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Abstract

This thesis presents an investigation of the fundamental interaction between
light and matter, realised with a rubidium vapour confined in a cell whose
thickness (in the propagation direction) is less than the optical wavelength.
This confinement allows observation of spectroscopic features not found in
longer cells, such as Dicke narrowing. These effects are measured experimen-
tally and a theoretical model is developed, which allows the characterisation
of the medium in terms of the atomic electric susceptibility. Interactions
between the atoms and their surroundings, whether this be the walls of the
cell or other nearby atoms, are explored. In the frequency domain we ob-
serve broadening and shifts of the spectral features due to these interactions.
The atom-surface interaction shifts the spectral lines, following the expected
1/r3 van-der-Waals behaviour. The interatomic dipole-dipole interactions
are more complex, and we find cooperative effects play an important role.
We present an experimental verification of the full spatial dependence of the
cooperative Lamb shift, which follows the theoretical prediction made 40
years ago, an important demonstration of coherent interactions in a thermal
ensemble.

The interactions also play a role in determining the refractive index of the
medium, limiting the maximum near-resonant index to n = 1.31. Using
heterodyne interferometry, we experimentally measure an index of n = 1.26±
0.02. This index enhancement leads to large bandwidth regions where a
significant slow- or fast-light effect is present. We verify the fast-light effect
in the time domain by observing the superluminal propagation of a sub-
nanosecond optical pulse, and measure the group index of the medium to be
ng = −1.0± 0.1× 105, the largest negative group index measured to date.

We investigate the radiative decay rate using time-domain fluorescence, and
we observe radiation trapping effects in a millimetre-thickness vapour. Fi-
nally, we present results on sub-nanosecond coherent dynamics in the system
which are achieved by pumping the medium with a strong optical pulse.
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Chapter 1

Introduction

Understanding the interaction between light and matter is of paramount im-

portance to the scientific community across a wide range of disciplines. On

the atomic scale, the light-matter interaction continues to be the focus of

a large body of research. The award of the 2012 Nobel prize in physics

to Serge Haroche and David Wineland1 for their groundbreaking work with

single atoms and ions in optical cavities stands as testament to this state-

ment, with cavity quantum electrodynamics (QED) now a burgeoning area of

research [1–3]. In cavity QED, the presence of the cavity enhances the atom-

light interaction, leading to a modification of the intrinsic atomic properties

such as its radiative lifetime.

Strong interactions and cooperativity

It is this enhancement of the atom-light interaction that this thesis deals

with, though in a system without a cavity. Instead, the presence of another

nearby atom can take the place of the cavity, modifying the interactions in

a similar way.

The process responsible for this enhancement is the dipole-dipole interac-

tion between two identical atoms, which causes the electric field between the

atoms to be greatly enhanced when their separation is less than λ/2π (they

are said to be in the near-field of each other), where λ is the transition wave-

1http://www.nobelprize.org/nobel_prizes/physics/laureates/2012

1

http://www.nobelprize.org/nobel_prizes/physics/laureates/2012
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length between the two states [4, 5]. A similar effect has been previously

observed using nanoplasmonics [6]. The strong interaction couples the two

atoms together, so that their evolution is now fundamentally linked, which

modifies the individual atomic energy levels and state lifetimes. As a conse-

quence of these interactions, the behaviour of an ensemble ofN -atoms cannot

simply be described by summing the response of a single atom N times. In-

stead, the presence of nearby atoms modifies the individual response.

The dipole-dipole interaction also has a coherent character, which has been

studied extensively in ultracold atomic systems [7, 8], where motion is neg-

ligible and the coherence persists for an appreciable amount of time. These

so-called cooperative interactions have generated a great deal of interest in the

community [9, 10], with much effort focussed on the phenomenon of superra-

diance [11, 12], the cooperative enhancement of the decay rate of an initially

excited system. In recent years, there has been particular interest in using

highly excited Rydberg systems to explore cooperative effects [7, 8], moti-

vated in part by potential applications in quantum information systems [13].

There is also evidence of cooperative processes in natural systems, particu-

larly in the light harvesting complexes responsible for photosynthesis [14, 15].

In these systems cooperativity enables quantum transport of energy, vastly

increasing the efficiency of the photosynthetic process [16, 17].

In this thesis, we investigate these interactions through spectroscopic mea-

surements of a dense ensemble of thermal Rb atoms, extracting the properties

of the interaction via a quantitative model of the atom-light interaction in

the system.

The main challenge in observing these effects is that the dipoles need to be in

the near-field of one another, separated by a distance r < λ/2π. The ground

state transitions in Rb have near-infrared wavelengths with λ ∼ 800 nm, so

the interatomic spacing needs to be of the order of 100 nm. Assuming that

the average separation between atoms rav = 5/9 N−1/3 (see chapter 5), this

means that an atomic density N ∼ 1014 cm−3 is required. For an ultracold

atom experiment, this is difficult to achieve, requiring a Bose-Einstein con-

densate (BEC) to observe cooperative effects on an optical transition [18].

With thermal atoms, however, achieving these densities is trivial, as will be



Chapter 1. Introduction 3

discussed in the next subsection.

As an alternative to increasing the density, one may instead exploit transi-

tions which have longer wavelengths. Since the transition wavelengths be-

tween nearby states in highly-excited Rydberg atoms are much longer than

for ground state atoms, placing two Rydberg atoms in the near field of each

other requires much lower density. It is therefore not surprising that coop-

erative interactions have been previously observed in these systems. Using

electromagnetically induced transparency [19, 20], a cooperative atom-light

interaction was demonstrated in an ultracold Rydberg gas [7], whilst recently

a thermal Cs Rydberg experiment at moderate density demonstrated intrin-

sic optical bistability along with a superradiant cascade of excitation [21].

Thermal vapours

In this thesis, a thermal (room temperature to T ∼ 350◦C) atomic vapour

is used to explore these strong interactions. We demonstrate cooperative

interactions in low-lying excited states by raising the density of the atomic

vapour to a point where the interactions dominate over every other dephasing

mechanism in the system.

Thermal atomic vapours, typically confined in room temperature centimetre-

sized glass cells, have been a workhorse in atomic physics over the years, used

in a diverse range of experiments. Compared to a cold-atom setup, thermal

experiments have the advantage of being relatively inexpensive and simple

to set up. For the purposes of the experiments in this thesis, this remains

a factor, but the main advantage of using a thermal vapour stems from the

relationship between the temperature of a dilute vapour and the density of

atoms.

The atomic number density, N , can be calculated from the vapour pressure

p (the pressure of the gaseous phase in equilibrium with a solid or liquid bulk

of the same material) and is given by [22]

log10 p = 2.881 + 4.312− 4040

T

N =
133.323× p

kBT
, (1.1)
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Figure 1.1: Atomic number density N and average interatomic spacing rav =

(5/9)N−1/3 as function of temperature.

for the liquid phase of Rb - the melting point of Rb (at zero pressure) is

312.46 K [23]. The inclusion or omission of the 2.881 term converts the pres-

sure between Torr and atmospheres, respectively [22]. The factor 133.323

converts the vapour pressure from Torr to Pa. A pressure of 1 Torr corre-

sponds to a number densityN ≈ 2×1016 cm−3, which occurs at a temperature

T ≈ 290◦C. Equation (1.1) is perhaps the most important relationship for

the experiments detailed in this thesis. The near-exponential scaling with

temperature, shown in figure 1.1, allows for a vast parameter space that is

continuously tunable simply via adjustment of the temperature. In exper-

iments with ultracold atoms, it is possible to achieve densities of around

1011 − 1012 cm−3 in a magneto-optical trap, and in a BEC densities of 1013

to 1015 cm−3 are reasonable [24]. Thermal vapours can have densities orders

of magnitude larger than even BECs, and tunable over a much wider range.

The interactions between atoms considered in this work are resonant dipole-

dipole interactions, scaling as r−3 ∝ N , which by implication means we also

have control over the average interaction strength over many orders of mag-

nitude. It is possible to move smoothly from a regime where interactions are

completely negligible to one where the interactions are the dominant effect,

as we shall demonstrate in chapter 5.

The disadvantage of thermal vapours comes from the atomic motion. This

introduces unwanted Doppler broadening of the absorption lines from the
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natural linewidth (for the states this work is concerned with this is around

6 MHz) to around 500 MHz at room temperature. In addition, since Doppler

broadening is inhomogeneous, each atom sees a different effect and so any

coherent effect is usually washed out by a motional dephasing of the medium.

Nano-cells

Increasing the density of the vapour can only go so far, until the optical depth

of the medium becomes a limiting factor. Ignoring interactions between

atoms for now (which reduce the effective optical depth), the optical depth

is approximately proportional to the product of density and thickness ` of

the medium. As one is increased the other must decrease by an according

amount to maintain an equivalent optical depth. As an order-of-magnitude

approximation, a room temperature 5 cm Rb vapour cell will absorb roughly

half of the light when it is resonant with the ground state to first excited state

transition. To realise the same optical depth at T = 300◦C, the thickness of

the vapour must be reduced by 6 orders of magnitude, to just 50 nm. Other

approaches to investigate high density vapours have been implemented in the

past, such as selective reflection spectroscopy [25, 26] or using off-resonance

excitation [27]. In all of these techniques the experiments can be kept as

simple as possible; most involve only a single excitation laser and detection

of transmitted or reflected light. Using a nano-cell allows access to the whole

spectrum, instead of just the off-resonant wings where the optical depth is

lower, and for the investigation of effects such as Dicke narrowing [28, 29],

first observed in the microwave regime but extended to optical wavelengths

with the use of sub-wavelength nano-cells [30]. Chapter 3 will discuss these

effects in detail.

Creating a vapour cell with sub-wavelength thickness is extremely challeng-

ing, but the group of David Sarkisyan in Armenia has been successfully

producing these sub-wavelength thickness ‘nano-cells’ for some years now. A

photograph of the window region of the vapour cell employed in this work is

shown in figure 1.2. This chapter is not concerned with the technical details

(these are discussed in appendix A), but here we summarise the important

points. Clearly visible on the photograph are high quality Newton’s rings, an
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Figure 1.2: Photograph of the nano-cell used for most of the work presented in

this thesis, showing the Newtons rings interference pattern. At the centre of the

rings, the gap between the windows, and hence the local vapour thickness, is just

30 nm, extending to 2 µm at the bottom of the windows.

interference pattern that occurs because one of the two windows is slightly

curved, causing the gap between the two windows to vary. For this particu-

lar cell, at the centre of the Newtons rings, the gap, and hence the vapour

thickness ` is just 30 nm. The thickness extends outwards from here, and the

maximum thickness is around 2 µm at the bottom of the windows. We can

therefore scale the local vapour thickness over nearly two orders of magni-

tude, which combined with the tunable density provides us with a very large

parameter space to investigate.

Recently there has been a resurgence of interest in thermal vapours confined

in thin cells. As the total size of these thin cells can be reduced down to the

milimetre scale [31, 32], there has been a great deal of interest in harness-

ing their potential as miniaturised atomic clocks [33, 34] and very sensitive

magnetometers [35–37]. Nano-cells could also be useful as magnetometers,

enabling sub-micron resolution of magnetic fields in one dimension [38]. Mak-

ing further use of the atomic sensitivity to magnetic fields, by placing the

cells in a high field found inside a strong permanent ring magnet, it has been

possible to realise a narrowband optical isolator [39].

Exciting Rydberg atoms in these miniature cells opens the door to applica-

tions in quantum information processing [13]. Arrays of micro-cells have been

proposed as a scalable architecture for constructing Rydberg atom quantum

gates [40], and the same technology has been proposed as a single photon

source [41].
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1.1 Structure of this thesis

The remainder of this thesis is organised as follows:

• In chapter 2 we consider a simple model for the atom-light interaction,

neglecting any interaction between the atoms, which forms the basis of

the models used throughout this thesis.

• Chapter 3 builds on the results from the previous chapter, and deals

with the specific effects that are encountered with nano-cells such as

Dicke narrowing of the spectral lines.

• Chapter 4 deals with the van der Waals atom-surface interaction in the

system, an additional consequence of using such a short cell.

• In chapter 5 we explore the dipole-dipole interaction between two iden-

tical atoms, which leads to resonant shifts and broadening of spec-

tral features. We find cooperative interactions are important in the

medium, and experimentally verify the spatial oscillations of the coop-

erative Lamb shift.

• Chapter 6 examines the real part of the susceptibility, which is respon-

sible for the refractive index of the medium. We show that a Rb vapour

can have a near-resonant refractive index comparable to that of water

under the ideal conditions.

• Chapter 7 deals with the fast and slow light effects in the medium, a

consequence of the large refractive index gradient in the medium. We

demonstrate the largest negative group index that has been measured

to date, which leads to a significant fractional advance (the so-called

‘superluminal’ propagation) of a sub-nanosecond optical pulse.

• In chapter 8 we look at the time-resolved resonant fluorescence of the

medium, after excitation with a sub-nanosecond optical pulse.

• Chapter 9 presents initial work towards understanding the coherent

nature of the medium when excited by a strong optical pulse with sub-

nanosecond duration.
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• Finally, chapter 10 presents an outlook for the project.

1.2 Publications arising from this work

• [42] J. Keaveney et. al., Cooperative Lamb Shift in an Atomic Vapor

Layer of Nanometer Thickness, Phys. Rev. Lett. 108, 173601 (2012).

• [43] J. Keaveney et. al., Maximal Refraction and Superluminal Propa-

gation in a Gaseous Nanolayer, Phys. Rev. Lett. 109, 233001 (2012).

• [44] J. Keaveney et. al., Optical transmission through a dipolar layer,

arXiv.org 1109.3669 (2011).

Related publications

• [45] A. Sargsyan et. al., Effect of buffer gas on electromagnetically

induced transparency in a ladder system using thermal rubidium vapor,

Phys. Rev. A 82, 045806 (2010).



Chapter 2

Atom–light interactions for

independent atoms

The purpose of this chapter is to introduce from a fundamental level the

model for atom-light interactions that is used in much of the rest of this work.

We will introduce a fully quantitative model of the atom-light interaction in

thermal alkali-metal vapour that can be used to make predictions for and be

compared to experimental spectroscopic data.

We will start our discussion with the most basic of systems, that of an oscil-

lator with two levels coupled by a near-resonant driving field, before adding

in the full atomic structure and motional effects.

The development of this model in the atomic and molecular physics group at

Durham over recent years has led to a plethora of research [46–52], and this

chapter summarises some of that work. In the next chapter we will expand

this model to cover the additional complexities of spectroscopy in nano-cells,

and in chapter 5 we will add the effects of the dipole–dipole interaction. It

is therefore important that the underlying model is well understood.

2.1 The two-level atom

We start our discussion of atom-light systems by looking at the case where

the atom has only two levels, coupled by a near-resonant monochromatic light

9
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Figure 2.1: Schematic of the 2-level atom. Ground- (|1〉) and excited-states

(|2〉) are coupled by a near-resonant laser with angular frequency ωp, driving Rabi

frequency Ω, and detuned by ∆ = ωp − ω0 from resonance. The excited state

spontaneously decays at a rate Γ0.

source. Figure 2.1 shows a typical level scheme for the two level system.

We assume for simplicity in this picture that there is no decay out of the

ground state. The ground and excited states are coupled by a near-resonant

laser with Rabi frequency Ω. The excited state spontaneously decays, at a

characteristic rate Γ0, and the atom can only return to the ground state.

For the first excited states of Rb, Γ0 ≈ 2π × 6 MHz. The detuning ∆ is the

difference in angular frequencies between the laser (ωp) and atomic resonance

(ω0) frequencies, ∆ = ωp − ω0.

A full many-body quantum mechanical treatment of this system is intractable

due to the large numbers involved1 so we must employ some approximations.

The first is known as the semiclassical approximation, where a quantised

atomic system is coupled to a classical electromagnetic field, valid for large

photon numbers. The atom-light interaction is then between the applied

field and the electric dipole moment of the atom and we neglect higher order

multipole terms - this is known as the electric-dipole approximation.

Since the atom number is intractably large, we need a statistical method

of describing the properties of the system. The density matrix formalism

provides such a description. As the orthonormal basis states {|i〉} form a

complete set, we can describe an individual quantum state of the system as

1For typical experimental parameters, we have 1022 atoms/m3, a focal spot size ∼
10 µm and a cell thickness of 0.5 µm, which gives roughly 106 atoms. 1 nW of incident

laser power corresponds to roughly 109 photons per second and an intensity of 1 mW/cm2
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a superposition of basis states

|ψs〉 =
∑
i

Cs
i |i〉 , (2.1)

where the Cs
i coefficients are probability amplitudes of being in the basis

state |i〉. When the system is in a mixed state it is not possible to describe it

in terms of a ket vector. In this case we can use the density matrix, defined

as

ρ =
∑
s

p(s)|ψs〉〈ψs| , (2.2)

where p(s) is the probability of the pure state s. For an n-level system, the

density matrix is an n-by-n matrix where the diagonal terms ρnn represent

the populations of each level and the off-diagonal terms ρmn correspond to

the coherences between levels.

One can calculate the expectation value of the Hamiltonian (or any other

operator) from

〈Ĥ〉 = Tr(ρĤ) , (2.3)

where the trace is defined in the usual way as Tr(Â) =
∑

iAii.

2.1.1 Hamiltonian

We want to calculate the time evolution of the atom-light system, so the

problem we need to solve is a Schrödinger-type equation where the Hamil-

tonian of the combined atom-light system is given by the sum of the atomic

Hamiltonian Ĥa and the Hamiltonian due to the interaction with the light

field Ĥi

Ĥ = Ĥa + Ĥi . (2.4)

We can describe the system in terms of the orthogonal basis states that

make up the bare (unperturbed) atomic states (i.e. solutions to the time-

independent Schrödinger equation Ĥa|i〉 = Ei|i〉). The Hamiltonian can be

expressed in matrix form, with elements

Hij = 〈i|Ĥ|j〉 . (2.5)
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The atomic part of the Hamiltonian contains information about the energies

of the states. Setting the ground state energy as the zero of the energy scale,

we have

Ĥa =

(
0 0

0 ~ω0

)
. (2.6)

The interaction Hamiltonian in the dipole approximation is given as

Ĥi = −µ̂ · E , (2.7)

where µ̂ = e r̂ is the dipole operator, which has only only off-diagonal ele-

ments (the diagonal terms 〈1|µ̂|1〉 = 〈2|µ̂|2〉 = 0 due to the parity of the

states2). For monochromatic light the electromagnetic field, E , can be ex-

pressed as

E = êE0 cos(ωpt) =
êE0

2
(eiωpt + e−iωpt) , (2.8)

where ê is a vector describing the polarisation of the field. Assuming the

dipole moment is aligned with the field, the components of the interaction

Hamiltonian can then be expressed as

Hi
21 = Hi∗

12 = −d21E0

2
(e−iωpt + eiωpt) . (2.9)

The first term in equation (2.9) represents the interaction when either the

system absorbs a photon and is raised to the excited state, or when the sys-

tem emits a photon and falls to the ground state from the excited state.

The second term is known as the counter-rotating term, associated with the

simultaneous absorption of a photon and falling from the excited to ground

state, or when the system emits a photon and is raised to the excited state.

These second terms are omitted from the rest of the analysis, an approxi-

mation known as the Rotating Wave Approximation (RWA) [53]. When the

problem is transformed into a rotating frame, we see that the omitted terms

are those owing to the ‘fast’ oscillations, which evolve as ei(ω0+ωp)t, and av-

erage away to zero. We are left with the ‘slow’ oscillations, which evolve as

ei(ω0−ωp)t = e−i∆t, which do not average away.

2In the wavefunction representation, the matrix element between an initial and final

state is given by 〈f |µ̂|i〉 = e
∫ +∞
−∞ ψ∗f (r) rψi(r)dr. The dipole operator is an odd function,

therefore for this integral to be non-zero, the two states need to be of opposite parity.
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The total Hamiltonian can therefore be rewritten in the RWA as

Ĥ = ~

 0
Ω

2
eiωpt

Ω

2
e−iωpt ω0

 . (2.10)

where the Rabi frequency Ω is given by

Ω = −µ21 · êE0

~
= −eE0

~
〈1|r|2〉 , (2.11)

and we have assumed that the polarisation of the driving field is aligned with

the atomic dipole moment.

2.1.2 Time evolution

The time evolution of the system can then be calculated from the time de-

pendent Schrödinger equation, which for the density matrix is equivalent to

solving

d

dt
ρ =

1

i~

[
Ĥ, ρ

]
, (2.12)

the Liouville-von Neumann equation. However, this does not account for

decay in the system due to, for example, spontaneous emission. Decay is

added in phenomenologically as a statistical process, grouped into the decay

matrix L. The equation that must be solved is known as the Linblad master

equation, and is given by

d

dt
ρ =

1

i~

[
Ĥ, ρ

]
− L . (2.13)

For the two level system, the steady state solutions can be derived ana-

lytically, which we do by writing (2.13) as a set of coupled rate equations

known as the Optical Bloch Equations (OBE). For the two level system with

dephasing due only to spontaneous decay, these are

dρ11

dt
= −dρ22

dt

= Γ0ρ22 −
iΩ

2
(ρ̃21 − ρ̃12) (2.14)

dρ̃21

dt
=

dρ̃∗12

dt

= −(Γ0/2− i∆)ρ̃21 −
iΩ

2
(ρ11 − ρ22), (2.15)
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where we have introduced the ‘slow’ variables in the coherence terms, ρ̃21 =

ρ̃∗12 = ρ21e
−iωpt. To conserve population, we must have ρ11 + ρ22 = 1, and

clearly dρ11/dt + dρ22/dt = 0. In the steady state, dρ/dt = 0, and we thus

find

ρ̃21 = − iΩ/2

Γ0/2− i∆
(ρ11 − ρ22) . (2.16)

2.2 Electric susceptibility

We can describe the optical response of the atomic system to an applied light

field in terms of the complex electric susceptibility, χ, which describes how

the medium polarises in response to an applied electric field. The macro-

scopic polarisation of the medium is related to the individual electric dipole

moments of the atoms. For an ensemble we take the average dipole moment

and obtain

P = N〈µ̂〉 = Nµ21[ρ21e
−iωpt + ρ12e

iωpt], (2.17)

where N is the atomic density. The polarisation is related to the complex

linear susceptibility by [54]

P = (ε− ε0)E = ε0χE (2.18)

=
ε0E0

2
[χe−iωpt + χ∗eiωpt] , (2.19)

assuming E0 is real. We combine equations (2.17) and (2.19) and take the

dot product with µ21, yielding

Nµ2
21(ρ̃21e

−iωpt + ρ̃12e
iωpt) = −1

2
ε0~Ω(χe−iωpt + χ∗eiωpt) . (2.20)

We then find a relationship between the susceptibility and the coherence

term in the density matrix

χ = −2Nµ2
21

ε0~Ω
ρ̃21 . (2.21)

Combining this with equation (2.16), in the weak probe limit, where Ω� Γ0

and we assume all the population remains in the ground state (ρ11−ρ22 ≈ 1),

we obtain as a function of the laser detuning

χ(∆) ' iNµ2
21

ε0~(Γ0/2− i∆)
. (2.22)
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Figure 2.2: Real (blue) and imaginary (red) parts of the linear susceptibility for

a two-level atom around a resonance.

In the absence of any other broadening mechanism, this has real and imag-

inary components with the classic dispersive and Lorentzian lineshapes, as

shown in figure 2.2. The refractive index of the medium is related to its

relative dielectric constant εr and thus the susceptibility of the medium,

n =
√
εr =

√
1 + χ.

It should be noted that since much of this work deals with large suscepti-

bilities, the usual approximation of n ≈ 1 + χ/2 does not hold. Once the

susceptibility becomes large, local field effects need to be considered (dis-

cussed in chapter 5). If one does not consider local field effects,
√

1 + χ(∆)

is no longer symmetric about ∆ = 0 and one might mistakenly identify a

fictitious blue-shift of the lines (see appendix D).

A monochromatic electric field propagating through a medium with a

(isotropic) refractive index n and thickness ` will be attenuated and phase-

shifted so that at the output the field will be given by

Eout = Eineinkz = Eine−nIkzeinRkz , (2.23)

where nR,I are the real and imaginary parts of the refractive index, k = 2π/λ

is the wavenumber with λ the transition wavelength. The output intensity

(the measurable quantity) is then

Iout = |Eout|2 = Iine−2nIkz , (2.24)

which is just the Beer-Lambert law with the absorption coefficient α = 2nIk.

The frequency dependent transmission is then T = Iout/Iin.
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2.3 Motion and the Doppler effect

So far we have only dealt with stationary atoms. In any room temperature

ensemble, the atoms have thermal velocity v, typically around 250 m/s for

room temperature atoms. The frequency of light absorbed by the atom is

therefore Doppler shifted according to the velocity of the atom, by an amount

∆D = −k · v = −kvz, (2.25)

where k is the wavevector of the incoming (monochromatic) laser beam,

taken to be along the z-axis. We see immediately from this relation that it

is only when there is a component of velocity in the axis of the beam vz that

there is any shift in frequency. Since atomic velocities are distributed in all

directions, then there are a range of velocities which interact resonantly with

the laser beam. In one dimension (along the axis of the beam), a Maxwellian

distribution of velocities is assumed such that the atomic density for a given

velocity class N(v) is given by

N(v) =
N0

u
√
π
e−v

2/u2 , (2.26)

with the most probable velocity u =
√

2kBT/m where m is the mass of the

atoms and T their absolute temperature, and we have dropped the z sub-

scripts since we are only dealing with one dimension.

Atoms moving away from a blue-detuned laser beam are Doppler shifted back

onto resonance and thus absorb the light, and similarly for a red-detuned

laser and atoms moving into the beam. The resonance condition is fulfilled

wherever ∆ + kv = 0. This leads to an inhomogeneous broadening of the

absorption line, with a characteristic Doppler width δωd, which for hot atoms

is significantly larger than the natural linewidth. This places a limit on the

spectral resolution, such that features separated by less than the Doppler

width are not resolved. For 85Rb atoms at room temperature, the Doppler

width ΓD ≈ 2π × 500 MHz, and so the hyperfine structure lines on the D2

line separated by ∼ 2π × 100 MHz cannot ordinarily be resolved. To obtain

sub-Doppler resolution, usual spectroscopic methods involve a second pump

beam (such as saturated absorption/hyperfine pumping spectroscopy [55]

or polarisation spectroscopy [56, 57]), although sub-Doppler resolution is



Chapter 2. Independent atoms 17

possible in a nano-cell without a second beam - this will be expanded upon

in chapter 3.

Adding in Doppler broadening to the formulae in section 2.2 is a relatively

simple process. We make the following modifications to equation (2.22):

∆→ ∆− kv
N → Nvc(v)

We then must take into account all velocities, so we have, as a function of

the laser detuning

χ(∆, v) ' iNvc(v)µ2
21

ε0~(Γ0/2− i(∆− kv))
(2.27)

χ(∆) '
∫
χ(∆, v)dv . (2.28)

The lineshape that this convolution produces is known as the Voigt profile,

and is discussed in the next section.

2.4 Lineshapes - Lorentzians, Gaussians and

the Voigt profile

The lineshape associated with the light absorption of an ensemble of ther-

mal atoms is a Voigt profile. Mathematically, this is the convolution of a

Gaussian, from the Doppler broadening, with a Lorentzian, from the homo-

geneous natural linewidth, Γ0. Additional sources of broadening (such as

dipole-dipole interactions, which will be discussed later) can also be included

by further convolving with the appropriate lineshape. For sources of homo-

geneous (i.e. all atoms see the same effect) broadening, their lineshape is

another Lorentzian. In this case we can take advantage of the fact that a

convolution of two Lorentzians with widths w1 and w2 is another Lorentzian

with width w1 +w2, which makes computation significantly faster since con-

volution routines are slow and scale badly with the length of the arrays used.

It is important to understand the relative importance of the various broaden-

ing mechanisms. In terms of the vapour temperature there are a few regimes
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Figure 2.3: (a-c) A comparison between the Voigt profile (black) and the

Lorentzian (dashed blue) and Gaussian (dashed red) components. For cold atoms

(a), the motion of the atoms can be neglected and the Voigt is well approximated

by a Lorentzian whose width is the natural atomic linewidth Γ0. At room temper-

ature (b) Doppler broadening dominates and the Voigt is well approximated by a

Gaussian, while for temperatures in excess of ∼ 300◦C (c) the Lorentzian compo-

nent due to dipole-dipole interactions dominates (the inset shows an expanded

view of the crossing). Panel (d) shows the relative widths of the Lorentzian

(ΓL = Γ0 + Γdd) and Gaussian (ΓD) components as a function of temperature,

where the near-exponential dependence on temperature of atom-atom interactions

can be seen clearly.
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of interest, shown in panels (a-c) of figure 2.3. For experiments with cold

and ultra-cold atoms (panel (a), calculated here for T = 1 mK), we expect

the atomic motion to have little effect and therefore the Voigt profile is well

approximated as a Lorentzian with natural linewidth Γ0. As temperature

increases there is then a regime where neither Lorentzian nor Gaussian ap-

proximations fit well. As temperature increases to room-temperature (b), the

Doppler effect is significant and near resonance the lineshape can be well ap-

proximated by a Gaussian with width ΓD. Out in the wings of the resonance

however, the Lorentzian component still has a measurable effect [27] owing

to the relative scaling of the two functions with detuning. This becomes

increasingly important as temperature rises further. The contribution to the

Lorentzian width from dipole-dipole interactions, Γdd, sharply increases ow-

ing to the linear dependence on number density and hence near-exponential

dependence on temperature (see chapter 5). In this regime (T ≈ 150−300◦C)

we again have a regime where the full Voigt lineshape is approximated badly

by both Gaussian and Lorentzian profiles.

The final regime, shown in panel (c), involves very hot (T & 300◦C) and

therefore very dense atomic gases. In this regime, the interactions between

atoms dominate over all other line broadening mechanisms and the lineshape

can once again be well approximated by only a Lorentzian function with

width ΓL ≈ Γdd. Panel (d) compares the widths of the Lorentzian, ΓL =

Γ0 + Γdd, and Gaussian ΓD components as a function of temperature.

2.5 Atomic Structure

It should be clear that for any real system, the above discussion is an idealised

model. For the alkali metal atoms, the single valence electron means that the

atomic structure is still relatively simple. For the ground state transitions,

commonly known as the D1 (5S1/2 → 5P1/2) and D2 (5S1/2 → 5P3/2) lines,

there are many allowed transitions between the hyperfine energy levels. The

probability amplitude for each transition is found from the dipole matrix

element of that transition. In the F basis, with Zeeman sub-levels mF , the

matrix element is 〈Fg,mFg |er|Fe,mFe〉 for a transition between a ground state
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g and excited state e. In this thesis, we do not deal with applied magnetic

fields and neglect the Earth’s magnetic field, so we can just consider the

transition between F -states. The transition probabilities |〈Fg|er|Fe〉|2 are

then the Clebsch-Gordan coefficients, which can be found tabulated for the

Rb D1 and D2 lines in [46]. In addition, Rb has two common stable isotopes,
85Rb with a natural abundance of ≈ 72% and 87Rb with a natural abundance

of ≈ 28%, so this adds a factor of two to the number of transitions.

It is possible to model the full dynamics of this system by solving an N -level

version of the master equation (2.13), but this is computationally intensive

as there are N 2 coupled equations to solve. The model we use considers only

the effect of a weak probe on the system, so optical pumping between levels is

negligible. It is therefore assumed that every transition is effectively its own

separate two-level system separated in frequency space by the atomic hy-

perfine structure, and we simply sum over all the dipole-allowed transitions,

weighted by their transition probabilities, to calculate the susceptibility at

a given laser detuning. This approach has been successful in predicting the

full spectrum of the Rb D1 and D2 lines in the past, with agreement between

experiment and theory at the 1% level [46]. Using a more involved model to

find the transition amplitudes in the |mL,mS,mI〉 uncoupled basis has also

yielded fruitful results when considering the effect of magnetic fields up to

0.6 T [39, 58, 59], with excellent agreement between experiment and theory.

2.6 Summary

The development of a simple model that accurately reproduces experimen-

tal spectra has been key to a great deal of research in the Durham atomic

and molecular physics group. It is not only a useful tool, in terms of fitting

data and extracting parameters, but also gives an ability to predict novel ef-

fects. Implementing this principle for very high magnetic fields has led to the

development of an atom-based optical isolator [39]; a dichroic beamsplitter

based on the Faraday effect [49]; and a tool for off-resonance laser locking at

arbitrary frequencies [50].

One of the goals for this work was to extend this model to the subtleties and



Chapter 2. Independent atoms 21

extra complications introduced by the confinement of atoms in nano-cells,

which will be the subject of the next chapter.



Chapter 3

Thin cell spectroscopy

The purpose of this chapter is to build on the model developed for thermal

atoms, introducing the specific features of spectroscopic measurements in the

thin cell. There are two main effects due to the thin cell. The first of these is

that, because the vapour thickness is shorter than the mean free path of the

atoms, there is a partial suppression of the Doppler effect known as Dicke

narrowing [28]. Second, the cell geometry is such that etalon effects must be

considered, which combined with the variation in the refractive index leads

to a large change in the reflective properties across the resonance.

As with the previous chapter, the key is a quantitative model that can be

used to make predictions and extract useful parameters.

Experimental details for the data presented in this chapter can be found in

appendix B, which details the optical setup and methods used to calibrate

and normalise the data.

3.1 Dicke narrowing

Dicke narrowing was first proposed in 1953 [28] to explain how collisional

processes can result in a narrowing of a Doppler-broadened spectral line. It

was first observed in the microwave region soon after [29] but took a further

half-century of technological advances to be able to observe the effect in

the optical regime, via optical pumping in cells with thicknesses between 10

22
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microns and 1 mm, using FM spectroscopy [30]. The net result of this effect

is that the hyperfine lines that are ordinarily masked by Doppler broadening

can start to be resolved, without the use of a counter-propagating pump

beam as in conventional sub-Doppler spectroscopy.

When the mean-free-path of the atoms l = uτ , with τ the lifetime of the

state and u the most probable thermal velocity, is greater than the length of

the cell then the atoms will experience collisions with the walls frequently.

From a simple geometry argument, we can estimate how important the wall

collisions are. In two dimensions, there is a rectangular excitation region

of thickness ` and beam waist 2w0, which we assume forms a hard edge.

Assume an atom starts from one of the walls, in the centre of the beam. In

order to experience the maximum interaction time, it must make it to the

edge of the beam before it hits the other wall. This limits the angle it can

make with the wall to θ = arctan(`/w0) ≈ `/w0 (or π − θ in the opposite

direction), using the small angle approximation. For a typical geometry, we

might have an interaction region with ` ∼ 200 nm and w0 ∼ 10 µm, which

gives θ ∼ 2 × 10−2 rad. Assuming a random uniform distribution of angles,

we find only θ/(π/2) ∼ 1% of the atoms experience the maximum interaction

time. The atoms that have a small θ will travel more slowly across the cell,

and therefore have a smaller Doppler shift.

For a strong laser field, the anisotropic interaction time results in a form

of velocity-selective-optical-pumping (VSOP), where only the atoms with a

small Doppler shift (the ‘slow’ atoms) have time to undergo optical pumping.

In this case the absorption near resonance is decreased. Figure 3.1 shows ex-

perimental data at a cell thickness ` = λ that shows this effect as the probe

laser power is increased. For moderate probe powers, the VSOP features are

narrow enough that the hyperfine structure is resolved, inside the Doppler

background. Hence VSOP can be a useful technique for sub-Doppler spec-

troscopy with a single laser [60]. For powers below ∼ 1 µW there is no

optical pumping even though the laser is focussed to a waist of w0 ≈ 10 µm,

corresponding to an intensity greater than the saturation intensity. This will

be explored further in section 3.3.

For a weak probe laser where optical pumping does not occur, the longer
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Figure 3.1: Experimental data for cell thickness ` = λ showing velocity selective

optical pumping features for various probe laser powers, as a function of linear

detuning ∆/2π over the 87Rb Fg = 2→ Fe = 1, 2, 3 and 85Rb Fg = 3→ Fe = 2, 3, 4

D2 resonance lines. At relatively low probe powers the VSOP features are narrow,

centred around the hyperfine resonances (compare to the pump-probe reference

spectrum shown in black). As the probe power is increased, there is significant

power broadening of the features. An offset of 0.02 has been added between each

trace for clarity. Zero detuning represents the weighted line centre of the D2 line.

interaction time means that the ‘slow’ atoms experience a higher linear ab-

sorption, and results in enhanced sub-Doppler absorption features on top of a

Doppler background. Figure 3.2 shows a theoretical comparison of the trans-

mission lineshapes in ultracold atom ensembles (blue), Doppler-broadened

thermal ensembles (red) and Dicke-narrowed thermal ensembles (green), cal-

culated for the 85Rb Fg = 3 → Fe = 2, 3, 4 transitions on the D2 line. The

lines are calculations based on realistic experimental parameters and nor-

malised to the same peak absorption. For the case of ultracold atoms, three

distinct Lorentzian absorption lines can be observed, each well separated by

the hyperfine splitting of the excited state. This is in stark contrast to the

Doppler-broadened case, where the lineshape approximates well to a single

Gaussian that masks the individual hyperfine features. The Dicke-narrowed

case has pronounced sub-Doppler features owing to the partial suppression of
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Figure 3.2: Calculated lineshape comparison between thermal atoms without

spatial confinement (red), ultracold atoms (blue), and thermal atoms confined

in a short cell showing the effects of Dicke narrowing (green). Calculated as a

function of linear detuning ∆/2π in the vicinity of the 85Rb Fg = 3→ Fe = 2, 3, 4

transitions, with zero detuning set to the Fg = 3→ Fe = 4 resonance.

the Doppler effect, but the Doppler background is still present in the wings

of the resonances.

The narrowing effect also has a coherent component, periodic in the thick-

ness of the cell. It is insightful to consider the superposition principle, where

the detected field downstream is the coherent sum of the incident light field

and the induced field that is re-radiated by the atoms in the same direc-

tion as the laser propagation. This principle becomes especially important

when considering interactions between the atoms (see chapter 5). The key

assumption is that collisions between atoms and the wall of the cell reset the

system, and cause an immediate decay back to the ground state [61]. The

dipolar response is therefore transient and starts when the atom is desorbed

from the surface and excited (after a relatively long time on the surface [62]).

We can thus assume that at one surface, the atom starts in phase with the

excitation field. Since only the transient response is important, we do not

have the π/2 phase lag between atom and field, as this is only the steady

state oscillator response.

As the cell is so short the time of flight is on the order of a few ns, faster
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than the natural lifetime of the first excited state (The Rb 5P state lifetime

is 27 ns). If there are no other interactions it is therefore likely that the atom

will reach the other surface without decaying through spontaneous emission,

and the collision with the second surface causes decay with photon emission.

The phase picked up by the laser precesses at the laser frequency ωp. The

atom sees a Doppler-shifted field and thus precesses at its perceived driving

frequency ωp +∆D. A phase difference therefore builds up between atom and

field. If the refractive index of the medium is close to unity, valid for low

density vapour,1 then this phase difference is simply given by ei∆Dt = e±ikvt,

where v is the component of the atomic velocity in the laser propagation

direction. The time t is simply the time it takes to travel from wall-to-wall,

t = `/v, so the phase difference by the time the atom gets to the other wall

is φ = ±k`. Significantly, this phase shift is independent of the velocity of

the atom - all velocity classes are phase shifted by ±k` when they reach

the opposite wall; the sign of the phase shift depends on the direction the

atom moves in, i.e. which wall it starts from. Given an uniform distribution

of atoms, there is an equal chance of an atom having a phase shift +k` as

one with −k`. Their emitted fields will then be 2k` out of phase with each

other. Thus if the cell thickness ` = (2n + 1)λ/2, with integer n, then we

expect the coherent emission to maximally cancel, whereas for ` = nλ the

cancellation does not happen and the spectra return to a Doppler-broadened

profile; this periodic ‘collapse and revival’ was first demonstrated by Dutier

et al. [63] in Cs and then by Sarkisyan et al. in 87Rb [60]. For thicknesses

greater than ` = λ/2 the effect washes out as collisions other than with the

walls become more likely. However, these enhanced narrow features have

been observed out to a thickness ` = 9λ/4 [60]. In the same work, Sarkisyan

et al. also showed that the thickness dependence exists only for transmission

spectroscopy, and not in fluorescence. One might expect this intuitively, as

the transmitted field comes from a coherent process, whereas the off-axis

fluorescence is incoherent.

1For high density vapour the index significantly varies across the resonance (see chap-

ter 6). However, the lifetime of the state reduces significantly due to atom-atom interac-

tions, to the point where a wall-to-wall transit is unlikely. In this case, Dicke narrowing

becomes less important to the lineshape.
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3.1.1 Modelling Dicke narrowing

The model used to describe Dicke narrowing in this work is phenomenological.

We model the number density of atoms with a given velocity v as a bimodal

distribution of two Gaussians

Nvc(v) = CN
(
A exp(−v2/u2) + (1− A) exp(−v2/(su)2)

)
(3.1)

= C (AGfast + (1− A)Gslow) , (3.2)

where C = (Au
√
π + (1 − A)su

√
π)−1 is a normalisation constant that en-

sures
∫
Nvc(v)dv = N . The first term is the contribution from ‘fast’ atoms

that make up the usual Maxwellian distribution (Gfast), weighted by the co-

efficient A and with most probable velocity u, and the second term is the

narrow Gaussian (Gslow) weighted by (1−A) and with most probable velocity

su, where s is a narrowing factor for the ‘slow’ atoms. An example velocity

distribution using this model is shown in figure 3.3, with parameters A = 0.2,

s = 10−4. When the Voigt profile is taken into account, there are effectively

two convolutions, Gfast ⊗ L and Gslow ⊗ L, where L is the Lorentzian com-

ponent. So long as the width of the ‘slow’ distribution is much smaller than

the Lorentzian component, we can approximate the convolution as between

the Lorentzian and a delta function. Hence the exact value of s is relatively

unimportant, so long as it is small enough (we use s = 10−4 in the subsequent

analysis, but the Gaussian form is retained for ease of normalisation). We

use A as a fit parameter to the low-density spectra, after which it is fixed

for a given cell geometry. As the density is increased and the Lorentzian

component becomes more dominant (see figure 2.3), the velocity distribution

becomes less important to the overall lineshape.

Figure 3.4 shows example spectra on the D1 and D2 lines which clearly show

the effects of Dicke narrowing. Panel (a) shows the D1 spectrum, with a

vapour thickness ` = 320 nm and temperature T = 210◦C, while panel (b)

shows the narrowing effect on the D2 line, with ` = 390 nm and T = 190◦C.

The red lines in the plot are fits to the experimental data (black), which allows

the parameter A to vary, along with the temperature and a line broadening

parameter. Compared with a Doppler-broadened spectra (grey), the thin cell

spectra are much narrower, allowing for resolution of the individual excited

state hyperfine levels. These are resolved more for the D1 line due to the
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Figure 3.3: Example velocity distribution based on equation (3.2) with A = 0.2,

s = 10−4. The contribution of zero-velocity class atoms is greatly enhanced,

simulating the Dicke narrowing features we observe in experimental spectra.

larger hyperfine splitting of the 5P1/2 excited state, and because there are

fewer transitions between individual hyperfine levels (8 for D1, as compared

with 12 for D2).

3.2 Mixing of reflection and transmission

Even though the nano-cell has a wedge profile allowing the local vapour

thickness to be tuned (see appendix A), the angle between the windows is

∼ 0.1 mrad so we can consider them effectively parallel. Because of this,

the cell acts as a low-finesse cavity,2 so etalon effects become important

in the transmitted and reflected lineshapes. This effect has been previously

observed and a theoretical model developed [65], based on mixing in elements

of the lineshape that appears in selective reflection (SR) spectroscopy [25, 26]

into the transmitted lineshape, and vice versa. In this section we show that

it is possible to predict this effect from classical thin film theory.

Example spectra of simultaneously measured transmission and SR signals

around the D2 resonance are shown in figure 3.5 for a range of cell tempera-

tures. In this case ` = 150 nm, where the atom-surface interactions broaden

2whose finesse, F , is related to the reflectivity, R, of the windows by F = π
√
R/(1 −

R) [64]. For sapphire, n = 1.8 and R = 0.28, yielding a finesse F ∼ 2.
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Figure 3.4: Dicke narrowed spectra as a function of linear detuning ∆/2π over

(a) the D1 line with a cell thickness ` = 320 nm and temperature T = 210◦C,

and (b) the D2 line, with ` = 390 nm and T = 190◦C. Black lines are experiment,

red are fits to the data using the model, and the grey lines show the Doppler-

broadened lineshapes that would be observed in a longer cell. The experimental

lines are clearly much narrower than an equivalent Doppler-broadened profile,

allowing resolution of the excited state hyperfine levels.

the spectral features (see chapter 4), so even at the lowest temperature the

hyperfine excited states are not resolved. The mixing of transmission and

SR signals manifests as an asymmetry in the measured lineshapes: in trans-

mission the asymmetry is in the detuning axis (i.e. a difference between the

positive-detuned side and the negative-detuned side); in SR the asymme-

try is in the signal axis, as the spectrum is no longer centred around the

far-detuned value (which is set to 1 in our analysis).

For thin layers the SR spectrum does not provide any advantages over trans-

mission spectroscopy, since they are intimately linked by the etalon nature
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Figure 3.5: Experimental data showing transmission (a) and selective reflection

(b) signals measured simultaneously on the D2 line for a cell thickness ` ≈ 150 nm

at various temperatures, showing the mixing of the two signals into each other as

a consequence of cavity effects. In the data the effect manifests as an asymmetry

for each line, which is most obvious at high temperature. In selective reflection

the asymmetry is in the signal axis, whereas in transmission the asymmetry is over

the detuning axis. Small VSOP features are present on the data at 308◦C, which

are masked by Dicke narrowing at lower temperatures.

of the cell. When the layer is thicker, however, one may expect the medium

to be completely opaque to conventional transmission spectroscopy. In this

case SR spectroscopy is a useful technique, since it only probes those atoms

that are near to the surface, and has been used extensively to extract shifts

and widths of atomic resonances [66–68].

3.2.1 Thin film theory

We wish to calculate the reflection of light at the boundary between layers,

which are shown schematically in figure 3.6. In principle, for an input wave

normally incident to an interface made up from many separate layers, the

reflection coefficient at the first interface depends on all the layers behind, as

there are waves travelling backwards from each interface which must be taken
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Figure 3.6: Reflections from each of the boundaries between layers. The thick-

ness of sapphire (∼ 2 mm) is much larger than the thickness of the Rb vapour

layer, which is of the order of the transition wavelength. For this reason, the re-

flections at the sapphire-Rb interfaces must be considered together, and can be

described using thin film theory. The reflection angles have been accentuated for

clarity - in the experiment the beam is close to normal incidence.

into account. However, as the thickness of the sapphire is much larger than

the vapour thickness, then we can regard the Sapphire-Rb interface (ABC)

in isolation from the Air-Sapphire interfaces. Just as in electrical pathways,

the reflectivity at a given boundary depends on the impedance mismatch

between the two sides of the boundary.

The impedance of a medium is defined as the ratio between electric and

magnetic field components, Z = Ex/Hy = (µrµ0/εrε0)1/2, for a wave propa-

gating in the z-direction with the electric field polarised along x [69]. For a

non-magnetic medium this reduces to Z = Z0/n with Z0 = (µ0/ε0)1/2.

As in figure 3.6, we consider the input wave as travelling from left to right. We

need to calculate the ‘input’ impedance, Zin, that is present at the boundary

AB. The reflected intensity is given by

R =

∣∣∣∣Zin − ZA

Zin + ZA

∣∣∣∣2 , (3.3)

which depends on ZA, the impedance of layer A. Following Brooker [69], we

consider each layer in turn, working from right-to-left. This is because for the

final layer there is only the transmitted field, with no backward-propagating

(reflected) field. We therefore start with the impedance of the final layer,

ZC. This is the ‘load’ impedance at the boundary BC as experienced by a

wave travelling through the thin layer B. The input impedance at AB is then
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calculated from [69]

Zin =
ZC − iZB tan (k`)

1− i(ZC/ZB) tan (k`)
. (3.4)

For the specific case we are concerned with, ZA = ZC = Z0/nsapphire with

nsapphire = 1.8 and ZB = Z0/n(ω) where n(ω) is the frequency dependent

refractive index of the Rb vapour.

Figure 3.7 shows the reflection coefficient as a function of vapour index n and

thickness ` for a vapour confined between two sapphire plates. For the case of

` = λ/4, the reflection coefficient changes by a factor of ∼ 3 between n = 0.8

and n = 1.2. Clearly, this can have a significant effect on the transmitted

lineshape. The maximum effect occurs at ` = λ/4 (and odd multiples of

λ/4), which can be understood in terms of interference of the light reflected

from the two interfaces AB and BC. The phase difference between the two

waves reflected here is 2k` + π, where the extra π phase shift is due to the

reflection at BC as the wave travels into a more dense medium.

It is insightful to see how this alters a single resonance line, before looking

at the full spectrum. To this end, we use the results of the previous chapter

for the weak-probe susceptibility of a two-level atom, namely

χ(∆) =
iK

Γ0/2− i∆
, (3.5)

n(∆) =
√

1 + χ(∆) , (3.6)

whereK is an amplitude factor. Figure 3.8 shows the refractive index profile,

n(∆), and the transmitted lineshape in the absence of etalon effects, T (∆)

(black lines in panels (a) and (b), respectively). The refractive index profile

gives rise to a frequency dependent reflectivity, R(n(∆)) (red line in panel

(a)), which significantly alters the transmitted intensity (red line in panel

(b)). The transmitted intensity has been normalised so that in the absence

of the atomic vapour (n = 1), there is unity transmission, consistent with the

presentation of experimental data. Considering reflections, the transmitted

lineshape TR(∆) is thus given by

TR(∆) = C T (∆)× (1−R(n(∆))) , (3.7)

where C = 1/(1− R(n = 1)) is the normalisation constant. This normalisa-

tion leads to areas of the spectrum (in the red-detuned wing) where TR > 1,
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Figure 3.7: Variation of reflectivity with layer index n for various vapour thick-

nesses, which are shown as vertical lines in the inset. For thicknesses which are

odd multiples of λ/4 the effect is maximal while for even multiples of λ/4 the effect

disappears completely. (inset) For a given layer index (calculated here for n = 1),

the reflectivity goes through oscillations as the length is varied.

due to less light being reflected when there are atoms present as compared

with an empty cavity, as the refractive indices are more closely matched. The

now asymmetric lines also cause an apparent shift of the peak absorption,

though this is not a shift of the resonance.

Due to the thickness dependence of the reflectivity, we can directly compare

the lineshapes where the etalon effect disappears, for ` = nλ/2, and where

it is maximal, for ` = (2n − 1)λ/4. Figure 3.9 shows two sets of data, with

equivalent N`-products. Panel (a) shows data for ` = λ/4 while for panel

(b) ` = λ/2, as the laser is tuned over the D2 resonance. The optical depths

are different due to the greater effect of dipole-dipole interactions at higher

density, and the apparent enhancement of the dipole-dipole interaction for

thicknesses ` ≤ λ/4 (see chapter 5). There are twelve individual hyperfine

transitions; three from each of the two hyperfine ground states of the two

isotopes. On the figure, the transitions can be identified in groups of three,

as the excited state hyperfine splitting (of the order of 100 MHz) is much

smaller than the ground state splitting (3 GHz for 85Rb, 7 GHz for 87Rb);

the outer two peaks at ∆ = −2.5 GHz and 4.5 GHz therefore correspond to
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Figure 3.8: Effect of reflectivity on a single absorption line. (a) The varying

refractive index (black) over a resonance line gives rise to a large change in the

reflectivity (red) of a thin layer, calculated for ` = λ/4, which in turn affects the

transmitted lineshape shown in panel (b). The solid red (black) line shows the

transmitted intensity with (without) reflectivity effects included, which have been

normalised so that when there is no interaction, n = 1 =⇒ T = 1.

the 87Rb lines, whilst the peaks at -1 and 2 GHz correspond to 85Rb. The

dashed lines show the calculated lineshape without reflectivity effects, present

on both panels but overlapped exactly with the solid line for ` = λ/2. The

solid lines show the calculated lineshape including reflectivity. At ` = λ/4,

and especially on the blue-detuned side of the resonance, the data clearly

fit better to the theory curve including reflectivity effects, and there is an

overall asymmetry to the lineshape that is not present at ` = λ/2.

3.3 The weak-probe limit

In many spectroscopic measurements, the aim is to investigate the properties

of the medium in question without significantly altering them. In the exper-

iments detailed in the majority of this work, this is achieved by making the

laser intensity weak enough that the fraction of atoms excited is very small
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Figure 3.9: Comparison of reflectivity effects at (a) ` = λ/4 (T = 250◦C,

N ≈ 5 × 1015 cm−3) and (b) ` = λ/2 (T = 226◦C, N ≈ 2.5 × 1015 cm−3), as a

function of linear detuning ∆/2π. The N`-product is approximately the same in

both cases. Black lines are experimental data. For ` = λ/4 the effect is maximal

and there is large asymmetry in the lineshape, which is not seen at λ/2. The

dashed lines (which overlaps with the solid line in panel (b)) show the predicted

lineshape in the absence of reflectivity effects.

and the probability of decay via stimulated emission is negligible compared

to spontaneous emission.

Conventionally, the saturation intensity is given by [70]

ISat =
2π2~cΓ0

3λ3
. (3.8)

The intensities required to be in the ‘weak probe limit’ depend crucially on

the geometry of the system [71, 72] and therefore are sensitive to the atomic

interaction time with the laser field. For conventional ‘long’ (cm and above)

cells with unfocussed beams, intensities of the order of 10−3ISat are required
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to observe a fully ‘weak probe’ response [46, 71].

We have already demonstrated in figure 3.1 how the anisotropic distribution

of interaction times in the thin cell leads to optical pumping for the ‘slow’

velocity classes which interact the longest with the beam, so we might expect

that from the confined geometry in the thin cell the intensity can be larger

before optical pumping occurs.

In order to minimise the vapour thickness variation across the beam (see ap-

pendix A), relatively tight focussing is required. This increases the intensity

and thus constrains the optical power that can be used, limiting the signal

on the detector. From a purely experimental point of view, it is useful to

know how much optical power we can use to maximise the signal-to-noise

ratio while still avoiding optical pumping.

To compare between cells with different thickness, we require the intensity

to be the same. Roughly speaking, we can consider the intensity in the cell

almost constant (within a factor of 2) when the cell is shorter than twice the

Rayleigh range, which is given by

zR =
πw2

0

λ
, (3.9)

and is the distance away from the focus in the propagation axis where the

spot size doubles.

For the data presented in figure 3.10 we have a focus with a 1/e2 radius

w0 = 15 µm, which gives zR = 3.6 mm. We therefore compare the peak

absorption for a range of cell thicknesses, up to 4 mm (the longest available

below the 7.2 mm cutoff). We plot the peak absorption as a function of the

laser intensity, normalised to the absorption value for the lowest intensity.

For thin vapour cells, the data suggests that the intensity can be orders of

magnitude larger than for longer cells while still avoiding optical pumping,

since the interaction time is severely restricted by the geometry of the cell.

In practice, this means we can use ∼ 1 µW of optical power focussed to

a waist of ∼ 10 µm in cells with ` < 2 µm before the signal is altered by

optical pumping. Another interesting feature of figure 3.10 is shown when

we look at the difference between open and closed transitions. In this case,

the open transition is the absorption measured at the resonance frequency
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Figure 3.10: Peak absorption as a function of laser intensity for cell thicknesses

of 120 nm (red), 390 nm (green), and 4 mm (blue), probed with a focussed laser

beam with a 1/e2 radius of 15 µm. The smallest intensities correspond to a power

of 50 nW and are already larger than ISat. The open (closed) symbols represent

the absorption on the open (closed) transition in 85Rb, Fg = 2 (3)→ Fe = Fg + 1.

of the 85Rb Fg = 2 → Fe = 3 transition, and the ‘closed’ transition is

the absorption measured with the laser on resonance with the 85Rb Fg =

3 → Fe = 4 transition. Since the medium is Doppler broadened, there will

be some contribution from the other excited state hyperfine levels, so the

‘closed’ transition is partially open. Despite this, we see a marked difference

in behaviour between the two, and in the longer cells the relative difference

between open and closed transitions is much larger than for the thin cells.

This is probably due to collisions with the cell walls that repopulate the

ground states equally, so pumping into a dark ground state is less important

in the thin cells than in the longer cells, since the atoms remain in the dark

state for much less time.

3.4 Summary

In this chapter, we have explored how in thin vapour cells, a number of effects

complicate the lineshapes of the transmitted and reflected spectra. We have
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extended the model developed in the previous chapter to these thin vapours,

and in the next chapters we will apply this model to extract data from

experimental spectra about the interatomic and atom-surface interactions.



Chapter 4

Atom–surface interactions

A direct consequence of using cells that are shorter than the atomic transition

wavelength is that atom-surface interactions can become important. In this

chapter we investigate these interactions in the thin cell. We show that even

for the first excited state, there is a significant interaction when the cell

thickness is of the order of the reduced wavelength, λ/2π. This interaction

leads to both a broadening and a shift of the resonance lines.

4.1 The van der Waals atom-surface

interaction

The van der Waals (vdW) interaction between two bodies is one of the most

important interactions in nature, responsible for the chemical bond of the

same name, a correction to the ideal gas law (the van der Waals equation [73])

and the non-resonant interaction between a pair of identical atoms, discussed

in the next chapter and recently measured directly using two trapped Ryd-

berg atoms [74].

The van der Waals interaction also exists between an atom and a nearby

dielectric surface, and acts to shift and broaden the atomic spectral features.

We consider the atom as an instantaneous dipole, as shown schematically

in figure 4.1. Near a surface, the dipole induces a local charge distribu-

tion within the partially reflecting surface mirroring the atom’s own dipole

39
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Figure 4.1: Schematic of the dipolar interaction with a surface. A dipole near

a surface locally polarises it, so the real dipole sees a mirror image of itself in the

surface. The interaction is attractive, leading to a red-shift of the atomic energy

levels.

moment [75]. This induced dipole in the surface interacts with the atomic

dipole in the same way as between two atomic dipoles [76]. In the short-

range regime, this interaction produces a potential ∆vdW = −C3/r
3, where

the C3 coefficient depends on the surface, and the atomic state. A posi-

tive C3 coefficient implies an attractive interaction. Further away from the

surface, retardation effects cause the scaling to drop to 1/r4, known as the

Casimir-Polder interaction [77], whilst at very large separations, thermal fluc-

tuations in the electromagnetic field change the interaction back to a 1/r3

potential [78]. The larger the polarisability of the atomic state, the stronger

the interaction with the surface, leading many experiments to use Rydberg

atoms to investigate these interactions [74, 75, 79].

In most cases the atom-surface interaction is attractive, leading to a red-shift

(shift to lower frequency) of the atomic levels [80]. A notable exception to

this is when a resonance in the surface (known as a surface polariton [81])

coincides with an atomic transition - in this case, the resonance can lead

to a blue-shift (shift to higher frequency) of the atomic lines [82]. There

have been extensive studies into the surface polariton resonances of sapphire

glass (which is used in this experiment) with Cs [83] and Rb vapours [82].

Surface polaritons are not an issue in our experiment, as the resonances

between Rb and sapphire are at lower wavelengths which are only accessible

via transitions from higher excited states than the 5P3/2 level [82].

The shift of the spectroscopic line is in principle the difference in the shifts

of the two states, the ground state 5S1/2 and the excited state 5P3/2 [84].

Previous experiments using sapphire in conjunction with the low-lying ex-

cited states of alkali metals have reported a spectroscopic C3 coefficient of
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Figure 4.2: Atom-surface potential in the nano-cell, calculated from equa-

tion (4.1). Both walls contribute a −C3/r
3 potential.

2 kHz µm3 for the 6S3/2 to 6P3/2 transition in Cs [84].

4.1.1 Atom-surface potential in the nano-cell

Between the two sapphire walls of the nano-cell, a Rb atom sees two poten-

tials - one from each wall. For a cell of thickness `, the energy shift is of the

form

∆vdW = −C3

z3
− C3

(`− z)3
, (4.1)

and is plotted in figure 4.2 in scaled units. At the centre of the cell, z =

`/2, the total shift is ∆vdW = −16C3/`
3. We include this potential into

the susceptibility model presented in the previous chapter by assuming an

average response, with a single line shift parameter ∆vdW and contribution

to the linewidth ΓvdW that is incorporated into the fitting (see chapter 5).

For ease of implementation we account for the increase in linewidth in the

same way as for self-broadening; an additional contribution to the Lorentzian

component. It should be noted that this is without any physical significance

- the actual modification to the lineshape is an inhomogeneous broadening

caused by the spatial anisotropy of the surface interaction. Hence to model

properly the atom-surface interaction, one needs to consider the transit of

the atoms across the cell and integrate the anisotropic surface interaction

they experience as a function of distance across the cell, as in reference [65].

Unlike Doppler broadening, where the symmetric velocity distribution leads
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to a symmetric broadening of the resonance line, the shifts from the atom-

surface interaction are only to negative frequencies, leading to an asymmetric

lineshape with a longer negative frequency tail, as noted in reference [84].

4.2 Monte-Carlo simulation of

interaction time distribution

Whilst fitting the experimental data using a single shift parameter provides

an upper bound estimate of the C3 coefficient, this assumes that all the atoms

interact with the walls only in the centre of the cell. Clearly this is a naive

assumption, and therefore can be improved by inferring the distribution of

atoms in the cell.

We estimate the distribution of atomic interaction times by employing a

Monte-Carlo (MC) simulation, where the atoms are assumed to start in ran-

dom positions on the edges of the interaction region. We assume this inter-

action region is a box with hard edges whose dimensions are determined by

the beam waist and cell thickness, and move at a speed u =
√

2kBT/m in a

random direction, uniformly distributed over the 4π solid angle. The atoms

are assumed to move ballistically - no interactions are included.

Since we investigate the interaction using CW spectroscopy, it is known

(chapter 3) that there is an anisotropic distribution of interaction times due

to the cell geometry. The spectroscopy is most sensitive to those atoms that

interact for longest, so we only count those atoms that traverse the whole

of the interaction region, i.e. those atoms that do not hit the cell windows.

These are the same ‘slow’ (small Doppler shift) atoms that are modelled with

the bimodal velocity distribution, so this MC method gives us an estimate of

how many ‘slow’ atoms there are compared to the amount that we attribute

to the full Doppler average.

The cell is split into segments with a width in the propagation direction δz.

The time the i-th atom spends traversing the region between position z and

z+ δz depends on the component of its velocity in the z-direction, vz. Away

from the edges this time is just δz/vz. The total time that the atoms spend
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Figure 4.3: Histogram of atomic interaction times as a function of position in

the cell, calculated from the Monte-Carlo model detailed in the main text. From

this we can infer a distribution of shifts.

in any region is then summed over N = 108 random positions and trajecto-

ries. In figure 4.3 we plot the result of the simulation, in this case calculated

for a cell thickness ` = 90 nm. The distribution is approximately parabolic,

symmetric about the centre of the cell. From the simulation we find the

fraction of atoms that interact fully, without hitting the walls, is approxi-

mately 0.02%, which roughly agrees with the simple geometric argument in

section 3.1.

The relative interaction times are used as a weighting factor, such that the

observed shift is the sum of the shifts at the centre of each histogram bin

weighted by the relative interaction time per bin, normalised such that the

sum of all interaction times equals 1. Compared to the approximation that

all the atoms see the shift at the centre of the cell, where the shift would be

−16C3/`
3, the weighted sum differs by a factor of 0.48. The variation in this

value across different runs (with different random seeds) is less than 0.001.

4.3 Experiment

Transmission spectroscopy is utilised to extract line shifts and widths; most

of the experimental details are documented in appendix B. An optical power

of 300 nW focussed to a 1/e2 radius of approximately 30 µm was used for
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Figure 4.4: Experimental D2 transmission spectra and fit to the susceptibility

model (black dashed lines) at a temperature T = 195◦C, corresponding to a num-

ber density N = 7 × 1014 cm−3, for various cell thicknesses: ` = 390 nm (purple,

x1); ` = 195 nm (blue, x2.5); ` = 110 nm (cyan, x5); ` = 90 nm (green, x7.5);

` = 70 nm (orange, x10); ` = 50 nm (red, x15). The data have been scaled by the

factor in brackets for clarity. Zero detuning is the weighted line centre of the D2

line.

these measurements, leading to an variation in the thickness of the cell over

the laser spot of around 5 nm. All data presented here were taken at a

constant temperature of T = 195◦C which corresponds to an atomic number

density N = 7× 1014 cm−3. In terms of linewidth contribution from dipole-

dipole interactions this corresponds to an additional collisional broadening

βN ≈ 2π × 70 MHz; the total expected shift is smaller than this, the exact

value depends on the thickness of the medium (see chapter 5).

In figure 4.4 we show the experimental data (coloured lines) with the fitted

model (black dashed lines). The data are fit only in the region shown on the

plot. The signal decreases as thickness is decreased due to decreased optical

depth and hence signal-to-noise worsens (there is less than 1% absorption for

the smallest two thicknesses), leading to larger errors in the fit parameters.

This also means that using transmission spectroscopy at this density, data

for the thinnest regions of the cell are inaccessible due to lack of absorption.

The thinnest region we can practically investigate is 50 nm. Despite the

optical depth limitations, we can still extract parameters from the fits. The

line shifts extracted from fitting the data are shown in figure 4.4. We fit
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Figure 4.5: Extracted shifts due to vdW atom-surface interaction. The line is

a fit to the data with a `−3 form. The inset shows the same data on a log scale.

these points to a function of the form K/`3 and extract the coefficient K =

−62 ± 9 kHz µm3. By assuming all of the atoms are in the centre of the

cell, where they experience the smallest shift, we can place an upper bound

on the C3 coefficient for a single wall interaction. In this case we have C3 ≤
K/16 = 3.9 ± 0.5 kHz µm3. A better estimate can be gained from the

spatial distribution of atomic interaction times, which was calculated with

the Monte-Carlo method in the previous section. Using this weighting, we

estimate a spectroscopic shift coefficient C3 = 1.9± 0.3 kHz µm3, similar to

previous measurements on the Cs 6S1/2 to 6P3/2 transition [84].

In figure 4.6 we plot the extracted line widths. Two sets of data are plotted:

the open symbols are the widths extracted directly from the fit parameters

from the data in figure 4.4; the closed symbols represent the zero-density off-

sets from fitting the density-dependent data presented in chapter 5. The two

pseudo-independent methods give similar results. Fitting the two methods

separately to a an inverse power law with a floating exponent p, we obtain

p = 1.0 ± 0.2 for the widths extracted from the individual fits, whilst an

exponent p = 1.5 ± 0.4 is obtained for the zero-density offset data. Neither

data set fit well to an inverse-cubed function (black dashed line). That these

broadening parameters do not fit to an inverse-cubed curve is not unexpected,

confirming that the Lorentzian broadening model is a bad approximation. It

is therefore somewhat surprising that the model still matches the experimen-

tal spectra as well as it does.
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Figure 4.6: Atom-surface broadening parameter extracted from fitting the data

in figure 4.4 (open symbols), and from the zero-density offset of the data presented

in figure 5.9. The solid lines are fits to an inverse power law, Γoff = K × `−p, with

exponents p = 1.5± 0.4 (red) and p = 1.0± 0.2 (black). The dashed black line is

a fit to an inverse-cubed function.

For small thicknesses, accurate determination of the line shift and width

is difficult due to the low signal-to-noise, limited by the overall amount of

absorption. An improvement to the current experiment which is relatively

easy to implement is to detect the off-axis fluorescence as the laser is tuned

across the resonance. By using a single-photon counting module, we can

detect very small fluorescence intensity, so the probe beam can remain weak.

In principle, aside from an overall background level (which should be uniform

over the laser scan and can be subtracted in postprocessing), the signal lies on

a zero background, and therefore the signal-to-noise for situations in which

there is very little absorption can be vastly improved. Preliminary work has

been carried out on this - further details can be found in appendix C of this

thesis; figure C.4 shows a fluorescence spectrum.

4.4 Outlook

We have shown how the atom-surface interaction shifts and broadens the

spectral lines as the cell thickness is reduced. The shifts which we extract

from a model of the weak-probe susceptibility follow the expected 1/`3 be-
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haviour, allowing an estimate of the C3 coefficient which characterises the

strength of the interaction between the sapphire surface and a Rb atom in

the 5P3/2 state. Using the measured shifts in combination with a Monte-Carlo

simulation to estimate the interaction time spatial distribution, we estimate

the atom-surface interaction strength to be C3 = 1.9 ± 0.3 kHz µm3. The

current model uses a bad approximation for the atom-surface contribution

to the spectral line widths. Including a full treatment of the corresponding

inhomogeneous broadening caused by the surface interaction would improve

the theoretical model, and will be a subject of future work.

In extremely thin vapours at relatively low density where the amount of

absolute absorption is small, fluorescence measurements yield better signals

than transmission spectroscopy (see appendix C) and hence should allow for

more precise determination of line shifts. Specifically, it would allow access

to the thinnest regions of the cell where currently transmission spectroscopy

is limited by poor signal.

As density is increased, the atom-surface interaction becomes less impor-

tant to the overall system, as the dipole-dipole interactions between iden-

tical atoms eventually dominate. As a comparison, for a cell thickness of

90 nm, we observe an atom-surface shift of around 100 MHz, as compared to

2 GHz at the highest density due to dipole-dipole interactions. Similarly for

the broadening, the dipole-dipole interaction eventually becomes around an

order of magnitude higher than the atom-surface broadening at the highest

atomic densities, as we will see in the next chapter.



Chapter 5

Atom–atom interactions

Up to this point, we have only alluded to the effect that the interactions

between identical atoms have on the spectral properties. In many cases,

these inter-particle interactions are negligible. However, if the atoms are

separated by less than the emission wavelength, λ, resonant dipole–dipole

interactions modify the radiative decay rate [85] and induce a splitting or

shift of the resonance [12].

When these interactions become important, one can no longer consider the

system as a sum of individual responses. In this regime we say that the

response is cooperative (other literature also refers to this as collective) - the

response of one atom depends on the response of the ensemble, the individual

systems are coupled.

In this chapter we map out the transition between independent atoms and

a fully interacting cooperative ensemble, moving smoothly between the two

by increasing the density of atoms confined in the nano-cell. We can charac-

terise the importance of the interactions in the system by the dimensionless

parameter cooperativity parameter, C, which is given by [86]

C = 2π Nk−3, (5.1)

where, as in previous chapters, N is the atomic density and k = 2π/λ with

λ the transition wavelength. Physically this parameter reflects the number

of atoms confined in a box whose dimensions are the reduced wavelength,

λ/2π = k−1, and hence interactions become important for C ≥ 1.

48
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5.1 The dipole-dipole interaction between

two identical atoms

We start by looking at the interaction between two atoms. The interaction

potential between two bodies can be expanded in a power series as [87]

Vdd(r) =
1

~
∑
n

Cn
rn

(5.2)

where the Cn terms are coefficients, r is their separation and n is the or-

der of the interaction. This is known as the multipole expansion, since the

Cn/r
n each describe a particular interaction between charge distributions,

starting with monopole-monopole terms and extending through monopole-

dipole, dipole-dipole, dipole-quadrupole and so on. The lowest order terms

are the longest ranged, and the physical bodies involved in the interaction

(neutral atom, ion, molecule etc.) determine the lowest order term involved.

For two identical neutral atoms, the lowest order interaction is for n = 3, the

dipole-dipole interaction, and the interaction strength scales proportionally

with the number density, since r−3 ∝ N .

In general, the dipole-dipole interaction can be understood in terms of the

pair states of the two contributing atoms. For two two-level atoms with

ground state |g〉 and excited state |e〉, the bare atomic states and the pair

states of the joint system are shown in panels (a) and (b) of figure 5.1, respec-

tively. In the absence of dipole-dipole interactions, the energies of the singly

excited states |ge〉 and |eg〉 are degenerate. The dipole-dipole interaction

couples the two pair states, according to the interaction Hamiltonian

Hdd = ~

(
0 Vdd

Vdd δ

)
, (5.3)

where Vdd is the strength of the interaction, and δ is difference in energies of

the initial and final pair states. When δ = 0, the interaction is known as the

resonant dipole-dipole interaction. For the case in figure 5.1, the interaction

between the two singly excited states is resonant, since the initial and final

pair states have the same energy. The new eigenstates of the coupled system

are known as the Dicke states, |±〉 = 1√
2
(|eg〉±|ge〉), the symmetric and anti-

symmetric superpositions of the two pair states, whose energies are shifted
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Figure 5.1: Resonant dipole-dipole interaction for two two-level atoms in the

individual and pair bases. (a) In the bare atomic basis, states |g〉 and |e〉 are

separated by an energy ~ω0. (b,c) In the pair state picture, in the absence of

dipole-dipole interactions the singly-excited states |ge〉 and |eg〉 are degenerate.

The resonant dipole-dipole interaction lifts the degeneracies of the singly excited

states, forming the Dicke states |±〉 = 1√
2
(|eg〉±|ge〉). Note that the energies of all

the pair states will be shifted by induced (non-resonant) dipole-dipole interactions

by a small amount, but for this system, these are small compared with the resonant

interaction.

by the eigenvalues of the interaction Hamiltonian

∆E =
δ ±

√
δ2 + 4V 2

dd

2
. (5.4)

For resonant interactions, δ = 0 and ∆E = ±Vdd. When the two pair

states do not have the same energy, there are two regimes of interest. At

short range, Vdd � δ and the eigenvalues approximate to ±Vdd, i.e. the

interaction behaves in the same way as the resonant case. However at long

range, known as the van der Waals regime where Vdd � δ, we find ∆E ≈
δ + V 2

dd/δ, and − V 2
dd/δ. These non-resonant interactions are known as

induced dipole-dipole interactions. Although there is always a contribution

from these non-resonant interactions [88], they scale as V 2
dd ∝ C6/r

6 and

therefore are unimportant when resonant interactions are dominant, which

is the case in the present work. For further discussion on the dipole-dipole

interaction see, for example, reference [88].
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Figure 5.2: (a) Illustration of the dipole-dipole interaction between two atoms,

showing the dipole moment vectors µ1,2 and the vector between them r, which

creates an angle θ with the alignment axis (taken in the z-direction).

5.1.1 Static dipoles

We first consider the case of two static dipoles, before considering the effect

of oscillating dipoles. To avoid confusion, ‘static’ refers to the dipole moment

vector, not the atomic motion (though this is also neglected for now). Figure

5.2 shows the geometry of the problem. Two dipoles with moment vectors

µ1 and µ2 are displaced from each other by r, which forms an angle θ with

the polarisation axis, in this case in the x-direction.

If we consider dipole 1 to be at the origin, then the second will experience

an electric field given by [89]

Edipole(r) =
1

4πε0

(
3
µ1 · r
r5

r− µ1

r3

)
. (5.5)

The second atom will then experience an interaction with the dipolar field

due to its own dipole moment

~Vdd = −µ2 · Edipole . (5.6)

Combining the two, we obtain

Vdd =
1

4πε0~

(
µ1 · µ2

r3
− 3

(µ1 · r)(µ2 · r)

r5

)
. (5.7)

In the presence of an external field, the dipoles will align themselves to the

polarisation of the field. For the case presented in figure 5.2, the dipoles will

align so that µ1 = |µ1|ẑ and µ2 = |µ2|ẑ. If |µ1| = |µ2| = µ, the interaction
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simplifies to

Vdd = − µ2

4πε0~

(
3 cos2(θ)− 1

r3

)
. (5.8)

The sign of Vdd therefore changes depending on the arrangement of the

dipoles. This is similar to the case of two bar magnets, aligned along the

vectors µ1,2. When the magnets are end-to-end (θ = 0) opposite poles are

near each other and the interaction is attractive (Vdd < 0) and therefore

leads to a red-shift of the resonance, whereas if they are placed side-to-side

(θ = π/2), the interaction is repulsive with a corresponding blue-shift.

For an isotropic distribution of two-atom pairs, taking the angular average

over the 4π solid angle gives 〈Vdd(θ)〉 = 0. For this interaction to be non-

zero, one must also consider the effect of the propagation phase due to the

laser. However, in our experiment we have a pseudo-2D system because

of the confinement in the propagation direction. Taking the limit of this,

the angular average reduces to an average over θ and hence 〈cos2(θ)〉 = 0.5

implying a non-zero dipole-dipole interaction regardless of the propagation

phase. Clearly, this reduced dimensionality will depend on the thickness of

the medium, and one therefore expects a geometry dependent interaction.

This will be discussed in more detail later in this chapter.

To quantitatively determine when the dipole-dipole interaction becomes sig-

nificant, we can set V (r) equal to the natural linewidth Γ0, and rearrange.

We can express µ2 as [46]

µ2 =
3πε0~
k3

(2Je + 1)

(2Jg + 1)
Γ0 , (5.9)

with

µ = 〈Jg|er|Je〉 . (5.10)

Then the dipole-dipole interaction becomes significant when

3

8

1

(kr)3

(2Je + 1)

(2Jg + 1)
= 1 , (5.11)

which is satisfied when

kr = 3

√
3(2Je + 1)

8(2Jg + 1)
. (5.12)

For the D1 line, this yields kr = 3
√

3/8 ' 0.7, while for the D2 line, we find

kr = 3
√

3/4 ' 0.9; or in terms of the cooperativity parameter, C ∼ 2π.
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5.1.2 Oscillating dipoles

For oscillating dipoles, there is a relative phase of eikr between the dipoles

which is due to the finite propagation speed of light. The full electric field of

equation (5.5) then has the more general form [90, 91]

Edipole(r) =
1

4πε0

[(
1

r3
− ik

r2

)
(3r̂(r̂ · µ1)− µ1) +

k2

r
(r̂× µ1)× r̂

]
eikr ,

(5.13)

where r = |r| and r̂ = r/r. The static case can be recovered by setting k = 0,

i.e. an oscillation with infinite wavelength. As before, we assume that an

incident electric field polarises the atoms so that their dipole moments align.

In terms of Γ0, the complete pair potential has the form

Vdd = −3Γ0

4

[
1− ikr

(kr)3
(3 cos2 θ − 1) +

1

kr
sin2 θ

]
eikr , (5.14)

In contrast to the static case of equation (5.7), the dipole-dipole interac-

tion with oscillating dipoles is a complex quantity. The real part, as in the

static case, modifies the energy levels, while the imaginary part modifies the

radiative decay rates. The new decay rates and eigenenergies are given by

Γ± = Γ0 ± Γdd , (5.15a)

∆± = ∆±∆dd , (5.15b)

which are related to the real and imaginary parts of Vdd by [92]

Γdd = −2 Im(Vdd) , (5.16a)

∆dd = Re(Vdd) , (5.16b)

where the ± subscripts refer to the Dicke states |+〉 and |−〉. Figure 5.3

shows how the interaction scales with the separation of the dipoles, for the

two cases θ = 0 and θ = π/2 which correspond to the maximal attractive

and repulsive interactions in the static case, respectively. Also plotted is

the angular average, 〈θ〉, which has a net red-shift at small separations.

The dotted line in each panel is at kr = 1. For separations greater than

this, we are in the far field and only the long-ranged 1/r term remains,

which combined with the eikr term make up a decaying spherical wave. The
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Figure 5.3: Dipole-dipole induced shift ∆dd (black) and width Γdd (red) as a

function of separation, for θ = 0, θ = π/2 and the angular average 〈θ〉 (where

〈sin2(θ)〉 = 〈cos2(θ)〉 = 1/2), based on equation (5.14). The dashed vertical lines

are at kr = 1.

amplitude of this is much smaller than Γ0, so the dipole-dipole interaction

between any two atoms in this regime is negligible. However, this term can

still be important for an ensemble of dipoles, as will be discussed later in

this chapter. In the limit of zero separation, we find that Γdd → Γ0. We see

that the decay rate of the Dicke states |+〉 and |−〉 are now enhanced and

suppressed, respectively. State |+〉 decays twice as fast as the natural rate,

a process known as superradiance, whilst the antisymmetric state does not

decay at all, called subradiance [11]. As the separation is varied, the decay

rate oscillates between super- and sub-radiant, first observed by DeVoe and

Brewer in a landmark experiment with two trapped ions [85].

For separations kr ≤ 1 the near field is dominated by the 1/r3 term, and

hence the shift of the lines diverges - either to lower or higher energies,

depending on orientation, in agreement with the static case.

Figure 5.4 shows the angular dependence of Γdd and ∆dd, for a fixed separa-

tion of kr = 1. In this case the real part gives rise to a shift that oscillates

with θ, in the same way as the static case. The decay rate modification due

to the imaginary part of Vdd also varies with the orientation, but much less

significantly than the real part.
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Figure 5.4: Dipole-dipole induced shift ∆dd (black) and width Γdd (red) as

a function of the dipole orientation angle θ, for a separation kr = 1, based on

equation (5.14).

5.1.3 Potential curves

To illustrate the effect of the dipole-dipole interaction for a complex atomic

system, we calculate the energies of the pair states directly. Here the interac-

tion is only included for the static case, with θ = 0. The interaction potential

is then simply

Vdd(r) =
1

2πε0~
µ2

r3
. (5.17)

Before calculating this interaction for the full atomic system, it is useful to

first look at the simplest case, that of a pair of two-level atoms, as shown in

figure 5.1. In the absence of interactions, the Hamiltonian for this system

using the pair state basis {|gg〉, |ge〉, |eg〉, |ee〉} is

Hpair = ~


0 0 0 0

0 ω0 0 0

0 0 ω0 0

0 0 0 2ω0

 . (5.18)
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Neglecting the off-resonant interactions, the resonant dipole-dipole interac-

tion then couples the two singly-excited states

Hdd = ~


0 0 0 0

0 0 Vdd 0

0 Vdd 0 0

0 0 0 0

 . (5.19)

The total matrix Hpair +Hdd can then be diagonalised to find the eigenvalues

of the coupled interacting system.

For a real atomic system, there are many more states, coupled by σ± and

π transitions according to the dipole selection rules [93]. We can write

out the full atomic structure using the uncoupled basis in terms of the

quantum numbers L, S and I, (the orbital, spin and nuclear angular mo-

menta, respectively). In this basis, any state of the system can be written

as |L,mL, S,mS, I,mI〉, and the Hamiltonian for the S (L = 0) to P (L = 1)

transition is a square matrix with dimensions 4(2S+ 1)(2I+ 1). This uncou-

pled Hamiltonian has previously been used extensively to predict transitions

in Rb [46, 51] and Cs [52], particularly in the presence of applied magnetic

fields [39, 58, 59]. Ignoring the substructure, we can write the Hamiltonian

as a 4× 4-matrix; the atomic part can be written as

Hatom =


HS 0 0 0

0

0

0


. . .

HP

. . .



 . (5.20)

where each element inside the matrix is itself another matrix of size (2L +

1) × (2S + 1) × (2I + 1), and the P-state is broken down into terms with

∆mL = 0, ±1. The two-atom pair Hamiltonian is then expressed as

Hpair = 1⊗Hatom +Hatom ⊗ 1 , (5.21)

where the ⊗ symbol represents the tensor product and 1 is an identity matrix

of the same dimensions asHatom. The dipole-dipole interaction becomes more

complex in this basis, as we need to take into account coupling states with

different angular momenta (σ± and π transitions). In the static case, when
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the dipoles align with the applied field (and each other) and for θ = 0, the

interaction potential can be written as [94]

Vdd =
µ1+µ2− + µ1−µ2+ − 2µzµz

4πε0~r3
, (5.22)

where the +,−, z are associated with the σ+, σ−, π transitions, respectively.

In a two-atom basis, we write this as

Vdd,pair =
1

4πε0~r3
(µ+ ⊗ µ− + µ− ⊗ µ+ − 2µz ⊗ µz) , (5.23)

where the µ+,−,z are the matrices

µ+ = µ


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 , µ− = µ


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , µz = µ


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ,

(5.24)

and the 1’s are identity matrices of size (2S+ 1)(2I + 1). For the Rb ground

state transition we have L = 0 or 1, S = 1/2 and I = 3/2 or 5/2 (for 87Rb

or 85Rb, respectively). The total matrix Hpair + Vdd,pair is then diagonalised

to find the eigenenergies of the pair states.

Figure 5.5 shows the energy level structure as a function of the average

interatomic spacing, rav = 5/9N−1/3. We plot to a minimum separation

rav ≈ rW , the limit of the binary approximation (see section 5.2.2). For

computational convenience, we have taken the case of 87Rb (I = 3/2 for
87Rb as compared to I = 5/2 for 85Rb, making the matrix smaller and hence

computationally less demanding). The molecular states are broadly split into

SS, SP+PS, and PP. The P-states can be broken down further into their fine-

structure components, P1/2 and P3/2, split by ∼ 7 THz. We show in the figure

the lines in the 5S1/2,5P1/2 manifold. At large separations the next biggest

splitting is then the S-state hyperfine interaction (6.8 GHz), and finally the

P-state hyperfine levels (800 MHz). The Zeeman sublevels are included in

the Hamiltonian but are degenerate in the absence of an applied magnetic

field.

As the atomic separation decreases, the lines that are degenerate at infinite

separation diverge, which becomes more significant as the separation de-

creases. For relatively large separations the lines split symmetrically (inset),
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Figure 5.5: Pair-state energies in the two-atom basis for the 5S1/2-5P1/2 tran-

sition in 87Rb. The main plot shows the energies of the 5S1/2,5P1/2 pair state

manifolds, with both the ground and excited state hyperfine structure. As the

atomic separation is decreased, the degeneracies of the states are lifted, resulting

in a splitting and shift of the lines at small separations. The inset shows a zoom of

the 5S1/2 Fg = 2,5P1/2 Fe = 1 manifold, where the states start to split. At a sep-

aration r = λ/2π the maximum splitting is ±3Γ0/2, in line with equation (5.17).

Zero on the energy scale represents the line centre energy of the 87Rb 5S1/2,5P1/2

pair state without hyperfine structure at infinite separation.
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and at a separation r = λ/2π, the maximum splitting is ±3Γ0/2, as expected

from equation (5.17). As the separation decreases further, some lines turn

over indicating an overall shift of the line.

5.2 Dipole-dipole interaction for an ensemble

of atoms

The total dipole-dipole interaction energy that one atom experiences can be

described as a sum over all of the other atoms in the system. For an isotropic

medium with density N , the total interaction is given by an integral over the

whole space

Vtot = N

∫ ∞
0

4πr2 V (r) dr . (5.25)

For the resonant dipole-dipole interaction of equation (5.14) there are terms

proportional to r−3, r−2 and r−1, hence even though the furthest atoms con-

tribute least, there are more of them so their sum still remains important,

not just the nearest neighbour. The problem with equation (5.25) is because

of the r−3 term, the integral diverges at r = 0. The usual approach (see ref-

erences [70, 91, 95]) is to set the lower limit to some value a, which essentially

places the dipole in a spherical cavity of radius a. This dipole is then subject

to a local electric field Eloc, which is known as the Lorentz local field [96],

Eloc = E +
P

3ε0
, (5.26)

where E is the applied field and P = N〈µ〉 is the macroscopic polarisation

of the medium, related to the average individual dipole moment. The under-

lying mechanism of light scattering is the interference between the incident

field and the local field produced by induced oscillatory dipoles, as in the

Ewald-Oseen extinction theorem [97]. In a dense medium, this dipolar field

produced by the surrounding dipoles modifies the optical response of each

individual dipole.
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5.2.1 Lorentz shift

By relating the macroscopic to the microscopic response of the system, we

can calculate the effect of the dipole-dipole interaction across the medium.

The susceptibility χ determines the macroscopic response of the medium,

whereas the polarisability α determines the individual atomic response. In

terms of the polarisability

P = 4πε0NαEloc = 4πNα(ε0E + P /3) (5.27)

and solving for P we find a relation between the macroscopic variable χ

and the single dipole parameter α which is referred to as the Lorentz–Lorenz

law [96]

χ =
4πNα

1− 4
3
πNα

. (5.28)

The polarisability is related to the weak-probe susceptibility for independent

atoms (equation 2.22) by

α =
χatom

4πN
, (5.29)

and substituting for α we find

χ = − Nµ2/ε0~
∆ + iΓ0/2 +Nµ2/3ε0~

, (5.30)

which is equivalent to equation (2.22) but with a density-dependent shift in

the resonance frequency known as the Lorentz shift

∆LL = −Nµ
2

3ε0~
. (5.31)

5.2.2 Collisional effects

In a thermal ensemble the medium is never really isotropic - at any given time

the atoms are randomly distributed. For a random distribution of atoms, the

spacing between atoms r has the distribution [98]

W (r) = 4πNr2e−4π/3Nr3 , (5.32)
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whose average value is

rav =

∫ ∞
0

rW (r) dr ≈ 5

9
N−1/3 , (5.33)

and in a collision the atoms can get much closer than this. These collisional

processes have been previously studied in detail (see, for example, Foley [99],

Lewis [88] or Thorne [87]). We assume that any collision involves only two

atoms, known as the binary approximation, which is valid as long as [87]

4π

3
Nr3

W < 1 , (5.34)

where rW is known as the Weisskopf radius. This is a statement that if

an atom is at the centre of a sphere, there will be at most one other atom

within a distance rW . The radius depends on the interaction strength, which

is determined by µ, and the mean relative velocity of the atoms, given by [100]

v̄ =
√

16kBT/πm . (5.35)

The interaction strength can be characterised by the coefficient β (known as

the self-broadening coefficient, discussed below), and the Weisskopf radius is

then [100]

rW =

√
β

2πv̄
. (5.36)

For the D2 line in Rb, rW = 14 nm, so the binary approximation breaks down

at a density Nbinary ≈ 1017 cm−3. In a thermal vapour, this corresponds to a

temperature T ≈ 360◦C.

Beyond this density, multi-perturber interactions must be considered [67,

101, 102], which are beyond the scope of this thesis. There are two widely

discussed cases of collisional effects, which are valid for different parameter

regimes; the impact approximation and the quasistatic approximation.

The impact approximation assumes the collisions are described by a classical

trajectory with an impact parameter that represents the closest approach

distance. The strength of the dipole-dipole interaction is therefore tran-

sient, causing a dephasing of the dipoles. In the simplest (Lorentz) model,

this process is described by a decay process with a lifetime, and associated

linewidth τimpact = 1/Γimpact. This approximation assumes that an atom
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moves a significant amount during a collision, which is valid at low density

with fast-moving atoms for resonant (or near-resonant) excitation [87].

The quasistatic approximation assumes the opposite conditions to the impact

approximation; the atom does not move significantly during the collision,

and so the motion does not play a significant role; in this case the interaction

reduces to the case presented in the previous section. This approximation

is valid for high density vapour, where the atomic motion is slow, and for

off-resonant excitation.

Both of these approximations, however, give essentially the same results - an

increase in the linewidth and a shift of the line centre that are both linearly

proportional to the density. In the binary approximation, the collisional

linewidth (FWHM) is given by [51]

Γcol = βN =
Nµ2

3~ε0

√
2Jg + 1

2Je + 1
= 2π

√
2Je + 1

2Jg + 1
Γ0Nk

−3 , (5.37)

or in terms of the cooperativity parameter

Γcol =

√
2Je + 1

2Jg + 1
Γ0C , (5.38)

For the D2 line, the self-broadening coefficient β = 2π × 1.032 × 10−7 Hz

cm3 [51]. The collisional linewidth has a Lorentzian profile, which must be

convolved with the Voigt profile of equation (2.28). However, we can take

advantage of the associative property of convolution and the fact that a

convolution of two Lorentzians yields another Lorentzian whose width is the

sum of the two, so the total Lorentzian component of the linewidth is just

Γtot = Γ0 + Γcol . (5.39)

This simplifies the analysis so that including collisional broadening into

the weak probe susceptibility model we need only make the substitution

Γ0 → Γtot.

The collisional shift is less well documented and has no simple analytic form.

Friedberg, Hartmann and Manassah [95] suggest that the collisional shift

should be a blue-shift. Experimental data is limited, as in linear optics, sep-

arating out the collisional shift from the Lorentz shift is challenging, since
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they are both linearly dependent on density and are the same order of mag-

nitude [95]. However, Maki et. al. [66] showed the collisional shift can be

separated from the Lorentz shift in a nonlinear optical process, finding em-

pirically that on the potassium D lines, ∆col ≈ ∆LL/1.4 for the D1 line and

∆col ≈ ∆LL/4.8 for the D2 line, i.e. the collisional shift is a red-shift.

5.3 Cooperative effects

One must also consider the effect of cooperative interactions. In a thermal

gas, these cooperative effects are usually suppressed by motional dephasing

of the dipoles, but when the density becomes high enough the interactions

can dominate completely, as we shall demonstrate experimentally later in the

chapter. The timescale due to the dipole-dipole interaction in this regime can

be much smaller than any timescale due to motion, so a quasistatic picture is

recovered and we once again treat the medium as an ensemble of motionless

dipoles.

5.3.1 Cooperative Lamb shift

The ability to measure the cooperative Lamb shift (CLS, also known as the

collective Lamb shift [103, 104]) is one such consequence of this quasistatic

picture. It is named after the Lamb shift [105] whereby the interaction with

the vacuum field induces a shift (radiative correction) in the energy levels.

This interaction can be viewed as the electron emitting and subsequently

reabsorbing a virtual photon [95].

The CLS is an extension of this picture to two atoms - the emission and ab-

sorption of virtual photons now occurs between pairs of atoms [95]. This leads

to an additional energy shift of the transition frequencies that are dipole-

coupled. Crucially, this is a coherent process and the net observable shift

depends on the geometry of the problem.

Qualitatively, the effect of the CLS can be understood as the anisotropy

of the dipole-dipole interaction combining with the anisotropy of the spa-

tial distribution of atoms in the thin cell. Consider an atomic vapour with
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macroscopic thickness, and take an individual atom within the vapour. The

dipole-dipole interaction this atom experiences depends in principle on every

other atom in the sample, but for the sake of this argument, consider the

dipole-dipole interaction to have a finite range, which we take to be R. As-

suming we are far from the walls, the atom experiences interactions within a

sphere, centred on itself. The total dipole-dipole interaction is then a sum of

each pairwise interaction, with separation r and angle θ, as discussed earlier

in the chapter. Assuming uniform atomic density, θ is also uniformly dis-

tributed between the first atom and any other neighbouring atom. The total

interaction will then be a red-shift, owing to the anisotropy of the dipole-

dipole interaction (see figure 5.4). However, as the thickness of the medium

decreases below the radius of the sphere, the angular distribution becomes

skewed, with θ more likely to be close to 0 or π, leading to a greater red-shift

of the lines for the thinnest vapours. For oscillating dipoles the phase factor

eikr complicates this simple picture, and if the dipoles are aligned by the

presence of an external laser field (propagating in the z-direction) then there

is an additional phase factor eiκ(z−z′), where κ is the wavevector of the laser

field and the two atoms are at positions z and z′.

In the limit of many atoms, the sum becomes an integral over the coordinate

space. For a slab geometry, the excitation region forms a cylinder with radius

bmuch bigger than its thickness ` (a pancake shape). With the atomic dipoles

aligned with the laser polarisation, the total shift due to the interaction is

the treble integral [95]

∆CLS = lim
a→0
−Nµ

2

~ε0`
Re

∫ `

0

dz

∫ `

0

dz′
∫ ∞
a

2πb db eiκ(z−z′)Vdd,cyl(b, z − z′),

(5.40)

with the interaction potential in cylindrical coordinates given by

Vdd,cyl(b, z − z′) =

[
1

2

(
1 +

(z − z′)2

r2

)
k2

r

+
1

2

(
3

(z − z′)2

r2
− 1

)(
ik

r2
− 1

r3

)]
eikr.

(5.41)

The integrals in (5.40) are over the first atom at position z, and the second

atom a distance r away, where r2 = b2 + (z − z′)2, and for a near-resonant

laser field, κ ≈ k.
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For the case presented in this work where b� `, the solution of this integral

produces a total shift that depends on the density of the medium and the

thickness [95]

∆dd = ∆LL +
3

4
|∆LL|

(
1− sin 2k`

2k`

)
. (5.42)

The first term is the familiar Lorentz shift and the second term is the CLS,

which depends on twice the propagation phase k` due to the re-radiation by

the second dipole. In a thermal vapour, the total shift is then the shift of

equation (5.42) plus the collisional shift

∆tot = ∆dd + ∆col . (5.43)

There are two remarkable features of equation (5.42). First, it is only in

the limit of zero thickness that the Lorentz shift can be measured; in the

limit of a thick slab with k` � 1 then one would measure only a quarter of

the Lorentz shift. The second feature is that the CLS is a shift to higher

energy, which can be understood from the pairwise potential; in a thin slab

all the dipoles lie in the plane, and therefore oscillate in phase, such that the

dipole–dipole interaction reduces to the static case. After averaging over θ

this gives the maximal attractive interaction resulting in the Lorentz shift

to lower energy. As one moves out of the plane in the propagation direction

the relative phase of the dipoles changes, allowing more interactions with a

blue-shift in the angular average.

Though the CLS has been the topic of many theoretical works, including

studies of the CLS in various geometries [106, 107] and the link between su-

perradiance and CLS [103, 108–110], experimental observations of the CLS

are few in number, limited to two examples (other than the present work)

involving three-photon excitation in the limit of the thickness being much

larger than the transition wavelength in an atomic gas [111], and x-ray scat-

tering from Fe layers in a planar cavity [104, 112].

5.3.2 Cooperative decay rate and superradiance

With two atoms, we showed in the previous section that the real part of the

dipole-dipole interaction gives rise to a shift of the lines, whilst the imaginary
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part is responsible for a modification of the decay rate. It is therefore logical

that this fundamental link between dipole-dipole induced shift and decay

rate also extends to systems involving a large number N of atoms.

The enhancement or suppression of the decay rate, super- and sub-radiance,

in atomic ensembles is a complex problem that has been extensively studied

theoretically [9], with many experimental verifications of superradiant emis-

sion in various systems [18, 113, 114]. Sub-radiance, on the other hand, has

only been observed for two atoms [85]; the observation of N -atom subradi-

ance remains a current area of interest [115, and refs. therein].

Superradiance arises because correlations between atoms in an ensemble

cause the atoms to emit coherently and in phase with one another [9]. The

emitted field is proportional to N and therefore the intensity proportional

to N 2. By an energy conservation argument, the duration of this emission

must be shorter than for N independent emitters, and hence the peak rate of

this emission must be higher. The emission process itself is normally consid-

ered as an ensemble of spin-1/2 particles with spin up and down representing

the excited and ground-states of the atom, prepared in the symmetric state

with all spins up. In the time domain, the decay of this system leads to a

characteristic emission curve (figure 1(b) of ref. [9]) as the decay rate reaches

a maximum value proportional to N 2 when half of the atoms have decayed

and then drops to zero at late time [11]. In a similar way to the cooperative

Lamb shift, the additional phase factor due to the laser field also affects the

superradiant emission, causing it to be strongly peaked in the propagation

direction [11, 116].

For the two-atom system, the real part of the dipole-dipole interaction is

responsible for the frequency shift, whilst the imaginary part is responsible

for super- and sub-radiance. For the N -atom case, a similar argument holds.

In the slab geometry, the real part gives rise to the CLS. The corresponding

modification to the decay rate is known as the cooperative decay rate, and

has been the subject of several recent theoretical works [107, 117]. However,

as the decay rate depends on the degree of excitation in the medium [11], it

is unlikely to be a large factor to this experiment, where only a weak probe

is used. This is in contrast to the CLS, which can be observed in the limit
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of weak excitation where there is negligible population of the excited state.

Indeed, the magnitude of the shift decreases with excitation of the medium,

cancelling completely when half the population is in the excited state [95], in

a similar way to the collisional linewidths investigated in references [67, 68,

118].

5.3.3 A note on dipole blockade

Dipole blockade is an effect whereby the interactions between atoms prevent

multiple excitation in a medium, first proposed by Lukin et. al. [119]. To

illustrate the effect, let us consider the two-atom, two-level picture as in fig-

ure 5.1, but with only the long range induced (non-resonant) dipole-dipole

interactions, Vdd(r) ∝ r−6. The strength of the induced dipole-dipole inter-

actions is strongly dependent on the (effective) principal quantum number,

scaling as n∗11, so this effect is most relevant to Rydberg atomic systems.

When the atoms are far apart from each other Vdd is smaller than the

laser linewidth γlaser and so the doubly-excited state |ee〉 can be populated.

However, as the separation decreases Vdd becomes significant, and when

Vdd > γlaser then |ee〉 can no longer be populated.1

Thus, around a Rydberg atom there exists a ‘blockade radius’ where a second

atom cannot be excited. Using this mechanism it is possible to construct a

quantum gate [13] - the state of a ‘control’ atom, either in the Rydberg state

or not, affects what happens to a second ‘target’ atom. Rydberg atoms are

therefore an attractive candidates for constructing quantum bits (qubit) in

quantum information processing (QIP) applications.

An interesting question is therefore whether it is possible to have a similar

blockade mechanism in a simpler system, on a single ground-state transi-

tion. Returning to figure 5.1, but now considering the resonant interaction,

the effect of the interaction is to split the singly-excited states. Immedi-

ately then one can conclude that any blockade effect will be of completely

different character; all resonant excitation will be blockaded, given a suit-

1The excited state linewidth for Rydberg atoms is very much narrower than for low

lying excited states so that it is usually only the laser linewidth that is the limiting factor

in the blockade mechanism.
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able interaction strength. However, off-resonant excitation (with respect to

the unshifted energy levels) could still exhibit blockade-type behaviour, since

only the singly-excited states are shifted.

For an ensemble of thermal atoms at high densities, the resonant dipole-

dipole interaction can be the dominant process, over an order of magnitude

larger than the thermal effects (Doppler broadening). As has already been

discussed, in this regime the effect of motional dephasing can once again be

neglected. However, the increase of the linewidth due to collisional broad-

ening plays an important role in the blockade mechanism. Comparing the

line broadening to the shift, which we can see from examination of equa-

tions (5.37) and (5.42) we find (for the D2 line) ∆LL = Γtot/
√

2. Assuming

the collisional shift is small compared to the Lorentz shift, then we conclude

that in a thermal vapour the shift due to resonant dipole-dipole interactions

is always smaller than the increase in linewidth [120]. Hence there can be

no blockade effect in thermal atoms, since the excitation laser frequency will

always be in the wings of the resonance.

5.4 Experimental results

We use transmission spectroscopy to investigate the modification to the

linewidth and shifts due to dipole-dipole interactions. The experimental

setup and calibration of the signals are described in appendix B.

To highlight the line-broadening effect of dipole-dipole interactions, figure

5.6 shows the spectra on the Rb D2 line obtained in a cell with thickness λ/2

as the temperature (and hence atomic density) is tuned.

As temperature is increased, the evolution of the medium from a regime

where dipole-dipole interactions are negligible (T = 120◦C, N = 2 ×
1013 cm−3, topmost line) to a regime where the interactions completely dom-

inate the lineshape (T = 330◦C, N = 5 × 1016 cm−3, bottom-most line) is

clear. At the lowest densities, Dicke narrowing allows the excited state hyper-

fine levels to be resolved. As the density increases, the collisional linewidth

increases linearly with density, and the hyperfine resolution is gradually lost.

At a density of around N ∼ 1015 cm−3, the collisional broadening becomes
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Figure 5.6: Evolution of the transmission spectrum with increasing atomic

density as a function of linear detuning ∆/2π. Experimental data showing ∼ 100

individual traces with vapour thickness ` = λ/2 as temperature is smoothly varied

from 120◦C (topmost line) to 330◦C (bottom). For low atomic density, the optical

depth is small and interactions between atoms are negligible, allowing the Dicke

narrowed excited-state hyperfine transitions to be resolved. As density increases

the lines broaden. The excited-state hyperfine lines merge first, then as density

further increases, the ground state hyperfine splitting can no longer be resolved.

Zero on the detuning axis represents the weighted line centre of the D2 line.

comparable to the excited state hyperfine splitting, and at N ∼ 1016 cm−3

the broadening is comparable to the ground state hyperfine splitting. After

this the whole transition behaves essentially as a single S to P3/2 transition

(fine structure is still resolved, this splitting is around 7 THz).

5.4.1 Fitting data

We fit the calibrated spectra to the model outlined in chapter 3. The full

susceptibility model is a function of four free parameters, and is characterised
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as

χ(N,A,Γad,∆tot) =
µ2

~ε0

∑
F,F ′

C2
F,F ′

∫
iNvc(v)

γ − i∆′
dv , (5.44)

with

γ = (Γ0 + βN + Γad)/2 ,

∆′ = ∆ + ∆F,F ′ + ∆vdW + ∆tot − kv ,

and Nvc(v) is given by equation (3.2). The C2
F,F ′ are the transition strengths

of each individual hyperfine transition which have resonances at ∆F,F ′ . ∆vdW

accounts for the atom-surface induced shift (see chapter 4). The suscepti-

bility is related to the measured transmission lineshape, taking into account

reflectivity effects, by equation (3.7). The free parameters correspond to

the atomic number density N ; the amount of Dicke narrowing, characterised

by the parameter A in the velocity distribution; an additional amount of

(Lorentzian) line broadening, Γad due to for example, atom-surface interac-

tions; and finally a single shift parameter ∆tot. The fit is implemented using

a least-squares method with the Levenberg-Marquardt algorithm. The errors

in the fit parameters are obtained from the covariance matrix, as outlined in

reference [121].

Figure 5.7 shows two example data sets, at low and high density. The low

density data (and green theory line) is for a cell thickness ` = λ/2, at a

temperature of T = 130◦C, which corresponds to a cooperativity parameter

C ≈ 1, and highlights the effects of Dicke narrowing at their most striking. In

stark contrast to this, panel (b) shows a high density spectrum for ` = 90 nm

at a temperature T = 305◦C (C ≈ 300), where dipole–dipole interactions

dominate. For both data sets, we have good agreement between experiment

and theory, as highlighted by the residuals, which are on the 1% level. For

the high density data, to highlight the line shift we have also plotted the

theory curve with ∆tot = 0.

5.4.2 Saturation of susceptibility

A consequence of the dipole-dipole interaction is that the susceptibility, and

hence the optical depth, is no longer linearly dependent on the atomic density.



Chapter 5. Atom-atom interactions 71

1.00

0.98

0.96

0.94

T
ra

n
sm

is
si

on

−4 −3 −2 −1 0

−1
0
1

R
es

id
u

a
l

(%
)

1.00

0.90

0.80

0.70

−6 −4 −2 0 2 4 6

−1
0
1

Detuning (GHz)

(a) (b)

Figure 5.7: Transmission spectra - experiment and theory. Transmission spec-

trum as a function of linear detuning for thickness (a) ` = 390 nm, T = 130◦C

(C ≈ 1), and (b) ` = 90 nm, T = 305◦C (C ≈ 300). The black line is experimental

data, while the solid green and dashed red lines are the fits to the model. The dot-

ted red line in panel (b) is the theory without the line shift included, to highlight

its effect. The residuals show the difference between experiment and theory. Zero

on the detuning axis represents the weighted line centre of the D2 line.

To see how this comes about, recall from equations (5.37) and (5.39) that the

Lorentzian component of the linewidth is linearly dependent on density, and

therefore the susceptibility has a density term in the denominator as well as

the numerator

Im χ(∆) =
Nµ2

~ε0
1

(Γ0 + βN)/2− i(∆ + ∆tot)
. (5.45)

On resonance, the susceptibility is purely imaginary, and at high density

βN � Γ0 so we can neglect the contribution from the natural linewidth.

The density terms then cancel, yielding

Im χ(∆ = 0) =
2µ2

~ε0β
. (5.46)

In addition, in the high density limit the linewidth becomes significantly

larger than the splitting between the lines, so we can consider the whole

D1(2) line a single transition from S to P1/2(3/2). Substituting in for the self-

broadening coefficient β (equation (5.37)), we find with linearly polarised
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Figure 5.8: Saturation of opacity due to dipole–dipole interactions. Without

dipole–dipole interactions (dashed line) the opacity increases linearly with den-

sity. When interactions are included into the standard theory (upper solid line)

the scaled opacity for the D2 line is predicted to saturate at a value Nσλ =
√

2.

However for thicknesses ` < λ/4, we observe a change in the behaviour which dou-

bles the broadening coefficient (lower solid line). A constant additional broadening

of Γad = 2π × 200 MHz has been added to the line for ` < λ/4 account for atom–

surface effects, which does not affect the value at which the opacity saturates at

high density. Experimental data: ` = 90 nm (open red squares); ` = 140 nm (open

green circles); ` = 180 nm (open blue triangles); ` = 220 nm (closed red squares);

` = 390 nm (closed green circles); ` = 780 nm (closed blue triangles). Error bars

assume a 2% error in transmission.

light, the imaginary part of the resonant susceptibility saturates at a value

Im χSat =

√
2Je + 1

2Jg + 1
=
√

2 , (5.47)

for the D2 line, while for the D1 line the saturation value is 1. A similar

saturation is found for the real part of the susceptibility, meaning that the

refractive index also reaches a peak value, which will be the topic of the next

chapter.

The saturation has profound implications for spectroscopic studies, as the

opacity eventually reaches a peak value that only depends on the thickness of



Chapter 5. Atom-atom interactions 73

the medium. Physically, this can be seen as a consequence of the cooperative

interactions; as more atoms are added into a volume, the extra absorption is

exactly cancelled by an increase in the linewidth, which acts to reduce the

effective resonant cross-section of each atom. Qualitatively this can be seen

in figure 5.6, as the medium never becomes optically thick. Within the binary

approximation, for ` = 390 nm the transmitted intensity reaches a minimum

Tmin = e−
√

2k` = e−
√

2π = 1.5%. To investigate the saturation quantitatively,

we look at how the opacity scales with number density. We can extract

the susceptibility from the transmission data in accordance with Beer’s law.

In figure 5.8 we plot the susceptibility at a detuning ∆ ≈ −1.2 GHz (the

unshifted resonance position of the 85Rb Fg = 3→ Fe = 4 transition, though

in principle one can choose any detuning and achieve similar results) as a

function of the cooperativity parameter, for different cell thicknesses. The

advantage of this approach is that there is no fitting involved.

If there was no density dependent line broadening, the data would be ex-

pected to follow the dotted line, but there is clear deviation from this. For

thicknesses ` > λ/4, the data lie on the dashed curve that follows conven-

tional theory, saturating at
√

2. For thicknesses ` < λ/4 however, the data

do not follow this curve. They still follow a saturation curve, but calculated

with twice the amount of self-broadening, and hence the saturating value is

lower by a factor of 2.

As an additional method of analysis, we also fit the data to the susceptibility

model, and extract a broadening coefficient, excluding the βN term in the

linewidth, so that self-broadening is now included into the fit parameter Γad.

In figure 5.9 we plot the fitted value of Γad as a function of density, for

the same cell thicknesses as plotted in figure 5.8. Again, the same trend is

visible; for ` > λ/4, the data agrees with conventional self-broadening theory,

following a straight line with gradient β. However, for ` < λ/4, the data fit

to a straight line but with a significantly larger gradient. In the same way

as for figure 5.8, the solid line in the figure represents a gradient of 2β, with

an additional offset to account for atom-surface broadening.

We can further analyse the data in figures 5.8 and 5.9 and extract a

line broadening parameter by fitting to the curves allowing the interaction
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Figure 5.9: Fitted broadening coefficient Γad as a function of the cooperativity

parameter, for the same vapour thicknesses (and corresponding symbols) as figure

5.8. The dashed line has a gradient of β and zero offset, whilst the solid line has

slope 2β and an offset of 200 MHz.

strength β to vary. We extract a broadening coefficient representing the

strength of the dipole-dipole interaction as a function of cell thickness, plot-

ted in figure 5.10. The offset, which we interpret as the atom-surface induced

broadening, is presented in figure 4.6 in the previous chapter. We find a

sharp transition between conventional self-broadened lines and the enhanced

broadening at ` = λ/4 = 195 nm. Below λ/4, the data fit with a broad-

ening coefficient Γ/N0 = (2.07± 0.06)β, while for larger thicknesses we find

Γ/N0 = (0.94±0.05)β. The exact mechanism for this apparent enhancement

is not well understood and requires further investigation. Observation of

off-axis fluorescence has shown promise as an experimental technique, yield-

ing higher resolution of the line widths at moderate densities - an example

spectrum using this method is shown in appendix C.

5.4.3 Cooperative Lamb shift

Whilst figure 5.6 clearly shows the evolution from independent to coopera-

tive response, the line profile becomes very flat at high density (due to the

large optical depth) and therefore the shift of the lines is less apparent. To

highlight the line shift in more detail, in figure 5.11 we show a similar spec-

tral evolution, for a thickness ` = 90 nm where as we will show later the
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Figure 5.10: Dipole–dipole interaction strength, as measured by the broadening

coefficient, in units of β, plotted as a function of layer thickness. Closed symbols

are calculated from fitting the data shown in figure 5.8 allowing the broadening

coefficient to vary, whilst open symbols are calculated from fitting the data in

figure 5.9. We calculate the weighted average interaction strength for ` < λ/4 to

be (2.07± 0.06)β, whereas for ` > λ/4 we find (0.94± 0.05)β.

density-dependent shift is much larger. Unlike the data at ` = λ/2, even

for the lowest densities there is no resolution of the excited state hyperfine

levels, since the broadening due to the atom-surface interaction is already

larger than the hyperfine splitting.

The shift is immediately apparent from the figure, and although by eye one

might imagine that the line shift follows the point of minimum transmission,

this is not the case. As has already been shown in figure 5.7, if the shift

is not included in the model the peak absorption at high density occurs at

a detuning ∆ ≈ 0. Given this, it becomes clear that the highest density

spectra is shifted by around 2 GHz.

Again we fit the data to the model and extract the shift parameter. The

extracted shift as a function of number density is shown in figure 5.12 for

three thicknesses, ` = 90 nm, 250 nm and 420 nm. In the high density regime

(N > 1016 cm−3) dipole–dipole interactions dominate the lineshape and we

can treat the line as a single S1/2 → P3/2 transition which shifts linearly with

density. For nearly all thicknesses the shift starts to become linear at C ∼ 100

(N ∼ 0.75 × 1016 cm−3). However, for a thickness around ` = 420 nm we
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Figure 5.11: Evolution of the transmission spectrum for ` = 90 nm showing

significant red-shift of the absorption lines at high density. The lowest and highest

temperatures are T = 180◦C and T = 315◦C. As in figure 5.6, as density increases

there is significant broadening of the spectral lines. At low density however, atom-

surface interactions already contribute significantly to spectral broadening so the

excited-state hyperfine resolution from Dicke narrowing is washed out. At high

density the shift is ∼ 2 GHz, as the centre-of-mass of the absorption line lies at

zero detuning.

observe a deviation from this, where the linear region does not appear to

begin until much higher in density. In addition, the gradient is not what

is expected from the CLS curve. We attribute this anomalous behaviour to

the 5S-6P atomic resonance which has a wavelength of 420 nm, and can be

populated by the well-known energy pooling process [122]. For this reason

this data point has been omitted from figure 5.13.

We fit the gradient of the linear region to obtain the coefficient of the shift

∆tot/N , and repeat these measurements for several thicknesses up to 600 nm.

For thicknesses greater than 600 nm, the high optical depth of the sample

impairs resolution of the line shift.

In figure 5.13 we plot ∆tot/N as a function of cell thickness. We extract

the collisional shift by comparing the data to equation (5.43) with ∆col

the only free parameter. The amplitude and period of the oscillatory part



Chapter 5. Atom-atom interactions 77

0 100 200 300 400 500 600
Cooperativity C

−2.0

−1.5

−1.0

−0.5

0.0

S
h

if
t

∆
to

t
/2
π

(G
H

z)

Figure 5.12: Shift of resonance lines with density. Measured shift of resonance

lines with density and fit to the linear, high density region for ` = 90 nm (red

squares) and ` = 250 nm (blue circles). All other data sets follow the same trend -

the linear region starts at C ≈ 100, except for the anomalous data set at ` = 420 nm

(green triangles), which clearly does not follow this trend. Possible reasons for the

deviation are discussed in the text.

are fully constrained by equation (5.42). We find the collisional shift to be

∆col/2π = −(0.25± 0.01)× 10−7 Hz cm3, similar to previous measurements

on potassium vapour [66]. Though there is expected to be some density

dependence of the atom-surface interaction, extrapolating from data in ref-

erence [76], the gradient is of the order of 10−9 Hz cm3, nearly two orders

of magnitude smaller than the measured gradients in figure 5.13, and so the

atom-surface interaction can be neglected. The solid line is the prediction of

equation (5.42), in SI units on the left axis and scaled units on the right axis.

The agreement between the measured shifts and the theoretical prediction is

remarkable (the reduced χ2 for the data is 1.7, indicating a good fit [121]).

As well as measuring the thickness dependence of the CLS, our data also

provide a determination of the Lorentz shift which can only be measured

in the limit of zero thickness. The coloured areas on the plot highlight the

various contributions to the total shift. The red line is the constant Lorentz

shift, the yellow shaded area is the collisional shift, which is density depen-

dent but independent of the thickness of the medium. Finally the blue area,

highlights that the CLS is dependent on both the density and thickness of

the medium.

The observation of the CLS in a high density thermal vapour is an exciting
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Figure 5.13: Experimental verification of the cooperative Lamb shift. The

gradient of the shift Γtot/N is plotted against cell thickness `. The solid black

line is equation (5.43) with ∆col/2π = −0.25 × 10−7 Hz cm3 and no other free

parameters. The coloured areas highlight the different contributions to ∆tot; the

Lorentz shift (red line), the CLS (blue), and the collisional shift (yellow). The

alternate ordinate axis shows ∆dd in scaled units.

result not only in itself, but because of its implications for observing other

coherent interactions in the medium. The CLS is derived in the limit of

a static medium, and in a thermal vapour motional effects are usually the

dominant dephasing mechanism. We would therefore expect any coherent

effect like the CLS to be completely washed out by the atomic motion.

The fact that we still observe this coherent response is encouraging (and

somewhat surprising!) as it means that motional dephasing is not the domi-

nant mechanism. We find experimentally that the line starts to shift linearly

once the density reaches around 1016 cm−3. If we use the inverse of the

interaction-induced linewidth τ ∼ (βN)−1 as a guide to the timescales, at

this density τ ∼ 1 ns. Given a mean atomic speed of 300 nm/ns (which

varies only very weakly with temperature), the atoms still move a significant

distance compared to the wavelength, so it is surprising that motional effects

are not more important here. As τ becomes smaller at even larger densi-

ties the picture of a frozen medium becomes more plausible, as the atoms
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no longer move significantly during the interaction. At the highest densi-

ties in this work the linewidth is of the order of 10 GHz, which implies that

the corresponding interaction time is very short, of the order of 0.1 ns. A

typical atom only moves around 30 nm in this time, much smaller than the

wavelength, so a quasistatic picture is likely to be more valid here.

5.5 Outlook

The demonstration of the CLS and coherent dipole–dipole interactions in

sub-wavelength thickness thermal vapours is an important result, opening a

new domain for the investigation of coherent interactions in experimentally

simple systems.

We have shown that with strong enough interactions, which can be easily

realised by tuning the temperature of the vapour, motional effects that are

usually the dominant dephasing process in thermal vapours can be overcome.

This allows the observation of the coherent character of the dipole-dipole in-

teraction, which in our system manifests as a cooperative shift of the spectral

lines.

We also observe an apparent enhancement in the decay rate which we measure

as an increase in the line broadening as the layer thickness is reduced below

λ/4. The mechanism for this process is not understood and requires further

investigation.

As the CLS depends on the degree of excitation [95], exotic non-linear ef-

fects such as mirrorless bistability [86, 123] may be accessible experimentally.

Such effects have recently been observed in thermal vapours with Rydberg

atoms [21], and it remains an interesting question to whether, and to what

extent, these effects are observable with ground-state atomic vapours.

It is also important to note that the observed CLS is still an angular av-

erage, that could be optimised and controlled by changing the geometry of

the cell. Whilst the sub-wavelength thickness of the vapour provides one

degree of confinement, an enhanced effect could be engineered by confining

the dipoles even further. Three-dimensional confinement using nanostruc-



Chapter 5. Atom-atom interactions 80

tures has recently been demonstrated with Cs atoms [124]. Alternately, one

could imagine that by lithographically etching out channels in one of the cell

windows into thin rows, for example, that the atoms could be confined into

pseudo-1D strips. In this case the angular distribution of the dipoles could

be tightly confined and an enhanced or reduced interaction could be possible,

by changing the polarisation of the incoming light.



Chapter 6

Giant refractive index

In the previous chapter, the effects of dipole-dipole interactions were ex-

plored, leading to the saturating behaviour of the electric susceptibility at

high density. Experimentally this was demonstrated via a saturation in the

optical depth of the ensemble. However, this only probes the imaginary com-

ponent of the susceptibility. In this chapter we investigate the real part of

the susceptibility, responsible for the refractive properties of the medium.

6.1 Introduction

We should, at this point, clarify what is meant by the word ‘giant’ in the

title of this chapter. In solid-state physics, an entirely new field has recently

developed based on so-called ‘metamaterials’ [125]; materials made up from

nano-scale building blocks, engineered to have drastically different properties

to most other materials found in nature. A subset of these are materials with

negative refractive indices [126], which change the direction of light in the

opposite direction to every other material found in nature. By engineering

the relative permittivity and permeability of these metamaterials it has been

possible to heavily modify the refractive index, recently achieving a peak

refractive index n = 38.6 in the THz frequency domain [127]. Construction of

metamaterials for optical wavelengths is also possible; see for example [128].

There has been a great deal of recent work using these metamaterials to

engineer ‘invisibility cloaks’, in the microwave [129] and optical frequency

81
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domains [130, 131].

In this chapter we show that the refractive index of a Rb vapour can be as

high as n = 1.3. While this is clearly significantly lower than what can be

realised in the solid-state, this is realised with a vapour with a pressure two

orders of magnitude lower than atmospheric pressure.1 In terms of atomic

vapour experiments, our index enhancement n−1 is three orders of magnitude

larger than has been observed previously for a ground state transition [133].

6.1.1 Phase shift and refractive index

As mentioned in the previous chapter, the fundamental process of light scat-

tering is the interference between incident and dipolar fields. The dipolar field

is that of a driven oscillator, and so has a different (frequency-dependent)

phase to the input field. The output is just the superposition and is there-

fore also phase-shifted. Let’s neglect the spatial parts of the field, leaving

only the oscillatory parts, and furthermore assume that the laser is near-

resonance, so the laser frequency ωp ≈ ω0, the atomic resonance frequency.

The transmitted field is then

Eout = |Ein| cos(ω0t) + |Edipole| cos(ω0t+ φ(∆))

∝ cos(ω0t+ Φ) . (6.1)

If the magnitudes of the two fields are equal then this has the analytic solu-

tion Eout = 2|E| sin(ω0t + φ/2) sin(φ/2); in general Φ is dependent on |Ein|,
|Edipole| and φ, which depends on the detuning from resonance ∆. In a

macroscopic medium, we can build up a total phase difference by combining

many layers each with a phase offset Φ. If phase lags behind the driving

field, Φ < 0, points of constant phase travel through the medium slower than

through vacuum, and hence we have a phase velocity v = c/n with n > 1.

Over a medium with thickness `, the phase change that is built up is related

to the real part of the electric susceptibility

Φ = Re (
√

1 + χ) k` , (6.2)

1For air, the index change at optical frequencies n− 1 ≈ 3× 10−4 [132].
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where as usual k = 2π/λ is the wavevector of the light field. We have already

seen in the previous chapter that the imaginary part of the susceptibility

is greatly modified by dipole-dipole interactions between atoms, leading to

remarkable effects in the absorption of the incident light field. In this chapter

we investigate how the same physics affects the real part of the susceptibility

and hence the refractive index of the medium.

6.2 Experimental setup

Figure 6.1 shows the experimental setup. We employ a heterodyne interfer-

ometer similar to that used in [134]. An acousto-optic modulator (AOM) is

double-passed to generate a second beam at ∆AOM/(2π) = 160 MHz, which

is power-matched and then recombined with the unshifted beam. After re-

combination at the polarising beam splitter (PBS) cube the beams are of

different linear polarisations; a half-waveplate set at 45◦ followed by another

PBS cube matches them, at the cost of half of the light which is rejected at

the beam splitter. The beams are coupled into a single-mode optical fibre

and are therefore mode-matched on exiting the fibre. Half of the light is then

sent to a fast photodiode (PD1) and the other half focussed to a spot size

(1/e2 radius) of 50 µm through the cell and onto a second fast photodiode

(PD2). A relatively large beam waist was chosen as the fast photodiodes

(model EOT-2030A) require more incident optical power than the ones used

in the transmission spectroscopy experiments. In order to have a detectable

signal and avoid optical pumping effects (see section 3.3) the beam waist

must be increased. Typically the power incident on the cell was ≈ 30 µW

(intensity I ≈ 100 mW/cm2). The larger focal spot leads to a thickness

variation of around 10 nm due to the geometry of the cell.

Both detectors measure the 160 MHz beat frequency of the two light fields.

In a single acquisition we observe ∼300 oscillations over 2 µs. We take 100

measurements of the relative phase at each detuning point,from which a mean

and standard error are calculated. An example of the two beat signals and

the measured relative phase are shown in figure 6.2. The measurements are

taken using the oscilloscope’s built-in functions (for speed of data acquisition)
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Figure 6.1: Experimental setup figure and raw data example. L - lens; M - mir-

ror; λ/4, λ/2 - quarter/half waveplates; AOM - acousto-optic modulator; SMF -

single mode fiber; PBS - polarising beamsplitter; 50:50 - non-polarising beamsplit-

ter; PD1/2 - fast photodiodes; BD - beam dump.

and so there is no error bar on an individual measurement. The method has

been checked against a separate analysis routine, fitting sine curves to the

raw data and extracting a phase difference, as shown in figure 6.3. The two

methods agree to within 1%.

The laser is then tuned across the D2 resonance line in steps of 100 MHz. For

each value of the laser detuning, the laser is stabilised (‘locked’) electronically

to within 10 MHz (error bars in this axis are not shown in the figures)

using a HighFinesse wavemeter and a proportional/integral/derivative (PID)

feedback loop implemented in LabView. Whilst the lock is not as stable as

using a spectroscopic locking method, the key advantage is that it is possible

to lock to an arbitrary frequency, as opposed to being limited to locking

around atomic resonances.

Since the two beams are at nearly the same frequency (∼380 THz frequency

with a 160 MHz difference) and travel down the same optical paths, the phase

difference between the beat signals measured at the two detectors is given by

φ = φ0 + ∆φ = φ0 + (n(∆ + ∆AOM)− n(∆)) k` , (6.3)

where φ0 is an unimportant global phase due to different optical path lengths

to the two detectors. Essentially the measurement is a measurement of the
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Figure 6.2: (a) Example data of the beat frequencies of the shifted (blue)

and unshifted (red) beams from which a frequency-dependent phase difference

is measured. (b) This is repeated for 100 acquisitions, from which a mean and

standard error are calculated.

refractive index gradient. We then reconstruct the refractive index profile

from fitting the measured relative phase ∆φ to the weak-probe model out-

lined previously. For relatively high atomic number densities where the ho-

mogeneous broadening is larger than ∆AOM, we can simultaneously measure

the transmitted intensity by measuring the amplitude of the oscillations.

As mentioned in reference [134], the heterodyne interferometry technique is

very insensitive to vibrations, as the light beams see the same optical path.

Though the global phase may vary due to vibrations, the only relative phase

shift (dependent on laser frequency) comes from the atoms. This allows us

to achieve sensitivities on the order of 1 mrad.

The interferometry technique also has advantages over conventional trans-

mission spectroscopy, as much of the calibration (see appendix B) is not

needed, and there are no additional effects due to the cell reflections. The

main disadvantage is for high optical depths, as the precision of the phase

measurement is affected by the amount of light reaching the detector.
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Figure 6.3: Comparison of measured phase data, between (black) using the

oscilloscope function, averaged over 100 acquisitions, and (red) post-processed data

using a fitting routine written in Python. The bottom panel shows the difference

between the two methods, which agree to within 1%.

6.3 Maximum refractive index

An interesting question that arises when considering an index enhancement

this large is what is the maximum possible index of the medium?

Whilst previously it has been speculated that the near-resonance refractive

index of a gaseous medium could be “as high as 10 or 100” [135], this estimate

was based on an independent dipole model and neglected the dipole-dipole

interactions which are invariably present at high density. As we have seen in

chapter 5, eventually the increase in the susceptibility due to adding more

dipoles is cancelled out by the higher damping rate due to resonant dipole–

dipole interactions [44, 136]. Since the refractive index of the medium is

related to the real part of the susceptibility, the index also saturates. A

maximum index of n ≈ 1.4 has previously been predicted for Rb [137]. Using

our susceptibility model, within the limits of the binary approximation we

calculate the maximum refractive index to be n = 1.31. This occurs at

T ∼ 360◦C at a detuning ∆ ∼ −7 GHz from the weighted line center, as
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Figure 6.4: Calculated refractive index as a function of temperature and de-

tuning over the D2 resonance line. The maximum predicted index is 1.31. The

density dependent redshift can clearly be seen, and has a significant effect on the

position of the maximum index (we take `� λ for this calculation).

shown in figure 6.4. The exact detuning depends on how the lines shift, so will

depend on the thickness of the vapour; here we have calculated in the limit

of large vapour thickness, where the sinusoidal oscillations have damped out.

For comparison, a 75 mm cell at room temperature (using the same theory

as above) would have a maximum index enhancement n− 1 ≈ 4× 10−7, but

this still results in a significant phase shift, since ∆φ = ∆nk` and the cell

thickness ` is orders of magnitude larger.

The intimate link between refraction and absorption manifest in the Kramers-

Kronig relations make the observation of a large index enhancement challeng-

ing, since a large index is accompanied by high absorption. For the highest

temperatures we can reach with the current experimental setup (T = 360◦C,

N ≈ 1017 cm−3), the vapour thickness must be much less than the wave-

length of light in order to still transmit some light. However, as one reduces

cell thickness atom-wall interactions start to have a significant effect on the

linewidth, introducing further undesirable broadening and shifts which re-

duce the maximum observable index. In practice we are forced to compro-
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Figure 6.5: Experimental data for a thickness ` = 250 nm and T = 330◦C

(N = 5 × 1016 cm−3). (a) Measured phase shifts and fit to model. (b) Inferred

refractive index profile. The solid line is the unshifted beam, the dashed line is the

beam detuned by ∆AOM. Close to resonance, the large optical depth reduces the

signal to the point where accurate phase information is lost. Despite this, the fit

to theory is reasonable and we infer a maximum index n = 1.26± 0.02.

mise slightly; figure 6.5 shows experimental data with thickness ` = 250 nm,

at T = 330◦C. For these conditions, the high on resonance optical depth

reduces signal to the point where a phase cannot be accurately measured,

resulting in larger experimental uncertainty. Away from resonance, however,

we observe good agreement with theory. From this we infer a maximum

refractive index n = 1.26 ± 0.02 approximately 5 GHz red detuned of line

centre. The error bar is derived from the fit parameter Γad.

6.4 Phase shift due to a single atomic layer

Due to the scalability of both the atomic density and vapour thickness, an

interesting regime is available whereby the atomic separation can be greater

than the cell thickness. In this regime the light field will only interact with

a vapour layer that is on average one atom thick. This poses a fundamental

question: at what point does a collection of atoms start to act as a bulk

medium, and when do they need to be considered as individual emitters?
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With tight enough focussing and low enough atomic density, could we enter

a regime where we have on average zero atoms in the beam, and could we

detect the transit of a single atom? On this scale, exceptionally good mode

matching is required between the incident and atomic fields to achieve sig-

nificant extinction of the incident field. In principle perfect cancellation of

the incident field is possible; in this case the atom acts like a mirror, reflect-

ing back all of the incident field and cancelling it completely in the forward

direction [138]. Mode matching the atomic field (a spherical wave) with the

focussed incident wave (usually a Gaussian mode) limits what is experimen-

tally possible, but experiments with single atoms [139] and molecules [134]

using solid immersion lenses for tight focussing are yielding encouraging re-

sults, showing large absorption along with a significant phase shift. By using

a multi-level system exhibiting electromagnetically induced transparency ef-

fects, the optical properties of the single atom can be dynamically controlled,

opening the door to optical switching using single atoms and photons [140],

the so-called ‘optical transistor’ that can be used in quantum information

processing [141, 142].

In other fields, tremendous progress has been made with single emitters in

the mesoscopic regime using gold [143] and silver [144] nanospheres, which

have great potential in biological imaging systems, because surface plas-

mon resonances enhance their absorption, a great advantage over organic

dyes [145, 146]. One approach to measuring the optical properties of these

nanosphere systems involves interferometry exploiting an effective index ap-

proach [147].

The Maxwell-Garnet (MG) theory [148] that is employed in these exper-

iments may help us answer the question of when a collection of emitters

becomes a bulk medium. In the MG theory, a filling factor (either volume

or surface, dependent on geometry) determines the behaviour of the system.

Using nonresonant light, it has been suggested that the collection of emit-

ters can be considered an effective medium (and thus conform to MG the-

ory) when the individual nanospheres are separated by at most λeff/2π [149]

(where λeff = λ/2π), corresponding to a surface filling factor of around 1%

in their experiment.
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We can estimate the filling factor for our resonant atomic system. In the

dilute limit, the resonant optical cross-section per atom is given by

σ0 = 3λ2/2π , (6.4)

which we now convert into a volume, via r =
√
σ0/π, yielding

Vatom =
4π

3
r3 =

√
6

π2
λ3. (6.5)

We have a (volume) atomic number density N . Then the volume filling factor

is given simply by

fV = NVatom . (6.6)

For the Rb D-lines, λ ∼ 8 × 10−7 m, which gives σ0 ∼ 3 × 10−13 m2. Using

the effective index approach, and assuming that a filling factor of at least

10% is needed (an overestimate, based on the nanosphere experiments), we

have the condition

N > 0.1/Vatom (6.7)

& 1011 cm−3 , (6.8)

which is fulfilled for temperatures T & 50◦C. Even assuming some orders of

magnitude of error in the estimation, the effective index approach is valid in

our experiment.

This approach also predicts that we can achieve filling factors fV > 1, where

the separation becomes smaller than r, for temperatures T & 150◦C. In this

case, the dipole-dipole interaction starts to become important, reducing the

effective optical cross-section per atom (as discussed in section 5.4.2).

6.4.1 Experiment

By tuning the density and thickness of the vapour to a region where the mean

interatomic spacing rav is equal to the vapour thickness the beam interacts

with, on average, only a single layer of atoms. As shown in figure 6.6, there is

a range of experimental parameters where this condition is met (dashed line).

This allows us to tune the atomic interactions while still only probing a single
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Figure 6.6: Theoretical maximum phase shift over the line as a function of

temperature (density) and cell length, for ∆AOM = 160 MHz. The sharp change

at ` = λ/4 = 195 nm is due to the change in broadening coefficient, detailed in

the previous chapter. The dashed line represents the temperature where the cell

thickness is equal to the mean interatomic spacing ` = rav.

layer. The main limitation is due to experimental signal-to-noise. Using the

susceptibility model we can predict where the maximum signal occurs, as

shown in figure 6.6. The maximum relative phase shift for a single atomic

layer occurs around ` = 100 nm and T = 220◦C, and in figure 6.7 we show

the experimentally measured phase shift (a) and inferred index (b) for these

conditions. Despite the layer being only a single atom thick, on average,

we still observe a measurable phase shift commensurate with a maximum

refractive index n ∼ 1.025, and the data still fit exceptionally well to theory

in this extreme limit, a clear indication that the vapour can still be considered

as a medium, rather than individual atoms.

What is also apparent from figure 6.7 is the excellent signal-to-noise ratio;

the experimental technique gives us a sensitivity to phase shifts of the order

of 1 mrad, which could be further improved by increasing the AOM driving

frequency, thereby creating a bigger difference in refractive index between

the two beams.
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Figure 6.7: (a) Phase shift for a thickness ` = 100 nm and T = 220◦C. Three

separate experimental data sets are overlaid. This corresponds to a mean inter-

atomic spacing rav = `, so on average the laser beam interacts with only a single

layer of atoms. Remarkably there is still a measurable phase shift which corre-

sponds to a significant refractive index for the layer (b).

6.5 Outlook

We have adapted the heterodyne interferometric technique previously applied

to single molecules across a single, narrow resonance to vapors where there

are many resonances which are generally broader than the frequency splitting

of the two beams. Given a high enough N` product, which approximately

determines the magnitude of the phase shift, and providing one has a suitable

model for the susceptibility, there is no reason why this sensitive technique

cannot be applied to a variety of other systems where accurate phase infor-

mation is required. The technique is readily applicable to longer vapours,

including reference cells, with minimal modification to the setup - only the

lenses need be removed to avoid optical pumping effects.

In addition, heterodyne interferometry has some advantages over transmis-

sion spectroscopy, the most important being that it is insensitive to changes

due to the varying cell reflectivity, as only the relative phase information is
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important. Furthermore, there is no additional calibration of the raw data.

Unlike transmission spectroscopy, the only calibration is the frequency axis,

which is set by the wavemeter, which can be calibrated independently. The

main disadvantage is the requirement that the optical depth not be too high,

as this adversely affects the signal-to-noise ratio. For small optical depths,

this method could provide another technique for analysing line widths and

shifts, as the same susceptibility model is used.

In this chapter, we have shown that the refractive index of a Rb vapour on

resonance can be as large as 1.31 in theory, and experimentally measured an

index of 1.26±0.02. To the best of the author’s knowledge, this measurement

is the highest refractive index measured in an atomic vapour.

By tuning the density and thickness of the layer, it is possible to investigate a

vapour that is on average only one atom thick. Remarkably, even under these

conditions the data fits well to theory assuming a medium with a well-defined

thickness, and we observe phase shifts on the order of a few mrad.

One feature common to both the refractive index plots of figures 6.5 and 6.7

is the region of anomalous dispersion (dn/dω < 0) on resonance. This gives

rise to a negative group velocity, i.e. the velocity at which the peak of a light

pulse propagates through the medium, and causes the peak of an optical

pulse to travel more quickly through the medium than through vacuum.

This superluminal propagation will be the topic of the next chapter.



Chapter 7

Fast light in dense thermal

vapour

In the previous chapter we demonstrated a large refractive index enhance-

ment in Rb vapour via a continuous-wave (CW) interferometry technique.

In this chapter we further examine the extreme properties of this medium

via pulsed excitation. We show that accompanying the large refractive index

there is also a GHz-bandwidth region of very large anomalous dispersion,

leading to the superluminal propagation of sub-nanosecond optical pulses.

7.1 Introduction

Controlling the speed of an optical pulse in a medium is a topic of much

interest [150, 151], with potential applications in optical communications

and quantum information processing [152–154]. The speed of the peak of an

optical pulse is determined by the group velocity of the medium, and is given

by

vg =
dω

dk
. (7.1)

Using the relationship k = n(ω)k0 = n(ω)ω/c, where ω is the carrier (cen-

tral) frequency of the pulse, with a frequency-dependent (real part of the)

94
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refractive index n(ω) in the medium, we find

dk

dω
=

1

c

(
n(ω) + ω

dn(ω)

dω

)
. (7.2)

The group velocity can then be expressed as

vg =

(
dk

dω

)−1

=
c

n(ω) + ω dn(ω)
dω

=
c

ng(ω)
, (7.3)

where we have defined the group index ng. As we have previously seen in

chapters 2 and 6, around a resonance the refractive index varies significantly

with frequency. The group velocity can therefore be positive or negative, and

varies dramatically over a resonance where dn/dω changes sign.

An optical pulse traveling through a resonant medium of length ` will there-

fore be delayed compared to a pulse travelling the same distance through

vacuum. The delay (of the peak of the pulse) can be expressed as

∆t =
`

vg

− `

c
= (ng − 1)

`

c
. (7.4)

If ng < 0, the resonant pulse will therefore be advanced in time with respect

to the vacuum pulse. ‘Slow’ light is therefore to be associated with a pulse

delay, and ‘fast’ light with a pulse advance (grouping together cases where

vg > c and vg < 0), both of which will be dealt with separately in later

sections.

7.1.1 Kramers-Kronig relations

In an ideal situation, the pulse would be delayed or advanced without any

change in its shape (distortion) or loss of amplitude (absorption). We have

already shown that absorption is determined by the imaginary part of the

electric susceptibility, and the refractive index profile is dependent on the

real part of the atomic susceptibility (section 2.2). The susceptibility of an

ideal medium would thus combine a vanishing imaginary part with a finite

real part.

The Kramers-Kronig relations [155, 156] express the fundamental link be-

tween the real and imaginary parts of the susceptibility. Mathematically,
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they can be expressed as [89]

Re χ(ω0) =
2

π
P

∫ ∞
0

ω Imχ(ω)

ω2 − ω2
0

dω , (7.5a)

Im χ(ω0) = − 2

π
P

∫ ∞
0

ω0 Reχ(ω)

ω2 − ω2
0

dω , (7.5b)

where P denotes the Cauchy principle value (see, for example, chapter 14

of [157]). The real part of the susceptibility at one frequency depends on the

whole frequency spectrum of the imaginary part, and vice-versa. In other

words, one cannot be present without the other in close proximity. This

has profound implications for pulse propagation in dispersive media, strictly

constraining the possible behaviour.

In ‘normal’ media (no amplification) Im χ(ω) > 0 for all ω [69]. Using

this, it can be shown by differentiating equation (7.5a) that in the wings of

an absorption line there is so-called ‘normal’ dispersion where dn/dω > 0,

while on resonance we have so-called ‘anomalous’ dispersion with dn/dω < 0.

We thus have regions of slow-light in the wings, while fast-light occurs on

resonance.

It is possible to reverse this in gain media, where instead of attenuation

(Im χ(ω) > 0), there is amplification (Im χ(ω) < 0). Gain occurs when

there is a population inversion in the system, the simplest case being that

of a two-level atom, so that ρ22 > ρ11. The susceptibility from equations

(2.21) and (2.16) then changes sign from absorbing media - both the real

and imaginary parts are affected, so that in gain media there is slow-light on

resonance and fast-light in the wings.

7.1.2 Wave packets, bandwidth and group velocity dis-

persion

A truly monochromatic wave is infinite in its extent, with an electric field

that oscillates at a single (angular) frequency ω. The Fourier transform of the

electric field, its frequency spectrum (or power spectrum, as it is sometimes

called), is therefore a delta-function at ω. An optical pulse must be switched

on and off at some point in time, and so cannot extend infinitely far. The

frequency spectrum must then have some width, that depends on the pulse
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Figure 7.1: Illustration of the Fourier composition of a wavepacket. An optical

pulse with intensity I(t) and electric field E(t) is localised in time, but composed

of many monochromatic Fourier components, with relative contribution given by

the Fourier transform F (ω). The individual components are infinite in time (and

therefore space) but only add in phase at localised points. The propagation of the

pulse is thus determined by the propagation of each of the Fourier components.

shape and duration. Intuitively, if we consider a very long ‘pulse’, e.g. a

CW laser which is turned on and off at some point, then the electric field is

very nearly monochromatic. The frequency spectrum (or power spectrum)

is exactly the Fourier transform of the pulse. As the pulse gets shorter or

sharper (e.g. a square wave) then the Fourier transform gets wider. One

can also think of this in terms of the uncertainty principle; ∆E∆t ≥ ~, or

∆ω∆t ≥ 1. The pulse has a finite temporal profile ∆t, so it must have a

corresponding frequency-space uncertainty ∆ω.

The frequency spectrum is a very useful tool for understanding optical pulses.

Fourier analysis tells us we can decompose the electric field profile into a series

of monochromatic waves, each with an amplitude F (ω). This is depicted

in figure 7.1. These frequency components are monochromatic and infinite

in extent, and it is therefore only where there is constructive interference

between the components that a pulse is formed. The more components are

added the more localised the region of constructive interference becomes;

wider in frequency space means narrower in time (and real space), and vice-

versa.

It is for this reason that pulses are often called ‘wave packets’; they are
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literally a packet, or group, of waves that travel together. The concept

of group velocity is therefore the speed at which the point of constructive

interference moves. A dispersive medium can therefore modify this quantity,

since each component frequency of the wave packet experiences a different

refractive index, n(ω).

Bandwidth

The intensity profile of the experimental pulses used in this thesis approxi-

mate well to Gaussians, so we have

I(t) = I0 e−(t−t0)2/τ2 , (7.6)

with the full-width at half-maximum (FWHM) tFW = 2
√

ln 2 τ . The Fourier

transform of a Gaussian is another Gaussian, so the pulse spectral profile

F (ν) has the same form as the electric field profile, with a FWHM νFW. The

full-widths are related by

tFWνFW = 0.441 . (7.7)

We now define the pulse bandwidth as

νBW = ωBW/2π = 2νFW , (7.8)

which is twice the FWHM. The frequencies contained in this range make up

over 98% of the pulse power spectrum. For the pulses used in this experiment,

tFW = 800 ps which corresponds to νFW ≈ 550 MHz and νBW ≈ 1.1 GHz.

Group velocity dispersion

The group velocity dispersion (GVD) is a measure of how uniform the group

velocity is over the entire pulse bandwidth and is defined as dvg/dω. If the

whole of the pulse profile (in frequency space) is in a flat region of GVD, then

all frequency components of the pulse travel at the same speed and therefore

the pulse will experience no distortion. If this is not the case, then the

pulse temporal profile will be distorted. This can be exploited to compress

or narrow [158], stretch [47, 159] and split a single pulse into many [160].

Birefringence can also be harnessed to separate, for example, the left and

right circular polarisation components of linearly polarised light pulse [47].
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7.2 Controlling the group velocity

7.2.1 Slow light

An important feature of the atomic susceptibility is how the real and imag-

inary parts scale with the detuning from resonance ∆. If we consider the

simple two-level atom from chapter 2, the real and imaginary parts of equa-

tion (2.22) yield

Re χ = − ∆

(Γ2/4) + ∆2
, (7.9a)

Im χ =
Γ

(Γ2/4) + ∆2
. (7.9b)

Far from resonance, absorption reduces as 1/∆2 whereas the dispersive com-

ponent scales as 1/∆. It can therefore be advantageous in slow-light experi-

ments to work in the far wings of a resonance [27] or between two resonance

lines, where absorption is negligible but dispersive effects are still significant.

Furthermore, because the profiles at large detuning are gently sloping, the

GVD is nearly zero over a large frequency range. In thermal atomic vapours,

using this principle it has been possible to achieve significant fractional pulse

delays, ∆t/tFW, of nanosecond pulses with relatively little absorption [47],

with very little pulse distortion, as Doppler broadening provides a GHz-

bandwidth medium. The delay using this technique can be extremely large,

fractional delays up to 80 have been observed with 740 ps pulses (59 ns delay)

in caesium vapour [161] with a corresponding group index ng ≈ 200.

The highest group indices, however, are realised using a resonant interac-

tion. Nearer to the resonance line, the refractive index varies more rapidly

and so the group index is larger. However, this comes at the cost of

rapidly increasing optical depth. To circumvent the optical depth problem,

many slow-light experiments use electromagnetically induced transparency

(EIT) [19, 162, 163]. For a comprehensive review of EIT and its applica-

tions, see the review by Fleischhauer [164].

EIT is a nonlinear optical process which typically involves two photons that

resonantly couple three atomic energy levels. An example susceptibility pro-

file is shown in figure 7.2, as a function of the probe laser detuning. Without
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the coupling laser (black dashed lines), the system reduces to the two level

case presented in chapter 2. When the coupling laser is on, destructive in-

terference between excitation pathways reduces the resonant absorption of

the (weak) probe laser when the (strong) coupling laser is resonant with the

second transition, as is the case for figure 7.2. The interference profoundly

changes the refractive index profile, so that on resonance there is now a

region of steep normal dispersion corresponding to a large positive group

index, where before there was anomalous dispersion. This coincides with a

reduction of the imaginary part of the susceptibility.

Coherence between the first and third levels that are not directly coupled

by the optical fields is generated when the two-photon detuning is zero;

neither laser needs to be exactly resonant with the second (intermediate)

state. The decay rate of this coherence sets the linewidth of the EIT fea-

ture, which is a contributing factor to the magnitude of the slow-light ef-

fect. It is therefore prudent to arrange for the first and third states to be

ground-states of the system, which have very long radiative lifetimes, so

nearly all slow-light experiments based on EIT use this so-called Λ-type ex-

citation scheme. The coherence decay rate will then be limited by other

dephasing processes. In thermal vapours, time-of-flight broadening is the

most important (the excitation is essentially Doppler-free as it is done with

copropagating beams with the same frequency to 1 part in 105), and this

limits the linewidth to around 30 kHz [165]. Using paraffin-coated walls

which introduce coherence-preserving collisions [166], and buffer gases which

increase the interaction time with the beam,1 it is possible to reduce the

linewidth further. Linewidths below 30 Hz have been achieved with Rb

buffered by neon gas [167]. Using this approach, with a sub-kHz linewidth in

neon-buffered Rb, Kash et. al. [168] observed a group velocity of just 90 m/s.

A similar reduction in group velocity was also observed by Budker et. al.

using a nonlinear magneto-optic effect [169].

By moving to the ultra-cold regime, however, one can further reduce the

dephasing, and with a Bose-Einstein condensate (BEC) it is possible to do

1The buffer gas introduces some additional dephasing due to collisions, but this is

largely negligible for ground state atoms. For excited state atoms the collisional dephasing

is more important, leading to a broadening of the EIT feature [45].
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Figure 7.2: Real and imaginary parts of the susceptibility around a resonance in

an EIT-type three-level system (red), compared with the two level equivalent (black

dashed). The steep gradient in Re χ around ∆ = 0 coincides with a transparency

window in the absorption profile. This creates a near-transparent slow-light region

of the type used in many experiments. Calculations based on the weak probe

susceptibility, equation (5) in reference [54], neglecting Doppler broadening.

this with a relatively large atomic density. In a landmark experiment, Hau

et. al. [170] observed a reduction of the group velocity to just 17 m/s, cor-

responding to a group index ng > 2× 107, using a BEC of sodium atoms at

temperatures of ∼ 100 nK, with an atomic number density of 8× 1013 cm−3.



Chapter 7. Fast light in dense thermal vapour 102

Stored light

It can be shown2 that the group velocity depends on the intensity of the

applied coupling field. By dynamically tuning the coupling Rabi frequency

it is possible to reduce the group velocity to zero, storing the light in the

medium [171, 172]. The pulse energy propagates in the medium as a ‘dark

state polariton’, a superposition state of atomic coherence and electromag-

netic field. The pulse can therefore be stored by making the polariton purely

atomic, and read out again at a later time by converting back to a purely elec-

tromagnetic component. This storage and retrieval was first demonstrated

by Liu et. al. [173] and Phillips et. al. [174] in quick succession, where the

optical pulse was stored for many times the pulse temporal width before

readout.

Photon storage and retrieval continues to be a topic of great interest [175],

and has been performed in ultracold atomic systems with storage times up

to one minute [176]. In similar ultracold experiments at the few-photon

level with long-lived Rydberg states, control over the quantum state of the

stored photons has been demonstrated [177] via microwave coupling between

different Rydberg states.

7.2.2 Fast light, causality and information velocity

The concept of fast light at first glance seems to be at odds with Einstein’s

special theory of relativity [178], leading to causality-violating implications,

2 The group velocity can be derived from the susceptibility of the three-level system.

In the weak probe limit, and when both lasers are resonant, the group index and velocity

can be expressed as [54, 164, 168, 170]

ng(∆1 = 0) = n+ ωp
dn

dωp
≈ n+ ωp

1

2

∂χ

∂∆1

∣∣∣∣
∆1=∆2=0

vg(∆1 = 0) =
~cε0
2ωp

1

Nd2
12

(γ21γ31 + Ω2
c/4)2

Ω2
c/4− γ2

31

,

where ωp is the probe detuning, N is the atomic density, Ωc is the coupling Rabi frequency

and γ21 and γ31 are the decay rates of the |2〉 − |1〉 and |3〉 − |1〉 coherences, respectively.

The coupling Rabi frequency is proportional to the square root of the intensity, Ic ∝ Ω2
c

of the coupling laser.



Chapter 7. Fast light in dense thermal vapour 103

i.e.that the energy, and therefore information, in the pulse travels faster than

c. There has been a great deal of literature on the subject of information

velocity in fast light media, starting with discussions between Sommerfeld

and Brillouin [179]. A brief summary is given here, but the interested reader

should consult, for example, references [180–183] for a more in depth discus-

sion and analysis.

In order to transmit information, something must vary in time. If we take

the simplest case of this, a binary state where the signal is either on or off,

the only time information is transmitted is when the signal changes state. A

completely monochromatic wave, being infinite in its extent, can therefore

not carry any information. Hence a phase velocity larger than c does not

imply information velocity. To transmit information, we need a signal that

varies in time, or in other words, a wavepacket.

One might think, then, that the speed of information flows with the group

velocity of the wavepacket. For a slow-light medium, this can often be the

case, as it can be understood in terms of an optical pulse being a physical

object that is slowed down. The same cannot be said for fast light, however,

where the group velocity can be greater than c or even negative, which would

imply either non-causal behaviour, or that the signal propagates backwards

in space (and hence time).

To understand information flow in fast light media, we need to further refine

the definition of ‘information’. If we have an optical pulse that is, say, a

Gaussian function, then in principle the pulse is analytic over its whole spatial

extent. In a naive approximation, the detection of the pulse at any time is

limited only by some detector efficiency. Once again then we return to the

picture of a spatially and therefore temporally infinite waveform, and the time

between generating the pulse and detecting it is in principle only dependent

on the detector.

The only way to produce a true localised signal in time or space that cannot

be predicted by having a better detector is to have a discontinuous, or non-

analytic, jump in the value of the signal at some time. If we return to the

Fourier picture of figure 7.1, it is clear that the only way to do this is to have

an infinitely large signal bandwidth. In a physical system the anomalous
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dispersion curve on which the pulse is centred must be necessarily finite in

magnitude and width, so that the non-analytic pulse has to be distorted.

The distortion causes ‘optical precursors’ to appear, which are the signals

associated with the zero (dc) and infinite frequency Fourier components [184],

which travel at a maximum velocity of c. Thus the information can only

travel at a speed that is less than or equal to c.

On a more practical level, Kuzmich et. al. [180] showed that quantum fluc-

tuations (noise) limit the detection of any real signal, again coming to the

conclusion that due to these fluctuations the point at which one can discern a

signal is pushed back in time, reducing the signal velocity below c. In terms

of signal-to-noise ratio (SNR), the vacuum pulse always has a higher SNR

and therefore it can always be detected first.

7.2.3 Experimental observations of fast light

Until recently, most experimental studies of fast light media have used Gaus-

sian input pulses, as these are relatively easy to produce, and analytically

simple. The theory of their propagation through dispersive media was first

presented by Garrett and McCumber [184] and Crisp [185], who showed that

the usual group velocity equations still hold for fast light provided there is no

distortion of the pulse. Their theoretical predictions were realised a decade

later by Chu and Wong [186].

The classic experimental demonstration of fast light in gain media came at the

start of this century, in a paper by Wang et. al. [187]. Using the anomalous

dispersion region located between two gain lines in optically pumped atomic

Cs, they demonstrated superluminal propagation of a microsecond-duration

optical pulse, with a group index ng = −310. Similar experiments from Akul-

shin et. al. followed [188], achieving larger (negative) indices (ng = −5100).

Though the group indices demonstrated in these two experiments implies

backward propagation of the pulse in the medium, an explicit demonstration

of backward propagation was first presented using a fiber amplifier with a

dip in the gain profile [189], with a measured index of ng = −4000.
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7.3 Group refractive index in dense thermal

Rb vapour

Methods based on gain media for fast light and EIT for slow light share a

common limitation: because the absolute change in index ∆n is small, in

order for a large (positive or negative) group index, the frequency range over

which the index changes, ∆ω must also be very small. They are therefore

limited to low bandwidth applications, with relatively long optical pulses.

As we have seen in chapter 6, the refractive index of dense Rb vapour can

be very large, so ∆n is of the order of 10−1. The cost of this is a broad

resonance, due to the atomic interactions. The group index, which can be

roughly expressed as ω∆n/∆ω, can therefore still be very large, with an

absolute value larger than 105 as we will see later in the section. An order-

of-magnitude comparison of realistic experimental parameters for different

slow- and fast-light methods is presented in table 7.1.

For high density thermal vapours probed with resonant laser light, optical

depth is the limiting factor. By using nano-cells however, this can be partially

circumvented, though obviously at the cost of fractional delay/advance. The

main advantage of using thermal media is the GHz-bandwidth provided by

the broad atomic lines, due to the dipole-dipole interactions between atoms.

The large bandwidth means that relatively short pulses can be used, down

to around a nanosecond, without significant pulse distortion. In addition,

by tuning the laser frequency over several GHz it is possible to move from a

fast-light to a slow-light medium, and by tuning the density, and therefore

the linewidth of the vapour, the magnitude of the slow- or fast-light effect

can be modified.

To calculate the group index in the medium, we use the susceptibility model

developed in chapters 2 and 3. We plot this as a function of vapour tem-

perature and detuning in figure 7.3. Unlike the refractive index (see figure

6.4), the optimum group index does not coincide with the highest tempera-

ture; instead we predict the largest group index to occur at a temperature

T ≈ 255◦C on resonance with the strongest hyperfine transition in 85Rb,

from Fg = 3 to Fe = 4, which occurs at a detuning ∆/2π = −1.2 GHz (we
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Slow light ∆n ∆ω ng ` ∆t ∆ω∆t

Off resonance,
10−3 109 100 10−1 10−7 102

thermal

EIT,
10−2 106 107 10−4 10−5 10

ultracold

Near-resonance,
−10−1 109 104 10−7 10−10 0.01

thin cells

Fast light

Gain media,
−10−6 106 −102 10−2 10−8 0.01

thermal

Resonant,
−10−1 109 −105 10−7 10−10 0.1

thin cells

Table 7.1: Order-of-magnitude comparison of slow- and fast-light methods.

Group index ng ∼ ω∆n/∆ω with ω/2π ∼ 3 × 1014 Hz for optical frequencies.

∆ω∆t is the fractional delay/advance of the pulse, assuming ∆ω ∼ 1/tFW. Cal-

culations are based on the experimental results in [47, 167, 168, 170, 187–189].

omit the line shift from the figure for clarity, since it does not significantly

affect the position of the maximum). In the pulse propagation experiment

presented later in this chapter, this detuning is used as the carrier detuning

for the optical pulse. This maximum occurs because the susceptibility, and

therefore the refractive index, up to this temperature increases more in mag-

nitude than width. As temperature is increased further, the width increases

more than the magnitude and therefore dn/dω decreases.

In figure 7.4, we plot the refractive index and group index profiles for the

optimal case, as a function of the detuning from resonance. The dashed line

shows the carrier detuning of the optical pulse used in the experiment, while

the red shaded area represents the pulse bandwidth. The opacity of the

shading represents the power spectrum of the pulse. Over the central region

(ωc ± ωFW) of the pulse, the group index varies by a factor of 1.5 from the

peak value of −1.20× 105.
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Figure 7.3: Calculated group index as a function of temperature and linear

detuning ∆/2π on the D2 line. The dashed line represents the carrier detuning for

the pulse used in the experiment.

7.4 Pulse propagation

In section 7.1.2 we discussed the construction of optical pulses from their

Fourier components. The propagation of the pulse is therefore determined

by the propagation of each of the individual Fourier components.

To begin, consider an input optical pulse with a Gaussian temporal profile.

In free space the electric field envelope is given by

E(t) = E0 e−t
2/2τ2 . (7.10)

We can then consider the plane-wave Fourier components

F (ω) =
1√
2π

∫
E(t) eiωt dt . (7.11)

Since we have a frequency dependent refractive index n(ω), the individual

frequency components of the pulse each experience a different refractive index

and thus a different phase shift. At the exit of the medium

F (z, ω) = F (z = 0, ω)ein(ω)k0z . (7.12)
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Figure 7.4: Calculated refractive (a) and group (b) indices as a function of

linear detuning ∆/2π at a temperature T = 255◦C. The pulse centre frequency

and bandwidth are denoted by the dashed line and shaded area, respectively.

Since the refractive index is complex, the real part of the index gives rise to a

phase shift nRk0z, while the imaginary part attenuates (nI > 0) or amplifies

(nI < 0) the component parts. To find the electric field profile at the exit of

the medium, we simply take the inverse Fourier transform of equation (7.12)

E(z, t) =
1√
2π

∫
F (z, ω)e−iωtdω . (7.13)

Finally, we convert the field into an intensity, since this is what we measure

experimentally, via

I(z, t) =
ε0c

2
|E(z, t)|2 , (7.14)

assuming the refractive index of air ≈ 1.

7.4.1 Subluminal propagation

As a test of the model, figure 7.5 shows the pulse propagation code applied

to an off-resonant slow-light medium. The experiment is the same as that

presented in reference [47], and uses a 75mm thickness vapour cell filled with
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Figure 7.5: Slow light: experiment and theory. Data (solid lines) and theory

(dashed lines) showing pulse delay as a function of temperature in a 75 mm thick-

ness vapour cell filled with 99% 87Rb. The temperatures are, left to right, {20,

105, 113, 123, 136, 144}◦C. The inset shows the transmission and refractive index

profiles at 100◦C. The pulse centre frequency and bandwidth are denoted by the

dashed line and shaded area, respectively. Experimental data provided by Lee

Weller.

99% 87Rb, 1% 85Rb. The transmission and refractive index profiles over the

D1 resonance line at a temperature T = 100◦C are shown in the inset. The

optical pulse has a width tFW = 1 ns and carrier frequency centred between

the hyperfine ground state transitions (∆c/2π = 300 MHz, dashed line in

the inset), where dn/dω > 0. In the same way as for figures 6.4 and 7.3, the

variation in the refractive index, and thus the group index, depends on the

atomic density so the pulse experiences a slow-light medium and is delayed by

an amount that varies with temperature. The theoretical model fits well to

the experimental data, with slight modification to the measured temperatures

(less than 3◦C) that is within reasonable experimental uncertainty. There are

no other adjustable parameters. Importantly the increase in the pulse width

at the highest temperatures that arises due to finite group velocity dispersion

is correctly predicted by the theory.
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7.4.2 Superluminal propagation of sub-nanosecond

optical pulses

In the present experiment, we use a Pockels cell located between two crossed

Glan-Taylor polarisers which rapidly rotates the polarisation of light, pro-

ducing optical pulses with tFW = 800 ps. The pulses are sent through the

cell, focussed as in the previous experiments to minimise the thickness varia-

tion, and we measure the arrival time of photons on a single photon counting

module (SPCM). A histogram can then be made of the arrival time of these

photons over a period of some hours, which gives good signal-to-noise ra-

tio; the noise is at the 1% level, primarily limited by background light. See

appendix C for details of the data acquisition process.

Because of the time taken to collect data the laser needs to be stabilised,

which we do electronically using a wavelength meter (stable to less than

10 MHz) at an arbitrary frequency. The optical power level is very low; the

peak power in the pulse is of the order of 50 pW (with a 1 kHz repetition

rate) so the excitation can be considered weak. In principle the power could

be increased to speed up data acquisition, but the response of the SPCM

modules used (Perkin Elmer SPCM-AQR-14-FC) has been shown to be non-

linear for high count rates, skewing the distribution of arrival times.

Figure 7.6 shows experimental data for the theoretical optimum conditions,

with a temperature T = 255◦C and cell thickness ` = λ/2. We record a

reference pulse where the laser is far detuned from resonance (carrier detuning

∆c/2π = −13 GHz) and there is no interaction with the atomic medium

(ng ≈ n ≈ 1). We then switch the laser frequency onto resonance to measure

the effect of the medium.

On resonance we see attenuation to 0.35 of the maximum relative intensity

and an advance of the peak by (0.13 ± 0.01) ns, corresponding to a large

negative group index ng = (−1.0± 0.1)× 105. The experimental pulse shape

fits a Gaussian well on the leading edge, but not on the trailing edge. Because

of this, the advance of the peak and its error were determined by fitting a

Gaussian to the first half of both the reference and fast pulses and extracting

a peak centre from this. The error in group velocity is propagated through

from the error in peak centres.
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Figure 7.6: (a,b) Superluminal propagation of a 800 ps pulse through a vapour

thickness ` = λ/2 and temperature T = 255◦C. Red and blue solid lines are

experiment, dashed black lines are theory with a 800 ps FWHM Gaussian input

pulse. Off resonance (∆c/2π = −13 GHz, red line) there is no interaction at this

temperature and the pulse propagates through the vapour as it would through

vacuum. On resonance, ∆c/2π = −1.2 GHz, the pulse is attenuated and arrives

(0.13± 0.01) ns earlier than the off-resonance reference pulse, corresponding to a

group index ng = −(1.0± 0.1)× 105. The dashed green line is the theory without

dipole-dipole interactions. (c) Total integrated counts for both signals verifies

preservation of causality - the probability of detecting a photon is always higher

in the reference pulse.

Because of the large spectral bandwidth available, we see very little distortion

of the advanced pulse, except on the trailing edge where resonance fluores-

cence causes the resonant pulse to have a slightly longer tail compared to the

reference pulse (see chapter 8). The dashed lines in figure 7.6(a) are theory

curves based on the pulse propagation model, assuming an input pulse width

of 800 ps. There is no fitting involved.

It is important to note that without the dipole-dipole interactions, the prop-

agation of such temporally short pulses would not be possible without heavy
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distortion of the pulse shape. To illustrate this, the green dashed line in

panel (a) shows the calculated pulse profile if there were no dipole-dipole

interactions in the medium. In this case the pulse has a much larger band-

width than the transition (spanning multiple excited state hyperfine levels)

and therefore distortion of the output pulse is evident. Even though there is

a superluminal component which is more advanced than for the interacting

ensemble, there is also a sub-luminal component which can be seen as a small

peak at t ∼ 0.8 ns.

Panel (c) of figure 7.6 shows the total integrated counts over the detection

period. The detection starts at t = −15 ns, which is why the two curves start

at different points on the plot. The integrated counts verify that the advanced

pulse preserves causality [180], since there is always a greater probability of

detecting a photon in the reference pulse than the advanced pulse. From this

we can immediately surmise that the information velocity of the advanced

pulse must be less than c.

Fractional advance

Since the advance scales linearly with the thickness of the medium, by making

the vapour thicker we could increase the advance of the resonant pulse, but

at the cost of additional attenuation, which scales exponentially with the

thickness, as shown in figure 7.7.

In principle the maximum observable fractional advance is limited to around

2 by a signal-to-noise argument [190]: in attenuating media the signal is ab-

sorbed, so the point at which one can identify a ‘signal’ moves backward in

time, effectively reducing the signal velocity. In gain media the situation is

slightly different as the signal does not get attenuated. Instead, the funda-

mental quantum mechanical principle that amplification always introduces

additional noise (see reference [182]) becomes important, then the same argu-

ment of identification of signal above the noisy background limits the observ-

able advance. An analytic treatment by Macke, Ségard and Wielonsky [191]

reached similar conclusions.

Experimentally, fractional advances up to 0.25 have been observed [192], but

with severe attenuation (2% transmission). In the current experiment, we
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Figure 7.7: Maximum fractional advance, based on current experimental signal-

to-noise ratio. The transmitted intensity scales exponentially with the cell thick-

ness (blue), while the fractional advance scales linearly. This limits the largest

fractional advance that we could observe to around 0.55, which could be observed

with a 1.3 µm thickness cell.

estimate that with the present setup we could achieve a fractional advance of

0.55, with a transmission of 1%, which could be implemented with a cell with

a thickness ` ≈ 1.3 µm. In principle the SNR can be increased by increasing

the data acquisition time, but since the noise statistics are poissonian, the

SNR scales as
√
N ∝ √tacq. The relative scaling of attenuation and frac-

tional advance mean that returns are diminishing; a 100-fold increase in the

acquisition time would mean a SNR ∼ 1000, corresponding to a cell length

of 2 µm for 0.1% transmission, which yields a fractional advance of ∼ 0.85,

an increase by a factor of only 1.5.

7.5 Outlook

Owing to the magnitude of the frequency-dependent refractive index in the

medium, in the vicinity of the atomic resonances the group index of the

medium varies over many orders of magnitude, giving rise to slow- and fast-

light effects. On resonance we have demonstrated a significant fast-light

effect, measuring a group index ng = (−1.0 ± 0.1) × 105, the largest nega-

tive index measured to date. Due to the dipole-dipole interactions between
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atoms, which broaden the spectral lines, we can observe a significant frac-

tional advance of sub-nanosecond optical pulses with very little distortion.

The magnitude of the effect can be tuned by changing the atomic density and

we can move from a fast-light to slow-light region by altering the frequency

of the laser.

Whilst the high attenuation of the output pulses limits the potential appli-

cations of the current system, a relatively simple modification could prove

fruitful. If the populations in the system were inverted, with the use of a

fast pump pulse before investigation by the weak probe pulse, then the dy-

namics of the system change completely. Because the susceptibility depends

on the degree of population inversion (equations (2.16) and (2.21)), we could

switch the system from a attenuating fast-light medium (on resonance) to

a amplifying tunable slow-light medium, which could be useful for optical

communications systems, for example. Work towards this goal is the focus

of chapter 9.



Chapter 8

Fluorescence lifetime

In chapter 5, we measured the cooperative Lamb shift in a thin Rb layer.

Along with the shift, we observed a sharp transition in the line broadening

coefficient, the mechanism of which is not well understood. However, theory

suggests that given the presence of a cooperative shift in the system, there

should also be a corresponding change in the lifetime, known as superradi-

ance [11]. Instead of measuring the frequency spectrum, we can investigate

the change in lifetime in the time domain, using the fluorescence as a direct

probe.

In this chapter we investigate the fluorescence from a mm-thickness vapour

layer, and compare this to the fluorescence signal in the nano-cell. At high

atomic density, radiation trapping becomes important in the mm-thickness

regime, whereas for the nano-cell the decay is dominated by wall-to-wall

collisions.

8.1 Experimental setup

The experimental setup is similar to that used in the previous chapter; a

Pockels cell generates nanosecond pulses from a CW laser source. The exci-

tation laser is stabilised using polarisation spectroscopy to an atomic reso-

nance - either the Fg = 1 → Fe = 2 or Fg = 2 → Fe = 3 transition in 87Rb.

The pulse intensity is strong enough to significantly excite the medium, with

115
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a peak optical power of around 100 µW focussed to a spot size of ∼ 30 µm,

and the off-axis fluorescence is observed with a single photon counting mod-

ule (SPCM). A histogram of the photon arrival times is then recorded. The

data contains the signal with count rate Cs, the background light in the room

(minimised as much as possible but still the main source of noise) Cbg, and

the dark count rate of the detector Cdc, which is the amount of counts when

there is no light present. This has been measured for this detector to be

around 50 Hz, uniformly distributed in time (see appendix C). The room

background rate varies over different experiments, but remains constant over

the timescale of a single recording, and is of the order of a few hundred Hz,

significantly less than the signal count rate, which is typically in the tens of

kHz (CW equivalent).

8.2 Fluorescence lifetime in the 4 mm cell

As a proof-of-principle test, an experiment was set up using a 4 mm thickness

vapour cell to measure the well-known excited state lifetime of the 5P3/2 state

of Rb, before moving on to the nano-cell.

In order to determine the natural lifetime of the excited state, a relatively

cold vapour is needed to avoid significant atomic interactions, as discussed

in chapter 5, or radiation trapping caused by large optical depths, which will

be discussed later in this chapter.

Figure 8.1 shows the measured fluorescence signal as a function of time after

excitation. The inset to the plot shows the same data on a log scale. The

sharp peak at t = 0 is the light from the pulse that is scattered from the glass

of the cell and the cell heater (we still observe this spike when the pulse is

incident on a region of the cell with no Rb present). The constant noise floor

due to background light and dark counts is taken as the mean number of

counts in the time before the pulse arrives (t < −3 ns), has been subtracted

from the data.

The data are fit to an exponential decay C(t) = C0e
−t/τ , where C(t) is the

number of counts at time t and C0 = C(t = 0). For the data presented in

figure 8.1 the lifetime τ directly corresponds to the excited state lifetime, with
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Figure 8.1: Fluorescence decay of the 5P3/2 state, measured in a 4mm-thickness

cell at 28◦C. The counts are per bin, and the bin width of the histogram is 250 ps.

A nanosecond pulse is incident on the medium at t ≈ 0, and we observe a large

initial count rate, due to scatter from the cell heater and windows. After the initial

spike, a least-squares fit to a decaying exponential yields a lifetime τ = 26.9±0.5 ns.

a fitted value of τ = 26.9±0.5 ns, in reasonable agreement with accepted value

of 26.2 ns [22]. The slightly larger mean value is probably a result of a small

but finite amount of radiation trapping, similar to results in reference [193].

When plotted on a semilog scale, the data fit well to a straight line. As a

more quantitative indicator, the reduced χ2 value for the fit is 1.6, indicating

a good fit [121]. The black line in the figure is the fit to the data. We fit

only the data from t ≥ 5 ns, to ignore the scattered light around t = 0, and

assume Poissonian statistics in the number of counts.

8.2.1 Multiple-scattering events

If the optical depth is large enough, an emitted photon can be reabsorbed

before it leaves the medium. These multiple scattering events are ubiquitous

in nature; for example, in a cloud, the density of the water vapour changes

its opacity because the light is scattered many times before it leaves the

cloud [194]. This behaviour is usually diffusive, with the associated Brownian

motion having a well defined mean free path 〈x〉 and variance 〈x2〉 determined

by Gaussian statistics (the central limit theorem [121]).
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However, for a number of systems the behaviour is super-diffusive, dominated

by the rare but long path steps in the tail of the distribution known as Lévy

flights. These long- (or heavy-) tailed distributions are characterised by a

step-size probability that follows a power law, P (x) ∝ 1/xα. When α < 3,

the variance of the distribution diverges, and hence the statistics no longer

necessarily follow the central limit theorem. Many systems from a wide

range of disciplines have been shown to display these long-tailed distributions,

including in ecology, physiology, financial systems and the physical sciences

(see [195] and references therein). The multiple scattering of resonant light

from hot atoms is a natural (i.e. not engineered) example of this phenomenon.

Physically, the origin of the long-tailed distribution is in the inhomogeneities

of the system. In many cases, these are spatial inhomogeneities, for ex-

ample the variation in the size of scatterers in non-resonant systems [196].

In resonant fluorescence however, it is the spectral inhomogeneity that is

important. In particular, it is the frequency redistribution of the incident

(quasi-monochromatic) light by the atoms, which have some spectral width,

which causes an effective inhomogeneity in the optical depth of the (quasi-

homogeneous) medium - light that is re-emitted in the wings of the distribu-

tion will have a much lower probability to be reabsorbed and hence travels

much further than light that is emitted near resonance. The difference in

scattering between monochromatic light (exponential decay following Beer’s

law) as compared to light already scattered by atoms (and hence frequency

redistributed) was demonstrated by Mercadier et. al. [197]. By measuring

the fluorescence from this pre-scattered light they were able to infer the step-

size distribution, confirming the probability distribution with α = 2.41±0.12,

characteristic of Lévy flights.

The multiple scattering events all increase the measured lifetime of the light

in the medium; the light is briefly ‘trapped’ or ‘imprisoned’ in the medium

before it escapes. Much of the theoretical work in this field was derived

by Holstein [198, 199] based on a sum of decaying exponentials (now called

Holstein modes). However, Holstein’s results assumed high density media

and fail to account for the low density behaviour which the current work is

concerned with. At low densities, assuming a simple two-level model with

a single excited state that in the absence of any radiation trapping has a
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Figure 8.2: Fluorescence decay from the 4mm cell, showing radiation trapping

as density is increased. (a) At 75◦C, the data fits a double exponential decay, the

first (black) with the excited state lifetime and then a second longer decay (blue).

(b) As density is increased further (T = 110◦C), only the longer decay remains.

The counts are per bin, and the bin width of the histogram is 250 ps.

lifetime τ0, the effect of radiation trapping is to increase the lifetime linearly

with density [200, 201]

τ = τ0(1 + aB αL), (8.1)

where a is a geometry-dependent scaling factor which we take as 1 for a

cylinder [202], for a closed system the branching ratio B = 1, and αL is the

effective optical depth of the medium which differs from the normal optical

depth because the detection is off-axis. L is effectively the distance from the

point of excitation to the edge of the medium in the direction of the detector,

which we estimate for our geometry to be ∼ 5 mm. For resonant excitation,

α is the absorption coefficient of the zero-velocity class and can be expressed

as [202]

α =
Nλ3

8π

Γ0

uπ1/2
, (8.2)

where u is the most probable thermal velocity and Γ0 = 1/τ0 is the excited

state decay rate.

Clearly, for the high density vapour in the nano-cell radiation trapping could

be a significant factor. In order to understand this process, we first investigate

the time-dependent fluorescence in the 4 mm cell as we raise the optical

depth. Figure 8.2 shows the effect of radiation trapping for two temperatures.
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Figure 8.3: Fluorescence lifetime, in units of the natural lifetime τ0, plotted

against density. Blue points are data with the pulse carrier detuning on resonance

with the 87Rb Fg = 2 → 3 transition on the D2 line, while red points are for the

laser resonant with the 87Rb Fg = 1→ 2 transition. The solid line is a linear fit to

the data (excluding the two largest blue data points), with an offset corresponding

to a measurement of the natural lifetime of the excited state of τ0 = 24 ± 2 ns.

Error bars calculated from the fits are smaller than the data point markers.

Panel (a) shows data at T = 75◦C (N ≈ 1012 cm−3), whilst panel (b) shows

data at T = 110◦C (N ≈ 1013 cm−3). For the lower density, we observe two

distinct decay features, the first of which corresponds to the excited state

lifetime. The second we attribute to radiation trapping, and has a lifetime

τ = 47.7 ± 0.1 ns. At the higher density we see only the longer radiation

trapped lifetime, in this case with a lifetime τ = 129.6± 0.4 ns. At the lower

density, the light that reaches the detector soonest is that which undergoes

no additional scattering.

For the relatively low densities used here, the effects of dipole-dipole inter-

actions are small (Vdd < Γ, see chapter 5) and therefore to a good approx-

imation the optical depth is proportional to the density. We characterise

the radiation trapping behaviour as a function of the density of the sample,

and plot the results in figure 8.3. We do this for two cases where the pulse

carrier frequency is resonant with the two ground states, as discussed ear-

lier in the chapter. Excluding the two highest density points for the (open)

Fg = 2 transition, the data fit to a linear function. The deviation of the two

highest density points is probably a result of decay into the lower hyperfine
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ground state. By allowing the offset to vary we can infer the zero-density

limit value for τ0, which we find is 24 ± 2 ns, in reasonable agreement with

our previous measurement and the literature value. In this case we obtain

a fitted gradient of 1.89 ± 0.04 × 10−11 ns cm3 (dashed line on the figure).

Alternately if τ0 is fixed at a value of 26.2 ns, we find a similar gradient from

the fit of 1.93±0.05×10−11 ns cm3 (solid line on the figure). Using equations

8.1 and 8.2 with a = 1, B = 1 and L = 5 mm, we obtain a coefficient of

∼ 8× 10−12 ns cm3, close to the experimental value. The bandwidth of the

pulse means that we excite more than just the zero velocity class atoms, and

this could account for the difference.

8.3 Fluorescence lifetime in the nano-cell

In the nano-cell, one may think that because the vapour is so thin in the

propagation direction, radiation trapping effects may be negligible. In this

case, the excitation would need to be off-axis, with the detector placed normal

to the windows. However, with the current heater design, optical access is

extremely limited and the only way of exciting off-axis is from the side, at 90◦

to the propagation direction of the laser. With the excitation from the side,

we excite a wide range of cell thicknesses which is undesirable; a solution to

this is to image only a specific region, using the imaging system to determine

the local thickness. In this work however, for simplicity we excite in the same

way as for the 4 mm cell (at normal incidence to the windows), and detect

from the side. As we shall show, radiation trapping is not the dominant effect

in this system.

Whilst the cooperative Lamb shift (CLS) only becomes apparent when the

density is very high, the change in the broadening coefficient appears to hap-

pen for all densities. One may expect, in absence of any radiation trapping,

a lifetime modification due to the dipole-dipole interaction to

1

τ
=

1

τ0

+ Γdd . (8.3)

At high densities where the CLS becomes important we therefore expect a

lifetime that is much shorter than the pulse, since Γdd is of the order of GHz.

However, the enhancement in the broadening coefficient that we also observe
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Figure 8.4: Histogram of fluorescence counts in the nano-cell, with a thickness

` = 3λ/2 and temperature T = 160◦C. The bin width is 50 ps. The measured

fluorescence fits to an exponential decay with lifetime τ = 2.6± 0.2 ns.

as a function of cell thickness is present from very low densities, therefore it

is interesting to look at the fluorescence lifetime at relatively low densities,

where we still expect a reasonably long lifetime - shorter than the natural

lifetime but longer than the pulse width.

Figure 8.4 shows the measured fluorescence signal from the nanocell, with a

cell thickness ` = 3λ/2. At a temperature T = 160◦C, we have a number

density N = 1.6 × 1014 cm−3, which gives Γdd = 2π × 16 MHz, yielding

an expected interaction-shortened lifetime of τ ≈ 7 ns. The atom-surface

interaction for this cell thickness is negligible. However, we observe a decay

that is commensurate with a lifetime of τ = 2.6±0.2 ns. In order for this to be

due to dipole-dipole interactions, we would require a temperature T = 190◦C

(N = 6.2× 1014 cm−3), too high to be due to inaccuracy in the temperature

measurement. As confirmation of this, we measure the same lifetime, within

error, at a temperature of T ≈ 130◦C. Exciting the medium from the side

with detection normal to the windows also yields a similarly short lifetime.

We attribute the lifetime to the atomic time-of-flight across the cell. Unlike

with CW spectroscopy, where the atoms moving parallel to the windows

interact for longer than the atoms moving wall-to-wall, the short excitation

pulse means that all atoms interact with the beam for the same amount of

time. This makes the experiment much more sensitive to the wall-to-wall
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Figure 8.5: Fluorescence lifetime versus cell thickness in the nano-cell. We find

a linear relationship between the lifetime and the cell thickness, implying that the

lifetime is limited by the time of flight of the atoms across the cell.

atoms than is the case with CW excitation, as there are many more atoms

that move wall-to-wall than parallel to the windows.

To confirm this mechanism, we look at the measured fluorescence lifetime as a

function of the vapour thickness. As expected, the lifetime increases linearly

with thickness. For thermal atoms, we expect the atoms to be moving with

most probable velocity u ≈ 300 m/s, which would correspond to a lifetime

τ = `/u. The measured gradient is consistent with τ ∼ `/1.3u, and the slope

has a negative offset. The negative offset can be understood as an effective

shortening of the cell, due to strong atom-surface interactions in the vicinity

of the windows - the atom decays before it hits the wall. Extrapolating

from the fit, we find the offset is consistent with the vapour being effectively

shortened by ∼ 100 nm, or 50 nm on either window which is a reasonable

estimate of the distance at which atom-surface interactions become important

(see chapter 4).

8.4 Outlook

As measuring the time-domain fluorescence is a simple and relatively in-

expensive method for studying the radiative lifetime, it could be possible

to perform a precision measurement of the excited state lifetime, if the ex-

perimental parameters, particularly the temperature of the cell, could be
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controlled with greater precision, as in principle the signal to noise ratio is

limited only by the Poissonian counting noise which increases with the square

root of the accumulation time (for a constant signal rate).

The original aim of this experiment was to observe directly the enhancement

of the decay rate that is the ‘smoking gun’ of a superradiant process. How-

ever, the extremely short lifetime of the wall-to-wall atoms is the dominant

feature at low density. In order to circumvent this issue, we could move to

higher density where the interactions are on a shorter timescale than wall-

to-wall time-of-flight, but in this case, the decay time including collisions is

expected to be shorter than the pulse width. A shorter optical pulse would

partially solve this problem - moving to a 100 ps pulse may be an idea for

future experiments, but this comes at the cost of higher pulse bandwidth,

which would be comparable to the width of the entire absorption line, and

also increases the expense since a better detection system would be needed,

in addition to a different laser source.

Using a multilevel excitation scheme to Rydberg states, the same technique

has been applied to successfully observe superradiant cascade using thermal

Cs vapour [21], but it seems very unlikely that a direct observation of a

superradiant decay is possible in the current system.

Despite these setbacks, we still hope that this time-domain fluorescence tech-

nique can probe some interesting physics in the nanocell. One could also

imagine using a strong pulse to drive Rabi oscillations in the medium, ob-

serving the variation in the decay as either the power or the duration of the

pulse is varied, similar to reference [203].

In the mm-cell, the radiation trapping process is prominent at moderate

densities. The double-exponential decay of the fluorescence could be a sign

of Lévy flights in the decay and it would be interesting to study this behaviour

further.
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Coherent dynamics

In chapter 7 we showed that in the weak probe limit, where we assume all of

the population remains in the ground state, the group index of a dense Rb

atomic vapour can be very large. On resonance, we observe a group index

of −105, which varies by a relatively small amount over a GHz-bandwidth

region. This allowed for superluminal propagation of sub-nanosecond optical

pulses with very little distortion.

In this chapter instead of only weakly probing the ground-state medium, we

drive significant population into the excited state with a second pump laser.

By doing this we change the propagation dynamics of the weak probe pulse,

since the susceptibility that is probed depends on the amount of excitation

in the medium. If all of the population is driven into the excited state

and probed before the medium decays (either through spontaneous emission

or interactions with other atoms or the cell windows), then in principle the

medium that the probe experiences can be changed from a fast-light to a slow-

light medium, and instead of attenuation, the population inversion amplifies

the probe pulse as it propagates.

The ability to do this crucially depends on the coherent evolution of the

system, and in this chapter we present initial results from an ongoing exper-

iment where we probe sub-nanosecond timescale coherent dynamics in the

nanocell.

125
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9.1 Introduction

In a two-level atomic system, as discussed in chapter 2, if the driving Rabi

frequency Ω is large compared to the decay rate of the excited state Γ then

the populations of the ground and excited states can oscillate many times be-

fore reaching a steady-state. We plot in figure 9.1 the evolution of the excited

state population ρ22 as a function of time for various values of the ratio Ω/Γ.

When Ω/Γ � 1, there is little oscillation and the system remains mostly in

the ground state. However, as the ratio increases, the oscillations become

significant, and a transient population inversion can be realised. When this

happens, the coherence between the levels represented by the off-diagonal el-

ements of the density matrix ρ12 switches sign. If we recall from equation 2.21

the fundamental link between the coherence term and the atomic suscepti-

bility, we see immediately that the population inversion dramatically alters

the optical properties of the atom. By switching the sign of ρ12 we switch

from an absorbing medium into an amplifying medium; physically this comes

about because the laser now drives more population down from the excited

state, with emission of a photon, than up from the ground state with the

absorption of a photon.

In an ideal experiment, the medium would be pumped with a strong optical

pulse, before probing with a second weak pulse some time later. Whilst in

principle the pump and probe can be the same wavelength, in practice this

is not feasible in our experiment, since there are many orders of magnitude

in power between them, separating the probe signal from the pump light is

challenging. If the two pulses are well separated this becomes easier, but in

the present experiment the effective decay time of the excited state is very

fast, on the order of a few nanoseconds, due to collisions between the thermal

atoms and the windows of the cell (see chapter 7). The decay rate in this

high density regime is expected to become very large, so equivalently large

Rabi frequencies are needed to observe any coherent behaviour, on the order

of 1 GHz or more.

Given the combined need for a multi-level excitation scheme to separate

pump and probe pulses, and for large Rabi frequencies, a Vee-type excitation

scheme was chosen. The pump pulse couples a ground state to the 5P3/2
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Figure 9.1: Rabi oscillations plotted for various ratios of the Rabi frequency

to damping rate; Ω/Γ = 1 (black), 2 (green), 5 (blue) and 10 (red). The inset

shows the oscillation in the imaginary part of the coherence, which is responsi-

ble for absorption. When Im(ρ12) is negative, we expect amplification instead of

absorption.

manifold, whilst the probe is resonant with a transition from the same ground

state to an energy level in the 5P1/2 manifold. Similar multilevel systems have

previously demonstrated GHz Rabi oscillations in thermal Rb cells with a

ladder scheme, with the pump tuned to a transition from the 5P3/2 level up

to a Rydberg state [204, 205]. However, the optical power required to obtain

GHz Rabi frequencies for this transition is very large. Using another ground

state transition for the pump is advantageous because the transition is very

strong, allowing large Rabi frequencies for moderate amounts of laser power.

In our experiment we can achieve GHz Rabi frequencies with around 20 mW

of optical power.

9.2 Optical Bloch simulations

The energy levels of the model system are shown in figure 9.2. The system

forms a vee-type system of three manifolds - 5S1/2 (states |1〉 and |2〉), 5P1/2

(states |3〉 and |4〉), which decays naturally at a rate ΓD1, and 5P3/2 (state

|5〉), which decays naturally at a rate ΓD2. The D1 laser with a wavelength

795 nm is the CW probe, whilst the D2 laser at 780 nm is the pump laser,
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and can be either CW or pulsed. Within the manifolds we consider the

hyperfine splitting of both the ground and excited states, since the Rabi

frequencies we consider are of the same order as the ground state hyperfine

splitting, and much larger than the excited state splitting. However, as the

pulse bandwidth is larger than the 5P3/2 hyperfine splitting, we consider this

as one state.

The Hamiltonian of this system is given by

H∂ =
~
2



0 0 Ω13 Ω14 Ω15

0 2∆hfs
S Ω23 Ω24 Ω25

Ω13 Ω23 −2∆p 0 0

Ω14 Ω24 0 −2(∆p −∆hfs
P ) 0

Ω15 Ω25 0 0 −2∆c


, (9.1)

where the levels i and j are coupled with Rabi frequencies Ωij. The strength

of the coupling depends on the intensities of the two lasers and the transi-

tion strengths for the indivdual hyperfine transitions, which can be found

tabulated in references [22, 46]. In practice, we specify only one of each of

the probe and coupling Rabi frequencies, and the others are derived from

these. The decay matrix L contains the branching ratios for decay out of

the excited states back to either of the ground states. We include the effect

of self-broadening as a modification to the decay rate, by replacing ΓD1,D2

with ΓD1,D2 + βD1,D2N , where βD1,D2 is the state-dependent self-broadening

coefficient (see chapter 5). We can include any additional dephasing into

this term, if required. Finally, we include a dephasing term between the two

ground states, γ21, which depends on the vapour thickness, to simulate the

collisions with the walls which repopulate the ground states evenly.

As the experimental pulse carrier frequency is resonant with the closed tran-

sition Fg = 3 → Fe = 4 in 85Rb, we assume that the transition |1〉 → |5〉
is closed, i.e. that state |5〉 does not decay into state |2〉. The simulation is

relatively insensitive to changes in this value.

We can then use the Lindblad equation (equation 2.13) to find the time

evolution of the density matrix, either in the steady state with a CW pump

laser or in the transient regime with a pulsed pump laser.
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Figure 9.2: Energy level scheme of the five level system. The states |1〉 to |5〉
correspond to, in order, the F=3 and F=2 states of 5S1/2, the F=3 and F=2 levels

of 5P1/2, and the 5P3/2 manifold of 85Rb. The states are coupled with two lasers:

the probe laser with intensity Ip couples the 5S1/2 and 5P1/2 manifolds, whilst the

coupling laser with intensity Ic couples 5S1/2 to 5P3/2. Other symbols are defined

in the main text.

9.2.1 Steady-state solutions

With a CW pump laser, we find the steady-state solution in the same way

as in chapter 2. We include Doppler broadening by making the substitutions

∆p → ∆p − kpv and ∆c → ∆c − kcv, where kp,c are the wavevectors of the

probe and coupling lasers, and integrating over the velocity distribution. The

two lasers are copropagating, so the atom sees a Doppler shift from both that

is in the same direction. This maximises the amount of atoms that encounter

a two-photon resonance condition.

The transmission of the probe laser is proportional to the sum of all the

probe transitions. In a similar manner to equation (2.21) we have

Im(χ) =
2Nµ2

~ε0

∑
i=1,2

∑
j=3,4

Im(ρij)

Ωij

. (9.2)

The transmission is found from T = exp(−k` Im(χ)) in the normal way.

With two CW lasers, it is often insightful to consider the dressed state pic-

ture, where the coupling laser splits the probe transition into two, which are

separated by the coupling laser Rabi frequency, Ωc, and centred on the energy

level of the undressed or ‘bare’ state |2〉. Electromagnetically induced trans-

parency (EIT) can then be understood as interference between the dressed



Chapter 9. Coherent dynamics 130

−3 −2 −1 0 1 2 3 4
Probe Detuning (GHz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ω
p

ea
k

15
(2
π

G
H

z)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ra

n
sm

is
si

on|1〉

|3〉
|5〉

ΩC

|1〉
|+〉

|−〉

|3〉

ΩC

(a)

(b)

(c)

Figure 9.3: Energy levels in the bare (a) and dresed (b) states, with a resonant

coupling laser. The state common to both lasers, in this case the ground state,

is ‘dressed’ by the coupling laser creating the new states |+〉 and |−〉. These two

states are split by an amount equal to the Rabi frequency of the coupling laser.

(c) Simulation results of the 5-level system, showing Autler-Townes splitting of

the resonant ground state as the probe detuning is varied. The splitting increases

linearly with the coupling Rabi frequency, until it becomes comparable to the

ground state hyperfine splitting, where the other ground state also starts to shift.

states |+〉 and |−〉. The frequency splitting between these dressed states

is equal to the coupling Rabi frequency. This splitting is known as Autler-

Townes (AT) splitting. For large coupling Rabi frequencies, the splitting is

so large that the absorption curve is well described by 2 separate absorption

lines, centred on ∆p = ±Ωc/2, as demonstrated in figure 9.3(b). Panel (c) of

figure 9.3 shows the Doppler-broadened transmission spectrum of the 5-level

system with CW lasers as a function of probe detuning and coupling Rabi

frequency, with the coupling laser resonant with the |1〉 → |5〉 transition.

AT splitting of the |1〉 → |3, 4〉 transition is evident as the coupling Rabi

frequency increases, which splits linearly until Ωc ∼ 2 GHz then becomes

nonlinear as the second hyperfine ground state |2〉 becomes involved in the

process. This occurs because the coupling laser also dresses the |2〉 → |5〉
transition, but with a large detuning. As Ωc increases, the |2〉 → |3, 4〉 tran-

sition splits asymmetrically, eventually interfering with the resonant state.

Hence the experimental CW spectrum showing AT splitting yields informa-

tion about the coupling Rabi frequency of the system.
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9.2.2 Pulsed excitation

An optical pulse has a time-dependent intensity I(t), giving rise to time

dependent Rabi frequencies for the D2 transitions. To simulate this system,

we split the problem into small time steps ∆t and calculate the density

matrix. The initial calculation assumes that population is evenly distributed

within the ground state manifold, and each subsequent iteration uses the

solution of the previous iteration. We use a Gaussian for the temporal shape

of the pulse intensity whose FWHM matches the experimental value. The

pulse bandwidth is included as a dephasing term, similar to references [206,

207]. As before, Doppler broadening can be included but it is time consuming

and does not qualitatively alter the results of the simulation, so it is not

included in the results we present below.

To begin, it is useful to look at the elements of the density matrix. Figure 9.4

shows two cases where the probe is resonant with the |1〉 → |3〉 transition

(panels a,c,e) and where the probe is detuned midway between the two hyper-

fine ground states, ∆p = 2π× 1.5 GHz. The probe laser is strong, with Rabi

frequency Ω13 = 2π × 500 MHz. We calculate with a strong probe because

the experiment also uses a strong probe, which is a consequence of using fast

detectors. Their sensitivity is much lower than an equivalent low frequency

photodiode, requiring the use of higher optical power. However, the simu-

lations are relatively insensitive to the probe intensities. Qualitatively, the

coherence terms do not vary significantly.

We plot the temporal evolution of (a,b) the populations and (c,d) the probe

coherences, along with the transmission (e,f), calculated for a vapour with

thickness ` = 1 µm and temperature T = 200◦C. The peak coupling Rabi

frequency is Ωpeak
15 = 2π × 2.5 GHz, has a FWHM of 800 ps and is centered

around t = 0. Before the pulse arrives, the steady-state solution maintains

nearly all of the population in the ground states, distributed evenly between

|1〉 and |2〉. As the pulse turns on, a large amount of population is excited into

state |5〉, which oscillates throughout the duration of the pulse. The probe

evolve differently, resulting in very distinct transmissive properties. With

the probe on resonance, we predict a transient population inversion causing

a gain feature to appear, whilst off resonance, the transmission oscillates
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Figure 9.4: Time evolution of the density matrix as calculated from the five-level

optical Bloch model, with parameters ∆p = 2π × 1.5 GHz (a,c,e), ∆p = 0 (b,d,f);

Ωpeak
15 = 2π×2.5 GHz; Ω13 = 2π×500 MHz; ∆c = 0; ` = 1 µm; T = 200◦C. Panels

(a) and (b) show populations of the states: ρ11, solid blue; ρ22, dashed blue; ρ33,

green; ρ44, dashed black; ρ55, red. Panels (c) and (d) show the imaginary part of

the probe coherences: ρ13, solid blue; ρ14, dashed blue; ρ23, solid red; ρ24, dashed

red. Finally, panels (e) and (f) show transmission of the probe beam, calculated

from equation (9.2) using the sum of the probe coherences.

around the steady-state value, with a transient increase in absorption. After

the pulse, the system evolves gradually back to the steady-state solution.

Again there is different behaviour between the on- and off-resonant cases.

The signal from the resonant probe decays away relatively smoothly, whilst

the off-resonant case oscillates due to the higher effective Rabi frequency of

the probe (Ωeff =
√

Ω2 + ∆2).

Coupling laser power dependence

We now examine the response of the system as the intensity of the cou-

pling laser is varied. Figures 9.5 and 9.6 show the same two cases that were

presented in figure 9.4 except that the peak Rabi frequencies are now also
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Figure 9.5: Change in transmission ∆T from the steady-state value as the

peak coupling Rabi frequency is increased, with the probe off-resonance, ∆p =

2π×1.5 GHz. The other parameters are the same as for panels (a,c,e) of figure 9.4.

varied. The two plots are qualitatively very similar; as the Rabi frequency in-

creases, the oscillations during the pulse become more rapid, allowing more

total oscillations to take place within the same time window. The initial

peak also moves towards the leading edge of the pulse, as expected. The

main difference between the two, other than the scale of signal oscillation,

is that off-resonance we predict the oscillations to include an increase in the

absorption (orange/red on the colormap), whereas this increased absorption

feature is not present when the probe is resonant.

Density dependence

The density dependence of the Rabi oscillations is shown in figure 9.7. We

include only the collisional broadening in the model, which shortens the

excited state lifetime according to 1/Γtot, where Γtot is given by equation

(5.39). The main effect of the interactions is to broaden the oscillations which

washes out the effect, and to push the peak of the first oscillation backwards

in time. At the highest densities, the change in the probe transmission echoes

the form of the pulse, centred around t = 0 with approximately the same

FWHM.
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Figure 9.6: Change in transmission ∆T from the steady-state value as the peak

coupling Rabi frequency is increased, with the probe on resonance, ∆p = 0. The

other parameters are the same as for panels (b,d,f) of figure 9.4.

9.3 Experiment

The experimental setup involves two lasers which copropagate through the

nanocell. The beams have orthogonal linear polarisations, so that after the

cell the beams can be separated with a polarising beam splitter. In addition

to this polarisation filter (extinction ∼ 200), we use a Semrock FF01-800/12

bandpass filter, which passes 795 nm light with 95% transmission, blocking

780 nm with a measured extinction of 3.5 × 103. With this setup, there

is no detectable signal when the 780 nm pump beam is on with the probe

beam off. For detection we use a fast photodiode with 8 GHz bandwidth,

which is the optical input to a PicoScope 9221A 12 GHz bandwidth sampling

oscilloscope, with an effective sampling rate of ∼ 400 GS/s.

The probe beam is focussed to a waist of ∼ 10 µm whilst the coupling laser

is focussed less tightly to a waist of ∼ 20 µm to minimise any intensity

variation over the beam geometry, i.e. the atoms that see the probe beam

all see roughly the same coupling beam intensity. The same optics are used

for focussing but the initial size of the pump beam is smaller.

http://www.semrock.com/FilterDetails.aspx?id=FF01-800/12-25
http://www.picotech.com/picoscope9200.html
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Figure 9.7: Change in transmission ∆T from the steady-state value as the

temperature (density) is increased, with the probe resonant, ∆p = 0. The other

parameters are the same as for panels (b,d,f) of figure 9.4.

9.3.1 In-situ Rabi frequency measurement

Whilst the beam waists can be accurately measured without the cell present,

the windows inevitably alter the focussing properties slightly. The only way

to accurately measure the Rabi frequency that the atoms experience is by

spectroscopic measurements. As in figure 9.3, we use the Autler-Townes

splitting of the ground states to infer a Rabi frequency. The experimental

data is shown in figure 9.8 as the (CW) coupling laser power is varied. The

probe power for these measurements is ∼ 1 µW. The data looks qualitatively

similar to the theoretical model in figure 9.3, but has some key differences.

In an ideal three-level system, the splitting should be proportional to the

Rabi frequency on the pump transition, which is proportional to the square-

root of the laser power. For low powers we see this relationship, but as the

power increases beyond ∼ 25 mW, the other states in the system become

important. At this point the AT splitting reaches around 3 GHz and does

not increase further. The exact mechanism for this apparent saturation is

not well understood, but as the splitting at the point of saturation coincides

with the ground state hyperfine splitting of 85Rb, it is likely that the AT

splitting of the lower ground state plays a role. In addition, the other isotope

is clearly perturbed by the coupling beam, which is most clearly evidenced
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Figure 9.8: Experimental data showing Autler-townes splitting, as a function

of the power of the pump laser. The Rabi frequency is proportional to the square-

root of the laser power, hence the splitting should vary linearly on this scale. For

low powers we see this relationship, but as the power increases beyond ∼ 25 mW,

the splitting reaches around 3 GHz and does not increase further.

by the curving of the 87Rb Fg = 1 → Fe transitions at an initial detuning

∆p ∼ 4.5 GHz.

9.3.2 Rabi oscillations

Using the measurement of the coupling Rabi frequency as a guide, and taking

into account the relative transition strengths, we estimate the probe Rabi

frequency to be of the order of 300 MHz for an optical power of 1 mW.

Figure 9.9 shows example signals of the variation in probe transmission when

the medium is disturbed by the pulse, at a temperature T = 215◦C. The

pulse has a peak optical power of 85 mW. The blue curve is taken with a

resonant probe laser, while the red data is the same conditions but with

the probe detuned midway between the two hyperfine ground states of 85Rb,

∆p ≈ 1.5 GHz. The grey shaded area is the pulse intensity, measured on

a fast photodiode and calibrated such that when the pulse is detected on

both detectors at the same time, the peaks overlap. As the PicoScope is a

sampling (not real-time) oscilloscope, the data is necessarily an average over
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Figure 9.9: Experimental data showing oscillatory behaviour at a temperature

T = 215◦C, vapour thickness ` = 2 µm, with (blue) ∆p = 0, and (red) ∆p =

1.5 GHz. The red line is the transmitted intensity of the CW probe, the grey

shaded area is the measured pulse intensity (peak centred at t = 0).

many pulse cycles. Systematic noise is removed from the signals by record-

ing signals with the probe laser off. There is some qualitative agreement in

the measured transmission profiles compared with the optical Bloch simu-

lations of figure 9.4(e,f). The transmission initially increases sharply with

a rise time of around 200 ps, then oscillates with decreasing amplitude. In

agreement with the simulation, the off-resonant probe experiences both en-

hanced absorption and transmission whilst the resonant probe sees only areas

of enhanced transmission. However, for both sets of data the peak change in

transmission is much smaller than the simulation.

The evolution of the experimental signals with varying coupling laser power is

presented in figure 9.10. For this data the probe is detuned (∆p = 1.5 GHz).

Again, there is some qualitative agreement with the theory plot of figure 9.5.

As the coupling laser power is increased the first peak of oscillations moves

to earlier times, and becomes narrower. However, we do not see convincing

evidence of multiple oscillations at the highest powers.

Figure 9.11 shows the change in transmission as a function of the vapour

temperature, with coupling laser peak power of 85 mW and probe detuning

∆p = 0. As expected, the change in transmission grows as the temperature
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Figure 9.10: Dependence of Rabi oscillations on the coupling laser power, at

a temperature T = 215◦C, vapour thickness ` = 2 µm and probe detuning ∆p =

1.5 GHz.

and hence optical depth is increased up to around 290◦C, after which the

signal decreases again as the medium becomes too opaque. As the temper-

ature is increased, the oscillations become less clear, which we attribute to

the dephasing caused by the dipole-dipole interaction. At high density the

temporal profile retains no oscillatory behaviour, instead roughly following

the intensity envelope of the pump pulse. Whilst additional dephasing is

expected at high density, there are two features of the data that are surpris-

ing. First, the peak of the data always occurs before the peak of the pump

pulse. This is in contrast to the optical Bloch model which at high density

roughly follows the pulse shape, peaked around t = 0. The second surprising

element of the data is that the rising edge of the peak remains sharp with a

rise time of ∼ 200 ps. As a quantitative comparison, in figure 9.12, we plot a

simple 10%-90% analysis of the rise time, in addition to the peak time. The

two are correlated, and remain remarkably constant until the temperature

rises above ∼ 310◦C (corresponding to a density N = 3 × 1016 cm−3). The

mechanism responsible for this behaviour is not well understood. It seems

likely however that propagation effects, which are not part of the optical

Bloch model, are important in the system. We can certainly assume that

the medium is perturbed strongly by the pulse, so that the refractive index

that the probe experiences changes dynamically as the pulse travels through
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Figure 9.11: Density dependence of Rabi oscillations, with vapour thickness

` = 2 µm, coupling laser power 85 mW, and probe detuning ∆p = 0.

the medium. Using the optical Bloch model, we can estimate how much the

refractive index changes. This is plotted in figure 9.13, for the same parame-

ters as panels (a,c,e) of figure 9.4. Given that the change in refractive index

is significant, and the fundamental link between refractive index and pulse

propagation (see chapter 7), it is likely that propagation effects are impor-

tant to the system. However, this level of simulation involves solving the full

Maxwell-Bloch equations (see, for example, reference [208]) which is beyond

the scope of this thesis.

9.4 Outlook

The observation of coherent dynamics in the nano-cell is ultimately limited

by the wall-to-wall lifetime to a few nanoseconds. This forces the use of GHz

Rabi frequencies and nanosecond excitation pulses. Whilst in this chapter we

have shown some evidence of Rabi oscillations, the number of oscillations is

limited. Ideally we would like to increase the number of oscillations, both to

confirm beyond reasonable doubt of their origin and to study the dynamics

further.

Apart from increasing the laser power which would require changing laser

systems, we could focus more strongly to increase the intensity. Short focal
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Figure 9.12: Analysis of rise time (blue circles) and peak time (red squares) as

a function of temperature, from the data presented in figure 9.11.

length, high numerical aperture aspheric lenses will allow us to do this in the

short term, whilst in the longer term building lenses into the cell window is

also an option. These solid immersion lenses have been used successfully to

study single atoms [139] and molecules [134] in recent experiments.

Alternatively, the pulse duration could be increased; pulse stretching tech-

niques using either a ring or Fabry-Perot cavity are simple and inexpensive

(termed a “poor man’s pulse stretcher” [209]) optical techniques to do this

and can yield around a factor of 1.5 increase in pulse FWHM, but with a

factor of two loss in the peak intensity and some pulse shape distortion. A

combination of increasing both the duration and focal intensity could pro-

vide similar peak Rabi frequencies but with longer duration, allowing the

observation of more oscillations.

Extracting the underlying physics in the current experiment is difficult, as

many of the experimental variables are connected in non-trivial ways. For

example, by changing the density of the medium we not only influence the

interactions between atoms, but change the optical depth of the medium as

well. Decoupling these processes would be beneficial. Therefore in the longer

term, a more significant change in the experiment may prove advantageous.

Whilst the Vee-type energy level arrangement in the current implementation

optimises the Rabi frequency for a given laser power because of the strength
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Figure 9.13: Transmission profile and corresponding refractive index change

calculated from the optical Bloch model. Parameters are the same for panels

(a,c,e) of figure 9.4.

of the atomic transitions, moving to a ladder system similar to that used in

reference [204] should give cleaner signals. A combination of a pump pulse on

the ground state transition to the 5P3/2 level with a CW probe on a transition

from 5P3/2 to a higher excited state would also yield a zero-background signal.
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Project outlook

Many fundamental questions still remain unanswered about the interaction

between atoms and light, particularly when strong interactions between the

atoms are present. For optical wavelengths, studying these interactions in

ultracold systems is very difficult, as the densities required are prohibitively

large. Using thermal atoms to study the same physics is therefore attractive

because realising a high density atomic vapour is relatively easy. We have

shown in this thesis how studying these strong interactions is plausible. With

strong enough interactions, the motional effects that are the inescapable con-

sequence of using thermal vapours can become relatively unimportant. In this

ultra-high density regime, we once again recover the coherent character of

the dipole-dipole interaction between atoms, as evidenced in the observation

of the cooperative Lamb shift presented in chapter 5.

However, the observed interaction is still an angular average. We envisage

optimising the dipole-dipole interaction by controlling the positions of the

dipoles in the vapour. A new generation of vapour cells constructed with

micro-channels similar to those in reference [210] could enable this control

by providing an additional degree of spatial confinement.

A recent suggestion by Kaiser [211] that dense atomic vapours could be a

good system to look for Anderson localization of light [212, 213]. Whilst

much effort is focussed on increasing the density in ultracold atomic systems

[211], the observation of coherent interactions in thermal ensembles ques-

tions the widely held view that collisional or motional processes will destroy
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the coherence. A high density thermal atomic vapour could therefore be a

promising system to look for localisation effects.

Motional effects can also be partially suppressed by moving to pulsed exci-

tation, and with strong enough optical pulses it is possible to observe Rabi

oscillations on a very short timescale, much faster than the dephasing mech-

anisms in the system. As of the time of writing this thesis, relatively little

is understood about the behaviour of this strongly driven system, and it

remains an active area of study.

Research into cooperative processes is a vibrant and fruitful area, and as

groups revisit old problems with new technology the boundaries are con-

stantly being pushed. Thermal atom experiments are enjoying a renaissance

at the moment. Long may it continue.



Appendix A

Nano-cells

This appendix details the properties of the thin cells used in this work, and

in particular how the length is calibrated in the nano-cell.

A.1 The nano-cell

All of the vapour cells (except for reference cells) used in this thesis were

constructed in the group of David Sarkisyan, in the Institute for Physical

Research, Yerevan, Armenia. They are the source of the technical details in

this appendix.

The cells are constructed from a Rb reservoir (often called the ‘side-arm’

in publications) attached to the cell windows. The reservoir is relatively far

away from the windows, allowing for a temperature gradient between the two

which prevents condensation of Rb on the windows. During the experiments

performed in this thesis, the windows are kept roughly 50◦C hotter than the

reservoir. Experimentally, we find the reservoir temperature determines the

vapour pressure.

A schematic of the nano-cell is shown below in figure A.1, see chapter 1 for

a photo of the window regions and additional description. The cell windows

have a wedge-shaped profile, allowing vapour thickness to be tuned between

30 nm and 2 µm. These windows are constructed from two sapphire (re-

fractive index n = 1.8) plates, with the c-axis aligned with the propagation
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Figure A.1: Nano-cell schematic. The cell has a wedge-shaped profile, allowing

for a tunable vapour thickness of between 30 nm and 2 µm, constructed from two

extremely flat sapphire plates. One of these plates is slightly curved, leading to the

Newton’s Rings interference pattern (see chapter 1). The Rb reservoir is relatively

far away from the windows, allowing for a temperature gradient between the two

which prevents condensation of Rb on the windows.

axis to eliminate any birefringence. One of these plates is slightly curved,

with a radius of curvature R > 100 m. This leads to the Newton’s Rings

interference pattern visible in the photo. The region of minimum thickness

is at the centre of these rings. The sapphire plates are of exceptional quality,

with a local surface roughness of < 3 nm over any 1 mm2 region. Though

there may be more variation over the entire surface, this is unimportant as

the laser focus is always much smaller than 1 mm2.

A.1.1 Operation of the thin cells

During the operation of these cells, care should be taken to heat and cool

gradually, to ensure the glass does not fracture due to a large temperature

gradient. There is no hard limit, but in this author’s experience, 10◦C/minute

is a rough guide to a maximum heating/cooling rate. For heating, the win-

dows should be heated first, to establish a temperature difference with the
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reservoir; this prevents condensation of Rb on to the windows.

Should condensation occur, heat the windows only, to around 300◦C and

leave for a couple of hours. The temperature gradient should be enough to

promote the Rb off the windows and back into vapour. After this time, cool

very slowly over a further couple of hours back to room temperature.

After the windows have heated, heat the reservoir to the desired temper-

ature. Thermal expansion has been taken into account and is linear with

temperature with a gradient of approximately 1 nm for every 5◦C of window

temperature.

A.2 Thickness calibration

The local thickness in the nano-cell can be determined using an interferomet-

ric method which utilises the Fabry-Perot nature of the cell. The implications

of this were detailed in chapter 3. Figure 3.6 shows the reflections from the

surfaces in the nano-cell. R1 is from the first window of the cell, at the

air-sapphire interface, and therefore this is constant and used as a reference.

R2 is from the sapphire-Rb interface, and as detailed in chapter 6, under-

goes periodic oscillations with the thickness of the medium. If we assume

that the refractive index of the Rb layer is approximately unity, valid for far

off-resonant light, then the ratio of the reflections R2/R1 can be described

analytically using a standard Fabry-Perot treatment as [64]

R2

R1

=
(1−R2)F sin2 φ/2

R(1 + F sin2 φ/2)
, (A.1)

where

F =
4R

1−R2
, (A.2)

R =

(
n− 1

n+ 1

)2

, (A.3)

φ = 4π`/λ , (A.4)

and n is the refractive index of the glass. For sapphire (n = 1.8) windows,

this leads to the thickness variation shown in figure A.2, which oscillates with

a period of λ/2.
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Figure A.2: cos2 oscillations of the ratio of reflections R2/R1, which is used for

thickness calibration.

The ratio is of course independent of the laser power and insensitive to any

fluctuations, so can be determined accurately. This measurement is still not

conclusive, however, so the exact thickness must be determined from exam-

ining the spectral data - for example, where the strongest Dicke Narrowing

features coincide with R2/R1 → 0, then the thickness is λ/2. One can also

determine the gradient of the slope by moving the cell to thicker/thinner

regions and observing how R2/R1 changes.

A.2.1 Finite beam size

Due to the finite beam size and the geometry of the cell, there will be a

small variation in the thickness of the cell. We can estimate how much of a

problem this is with a simple geometric argument. If we assume the wedge

profile forms a triangle, with perpendicular sides of 30 mm (height) and 2µm

(width), we can use similar triangles to work out how much the thickness

varies over a given beam size

∆` ≈ 2w0 ×
2 µm

30 mm
, (A.5)

where 2w0 is the 1/e2 beam diameter. For a typical experimental waist

2w0 = 20 µm, this gives ∆` < 2 nm.
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Experimental details for

transmission spectroscopy

This appendix details the methods used for properly calibrating experimental

transmission spectra. There are two axes to properly calibrate - the frequency

(detuning) axis from the laser scan, and the transmission axis from the laser

intensity fluctuations.

B.1 Experimental setup

A typical experimental setup is shown below in figure B.1. We use pump-

probe Doppler-free (saturated absorption / hyperfine pumping [55]) spec-

troscopy in a reference cell to provide an absolute frequency reference, and

a Fabry-Perot Interferometer (FPI) to correct for non-linearities in the laser

scan. Both of these signals are recorded simultaneously with the experimen-

tal spectra in the thin cell. For the thin cell spectra, the light is linearly

polarised and focussed to a small spot size (typically we have a 1/e2 radius

of 10 µm using lenses with focal length f = 100 mm) to minimise thickness

fluctuations due to the cell geometry (see appendix A). Even so, the uncer-

tainty in cell thickness is limited primarily by the thickness fluctuations to

around 5 nm, depending on the focal spot size. The optical power is attenu-

ated using neutral density filters, typically to less than 1 µW, and we record

the measured spectra on conventional photodiodes.
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Figure B.1: Experimental setup for transmission spectroscopy. A 7.5 cm ref-

erence vapour cell is used in a pump-probe sub-Doppler spectroscopy setup for

frequency reference, and a Fabry-Perot Interferometer (FPI) for correcting non-

linearity in the frequency scan of the laser. Typically f = 100 mm focal length

lenses are used to focus in to a specific thickness (with uncertainty in the vapour

thickness typically < 5 nm). Neutral density filters before the cell ensures that

optical pumping is suppressed.

B.2 Data processing and normalisation

The entire processing, normalisation and fitting routines have been stream-

lined into a single, interactive program written in Python.

B.2.1 Calibrating frequency axis

Calibration of the frequency axis is done in two parts; linearisation of the time

axis, and scaling. The process employed here is similar to that in reference

[46]. We require an accurate time-to-frequency calibration, which is done

using the cavity resonances from an FPI, which occur at equally spaced

frequencies. A typical FPI signal is shown in figure B.2(a). An analysis

routine was written to detect the peak positions (red vertical lines). Only

data points with signal values above a threshold level are retained. In this

http://www.python.org/
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Figure B.2: (a) The Fabry-Perot signal (black markers, not all data points

shown) and detected peak positions (red). (b) The deviation of the peak positions

from a linear fit. The removal of this deviation linearises the time-to-frequency

scaling.

array, the peaks are separated by analysing the time coordinates; if there is

a discontinuous jump in the time coordinate, this is recognised as another

discrete peak and the array is thus subdivided into smaller arrays centered

around each of the peak values. The exact peak positions are found from the

maxima of these sub-arrays.

The peak positions are fitted to a straight line, which represents linear time

to frequency conversion. However, there is a characteristic deviation from

this, because the laser scan has a small non-linearity. This is evident if we

plot the deviation from the linear fit, as shown in panel (b). The deviation

is fitted to a 5th order polynomial function1 and the time axis is adjusted

accordingly to remove this non-linearity.

The next step is to calibrate the frequency axis, which is done using two

peaks from the pump-probe spectrum. There are several features in each

1Higher orders can be used but give diminishing returns. 5th order represents a good

tradeoff between fitting accuracy and computational speed.



Appendix B. Experimental details for transmission spectroscopy 151

−30 −25 −20 −15 −10 −5 0 5
Time (ms)

80

100

120

140

160

180

R
ef

er
en

ce
S

ig
n

al
(m

V
)

Figure B.3: Absolute frequency calibration using sub-Doppler features. This

example is from the D2 line, using the crossover resonances detailed in the main

text.

Doppler-broadened absorption line (six for the D2 line, 3 for the D1 line)

corresponding to the excited state hyperfine levels and the crossover reso-

nances [55]. An example of this is shown in figure B.3. As the crossover

resonances are the stronger, we use these to calibrate the frequency axis.

Since the time-to-frequency conversion is now linear, we only require two

points to fully calibrate the frequency axis. Any points of known frequency

will do but in this work, for the D2 line we use the Fg = 2 → Fe = 2, 3

and Fg = 3 → Fe = 3, 4 crossover resonances in 87Rb and 85Rb, respec-

tively, as these are the strongest features. For the D1 line, we use the

Fg = 2 → Fe = 1, 2 and Fg = 3 → Fe = 2, 3 crossover resonances in
87Rb and 85Rb, respectively.
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Figure B.4: Normalisation of transmission axis using the off-resonant areas of

the transmisison spectrum. The areas of the spectrum highlighted in blue are fitted

to a polynomial function to determine the transmission scan, which is shown in

red. The normalised transmission is then the raw data divided by this curve.

B.2.2 Calibrating transmission axis

Due to the feed-forward in the laser electronics, as the voltage to the piezo

controlling the fine position of the grating is scanned, the current is also

modified, with the aim of increasing the mode-hop-free scan range. The result

is an asymmetric signal on the photodiode, as the output power changes with

the frequency of the laser, which needs to be corrected.

To correct for this, a spectrum is recorded when the cell is relatively cold

and there is no absorption in the wings of the absorption lines. As the

temperature (and number density) increases, the absorption lines become

broader such that the spectrum is wider than the mode-hop-free tuning range

of the laser, so in this case we make the assumption that the scan profile does

not change over the time it takes to run the experiment.

With the low temperature scan, we can then select areas of the spectrum

that are known to have no absorption. This is implemented interactively, so

the user selects the regions of the spectrum graphically, significantly reducing
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post-processing time for any given data set.

After this, the selected areas are fitted to a polynomial function (usually 2nd

order is enough) and this function is used as the T = 1 line, the data is

divided by this function to compute the normalised transmission curve. An

example plot showing this process is shown in figure B.4.



Appendix C

SPCM data acquisition

This appendix details the data acquisition method for photon counting, used

in chapters 7 and 8. Using the statistics methods built in to a LeCroy

WaveRunner 6Zi oscilloscope, it is possible to implement photon counting

without the use of any complex counting electronics. The advantages are

speed of data acquisition, ease of setup, immediate real-time signals and the

ability to use photon counting in tandem with signals from photodiodes etc.

C.1 Setup

The SPCM used in this work is a Perkin Elmer SPCM-AQR-14-FC, which

has an optical fibre input and a BNC output. This makes it very easy to

integrate into a setup. This is connected directly into the oscilloscope; no

other electronics are needed. Optionally, the SPCM has a gate input which

allows the user to turn off the device, otherwise it is open constantly. For

the work in this thesis, the SPCM was operated without gating.

The SPCM ‘clicks’ and sends an electrical pulse on a photon detection event.

The first thing to do is to look at the pulse shape of a single click. To

do this, set the scope to trigger on the same channel as the SPCM is on.

Figure C.1 shows the detected pulse shape. The pulse window is around

15 ns, therefore in order to detect every electrical pulse from the SPCM, the

oscilloscope requires a sampling rate of at least 1/(15×10−9 = 66 MS/s. For
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Figure C.1: (a) Electrical pulse shape of a single ‘click’ of the SPCM. (b)

Smoothed time derivative of (a), the peak of which is used as the measure of

photon arrival time.

experiments where the time bins of the histogram are wider than 15 ns, all

that is required is to detect a single peak position, and build up the histogram

from this. However, for more time sensitive measurements then we use a more

complex acquisition method. The most repeatable way of detecting the pulse

is not to find the maximum value of the electrical signal, as in panel (a), but

to find the maximum of the (highly smoothed) time derivative, which is

shown in panel (b). As the turn-on of the pulse is spread over ∼ 2 ns, the

time resolution is not limited by the bandwidth of the oscilloscope, but by its

sampling rate - at a maximum sampling rate of 20 GS/s, this gives a 50 ps

time resolution.

The aim is to time the arrival of photons, so a reference is needed - in practice

this is whatever triggers the oscilloscope; for our purposes we trigger from the

Pockels cell driving electronics (chapters 7 and 8) or from the piezo trigger

output of the laser electronics.

Whilst in principle every acquisition, and hence the time information of ev-

ery photon arrival, can be saved directly, the amount of storage required

quickly becomes prohibitive without additional processing. For example, a

single acquisition of the data presented in figure C.3 is 250 MB, owing to
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the large sampling rate (100 MS/s) and time window (200 ms). For the

pulsed light experiments presented in the main body of this thesis, the file

sizes for each acquisition are smaller, around 100 kB, but as the pulse rep-

etition rate is around 1 kHz, this gives a data generation rate of around

100 MB/s, assuming the hard disk can keep up with this rate. Assuming a

hard disk capacity of 500 GB, this would be completely filled in around an

hour. Typical experiments take around 2 hours to detect enough photons for

a good signal-to-noise ratio, so clearly a better method is needed. If detailed

time information of every acquisition is required, it is possible to interface

with the oscilloscope via a VisualBasic Script (*.vbs file), for real-time data

processing.

To record our data, we take advantage of a software feature on the oscillo-

scope, which generates in real-time a histogram of a specified parameter, in

this case the photon arrival time, with up to 5000 time bins. For CW fluo-

rescence data, this gives us an approximate frequency resolution of 2 MHz,

assuming the laser scans over 10 GHz in the 200 ms interval, though this is

only limited in principle by the scan range. For the pulsed experiments, we

typically have a time window of 10 ns (fast light) or a few hundred ns (excited

state decay), allowing for time bins spaced by picoseconds, if desired.

C.2 Testing

C.2.1 Detector dark counts

The dark count is a feature of all counting electronics, and is the signal gener-

ated in the absence of any external stimulus. This signal should be uniformly

distributed in time, at a specified rate. For our detector, the manufacturer

specified rate is 50 Hz. Figure C.2 shows the measured distribution of dark

counts on the detector, which we measure with the detector turned on but

with no light present. As expected the distribution is flat over time. The total

detection time td = tacqnacq is the interval per acquisition multiplied by the

number of acquisitions. The count rate Ċ is then number of counts, N , di-

vided by td. For the data in figure C.2, at room temperature nacq ≈ 75×103,
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Figure C.2: Histogram of the dark counts measured on the SPCM. The solid

line is the mean count number, µ = 380, while the dashed lines are µ ± σ, where

σ = 20 is the standard deviation. The measured value of σ is very close to that

expected from Poissonian statistics, where we would expect σ =
√
µ = 19.5.

tacq = 200 ms, and N ≈ 750× 103, yielding Ċ = N/td = 49 Hz.

C.2.2 Saturation effects

The SPCM is very sensitive to the amount of incident light, with a non-

linearity in the count rate that is well documented in the Perkin Elmer

datasheets. One aspect of this non-linearity that is not well discussed is

the temporal response. We have found that increasing the incident light

level causes the histogram of detected counts to be distorted, moving the

detected signal backwards in time. Care should therefore be taken to ensure

that for time-sensitive measurements - such as the optical pulse propagation

experiment in chapter 7 of this thesis - the count rate (or CW equivalent

count rate for pulsed excitation) is kept well below the maximum level.

In addition, using too much power also causes the detector to be constantly

saturated. The histogram in this case is made up of many peaks separated

roughly by the dead-time of the detector.

To be clear - for experiments where time sensitive detection is required, the

light level must be kept low enough so that the detector is not saturated. As

a rule-of-thumb, in our experiments we keep the below 10% of the maximum

detector count rate.
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Figure C.3: Fluorescence as a function of laser detuning (time, uncalibrated)

across the D2 resonance, for total count numbers 103 (red), 104 (yellow), 105

(green), 5× 105 (blue), and 25× 106 (grey); for clarity the peak counts have been

normalised to 0.2, 0.4, 0.6, 0.8 and 1, respectively. Signal-to-noise improves with

total counts, as expected. For comparison, the inset shows the data acquired from

a single trigger, where we detect around 100 photons.

C.3 Applications

In addition to the applications presented in the main body of this thesis

(chapters 7 and 8) in this section we present two other methods that may

prove to be useful in future experiments.

C.3.1 Frequency-dependent fluorescence

It is possible to acquire photon arrival time data using any time reference as

a trigger. In chapters 7 and 8, we triggered on a reference from the Pockels

cell that generates the optical pulses. However, it is also possible to use

the SPCM in a way similar to a conventional photodiode, with a CW light

source, and detect fluorescence.

Figure C.3 shows the fluorescence signal obtained as a function of the laser

detuning over the D2 resonance line in Rb, where the time reference (trigger)

is linked to the laser frequency scan. This figure also shows how the signal-
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Figure C.4: Example fluorescence spectrum with a vapour thickness ` = λ, at

a temperature T = 100◦C, clearly showing Dicke narrowing with good signal-to-

noise and excellent resolution of the hyperfine features. For comparison, we would

expect to absorb a maximum of 0.5% of the incident light under these conditions,

making transmission spectroscopy difficult.

to-noise evolves as the number of counts increases; for a single shot we might

obtain around 100 individual detection events, as shown in the inset (this

number can be considerably higher, a low count rate is shown only as an

example). The signal-to-noise ratio improves dramatically with the total

number of detection events, as expected from Poissonian counting statistics.

With the thin cell, this can be a particularly useful technique, as the SPCM is

much more sensitive than a conventional photodiode. This allows investiga-

tion of vapours where the optical depth is very low, and hence the fluorescence

intensity is also very small. In figure C.4, we show example data of fluores-

cence detected in a cell of thickness ` = λ at a temperature T = 100◦C as

the laser is scanned over the Rb D2 line. In a transmission spectroscopy ex-

periment, we would expect to absorb only around 0.5% of the incident light,

yielding a very small signal. The hyperfine structure is well resolved because

of Dicke narrowing (see chapter 3), and even though the absorption is very

low the signal-to-noise is good enough to see these features clearly. CW fluo-

rescence measurements therefore have potential for investigating media with

very low optical depth.
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C.3.2 Application: correlation measurement, g(2)(τ)

This needs two SPCM modules. One detector should be used as the trigger,

then make a histogram of the photon arrival time of the other detector.

When the first detects a photon, it triggers the scope, and a point on the

histogram is generated if the second detector also observed a photon in the

same time window. The time difference between the two detectors can then

be measured.

An easy trial of this is to connect the two inputs of the detectors with the

same optical fibre. The dark count of one detector sometimes generates a

photon which will travel down the fibre and be detected by the other detector.

The correlation histogram should then have a trough at t = 0 with peaks

at t± = ±L/cf , where L is the length of optical fibre and cf is the speed of

light in the fibre. All other times should be uniformally distributed due to

the dark counts and any background light entering through the cladding of

the fibre.



Appendix D

Large susceptibility

Since much of this work deals with large susceptibilities, the usual approx-

imation of n ≈ 1 + χ/2 does not hold, and one must use the full form

n =
√

1 + χ(∆).

However, this is only valid provided one compensates for local field effects,

which were discussed in chapter 5). If one does not consider local field effects,√
1 + χ(∆) is also a bad approximation, as it leads to an asymmetry in

both the real and imaginary parts of the susceptibility. Figure D.1 shows

this asymmetry as the magnitude of χ is increased. The magnitudes of the

plotted refractive index profiles are experimentally feasible (see chapter 6).

We can estimate where the approximation breaks down by looking at the

value of the susceptibility when local field effects become important. On

resonance, the imaginary part of the susceptibility is a maximum, and is

given by

Imχ =
Nµ2

~ε0
2

Γ0 + βN
. (D.1)

We assume that local field effects become important for an atomic density

such that the cooperativity parameter C = 1. Using the relationship between

dipole moment and natural linewidth (for a J = 1/2 to J = 1/2 transition),

equation (5.9), including self-broadening and assuming N = 1/r3, equation

(D.1) reduces to

Imχ = 0.5 (D.2)

161
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Figure D.1: The real and imaginary parts of the refractive index n =
√

1 + χ

are plotted for χ, without taking into account local field effects. At large values of

χ, the lineshape is asymmetric and appears blue-shifted relative to the resonance

frequency. In practice, however, the underlying physics changes as χ becomes

larger so that the local field must also be considered, which introduces a red-shift,

as discussed in chapter 5.

In a real system, hyperfine structure reduces this value further. Assuming

the populations are evenly distributed throughout the Zeeman sublevels of

the ground state, for the strongest hyperfine transition on the D2 line, the

maximum value is around 0.07, equivalent to the blue curve in the figure.

Assuming the only shift is due to the Lorentz shift, for this density there is

a redshift of ∆LL = −Nµ2/3~ε0 = −Γ0, much larger than the apparent shift

due to the asymmetry.
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[205] T. Baluktsian, B. Huber, R. Löw, and T. Pfau, Evidence for Strong van der
Waals Type Rydberg-Rydberg Interaction in a Thermal Vapor, Phys. Rev.
Lett. 110, 123001 (2013). 127

[206] M. McDonnell, D. Stacey, and a. Steane, Laser linewidth effects in quantum
state discrimination by electromagnetically induced transparency, Phys. Rev.
A 70, 1 (2004). 131

[207] D. N. Stacey, D. M. Lucas, D. T. C. Allcock, D. J. Szwer, and S. C. Webster,
Optical Bloch equations with multiply connected states, J. Phys. B 41, 085502
(2008). 131

[208] P. Siddons, Faraday Rotation of Pulsed and Continuous-wave Light in
Atomic Vapour, PhD thesis, Durham University, 2011. 139

[209] W. Martin, Pulse stretching and spectroscopy of subnanosecond optical pulses
using a Fabry-Perot interferometer, Opt. Commun. 21, 8 (1977). 140

[210] T. Baluktsian et al., Fabrication method for microscopic vapor cells for alkali
atoms., Opt. Lett. 35, 1950 (2010). 142

[211] R. Kaiser, Quantum multiple scattering, J. Mod. Opt. 56, 2082 (2009). 142

[212] P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys.
Rev. 109, 1492 (1958). 142

[213] M. Segev, Y. Silberberg, and D. N. Christodoulides, Anderson localization
of light, Nature Photon. 7, 197 (2013). 142


	Title
	Abstract
	Contents
	List of Figures
	Declaration
	Acknowledgements
	Introduction
	Structure of this thesis
	Publications arising from this work

	Independent atoms
	The two-level atom
	Hamiltonian
	Time evolution

	Electric susceptibility
	Motion and the Doppler effect
	Lineshapes - Lorentzians, Gaussians and the Voigt profile
	Atomic Structure
	Summary

	Thin cell spectroscopy
	Dicke narrowing
	Modelling Dicke narrowing

	Mixing of reflection and transmission
	Thin film theory

	The weak-probe limit
	Summary

	Atom-surface interactions
	The van der Waals atom-surface interaction
	Atom-surface potential in the nano-cell

	Monte-Carlo simulation of  interaction time distribution
	Experiment
	Outlook

	Atom-atom interactions
	The dipole-dipole interaction between  two identical atoms
	Static dipoles
	Oscillating dipoles
	Potential curves

	Dipole-dipole interaction for an ensemble of atoms
	Lorentz shift
	Collisional effects

	Cooperative effects
	Cooperative Lamb shift
	Cooperative decay rate and superradiance
	A note on dipole blockade

	Experimental results
	Fitting data
	Saturation of susceptibility
	Cooperative Lamb shift

	Outlook

	Giant refractive index
	Introduction
	Phase shift and refractive index

	Experimental setup
	Maximum refractive index
	Phase shift due to a single atomic layer
	Experiment

	Outlook

	Fast light in dense thermal vapour
	Introduction
	Kramers-Kronig relations
	Wave packets, bandwidth and group velocity dispersion

	Controlling the group velocity
	Slow light
	Fast light, causality and information velocity
	Experimental observations of fast light

	Group refractive index in dense thermal Rb vapour
	Pulse propagation
	Subluminal propagation
	Superluminal propagation of sub-nanosecond  optical pulses

	Outlook

	Fluorescence lifetime
	Experimental setup
	Fluorescence lifetime in the 4 mm cell
	Multiple-scattering events

	Fluorescence lifetime in the nano-cell
	Outlook

	Coherent dynamics
	Introduction
	Optical Bloch simulations
	Steady-state solutions
	Pulsed excitation

	Experiment
	In-situ Rabi frequency measurement
	Rabi oscillations

	Outlook

	Project outlook
	Appendices
	Nano-cells
	The nano-cell
	Operation of the thin cells

	Thickness calibration
	Finite beam size


	Experimental details for transmission spectroscopy
	Experimental setup
	Data processing and normalisation
	Calibrating frequency axis
	Calibrating transmission axis


	SPCM data acquisition
	Setup
	Testing
	Detector dark counts
	Saturation effects

	Applications
	Frequency-dependent fluorescence
	Application: correlation measurement, g(2)()


	Large susceptibility
	Bibliography

