, 1e−6, 1e−7}. The momentum µ is also fixed to 0.9 during
the training phase.

The proposed models are compared to following personalized tag recommendation ap-
proaches that are based only on the users’ preference: PITF and FM. For the comparison
between factorization and neural network architectures for tag recommendation, the VGG-
16 and Glove features are used. These features are also applied for the comparison among
different representations of images. For evaluating the effectiveness of transferred knowl-
edge, the factorization models using different textual and visual features are conducted.
They include

• Models with on visual features: FM-VGG16, FM-VGG19, FM-ResNet50, PITF-
VGG16, PITF-VGG19, PITF-ResNet50.

• Models with textual features: FM-Glove, FM-W2V, FM-FastText, PITF-
Glove, PITF-W2V, FM-FastText.

8.4.3 Results

Besides the finding results about the effect of object-detected features on tag recommen-
dation performance as in Chapter 7, we analyze the influence of the textual factor to the
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performance of predictors when it is concatenated with the visual factor. Figure 8.10 and
8.11 describe the effect of different features of images to tag recommendation. In these
figures, the FM-OD and PITF-OD, which take into account the object-based features
of images, have the least improvements compared to the others. Moreover, when com-
pared to the FM-WE and PITF-WE which consider to the textual representation of
images as a part of their inputs, the visual-based tag recommendation FM-IC and PITF-
IC achieve better accuracy. The improvements of the recommendation performance may
implicitly mean that visual representations are more effective elements to recommend rel-
evant tags to posts, and it is promising that the combination between the features and
the textual features standing in the second place are possible to increase the accuracy of
the recommender.

Figure 8.10: F1-measure and Precision-Recall for FM models rely on VGG-16, Glove, and
YOLO extractors.

Indeed, the combination of visual and textual features applied in FM-IC-WE and
PITF-IC-WE promote the better performance on recommending tags for images com-
pared to the FM-IC-OD and PITF-IC-OD which exploit the merger of visual and
object-detected features to predict scores of tags as in Chapter 7. This trend may illus-
trate that richer features provide the better performance.

To examine how the extractors and transferred knowledge affect the performance of
the tag recommendation, we evaluate the accuracy of different factorization-based models,
which receive various visual and textual features as their inputs. The results are plotted
in Figure 8.12 and 8.13. We can clearly see that the visual representation is still the most
effective factor to estimate personalized tags.

Among three types of the visual extractor, the ResNet network, which has achieved
better performance than VGG models in image classification, produces richer feature vec-
tors with higher length. These features increase the truthfulness of recommended tags
around one percent compared to VGG-based features. Two dictionaries obtained by two
textual extractors, Glove and FastText, in the similar domain Common Crawl generate
lightly more effective features compared to the word2vec extractor getting knowledge in
GoogleNews domain.
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Figure 8.11: F1-measure and Precision-Recall for PITF models rely on VGG-16, Glove,
and YOLO extractors.

Figure 8.12: Visual and textual features extracted by different extractors boost the per-
formance of FM-based models in different levels.

Figure 8.13: Visual and textual features extracted by different extractors boost the per-
formance of PITF-based models in different levels.
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Since the combination of different features can improve the performance of predictors,
we also report the results of using different mergers as the image representation. As in
the stand-alone cases, ResNet features are the best compared to other visual ones, and
Glove- and FastText-features are better than word2vec textual features. Apparently, the
combinations of these features, ResNet-FastText and ResNet-Glove, boost the predictors
to the top of the best performance models. Although the effectiveness of using ResNet-
FastText in the tag recommendation is comparatively higher than the ResNet-Glove, the
contribution of the FastText and Glove is not different in the combination with the VGG-
16 features.

Figure 8.14: The comparison among factor-based and MLP-based models using the com-
bination of VGG-16 and Glove features.

Figure 8.14 shows the comparison of different proposed models, factor-based and MLP-
based predictors, using the combination of VGG-16 and Glove features. According to
experiments in Chapter 6, the personalized MLP predictors perform more desirable than
the factorization-based predictors from top-1 to top-4 accuracies, but their prediction is
less accurate than the others regards to top-6 to top-10. The discussion is again reflected in
the results of the personalized MLP-based models based on two types of image’s features,
especially in the model 1PerMLP.

Since the 1PerMLP shares the tag-related parameters during capturing the interac-
tion between tags and other factors, the model is quite similar to the FM-based predictor.
As a result, its performance is closed to the FM-IC-WE using visual and textual fea-
tures as the inputs on average. On the other hand, the 2PerMLP, which separates tag
parameters according to the interacted factors, is established in a partly similar way of the
FM-IC-WE-TAG and PITF-IC-WE. For this reason, its accuracies are better than
1PerMLP and nearly comparable to FM-IC-WE-TAG and PITF-IC-WE.

As each personalized attribute of a given image is embellished resulting from the sup-
port of the remaining non-personalized attribute, the process of predicting tag scores is
enhanced shown through the performance of 2PerMLP-3fa. The model achieves better
accuracy compared to the 2PerMLP and PITF-IC-WE, which treat different image’s
attributes independently during the prediction process. Additionally, the network with

103



8. PERSONALIZED TAG RECOMMENDATION USING TEXT
TRANSFER LEARNING

the hidden parameters weighted by the user’s information 2PerMLP-perw reaches the
comparable accuracy with the above network.

8.5 Discussion

In this chapter, we have proposed approaches which are built based on factorization frame-
works or personalized neural networks receiving the visual-textual features as their inputs
to exploit the relationships among users, images, and tags in predicting scores of tags.
Furthermore, we have explored the efficiency of numerous features to the performance of
predictors. Experimental results show that image’s features enriched by the text data
perform more excelling than the other state-of-the-art methods, which are purely based
on the assignment information.

Although the proposed methods can improve the prediction results, there are still avail-
able rooms for further improvements. For instance, the text data source, which provides
textual features, can be expanded by adding image’s comments. In addition, the user’s
information used in the models is still the index data so the meta-data of users can be
investigated to enrich the post’s features
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This chapter concludes the thesis and summarizes our work on personalized tag rec-
ommendation for images. Future works in form of practical applications and research
direction are also pointed out.

9.1 Thesis Conclusion

This thesis addressed the problem of personalized tag recommendation for images by
following the deep learning based paradigm and leveraging historical tagging information.
It discussed the importance of image-based content and context in the annotation process
and presented solutions for boosting the performance and the quality of the predicted
tags. More specifically, the thesis proposed a complete framework for personalized image
tag recommendation which is built on the efficiency of different considerations.

9.1.1 Content-aware Factorization Model

In Chapter 5, we described the improvement of a factorization based model for person-
alized tag recommendation. Originally, the factorization machine examines the ternary
relations among users, images and tags to compute scores of tags. New images, which are
not observed during the training process, are the limitation of the factorization models. To
tackle the problem, we divided the tag predicting workflow into two sequential phases. A
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feature extraction phase, which is concerned with issues related to extracting visual repre-
sentations of images, whereas a computation phase, which describes the actual prediction
process. In fact, the CNN with three trainable layers is obtained to generate high-level
features reflecting the content of images. The generated features are fed to a FM such that
the actual interaction considered in the model is among users, visual representation and
tags. By using the visual factor, which is always available for any image, the cold-start
item issue is solved and the predictive power of a latent factor model is maximized. Our
empirical study on NUS-WIDE dataset shows that the learned features of images obtained
by a CNN strongly support boosting up the performance of tag recommendation, and the
model combining both the visual factor and historical tagging behavior outperforms a
number of previous attempts developed in the past literature.

9.1.2 Personalized Neural Network

Although a pure neural network based approach is a sufficient candidate for non-personalized
scenarios where all related images receive the same recommendation, it cannot capture the
relation between users and tags as a factorization based model did. We have proposed the
extension of a convolutional network for the personalized scenario. In our work presented
in Chapter 6, to personalize learned visual features, a specific layer, which adds the user’s
information to each visual element, follows the extractor and its output is fed to the two-
layer neural network to estimate scores of tags. We have also adapted the BPR criterion
and the positive-negative sampling algorithm for post based perspective. We evaluated
the different performance of various personalization levels; e.g, the first level is when the
personalized layer goes after the first convolutional layer.

9.1.3 Object-based Features for Tag Recommendation

In Chapter 7, the thesis presented an approach for boosting the performance of content-
aware models based on deep learning and factorization. Aside from the visual content, the
object-based context explored from the inner side of an image is exploited to increase the
recommendation performance. We believe that the proposed approaches can be further
improved by considering and combining additional features for image representation. In
addition to the FM-based model, the thesis presented a PITF-based method that also
enables to capture the interaction among users, tags and the dense representation of
images. To reduce the computation required by each extractor and deal with the lack of
training data for deep learning, we adopted the transfer learning technique to pass the
rich knowledge source domains to the tag recommendation domain.

9.1.4 Text-based Features for Tag Recommendation

Chapter 8 discussed another context-based representation which is derived from surround-
ing words, such as from the image’s description and title. We have extended various
factorization-based models that allow the image’s content and context passing to compute
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scores of tags. Additionally, we proposed several neural network based architectures to
combine different factors of tag recommendation including users, image-based content,
and context to estimate scores of tags. Through the experiments, we demonstrate the
efficiency of the contextual entity to enhance the accuracy of the predictor. We also dis-
cuss how various frameworks perform when dealing with different transferred knowledge.
We analyzed the connection between factorization- and neural network-based models to
predict tags associated with the user’s preference, visual content and semantic context.

9.2 Future Research Direction

We see the following general future research directions that are promising:

• User-Based Feature Extraction.

The results of the experiments show that texts surrounding images are truly a helpful
source to provide effective features to enhance the performance of tag recommen-
dation. The kind of features is possibly adapted to represent for a given user, who
owns his dictionary created during his interaction with the system. His vocabular-
ies can come from his comments, or image’s description, and they highly correlate
with annotation keywords that he probably uses to annotate images. Moreover, the
context of a user, such as his location, contact, groups, is considered to represent
his characteristics. Since the proposed models are flexible to change or extend the
input data, they enable to consume a variety of the user’s representations replacing
for the index-based features.

• Tag-based Embedding.

As in [147], a hybrid of a CNN and a recurrent network is constructed to capture
the relation between visual and semantic features during the predicting process.
Besides, we also evaluated the additional features of tags enhancing the performance
of the factorization based model. However, the experiments mostly focused on the
interaction between two features belonging to the similar domain. Investigating to
examine the relationship between visual features of images and textual features of
tags/users is also another important direction to understand social tagging tasks.

• Scalable and robust methods for tag recommendation using diverse sources.

In this thesis, we only conducted experiments on image data sources, mainly Flickr
data. However, since social media exists in a wide variety of formation, further
implementation can focus on some other potential data type, such as semantic Web
data or audio data. For example, for a semantic Web, the tag recommendation is
constructed based on the semantic features, and mostly ignores the visual contents
indicated by a few included images. However, the image-based content is possibly
considered as the context factor in a tag recommendation task.
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Furthermore, CNNs achieve not only the success in the image-related task but also
prove their power in audio scenarios, such as speech recognition [2, 3]. For this reason,
another direction is to extend the same approach used in this thesis to predict tags
for audio resources.

• Content-aware Recommender Systems.

Cheng et al. [21] proposed a deep learning approach for recommender systems, which
concatenate different features and use the combination to predict the relevant scores
of items. It motivates us to investigate the proposed approaches into item recom-
mendation scenarios, such as movie recommendation. For example, each movie is
described by a short trailer or poster with its description. From these sources, the
movie’s representation is generated by using a CNN-based extractor and is combined
with the user’s information to estimate its relevance.
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