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Edge- and region-based processes of 2nd-order vision 

 

Liam J. Norman 

The human visual system is sensitive to 2nd-order image properties (often called texture 

properties).  Spatial gradients in certain 2nd-order properties are edge-based, in that 

contours are effortlessly perceived through a rapid segmentation process.  Others, however, 

are region-based, in that they require regional integration in order to be discriminated.  The 

five studies reported in this thesis explore these mechanisms of 2nd-order vision, referred 

to respectively as segmentation and discrimination.  Study one compares the segmentation 

and discrimination of 2nd-order stimuli and uses flicker-defined-form to demonstrate that 

the former may be subserved by phase-insensitive mechanisms.  In study two, through 

testing of a neuropsychological patient, it is shown that 2nd-order segmentation is achieved 

relatively early in the visual system and, contrary to some claims, does not require the 

region termed human “V4”.  Study three demonstrates, through selective adaptation 

aftereffects, that orientation variance (a 2nd-order regional property) is encoded by a 

dedicated mechanism tuned broadly to high and low variance and insensitive to low-level 

pattern information.  Furthermore, the finding that the variance-specific aftereffect is 

limited to a retinotopic (not spatiotopic) reference frame, and that a neuropsychological 

patient with mid- to high-level visual cortical damage retains some sensitivity to variance, 

suggests that this regional property may be encoded at an earlier cortical site than 

previously assumed.  Study four examines how cues from different 2nd-order channels are 

temporally integrated to allow cue-invariant segmentation.  Results from testing a patient 

with bilateral lateral occipital damage and from selective visual field testing in normal 

observers suggest that this is achieved prior to the level of lateral occipital complex, but at 

least at the level of V2.  The final study demonstrates that objects that are segmented 

rapidly by 2nd-order channels are processed at a sufficiently high cortical level as to allow 

object-based attention without those objects ever reaching awareness. 
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1. General introduction 

 

Under normal conditions, visual perception rarely feels like anything less than a fully 

integrated experience.  What is very clear from vision science, however, is that separate 

neural systems exist for the processing of many difference visual attributes.  One such broad 

dissociation, often revealed subtly in carefully constructed experimental settings or 

strikingly in cases of selective neuropsychological disorders, concerns the respective 

processing of edge- and region-based visual information.  With edge-based perception, the 

visual system is very sensitive to the locations at which two regions abut or overlap, 

provided that there is a coinciding discontinuity of some visual information.  It is through 

this basic mechanism that the visual system achieves segmentation - an early representation 

of what might constitute figure and ground and which allows objects to be localised. In 

contrast, region-based analyses allow detailed descriptions of objects and surfaces to be 

formed and are thus essential for accurate object recognition.  The term discrimination will 

often be used in this thesis to refer generally to these latter processes, primarily to 

distinguish them from those of segmentation.   

The specific focus of this thesis is on the segmentation and discrimination of 2nd-

order visual attributes, which are often termed texture attributes.  In contrast to 1st-order 

attributes, which can be represented by single-point analysis and are therefore limited to 

luminance and colour (Cavanagh & Mather, 1989), 2nd-order attributes cannot be detected 

in such a way by these linear mechanisms as they require analysis of multiple points in space 

(e.g. spatial frequency, orientation statistics, density, irregularity), but are nonetheless 

prevalent in natural scenes and important visual cues (Johnson & Baker, 2004; Schofield, 

2000).  Prior to describing in detail what is currently known about how the edge- and region-

based properties of such cues are represented in human vision, it is necessary to first 

describe the early components of the visual system.  The first few sections of this 

introductory chapter will therefore describe the early structural and perceptual components 

of the visual system, focussing on the dissociation between edge- and region-based 

processes (section 1.1).  There will be a particular emphasis on how contours are rapidly 

extracted and how regional information is subsequently “filled in” before describing how 
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such characteristics apply to 2nd-order vision (section 1.2).  The specific direction and 

contents of this thesis are outlined in section 1.3. 

 

1.1. Early physiological and perceptual components of vision  

 

1.1.1. From retina to cortex 

Whatever the behavioural or perceptual output of a particular visual process is to be, 

all begins at the retina.  It is the task of the photoreceptors (rods and cones), which lie in the 

outer layer of the retina, to absorb photons and convert that energy into electrical signals.  

The output of these cells is in the form of a graded signal, which can be passed onto 

horizontal or bipolar cells (Boycott & Wassle, 1991; Verweij, Dacey, Peterson & Buck, 1999).  

Horizontal cells offer lateral connections between photoreceptors whereas the bipolar cells 

synapse with the retinal ganglion cells.  These cells are found in the more inner layers of the 

retina and collate the activity of varying numbers of photoreceptors, thus determining the 

spatial extent of their receptive field.  The receptive field can be described as the area in 

visual space in which a stimulus elicits a measurable response in a cell’s activity.  Ganglion 

cells are not all the same, however, differing in their morphology to one another and 

reflecting different processing demands imposed upon the visual system.   

The range of this functional and morphological diversity is reflected in the fact that 

an excess of 20 different ganglion cell types has been identified (Kolb, Linberg & Fisher, 

1992).  Only two types (parasol and midget), however, compose 80% of the entire 

population (Perry, Oehler & Cowey, 1984).  Their names reflect the sizes of their cell bodies 

and dendritic trees, and thus the spatial extent of their receptive field.  Parasol cells, for 

instance, are relatively large, receiving input from diffuse bipolar cells and extensive 

numbers of photoreceptors (Watanabe & Rodieck, 1989).  Midget cells, conversely, receive 

input from very few midget bipolar cells and, within the region of the fovea, may innervate 

with as few as one, thus conserving spatial resolution as much as possible (Kolb & Dekorver, 

1991; Kolb & Marshak, 2003).  The ganglion cells converge and constitute the optic nerve, 

which resides at the back of the eye and exits through an opening in the retina.  At the optic 

chiasm, projections from the nasal retinae in the optic nerve cross into contralateral 

hemispheres, whereas those from the temporal retinae stay on the same side.  The optic 

tract then connects the chiasm to the dorsal lateral geniculate nucleus (dLGN) of the 



14 
 

thalamus, wherein input from the two main ganglion cell types remains segregated.  Parasol 

inputs converge on the 2 ventral magnocellular layers of the dLGN, whereas the midget 

inputs converge on the 4 dorsal parvocellular layers (Schiller & Malpelli, 1978; Shapley & 

Perry, 1986).   

This segregation establishes the separate processing streams of the parvo- and 

magnocellular systems, which remain segregated at early stages of the visual system, each 

contributing to different functions.  The cells of the magnocellular subdivision of visual 

processing (M cells) exhibit high temporal and low spatial sensitivity, as well as being adept 

at discriminating motion but being blind to colour identity.  This is in stark contrast to the 

cells of the slower parvocellular system (P cells), which are more attuned to spatial detail 

and chromatic information (Schiller & Logothetis, 1990).  In addition, another subtype of 

retinal ganglion cell, the bistratified type, forms the input to the konio cells of the dLGN, 

which are found between the magno- and parvocellular layers, as well as within them 

(Hendry & Reid, 2000).  Cells within the dLGN retain the centre-surround antagonism of the 

retinal ganglion cells that precede them and from here many projections feed into the 

primary visual cortex in the occipital lobe, completing the retinogeniculostriate pathway.  

 

1.1.2. Early cortical segregation of visual function 

At the level of the primary visual cortex (V1, calcarine cortex, or Brodmann’s area 

17), concentrated at the calcarine sulcus, visual processing remains segregated to a large 

extent but quickly becomes increasingly complex.  Six layers comprise V1, and the majority 

of the output from the dLGN congregates in the 4th layer.  Within this layer, the sub-layer 

4Cβ receives its input largely from parvocellular afferents and projects further to layer 3, 

whilst the sublayer 4Cα receives largely from magnocellular ones and projects to layer 4B 

(Blasdel & Lund, 1983; Hubel & Wiesel, 1972).  Koniocellular afferents converge on layers 1-

3 (Hendry & Yoshioka, 1994; Livingstone & Hubel, 1982).   

Cytochrome oxidase (CO) labeling reveals an arrangement of two distinct cell types 

in the primary visual cortex: the “blobs” and the “interblobs”.  Both receive some input from 

layer 4Cβ (parvocellular) yet exhibit contrasting response properties to one another.  Cells in 

the blobs show sensitivity to wavelength (colour) and brightness information but respond 

minimally to orientation information.  Cells in the interblobs show the contrasting response 

profile.  Furthermore, it has been suggested that the blobs are the neural bases of hue maps 
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distributed throughout V1 (Lu & Roe, 2008; Xiao, Casti, Xiao & Kaplan, 2007).  Additionally, 

although interblob cells are not selective for wavelength, some are sensitive to the presence 

of a contour defined purely by chromatic discontinuity (Dow, 2002; Livingstone & Hubel, 

1988).  From the blobs and interblobs, neural connections stem to the thin stripes and 

interstripes, respectively, of the second visual cortical area (V2).  These anatomical 

distinctions are again revealed by CO labeling.  Both pathways (blob -> thin stripe & 

interblob -> interstripes) project to the cortical area V4.  Due to the relative response 

profiles and sensitivities of these pathways, some researchers have been led to claim that 

the blobs and interblobs in the primary visual cortex represent a distinction of “surface” and 

“contour” processing, respectively, in the early visual system (Livingstone & Hubel, 1988).  

The magnocellular subdivision of visual processing, contrarily, connects layers 4Cα and 4B in 

V1 and the CO-rich thick stripes of V2.  From here, the magnocellular pathway connects 

largely, although not exclusively to, the dorsal stream of cortical visual processing.  

 

1.1.3. Prioritising locations of contrast 

As seen in the previous chapter, the hierarchical nature of the human visual system 

demands that we understand the mechanisms of higher-order visual processes (i.e. how 

objects are constructed) first through understanding those of lower levels that lay the 

foundations for all subsequent neural processes.  One fundamental property of early visual 

processing, which was touched upon in the previous section, is the strong sensitivity to 

differential illumination in contrast to the weak sensitivity to diffuse illumination.  This is 

reflected first in the receptive field structure of retinal ganglion cells, which have been the 

subject of much study since their initial description in the 1950s (Kuffler, 1953; Hartline and 

Ratliff, 1957; 1958).  Two main types of receptive field structure, which usually adopt a 

circular shape, are common characteristics of the ganglion cell: the on-centre and off-centre 

receptive fields.  In the former, maximum excitation of the ganglion cell is achieved when a 

bright circular stimulus is present in the central region of the receptive field, and is 

simultaneously surrounded by an annular dark patch.  The converse is true for cells of an 

off-centre structure.  Consequently, uniformly stimulating either type with a uniformly light 

or dark stimulus would not excite the cell’s activity.  This selectivity renders diffuse regions 

of uniform luminance rather redundant at the earliest stages of the visual system, an aspect 

which lays the foundations for subsequent neural processing.   
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Within V1, for example, cells possess receptive fields of a similar centre-surround 

antagonistic structure as those in the earlier parts of the visual system.  However, some hold 

more complex structures: simple and complex cells.  Simple cells have an elongated 

receptive field structure, with flanking antagonistic sub-regions (Hubel & Wiesel, 1959; 

1962).  This arrangement is believed to be acquired through the spatial alignment of retinal 

ganglion cells with similar receptive field structures.  Thus, these cells rely on the inhibitory 

processes of earlier mechanisms to detect lines or bars defined by luminance, and are also 

sensitive to their orientation and spatial frequency.  Complex cells, as their name suggests, 

have an even more sophisticated receptive field structure; as well as being sensitive to the 

dimensions of orientation and spatial frequency, they have no obvious excitatory/inhibitory 

sub-regions (Hubel & Wiesel, 1962).  Thus, they respond to lines of particular orientations 

regardless of the exact position at which they are placed within their receptive field.  They 

also show insensitivity to the stimulus’ contrast polarity.  That is, they are indifferent to a 

black bar presented on a white background and a white bar on a black background.  

Such suppressive mechanisms are achieved through local, lateral inhibition of 

cellular activity, and have been documented extensively (Macknik & Martinez-Conde, 2004).  

For instance, it is known from initial work on the limulus horseshoe crab that in a circuit of 

connected neurons, adjacent neurons have the ability to suppress the activity of one 

another by means of their own excitation.  Many of the core characteristics of the limulus’s 

visual system are found in that of primates, and many aspects of human perception have 

been successfully accounted for by principles that have arisen from experiments on the 

compound eye of the limulus.  Reports, for instance, have typically suggested that even at 

the level of the primary visual cortex, uniform luminance exerts little effect on the region’s 

neural activity in comparison to luminance contrast (Dai & Wang, 2011), and instead evokes 

intracortical suppression (Tucker & Fitzpatrick, 2006).   In turn, it is predicted from a human 

model based on the assumptions of lateral inhibition that the strongest (excitatory) neural 

activity is found for regions of space immediately inside the borders of an object and the 

strongest inhibition immediately outside.  One observable perceptual consequence of this is 

the effect found in the Mach band illusion (Ratliff, 1965; Troncoso, Macknik & Martinez-

Conde, 2011).  In one variant of this illusion, a series of increasingly bright strips are placed 

side by side.  Despite each strip having a uniform luminance, each one appears darker at the 

side immediately adjacent to the lighter strip, and by implication, lighter at the opposite 
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side.  This perceptual quirk can be explained by the effects of lateral inhibition and an 

important consequence is that the contrast across the boundary is enhanced, or 

accentuated.  This preferential sensitivity to local contrast is echoed throughout the visual 

system; in primary visual cortex, for example, neurons sensitive to luminance contrast far 

outnumber those sensitive to uniform luminance (Dai & Wang, 2011).  Instead, uniform 

luminance may evoke intracortical suppression (Tucker & Fitzpatrick, 2006), thus reducing 

the overall sensitivity to diffuse illumination.  The reason why the visual system would adopt 

separate mechanisms to process luminance and contrast are not easy to understand.  We 

could infer, however, that because in natural scenes luminance and contrast co-exist but are 

not statistically related (Mante, Bronin, Frazor, Geisler & Carandini, 2005), that perhaps the 

visual system merely reflects the statistical properties of the stimuli to which it is most 

sensitive (Dai & Wang, 2011).   

 

1.1.4. Filling in the blanks – how boundaries shape perception 

Thus there seems to be little room for the neural representation of surface features 

in the early parts of the visual system: it is structured such to prioritise the detection of local 

contrast over regional uniformity.  This is strikingly reinforced by a simple psychophysical 

experiment: a phase-reversing masking paradigm employed by Rogers-Ramachandran and 

Ramachandran (1998) has shown that contours between regions of light and dark patches 

are perceived prior to the regions themselves.  That is, when the phase (luminance) of the 

regions is reversed above a particular frequency (~7-8 Hz) it is no longer possible to 

distinguish the dark region from the light region at any one time, yet a contour is still clearly 

visible between the two.  This is known as flicker-defined form; see figure 1.1.  Such results 

imply separate mechanisms for fast contour processing and slow surface perception, a 

notion which is further supported by the findings from meta- and para-contrast experiments 

by Breitmeyer, Kafaligönül, Ögmen, Mardon, Todd and Ziegler (2006).  So how is regional 

information ultimately represented by the brain?   

It is only with careful experimental manipulation of stimuli that we find that regional 

information is “reconstructed” to a large extent at a later processing stage on the basis of 

information gleaned from edge-processing.  Such theoretical advances initially stemmed 

from observing how the visual system overcomes the “blind” regions in the visual field.  For 

instance, in each eye, a natural “blind spot” is present, corresponding to the location on the 
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retina of the optic disc.  This is where the fibres of retinal ganglion cells converge to form 

the optic nerve and exit the retina, thus no photoreceptive cells are present in this 

surprisingly large retinal area.  Despite this, and even under monocular conditions in which 

the visual system cannot substitute information from the contralateral eye, we are rarely, if 

ever, aware of a blind spot at all, as the visual system proceeds to “fill in” the region with 

surrounding information.  In addition, if images are stabilised on the retina, similar effects 

can be observed.  For instance, if an annulus of one colour is placed surrounding a disc of 

another colour and the border between the regions is stabilised on the retina (thus causing 

neural adaptation and the consequent loss in strength of the border signal) then the colour 

from the external region appears to “bleed into” or “fill in” the internal region (Krauskopf, 

1963; Larimer & Piantanida, 1988).  Similar “filling in” effects are found in pathological cases 

of scotomas (Gerrits & Timmerman, 1969), yet it is perhaps in the former cases that it is 

most striking, as these demonstrate that such processes are normal aspects of visual 

processing. 

 

   

 

 

 

 

 

Figure 1.1 Example of flicker-defined form.  When the two frames shown above are 
presented in high frequency alternation, an implicit border can be seen between the inner 
and outer regions despite it being impossible to tell at any given time which is dark and 
which is light.  Thus, when an intervening black border is placed between the two regions, 
the viewer cannot perceive a difference between the two regions at such high frequencies.  
Note that the perception shown in the figure is just an illustration, black lines are not seen. 

Indeed, through using techniques of visual masking, some experimenters have 

highlighted how the perception of surface features is prevented or changed somehow as a 

result of a subsequent mask.  Paradiso and Nakayama (1991), for instance, presented 

subjects with a central white disc (on a black background) onscreen for 16 ms, followed by a 

white annulus, smaller than the disc, for 16 ms.  When the inter-stimulus interval was 

sufficiently short, observers did not perceive the central whiteness of the disc, instead 
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believing it to be dark (like the background; see figure 1.2).  This was explained in terms of a 

border-to-interior filling-in process, by which the perception of the central contour of the 

annulus prevented the successful completion of the filling-in of the initial disc, which 

proceeded from the outer edge (corresponding to the location of contrast).   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 A cartoon illustration of the filling-in processes revealed through backward-
masking (adapted from Paradiso & Nakayama, 1991).  When the white disc (target) is 
presented for a brief period (16ms) and followed immediately by the smaller white annulus 
(mask), the resultant perception is that there is a “hole” in the centre of the white disc, 
corresponding to the location of the mask.  This is explained by a theory in which the visual 
information is first represented by the visual system from the contours present in the image 
(i.e. first from the edge of the disc before proceeding inwards).  The presentation of the 
mask’s contours within the disc impedes this process and so the neural representation of 
the regional information within the disc is not completed. 

The perceptual effects of representing regional information subsequently to, and 

dependently on, edge information are demonstrated very well in a simultaneous lightness 

contrast illusion, in which two regions of equal luminance are embedded in two different 

backgrounds, one lighter and one darker.  The resultant perception is that these regions can 

look very dissimilar, with their relative luminance being shifted in the opposite direction to 

that of their surrounding backgrounds (Diamond, 1953; Heinemann, 1955; see figure 1.3a).  

Remarkably similar effects are also observed in instances of simultaneous colour contrast, in 

which the stimuli vary in chromaticity, not luminance (Kingdom, 1997).  That is, the 

appearance of surface colour to an observer is heavily dependent on the chromatic contrast 
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present at the border between figure and ground, such that the perception of the colour of 

an interior region is shifted towards the opponent colour of a surrounding region (see figure 

1.3b).  Such illusions are striking demonstrations of just how little the perception of surface 

features correlate with the actual information that is entering the eye, and in contrast how 

much they are influenced by information found at adjacent boundaries.   

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.3 Demonstrations of simultaneous brightness (a) and colour (b) contrast.  In both 
rows, the left and right circles are identical.  The presence of the surround, however, can 
significantly shift the perception of the circles’ surface brightness/colour in the opposite 
direction to that of the surround relative to the brightness/colour of the circle.  As a result, 
the circle on the top right appears brighter than that on the top left, and the circle on the 
bottom right appears “greener” than that on the bottom left. 

Why does the visual system rely so heavily on what is present at the border, and not 

within the region itself?  One answer is that by encoding simultaneous chromatic (and 

luminance) contrast, the visual system is able to achieve some level of perceptual constancy 

(Ekroll, Faul & Niederée, 2004; Hurlbert & Wolf, 2004).  What is pervasive in colour 

perception, for example, is the challenge faced by the visual system in perceiving a constant 

surface colour despite changes in the spectral composition of the light reflecting from its 

surface, which arise from natural changes in illumination.  It is important that the visual 

system attributes the change in visual information to the environmental conditions rather 

than, incorrectly, the object colour in order to maintain a consistent representation of the 
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world.  One method of achieving this is to directly encode colour contrast, as the ratio in 

cone excitations between surfaces tends to be constant through changing illumination.  It is 

only through the use of ambiguous, experimental stimuli in which the shortcomings of such 

a mechanism can become apparent, as with the simultaneous contrast illusion described 

above, which lead to a gross misperception in surface colour.  Importantly, however, in both 

cases of simultaneous luminance and chromatic contrast, surrounding each inner region 

with a black border, thus separating each region from its background, diminishes the effect 

(see figure 1.4).  This illustrates that it is the presence of a contrast (i.e. an informative 

border) between the figure and background that mediates the effect. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 A reproduction of the illustration shown in figure 1.3, but with added black 
borders.  These borders mask the contrast between the circles and their surrounds, thus 
diminishing or completely abolishing the simultaneous contrast illusion.  This demonstrates 
that the information that is gleaned from edge-based processes can significantly shape the 
way that regional information is perceived. 

This is also reflected in the physiological structure of the mammalian visual system, 

as revealed through neuropsychology and cell-recordings.  In colour perception, for 

example, cortical damage to ventromedial areas can result in a complete and highly 

selective loss of colour experience, known as cerebral achromatopsia (Heywood, Cowey & 

Newcombe, 1991).  In spite of this profound deficit, however, one patient in particular has 

been shown to remain sensitive to chromatic contours (Heywood, Cowey & Newcombe, 

1994).  The neural locus of this spared ability is likely a lot earlier than that of his impaired 
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abilities.  It is presumably the primary visual cortex, which is known to signal local cone-

contrast through its “double-opponent” cells (Kentridge, Heywood & Cowey, 2004).  Indeed, 

signals arising from these neurons are necessary in the mechanisms of colour constancy (as 

previously discussed), as without these neurons (through selective damage to primary visual 

cortex) the illusion of simultaneous chromatic contrast fails (Kentridge, Heywood & 

Weiskrantz, 2007).  The implication from these findings is that surface colour is 

reconstructed at a later cortical level on the basis of signals arising from earlier neurons 

sensitive to chromatic contrast at borders.   

Importantly, however, such border-to-interior “filling in” processes are not restricted 

to luminance and colour perception.  Regional features involving textural elements (2nd-

order stimuli) are also perceived on the basis of some filling in mechanism (Ramachandran 

& Gregory, 1991).  Caputo (1998) and Motoyoshi (1999), for instance, adopted the same 

principal method as Paradiso and Nakayama (1991) but with oriented line textures.  In line 

with the original findings, Motoyoshi found that the perception of the line segments of the 

target disc was suppressed inside the area of the annulus mask.  This is completely in line 

with the perception of the interior region of the disc spreading from the outer edge, which 

is subsequently interrupted by the presence of the contour in the mask, thus preventing 

complete filling in.  Additionally, however, if the central region of the disc contained some 

regional discontinuity (i.e. mis-oriented line segments) then the perception of this would 

survive the effect of the mask (see figure 1.5).  This is strong evidence that regions of local 

discontinuity, even with texture stimuli, gain precedence in the temporal sequence of object 

processing by the visual system.  Recently, Su, He & Ooi (2011) found that by manipulating 

the stimulus onset times of a grating textured surface, they could demonstrate that the 

perception of that surface begins at the location of borders and proceeds inwards, 

resembling the classic border-to-interior processing strategy.  In general, the results suggest 

that regardless of how a shape may be defined, it is always the perception of local contrast 

between figure and ground that leads.   

Neuroscientific evidence corroborates with these psychophysical findings.  Lamme, 

Rodriguez-Rodriguez and Spekreijse (1999), for instance, found single-cell evidence in the 

awake macaque of a response enhancement at the location of an orientation contrast that 

occurred prior to any location within the regions of the textures themselves.  The largest 

response latencies were recorded for regions farthest away from the contours.  Similar 
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findings were recorded by Romani, Caputo, Callieco, Schintone and Cosi (1999) using visual 

evoked potentials, which, together, corroborate with Motoyoshi (1999) in suggesting the 

workings of a texture analysis mechanism that prioritises locations of contrast relative to 

regions of uniform texture.  On average, the surface of a textured region might be filled in 

between 40 and 60 ms following boundary localisation. Thus, it is believed that once the 

contours within an image are defined by the visual system, the interior regions of those 

contours are then filled in, a process which relies on re-entrant feedback from higher visual 

areas.  The perceptual process of texture “filling in”, however, is likely to differ from that of 

regular “luminance” or “colour” filling in, and may involve a two-step process (Caputo, 

1998).  Initially, the average luminance intensity of a region may be established and 

“spread” within the previously detected boundaries (lasting between 40 and 80 ms), 

following which the filling-in of the individual textural elements occurs (i.e. their shape, 

orientation, size). 

 

Figure 1.5 A cartoon illustration of the texture-based filling processes revealed through 
backward masking (adapted from Motoyoshi, 1999).  a shows an effect that is analogous to 
that shown in figure 1.2, in which the perception of a textured region is disrupted by the 
mask’s prevention of the filling-in processes.  b shows that this effect does not entirely 
uphold when a region of contrast is present inside the textured region.  Because the filling-
in process begins at locations of contrast, the perception of the sub-region persists despite 
the mask. 
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The influence of borders of contrast is also present for other regional features.  

Lateral inhibitory mechanisms also underlie the visual system’s processing of spatial 

frequency (Sagi & Hochstein, 1985), orientation (1-D lines, Blakemore, Carpenter & 

Georgeson, 1970; 2-D plaids, Smith, Wenderoth & van der Zwan, 2001) and image contrast 

(Chubb, Sperling & Solomon, 1989; see figure 1.6).  For example, for a circular field of 

vertical lines, a surrounding annulus consisting of lines tilted clockwise will “repel” the 

apparent orientation of the central lines in a counterclockwise direction (see figure 1.7).  

This attribute of the visual system is pervasive and underlies much visual functioning, again 

reinforcing for us the notion that the perception of regional information is second to what is 

perceived at local areas of contrast.  The visual system’s relatively high sensitivity to 

discontinuity in an image reflects the assumption that most objects in a visual scene have a 

large amount of surface uniformity with few (if any) abrupt discontinuities, rendering a large 

portion of the retinal input redundant in terms of its importance in (early) visual processing 

(Chong & Treisman, 2003).  The primacy of boundaries over surface information is reflected 

in findings from psychophysics and behavioural experiments showing that information 

about form is integrated outside the workings of awareness (Fahrenfort, Scholte & Lamme, 

2007; Breitmeyer, Ogmen, Ramon & Chen, 2005) and prior to the integration with surface 

features (Biederman & Ju, 1988; Elder & Zucker, 1998; Humphreys, Cinel, Wolfe, Olson & 

Klempen, 2000). 

 

 

Figure 1.6 The Chubb contrast illusion (Chubb et al, 1989).  The two inner circular regions 
are identical; the one on the left, however, is surrounded by a lower contrast background 
and so appears to be of a higher contrast than that on the right. 
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Figure 1.7 Demonstration of the simultaneous tilt-illusion.  Both central Gabor patches are 
horizontal, yet the presence of the tilted surrounds (clockwise on the right, counter-
clockwise on the left) shifts the perception of the central orientations in the opposite 
direction.  As a result, the central Gabor patch on the left appears tilted clockwise from 
horizontal, and the one on the right appears tilted counter-clockwise from horizontal.   
 

1.2. Mechanisms of 2nd-order segmentation and discrimination 

 

1.2.1. Filter-rectify-filter 

Natural scenes typically contain contours associated with discontinuities in object 

surfaces, or which separate figures from their ground (Anzai, Peng & van Essen, 2007).  

Although we may most often associate such contours with spatial changes in colour or 

luminance, or less obvious cues such as binocular disparity, it is equally conceivable to 

imagine an object that stands out from its background purely on the basis of its surface 

texture (or its 2nd-order properties). Thielscher and Neumann (2003) present a compelling 

example, for instance, in which the outline of a Dalmatian is perfectly visible against a 

background of a black and white checkerboard pattern.  Importantly, both the figure and 

ground share the same average luminance intensity, only differing in the textural 

arrangement of their regional elements.  Despite this, a clear contour is visible to us at the 

figure-ground boundary.  Such observations are taken as direct evidence by some 

researchers that the visual system has access to higher order properties of surfaces that 

allow for a preattentive contrast to be formed between a figure and its ground purely on 

the basis of texture (e.g. Bergen, 1991; Palmer & Rock, 1994; Landy & Graham, 2004).  

Although texture-based segmentation is a robust and widely studied attribute of the visual 

system, no clear consensus exists as to what distinguishes one texture from another to 

allow this effortless segmentation.   

Julesz’ work, however, is perhaps the most widely read and cited in this field, as he 

was among the first to attempt to establish a foundation for the understanding of the 

components of visual texture (Julesz, 1962).  Although Julesz’ original efforts centred around 



26 
 

the role that certain visual statistics played in the automatic segmentation of patches of 

randomly distributed luminance dots (Julesz, Gilbert, Shepp & Frisch, 1973), 

counterexamples to these theories, discovered by Julesz himself, made the evidence 

difficult to interpret (Caeli & Julesz, 1978; Julesz, Gilbert & Victor, 1978).  These 

counterexamples were suggestive of an alternative explanation, and consequently Julesz’ 

work became synonymous with the “texton”, an easily discernible image feature (i.e. a 

corner, termination etc.) that allows texture patterns to segment despite identical pattern 

statistics (Caelli, Julesz & Gilbert, 1978).  Such a process in the visual system is attributable 

to the early retinal and cortical ‘feature extractors’, which is a conception not too dissimilar 

to the findings of Gestalt psychologists such as Beck (1972, 1982), who concluded after 

many experiments that segregation resulted from the feature density of sample attributes, 

such as luminance, colour, size, orientation and movement. These conclusions were met 

with scepticism by some researchers, however, who claimed that the image 

features/textons were not well enough defined.   

Consequently, an alternative line of modelling arose, which concerned the 

orientation and spatial frequency tuned channels outlined in spatial vision research (De 

Valois & De Valois, 1988; Graham, 1989, 1992).  Knutsson and Granlund (1983) theorised 

that the distribution of power in different spatial frequency bands might be used to 

segregate natural textures from one another.  Strong evidence for such a model came from 

the findings of Bergen and Adelson (1988), which showed that two patches of segmenting 

textures could be made less conspicuous by increasing the size of the components in one 

patch to equate the dominant spatial frequency of the different textural elements.  This is 

evidence against a simple texton theory, and has led to the evolution of a number of 

computational models that attempt to explain how an ideal system would compute a 

texture gradient (a spatial difference in textural composition, i.e. a contour).  A simple 

luminance edge, for example, can be defined by a band-pass linear spatial filter similar to a 

cortical simple cell, which would produce a peak response at the boundary of contrast. A 

typical texture-defined edge, such as Thielscher and Nuemann’s (2003) Dalmatian, however, 

has the same average luminance on either side and so can not be detected by a purely 

linear mechanism.  Many computational theories were constructed circa 1990 on the basis 

of known cortical cell types, and are so similar in nature to one another that they can be 

grouped together under the collective title the “back pocket model” (Bovik, Clark and 
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Geisler 1990; Caelli 1985; Fogel and Sagi 1989; Graham; 1991; Landy and Bergen 1991; 

Malik and Perona 1990; Sutter, Beck and Graham, 1989; Turner, 1986).  The basic formula of 

such a model consists of a set of linear spatial filters, which model the output of V1 cells, an 

intermediate non-linear transformation stage containing lateral inhibition to suppress 

spurious weak responses and a final process of linear filtering used to enhance texture 

borders.  

Imagine two abutting patches of uniformly distributed orientation signals, otherwise 

identical to one another except that one consists entirely of vertical signals, the other of 

horizontal signals.  They sit immediately adjacent to one another, forming a texturally 

defined vertical edge.  When applied to the whole of the retinal image, a spatial filter that is 

sensitive to a vertical orientation, for example, will elicit a weak response across the entire 

region defined by horizontal signals.  Across the vertically-defined texture, however, the 

response will be intensely variable due to very strong positive signals from the vertical 

elements and very negative signals from regions just to the side of each element.  At this 

stage, the average neural output for each patch is comparable to the other until a rectifying 

nonlinearity is applied to the whole image, resulting in no change to the signals representing 

the horizontal region, but a much larger response in the signals representing the vertical 

region.  Finally, the output of the previous rectification is in turn analysed with yet larger 

scale spatial filters, with a vertical filter yielding the strongest response to signal the 

presence and location of the vertical texture border.  This computational modelling 

approach, and the work of Julesz (1981), Beck (1983) and Bergen and Adelson (1988), has 

given strong support for the importance of basic image attributes, especially orientation, in 

automatic texture segmentation, whereas elements such as “crossings” or “terminations” 

have been shown to have some contribution, albeit much weaker.  The term 2nd-order 

segmentation thus describes the edge-based processes that detect discontinuities in visual 

attributes that can not otherwise be picked up by 1st-order linear mechanisms.  

 

1.2.2. Cortical contributions to 2nd-order segmentation 

Despite dedicated efforts to do so, it has been difficult to isolate a cortical region in 

the visual system that can be said with much confidence to perform texture segmentation.  

This is no more obvious than in the work on single-cell recordings in animals and the results 

from human neuroimaging, which together often lead to contradicting results.  Additionally, 
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the notable lack of neuropsychological patients with a complete and unique impairment in 

texture segmentation suggests that we may be considering a process that is achieved 

through recurrent activity between many parts of the visual system (see Bergen, 1991).  

Computational models based on the anatomical and functional properties of the areas of 

the visual system are also supportive of this theory (see Thielscher & Neumann, 2005).  

The earliest possible stage of visual processing in the cortex, V1, is seen as a worthy 

substrate for at least the linear filtering stage of texture segmentation.  This is due in part to 

its extensive network of simple and complex cells, and the presence of both excitatory and 

inhibitory lateral interactions.  Such complexity is speculated by some researchers to be 

sufficient to perform even 2nd-order nonlinearity (Landy & Graham, 2004).  Consequently, 

V1 is a strong candidate for a role in enhancing responses to borders of pop-out stimuli 

(Kastner, Nothdurft & Pigarev, 1997, 1999; Nothdurft, Gallant and van Essen, 1999).  The 

first hints that V1 could potentially conduct textural analyses came from single-cell 

recordings in the macaque, which highlighted that the activity of V1 cells in response to an 

oriented line or texture was modulated by the presence of an orthogonal surround (Knierim 

& van Essen, 1992; Sillito, Grieve, Jones, Cudeiro & Davis, 1995).  Importantly, some 

researchers have highlighted the independence of V1 in this respect: Lamme and colleagues 

(Lamme, Supèr, & Spekreijse, 1998; Lamme et al, 1999), for instance, showed that recordings 

from cells sensitive to the border of a shape defined by an orientation contrast of 90° did 

not diminish with substantial ablation of extrastriate cortex, whilst Hupé, James, Girard and 

Bullier (2001) reported similar effects for responses found in macaque V1 to a surrounding 

texture when V2 was suppressed.  Furthermore, Nothdurft, Gallant and van Essen (2000) 

showed V1’s neural activity to be enhanced at the boundary but suppressed at regions of 

homogenous texture in the anaesthetised macaque.  Such results indicate a role of the 

primary visual cortex in signalling the presence of a textural boundary, with some authors 

citing the horizontal long-range connections within this area as good mediators of the 

observed border effects, and potentially in isolating figure from ground or detecting surface 

discontinuities in simple image attributes (Thielscher & Neumann, 2003).     

The primary visual cortex, however, is not unique in its apparent sensitivity to 

texture; its immediately adjacent topographical cortical area (V2) has recently been shown 

to contain a proportion of neurons that show inhibitory interactions, making them ideal 

candidates for the signalling of orientation combinations (Anzai, Peng & van Essen, 2007), a 
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process which may play a pivotal role in combining and contrasting spatially separated 

texture information.  V2 cells, both at the individual and population level, also respond well 

to complex shape information related to object texture and contour information (Hegdé & 

Van Essen, 2000, 2003) and in a way that evolves relatively quickly (as early as 40ms of 

stimulus exposure; Hegdé & Van Essen, 2004).  In a direct comparison between the activity 

of V2 and V1 neurons, von der Heydt and Peterhans (1989) found a significant response to 

texture contour stimuli in V2, but not in V1.  Ramsden, Hung and Roe (2001) also provided 

similar evidence.  Together, the response properties of V2 cells suggest vital processes in the 

general recognition of form by complex shape.  This is largely upheld by the finding that 

lesions of V2 produce significant impairments in segmenting a texture-defined figure 

(Merigan, Nealey & Maunsell, 1993).  That is, the orientation of a figure comprising a subset 

of line segments of different orientations to their background could not be discriminated, 

whereas the same figure defined by colour or size could be.   

The role of higher visual areas in similar tasks is less clear.  Merigan (2000) lesioned 

area V4 in monkeys and demonstrated that the ability to segment two abutting regions of 

orientation orthogonal to one another was not abolished.  Counter-intuitively, however, the 

same animals could not discriminate the orientation of a bar composed of the same 

orientation contrast as in the previous task.  This may simply have been a consequence of 

the difference in task difficulty, or may have highlighted a dissociation between the low-

level process of segmenting, which remains intact, and the high-level process of figure 

perception, which is abolished.  Evidence from simulation studies based on computational 

modelling has contributed to our understanding of the role of individual visual areas in 

texture segmentation.  These models consist of mock areas V1, V2 and V4 as well as their 

interconnections, and are formulated on the basis of data gleaned from both behavioural 

and neural work (see Thielscher and Neumann, 2005, & 2007).  The visual areas within the 

model each hold a topographic map of cells selectively tuned to orientations.  By removing 

the feedback connections in the model (i.e. creating artificial “lesions”), it becomes possible 

to understand the contribution of individual visual areas, and their feedback modulations, to 

the segmentation of texture information.  One of the main findings is that in a full recurrent-

flowing model, a texture bar defined by the offset of oriented line segments from their 

background is represented moderately by V2 but very strongly by area V4.  When feedback 

from V4 is removed, however, the observed stimulus-specific activity in V2 notably 
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diminishes, and it can no longer signal the presence of a textural boundary.  The role of 

feedback activity, at least within these models, is thus essential to segmentation.   

Neuroimaging evidence with humans also supports the role of later visual areas (in 

particular V4) in the process of texture segmentation.  For instance, Thielscher, Kolle, 

Neumann, Spitzer & Gron (2008) varied the orientation contrast of a figure defined by a set 

of oriented line segments in a field of similarly oriented background elements.  The 

preattentive BOLD response in early visual areas (V1 and V2) was not correlated with the 

orientation contrast, whereas the response in higher areas (V4v, VP and lateral occipital 

complex (LOC)) was.  This corroborates somewhat with previous findings (Kastner, de 

Weerd and Ungerleider, 2000; Schira, Fahle, Donner, Kraft & Brandt, 2004; Larsson, Landy 

and Heeger, 2006) although Thielscher et al (2008) were the first to show the correlation 

with behavioural psychophysical data, thus supporting a trend between observed neural 

activity and perception.  There is also evidence showing these higher areas to have greater 

stimulus-specific adaptation than lower areas when participants viewed patterns containing 

a border defined by the offset of two sets of oriented lines (Montaser-Kouhsari, Landy, 

Heeger & Larsson, 2007).  Together, these results indicate that the final output of the 

segmentation is primarily represented in the mid level areas (esp. V4), and any observed 

activity in relatively low-level areas may simply reflect modulatory feedback.  It is not 

surprising, then, that patient HJA, with lesions to the human equivalent of V2, V3 and V4, is 

unable to segment a texture-defined bar (Allen, Humphreys, Colin & Neumann, 2009).  In 

corroboration with the neuroimaging evidence, it seems likely that it is damage to the mid-

level area V4 that is crucial to his impairment.   

The neuroimaging data, however, are not entirely convincing.  Although a lot of the 

evidence indicates V4 as the crucial mediator in texture segmentation, its activity is only a 

correlation with what is being perceived.  The LOC, on the other hand, has been extensively 

studied in separate investigations and seems to represent a neural correlate of the 

perception of object shape seemingly regardless of how the shape is defined (e.g. Kourtzi & 

Kanwisher, 2001; Tyler, Likova & Wade, 2004).  The activity observed in this region, 

therefore, may not directly reflect the segmentation process per se, but that of a general 

cue-invariant integration stage beyond the early- to mid-cortical processing hierarchy 

(Thielscher et al, 2008).  The reason why its activation is not observed in some of the 

neuroimaging evidence (Kastner et al, 2000; Schira et al, 2004), but it is observed in others 
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(Thielscher et al, 2008; Larsson et al, 2006) may instead be due to differences in task 

demands and relate more generally to object recognition processes.  

Some authors have even argued that the stimulus-specific activity in V4 in response 

to a texturally defined figure (Thielscher et al, 2008; Kastner et al, 2000; Schira et al, 2004; 

Larsson et al, 2006) can be explained by an indirect result of feedforward processing from 

V1 and V2.  Hallum, Landy and Heeger (2011), for example, provided evidence from fMRI-

adaptation that shows populations of neurons within V1 to be sensitive to 2nd-order 

contours.  In addition, in Schira and colleagues’ (2004) study, V2 (although not V1) was 

shown to have systematic changes in BOLD activity in response to the degree of texture 

contrast that defined a figure.  In this study, subjects were required to complete an 

attentionally-demanding foveal letter-discrimination, thus preventing the peripherally 

presented texture contours from entering awareness.  This is important, as the observed 

activity is thus likely to reflect that which is independent to attention-related components of 

contour perception; the activity is related to the pre-attentive (and pre-awareness) 

component of segmentation.  Although Kastner et al (2000) manipulated attention and did 

not find early cortical activity related with texture-defined figure perception, they did not 

dissociate activity related to the figure per se and that of the contour.  Schira et al (2004) 

did, however, which is perhaps why they found significant stimulus-related activity within 

V2. 

In conclusion, it is currently unknown exactly where in the cortical processing 

hierarchy texture segmentation is achieved.  One theory is that a recurrent flow of activity is 

required between areas V1-V4, with the final neural representation of the texture figure 

occurring in V4.  Another quite different theory, however, is that the early cortical stages 

(specifically V1 and V2) are sufficient, and the activity found in V4 merely reflects 

feedforward projections from these areas.  

 

1.2.3. Regional discrimination of 2nd-order stimuli 

Texture segmentation is not the only, and perhaps not even the primary, example of 

the use of 2nd-order stimulus information by the visual system; Landy and Graham (2004) 

proposed three motivations for the visual system’s computation of visual texture, only one 

of which concerned the segmentation of one textured surface from another.  The remaining 

two, namely 3D structure perception and object recognition, differ from the previously 
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discussed motivations for the use of texture as they do not rely on the immediate 

segmentation of one textured patch from another.  After all, we are capable of 

discriminating patches of isolated texture and describing them in great detail.  For the visual 

system, it would be easy to imagine how this would pose much more of a complex task than 

that of segmentation.  Such a computation requires the integration of spatially distributed 

local signals, which can be informative in reliably estimating visual texture (Dakin & Watt, 

1997; Dakin, 2001).  When applied to the perception of objects, this process is potentially 

vital in determining their surfaces under varying viewing conditions (Dakin & Watt, 1997; 

Bovik, Clark & Geisler, 1990; Victor & Conte, 2004).  In particular, extracting the orientation 

statistics of distributed elements has often been considered as a potential foundation for 

the discrimination of certain surface textures (Witkin, 1981; Kass & Witkin, 1985; Blake & 

Marinos, 1990; Field, Hayes & Hess, 1993; Dakin & Watt, 1997; Dakin, 2001; Wolfson & 

Landy, 1998).   

This component of visual texture analysis, “orientation pooling”, has been studied in 

some depth by some researchers.  Dakin and Watt (1997), for instance, showed that when 

confronted with a spatially unstructured texture, observers made accurate judgments of the 

mean orientation of globally distributed elements, as well as the variance of the distribution 

from which the elements were drawn.  Dakin (2001) has since shown that, by assessing the 

effects of a texture’s size, density and numerosity on the observer’s internal noise and the 

sampling density, observers relied on a sample size approximately equal to a fixed power of 

the number of samples present.  This flexibility in orientation pooling is thought to be a 

prerequisite for efficient texture perception, in which accurate estimation of the texture’s 

appearance requires the integration of spatially distributed elements and the extraction of 

some statistical quality that does not vary with changes in viewing conditions.  

Neuropsychological evidence from a human patient has also indicated the role of V4 in tasks 

of a similar description:  patient HJA, as discussed before, is unable to correctly scale the 

sampling size of his estimate when confronted with an unstructured patch of orientation 

signals with increasing signal noise, which suggests an inability to extract a reliable statistical 

representation and thus an inability to perceive the spatial relationship of distributed signals 

(Allen, Humphreys & Bridge, 2007).  As mentioned previously, any conclusions drawn from 

this patient must be used tentatively as his lesion covers areas V2 and V3 as well as V4.  On 

a related note, Beason-Held and colleagues (1998) have shown that when observers were 
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asked to view random-dot texture patterns and spatially correlated patterns of the same 

stimuli, activity in the primary visual cortex, as well as the middle lingual and fusiform gyri, 

was recorded for random patterns, but for spatially correlated textures, activity extended 

into middle temporal areas.  This suggests a selective role of potentially higher visual areas 

in computing the spatial relationships of distributed visual signals. 

From a different approach, Wolfson and Landy (1998) presented observers with two 

adjacent patches of texture defined by the distribution of individual oriented elements and 

asked them to detect a difference.  If the patches differed in mean orientation, then 

detecting a difference was easier if the patches were abutting than if they were separated.  

If the patches differed in the variance of the distribution from which the orientations of 

their respective elements were drawn, however, then no such effect was observed.  This is 

indicative of a higher-order image statistic (i.e. orientation variance) being associated with a 

region-based mechanism; in other words not related to texture segmentation, but more 

related to the appearance of a surface.  Caution should be taken, however, in interpreting 

this evidence as there was a confound of an increased quantity of line crossings in patches 

with greater orientation variability.  This renders a direct interpretation of “edge-based” vs. 

“region-based” mechanisms dubious as the observer could essentially use a separate cue in 

the discrimination-of-variation task to that used (i.e. orientation sampling) in the 

discrimination-of-mean task.  Whether or not this factor accounts for the observed effects 

of discriminating patches of texture that are abutting and separate must be explored before 

reliable conclusions can be drawn.  Potentially, if the conclusions from Wolfson and Landy 

(1998) are accurate they may indicate a distinction within the visual processing of texture 

depending on its intending function: edge-based texture mechanisms are most useful in 

segregating an object from its background, whereas region-based mechanisms are most 

informative in deducing the characteristics of a texture as a property of an object’s surface.  

Explorations into the neural substrates of these separable processes are yet to be made.   

 

1.2.4. Representation of texture as a physical surface property 

Determining the spatial characteristics of distributed textural information is likely to 

subserve high-level object recognition.  The appearance of the geometry of an object’s 

surface, for instance, requires the integration of spatially distributed cues, and it is evident 

from some of the evidence discussed thus far that, rather than comparing by exemplar on a 
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pixel-by-pixel basis, the visual system must at least extract a statistical feature that is 

common across viewing conditions in order to achieve an accurate perceptual 

representation of the characteristics of a textured surface (Cho, Yang & Hallett, 2000; Victor 

& Conte, 2004).  This is a vital process in achieving perceptual constancy when describing 

the structure of objects.  What are the processes that determine a golf ball’s characteristic 

surface?  For the visual system, this is not an easy question to answer; a golf ball’s surface is 

something that is highly influenced by changes in illumination and the local height variations 

of the textural elements, as well as the viewing geometry (Nishida & Shinya, 1998; Fleming, 

Dror & Adelson, 2003; Pont & te Pas, 2006).  This ensures that individual pixel values 

acquired from a visual image vary considerably despite no changes in the physical structure 

of that image.  Despite these limitations, we are able to describe an object’s structure at the 

levels of mega-, meso- and micro-scale (Koenderink & van Doorn, 1996; Ho, Landy & 

Maloney, 2008).  A ping-pong ball, for example, holds a similar megastructure to a golf ball; 

both are spherical.  Their respective meso-structures, however, are radically different; the 

ping-pong ball’s surface is smooth, the golf ball’s furrowed. The molecular organization of 

the two objects’ material also denotes their microstructures, which produces a 

characteristic glossiness on the golf ball that is absent on the ping-pong ball.  It is the latter 

two which are potentially good indicators of an object’s material, i.e. the “stuff” of the visual 

world, whereas the first is most useful in outlining the forms of objects, i.e. the “things” 

(Adelson & Bergen, 1991).  In terms of our understanding of the visual system’s ability to 

process objects at these levels, we know very little about the processing of “stuff” compared 

to that of “things”. 

How exactly these computations are performed by the visual system, and where in 

fact they take place, is a far-reaching question that has only limited answers at the moment.  

Some research within the last 15 years has made notable attempts to tackle the question 

using a variety of techniques.  For instance, evidence from single cell recordings in the 

macaque revealed a sensitivity of V4 neurons to the classification of natural textures 

(Arcizet, Jouffrais & Girard, 2008).  Specifically, a large majority of neurons responded to 

patches of natural textures flashed in the receptive field of V4 neurons in the awake 

macaque and, most importantly, the responsiveness of the neuron to the stimulus did not 

change as the stimulus was moved such that the receptive field sampled a different region 

of the same texture.  Additionally, the responses were comparable for the same patch of 
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texture viewed under conditions of changing illumination.  V4 neurons have also been 

shown to be selective to the density and size of points mimicking a shaded granular texture 

surface (Hanazawa and Komatsu, 2001).  Together, these results are suggestive of V4 

neurons being position-and illuminant-invariant to texture; possibly being sensitive to some 

statistical quality of a repeated pattern that is constant under different viewing condition.  

This is an essential process in the perception of texture as a natural and informative 

property of an object.   

With human subjects, Puce, Allison, Asgari, Gore and McCarthy (1996) utilised 

functional neuroimaging when normal subjects viewed images of faces, letterstrings and 

textures.  The textures were not composed of identifiable individual elements and certainly 

did not look artificial, as in the traditional line of work (e.g. Bergen & Adelson, 1988), but 

instead resembled more realistic materials such as sandpaper, wood and grass.  Activity in 

response to these textures was specific to regions of the collateral sulcus.  This was strong 

initial evidence for a functional specialization of an extrastriate region in processing visual 

texture.  Peuskens et al (2004) found similar activation in occipito-temporal regions when 

subjects made judgments about surface texture in 3D objects.  The most notable 

advancements in uncovering the neural correlates of natural texture perception, however, 

have been made in the last 3-4 years.  Cant and colleagues (Cant, Arnott & Goodale, 2009; 

Cant & Goodale, 2007) used functional magnetic resonance adaptation to demonstrate 

selectivity in the LOC and collateral sulcus in observers when passively viewing objects that 

would change in either global structure or physical texture, respectively.    Very recently, 

Cavina-Pratesi, Kentridge, Heywood and Milner (2010a; 2010b) combined functional 

magnetic resonance adaptation with evidence from visual agnosic patients.  They showed in 

a double dissociation that making judgments about the form of an object preferentially 

activated the LOC, whereas judgments about the same object’s texture or colour activated 

the posterior collateral sulcus and anterior collateral sulcus, respectively.  Two 

neuropsychological patients, one with a damaged LOC yet otherwise spared ventral stream, 

the other with damage to the collateral sulcus with spared LOC, showed the expected 

relative deficits in accordance with the neuroimaging findings.  Taken together, these recent 

advancements are highly indicative of a major role of mid-level ventral regions in processing 

texture as a surface property of an object, especially regions that correspond to the 

collateral sulcus in humans and area V4 in monkeys.   
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1.3. The direction of this thesis 

 

The first four sets of experiments documented in this thesis are motivated by the 

work that has been discussed in this general introduction.  Specifically, the first set of 

experiments will directly compare the processes of 2nd-order segmentation and 

discrimination in a psychophysical demonstration in normal observers.  Segmentation is 

explored using stimuli that are composed of oriented line segments and in which there is a 

difference in mean orientation between two abutting regions.  A novel type of stimulus will 

be introduced in these experiments, which will demonstrate the large temporal superiority 

for segmentation (by spatial gradients in mean orientation).  In contrast, regional 

discrimination will be explored using similar stimuli but which differ in orientation variance.  

Like differences in mean orientation, differences in orientation variance necessitate 

mechanisms of a higher order to be detected; unlike differences in mean orientation, 

however, these stimuli do not result in segmentation.  Independently manipulating the first- 

and second-moment statistics of orientation information, the mean and variance 

respectively, therefore provides a good way of isolating the edge- and region-based 

components of 2nd-order vision without confounding changes in other attributes. 

In the second set of experiments, it will be explored whether a single patient (patient 

MS) with bilateral medial occipitotemporal damage (including human “V4”) retains an intact 

ability to perform 2nd-order segmentation.  There is some debate that has arisen from 

neuroimaging and computational modelling studies regarding the necessary role that 

human “V4” plays in 2nd-order segmentation; the segmentation-specific stimuli introduced 

in the first set of experiments offers a novel and effective method with which to test this 

necessity in an ideal neuropsychological candidate.  The focus of the third set of 

experiments will be on the discrimination of orientation variance.  Specifically, through the 

technique of selective adaptation-induced aftereffects, it will be determined whether this 

second moment orientation statistic is encoded explicitly by the visual system through 

channels tuned broadly to high and low levels, and whether this is represented at a stage 

that encodes the statistic independently of the low-level statistic (mean orientation).  

Additionally, it will be explored whether this encoding is limited to a retinotopic reference 

frame, or whether it is achieved through the spatiotopic encoding of high-level cortical 
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areas, and whether patient MS’s intact early visual areas are sufficient to allow some 

sensitivity to the property of orientation variance.   

The fourth set of experiments will consider the role of extrastriate areas in the 

temporal integration of different 2nd-order cues for the purposes of cue-invariant 

segmentation.  Work involving psychophysical techniques in normal observers as well as 

neuropsychological work with a patient with bilateral damage to LOC will be presented.   

The remaining part of this thesis will consider a cognitively higher-level aspect of 

perception that stems from segmentation.  Specifically, the fifth and final set of experiments 

explores whether objects that are rapidly extracted by the visual system’s 2nd-order 

channels are capable of being selected as units of attention without ever reaching the level 

of awareness.  The relationship between attention and awareness will be reviewed prior to 

presenting the experiments of study five. 
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2. Study One - Contrasting 2nd-order segmentation and discrimination 

 

This chapter has been published in Vision Research.  The full citation is: 

Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2011). Contrasting the processes of 
texture segmentation and discrimination with static and phase-reversing stimuli. Vision 
Research, 51, 2039-2047; doi: 10.1016/j.visres.2011.07.021 
 

2.1. Abstract 

 

Regions of visual texture can be automatically segregated from one another when 

they abut but also discriminated from one another if they are separated in space or time.  A 

difference in mean orientation between two textures serves to facilitate their segmentation, 

whereas a difference in orientation variance does not. The present study further supports 

this notion, by replicating the findings of Wolfson and Landy (1998) in showing that 

judgments (odd-one-out)  made for textures that differ in mean orientation were more 

accurate (and more rapid) when the textures were abutting than when separated, whereas 

judgments of variance were made no more accurately for abutting relative to separated 

textures.  Interestingly, however, responses were overall faster for textures differing in 

variance when they were separated compared to when they were abutting.  This is perhaps 

due to the clear separation boundary, which serves to delineate the regions on which to 

perform some regional estimation of orientation variance.  A second experiment highlights 

the phase-insensitivity of texture segmentation, in that locating a texture edge (defined by a 

difference in mean orientation) in high frequency orientation-reversing stimuli can be 

performed at much higher frequencies than the discrimination of the same regions but with 

the texture contour masked.  Textures that differed in variance did not exhibit this effect.  A 

final experiment demonstrates that the phase-insensitive perception of texture borders 

improves with eccentric viewing relative to the fovea, whereas perception of the texture 

regions does not.  Together, these experiments show dissociations between edge- and 

region-based texture analysis mechanisms and suggest a fast, sign-invariant contour 

extraction system mediating texture segmentation, which may be closely linked to the 

magnocellular subdivision of visual processing. 

 

http://dx.doi.org/10.1016/j.visres.2011.07.021
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2.2. Introduction 

 

Natural scenes contain contours, which separate figures from their ground or 

represent discontinuities in object surfaces.  These are typically associated with spatial 

gradients in chromaticity or luminance, although contours can also be perceived as a result 

of spatial changes in texture in the absence of such cues.  This occurs very noticeably when 

two abutting textures differ in the mean orientation of their textural elements (see Bergen, 

1991; Nothdurft, 1991; Thielscher & Neumann, 2003).  Although the strength of the 

border’s perception is dependent on the orientation noise within the stimuli (Motoyoshi & 

Nishida, 2001), generally the greater the orientation contrast, the more compelling the 

border (Nothdurft, 1991).  

This process of contour localisation allows effortless texture segmentation to occur.  

The rapidity of this process is highlighted in a number of psychophysical and 

neurophysiological findings.  Motoyoshi (1999) showed that when a uniform texture was 

presented briefly and followed by a smaller mask, the textured area within the mask would 

be suppressed and the overall perception would be that of a uniform texture with a ‘hole’ in 

the centre.  Importantly, however, if the texture contained an orientation discontinuity 

within the area of the mask, this region survived the mask’s effect.  Additionally, Lamme, 

Rodriguez-Rodriguez and Spekreijse (1999) found single-cell evidence in the awake macaque 

of a response enhancement at the location of an orientation contrast that occurred prior to 

any location within the regions of the textures themselves.  The largest response latencies 

were recorded for regions farthest away from the contours.  Similar findings were recorded 

by Romani, Caputo, Callieco, Schintone and Cosi (1999) using visual evoked potentials, 

which, together,   corroborate with Motoyoshi (1999) in suggesting the workings of a 

texture analysis mechanism that prioritises locations of contrast relative to regions of 

uniform texture. 

This process of edge-based texture perception is thought to be achieved first 

through the application of first order orientation-specific filters in the visual system, whose 

outputs are then transformed through a second stage non-linearity.  A final stage of linear 

filtering is then conducted on this output with larger receptive fields than those of the first, 

and is sensitive to the location of any spatial gradient in the orientation-defined texture (see 

Bergen, 1991, for a detailed review of such a model).  The output of the filtering is such that 
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a peak response is created at the location of contrast.  In other words, the process of 

segmentation based on orientation contrast, and potentially texture segmentation more 

generally, is edge-based (Wolfson & Landy, 1998). 

The term segmentation is often reserved for the description of the processes of 

edge-based mechanisms, whereas the term discrimination is most often applied to instances 

in which an observer is able to discern two textures despite the absence of an informative 

boundary (Landy & Graham, 2004).  These instances arise either when spatial or temporal 

separation of the textures prevents their segmentation, or by the presence of a texture 

difference that is not well suited for the filter-rectify-filter process.  The mechanisms 

underlying this process are described as being region-based and require the integration of 

spatially distributed local signals to attain an informative statistical measurement of the 

composition (Dakin & Watt, 1997; Wolfson & Landy, 1998).  This statistical analysis is 

essential to our consistent perception of visual texture more generally, as comparison on a 

pixel-by-pixel basis would be too unreliable and heavily dependent on various viewing 

conditions (e.g. viewing angle, lighting, and distance; Adelson, 2001) if we are to recognise 

one instance of texture as belonging to a particular category (e.g. sand, granite or 

woodchip).   Indeed, Portilla and Simoncelli (2000) have shown that new instances of a 

particular texture can be successfully generated on the basis of statistical representations 

garnered from a sample image (e.g. from the responses of orientation and spatial frequency 

filters and correlations between such filters).  One example of a simple image statistic that 

has been studied in relation to visual texture is that of orientation variance.  Spatial 

discontinuities in orientation variance are detected poorly by a filter-rectify-filter process 

(Wolfson & Landy, 1998), as the average orientation on either side of the border is constant.  

Dakin and colleagues (Dakin & Watt, 1997; Dakin, 2001) have shown that observers’ 

judgments of orientation variance were both accurate and flexible, being dependent on the 

characteristics of what is being perceived.  Additionally, Morgan, Chubb and Solomon (2008) 

have outlined a ‘dipper’ function in the representation of orientation variance in visual 

texture that may be evidence of intrinsic noise resulting from a dedicated mechanism in the 

visual system for the computation of visual texture.  Thus, two very distinct mechanisms 

appear to exist; one which prioritises the extraction of texture-defined contours, and one 

which estimates statistical properties within a region. 
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Wolfson and Landy (1998) took the approach of directly comparing and contrasting 

these mechanisms.  They showed that when two patches of texture differed in mean 

orientation, then observers were more sensitive to the difference if the patches were 

abutting than if they were separated.  When the patches differed in variance, however, no 

such effect was observed.  This is indicative of a 2nd-order image statistic (i.e. orientation 

variance) being associated with a region-based mechanism; in other words not related to 

texture segmentation, but more related to the discrimination of a texture’s appearance.  A 

trend was also found in a subset of their participants that discriminations based on 

differences in variance were actually greater when the patches were separated.  This was 

theorised to be due to the role that a separating boundary might have played in delineating 

the areas on which to perform the regional analysis (in this instance, variance estimation). 

The aim of the first experiment was to replicate the findings of Wolfson and Landy 

(1998) but also to correct for a potential confound in their experiment: their stimuli were 

composed of randomly positioned line segments and thus were allowed to overlap.  This 

created a larger quantity of “line crossings” in textures of high variance, a cue that observers 

could have used to discern variance independently of any computation of orientation 

statistics (Julesz, 1981).  Although Wolfson and Landy (1998) discussed this and dismissed it, 

no experimental evidence has yet to be presented which directly addresses this point, and 

data collected from experiments using such stimuli may reveal more clearly the workings of 

region-based texture analysis mechanisms.  This confound is prevented in the present study 

by using structurally placed Gabor patches that do not overlap.  It is predicted that for odd-

one-out judgments based on a difference-in-mean, accuracy would be higher for abutting 

patches than for separated patches of texture.  Conversely, no effect is predicted for 

discrimination based on a difference-in-variance.  In addition, the first experiment extends 

Wolfson and Landy’s (1998) findings by measuring reaction times (RTs) on the same task, 

predicting that when accuracy is greatest for abutting textures relative to separated 

textures in the case of detecting a difference-in-mean, RTs would also be shorter.  

Conversely, no decrease in RTs for detecting a difference-in-variance is expected, although 

RTs are expected to be faster for separated textures, as the separation may serve to clearly 

define the regions on which to perform regional estimations of variance.  
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2.3. Experiment 1 – oddity detection task for differences in orientation mean and 

variance 

 

2.3.1. Methods 

Participants 

Ethical approval for this experiment, and all subsequent experiments reported in this 

thesis, was obtained from the Psychology Research Ethics Committee at Durham University.  

20 participants (11 male, 9 female) took part in all conditions of this study.  All subjects had 

normal or corrected-to-normal vision.  All gave written informed consent to take part and 

were compensated financially for their time. 

 

Stimuli  

The display monitor was viewed at a distance of 41cm (subjects rested their head on 

a chin rest).  Stimuli were presented on the uniform grey background of a gamma-corrected 

ViewSonic 17’’ (1254 x 877 pixels) colour monitor positioned on its side and driven by a 

Cambridge Research Systems VSG 2/5 Graphics System.   

The experimental stimuli consisted of three regions of texture presented in a vertical 

alignment 0.5° to the right of fixation (a fixation cross subtending 0.3° x 0.3°), as measured 

from the edge of the stimuli.  Each was constructed of 240 evenly positioned Gabor patches 

in a 24 (across) x 10 (down) rectangular arrangement.  Each individual Gabor patch had a 

spatial frequency of 3 cycles/degree and was generated with a common cosine phase such 

that the pivotal centre of each Gabor patch contained a dark band.  Each measured 0.5° in 

diameter and was separated from its neighbours by a distance of 0.3°.  Thus, each patch of 

texture covered a total area of 27.0° x 17.7°.  Gabors had a 100% luminance contrast. It was 

decided that the locations of the Gabors were to be fixed rather than randomly distributed 

to avoid any potential confounds of “line crossings” that would occur with an increase in 

variance. 

The orientation of each individual Gabor patch was independently drawn from a 

Gaussian distribution of a particular mean (µ) and variance (σ2) associated with its relative 

texture patch.  In all trials, a ‘pedestal’ patch was created with the parameters µ=α (where α 

is a randomly determined orientation between 0° and 360° cycle) and σ2= 52.  In a 

difference-in-mean trial, a second patch was created with the parameters µ = α ± x and σ2 = 
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52 (where x is the degree of orientation difference for that trial, i.e. x = 2, 5, 8, 11, 15 or 20).  

In a difference-in-variance trial, the second patch was created with the parameters µ=α and 

σ2 = (5 + y)2 (where y determines the degree of variance difference for that trial, i.e. y = 0.75, 

1.25, 2, 3.75, 5 or 7.5, thus creating variance differences of 8.1, 14.1, 24, 51.6, 75 and 

131.3).  In both types of trial, the third patch was constructed with the same parameters as 

either the pedestal patch or the second patch such that the odd texture was equally likely to 

be the pedestal patch or not.   

 

Procedure  

Trials were completed in two blocks, each defined by the adjacency of the textures: 

in one block (the abutting condition), the patches were adjoining such that the distance 

between each patch of texture equated the distance between the Gabor patches within 

each texture patch (0.3°).  In another block (the separated condition), the patches of texture 

were separated vertically by a distance of 0.5° between each one, thus creating the 

impression that there were 3 isolated patches of texture one atop the other (see figure 2.1).  

Additionally, on each trial, the position of the stimuli was randomised such that the whole 

display was equally likely to be shifted 0.9° either above or below fixation level or not at all.  

This was designed to prevent the observer from anticipating the exact location of the 

textures and thus from pre-empting the position of the border. 

In each trial, two of the textures were given the same appearance (by drawing their 

composite orientations from the same Gaussian distribution as one another).  The third 

texture (the ‘odd’ texture) was equally likely to appear at the top or bottom of the 

arrangement, but never in the centre.  This patch of texture was made conspicuous 

compared to the others by changing either the mean or variance of the distribution from 

which its orientations were drawn.  See figure 2.1 for examples of each type.  For each type 

of texture difference (difference-in-mean/ variance), there were 6 difference levels.  They 

were, for a difference in mean, 2, 5, 8, 11, 15 and 20 degrees, and, for a difference in 

variance 8.1, 14.1, 24, 51.6, 75 and 131.3.  For each block of trials corresponding to each 

condition of texture adjacency (abutting/separated) there were 2 conditions of texture 

difference (difference-in- mean/difference-in-variance) x 6 difference levels x 8 repetitions.  

Thus there were 96 trials per block per subject.    It should be noted that the order of trials 

was randomized within each block, ensuring that for each given trial subjects could not 
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anticipate the type of parameter that was to define the “odd” texture from the rest (i.e. 

whether it was a difference-in-mean or difference-in-variance).  This adds a particular level 

of task uncertainty for the subjects and so reduces any variation in how they might 

approach the different discrimination types; in other words, they are not able to adopt a 

preferred strategy over the course of one block of trials that would selectively appeal to 

discriminating difference-in-mean or difference-in-variance textures. The presentation order 

of the blocks was also counterbalanced across participants.   

Thus, there were four conditions of the experiment, with each containing 6 levels of 

difference  

1. patches are abutting, with a difference in mean 

2. patches are abutting, with a difference in variance 

3. patches are separated, with a difference in mean 

4. patches are separated, with a difference in variance 

Figure 2.1 shows examples of each of these four types of stimuli. The stimuli were 

presented for 5s or until a response was made.  A fixation cross appeared 2s prior to the 

onset of the stimuli and remained until a response was made. Subjects were instructed to 

fixate the cross whenever it was present and to respond as accurately and as quickly as 

possible in a two-alternative forced choice paradigm by pressing the appropriate key (top or 

bottom) to indicate the odd texture.  Responses were made on a 5-button Cedrus Response 

Box (Cambridge Research Systems) with the subject’s right hand.  The next trial would not 

begin until a response had been collected and a 2s inter-trial interval was included.  

Accuracy and reaction times were measured.  Stimuli were presented to the right of 

fixation. 

 

2.3.2. Results 

Figure 2.2 shows the data from experiment 1.  To reduce the noise in the data, the 

lowest two difference levels were excluded for both the difference-in-mean and difference-

in-variance conditions, as participants’ accuracy did not rise above chance performance, 

leaving 4 levels of difference in each condition.  RTs that exceeded 4 seconds were removed 
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from analysis along with any remaining values that fell outside 2 standard deviations of the 

mean per condition per subject.  This removed no more than 9.5% of all cases.   Planned 

comparisons were performed by isolating either the mean or variance discriminations for 

either the accuracy or RT measurements.  Thus, four 2 x 4 within-subject ANOVAs were 

carried out on these data with the factors of texture adjacency (‘abutting’ vs. ‘separated’) 

and level of difference, respectively.  Each of these will be discussed in turn.  In all of these 

analyses, the main effect of difference level reached significance (all F values>20) and thus is 

omitted in all cases from the report to aid concision.  

 

Figure 2.1. Replications of the stimuli used in the four conditions of experiment 1.  Each 

window shows 3 equally sized textures either abutting or separated vertically from one 

another.  The task required observers to indicate the “odd-one-out”.  The odd texture would 

either be due to a difference-in-mean or a difference-in-variance in the orientation statistics 

used to generate each texture.  Thus, in the figure, the top texture in each of the quadrants 

is the odd-one-out.  Stimuli were presented slightly to the right of a small fixation cross.  

Note that the textures in the illustration are a reduction in size of the actual stimuli used. 
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Figure 2.2. Results from experiment 1. a & c: accuracy and RT data for difference-in-mean 

discriminations for either abutting or separate textures. b & d: accuracy and RT data for 

difference-in-variance discriminations for either abutting or separated textures.  All are 

shown as a function of increasing difference level.  Error bars show +/- 1 SEM with between-

subject variance omitted. 

Accuracy data for difference-in-mean stimuli (figure 2.2a): No significant effect of 

texture adjacency emerged (F(1,19) = 3.365, p=0.082), but there was a significant interaction 

between the two main effects (F(3,57) = 3.159, p = 0.031).  As subsequent paired t-tests 

showed, no difference in accuracy was found between odd-one-out judgments of abutting 

and separated textures at the lower levels of difference, specifically 8-degrees (t(19) = 1.20, 

p=0.245) and 11-degrees (t(19) = 1.555, p = 0.137).  Higher accuracy rates, however, were 

found for judgments of abutting- relative to separated-textures at 15-degrees (t(1,19) = 2.106, 

p = 0.049) and 20-degrees (t(1,19) = 2.963, p = 0.008) with differences of 8.2% and 6.8%, 

respectively. 
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Accuracy data for difference-in-variance stimuli (figure 2.2b): No significant effect of 

texture adjacency emerged (F(1,19) = 0.142, p=0.710) and there was no evidence of an 

interaction (F(3,57) = 0.112, p = 0.947).  Note the extreme similarity between the plots in 

figure 2.2b compared to those in figure 2.2a.  These data indicate that subjects’ accuracy for 

odd-one-out judgments based on orientation variance did not improve with abutting 

textures relative to separated textures. 

RT data for difference-in-mean stimuli (figure 2.2c): No significant effect of texture 

adjacency (F(1,19) = 0.213, p=0.649) was found, but a significant interaction emerged (F(3,57) = 

3.334, p = 0.026).  Subsequent paired sample t-tests revealed no difference in RT for odd-

one-out judgments of abutting and separated textures at any level of the difference in mean 

orientation (all p values>0.1), however, although figure 2.2c clearly shows a trend that is 

consistent with the accuracy data (figure 2.2a); at higher difference levels (15- and 20-

degrees) responses were faster when the textures abutted compared to when they were 

separated, but this effect was not present at lower levels of difference, which in fact show 

the opposite effect.  It is important to note at this point that there is no evidence that 

subjects showed a speed-accuracy trade-off; neither did they make more accurate 

judgments by delaying their RT and nor did they make quicker decisions through sacrificing 

accuracy. 

RT data for difference-in-variance stimuli (figure 2.2d): A significant effect of texture 

adjacency (F(1,19) = 4.437, p=0.049) was found, in which subjects were, on average, quicker 

by 124.01 ms to judge separated textures than abutting textures.  No significant interaction 

emerged (F(2.061,39.16) = 0.190, p = 0.83; Greenhouse-Geisser corrected).  Again, no evidence 

of a speed-accuracy trade-off was found. 

 

2.4. Interim discussion 

 

The results support Wolfson and Landy’s (1998) conclusions by showing that 

accuracy increased for judgments made based on mean orientation when the textures 

abutted compared to when they were separated (although only at the higher levels of 

difference).  This was further supported by the finding that when accuracy was greater for 

abutting textures, RT was also faster, rather than subjects trading speed for accuracy.  

Contrarily, when subjects weren’t significantly more accurate, they were, if anything, 
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slower.  This is consistent with the detection of a difference in mean orientation being well 

suited for a fast contour-detection system that has been outlined in both the psychophysical 

and neurophysiological literature (e.g. Motoyoshi, 1999; Lamme et al., 1999; Romani et al., 

1999).  Importantly, however, there was no such elevation in accuracy for judgments based 

on variance; performance was remarkably similar between the two conditions.  This is 

because on either side of the boundary between the textures, the average orientation is the 

same and so a filter-rectify-filter process tuned to orientation would elicit very weak 

responses at this location of contrast.  Perhaps the most intriguing finding, however, is that 

judgments based on differences-in-variance were made more rapidly for separated textures 

compared to those abutting.  Wolfson and Landy (1998) briefly discussed that it might be 

expected that subjects would perform better on judgments of variance if the patches were 

separated, suggesting that the separation of the textures serves to clearly delineate the 

regions to be discerned.  The flexible “region of integration” of orientation signals 

associated with variance estimation (Dakin & Watt, 1997; Dakin, 2001) may indeed benefit 

from the clear border definitions offered by the separation of the textures.  In the present 

experiment, however, this is an effect which manifested clearly in measurements of RT but 

not accuracy.  Given different instructions, and perhaps limited stimulus presentation 

durations, subjects may have shown significantly greater accuracies in the separated relative 

to the abutting condition. 

The notion of a fast edge-based mechanism of texture segmentation is explored 

further in experiments two and three.  Specifically, is rapid texture segmentation by 

orientation contrast a result of phase-insensitive magnocellular processes?  The cells of the 

magnocellular subdivision of visual processing (M cells) exhibit high temporal and low 

spatial sensitivity, as well as being adept at discriminating motion but being blind to colour 

identity.  This is in stark contrast to the slower parvocellular system, which is more attuned 

to spatial detail and chromatic information (Schiller & Logothetis, 1990).  One important 

aspect of M cells is that they have the capacity to detect chromatic contrast despite their 

colour-insensitivity (Saito, Tanaka, Isono, Yasuda & Mikami, 1989).  So an intriguing question 

is whether the border that is perceived between two regions of texture that differ in mean 

orientation is generated by a magnocellular mechanism that signals orientation contrast 

without signalling the identity of the orientations themselves. 
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Figure 2.3. Example of flicker-defined form.  When the two frames shown above are 

presented in high frequency alternation, an implicit border can be seen between the inner 

and outer regions despite it being impossible to tell at any given time which is dark and 

which is light.  Thus, when an intervening black border is placed between the two regions, 

the viewer cannot perceive a difference between the two regions at such high frequencies.  

Note that the perception shown in the figure is just an illustration, black lines are not seen. 

The second experiment investigated this possibility using “flicker-defined form”.  

Using such stimuli, Rogers-Ramachandran & Ramachandran (1998) demonstrated that when 

two abutting fields of dots (one consisting entirely of white dots, the other black; see figure 

2.3) are flickered in counter-phase above a particular frequency (roughly 7 Hz), the resultant 

perception is that of an implicit border separating two indistinguishable regions.  Up to 

roughly 15 Hz (depending on various stimulus attributes), this perception of the border 

remains despite no conscious access to the surface information (i.e. which side is black, 

which is white).  This particular type of stimulus is thought to isolate the phase-insensitivity 

of magnocellular mechanisms and has been used as a diagnostic test for its improper 

functioning (e.g. in cases of dyslexia, Sperling, Lu, Manis & Seidenberg, 2003).  The absolute 

effectiveness of this type of stimuli in isolating magnocellular functioning, however, is 

slightly contentious (see Discussion [section 7], and Skottun & Skoyles, 2006). 

Assuming that texture segmentation is governed by the magnocellular system, if the 

orientations of two textures are reversed above a particular frequency, the texture border 

should be visible at a higher frequency than is possible to discern the regional texture 

information (i.e. the identity of the orientation either side of the border).  This was assessed 

in the second experiment by requiring observers to locate a texture border defined by a 

difference in mean orientation in both the presence and absence of a coincidental black 

border, which masks the perception of an implicit contour that may be formed between the 

two regions.  Thus, it is assumed that two processing mechanisms exist: edge- and region-
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based texture analysis, and that these processes can be dissociated in the case of the 

difference-in-mean condition  by showing that edge-based mechanisms operate at a higher 

speed than their region-based counterpart.  As a control, no such dissociation should exist 

for textures differing in variance, as judgments based on this statistic are not governed by 

the fast contour-extraction (edge-based) mechanism.   

 

2.5. Experiment 2 – flicker-defined-form for differences in orientation mean and 

variance 

 

2.5.1. Methods 

Participants 

3 naive observers (2 male) as well as the author (male) took part in all conditions of 

the experiment.  All had normal or corrected-to-normal vision and gave their full written 

informed consent. 

 

Stimuli 

This display set-up and equipment used were identical to the previous experiment. 

A black fixation cross was present in the centre of the screen before and after the 

presentation of the stimuli.  The experimental stimuli consisted of a lattice of 20 x 20 

uniformly positioned Gabor patches (each measuring 0.6° in diameter and separated from 

its neighbours by 0.2°).  In total, the lattice measured 14.8° in width and in height.  All Gabor 

patches had a spatial frequency of 3 cycles/degree and were each given a randomly 

determined phase from the full 0-360° cycle.  This phase randomisation ensured that 

integrated contours formed by neighbouring Gabors along a common path were not 

detectable by a 1st-order mechanism.  Gabors had a 100% luminance contrast.   

The textures’ statistics were determined by independently drawing each composite 

orientation value from a Gaussian distribution with a particular µ and σ2.  For one half (the 

“pedestal” texture), orientations were drawn from a distribution with a randomly 

determined µ for that trial and a σ2 of 102.  In the difference-in-mean sessions, the 

remaining half of the lattice (the second texture) would differ in µ with a magnitude of 90°.  

In the difference-in-variance sessions, µ would be the same but the second texture would 

differ in σ2 by a magnitude of +262.   
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Procedure 

Trials were divided into four blocks.  In each block, the subject's task was to identify how 

the lattice was bisected (vertically vs. horizontally), which was determined randomly with 

equal probability on each trial.  Subjects completed two blocks of trials in which the lattice 

was divided by a difference in the mean orientation between the two textures (see top row 

of figure 2.4) and two in which the lattice was divided by a difference in the orientation 

variance (see bottom row of figure 2.4).  For each of these types of stimuli, one of the two 

blocks of trials included the addition of two intervening black borders (separators) dividing 

the lattice both vertically and horizontally at the locations at which the change in 

orientation statistics would coincide (see right column of figure 2.4).  The separators 

measured only 1 pixel in thickness and 15.1° in length.  This masked the effect of any 

subjective contour that may have been brought about by an orientation contrast.  Unlike 

the previous experiment, the stimuli were to be placed in the centre of the visual field, so 

the decision was taken in this experiment to use black borders to separate the textures, as 

opposed to the spatial separation used in the first experiment, to control for effects of 

eccentricity.  Thus, the 4 trial blocks were, with the order being counterbalanced across 

participants: 

1. Difference-in-mean, abutting 

2. Difference-in-mean, separated 

3. Difference-in-variance, abutting 

4. Difference-in-variance, separated 

Figure 2.4 shows illustrations of the stimuli used in each of the above conditions.  In 

each trial, two frames of stimuli were generated and presented in alternation at different 

levels of frequency.  The first frame was generated by constructing the textures through the 

methods described above.  The second frame, however, was generated by exchanging the 

orientation statistics of the two halves of texture.  Note, however, that the two frames were 

not simply mirror images of one another; the two frames contained exactly the same 

orientation values, though their positions were randomised within each texture.  This 

randomisation was designed to prevent observers from using the Gestalt principal of 

“common fate” to infer how the lattice was divided.  For example, by witnessing a particular 

cluster of orientations moving together in a particular direction (e.g. left to right, or top to 

bottom), the way in which the textures were bisected (horizontal vs. vertical) could be 
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inferred.  This ensured that the task could only be performed on the basis of statistical 

computations of the orientations. 

 

Figure 2.4. Example stimuli used in experiment 2 for each of the four conditions.  In each 

case, the texture is divided horizontally. 

Figure 2.5 shows an illustration of the sequence of events for one trial.  The subject 

fixated centrally on the black cross before each trial.  Each trial was preceded by a warning 

tone, after which (250ms) the fixation cross would disappear and a mask would appear at 

the centre of the screen consisting of a lattice of equal size as the stimuli but consisting of 

randomly determined orientations.  This mask would last for 30ms before being replaced by 

the stimuli.  The stimuli would last on screen for 800ms, with the two textures continually 

flickering (appearing to change positions) at a particular frequency until the offset of the 

stimuli.  This was followed by a second mask identical to the first one. 

Following this (500ms), a second tone signalled to the participant to make a 

response.  Participants made a two alternative forced-choice decision, pressing one key if 
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they thought the lattice was divided vertically and pressing another if they thought the 

lattice was divided horizontally.  Subjects were encouraged to guess if they were unsure.  

Responses were made on a 5-button Cedrus Response Box (Cambridge Research Systems).  

No time limit was set for the collection of the response, but the next trial would not begin 

until a response had been collected.  A 1s interval was included between the period of 

collecting the response and the warning tone for the following trial, during which only the 

fixation cross was present.   

Each block of trials consisted of 4 interleaved one-down two-up staircases that each 

began at a low frequency (4 Hz) that increased in frequency following 2 correct responses 

and decreased following 1 incorrect response.  This method estimates the 70.7% correct 

level on the subject's psychometric function.  The magnitude of the frequency 

increment/decrement was fixed at 1 Hz for the first 10 trials in each staircase, and then at 

0.4 Hz in all subsequent trials.  The staircases each terminated after 14 reversals in 

performance. 

 

2.5.2. Results 

Figure 2.6 shows the data collected from experiment 2.  Data were collected at 

frequency levels (measured in Hz) at which subjects’ accuracy at successfully judging the 

division of the lattice rested at 70.7%.  Each staircase estimated this threshold by averaging 

the final 6 reversal points in performance (after a total number of 14 reversals).  The values 

shown in figure 2.6 are the average threshold estimates taken from the four staircase 

procedures in each condition for each subject.  

 It is clear from figure 2.6 that, for the difference-in-mean condition, all subjects 

could identify the division of the abutting textures at a higher frequency compared to those 

that were separated with black lines.  Importantly, for the difference-in-variance condition, 

no similar effect was observed; subjects either performed comparably in the abutting and 

separated conditions or reached a higher frequency, albeit marginally, in the separated 

condition.  Because these difference-in-variance results were not found consistently for all 4 

subjects, however, no strong inferences can be made as to whether they truly suggest 

better performance in the separated relative to the abutting condition.  Experiment 1, 

however, does suggest that this is possible. 
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Figure 2.5. The presentation of the stimuli in each trial for experiment 2.  The illustration 

shows an example of a trial in which a lattice was presented with a difference in mean 

orientation between the left and right regions.  For the duration that the stimuli were 

displayed (in stage 3 of the illustration), the two frames were presented in alternation at a 

particular frequency, as indicated by the double arrow.   Subjects were required to indicate 

whether the lattice was divided horizontally (as in this case) or vertically.   

 

 



55 
 

  

Figure 2.6. Results from experiment 2. Estimates of threshold flicker frequency for each 

condition per subject.  Values show the frequency level at which subjects performed at 

70.7% in judging the difference between two textures either based on a difference-in-mean 

or a difference-in-variance and either with or without the inclusion of coincident black 

borders at the locations of contrast.  Error bars represent +/- 1 SEM, taken from 4 staircase 

estimates of threshold. 

Most importantly, however, the present results strongly indicate that, like the two 

textures composed of black and white spots used by Rogers-Ramachandran & 

Ramachandran (1998), when two textures composed of orientation signals have a 

difference in mean orientation, the perception of an implicit border between these regions 

can be dissociated from that of the actual orientations on either side of the border.  The fact 

that the perception of the border persisted to a higher frequency than that of the regional 

qualities is potential evidence of magnocellular processing underlying the perception of 

orientation contrast.  

 

2.6. Interim discussion 

 

Evidence that texture segmentation may be the result of magnocellular processing 

has also come from findings that the rapid detection of a figure defined by texture contrast 

increases with non-foveal viewing (Joffe & Scialfa, 1995; Saarinen, Rovamo & Virsu, 1987).  

Generally, most visual discriminations diminish with peripheral viewing, but one 

characteristic of peripheral vision relative to central vision is the abundance of M cells in 

comparison to P cells in the retina (de Monasterio & Gouras, 1975).   
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The third experiment aims to show that the perception of the border alone defined 

by a difference in mean orientation is more readily perceived in the periphery compared to 

the fovea, whereas this is not true for the perception of the regions of texture that 

constitute the border.   

 

2.7. Experiment 3 – flicker-defined-form for differences in mean orientation in the fovea 

and periphery 

 

2.7.1. Methods 

Participants 

The participants were those from experiment 2. 

 

Stimuli 

The stimuli and set-up were the same as the previous experiment, although only the 

“difference-in-mean” conditions (with and without the separators) were used.  Also, the 

lattice contained 10 x 10 uniformly positioned Gabor patches, rather than 20 x 20, thus 

measuring 8.0° in width and in height.  For blocks of trials in which the subjects viewed the 

stimuli peripherally, the lattice would appear 5.6° to the left of the fixation cross (as 

measured from centre-to-centre). 

 

Procedure 

The general procedure was the same as the previous experiment, except that subjects 

completed 2 blocks viewing the stimuli centrally and 2 blocks viewing the stimuli in the 

periphery.  As in the previous experiment, one of the blocks in each of these conditions 

would present the stimuli with the black separators (8.0° in length) that bisected the texture 

horizontally and vertically.  Thus, the 4 trial blocks were, with the order being 

counterbalanced across participants: 

1. Foveal viewing, abutting 

2. Peripheral viewing, abutting 

3. Foveal viewing, separated 

4. Peripheral viewing, separated 
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2.7.2. Results  

Thresholds were estimated in the same way as in the previous experiment.  Figure 

2.7 shows these data.  For all subjects, in the abutting condition frequency thresholds were 

higher when the stimuli were viewed peripherally compared to when they were viewed 

foveally.  Contrastingly, in the separated condition, for two of the subjects (KA and JK) 

thresholds were comparable and for the other two (LN and DJ) performance was poorer 

(lower frequency threshold) in the periphery.  On no occasion did performance improve in 

the periphery relative to the fovea for separated textures, whereas it did so consistently for 

abutting textures.   

As there are fewer M cells found in the fovea compared to the surrounding retinal 

area (de Monasterio & Gouras, 1975), this finding is consistent with the notion that the 

ability of the visual system to signal a texture border defined by orientation contrast is 

mediated by the magnocellular system, whereas the perception of the regions of the 

texture is governed by a separate, possibly parvocellular, system. 

 

 

Figure 2.7. Results from experiment 3.  Estimates of threshold flicker frequency for each 

condition per subject.  Values show the frequency level at which subjects performed at 

70.7% in judging the difference between two textures that differed in mean orientation 

either in the fovea or at 5.6° in the periphery and either with or without the inclusion of 

coincident black borders at the locations of contrast, taken from 4 staircase estimates of 

threshold. 
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2.8. General discussion of study one 

 

The results gained from these three experiments highlight a fast, edge-based texture 

segmentation mechanism responsible for signalling the location of a border between two 

textures defined by a difference in mean orientation.   Performance was more accurate and 

more rapid for abutting textures relative to separated ones (at high levels of difference).  

Additionally, when the textures were rapidly phase-reversed, the implicit border formed by 

the orientation contrast could be readily perceived at a much higher frequency than the 

perception of the orientations either side of the border.  Furthermore, experiment three 

showed that the perception of such contours improved with non-foveal viewing, whereas 

the perception of the regions constituting such contours did not.  This corroborates previous 

work that has shown texture segmentation more generally to improve in the periphery 

(Joffe & Scialfa, 1995; Saarinen et al, 1987), but additionally demonstrates that it is the 

perception of the texture contour alone that underlies this effect.  These dissociations 

suggest separable mechanisms of edge- and region-based texture perception, and potential 

magnocellular involvement in the former, as some M cells have been shown to signal 

properties such as chromatic contrast and luminance contrast whilst remaining insensitive 

to the identity of the stimulus properties either side of the border (Saito et al, 1989; Rogers-

Ramachandran & Ramachandran, 1998), and their relative number increases in the 

periphery.    

It is partly questionable, however, as to whether flicker-defined-form does indeed 

isolate magnocellular processing.  Indeed, this can only be speculated, as no study has yet 

recorded selective activity from an M cell in response to such stimuli.  This principle is 

merely the result of observing the similarities between the perception of flicker-defined-

form and the responses of M cells (i.e. they improve with lower spatial frequencies, are 

phase insensitive and improve or are more numerous in the periphery, Rogers-

Ramachandran & Ramachandran, 1998; Schiller & Logothetis, 1990; Saito et al, 1989; de 

Monasterio & Gouras, 1975).  Despite this, Skottun and Skoyles (2006) have speculated that 

the disparity between flicker frequencies associated with the perceptions of surface and 

contour information in flicker-defined-form is too large to imply a distinction between 

parvo- and magnocellular processes.  Rather, it is perhaps indicative of a cortical distinction, 

rather than a subcortical one.  Lamme and colleagues (1999) and Romani and colleagues 
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(1999) certainly found a temporal enhancement of the processing of texture edges relative 

to homogenous regions in the cortex.  It is not clear, however, whether this represents a 

cortical distinction independent of magno- and parvocellular processes or simply reflects 

the relative activity of the pathways which project onto the cortical regions in question.  

Clearly more physiological recording needs to be carried out if we are to answer this 

question fully and understand the relationship between the perception of flicker-defined-

form and the magnocellular pathway.  Whether or not the method of using flicker-defined-

form in experiments 2 and 3 indeed isolated a magnocellular process of texture 

segmentation is clearly important, but regardless of the answer to this question, it does not 

detract away from the observation that texture segmentation can be achieved through 

rapid, phase-insensitive processes, regardless of their neural substrates. 

On a related note, in addition to orientation contrast, texture segmentation based 

on spatial frequency would also be an interesting consideration for phase-insensitive 

texture segmentation.  Bergen & Adelson (1988) have shown how the automatic 

segregation of textures based on element shape (‘X’s vs ‘L’s) diminishes following the 

equating of spatial frequency content across the border. Such perceptual computations may 

be undertaken by early mechanisms in the visual brain, found in the lateral geniculate 

nucleus and layer 4 of the primary visual cortex (Landy & Graham, 2004), and so may be 

susceptible to the effects shown in the present study.   

In comparison to the rapid edge-based texture segmentation mechanism, some 

texture discriminations require a more regional, statistical analysis and are not well suited 

for the processing of edge-based mechanisms.  This was shown in the case of orientation 

variance judgments in the present study.  In experiment one, unlike judgments of mean 

orientation, those of orientation variance were not more accurate when the patches were 

abutting compared to when they were separated.  This is in line with Wolfson and Landy’s 

(1998) findings and their interpretation of edge- and region-based texture analysis 

mechanisms, but the present study removed the confound of an increase in the quantity of 

line crossings in textures with greater variance.  Interestingly, however, in the present 

experiment, judgments were actually more rapid when the patches were separated than 

when they were abutting.  Wolfson and Landy (1998) offered the possibility that the 

separation serves to clearly delineate the regions on which to perform the regional analysis.  

This is certainly a possibility, given that the work of Dakin and colleagues (Dakin & Watt, 
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1997; Dakin, 2001) has outlined a flexible region of integration which is applied by an 

observer when required to perform spatial estimations of variance.  In experiment one, 

when the textures weren’t clearly separated, observers may have applied regions of 

integration that were inaccurately scaled to the sizes of the patches of texture.  Given the 

relatively long presentation duration of the stimuli, however, observers were able to 

successfully rescale the regions, resulting in longer RTs than in the separated condition but 

no reduction in accuracy.  Given different instructions, and perhaps limited stimulus 

presentation durations, subjects may have shown significantly greater accuracies in the 

separated relative to the abutting condition. 

This finding was not entirely observed in experiment 2, however, which found that 

only two out of the four observers reached higher flicker frequency thresholds in the 

separated condition relative to the abutting condition for textures that differed in variance.  

The remaining two showed comparable thresholds in the two conditions.  Why then does 

experiment 2 not clearly corroborate the findings of experiment 1?  It is important to 

outline some differences between the experiments which may have accounted for this.  One 

explanation is that it is only spatial separation that facilitates discriminations of orientation 

variance, rather than the presence of a coincidental black border between the textures.  

Alternatively, the black borders used in the second experiment not only separated the 

textures, but also bisected each one orthogonally, essentially dividing each texture further 

into two regions (see figure 2.4, bottom right).  This may have impeded the process of 

orientation variance estimation, which would have worked in opposition to the facilitation 

effect provided by the separation of the textures, thus resulting in an overall null or very 

weak effect.  Additionally, the stimuli in experiment 2 were fixed (i.e. appeared always in 

the same location) whereas those in experiment 1 were randomly positioned in one of 3 

locations on each presentation.  This may have increased the observer’s uncertainty as to 

where to apply the region of integration.  These are only speculations, however, and 

regardless of the interpretation, there is no evidence from either of these experiments of 

edge-based facilitation for discriminations of variance. 

One peculiarity of the results which deserves to be addressed, however, is the 

finding that in experiment three, for foveally viewed stimuli, higher frequency thresholds for 

abutting relative to separated textures were found only in two of the four observers.  This 

does not at first sight concur with the findings from the previous experiment, which found 
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with similar stimuli higher frequency thresholds in all subjects for the abutting relative to 

the separated condition.  One important discrepancy between these two experiments, 

however, was the reduction in the size (by half) of the stimuli from experiment two to 

experiment three.  This was done to allow for more sensitive placement of the stimuli both 

in the centre and in the periphery of the visual field.  In doing this, the stimuli in experiment 

three were more concentrated in the centre of the visual field for the fovea condition, and 

thus did not extend into the periphery as much as in experiment two.  If we are to take the 

conclusions from the third experiment that texture segmentation improves in the periphery 

whereas discrimination does not, we may also speculate that the relevant results in 

experiment two were more evident due to the fact that the stimuli extended into the 

periphery, thus aiding segmentation and not discrimination. 

More generally, however, these results highlight a dissociation between the 

processing of border information and that of surface properties, a distinction which has 

been at the centre of both psychophysical and neuropsychological interest for several 

decades.  Indeed, the macro-geometry (i.e. shape) of an object appears to be processed by a 

separable anatomical system to that of the same object’s surface properties (e.g. colour or 

texture; Cavina-Pratesi, Kentridge, Heywood & Milner, 2010b).  Furthermore, 

neuropsychological cases are often presented in which a patient is unable to reliably 

distinguish surfaces based on some featural property but can nevertheless locate a border 

defined by that same property, or vice-versa.  Cases of achromatopsia (cortical colour-

blindness) are a striking example of this, in which the ability to use colour-opponent 

mechanisms is retained to the extent at which chromatic contrast can be detected, but not 

colour identity (Kentridge, Heywood & Cowey, 2004).  So far, however, no comparable 

evidence has been presented for texture processing, likely to be a consequence of the highly 

specific brain-damage that would be required to produce such selective visual dysfunction.  

Nevertheless, the results gained from the present study lend well to the prediction that, at 

least theoretically, this could be a possibility. 
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3. Study Two – 2nd-order segmentation without human “V4” 

 

3.1. Abstract 

 

Texture segmentation is a rapid perceptual process, allowing object and surface 

boundaries to be effortlessly detected.  It is currently unclear whether this is achieved in 

early cortical areas or whether it necessitates the region referred to as human V4.  The 

present report presents a single case study of patient MS, whose bilateral occipitotemporal 

damage includes the putative human V4 area, yet whose early visual cortex is spared.  As 

shown in these experiments, MS can accurately locate a target defined by an orientation 

contrast to its background, even with considerable orientation noise.  Importantly, his 

performance was significantly reduced when the texture contours were masked by black 

borders (thus preventing segmentation and requiring regional discrimination), indicating 

that he retains a functional texture segmentation process.  Additionally, when the sign of 

the orientation contrast was reversed at a temporal frequency of 12.5Hz, MS could 

nonetheless segment the target despite being unable to discriminate the target and 

background regions.  This is an effect easily demonstrated in normal observers, and is 

important in isolating the rapid, phase-insensitive component of texture segmentation.  

Human area V4, therefore, is not necessary for texture segmentation. 
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3.2. Introduction 

 

Texture segmentation, also termed 2nd-order segmentation, is the process by which 

the visual system rapidly detects a discontinuity in some 2nd-order property, allowing the 

localisation of complex boundaries between objects and surfaces.   This is strongly believed 

to be edge-based (i.e. originating at the locations of contrast), in comparison to the region-

based analyses that allow texture discrimination.  One widely studied form of segmentation 

is that resulting from an orientation contrast; when two regions of orientations abut and 

differ in the mean orientation of their textural elements, a contour is effortlessly seen 

between the two regions.  This process of edge-based texture perception is thought to be 

achieved first through the application of first order orientation-specific filters in the visual 

system, whose outputs are then transformed through a second stage non-linearity.  A final 

stage of linear filtering is then conducted on this output with larger receptive fields than 

those of the first, and is sensitive to the location of any spatial gradient in the orientation-

defined texture (see Bergen, 1991, for a detailed review of such a model).   

Despite quite substantial and collective efforts, it has been difficult to isolate the 

cortical regions that are involved in this process.  One candidate area is the earliest possible 

cortical stage of visual processing- primary visual cortex (V1).  This is seen as a worthy 

substrate for at least the linear filtering stage of texture segmentation, due in part to its 

extensive network of simple and complex cells, and the presence of both excitatory and 

inhibitory lateral interactions, which may be sufficient to perform even 2nd-order non-

linearity (Landy & Graham, 2004).  Indeed, single-cell recordings in the macaque revealed 

the activity of V1 cells in response to an oriented line or texture to be enhanced by the 

presence of an orthogonal surround (Knierim & van Essen, 1992; Sillito, Grieve, Jones, 

Cudeiro & Davis, 1995), whereas activity was suppressed for homogenous regions 

(Nothdurft, Gallant & van Essen, 2000).  Importantly, some researchers have suggested that 

V1 is sufficient in this role; when extrastriate areas are ablated or suppressed, cell responses 

in V1 to texture borders do not diminish (Lamme, Supèr, & Spekreijse, 1998; Lamme, 

Rodriguez-Rodriguez & Spekreise, 1999; Hupé, James, Girard & Bullier, 2001).  Sensitivity to 

contrast-defined contours (another type of 2nd-order contour) has also been shown in area 

18 of the cat (one of the first feline cortical processing stage along with area 17; Mareschal 

& Baker, 1998), and in humans, EEG source-imaging also points to activity in V1 being 
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specific to the segmentation of a figure defined by an orientation contrast (Appelbaum, Ales 

& Norcia, 2012).  Primary visual cortex, therefore, may play a sufficient role in texture 

segmentation. 

This is not an entirely supported view, however; neuroimaging evidence in particular 

often reveals the blood-oxygen-level-dependent (BOLD) response in early visual areas 

(specifically V1 and V2) either not to be correlated with the degree of contrast of a texture-

defined figure or to be much weaker than that in later areas (Kastner, de Weerd and 

Ungerleider, 2000; Larsson, Landy & Heeger, 20061; Montaser-Kouhsari, Landy, Heeger & 

Larsson, 2007; Thielscher, Kolle, Neumann, Spitzer & Gron, 2008).  Typically, the activity is 

observed in an area described as human V4, and some have directly speculated that the 

segmentation process depends on recurrent activity between this area and lower-level 

areas, with the final representation of the segmentation occurring in V4 (Thielscher et al, 

2008).  Computational neuroscience has attempted to further our understanding of this 

process, specifically by modelling V1, V2 and V4 cells together in an interactive network 

such that selective artificial “lesions” can be induced and the resulting activity in these 

regions can be observed in response to stimuli that require 2nd-order segmentation 

(Thielscher and Neumann, 2007).  With the removal of feedback connections from V4 to V2, 

the neural representation of a region defined by an orientation contrast in the presence of 

orientation noise is suppressed at the level of V2 (Thielscher & Neumann, 2005), further 

supporting the view that V4 is necessary for segmentation.  Studies focussing on the 

impairments following human lesions would be invaluable in determining if there is a single 

cortical area responsible for texture segmentation, but their numbers are sparse and neural 

damage is typically non-specific.  One neuropsychology patient, with damage to V4, is 

impaired (although not completely) in segmenting a single bar defined by an orientation 

contrast to its background (Allen, Humphreys, Colin & Neumann, 2009).    The patient, 

however, also has damage to the earlier areas V2 and V3 and so it remains unclear whether 

texture segmentation is indeed a process which necessitates the area identified as V4 in the 

human cortex. 

It is important to note at this point that, although determining the true human 

homologue of macaque area V4 is difficult, the reference to human V4 here is made with 

                                                           
1 Larsson et al (2006) reported only a trend for progressively greater activity from V1 to V4. 
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the intention to relate to the terminology of others who have conducted related studies of 

texture segmentation with human observers (e.g. Thielscher et al, 2008; Thielscher & 

Neumann, 2007; Allen et al, 2009; Kastner et al, 2000).  The region in question is 

comparable on anatomical grounds to that identified by McKeefry and Zeki (1997), being 

situated on the collateral sulcus of the fusiform gyrus2.  

The purpose of the present study was to develop our understanding of the role of 

area V4 in texture segmentation, by testing the performance of a single patient (MS), who 

has bilateral damage to his ventromedial occipitotemporal cortices that includes the area 

often identified as human V4.  Damage to his early visual cortex (at least in one hemisphere) 

is relatively spared.  MS, therefore, provides a good neuropsychological test of the role of 

human V4 in texture segmentation.  In the present study, patient MS performed an oddity-

detection task, to indicate which of three texture patches contained a target subregion 

defined by an orientation contrast.  His discrimination of the same stimuli was also tested, 

by requiring him to perform the task with black border masks at the locations of contrast, 

thus attenuating any perception of segmentation.  If MS’s intact brain regions allow him to 

segment the target, then his performance should be consistently greater when the border 

masks are absent than when they are present.  In experiments one and two, the degree of 

orientation flow in the stimuli (i.e. by what degree the individual orientations were rotated 

clockwise as one moved rightwards and downwards through each texture pattern) was 

manipulated in order to vary the degree of orientation noise.  With this manipulation, MS 

may have revealed a selective deficit in segmenting only when a considerable amount of 

orientation noise was present. 

 

 

                                                           
2 Area V4 in the monkey was initially declared to be a “colour area” (Zeki, 1973, 1983, 1990; 
Walsh, Butler, Carden & Kulikowski, 1993) and the observation in humans that an area in 
the vicinity of the lingual and fusiform gyri responded selectively to chromatic stimuli (Zeki 
et al 1991), and that damage within this area resulted in achromatopsia (Heywood, Cowey & 
Newcombe, 1991), lead to the classification of this particular area as human V4.  Surgical 
lesions of macaque V4, however, did not reveal a comparable animal model of 
achromatopsia, instead producing significant deficits in form percpetion (Heywood, Gadotti 
& Cowey, 1992; Heywood & Cowey, 1987), casting doubt on its colour selectivity and thus 
on its putative relation with human V4.   
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3.3. General methods  

 

3.3.1. Subject 

Patient MS has bilateral damage to his ventromedial occipitotemporal cortex and is 

profoundly achromatopsic and prosopagnosic as well as having visual object agnosia.  

Damage to the left hemisphere includes the temporal pole, parahippocampal and fourth 

temporal gyri of the temporal lobe, the collateral sulcus, and the mesial occipitotemporal 

junction. His achromatopsia is most likely explained by the damage to the lingual gyrus and 

anterior collateral sulcus, typically associated with “colour area” V4.  Damage in this vicinity 

is also likely to be the cause of his impairment in discriminating surface properties of objects 

more generally (Cavina-Pratesi, Kentridge, Heywood & Milner, 2010b) along with his 

prosopagnosia.  His ability to perceive object form remains intact, which is likely the result 

of his spared lateral occipital complex (LOC; Cavina-Pratesi et al, 2010b).  The damage in his 

right hemisphere is more extensive than that in the left, including primary visual cortex 

resulting in a homonymous hemianopia with macular sparing, whereas his occipital lobe in 

his left hemisphere is largely intact. For a more extensive case description of MS, see 

Heywood, Cowey and Newcombe (1994).  Testing was conducted over the course of two 

days at the University of Durham’s Psychology Department.  MS was 63 years of age at the 

time of testing.   

 

3.3.2. Stimuli 

MS viewed the display monitor at a distance of roughly 80cm.  Stimuli were 

presented on the uniform grey background (50 cdm-2) of a ViewSonic 17’’ (1254 x 877 pixels) 

colour monitor driven by a Cambridge Research Systems VSG 2/5 Graphics System running 

at 100Hz.     

Stimuli consisted of three separate textures of 10 x 10 Gabor patches (Michelson 

contrast of 90%).  Each Gabor patch measured 0.7° in diameter, with a spatial frequency of 

1.4 cyc/° and an envelope with a standard deviation of 0.2°.  Each Gabor patch was 

separated from its neighbours by 0.3°.  Thus, each texture measured 9.7° in width and in 

height.  The phase of each Gabor was determined randomly and independently from the full 

360° cycle.  The three patches were aligned vertically in the centre of the display, with a 

distance of 1.4° separating each of the top and bottom patches from the middle.  See figure 
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3.1 for an illustration of the stimuli.  MS was allowed full free-viewing of the stimuli in order 

to account for his left hemianopia. 

 

 

Figure 3.1 Illustration of the stimuli used in the the first two experiments (top row: 
experiment 1; bottom row: experiment 2).  From left to right, the stimuli increase in the 
degree of orientation flow.  In experiment 1, the starting value of the orientation flow was 
constant (i.e. the top-left Gabor patch set at 45°) and the same for the three textures.  In 
experiment 2, starting values were randomly allocated to the three textures (each 45° 
different to the other two), thus removing the possibility of completing the task on a purely 
local scale.  Two of the images show examples of the discrimination condition, in which the 
segmentation of the target is masked by black outlines.  Accurate performance in this 
condition requires more effortful analysis of the target and background regions.  If MS is 
unable to segment, however, then his performance should be similar with and without the 
border masks.  MS’s task was to detect which texture (top or bottom only) was the odd-one-
out. 
 



68 
 

3.4. Experiment 1 – 2nd-order segmentation in patient MS 

 

3.4.1. Methods 

Three levels of task difficult were included and randomised throughout each block of 

trials; the difficulty was determined by the degree of orientation flow within the three 

textures.  That is, the degree to which the orientation of each Gabor patch was tilted 

relative to those immediately above and to the left, originating at the uppermost and 

leftmost Gabor patch (which was set at vertical).  Thus the orientation of each Gabor patch 

(g) at location (i j) is represented in the following function:  

 (   )     (   )   (   ) 

Where a represents the starting orientation, b represents the degree of orientation flow 

and i and j represent the horizontal and vertical positions of the Gabor, respectively.  For 

this experiment, all three textures began with a vertical orientation (a=0), and three levels 

of orientation flow were used: b=0° (no flow), 8° (small flow) or 15° (large flow).  In addition, 

each individual Gabor was drawn from a Gaussian distribution with a standard deviation of 

5°, thus introducing a small amount of baseline orientation noise, and this was done de novo 

on each trial.    

In each trial, one of the textures (either the top or bottom, chosen randomly with 

equal probability) was constructed differently to the others, by offsetting the central 6 x 6 

square region of Gabor patches by 90°.  In half of the blocks of trials, the central 6 x 6 region 

in all three textures was surrounded by a black border mask 0.2° in thickness, thus 

attenuating the perception of the target’s contours.  Patient MS conducted ten blocks of 

trials: five with the border masks absent (segmentation condition) and 5 with the border 

masks present (discrimination condition).  The two block types were conducted in 

alternation, and within each block, 10 repetitions of each of the three flow pattern levels 

were randomly interleaved, amounting to 30 trials per block.  The stimuli remained 

onscreen until MS indicated which patch (the top or bottom) appeared to be the odd-one-

out (i.e. which contained the central 6 x 6 target).  Patient MS verbalised his response and 

the experimenter pressed the corresponding key on a response box to proceed to the next 

trial.  Examples of the types of stimuli are shown in figure 3.1. 
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3.4.2. Results 

For each level of orientation flow (0°, 8° and 15° respectively), MS’s segmentation 

accuracy was significantly above chance: 50/50 (100%; p<0.001), 46/50 (92%; p<0.001) and 

38/50 (76%; p<0.001).  Similarly, his discrimination accuracy was also above chance: 47/50 

(94%; p<0.001), 32/50 (68%; p=0.0325) and 32/50 (68%; p=0.0325).  Accuracy was collapsed 

across the three levels, and overall MS performed better in the segmentation condition than 

in the discrimination condition χ2
(1)

 = 11.78, p<0.001.  Results are illustrated in figure 3.2a. 

 

3.5. Interim discussion 

 

MS’s discrimination ability in the previous experiment, although less accurate than 

his segmentation ability, was nonetheless above chance.  It could be argued, however, that 

MS was completing this task on a very local scale, by attending to and comparing only the 

top-left orientation, for example, within the 6 x 6 target region of each of the three textures.  

Experiment 2, therefore, was designed to remove this local cue, and thus to test more 

appropriately MS’s discrimination of the regions.  This was done by assigning each of the 

three textures with a unique starting orientation, thus ensuring that it was not possible to 

infer the location of the target region from one single orientation within the target region. 

 

3.6. Experiment 2 – 2nd-order segmentation in patient MS without local orientation 

cues 

 

3.6.1. Methods 

The stimuli and methods were identical to experiment 1, except that for each trial a 

random value from the full 360° cycle was chosen and was assigned as the starting 

orientation for one of the textures.  Of the remaining two textures, one was chosen to have 

a starting value 45° clockwise from this value, and the other 90°, and the positions of these 

three textures were randomly allocated in the vertical array.  Thus, each texture assumed 

different background orientations to the other two, and the odd-one-out corresponded to 

the one whose target region did not agree with the continuity of the background.  This task 

could not be accomplished on a local scale.   
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Figure 3.2 MS’s accuracy (%) in experiments 1 (a), 2 (b) and 3 (c).  In experiments 1 and 2, 
MS was able to segment the target more accurately than he could discriminate (i.e. when 
black borders masked the target contours).  In experiment 3, when the orientations of the 
target and background regions alternated at a frequency of 12.5Hz, MS was still able to 
segment (76% correct), whereas his ability to discriminate the regions was at chance (52%).  
Together, these results indicate that MS has an intact ability to segment a target defined by 
an orientation contrast, and that this ability is similar to that of normal observers.  
 

3.6.2. Results 

For each level of orientation flow (0°, 8° and 15° respectively), MS’s segmentation 

accuracy was significantly above chance: 45/50 (90%; p<0.001), 42/50 (84%; p<0.001) and 

42/50 (84%; p<0.001).  His discrimination accuracy was also above chance, but not in the 

most difficult condition: 38/50 (76%; p<0.001), 34/50 (68%; p=0.008) and 30/50 (60%; 

p=0.101).  Accuracy was collapsed across the three levels, and overall MS again performed 

better in the segmentation condition than in the discrimination condition χ2
(1)

 = 13.72, 

p<0.001.  Results are illustrated in figure 3.2b. 
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3.7.  Interim discussion 

 

In the previous experiments, MS was consistently more accurate when segmenting 

than when discriminating the textures.  This implies that when the orientation contrast was 

present (i.e. not masked by black outlines) MS was using that to inform his judgment and 

was not relying solely on a technique of regional discrimination.  This was also true for 

stimuli in which there was a considerable degree of orientation noise, suggesting that, 

contrary to what has been implied through computational modelling (Thielscher & 

Neumann, 2003), V4 is not required for segmentation of even complex 2nd-order stimuli.      

Experiments one and two, however, did not directly address an important aspect of 

segmentation, namely that it is rapid and potentially phase-insensitive (Norman, Heywood 

& Kentridge, 2011).  The mammalian visual system gives temporal priority to segmentation, 

relative to regional discrimination, as it shows an enhanced cellular response corresponding 

to the location of a border prior to the location of a texture region (Lamme et al, 1999; 

Romani, Caputo, Callieco, Schintone and Cosi, 1999).  Many psychophysical experiments in 

humans also lend weight to the idea of a temporal dissociation between segmentation and 

discrimination (e.g. Motoyoshi, 1999), and together imply that very early, rapid mechanisms 

underlie segmentation.  In experiment 3, therefore, MS’s segmentation ability was tested 

using orientation-reversing stimuli (Norman et al, 2011), in which the target and background 

regions alternated at a frequency of 12.5Hz.  At approximately this frequency level in normal 

observers, the ability to segment persists but the ability to discriminate is likely to be lost or 

severely impaired.  Demonstrating that MS could successfully segment these stimuli, whilst 

being unable to discriminate the regions he was segmenting, would substantially strengthen 

the claim that MS can segment just like normal observers.  

 

3.8. Experiment 3 – phase-insensitive 2nd-order segmentation in patient MS 

 

3.8.1. Methods 

Stimuli were constructed in the same way as in experiment 1, although the level of 

orientation flow was not manipulated (set at 0°).  Stimuli were presented onscreen 

following a brief mask (30ms) consisting of three textures of random orientations.  The 

orientations of the test stimuli then reversed at a frequency of 12.5Hz between vertical and 
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horizontal (40ms per stimulus frame).  See figure 3.3 for a depiction of the stimuli.  This 

persisted until MS made a response.  Four blocks were conducted; two of which included 

border masks and two of which did not, and each block contained 25 trials. 

 

 

 

Figure 3.3 Illustration of the orientation-reversing procedure used in experiment 3.  The 
target is defined by an orientation contrast of 90°, but the phase of this contrast is reversed 
at a frequency of 12.5Hz.  The resultant perception is illustrated in the rightmost illustration 
panel; the target and background regions appear identical yet the perception of an 
“illusory” contour is present around the target (as a result of the rapid segmentation 
process that may be phase-insensitive).  MS’s task, again, was to detect which texture was 
the odd-one-out.  He also completed a version in which black border masks (see figure 3.1 
for an example) were present at the location of the contrast to test his discrimination of the 
regions. 
 

3.8.2. Results 

MS performed the segmentation task significantly above chance, with 38/50 hits 

(76%; p<0.001), which is in stark contrast to his performance on the discrimination task, 

which remained at chance (26/50 hits, 52%; p=0.444), with his performance being 
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statistically greater in the segmentation condition (χ2
(1)

 = 6.25, p=0.012).  Results are 

illustrated in figure 3.2c. 

 

3.9. General discussion of study two 

 

If MS’s damaged cortex were responsible for texture segmentation, then he should 

be unable to detect a region defined by an orientation contrast.  In experiments one and 

two this was clearly shown not to be the case; MS achieved close to 100% accuracy in the 

simplest segmentation task (no orientation flow).  Even when a large degree of orientation 

flow was introduced to the stimuli, which requires more complex analyses (Thielscher & 

Neumann, 2007), MS’s accuracy in the segmentation condition did not fall below 75%.  

These results strengthen the claims that human area V4 is not necessary for texture 

segmentation and that early cortical areas are likely to be sufficient. 

Is it possible, however, that MS’s perception of the segmenting region was not 

automatic and immediate, and instead his performance relied on a more effortful 

discrimination process?  This is important to establish, as true segmentation must be rapidly 

achieved and be effortless.  The results of experiments one and two, however, do suggest 

that he was indeed segmenting; when the contour of the segmenting region was masked by 

a black border, MS performed the task with significantly less accuracy, albeit still above 

chance in most cases.  This indicates that his perception of the target in the segmentation 

conditions was aided by the contrast information present at the location of the contours.  It 

cannot be claimed, therefore, that he was using a form of regional discrimination (i.e. 

scrutinising individual orientations of target and background) in order discern the location of 

the target in the segmentation conditions, as his performance would have been unaffected 

by the presence of the border masks if this were the case.   

Furthermore, experiment three strongly suggests that MS’s segmentation is rapid 

and like that of normal observers.  MS was able to identify the target even when the 

orientations of the background and target elements alternated at a frequency of 12.5Hz 

(40ms per stimulus frame).  In normal observers at approximately this frequency, the 

background and target regions become indistinguishable from one another, yet the 

perception of a contour between the two is strong and segmentation still occurs (Norman et 

al, 2011).  MS showed this same pattern of results; he was at chance when discriminating 
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the regions (i.e. when the target contour was masked), yet he could accurately use the 

contour information when it was present.  Thus, despite the strict temporal limit imposed 

upon the processing of the stimuli, MS was nonetheless able to segment.  It is very unlikely, 

therefore, that MS was relying on a method other than segmentation to achieve this task.  

These results shed new light on the neural processes underlying texture 

segmentation.  Specifically, they provide strong evidence that texture segmentation (by 

orientation contrast at least) does not necessitate the areas that are damaged in MS, 

specifically what is considered area V4.  This contradicts earlier evidence from neuroimaging 

studies (Thielscher et al, 2008; Kastner et al, 2000) and computational modelling (Thielscher 

et al, 2007), which have led to the theory that V4 is necessary for segmenting figures 

defined by an orientation contrast, with specific emphasis on its role in providing feedback 

to lower areas and in ultimately representing the outcome of the segmentation process.  

The new results do, however, corroborate evidence from earlier cell-recordings in non-

human studies, which indicated primary visual cortex to be sufficient for segmentation (e.g. 

Lamme et al, 1998; 1999; Hupé et al, 2001).  Recently, Hallum, Landy and Heeger (2011) 

provided evidence from functional magnetic resonance adaptation showing populations of 

neurons within V1 to be sensitive to 2nd-order contrast, with the observed activity 

reflecting a two-stage filter process with surround suppression from 1st-order filters.  As 

they found comparable stimulus-specific adaptation throughout V1-V4, they conclude that 

this activity was the result of feed-forward activity from V1.   

Cells within V1 are known to process chromatic contrast (Kentridge, Heywood & 

Weiskrantz, 2007), which are highly likely to underlie MS’s preserved ability to perceive 

form on the basis of such information whilst being blind to colour surface identity (Heywood 

et al, 1991), with regional colour information being assigned at a later cortical stage (within 

the lingual gyrus and anterior collateral sulcus; Cavina-Pratesi et al, 2010b).  As shown in the 

present study, however, MS retains a generally good ability to discriminate regions of 

orientations when the borders are masked; his perception of the stimuli, therefore, is not 

entirely analagous to that of colour.  His ability to discriminate regions of orientations above 

chance in most cases is likely to be mediated by the orientation-selective cells within V1. 

Primary visual cortex is, however, not unique in its apparent sensitivity to texture 

contrast, and from the current results it is not possible to truly conclude that it is solely 

primary visual cortex that is responsible for MS’s segmentation ability.  Specifically, the 
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second cortical visual area (V2), which lies immediately adjacent to V1 and with which it is 

largely interconnected, may play an important role in segmentation and it is possible that at 

least part of this area may be preserved and functional in MS’s left hemisphere.  Schira, 

Fahle, Donner, Kraft and Brandt (2004) showed that the BOLD activity in V2, although not 

V1, correlated with the contour of a figure defined by an orientation contrast, and they 

hypothesised that the observed activity in mid- to high-level areas merely reflected the 

feedforward activity from V2.  Importantly, in their study, subjects completed an 

attentionally demanding foveal letter discrimination task and as a result the segmenting 

stimuli did not reach awareness.  The activity they found, therefore, is likely to reflect the 

preattentive processes involved in segmentation.  Schira et al also focussed their analysis 

only on the retinotopic region associated with the texture contour, enabling them to more 

accurately relate the observed activity to the processes of segmentation rather than the 

more general processes associated with figure perception.  V2 cells, both at the individual 

and population level, also respond well to complex shape information (Hegdé & Van Essen, 

2000, 2003) and in a way that evolves relatively quickly (as early as 40ms of stimulus 

exposure; Hegdé & Van Essen, 2004).  This is largely upheld by the finding that lesions of V2 

produce significant impairments in segmenting a texture-defined figure (Merigan, Nealey & 

Maunsell, 1993), in which the orientation of a figure comprising a subset of line segments of 

different orientations to their background could not be discriminated, whereas the same 

figure defined by colour or size could be.   

It is also important to address the role of LOC in the perception of a target defined 

by 2nd-order segmentation, which has been identified as a potential correlate, along with 

V4, in some neuroimaging experiments (e.g. Thielscher et al, 2008; Larsson et al, 2006).  The 

role of this area has been extensively studied and seems to represent a neural correlate of 

the perception of object shape seemingly regardless of how the shape is defined (e.g. 

Kourtzi & Kanwisher, 2001; Tyler, Likova & Wade, 2004).  In the present study, however, MS 

was not required to make any discrimination of the form of the target; the task required 

only its localisation.  It is likely, therefore, that this task could be achieved independently of 

the LOC, and that the activity observed in this region in neuroimaging studies is not directly 

a result of the segmentation process per se, but instead reflects that of an integration stage 

for the purposes of form perception beyond the early- to mid-cortical processing hierarchy 

(Thielscher et al, 2008).  This is a notion that may be indirectly supported by monkey lesions; 
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Merigan (2000) lesioned area V4 in monkeys, an area which shows many processing 

characteristics not unlike those of LOC in humans and is thus not homologous to the human 

V4 discussed here, and demonstrated that the ability to segment two abutting regions of 

orientation orthogonal to one another was preserved.  The same animals could not, 

however, identify the orientation of a bar defined by the same orientation contrast.  This 

may suggest that their segmentation mechanism was intact, but their ability to integrate 

this information to perceive form was not.   

In conclusion, the results from these experiments with patient MS provide 

compelling evidence that human V4 is not necessary for texture segmentation.  Populations 

of neurons within primary visual cortex may be sufficient, although it is not known yet 

exactly how they might achieve this.     
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4. Study Three – The early encoding of orientation variance in the visual 

system  

 

4.1. Abstract 

 

Our discrimination of regional irregularity, specifically of orientation variance, seems 

effortless when we view two patches of texture which differ in this attribute.  Spatial 

gradients in orientation variance, however, do not automatically segment, unlike equivalent 

gradients in mean orientation.  Little is understood of how the visual system might process 

this second moment statistic of orientation, but there is some evidence to suggest that it is 

explicitly encoded by the visual system by populations of neurons tuned broadly to high or 

low levels of variance.  This theory is supported in the present study, which shows that 

selective adaptation to low or high levels of variance results in a perceptual aftereffect that 

shifts the perceived level of variance of a subsequently viewed texture in the direction away 

from that of the adapting stimulus (experiments 1 and 2).  Importantly, the effect is durable 

across changes in the mean orientation of the elements that constitute the stimuli, 

suggesting the existence of a variance-sensitive component of perception that is 

independent both to local orientation components and to global first moment orientation 

statistics (i.e. mean orientation).  Some research has shown that as visual encoding becomes 

increasingly complex and involves higher areas in the visual cortex, it also increases in its 

spatiotopy, which can be revealed through spatiotopic aftereffects (provided that the 

stimulus is attended).  It was therefore predicted that, in experiment 3, the variance-specific 

aftereffect might show signs of spatiotopic encoding, unlike the equivalent aftereffect of 

adaptation to the first moment orientation statistic (the tilt aftereffect), which is 

represented in primary visual cortex and exists only in retinotopic coordinates.  The variance 

aftereffect is shown in this study, however, also to be purely retinotopic.  Finally, it is shown 

in experiment 4 that patient MS, who has intact early cortical areas but not mid-level ventral 

areas, retains sensitivity to orientation variance.  Together, these results suggest that 

region-based property of orientation variance is encoded explicitly by the visual system and 

at an earlier cortical stage than previously theorised. 
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4.2.  Introduction 

 

Visual segmentation is achieved by extracting discontinuities in 1st- and 2nd-order 

visual attributes.  This aspect of visual perception is edge-based, in that information 

processing begins at the locations of contours and spreads “inwards”.  This is not the only 

aspect of visual texture perception, however; certain spatial gradients require region-based 

discrimination that precludes automatic segmentation.  In study one of this thesis, for 

instance, it was shown that spatial gradients in orientation variance do not rapidly segment.  

In fact, discrimination performance was more rapid when the patches were separated 

relative to when they were abutting – the complete opposite effect of edge-based 

perception.  How we are capable of representing and perceiving regional texture properties 

of such nature is not clear and, although our understanding of texture segmentation 

processes is far from complete, we have a considerably better grasp on those processes 

than we do in understanding how the visual system encodes region-based properties of an 

image. 

Summary statistics, which offer quick estimations of various image properties, are 

thought to play at least a partial role in some forms of region-based perception.  Summary 

statistics are available in many different forms, and human performance on certain tasks 

frequently correlates with predictions from models based on statistical summations.  Ariely 

(2001) demonstrated that when a test circle was presented following a set of similar circles 

of varying radii, observers could determine whether or not the radius of the test circle was 

equal to that of the mean of the set, despite not being able to reliably identify whether the 

test circle was actually contained in that set.  This represents a dissociation between the 

perception of a summary representation that describes a set and that of a single unit within 

that set, suggesting the workings of a dedicated mechanism that extracts region-based 

information that is statistical in nature.  Chong and Treisman (2003) reported similar results, 

and found that when they varied a number of properties of the sets (e.g. density, 

numerosity and average size) only manipulations of average size affected perceived size of 

the circles.  The ability of the visual system to reliably encode statistical properties is 

apparent elsewhere; for instance in estimating the mean direction among individual local 

motion paths (Williams & Sekuler, 1984) and in estimating the mean orientation amongst 

oriented line segments (Dakin, 2001; Dakin & Watt, 1997).  The visual system relies on such 
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summary estimations in order to be economical, minimising computational effort and 

preserving just enough information when confronted with detailed environments (Ariely, 

2001; Morgan, Mareschal, Chubb & Solomon, 2012).  Inherent in this notion is the 

assumption that most surfaces and regions in the environment are uniform with few, if any, 

discontinuities. 

There are more complex region-based characteristics, however, which require 

statistical estimation of a higher order.  The encoding of orientation variance (a second 

moment statistic3), for instance, may represent one process by which regional irregularity 

on object surfaces is perceived, which could inform object recognition.  Orientation variance 

is of particular interest because the visual system, by its very nature, is a noisy environment, 

perturbing much of the information that it receives.  In fact, estimations of a single 

orientation are sampled from a Gaussian distribution with a slight standard deviation 

centred round the actual orientation.  Morgan and colleagues (Morgan, Chubb & Solomon, 

2008; Morgan et al, 2012) point out the apparent contradiction between this attribute of 

the visual system and our perception of homogenous texture: in a field of perfectly 

uniformly elements we should see deviations from the mean, yet this is not the case.  They 

theorise that in instances of textural analyses like this, our perception is determined not 

only by our internal representation of individual orientations, but also by a dedicated 

mechanism that explicitly estimates the variance.  They provide evidence for this in finding a 

“dipper function” for discriminations based on orientation variance of the type that has also 

been documented in discriminations of blur (Watt & Morgan, 1983) and contrast (Nachmias 

& Sansbury, 1974).  This threshold nonlinearity is thought to allow the visual system to 

discount its own imperfections (intrinsic noise) when conducting a statistical estimation, and 

only when the estimation of variance exceeds a certain criterion are the individual 

deviations apparent. 

Experiments one and two here explore whether orientation variance is encoded as a 

property of a texture, using selective adaptation.  Adaptation describes the prolonged 

sensory exposure to a particular stimulus, and often results in perceptual aftereffects that 

result in a shift in perception away from the attributes of the adapted stimulus.  Adapting to 

                                                           
3 The term “second moment” statistic is used to describe orientation variance as being of a 
higher order than the mean (first moment) but lower than the kurtosis or skewness (third 
moment), not to be confused with the term “2nd-order” stimuli. 
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upward motion, for instance, will result in the perception of downward motion of a 

subsequently viewed image that is actually static.  The dominant theory of adaptation is that 

the perception of the adapted attribute is determined by the balance of activity between 

populations of neurons tuned to different levels of that attribute, and that the neurons that 

are firing during exposure to the adapted stimulus become fatigued or inhibited (Krekelberg, 

Boynton & Van Wezel, 2006).  When a subsequent stimulus is experienced, the drop in 

sensitivity of these neurons relative to those that are non-adapted results in an imbalance 

that creates a “misperception” of the adapted attributes in the direction away from the 

adapted level.   

Adaptation has previously been used as a tool to explore other fundamentals of 

region-based perception.  Corbett, Wurnitsch, Schwartz and Whitney (2012), for instance, 

recently showed selective adaptation aftereffects for the mean size of a set of circles, 

corroborating earlier evidence that suggested a dedicated, and independent mechanism, for 

the extraction of mean size in an image.  Additionally, contrast in an image, which has been 

likened to extracting the standard deviation (or variance) of luminance information (i.e. a 

second moment statistic), and density, which has been likened to extracting the same 

statistics from contrast itself (i.e. luminance kurtosis; a third moment statistic), are both 

properties that can be selectively adapted in the visual system (Durgin, 2001).  Adapting to 

images with positively and negatively skewed luminance distributions has been shown to 

produce perceptual aftereffects in the opposing direction, which manifests as an increase or 

decrease in the perception of gloss on a surface (Motoyoshi, Nishida, Sharan & Adelson, 

2007; although see Kim & Anderson, 2010).  These are examples of selective adaptation 

revealing dedicated mechanisms in the visual system that are sensitive to specific statistical 

properties of images.  Importantly, such effects are measurable on surfaces that resemble 

real materials and objects, and are not restricted to abstract psychophysical displays (Durgin 

& Huk, 1997; Motoyoshi et al, 2007).   

In experiment one, subjects were continually presented with two textures during an 

adaptation phase; one on the right and one on the left.  One of these textures was always 

constructed from a Gaussian distribution of a medium variance, and the other from either a 

relatively low or high variance.  When presented with a similar pair of textures in the test 

phase, subjects were required to identify which texture (left/right) appeared to contain the 

most variance and the level of perceived subjective equality (PSE) was sought.  Adapting to a 
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low variance on one side should increase the perception of variance of the test texture on 

that side, and vice-versa for adaptation to high variance.  Importantly, mean orientations of 

the adapting and test stimuli were randomly determined for each presentation to negate 

low-level effects of orientation adaptation.   

 

4.3. Experiment 1 – orientation variance adaptation with randomised means 

 

4.3.1. Methods 

Participants 

8 observers took part in the study.  Participants gave their written, informed 

consent. 

 

Equipment and stimuli 

The display monitor was viewed at a distance of 41cm (subjects rested their head on 

a chin rest).  Stimuli were presented on the uniform grey background (50 cdm-2) of a 

ViewSonic 17’’ (1254 x 877 pixels) colour monitor driven by a Cambridge Research Systems 

VSG 2/5 Graphics System running at 100Hz.     

The experimental stimuli used both in the adaptation and test sections consisted of a 

pair of textures, each comprising 9 x 9 Gabor patches.  Each Gabor patch measured 0.6° in 

diameter and was separated from its neighbours by 0.3° with a small positional jitter.  Each 

texture, therefore, measured 7.8° in width and in height.  All Gabor patches had a spatial 

frequency of 0.6 cycles/degree and each was assigned an individually randomly determined 

phase from the full 360° cycle.  The Michelson contrast of each Gabor was 90%.  The pair of 

textures was presented in the centre of the screen for both the adaptation and test phase. 

Each texture’s orientation statistics were determined by independently drawing each 

composite orientation value from a Gaussian distribution with a particular mean (µ) and 

standard deviation (σ).  For both adaptation and test flashes, µ was randomly determined 

on each presentation.  The value of σ for each texture depended on several experimental 

parameters; during adaptation, one of the textures assumed a medium level (σ=10) and the 

other assumed either a low (σ=2) or high (σ=26) level (to be known as the “adapting 

texture”).  These values were chosen from a period of pilot testing on one of the 
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participants as values which induced aftereffects that were comparable in magnitude to one 

another.  Examples of the stimuli are shown in figure 4.1. 

 

Figure 4.1. Examples of the different levels of variance used during adaptation in the 

experiments. In a, both textures are of a medium variance.  In b, the left texture (in this 

case, the “adapting” texture) is of a low variance, and the right of a medium variance.  In c, 

the left texture (again, the “adapting” texture) is of a high variance, and the right, again, of a 

medium variance. 

Experimental conditions and design  

Each subject completed two testing sessions, factoring the variance (low/high) of the 

adapting texture and half of the subjects received the adapting texture on the left and the 

other half on the right of fixation.  Testing was conducted over a period of two days, with 

one session per day and the order of the sessions was counterbalanced across subjects.  

 

Trial sequence 

Subjects fixated a central cross.  Each session began with a 60s adaptation procedure 

consisting of 30 stimulus flashes, each lasting 1s and separated by an interval of 1s.  Each 

flash contained the medium variance texture and the “adapting texture”.  For each 
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adaptation flash, the textures were constructed de novo, with newly determined random 

mean orientations and each orientation drawn again from their relative distribution.  

Following adaptation, subjects received a warning tone and a pause of 750ms before the 

test stimuli flashed onscreen for 500ms.  Subjects indicated which of the two textures in this 

flash appeared to contain the most orientation variance by pressing one of two keys, 

marking the end of one trial.  Between trials, subjects were presented with a further top-up 

adaptation consisting of 3 flashes, and after every 25th trial, a prolonged top-up adaptation 

of 30 flashes. 

In each session, trials were presented using two randomly interleaved one-up one-

down staircases which measures the level of PSE.  The variance of the test stimulus texture 

corresponding to the side of the adapting texture remained constant (at the medium level), 

and each staircase automatically adjusted the variance of the opposite texture until it 

reached an estimate of the subject’s PSE (i.e. at which point they chose left/right in equal 

proportion).   Two staircases were used; in one staircase, this texture began the session with 

a higher variance to the texture on the adapting side, and in the second staircase began with 

a lower variance, with a magnitude of 5 standard deviation (σ) units.  The variance was 

incrementally increased/decreased initially by a magnitude of 2 σ units (first 4 trials per 

staircase) and from thereon 1 σ unit, until a criterion of 6 reversals had been met.  

Threshold estimation was acquired by averaging the final 4 reversal points. 

 

4.3.2. Results 

The measured threshold levels corresponded to the PSE (i.e. perceived level of 

variance of the test texture on the adapted side).  This was done by systematically adjusting 

the variance of the non-adapted patch according to the subject’s response until their 

discrimination of which texture was the most varied rested at 50%.  This estimation was 

taken by averaging the results of two interleaved staircases for each condition.  Data were 

averaged from all eight participants. 
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Figure 4.2. Results from experiments 1 and 2. Levels of PSE as a result of adapting to levels 
of low and high variance.  A value of 0 corresponds to the actual variance of the texture 
(objective equality), as shown by the bold horizontal axis.  Thus, a value above this level 
indicates a shift in variance perception towards the higher end of the scale and a value 
below indicates a shift towards the lower end.  Error bars show +/- 1 SEM.   

For the high-adaptation condition, the PSE was 3.6 σ units below the level of 

objective equality, whereas for the low-adaptation condition, the PSE was 3.2 σ units above 

the level of objective equality (see figure 4.2).  Two one-sample t-tests were carried out 

between these PSE estimates and 0 (objective equality).  Both were significant, with the 

measurement following high-adaptation being significantly lower than the objective 

measurement (t(7)=9.82,p<0.001) and the one following low-adaptation being significantly 

higher (t(7)=4.92, p=0.002).  These results indicate that when observers adapted to a texture 

with low orientation variance, a subsequent texture appearing in the same location 

appeared to contain more variation than it actually did.  The opposite was found following 

adaptation to high levels of variance.   

 

4.4. Interim discussion 

 

Experiment one has shown that the perception of orientation variance (a second 

moment orientation statistic) can be selectively altered by adaptation-induced aftereffects.  

Importantly, as the mean orientation was randomly allocated for each adaptation and test 
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flash, the effect is not an indirect aftereffect following adaptation to low-level orientation 

signals.  Additionally, the results are suggestive of a variance-sensitive mechanism that is 

independent to the low-level statistical properties of the texture region (i.e. mean 

orientation).  This can not be determined conclusively from the first experiment only, 

however, because we cannot be certain that the mean orientation of the test textures on a 

given trial was not exposed at least once during adaptation, which may have been sufficient 

to produce a variance aftereffect that was specific to that mean orientation.  Experiment 

two, therefore, replicated the first experiment but, instead of randomly determining the 

mean orientation on each flash, the adaptation textures were shown only with a mean 

orientation of 90° (corresponding to horizontal) and the test patches were only shown with 

a  mean orientation of 0° (corresponding to vertical).  If an aftereffect is reproduced in this 

experiment it would, therefore, strongly suggest that information that is encoded regarding 

orientation variance is general and is not restricted specifically to a particular mean 

orientation. 

 

4.5. Experiment 2 – orientation variance adaptation across perpendicular means 

 

4.5.1. Methods 

See previous experiment. 

 

4.5.2. Results 

For the high-adaptation condition, the PSE was 4.3 σ units below the level of 

objective equality, whereas for the low-adaptation condition, the PSE was 3.6 σ units above 

the level of objective equality (see figure 4.2).  Two single sample t-tests were carried out 

between these PSE estimates and 0 (objective equality).  Both were significant, with the 

measurement following high-adaptation being significantly lower than the objective 

measurement (t(7)=12.50, p<0.001) and the one following low-adaptation being significantly 

higher (t(7)=3.95, p=0.006).  These results thus replicate the findings from experiment 1 but, 

importantly, this occurred despite the adaptation textures constantly having a mean 

orientation that was 90° in contrast to that of the test textures. 

 

 



86 
 

4.6. Interim discussion 

 

Together, experiments one and two have established that the perception of 

orientation variance (a second moment orientation statistic) can be selectively altered by 

adaptation-induced aftereffects.  Importantly, the effects could only have emerged if the 

variance was encoded at a level that was independent of the local orientations and the first 

moment statistic of orientation.  This is highly suggestive of a dedicated mechanism within 

the visual system that extracts the statistical irregularity amongst orientation signals in a 

given texture, agreeing with work by Morgan and colleagues (2008; 2012) and other work 

more generally that has found evidence through adaptation aftereffects of statistical 

computations by the visual system (e.g. Corbett et al, 2012).   

Experiment three aimed to uncover the reference frame in which this variance 

aftereffect is based.  The initial input into the visual system is based strictly in retinal 

coordinates, yet our visual experience is stable across eye movements, implying a 

spatiotopic representation of information coding.  Such coding relies on retinotopic coding 

plus knowledge of changes in the self’s viewpoint/position due to eye, head or body 

movements.  Early visual regions are retinotopically organised (Gardner, Merriam, Movshon 

& Heeger, 2008; Golomb, Mguyen-Phuc, Mazer, McCarthy & Chun, 2010; Crespi et al, 2011), 

whereas later visual regions show signs of spatiotopic coding (Zipser and Andersen, 1988).  

Neurons in parietal areas, for instance, show predictive coding of stimuli that will fall onto 

the receptive field once an eye movement has been made (Duhamel, Colby & Goldberg, 

1992).  Additionally, some properties of the ventral processing stream (e.g. large receptive 

field sizes, MacEvoy & Epstein, 2007; and position invariance, Grill-Spector & Malach, 2001) 

indicate spatiotopic coding. 

Methods of psychophysics offer a way to examine what information is remapped 

across a saccade onto a spatiotopic reference frame through investigating the transference 

of aftereffects following perceptual adaptation.  There is some evidence from such methods 

that spatially detailed stimuli are encoded in spatiotopic coordinates, and the degree of this 

encoding correlates with stimulus complexity, suggesting an increasingly spatiotopic 

representation along the processing hierarchy of the visual system (Melcher, 2005; Melcher 

& Colby, 2008), which is supported by some neuroscientific studies (Merriam, Genovese & 

Colby, 2007; Nakamura & Colby, 2002; although see Golomb & Kanwisher, 2011).  



87 
 

Determining whether specific adaptation-induced aftereffects are retinotopic or 

spatioptopic, therefore, offers a way to explore how specific visual attributes are encoded 

with relation to the processing hierarchy of the visual system.  The motion aftereffect, for 

instance, is known to be fixed in retinotopic coordinates (Knapen, Rolfs & Cavanagh, 2009; 

Turi & Burr, 2012), reflecting its effect in early visual areas (possibly V1), whereas the 

positional motion aftereffect (the apparent change in spatial position following motion 

adaptation) is spatiotopic (Turi & Burr, 2012).   It is predicted in the present study that, 

although aftereffects to mean orientation (i.e. the tilt aftereffect) are retinotopic,   

adaptation to orientation variance may reveal spatiotopic encoding.  Although local 

orientation adaptation results in a retinotopic-specific tilt aftereffect (due to its operating in 

V1; Knapen, Rolfs, Wexler & Cavanagh, 2010), the encoding of orientation variance is likely 

to require the large receptive field properties of later neurons, which are more likely to 

encode spatiotopically (Melcher, 2005; Melcher & Colby, 2008). 

One clear advantage of spatiotopic encoding is to align the activity within visual 

maps in a common reference frame that can be compared across modalities.  The statistical 

computations that are required for orientation variance estimation are likely to be 

important for object recognition, specifically in determining the spatial regularity of surface 

features; information which can then be supplemented, for instance, through haptic input.  

If information regarding orientation variance is indeed encoded at a spatiotopic level of 

processing in visual cortex, then this information should be remapped around the time of a 

saccade to remain aligned with a location in space.  Contrarily, if early retinotopic areas are 

sufficient for the coding of orientation variance, then any perceptual aftereffects should be 

restricted to the retinal coordinates in which they were induced.  In order to dissociate 

these reference frames, it is necessary to invoke an eye movement between the 

presentation of the adaptor and test stimuli.  In experiment three, therefore, observers 

fixated either above or below the adapting stimuli and, when prompted, moved their gaze 

diagonally either to the left or right of centre, before either returning to the original fixation 

position or to the opposite fixation location (above/below).  Thus, the test stimuli were 

presented to one of four locations relative to the position of the adapting stimuli: 
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1. Same retinal, same spatial coordinates (“Full” condition) 

2. Same retinal, different spatial coordinates (“Retinotopic” condition) 

3. Different retinal, same spatial coordinates (“Spatiotopic” condition) 

4. Different retinal, different spatial coordinates (“None” condition) 

 

Finally, as attention is important for spatiotopic encoding of information (Crespi et al, 

2011), subjects were encouraged to attend to the textures during the adaptation sections by 

carrying out a secondary task of indicating when one of the textures was presented with a 

relatively lower luminance contrast.   

 

4.7. Experiment 3 – the reference frame of orientation variance adaptation 

 

4.7.1. Methods 

Participants 

4 observers took part in the study, including the author.  Participants gave their 

written, informed consent. 

 

Equipment and stimuli 

See experiment 1.  In this experiment, gaze fixation was recorded using an infrared 

video eye-tracker (Cambridge Research Systems) with a sampling frequency of 250 Hz. 

During adaptation, the pair of textures was always presented in the centre of the 

screen and, in the test phase, was presented either in the centre of the screen or in the 

upper or lower half (depending on the testing condition). 

 

Experimental conditions and design  

Each subject completed 4 testing sessions, factoring the side (left/right) and variance 

(low/high) of the adapting texture.  Testing was conducted over a period of four days, with a 

maximum of one session per day.  The order of the four sessions was counterbalanced 

across subjects, and half of the subjects fixated above the adapting stimuli, and half below.  

Each session consisted of four interleaved conditions, in which the test stimuli were 

presented at different locations relative to the adapting stimuli.  Thresholds acquired for 

these conditions were averaged across the left and right adaptation side conditions.  Thus, 
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individual threshold estimates were gathered for four conditions of test stimuli location, 

individually for adaptation to low and high levels of variance.    

Figure 4.3 Illustration of the conditions from experiment 3.  During adaptation, half of the 
subjects fixated above and half below (shown here) the adapting stimuli.  The figure shows 
adaptation to high variance on the right, and medium on the left.  Following a period of 
adaptation, an eye movement was required either to the left or right (shown here) of 
centre.  Four stimulus conditions were interleaved in each block; in two of these conditions 
fixation returned to the original position for test, and in the remaining two fixation moved 
to the opposite side of the adapting stimuli (either above or below) for test.   The test 
stimuli then appeared either above or below the new fixation point.  Thus, the combination 
of the fixation position and test stimuli location determined the reference frame (labelled in 
the figure).   

During adaptation, the fixation cross was presented 1.8° either below the adapting 

stimuli (measured from top/bottom of textures) for half of the subjects or above for the 

remaining half.  The test stimuli were presented after a period of adaptation.  Four 

experimental conditions were included (see figure 4.3), in which the retinotopic and 

spatiotopic position of the test stimuli relative to the adapting stimuli were independently 

varied.  Dissociating these conditions required subjects either to relocate their fixation to 

the opposite side of the adapting stimuli or to maintain fixation at the same location, and 

then to present the test stimuli either above or below the new fixation point.  In order to 
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equate for the number of eye movements across the four conditions, however, two eye 

movements were required to be made in each condition regardless of whether fixation 

changed for the testing period or not; following adaptation, fixation moved diagonally either 

to the left or right of centre (equally likely) before relocating to the test position.  The “full” 

aftereffect was measured when subjects relocated their fixation to its original position and 

the test stimuli were presented in the same location as the adapting stimuli.  The 

“retinotopic” aftereffect was measured when subjects changed fixation to the opposite 

location and the test stimuli were presented on the opposite side of fixation to the adapting 

stimuli.  The “spatiotopic” aftereffect was measured when subjects changed fixation to the 

opposite location and the test stimuli were presented in the same location on the screen as 

the adapting stimuli.  The final control condition (“none”) was measured when subjects 

relocated their fixation to its original position and the test stimuli were presented on the 

opposite side of fixation to the adapting stimuli.  The purpose of this control condition was 

to correct for any retinotopic spreading of the adaptation effect that may explain any effect 

found in the spatiotopic condition that was not due to spatiotopic coding.  

 

Trial sequence 

Subjects fixated a cross either below or above the adaptation textures, and pressed a 

button to begin a session.  Each session began with a 60s adaptation procedure consisting of 

30 stimulus flashes, each lasting 1s and separated by an interval of 1s.  Each flash contained 

the medium variance texture and the “adapting texture”.  For each adaptation flash, the 

textures were constructed de novo, with newly determined random mean orientations and 

each orientation drawn again from their relative distribution.  Following adaptation, 

subjects were instructed by a warning tone to anticipate an eye movement.  Following this 

(1s), the fixation cross would move diagonally to 5.7° either to the left or right of the centre 

of the monitor.  The duration of this new fixation lasted 500ms, following which the cross 

either returned to its original position above/below the location of the adapting stimuli or 

moved to the opposite position below/above the stimuli, depending on the testing 

condition.  Following an additional period of 750ms and a second warning tone, the test 

stimuli flashed onscreen for 500ms either above or below the new fixation point, again 

depending on the testing condition.  Subjects indicated which of the two textures appeared 

to contain the most orientation variance by pressing one of two keys, following which the 
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fixation cross would relocate to its original position (if necessary), marking the end of one 

trial.  Between trials, subjects were presented with a further top-up adaptation consisting of 

3 flashes, and after every 25th trial, a prolonged top-up adaptation of 30 flashes. 

Trials were presented using eight randomly interleaved one-up one-down staircases; 

each of the four conditions was represented by two staircases per session.  The test 

stimulus texture corresponding to the side of the adapting texture remained constant at the 

medium variance level, and each staircase automatically adjusted the variance of the 

contralateral texture until it reached an estimate of the subject’s perceived subjective 

equality (PSE) between the two textures.   In one staircase per condition, this texture began 

the session with a higher variance to the texture on the adapting side, and in the second 

staircase began with a lower variance (± 5 standard deviation units).  The variance was 

incrementally increased/decreased initially by a magnitude of 2 standard deviation units 

(first 4 trials per staircase) and from thereon 1 standard deviation unit, until a criterion of 6 

reversals had been met.  Threshold estimation was acquired by averaging the final 4 

reversal points.  

As attention is important for spatiotopic encoding of information (Crespi et al, 2011), 

subjects were encouraged to attend to the textures during the adaptation sections by 

carrying out a secondary task.  This was to indicate, by pressing a button, if one of the 

textures was constructed of Gabor patches of a slightly lower contrast than normal (60% 

Michelson contrast).  This occurred with a probability of 0.1 on each adaptation flash, and 

was equally likely to be the left or right texture. 

Additionally, eyetracking was carried out to ensure that subjects tracked the fixation 

cross during the intermittent relocation period following adaptation; if the eyetracker did 

not detect that the subject had fixated following 200ms or that fixation subsequent to this 

was not within a 1° radius of the cross then data from that trial was disregarded, and the 

experiment continued without collecting data from that trial.  Additionally, if fixation was 

not recorded to be within a radius of 1° of the cross during the time in which the test stimuli 

were onscreen, the trial was also disregarded. 

 

4.7.2. Results 

The online fixation monitoring ensured that trials were not counted if subjects 

moved their gaze away from the fixation cross.  To ensure that subjects were nonetheless 
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covertly attending to the adapting stimuli, their hit rates and false alarm rates in detecting 

the contrast decrement which occurred, on average, once every ten flashes were compared.  

Hit rates (as a proportion) for each subject were 0.97, 0.97, 0.77 and 0.97, whereas no 

subject exceeded a false alarm rate of 0.01.  From this, it is concluded that subjects were 

sufficiently attending to the adapting stimuli.  

Thresholds collected from sessions in which the adapting texture was present on the 

left or on the right were averaged to give a single threshold estimate for each testing 

condition, and this was done independently for adaptation to low and high variance.  Thus, 

each threshold estimate is taken from an average of four staircases, and each threshold 

value represents the shift in variance (in σ units) that is required to obtain PSE.  These data 

are shown in figure 4.4.  A 2 x 2 repeated measures ANOVA was run separately for the high- 

and low-variance adaptation conditions, with the relative position of the adapting and test 

stimuli in retinotopic coordinates (same vs. different) and spatiotopic (same vs. different) as 

factors (“Full”: same, same; “retinotopic”: same, different; “spatiotopic”: different, same; 

“none”: different, different).  For low-variance adaptation, a significant main effect of 

retinotopic coordinates was found (F(1,3)=16.43, p=0.027), with no main effect of spatiotopic 

coordinates (F(1,3)=0.74, p=0.45) and no interaction (F(1,3)=0.32, p=0.610).  The same result 

was found for high-variance adaptation, with a significant main effect of retinotopic 

(F(1,3)=16.12, p=0.028) but not spatiotopic (F(1,3)=2.07, p=0.246) coordinates, and no 

interaction (F(1,3)=0.33, p=0.608).  Importantly, through examining figure 4.4 it is confirmed 

that following adaptation to either low or high variance, respectively, the perceived variance 

of the test texture is either increased or decreased (as shown by the positive and negative 

aftereffects shown in the figure).  

Additionally, it is important to assess the role of retinotopic spreading, specifically in 

the spatiotopic condition, by subtracting the magnitude of the “none” PSE from all other 

PSEs.  The result of this is shown in figure 4.4, and clearly there is very little residual effect in 

the spatiotopic condition, whereas in the remaining retinontopic conditions it is still 

substantial.  These results suggest that adaptation to orientation variance occurs in a strictly 

retinotopic reference frame. 
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Figure 4.4. Results from experiment 3.  Each data point represents the average threshold 
across four observers.  Results from low adaptation are shown in a; those from high 
adaptation are shown in b.  The strength of the aftereffect measurement is determined by 
the increment/decrement in orientation variance required to null the adaptation effect 
(PSE).  In both cases, the full and retinotopic PSEs are clearly of the largest magnitude 
compared to the spatiotopic and nonspecific effects.  When the “none” PSE magnitude is 
subtracted from the other PSEs to account for retinotopic spreading (c and d), the 
spatiotopic effect is marginal, whereas the other two conditions still show substantial 
aftereffects.  Error bars show +/- 1 SEM, with between-subject variance removed.   

 

4.8. Interim Discussion 

 

In experiments one and two, selective adaptation aftereffects were used to reveal 

that orientation variance is an explicitly encoded dimension present in the visual system.  

Following adaptation to a texture of low variance, a subsequently viewed texture of a 

medium variance was perceived to be of a greater variance, whereas adaptation to high 

variance led to a reduced perception of variance in the medium texture.  As shown in 

experiment three, however, this observed aftereffect was only specific to the two 

conditions in which the test stimuli appeared at the same retinal location as the adapting 

stimuli, and no evidence was found for the effect in spatiotopic coordinates.  If this 

retinotopic specificity of the variance aftereffect indicates early cortical processing of 
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orientation variance (Melcher, 2005; Melcher & Colby, 2008; Merriam et al, 2007; 

Nakamura & Colby, 2002), then patient MS, described earlier in this thesis, should retain at 

least some capacity to discriminate the level of variance between textures.  MS is unable to 

make some region-based discriminations, including surface colour and texture of objects, 

which is most likely due to the bilateral damage to his medial occipitotemporal cortex, 

which has been shown in normal observers to correlate with the discrimination of such 

regional properties (Cavina-Pratesi, Kentridge, Heywood & Milner, 2010b).  The early cortex 

in his left hemisphere, however, is spared, in which the retinotopic organisation of 

orientation-selective neurons may be sufficient to encode orientation variance.  Experiment 

four tested whether MS retained sensitivity to orientation variance. 

 

4.9. Experiment 4 – orientation variance discrimination in patient MS 

 

4.9.1. Methods 

Participants 

Patient MS has bilateral damage to his ventromedial occipitotemporal cortex and is 

profoundly achromatopsic and prosopagnosic as well as having visual object agnosia.  

Damage to the left hemisphere includes the temporal pole, parahippocampal and fourth 

temporal gyri of the temporal lobe, the collateral sulcus, and the mesial occipitotemporal 

junction. His achromatopsia is most likely explained by the damage to the lingual gyrus and 

anterior collateral sulcus, typically associated with the human “colour area”.  Damage in this 

vicinity is also likely to be the cause of his impairment in discriminating surface properties of 

objects more generally (Cavina-Pratesi et al, 2010b).  His ability to perceive object form 

remains intact, which is likely the result of his spared lateral occipital complex (LOC; Cavina-

Pratesi et al, 2010b).  The damage in his right hemisphere is more extensive than that in the 

left, including primary visual cortex resulting in a homonymous hemianopia with macular 

sparing, whereas his occipital lobe in his left hemisphere is largely intact. For a more 

extensive case description of MS, see Heywood, Cowey and Newcombe (1994).  Testing was 

conducted at the University of Durham’s Psychology Department.  MS was 63 years of age 

at the time of testing. 

Three non-age-matched control participants took part in the same experiment as 

MS.    
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Equipment and procedure 

Equipment was the same as in the previous experiments.  MS viewed the display 

monitor at a distance of roughly 80cm and was not required to fixate or to use a chin rest. 

Stimuli consisted of three separate textures of 10 x 10 Gabor patches.  Each Gabor 

patch measured 0.7° in diameter and had a spatial frequency of 1.4 cyc/degree.  Each was 

separated from its neighbours by 0.3°.  Thus, each texture measured 9.7° in width and in 

height.  The phase of each Gabor was determined randomly from the full 360° cycle.  The 

three textures were aligned vertically in the centre of the display, with a distance of 1.4° 

separating each of the top and bottom textures from the middle. 

The orientations within each of the textures were drawn from a Gaussian 

distribution with a particular mean and variance.  The respective mean values of the three 

textures were determined by first assigning one of the textures with a randomly determined 

value from the full 360° cycle.  Of the two remaining textures, one was assigned this value 

+45° and the other +90°.  Thus, each texture had a unique mean orientation with respect to 

the rest and this was novel on each trial.    The baseline variance was chosen to be 72, which 

was assigned either to one or two of the three textures, with the remaining texture(s) being 

assigned a variance either of 122 (high difficulty), 202 (middle difficulty) or 302 (low 

difficulty).  Thus, one of the textures was odd with respect to the other two, but it was not 

simply the case that this odd texture always had the largest (or smallest) variance; it was 

equally likely on each trial that the odd texture would have more or less variance relative to 

the other textures.  MS was instructed to indicate which texture, either the top of bottom, 

appeared to be the odd one out.  Importantly, with this method, MS could not complete the 

task on the basis of local orientation comparisons or by analysing only one of the textures; 

MS was required to make variance estimations of at least two of the textures.  Figure 4.5 

provides an illustration of the stimuli. 

The stimuli were presented onscreen until MS verbalised his response, at which 

point the experimenter pressed the appropriate response key.  Five blocks were conducted, 

each containing 10 repetitions of each of the three discrimination levels, amounting to 30 

trials per block. 
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Figure 4.5. Example stimuli used in experiment 4.  The task was to identify the odd texture 
(top or bottom) in terms of its variance (irregularity).  The three difficulty levels are shown in 
a-c, with decreasing difficulty level left to right.  Each texture had a unique mean orientation 
relative to the other two, which was randomly determined across trials, thus preventing 
scrutiny of the stimuli on a local scale. 
 

4.9.2. Results 

For the high, middle and low difficulty levels, respectively, MS produced the 

following hit rates: 30/50 (60%; p=0.101), 37/50 (74%; p<0.001) and 42/50 (84%; p<0.001), 

shown as percentage scores in figure 4.6.  Normal observers (N=3) on the same task did not 

produce errorless performances and showed the same rising trend in performance with 

decreasing task difficulty (90%, 97.3% and 100%).  These do suggest that, although MS was 

clearly impaired relative to normal non-age-matched controls, he shows some sensitivity to 

the property of orientation variance in the textures.  
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Figure 4.6 Results from experiment 4; MS’s variance discrimination task.  MS performed 
significantly greater than chance in the medium- and low-difficulty levels and with 
progressively more accuracy with increasing variance difference between the discriminanda.  
This suggests that he may retain an ability to perform the second moment regional 
estimations that allow the encoding of variance. 

 

4.10. General discussion of study three 

 

The effect of variance adaptation is clearly demonstrated in experiments one and 

two.  The results suggest that what has been adapted is a specific mechanism that is 

selective to orientation variance, a second moment statistic of regional orientation 

information.  Importantly, due to the random allocation of mean orientation throughout 

experiment one, the effect can not be explained on the basis of an undesired effect of 

adaptation to local orientation (i.e. the tilt aftereffect), which might otherwise have 

produced a change in in the stimuli that could have been misperceived as a change in 

variance.  Additionally, because of the 90° disparity in mean orientation between the 

adapting and test stimuli in experiment two, the results imply that variance is encoded at a 

general level of processing, at which point the low-level orientation statistics do not matter.  

Thus, the adaptation effect is robust and is specific to the statistic in question (variance).  

This echoes results found following adaptation to other statistical properties (Durgin, 2001; 

Durgin & Huk, 1997; Motoyoshi et al, 2007; Corbett et al, 2012), and findings that regional 

information of a set, or texture, is encoded independently of individual local components 

(Ariely, 2001; Corbett et al, 2012). 
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Similar findings regarding image statistics have come from other lines of research.  In 

the case of visual crowding, for example, in which objects in the periphery become difficult 

(or impossible) to individuate due to the presence of neighbouring flanks, it has been shown 

that, despite the inability to individuate single orientation elements, observers can 

nonetheless make judgments based on their statistics, specifically their mean and variance 

(Parkes, Lund, Angelucci, Solomon & Morgan, 2001; Solomon, 2010).  Such findings, along 

with the work of Morgan and colleagues (2008), point to a mechanism within the visual 

system that explicitly encodes the variance of a set of oriented lines.  Indeed, the results of 

experiments one and two suggest a model in which the neural representation of variance is 

determined at least by two channels, one tuned broadly for low variance and one for high 

variance, and that the perception of variance is determined by the complementary balance 

of activity within these channels.  An alternative theory is, of course, that there are multiple 

narrowly tuned channels, much like those that determine sensitivity to the property of 

spatial frequency. 

The adaptation aftereffect, however, as shown in experiment three, is limited to a 

retinotopic reference frame; aftereffects were not found for test textures that appeared in 

the same spatial location as the adaptors independently of retinal location.  This is also true 

of the tilt aftereffect, which follows adaptation to a single orientation (Knapen et al, 2010).  

Knapen and colleages (2010) argue that it would be unlikely to find spatiotopic aftereffects 

of orientation adaptation, due to it being carried out in V1; remapping of the adaptation 

would require that the modified, adapted state of neurons be transmitted horizontally 

through the brain in any direction depending on the impending eye movement, 

necessitating a very dense connectivity in lower visual areas for which there seems to be no 

neurophysiological evidence.  It was hypothesised in the present study, however, that 

aftereffects specific to variance adaptation may reveal spatiotopic encoding, due to the 

large receptive fields that may be required to achieve such large-scale estimations.  These 

large-scale receptive fields are to be found downstream from primary visual cortex, in areas 

which display progressively more signs of spatiotopy (Merriam et al, 2007).  In the present 

study, however, no evidence for a spatiotopic aftereffect was found.  This may indicate that 

variance perception is achieved and represented at a much earlier level in the visual system 

than previously expected.   
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There is, however, some contention as to whether mid- to high-cortical areas indeed 

show an increased sensitivity to spatiotopic encoding, as claimed, for example, by Melcher 

(2005).  Only very small, if any, spatiotopic aftereffects are often found for stimulus 

properties that are thought to reflect the processing of spatiotopically-tuned cortical areas 

(e.g. Wenderoth & Wiese, 2008).  Some evidence from imaging also suggests that the vast 

majority of processing in low- and high-level areas is strictly retinotopic (Gardner et al, 

2008).  These findings, however, may only reflect differences in the stimuli used and the lack 

of directed spatial attention towards the stimuli.  In Gardner et al’s (2008) study, for 

instance, the stimuli were presented parafoveally whilst subjects performed an attentionally 

demanding task at fixation.  It is now known that selective spatial attention towards a 

stimulus is a crucial factor in determining its spatiotopic encoding in mid- to high-level areas 

(Crespi et al, 2011).  The failure to find spatiotopic aftereffects in the present study can not 

be explained by the claim that subjects were not attending to the adapting stimuli, as they 

performed very well in a secondary task that required them to make judgements of the 

Gabor patches’ contrast4. 

The results from experiment four adds to the theory that orientation variance is 

encoded relatively early in the visual system, as patient MS is shown to be sensitive to the 

level of orientation variance in the textures.  Although MS performed poorly relative to 

young control participants5, he performed significantly above chance in the two least 

difficult conditions and showed increasing accuracy with decreasing discrimination difficulty.  

Furthermore, he could not have achieved this on the basis of local orientation comparisons 

between the textures, as each texture was assigned a mean orientation which was different 

to the other two and randomly allocated across trials, therefore requiring an estimation of 

variance independently of mean orientation for at least two of the three textures in order to 

complete the task.  It may be, of course, that accurate variance discrimination requires a 

collection of cortical areas, some of which are not functional in MS.  Alternatively, however, 

it may be his intact early cortex which may be sufficient.  In light of recent evidence, this 

may not be entirely surprising.  Joo, Boynton and Murray (2012), for instance, have recently 

                                                           
4 A number of recent studies have also failed to demonstrate spatiotopic aftereffects 
despite including a secondary attention task (Afraz & Cavanagh, 2008; 2009; Knapen et al, 
2009). 
5 His performance in the task is undoubtedly affected by his homonymous hemianopia, 
which restricts the number of orientation samples he can make at any one time.    
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documented how early visual cortex is sensitive to long-range contextual patterns of 

orientation.  Specifically, if a vertical Gabor patch is flanked by two horizontal Gabor patches 

(i.e. H-V-H), then sensitivity (and neural activity) is greater for this central Gabor patch than 

if an additional vertical Gabor patch is placed either side of the flankers (i.e. V-H-V-H-V).  The 

authors hypothesised that, because in the latter condition the central Gabor patch is part of 

a long-range pattern, and therefore does not deviate from its context, the visual system is 

less sensitive to it.  Importantly, they showed event-related potentials that that strongly 

suggested this effect to be mediated in the earliest components of visual cortex.  This is also 

somewhat consistent with other work involving patient HJA (Allen, Humphreys & Bridge, 

2007), whose preserved striate cortex presumably allowed him to successfully average, 

albeit not perfectly, the orientations of a number of Gabor patches.  The results from the 

present study suggest that even the second moment of orientation processing may be 

found in early retinotopically organised areas of visual cortex.  
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5. Study Four - The role of extrastriate cortical areas in representing cue-

invariant 2nd-order segmentation 

 

5.1. Abstract 

 

The visual system’s ability to represent object shape depends largely on its 

mechanisms to detect local discontinuities in visual features (e.g. luminance, colour, 

texture), a process known as segmentation.  Computations of different types of local 

contrast, however, are undertaken by different populations of neurons and, over time, the 

type of cue that defines the form an object can often be subject to change.  The temporal 

integration of information from different cue sources is thus essential in establishing a 

stable perception of an object in a changing environment.  In this study, a novel method of 

flicker-defined-form was applied, wherein the cue contrast that defines the contours of a 

figure rapidly alternated between one type of 2nd-order cue (orientation) and another 

(spatial frequency).  Experiment one showed that segmentation of a figure in this manner 

dissociated from the regional discrimination of the same stimuli (i.e. when the information 

at the locations of contrast was masked by black borders), and that the magnitude of this 

difference was no different than when the figure was defined by a contrast of a single 

constant cue, implying the successful rapid integration of 2nd-order visual features by the 

visual system.  In order to ascertain whether this perceptual integration process 

necessitates additional cortical involvement relative to single-cue segmentation, experiment 

two compared sensitivity to the stimuli selectively in the upper and lower visual fields.  

Segmentation of a target defined by an alternating cue showed a large lower visual field 

advantage in comparison to single-cue segmentation.  This asymmetry implies the 

recruitment of a cue-invariant visual integration area beyond the level of primary visual 

cortex.  In a third experiment, patient DF, who has bilateral lateral occipital cortical damage, 

was shown not to be selectively impaired in segmenting by a rapidly alternating cue type.  

Taken together, these results suggest a cue-integration area for the purposes of 

segmentation that is likely to be found subsequent to primary visual cortex and prior to 

lateral occipital complex.  

 



102 
 

5.2. Introduction 

 

In detecting the boundaries of objects in the environment, the visual system’s 

primary adaptation lies in rapidly detecting discontinuities in visual information; a process 

often termed segmentation. 1st-order segmentation can refer to detecting boundaries on 

the basis of uniform luminance or colour.  Other forms of segmentation, however, require 

2nd-order comparisons (e.g. orientation and spatial frequency), yet these can nonetheless 

be perceptually very salient (Chubb, Olzak & Derrington, 2001; Motoyoshi & Nishida, 2001; 

Bergen & Adelson, 1988).  The process of segmentation is automatic and results in the 

perception of boundaries around the segmenting regions, thus allowing figure-ground 

relationships to be determined and objects to be identified and acted upon.  This contrasts 

somewhat with the ability to discriminate visual regions, which aids in other aspects of 

object recognition but is a slower and more effortful process.  For present purposes, the 

word discrimination is reserved for instances in which two regions of information appear 

different but do not necessarily segment. 

The visual system’s ability to segment has only traditionally been studied, however, 

when the cue type which constitutes the contrast remains constant over time (single-cue 

segmentation).  This is informative for understanding the low-level functional properties of 

edge localisation, most of which occur in striate cortex (Dai & Wang, 2011; Kentridge, 

Heywood & Weiskrantz, 2007; Knierim & van Essen, 1992; Sillito, Grieve, Jones, Cudeiro & 

Davis, 1995), but does not offer much insight into subsequent integration stages beyond the 

level of single-cue segmentation.  Some researchers have investigated in great depth how 

multiple simultaneously available cues are integrated to achieve complex visual goals (e.g. 

depth perception and segmentation; Landy & Kojima, 2001; Saarela & Landy, 2012).  What is 

less clear in our understanding, however, is how the visual system integrates separate cue 

types as information that defines an object changes over time. This process should not be 

overlooked in efforts to understand segmentation, as it is a common aspect of perception 

that may arise from sudden changes in environmental conditions or changes in an 

observer’s perspective.  Despite these factors, we achieve perceptual constancy and 

experience a stable world in which we are able to track objects and to recognise them in 

different contexts.  Perception, therefore, must become cue-invariant at some stage.  The 

present study concerns two types of 2nd-order segmentation cue (orientation and spatial 
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frequency) and aims to address where in the hierarchy of visual processing information from 

these two different cue sources is rapidly integrated over time. 

Flicker-defined form (FDF) was applied in the present experiments to isolate the 

segmentation component of perception.  FDF is a phase-reversing masking technique first 

developed in a study by Rogers-Ramachandran and Ramachandran (1998), which 

demonstrated that when the luminance of two abutting light and dark regions is continually 

reversed above a particular frequency (~ 8 Hz), it becomes no longer possible to distinguish 

the dark region from the light region at any one time, yet a contour is still clearly visible 

between the two6.  This technique exploits the fact that segmentation persists at a higher 

frequency than discrimination and, importantly for this study, is also applicable to 2nd-order 

stimuli (Norman, Heywood & Kentridge, 2011).   The notion that there exist separate 

mechanisms for segmentation and discrimination of the same stimuli is further supported 

by experiments employing various other techniques of visual masking (e.g. Breitmeyer, 

Kafaligönül, Ögmen, Mardon, Todd and Ziegler, 2006; Motoyoshi, 1999).   

The experiments reported here used a novel variant of FDF in which the type of cue 

that defines the contrast rapidly alternates between one type of 2nd-order cue (orientation) 

and another (spatial frequency), whilst the locations of contrast remain constant.  If the 

visual system is able to segment a figure based on such a contour defined by an alternating-

cue, and can achieve this at a higher temporal frequency than the ability to discriminate the 

regions (i.e. as in typical FDF), it would suggest the involvement of a visual integration stage 

beyond the level of simple single-cue segmentation that must be cue-invariant, i.e. in which 

there is neural synergy between the encoding of different visual features. 

In the following experiments, subjects completed a localisation task in which a 

homogenous background of Gabor patches contained a smaller target region defined by 

some feature contrast.  This feature contrast would either remain as one type (single-cue 

                                                           
6 The technique of flicker-defined form is proposed by some to isolate the magnocellular 
subdivision of visual processing (Rogers-Ramachandran & Ramachandran, 1998), although 
this is contested by others (Skottun and Skoyles, 2006).  The present study does not attempt 
to make this claim for the stimuli used in these experiments; the technique is only used as a 
method to dissociate the processes of segmentation from those of discrimination, 
regardless of their relative contribution from the magnocellular subdivision of visual 
processing. 
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condition; orientation contrast or spatial frequency contrast) or rapidly alternate between 

the two (alternating-cue condition) on a continuous cycle.   

Experiment one was designed to demonstrate that the individual cues (orientation 

and spatial frequency) can be successfully integrated to rapidly segment the figure.  The 

rationale was that if the cues are successfully combined by a cue-invariant integration area, 

then there should be no decrease in the ability to segment a target defined by a rapidly 

alternating cue relative to one defined by a single cue.  To determine this, flicker frequency 

thresholds were measured for segmenting a target defined by either a single cue or an 

alternating cue, along with the same thresholds for discrimination of the target regions (i.e. 

when segmentation is prevented by the presence of coincident border masks).   

 

5.3. Experiment 1 –cue-invariant segmentation in flicker-defined-form 

 

5.3.1. Methods 

Participants 

10 participants took part in experiment one.  Participants were either undergraduate 

or postgraduate students at Durham University’s psychology department.  They were 

compensated for their time either financially or with participant pool credits.  All had 

normal or corrected-to-normal vision; none were experienced psychophysical observers. 

 

Stimuli and procedure 

Stimuli were generated using a Cambridge Research Systems VSG 2/5 Graphics 

System and were presented on a gamma-corrected ViewSonic 17’’ display monitor viewed 

at a distance of 41cm (subjects rested their head on a chin rest).   The background had a 

luminance of 50cdm-2.  The screen resolution was set to 1024 x 768 pixels with a refresh 

rate of 100 Hz.    

Subjects fixated a central cross.  Following a warning tone, a lattice (20.3° in width 

and 10.0° in height) centred on the fixation cross consisting of 20 x 10 uniformly positioned 

Gabor patches appeared.  The central 2 x 2 Gabor placeholders were empty, to allow 

subjects to fixate the central cross with minimal distraction from neighbouring stimuli.  Each 

Gabor had a diameter of 0.70° and was separated by its neighbours by 0.33°.  The Michelson 

contrast of each Gabor was set at 90%.   
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The temporal sequence for each trial began with a mask (lasting 30 ms), followed by 

a continuous stimulus cycle of 6 frames (lasting 1000 ms; depicted in figure 5.1), and 

followed by a final mask (30 ms).  Mask frames and stimulus frames were comprised of 

Gabors in the same positions, but the Gabors in the mask would each comprise a randomly 

and individually determined orientation from the uniform distribution within the bounds of 

-12.5° and +12.5° about vertical, and a similarly determined spatial frequency within the 

bounds of 1.4 and 2.9 cycles/degree.  Each Gabor’s phase was randomly determined from a 

uniform distribution within the full 360° range (this was also true for Gabor patches present 

in the stimulus frames).   

 

 

Figure 5.1 6-frame stimulus sequence (from left to right) for three conditions of contrast 
type (by row).  In the top two rows, the target is defined by the same type of contrast in 
pairs 1 and 2 (either orientation or spatial frequency).  In the third row, the target is defined 
by a different type of contrast in each pair; therefore if stable segmentation is to be 
achieved in this condition, the information from the different cue types must be temporally 
integrated.  The mask frames were included to minimise interference between the stimulus 
pairs and to equate the changes across different conditions (see text for further details).  
Note that each box in the figure is a magnified section of only part of the display (the 
target), which would occur unpredictably in one of two locations on each trial. 
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The 6-frame cycle consisted of, in sequence, 1 set of 2 target frames (pair 1), 1 mask 

frame, 1 set of 2 target frames (pair 2) and a final mask frame.  The target was a square 

region of the lattice measuring 4 Gabor spaces in width and in height which, for a given trial, 

was randomly chosen to be located on the left or on the right (measured 3 Gabor spaces 

from the edge of the lattice).  The target, when present, was defined either by an 

orientation contrast or a spatial frequency contrast to the background and, depending on 

the condition, could be defined either by: a) an orientation contrast in pair 1 and an 

orientation contrast in pair 2; b) a spatial frequency contrast in pair 1 and a spatial 

frequency contrast in pair 2; or c) an orientation contrast in pair 1 and a spatial frequency 

contrast in pair 2.  Thus, conditions a) and b) present a target that is defined by the same 

contrast type in both frame pairs, whereas condition c) presents a target that is defined by a 

changing contrast type (“alternating cue” condition).  The order in which the two stimulus 

pairs were presented in condition c) was randomly determined for each trial. 

Within each pair of target frames, both frames contained the same degree of 

contrast; however, across the two frames the phase of this contrast was reversed.  In the 

condition of an orientation contrast, the background and target Gabor patches would 

assume orientations of -12.5° and +12.5° (a contrast of 25°) about vertical before reversing 

to 12.5° and -12.5°, respectively, with spatial frequency being determined equally in both 

cases by drawing each Gabor patch’s spatial frequency from a uniform distribution within 

the bounds of 1.4 and 2.9 cycles/degree (equivalent to the spatial frequency content of the 

mask).  Similarly, in the condition of a spatial frequency contrast, the background and target 

Gabor patches would assume spatial frequencies of 1.4 and 2.9 cycles/degree (a contrast of 

1.5 cycles/degree), before reversing to 2.9 and 1.4 cycles/degree, with orientation being 

determined equally in both cases by drawing each Gabor patch’s orientation from a uniform 

distribution within the bounds of -12.5° and +12.5° (again, equivalent to the orientation 

content of the mask).  Following the 6 frame cycle a final mask appeared for 30 ms.  See 

figure 1 for an illustration. 

The phase-reversing procedure used in the two pairs of stimulus frames ensured that 

the target and background regions contained on average the same information when 

temporally fused, such that when the stimulus cycle was presented at a sufficiently high 

frequency, the ability to discriminate the regions fails with no substantial effect on the 

perception of the contour between the two (i.e. FDF).  The intermittent masks between the 
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two pairs of target frames were included to minimise stimulus interference between the 

two target frame pairs equally across the 3 conditions.  For instance, without the mask 

frames, the change in orientation content in the single-cue orientation condition between 

the last frame in pair 1 and the first frame in pair 2 would be 25°.  In the alternating-cue 

condition, this would only be 12.5°.  The larger change in the former condition may have 

produced a larger masking effect, thus affecting subjects’ detection thresholds, if the two 

conditions were not equated with the intermittent masks.  

Following the offset of the stimuli, subjects indicated by pressing one of two buttons 

on a Cedrus button box whether the target appeared to the left or the right of fixation.  An 

inter-trial interval of 1000 ms was included.  In addition to completing the task as previously 

described, subjects also completed one condition in which two border masks were present 

for the duration of the trial.  These consisted of two black boxes made of lines 1 pixel in 

thickness that each surrounded the two possible target locations.  These ensured that when 

locating the target, subjects relied on discriminating the regional information within each 

area, rather than the contour formed by the contrast.  Thus, the experiment was a 3 

(contrast type) x 2 (border mask presence) within-subject design.  All three contrast type 

conditions were blocked in a single session and subjects completed two sessions; one of the 

two sessions included the border masks and the order of these two sessions was 

counterbalanced across subjects.  These two sessions were each preceded by a full practice 

session.  Performance was monitored using an interleaved staircase procedure, and the 

frequency rate (measured in Hz) of the cycle7 was determined by the subject’s performance.  

Three 2-up, 1-down interleaved staircases were ran in a single session, with each staircase 

corresponding to one of the 3 contrast types (orientation, spatial frequency and alternating-

cue).  Frequency initiated at 5.6 Hz (9 frames per stimulus) and increased or decreased 

depending on performance by one frame.  Staircase selection for each trial was randomly 

determined with equal probability, and each terminated after 8 reversals in performance.  

Threshold estimation was taken by averaging the final 4 points of reversal.   

 

 

                                                           
7 The temporal frequency of the cycle does not refer to the entire 6-frame cycle; just the 
frequency of two of the frames in the cycle (i.e. one stimulus frame pair).  The frequency of 
the entire cycle, therefore, is equal to this frequency divided by 3. 
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Figure 5.2 Mean segmentation advantage levels (upper panel) and raw threshold levels 
(lower panel) from experiment one.  The segmentation advantage values are calculated by 
subtracting the subjects’ flicker frequency thresholds in the discrimination condition (border 
masks present) from their thresholds in the segmentation condition (border masks absent).  
There is no drop in this magnitude for the alternating-cue condition relative to the single-
cue conditions.  Error bars show +/- 1 SEM, with between-subject variance removed.   
 

5.3.2. Results 

The magnitude of the “segmentation advantage” was calculated for each of the cue 

types by subtracting the discrimination thresholds (border masks present) from the 

segmentation thresholds (border masks absent)8, giving a measure of how much the figure 

                                                           
8 The approach of calculating the “segmentation advantage” was used because, in pilot runs 
of the experiment, it was found that subjects performed consistently better in the 
discrimination condition of the alternating-cue stimuli relative to the single-cue stimuli 
(which were matched for salience). The segmentation advantage thus represents how 
sensitive the observers are to the target regardless of their sensitivity in the relative 
discrimination conditions.  The advantage found in the alternating-cue discrimination 
condition relative to that of the single-cue may reflect a change in the observers’ decision 
criteria due to information from different channels being available to inform the 
discrimination, or it may be the effect of a dedicated cue-integration system that is more 
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segments.  These values are shown in figure 5.2 and were entered into a single-factor 

repeated measures ANOVA with three levels (orientation, spatial frequency and alternating 

cue type).  There was no difference between the segmentation advantage levels of the 

three cue types (F(2, 18)=0.027, p=0.973).  This implies that when performing 2nd-order 

segmentation, the perception of the contour is represented at a stage at which there is 

synergy between the processing of orientation- and spatial frequency-defined contrast.  

 

5.4. Interim discussion 

 

The results from experiment one indicate that the visual system is capable of 

extracting contours that are formed by rapidly alternating cue types.  This may indicate a 

synergistic stage in visual perception, in which information from different cue sources is 

integrated over time in order to subserve cue-invariant form perception.  It is predicted that 

this cue-invariance would be found at a later stage in the visual cortex than that of single-

cue segmentation, which is likely to occur as early as primary visual cortex (V1; Hallum, 

Landy & Heeger, 2011), and that a selective lower visual field (LVF) advantage would reveal 

this.   

A LVF advantage has been found in a number of perceptual and behavioural 

experiments (e.g. Riopelle & Bevan, 1952; Rubin, Nakayama & Shapley, 1996; Levine & 

McAnany, 2005) and is believed to reflect differential processing of visual information in 

areas V2 and beyond (Horton & Hoyt, 1991; He, Cavanagh & Intrilligator, 1996).  Relevant to 

the present study, 2nd-order segmentation does show a LVF advantage, although this is only 

very slight (Graham, Rico, Offen & Scott, 1999).  Contrarily, segmentation by a rapidly 

alternating cue type is likely to involve higher cortical regions, as the earliest level in the 

visual system at which evidence of cue-invariance is found is in V2 (Leventhal, Wang, 

Schmolesky & Zhou, 19989; Marcar, Raiguel, Xiao & Orban, 2000), and this should therefore 

                                                                                                                                                                                     

sensitive when information from multiple cue sources is available (Rivest & Cavanagh, 1996; 
Self & Zeki, 2005).  Nonetheless, it is more important for the present study to show that 
there is a segmentation advantage relative to discrimination (as this is a measure of FDF), 
and that this advantage is equivalent in the three conditions of cue type.   
9 Leventhal et al (1998) did find that a very small proportion of V1 neurons do show cue-
invariance, in that their activity correlates with the salience of a boundary irrespective of the 
cue that defines it.   
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be revealed through a LVF perceptual advantage.  In experiment two, therefore, the same 

conditions were used as those in experiment one, but they were tested selectively in the 

UVF and LVF.  The border condition remained such that the larger LVF advantage for the 

alternating-cue condition could be shown to be specific for segmentation (borders absent).  

This is important as it would suggest that the cue-invariant nature of form perception is 

specific to the processes that are solely related to edges and not regions. 

 

5.5. Experiment 2 –lower visual field advantage for cue-invariant segmentation 

 

5.5.1. Methods 

Participants 

10 observers participated in experiment two, including the author and one who 

previously took part in experiment one.   

 

Stimuli and procedure 

The stimuli used were the same as those in experiment one.  Additionally, however, 

the Gabor lattice now included the 4 central Gabor patches that were missing in experiment 

one, as subjects did not fixate the centre of the lattice.  Instead, the whole lattice could 

either appear 2.1° below or above fixation, with a high tone before stimulus onset indicating 

“above” and a low tone indicating “below”. This experiment was a 2 (border mask) x 2 

(visual field) x 3 (contrast type) within-subject design.  All 6 combinations of contrast type 

and visual field were blocked in a single session, and subjects completed 3 repetitions of a 

session without the border masks and 3 repetitions of a session with the border masks.  The 

order of these was counterbalanced across subjects.  All 6 sessions contained six 2-up, 1-

down interleaved staircases, with each staircase corresponding to the 6 combinations of 

contrast type and visual field.  Each staircase began at 4.5 Hz (11 frames per stimulus) and 

proceeded in the same way as in experiment one.  Threshold estimation for a session was 

taken by averaging the final 4 points of reversal, and a subject’s overall threshold was taken 

by averaging the thresholds from the 3 repetitions. 
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5.5.2. Results 

Frequency thresholds were entered into a 2 x 2 x 3 repeated measures ANOVA, with 

the factors border mask (present or absent), visual field (upper or lower) and contrast type 

(orientation, spatial frequency or alternating-cue).  The main effect of border mask was 

significant (F(1,9)=19.97, p=0.002), with subjects being able to detect the target at an overall 

higher frequency rate without the border masks (9.0 Hz) than with the border masks (6.6 

Hz).  Also, the main effect of visual field was significant (F(1,9)=11.55, p=0.008), with subjects 

being able to detect the target at an overall higher frequency rate in the LVF (8.7 Hz) than in 

the UVF (6.9 Hz).  The main effect of contrast type was not significant (F(1.24,11.19)=1.21, 

p=0.308; Greenhouse-Geisser corrected).  There was no interaction of border and visual 

field (F(1,9)=0.18, p=0.685), border and contrast (F(2,18)=3.25, p=0.063), or visual field and 

contrast (F(2,18)=2.25, p=0.135).  There was, however, a significant interaction of all 3 

conditions (F(2,18)=7.87, p=0.004).   

To explore this further, the 2 conditions of border mask were analysed separately 

with 2 (visual field) x 3 (contrast) repeated measures ANOVAs.  For the condition with the 

border masks present, there was only a significant effect of visual field (F(1,9)=8.83, p=0.016).  

For the condition with the border masks absent, however, there was a significant effect of 

visual field (F(1,9)=8.45, p=0.017) and an interaction between visual field and contrast 

(Greenhouse-Geisser corrected; F(1.26,11.35)=5.95, p=0.027).  Three planned paired t-tests 

were used to explore the magnitude of the visual field asymmetry for the 3 contrast types: 

whereas the average threshold was not significantly higher in the LVF relative to the UVF for 

spatial frequency contrast (t(9)=1.38, p=0.200), it was for orientation contrast (t(9)=2.44, 

p=0.037) and in the alternating-cue condition (t(9)=3.97, p=0.003), with the effect being 

greater in the latter.  Figure 5.3 illustrates this: the LVF superiority effect is noticeably 

greater for alternating-cue segmentation compared to either type of single-cue 

segmentation.  Importantly, this effect is absent in the condition with the border masks, 

indicating that this is an effect specific to segmentation, and not regional discrimination, of 

object shape. 
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Figure 5.3 Mean flicker frequency threshold results from experiment two. When the target 
segments from the background (a) there is a noticeably larger LVF superiority in the 
alternating-cue condition compared with either of the single-cue conditions alone.  
Contrastingly, no such pattern exists for when the target region must be discriminated 
rather than segmented (b), as a similar LVF superiority is found in all three cases.  Error bars 
show +/- 1 SEM, with between-subject variance removed.   

 

5.6. Interim discussion 

 

In the previous experiment, a general LVF advantage was found for all conditions.  

There was, however, a much larger advantage specific to the segmentation condition when 

the target was defined by an alternating-cue, potentially indicating the selective 

involvement of a cue-invariant integration stage at the level of V2 or beyond.  A likely neural 

candidate for this role is the lateral occipital complex (LOC), a subsection of the ventral 

processing stream known to be highly selective for form perception.  Imaging studies 

(Malach et al, 1995) and lesion cases (Goodale, Milner, Jakobson & Carey, 1991) together 

provide a strong case for this region being responsive to, and necessary for, the perception 

of object form, as well as being a likely cortical locus of object-based attention (de-Wit, 
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Kentridge & Milner, 2009a).  Most importantly, however, the neural activity observed in LOC 

is unvarying in response to changes in the type of cue that constitute the object (e.g. 

motion, texture; Grill-Spector, Kushnir, Edelman, Itzchak & Malach, 1998), is responsive to 

information from multiple sensory modalities (Kim & Zatorre, 2011) and shows greater 

activity in response to objects defined simultaneously by two cues as opposed to one (Self & 

Zeki, 2005), suggesting that it is highly cue-invariant.  Additionally, LOC shows a LVF bias 

relative to the UVF (Sayres & Grill-Spector, 2008), which is likely to explain prominent LVF 

biases in form perception by illusory contours (Rubin et al, 1996), a process known to 

depend on LOC (de-Wit, Kentridge & Milner, 2009b).  The activity within LOC in response to 

region-based information is slight in comparison to that which is edge-based (Shpaner, 

Murray & Foxe, 2009), which further suggests that it may be the cortical area that is 

responsible for the LVF superiority that was found specifically for edge-based segmentation 

in the previous experiment.   

In experiment 3, therefore, patient DF was tested with the same stimuli used in 

experiment 1.  DF’s brain damage is bilateral and is centred on LOC, thus severely impairing 

her perception of shape.  She does, however, retain low-level processes that allow simple 

segmentation, and she can perform manual actions on objects based on their form, despite 

those processes not generating visual awareness.  With her LOC damage, therefore, she 

should be capable of segmenting figures based on a single cue-type; if segmentation by a 

conjunction of features necessitates LOC, however, she should be noticeably impaired at 

this. 

 

5.7. Experiment 3 – cue-invariant segmentation in patient DF 

 

5.7.1. Methods 

Participants 

DF’s lesion is bilateral and includes complete disruption of LOC (of the ventral 

stream), whilst her early cortical areas as well her dorsal stream are largely intact.  Her 

remaining areas allow her to guide manual actions (James et al., 2003) and, despite a severe 

inability to describe object form (Milner et al., 1991), to perform segmentation tasks (Carey, 

Dijkerman, Murphy, Goodale, & Milner, 2006).  DF was 57 years of age at the time of 

testing.  Testing was carried out at the University of Durham’s Psychology Department over 
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the course of two days.  In addition, four non-age-matched controls took part in a version of 

the task.  

 

Stimuli and procedure 

The stimuli used were the same as in experiment 1 with normal observers, except 

that the duration of the intermittent mask frame was kept constant at 4 frames, rather than 

adjusting in line with the frequency of the complete cycle.  This was due to DF requiring the 

stimulus cycle to be substantially slower than that which was required in normal observers 

to reach a suitable level of performance.  At these lower frequency levels, the mask frames 

would have otherwise been presented for an unnecessarily lengthy duration, during which 

the target is not present.  This would have added a substantial amount of noise in the 

stimuli and thus an additional degree of difficulty for DF, who already found the task 

generally a lot more difficult than normal observers.    The magnitude of the orientation 

contrast was also changed; it was increased from 25° to 90°, and the spatial frequency levels 

were also changed to 1.4 and 3.5 cycles/degree.  Additionally, a method of constant stimuli 

was adopted, and more extensive practice on the task was required for DF.  Also, due to 

time-constraints, only the segmentation conditions were tested.  Ideally, given ample time, 

the discrimination condition would have been conducted in order to show that DF was truly 

segmenting in the segmentation condition.  This would have been extremely problematic, 

however, due to DF’s visual form agnosia which precludes her from discriminating visual 

orientation. 

Patient DF initially practised on the task with a gradually ascending level of difficulty.  

Two blocks of 30 trials (10 trials from each of the three conditions) were completed at 

individual frequency levels, first at 1Hz, then at 2, 3.33, 4.17, 5 and finally 6.25.  This was 

designed to familiarise patient DF with the task as much as possible before determining 

three levels of difficulty that were likely to sample her accuracy at different levels of her 

psychometric function.  Following this, 9 blocks of 45 trials were completed.  Each block 

contained the 3 contrast types (conjunction, orientation and spatial frequency) at 3 levels of 

temporal frequency (8, 10 and 12 frames), with 5 repetitions of each.  

The control subjects completed a version of this task, but at the 8.3Hz frequency 

level.  This was chosen instead of the values used in DF’s experiment because a preliminary 

test revealed that control subjects would be performing at ceiling level with these values.  
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Five blocks of trials were conducted, each containing 20 repetitions of each of the three cue-

type conditions.  

 

 

Figure 5.4. Accuracy levels from DF’s performance in experiment 3. She did not perform less 
accurately in the alternating-cue condition than the other two single-cue conditions at any 
of the frequency levels tested.  This suggests that the cue-invariant segmentation stage is to 
be found earlier than LOC.   
 

5.7.2. Results 

Figure 5.4 shows DF’s accuracy per cue-type condition across the three frequency 

levels tested.  Note that the frequency levels used sampled her sensitivity across a wide 

performance range (from ~65% to ~90%).  It is apparent that DF’s performance was 

consistent across the three contrast types.  Three Chi square analyses were conducted, one 

for each of the three frequency levels, to assess whether the number of correct responses 

for the conjunction condition was lower than the other conditions.  None were close to 

significant; for 6.25Hz, χ2
(2) = 0.07, p>0.95; for 5Hz  χ2

(2) = 0.06, p>0.95 and for 4.17Hz χ2
(2) = 

0.02, p>0.95.  This suggests that DF’s perception of the figure in the alternating-cue 

condition was no lesser than that in either of the single-cue conditions.  On average, the 

control subjects scored 88.5%, 89.5% and 89.25% in the orientation, spatial frequency and 
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alternating-cue conditions respectively.  A repeated-measures ANOVA was not significant 

(F(2,6)=0.13, p=0.880), indicating no difference in the control subjects’ scores between the 

conditions. 

 

5.8. General discussion of study four 

 

This study explored the visual system’s rapid ability to integrate information from 

different types of 2nd-order cue (orientation and spatial frequency) over time, by using a 

novel variant of FDF.  The technique of FDF was applied in order to dissociate the processes 

of segmentation from discrimination, as segmentation persists at a higher frequency than 

discrimination (Rogers-Ramachandran & Ramachandran, 1998; Norman et al, 2011).  

Experiment one showed clearly that the successful integration of alternating cues for the 

purpose of figure segmentation occurred much more rapidly than the discrimination of the 

same regions (i.e. when coincident black border masked the effect of segmentation), and 

the magnitude of this discrepancy was no smaller for the alternating-cue condition than for 

either of the single-cue conditions.  This ability to integrate information across cue sources 

is clearly an important aspect of any visual system, as the features that define an object may 

suddenly change due to environmental changes or due to changes in an observer’s 

perspective. 

The feature contrasts used in the present study are low-level computations which 

are found to occur very early in the hierarchy of the visual system, with evidence indicating 

areas as early as V1 as potential correlates (Knierim & van Essen, 1992; Sillito, et al, 1995; 

Lamme, 1995; Hallum et al, 2011), and so it is possible to imagine that the single-cue 

segmentation conditions in the current task could be completed at the level of primary 

visual cortex.  What is unclear, however, is whether segmentation by a rapidly alternating 

cue type necessitates an additional integration stage beyond primary visual cortex.  The 

second experiment investigated this by comparing segmentation and discrimination of 

single-cue and alternating-cue types in the UVF and LVF.  Upper-lower visual field 

asymmetries reveal differential processing at the level of V2 and beyond (Horton & Hoyt, 

1991; He et al, 1996) and so when they are pronounced they are likely to represent higher 

cortical functions.  A general LVF superiority was found in the task; observers performed the 

task at a higher flicker frequency level in the LVF than in the UVF regardless of whether they 
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were doing the task on the basis of segmentation or discrimination.  For segmentation, 

however, there was a noticeably larger LVF superiority effect in the alternating-cue 

condition than for either of the single-cue conditions; an interaction which was not present 

for discrimination of the same stimuli.  This result suggests that at least a greater degree of 

higher cortical involvement was needed for the perception of form in the alternating-cue 

condition compared to the single-cue condition.   

It is important to note, however, that the LVF advantage was not limited to the 

alternating-cue condition; a significant effect was also found in the single-cue orientation 

condition.  This does corroborate previous results (Graham et al, 1999; Hofmann & Hallett, 

1993) and suggests that 2nd-order segmentation by a single cue type involves cortical 

involvement at, or indeed beyond, the level of V2.  It could alternatively be, however, a 

consequence of a visual field asymmetry in attentional resolution (He et al, 1996).  This is 

unlikely to be the case, however, as texture segmentation is considered to be preattentive 

(at least the early components; see Heinrich, Andrés & Bach, 2007), thus not requiring 

attentional scrutiny.  The attention explanation is also not supported by Levine and 

McAnany (2005), who demonstrated that LVF advantages in visual processing do not vary 

with task difficulty, indicating that the attention explanation is an unlikely one.  Indeed, it is 

important to note that there is some evidence to suggest that single-cue segmentation for 

the purposes of form perception may involve some extrastriate areas, namely V2 (Schira, 

Fahle, Donner, Kraft & Brandt, 2004; Anzai, Peng & van Essen, 2007). 

Additionally, the LVF advantage found in the present study was not specific to the 

segmentation condition; it was found as a main effect in the discrimination condition.  It is 

certainly more likely in this case that attention may be a contributing factor, as the task 

required observers to judge the stimuli with more scrutiny compared to the segmentation 

condition.  What is important, however, is that the pattern of results found in the 

segmentation condition was not found in the discrimination condition, implying that the 

relatively large asymmetry specific to the alternating cue segmentation condition is 

indicative of some additional involvement of extrastriate cortical area(s).  It is also important 

to discuss whether the visual field asymmetry may in fact simply reflect differential 

processing within primary visual cortex, and not beyond.  It is extremely unlikely that this is 

the case, as primary visual cortex is divided roughly equally between the two visual fields 

(Sereno et al, 1995).  Consequently, asymmetries at the level of primary visual cortex are 
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rarely reported, and although Liu, Heeger and Carrasco (2006) found stronger activation for 

LVF stimuli than for UVF stimuli, it was specific only to the vertical meridian.  In contrast, the 

stimuli in experiment two of the present study were presented in visual quadrants (3.26° 

from the meridian) and so the behavioural asymmetries are unlikely to reflect differential 

activity solely in primary visual cortex.   

The results gathered from patient DF suggest that segmentation by a rapidly 

alternating cue type is possible without LOC, as she was no less accurate in this condition 

compared to either of the single-cue segmentation conditions across the three frequency 

levels included.  DF, however, did not show the increased sensitivity in the alternating-cue 

condition relative to the single-cue conditions, which was present in normal observers in 

experiment one.  The results could be interpreted, therefore, as suggesting that the absence 

of this multiple-cue facilitation in DF is evidence of LOC’s role in cue-invariant segmentation.  

In the control subjects tested in experiment three, however, no such facilitation was found.  

This is somewhat at odds with the findings from experiment one, but may be explained by 

the change in the temporal duration of the intermittent mask frames between the 

experiments.  In experiment one, they were presented for the same duration as the 

stimulus frames, which varied according to the staircase procedures, whereas in experiment 

three they were set constantly at 40ms.  It may be that the onset-asynchrony between the 

cue types is an important factor in determining how well the information from different cue 

sources is integrated.  There is no psychophysical work to support or deny this, however, 

and so it is merely speculation.  

Furthermore, as the frequency levels required to assess DF at an approximate 

threshold level were comparable to those of normal observers when discriminating the 

regions, it is important to address whether DF was truly “segmenting” the target and not 

relying on a process of discrimination.  As DF’s performance was not assessed with the 

border masks, it is not possible to demonstrate this empirically.  It is highly unlikely, 

however, given that DF retains early segmentation processes (Carey et al, 2006), that she 

was simply discriminating the regions.  Additionally, if she were in fact relying on regional 

discrimination, it would be expected that she would be performing at chance certainly in the 

orientation cue condition due to her visual agnosia precluding her from discriminating even 

the most basic orientation signals.  As shown by the present results, however, she was 

clearly able to do this above chance. 
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The notion that LOC may not be necessary for cue-invariant segmentation is 

somewhat at odds with previous neuroimaging studies (e.g. Self & Zeki, 2005; Grill-Spector 

et al, 1998) which have shown activity within it to correlate with object perception 

regardless of the cue from which the object is defined, and even shown increased activity 

when multiple cues are integrated.  The interpretation of the present results, however, is 

limited to the types of cue used, namely orientation and spatial frequency contrast, and the 

integration of these cues has not been studied specifically in neuroimaging, making 

comparisons difficult.  The integration of colour and motion, for instance, studied by Self 

and Zeki (2005) and which is known to be a relatively slow process (Holcomb, 2009), may 

indeed only manifest at the level of primary visual cortex.  Alternatively, however, it may be 

the case that the observed invariance of LOC only reflects the activity that is fed-forward 

from preceding areas and does not reflect segmentation per se, but rather the construction 

of an object representation. 

In conclusion, it is proposed that the cue-invariant processes that underlie visual 

segmentation by an alternating cue type are to be found prior to LOC but at least at the 

cortical level of V2.  A reasonable conclusion is that V2 itself is capable of representing cue-

invariant contour information, as it is an area known to show signs of cue-invariance when 

processing contour information (Leventhal et al, 1998; Marcar et al, 2000).    
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6. Study Five - Segmenting objects for attention in the absence of awareness 

 

6.1. Aim of the following experiments 

 

This thesis has largely considered the early feature-based processes of the visual 

system; that is, the elementary computations that are performed relatively early in the 

visual system that describe 2nd-order contour- and surface-based information.  The 

transition of such information into that of a greater perceptual representation, however, is 

more complex to understand.  The visual brain has at its disposal a number of tools that go 

beyond these feature-based processes, without which our visual experience would be little 

more than meaningless lines and colours.  What can be termed the Gestalt properties of 

perception describe how the brain constructs such meaningful representations using a set 

of a priori assumptions about the organisation of its external environment.  One 

fundamental task in this regard is the assignment of figure-ground relationships, upon which 

the contents of our conscious experience is entirely dependent: bistable perceptions, for 

example, are powerful demonstrations of how scene representations can switch 

dramatically despite no changes in stimulus information.   

How a visual scene is interpreted with respect to its contents is important, as certain 

perceptual benefits are attributed uniquely to the figures or objects relative to their 

background (Lamme, 1995), and the edge- and region-based features that are perceived to 

pertain to a single object are grouped and represented in such a way that attention can be 

distributed to these features in a single object-based manner (objecthood).  The results of 

Naber, Carlson, Verstraten & Einhäuser (2011), for example, quite clearly show that the 

perceptual benefits that are associated with objecthood (i.e. object-based attention) are not 

the result of low-level feature-based representations, but of a representation of an object as 

a “unique representational entity” (Naber et al, 2011, p.6).  In the stimuli of their 

experiment, the percept changed spontaneously between that of a bound object and that of 

an unbound constellation of features, despite no physical changes in the stimulus.  Only 

when the bound object was perceived was there an object-based facilitation effect at and 

within the object’s borders.  The presence of an “object-based attention effect”, therefore, 

may be taken as an implication of the encoding of an object representation (i.e. a distinct 
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and single perceptual entity that is not restricted to a spatial reference frame).  It is 

unknown, however, at what stage low-level feature information is integrated and encoded 

into an object representation and, in turn, at what stage this object representation becomes 

a conscious one.  It may be the case that those stages are one and the same; when a 

perceptual “object” is formed, that object enters consciousness.  Alternatively, as it is 

known that figure-ground relationships are determined early in the visual system (perhaps 

in primary visual cortex; Lamme, 1995), and may be sufficiently encoded through 

preattentive processes (Kimchi & Peterson, 2008), an object representation may remain 

below the level of consciousness and nonetheless be available to influence other processes 

of perception, attention and action.   

The remaining part of this thesis aims to test this theory, by determining whether 

objects, defined by the rapid 2nd-order segmentation processes documented throughout 

this thesis, can be selected as units of attention without ever entering awareness.  The 

phase-reversing stimuli that have been used prevalently throughout this thesis offer a novel 

way of testing this; if an object is defined by an orientation contrast whose sign continually 

reverses such that the contour is no longer consciously perceived, does the rapid 

segmentation of the object against its background still allow that object to be selectively 

enhanced by attention? This section of the thesis will first briefly review what is known of 

the mechanisms of attention, with focus on the relationship between attention and 

awareness.  The methodological and theoretical limitations of studying attention without 

awareness will also be discussed.  

 

6.2. Review of attention and attention without awareness 

 

6.2.1. Functional aspects of attention 

The functionality of visual attention reflects the need to filter an overwhelming 

amount of sensory input.  As neuronal activity is metabolically and temporally costly, and 

given the fundamental limits of energy consumption imposed upon the brain (Clarke & 

Sokoloff, 1994), there is a requirement that cognitive resources are distributed flexibly.  This 

provides the evolutionary bases for a mechanism such as attention to arise in an organism.  

Some authors claim that it is the very process of attending that turns “looking” into “seeing” 

(Carrasco, 2011); that is, without a mechanism by which to withdraw from and to engage in 
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the processing of certain information in accordance with task demands or current goals we 

are effectively blind.  Cases of visual neglect, often described as a disorder of attention, 

certainly bolster this view, as patients suffer from a severe inability to perceive 

contralesional stimuli. 

Inherent within any theory of visual attention is the notion that stimuli in the 

environment “compete” for neural resources.  The photoreceptive cells on the retina 

encode information about the external world, and once this information is subsequently 

projected to the subcortical and cortical areas of the visual system, these neural 

representations of the outside world interactively “compete”.  The biased-competition 

model, for example, states that when an organism selectively attends to a particular 

location in the visual field, the neural representations of information present at that area 

are enhanced, and those at neighbouring competing regions are suppressed (Desimone & 

Duncan, 1995); a theory supported by neuroscientific evidence of changes in brain activity 

(e.g. see Beck & Kastner, 2009).  Competition between stimuli has even been observed 

within the same cortical receptive field (Moran & Desimone, 1985), with the outcome of 

activity representing a biased average of responses to the individual stimuli (Reynolds, 

Chelazzi & Desimone, 1999).  Although models have been postulated in which the selection 

criterion is likened to a “spotlight” (Posner, 1980) or a “zoom lens” (Eriksen & Yeh, 1985), 

such models are not able to fully describe how attention can function by encompassing 

disparate spatial locations (see Jans, Peters & De Weerd, 2010), or by selecting a unit of 

perception that is not restricted to a spatial reference frame (this will be discussed later in 

this section).   

It is essential, when discussing the process of attention, to distinguish it from that of 

orienting.  Specifically, when attention operates independently of accompanying eye 

movements it is said to be covert.  Some see covert attention as being purely concomitant 

with overt eye movements, and serving only to enhance visual processing at an eventual 

saccadic destination, thus only being supplementary to overt attention (Findlay, 2005).  

Others, however, have shown that the two processes have dissimilar characteristics (see 

Kowler, 2011; Nakayama & Martini, 2011), and one function of covert attention is likely to 

be the monitoring of incoming information in order to determine the position of upcoming 

saccades (Carrasco, 2011).  Nonetheless, when studying the behavioural and neural effects 

brought about by attention, it is essential to rule out the possibility that a response 
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enhancement is not solely the consequence of superior processing brought about through 

foveating. 

Covert attention (referred to from here on generally as attention) comprises two 

systems: the endogenous and exogenous systems.  William James (1890) described the 

essential distinction between these systems: the first is voluntary whereas the second is 

reflexive.  In the laboratory, these separate mechanisms are most often studied using 

various modifications of Posner’s (1980) pre-cueing paradigm, the essence of which involves 

the presentation of a visual target that is immediately preceded by an attentional cue.  For 

endogenous attention, the cue typically takes the form of something symbolic (e.g. a 

centrally presented arrowhead), and the likelihood with which this stimulus correctly 

indicates the upcoming target’s location is varied.  At high likelihoods, an observer is 

strongly encouraged to utilise the cue, whereas a neutral cue can be selectively ignored 

(Giordano, McElree & Carrasco, 2009).  For exogenous attention, typically a peripheral cue 

(i.e. a transient luminance flash) is shown before the target, which observers are not able to 

easily ignore when it is of no informative value (Giordano et al, 2009).  Observers are 

quicker, and sometimes more accurate, in identifying/detecting a target when their 

attention is directed either endogenously or exogenously by a cue, compared to when the 

cue is not used at all.  Conversely, observers are slower when their attention is misdirected 

by a cue.  Using such methodologies, voluntary attention is shown to be sustainable over a 

relatively long time period, whereas the enhancement component of reflexive attention 

peaks somewhere between 100 and 120ms before the effect disappears and leads to a 

repulsion effect away from the attended region, known as inhibition of return (Posner & 

Cohen, 1984; Liu, Stevens & Carrasco, 2007; Remington, Johnston & Yantis, 1992).  Such 

behavioural differences, as well as others (e.g. Briand, 1998; Lu & Dosher, 1998, 2000), point 

to a distinction between purely endogenous and purely exogenous attention, the crux of 

which is that endogenous attention is under top-down control and is determined by learned 

associations, whereas exogenous attention is not; it is automatic.   

This dichotomy, however, has been challenged on some grounds.  Some types of 

attentional cue, for instance, elicit behavioural effects that are simultaneously suggestive of 

both endogenous and exogenous processing.  The direction of eye gaze in another individual 

is a powerful cue, for example, even when the cue is non-informative (Friesen & Kingstone, 

1998; Driver et al, 1999), and induces a rapid facilitation of processing at the cued location 
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(typical of an exogenous system), but also is not followed by inhibition of return (typical of 

endogenous attention; McKee, Christie & Klein, 2007).  Indeed, some have argued for an 

entirely separate form of attention known as “automated symbolic orienting” to explain 

such instances (Ristic & Kingston, 2012).  Furthermore, when a peripheral cue (i.e. an 

“exogenous” cue) correctly predicts the location of an upcoming target in a location in space 

that is non-congruent to that of the cue itself, then facilitation can be seen in this region 

(Lambert, Naikar, McLachlan & Aitken, 1999).   As this involves the learning of a contingency 

(i.e. a set of rules) to successfully interpret and use the cue, a process which necessitates 

time to develop in an observer, it is therefore said not to be purely exogenous.  Additionally, 

as such non-congruent spatial contingencies are learned with sub-threshold cues, it casts 

doubt on another distinction that endogenous attention is conscious and voluntary, and 

exogenous attention is not.  The distinction between what have classically been described as 

endogenous and exogenous attention, therefore, is certainly not clear-cut; the term 

exogenous, however, should, if purely for descriptive purposes, be reserved for those 

instances in which the allocation of attention is automatic (i.e. when the cue’s effect is not 

based on learned contingencies).  

Regardless of which form of attention is being discussed, there is a consensus that, 

generally, attention is a selection process that involves two key components: the 

withdrawal from some things with the enhancement of other things.  How exactly this is 

achieved is not exactly known, however; it may be the enhancement of the signal that is the 

determining factor, or it could be the suppression of the representation of external noise 

and distractors that are important.  It is also possible that attention affects a more cognitive 

component of perception (e.g. changes in decision-criteria that may involve weighting 

information from different sources differently).  Some authors claim that these may not be 

mutually exclusive (Carrasco, 2011), and are likely to each contribute to the behavioural 

effects brought about by attention. 

 

6.2.2. Attention without awareness 

The focus of the remainder of this section, and of this thesis, is whether attention 

can be said to be sufficient for awareness.  In other words, is it that the process of attending 

to something invariably leads to awareness of that very thing?  The phenomenon of 

awareness is not easily understood, but it is clear that it is something which is selective; we 
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can only ever be aware of a fraction of what we potentially could at a given time.  The 

content of awareness, therefore, is determined by some selection process, which has 

strongly been suggested by some to be attention, implying that what we attend to does, in 

fact, determine what we see.  This echoes the previously mentioned statement at the start 

of this chapter that attention turns “looking” into “seeing”. 

Relying purely on introspection it is hard to disagree with this notion.  It is, of course, 

necessary to test this notion formally and empirically.  In theory, one only needs to 

demonstrate evidence of attention in the absence of awareness to refute this assumption.  

Unfortunately, this is not as simple as it may have initially been envisioned.  As previously 

discussed, attention operates in many forms and it is often difficult to know exactly how the 

cue is driving the attentional effect.  There are many demonstrations of attention operating 

without awareness of the attentional cue (e.g. Lambert et al, 1999; Kentridge, Heywood & 

Weskrantz, 1999) and without awareness of the cue’s status as a cue (e.g. Lambert & 

Sumich, 1996), but it remains most important to show that attention can facilitate the 

processing of a target that remains unseen (Kentridge, 2011).  Specifically, one important 

question that is often asked by many researchers is “Can we attend to something that we 

are not aware of?”  From a philosophical and psychological point of view this is of particular 

interest because it had long been assumed that prioritization of information by attention 

was both necessary and sufficient for consciousness (Mole, 2008).  Remarkable 

demonstrations of inattentional blindness, in which otherwise conspicuous visual events are 

rendered invisible with diverted attention, bolstered this assumption (Mack & Rock, 1998).  

It has now been shown quite conclusively, however, that attention, at least in the manner 

envisioned by Posner (1980), is not sufficient for generating visual awareness.  Kentridge, 

Heywood & Weiskrantz (1999) demonstrated this in a blindsight patient who declares no 

awareness of visual experience in his right hemifield as a result of unilateral striate cortex 

damage and yet retains remarkably accurate performance in some forced-choice 

discriminations made within that part of his visual field (Weiskrantz, 1986).  Selective 

attentional modulation was observed in this patient in his responses to cued stimuli 

compared with uncued stimuli in his blind field, in very much the same way as a normal 

“aware” observer in a Posner (1980) task.  Similar effects have since been found in normal 

observers, when a masked unseen prime has a greater effect on the subsequent 

discrimination of a target when attention is directed towards it (Kentridge, Nijboer & 
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Heywood, 2008; see also Sumner, Tsai, Yu & Nachev, 2006).  Arnold, Kinsella and Kentridge 

(unpublished) have since replicated the original Kentridge et al (2008) findings using 

peripheral exogenous cues in place of central symbolic ones, lending strong support for the 

claim that attention, regardless of the nature of its deployment, is not sufficient for 

awareness.   

Importantly, these findings cannot be explained by an overt orienting response, as 

opposed to covert attention, as Kentridge and colleagues monitored eye movements made 

by subjects throughout the experimental procedures.  Furthermore, a general non-specific 

enhancement (or alerting) response elicited by the cue can not explain the findings, as the 

blindsight patient studied by Kentridge and colleagues was able to direct his attention to a 

non-congruent spatial location to that of the cue through the learning of a reverse 

contingency.  It should also be noted at this point that evidence from other fields of 

cognitive neuroscience support the view of a distinction between the processes of attention 

and awareness.  Magnetoencephalographic recordings, for instance, have pointed to 

independent neural mechanisms regulating attention and awareness in normal observers 

(Wyart & Tallon-Baudry, 2008).  Stimuli that were consciously seen induced greater mid-

frequency gamma-band activity regardless of the subject’s attention, whereas the effect of 

attention on the same stimuli modulated high-frequency activity regardless of the subject’s 

awareness. 

In Posner’s (1980) initial model of attention, which has exclusively been discussed up 

until this point, selection is based on a simple spatial primitive in which attention is focussed 

on a single point in space and spreads uniformly around it.  It has been argued that in the 

cases of dissociation of attention from awareness, it is only spatial attention that has been 

manipulated, whereas awareness has been assessed typically on the basis of the visibility of 

objects (Mole, 2008).  In other words, the unit of selection and the object of awareness may 

not have been truly equivalent in studies claiming to demonstrate dissociations between 

attention and awareness.  Kentridge (2011) argues, however, that, although spatial 

attention is being allocated, it is in fact the object-related properties (e.g. colour, form) of a 

stimulus that are being enhanced.  This is further supported by evidence that has shown a 

feature-specific form of attention to be insufficient for awareness (Kanai, Tsuchiya & 

Verstraten, 2006), and that pop-out based on a feature singleton occurs in the absence of 

awareness (Hsieh, Colas & Kanwisher, 2011).  Attention is, after all, not limited to a purely 
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spatial reference frame; in experiments of Kanai et al (2006) and Hsieh et al (2011), it is a 

feature-based model of attention that has been studied, in which attention serves to 

enhance the processing of spatially disparate stimuli that share a particular feature, at the 

expense of those that don’t share that feature (Carrasco, 2011).  Studying such a spatially 

non-specific form of attention is likely to lead to a more complete understanding of the 

relationship between attention and awareness more generally, as it allows us to form 

conclusions on attention irrespective of what is the unit of attentional selection.   

 

6.2.3. Object-based attention without awareness? 

Of specific interest in the debate of attention without awareness is the phenomenon 

of object-based attention, in which objects of arbitrary shape form the “units” of attentional 

selection (Duncan, 1984; Egly, Driver & Rafal, 1994).  Egly and colleagues (1994) 

demonstrated the importance of objects in the deployment of attention using a 

modification of Posner’s (1980) task, in which visual processing of a target was shown to be 

more rapid when it appeared within the same object as the preceding cue compared with 

when it was seen to be within a separate object, despite both cue-target pairings being 

equidistant.  This can be explained by a model in which attentional selection operates on 

the elementary figures that are preattentively segmented by the visual system, although 

some authors have claimed that attention in this manner is no more than selective 

spreading of what is fundamentally spatial attention within an object (see Martinez et al, 

2006).  Object-based attention, nonetheless, provides a very good basis on which to test the 

theory that attention is not sufficient for awareness.  This is because the “object” of 

selection in object-based attention is clear and known, whereas there is some contention as 

to what is truly selected in spatial attention.  Additionally, showing evidence of object-based 

attention without awareness would further bolster the general claim that attention is not a 

sufficient precondition for awareness.   

Could object-based attention without awareness be possible? Milner and Goodale’s 

(1995) influential framework of the division of labour between the ventral and dorsal 

streams of visual processing predicts that mediation of object-based attention is to be found 

in the ventral stream.  It is now known more specifically, through neuropsychology, that it is 

likely to be the lateral occipital complex (LOC), a high level cortical area found on the ventral 

stream, which is necessary for the effects of object-based attention to emerge (de-Wit, 
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Kentridge & Milner, 2009b).  There is much evidence to suggest that activity within the 

ventral stream is strongly correlated with conscious perception.  Single unit recordings in 

monkeys, for example, suggested that cells within the inferotemporal cortex were only 

active during conscious perception of a stimulus (Sheinberg & Logothetis, 1997), and there 

is a considerable amount of neuroimaging work in humans that links the contents of 

conscious perception to the processes of the ventral stream (e.g. Fang & He, 2005; Pasley, 

Mayes & Schultz, 2004).  Thus, in order to determine whether object-based attention can be 

found without object awareness we must first ask whether activity in such high-level cortical 

areas can ever occur without being accompanied by awareness, which would be necessary if 

we are to assume that object-based attention requires the construction of an object 

representation in LOC.  Some evidence does suggest that activity within the ventral stream 

is not sufficient for awareness.  For instance, a category-specific ERP component indicative 

of ventral occipitotemporal processing has been shown to be present for face stimuli that 

never reach awareness (due to binocular suppression; Sterzer, Jalkanen & Rees, 2009).  

Results from fMRI corroborate this, as areas of the ventral stream have been shown to 

encode high level object-related aspects of stimulus information (e.g. the presence of a face 

vs. that of a house; Sterzer, Haynes & Rees, 2008) when the stimulus information is 

concealed from awareness through binocular suppression.  The category-specific activity, 

however, was only observable through high-resolution fMRI with sensitive multivariate 

analysis techniques, suggesting that the unconscious activity in high-level areas is weak but 

nonetheless present.  This neural trace may be weak because only a small population of 

neurons may be capable of encoding category-specific information about stimuli that never 

reach awareness.  Indeed, in the single unit study of Sheingberg and Logothetis (1997), a 

small proportion of cells in the monkey inferotemporal cortex were stimulus-selective 

independently of conscious perception despite the overall pattern of responses suggesting 

otherwise.   

As shown, the activity of the ventral stream of processing is not exclusively 

associated with awareness, as under some conditions it can be shown to be insufficient for 

generating awareness, albeit with less intensity.  The same can be said specifically of LOC; 

although an object representation specifically within LOC is strongly correlated with the 

perception of that object (Carlson, Rauschenberger & Verstraten, 2007), it may not 

necessarily be so (Schira, Fahle, Donner, Kraft & Brandt, 2004).  Schira and colleagues, for 
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instance, found that when a figure defined by an orientation contrast was presented outside 

of the fovea, and when this figure went unnoticed due to attention being directed to a 

demanding task, neural representation of the figure was nonetheless observed in LOC.  

Lamme (2003) notes that such activity may be possible in the absence of awareness due to 

the lack of cortical feedback from the high-level to the low-level areas, which he claims to 

be necessary for awareness.  The initial feedforward sweep activity, he states, is 

unconscious and can reach parietal and temporal areas within 60ms following stimulus 

onset.  The outstanding question is, of course, whether the unconscious representations of 

objects found in LOC can be selectively modulated by attention.  What is unclear from these 

experiments alone, however, is whether the object is truly being encoded as an object by 

the brain; without demonstrating behaviourally the advantages conferred by objecthood, 

this is not possible.  Pursuing the effects of object-based attention in the absence of 

awareness, therefore, would clarify the issue. 

In an effort to dissociate object-based attention and object awareness in an Egly et al 

(1994) cueing paradigm, Ariga, Yokosawa and Ogawa (2007) found that awareness of 

objects was in fact necessary to produce object-based attention effects.  They used objects 

defined by illusory contours and found no evidence of a same-object RT advantage when 

subjects were unaware of the objects.  Ariga et al, however, manipulated object awareness 

by changing the preview time of the objects before the onset of the target; in the unaware 

condition the objects were presented simultaneously with the target, thus there was no 

delay between the onset of the objects and that of the target.  The preview time is 

important, as objects may need to be present for between 90 and 300ms before the onset 

of the cue/target before object-based selection develops (de-Wit, Cole, Kentridge & Milner, 

2011).  Their results, therefore, can simply be explained by the fact that object-based 

attention did not have a chance to develop in the unaware condition.     

Using a different method, with ample preview time, Chou and Yeh (2012) recently 

showed that object-based attention could occur in the absence of object awareness.  They 

masked the objects from awareness using the technique of continuous flash suppression 

(Tsuchiya and Koch, 2005), in which one eye is presented with a highly dynamic and 

colourful image to suppress input from the other eye (in this case the objects in an Egly et al 

paradigm) from entering awareness.  Two conditions were tested: the aware condition and 

the unaware condition, in which the contrast of the rectangles was set at either 100% or 6%.  
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They found a significant same-object advantage in both cases.  For the assessment of 

awareness they required subjects to discriminate trials in which the objects were present 

from those in which they were absent in a signal detection procedure.  Unfortunately, 

however, within this test block, both types of conditions were interleaved along with trials 

in which no objects were present, with only four trials per condition in total.  Unsurprisingly, 

Chou and Yeh found large detection rates (on average 96.25%) for high-contrast objects, but 

not for low contrast objects (3.75%).  As well as there being a potential adaptation-induced 

after-image subsequent to viewing high-contrast objects, which would have decreased the 

sensitivity to low-contrast objects (this is certainly the case given that the objects were only 

ever presented horizontally and therefore in the same retinal location), the authors did not 

carry out any assessments of sensitivity independently of bias (i.e. a d’ measure), and did 

not conduct nearly enough trials in order to be able to do this confidently.  It is impossible 

to rule out the possibility that subjects simply shifted their criterion along their decision axis 

in accordance with their being “aware” trials interleaved with “unaware” trials and “absent” 

trials.  In other words, subjects might have been able to detect the low-contrast objects if 

the high-contrast objects were not included in the block.  This point leads fittingly into the 

following discussion on what is the most appropriate method with which to assess 

awareness of primes and cues in unconscious attention experiments. 

 

6.3. Assessing awareness of “unseen” stimuli  

 

In tasks demonstrating attention without awareness, it is often very easy to 

determine whether an effect of attention is present in an experimental setting.  What 

exactly that effect means is perhaps more contentious, but it is more difficult to determine 

with reasonable confidence that an observer is not aware of a particular stimulus.  This 

stems from the inherent difficulty in qualifying awareness, but also from the evidentiary 

axiom “absence of evidence is not evidence of absence”.  There are also, however, more 

methodological problems imposed upon the study of attention without awareness, which 

are detailed now in this section. 

Awareness is an entirely private experience, with no directly observable external 

effect, so how can it be measured reliably? For many reasons it may seem sufficient to 

simply ask for a report of consciousness in the observer: “e.g. did you see an elephant?”  An 
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advantage to such an approach is that it appeals directly to the content of consciousness, 

but it is lacking in that it will necessitate some memory of the object of consciousness, and 

numerous biases affect the content of an observer’s report independently of their 

experience.  An alternative approach is to employ some procedure that requires the 

observer to make judgments about some visual information that they may or may not claim 

to be aware of.  This is only valid, of course, on the assumption that observers’ responses in 

such a task are directly and positively related to their visual experience.  Such an association 

is often not found, however, as neurological disorders in visual awareness reveal a counter-

intuitive ability of patients to accurately discriminate some property of their visual input 

whilst remaining adamant that they have no visual experience of such information 

(Azzopardi & Cowey, 1997; this may also be the case for normal observers - Kolb & Braun, 

1995).  Thus it will always be questionable if a discrimination performance above chance is 

found as to whether that truly represents awareness of what is being discriminated.  

Conversely, a discrimination performance that is not statistically different from chance is 

considered in some cases to be strong evidence of a lack of awareness (it would be 

extremely unlikely that an observer may have awareness of an object/event and fail to 

report it above chance, given that the instructions and task are presented clearly).  

In order to minimise the number of erroneous experimental conclusions of 

awareness (or lack thereof) it is therefore necessary to employ an appropriate design and 

measurement of discriminability.  Most commonly, sensitivity is calculated through 

comparing an observer’s hit rate with their false alarm rate on a signal detection task.  In a 

yes/no design, for instance, observers are presented with a single-interval trial that may or 

may not contain a target.  Observers are instructed to indicate whether the target was 

present or absent.  The table below (table 6.1) represents the four outcomes for a given 

trial in a signal detection task, based on an observer’s response relative to the reality of the 

stimulus.  

 

Table 6.1. Response outcomes in a signal detection task. 

 Response: Present Response: Absent 

Reality: Present Hit Miss 

Reality: Absent False Alarm Correct Rejection 
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Thus, an observer’s hit rate (H) is represented by the proportion of trials in which the 

observer responds “present” for when the target is actually present, or 

H=p(‘’present’’|PRESENT).  The false alarm rate (F), conversely, is represented by the 

proportion of trials in which the observer responds “present” for when the target is actually 

absent, or F=p(‘’present’’|ABSENT).  Two important statistics can be calculated on the basis 

of these two values: 

 Response criterion (or bias): a measure of an observer’s tendency towards one 

particular response (“Present” or “Absent”) irrespective of the stimulus’s true 

presence.  This is typically represented either as a likelihood ratio (β) or a criterion 

(c).  The advantage of using the latter as an estimate is that it is not affected by a 

change in sensitivity.    This is calculated as c=-0.5*[z(H)+z(F)], and is expressed in 

standard deviation units, representing the distance between the neutral criterion 

and the observer’s (set) criterion.  In other terms, when c=0, an observer does not 

respond preferentially with either “present” or “absent” (i.e. a neutral criterion).  An 

observer can choose to set a liberal criterion, at which the cost of a miss weighs 

more heavily than that of a false alarm, or a conservative criterion, at which false 

alarms weigh more heavily than misses.  Thus, the position at which an observer sets 

their criterion influences the number of “present” and “absent” responses they give 

overall; this is also known as a bias.  See figure 6.1 

 Sensitivity (d’): a bias-free measure of an observer’s ability to detect the presence of 

a target.  This is calculated as d' = z(H) - z(F), and is expressed in standard deviation 

units as the distance between the signal distribution and the noise distribution.  A 

value of 0, therefore, would indicate that the two distributions are indistinguishable 

for the observer, and is very likely to indicate a lack of awareness to the target.  d’ 

assumes that both distributions are normal and have equal variance.  In the more 

general case, however, da comes to represent sensitivity when it is not assumed that 

the distributions share the same variance:  
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As this measurement is independent of an observer’s response bias (e.g. a tendency 

to respond “present” consistently more often than “absent” independently of signal 

sensitivity), d’ is a very durable estimation of an observer’s sensitivity to the signal. 

 

 

Figure 6.1 Graphical illustration of the decision factors present in signal detection theory, 
represented on a horizontal perceptual strength axis.  The two curves represent probability 
distributions for neural signals present in an observer for stimuli consisting of noise (N; left 
distribution) and noise + signal (S; right distribution).  The solid grey line represents a level 
at which the observer might choose to set their criterion (c), above which they decide 
signal, and below which they decide noise. It is assumed in models of signal detection that 
the two distributions overlap, implying that the two types of stimuli are never truly 
separable by the observer regardless of their criterion, resulting in misattributing some 
noise stimuli as signals (false alarms) and some signal stimuli as noise (misses).  The dashed 
vertical line represents a neutral criterion, with no bias in responding with signal or noise.  
The distance labelled d’ describes the observer’s sensitivity to the signal, which is what is 
typically estimated in methods of signal detection theory. 

Additionally, it is often desirable to include a confidence-rating scale to accompany 

observers’ responses in a yes/no task.  This offers the opportunity for observers to give an 

indication of awareness on a scale that is not dichotomous.  In a yes/no design, for example, 

an additional confidence rating on a scale of 1-4 provides in total an ordinal scale of 8 

responses, allowing a more sensitive measurement of signal sensitivity under the 

assumption that confidence varies with perceptual strength.  Such rating scales allow 

observers to indicate changes in their bias; an n-point scale for instance divides the 
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perceptual strength axis (in figure 6.1) into n corresponding levels, from which n-1 criterion 

points can be inferred.  A total of n-1 points on a receiver operating characteristic (ROC) 

curve (see figure 6.2) can thus be constructed by accumulating the hit rate and false alarm 

rate as one moves from the most extreme criterion to the lowers criterion.  It follows then, 

that an ROC with a linear plot indicates that across confidence ratings, an observer does not 

show an ability to systematically minimise false positive rates whilst maximising true 

positive rates.  Conversely, a curve which bows upwards (i.e. large Y values for relatively 

small X values) betrays the hypothesis that the observer could not distinguish the two 

conditions and thus could have had awareness of the stimuli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 An example of a receiver operating characteristics (ROC) curve.  The x axis 
represents an observer’s false positive rate (or false alarm rate), and the y axis their true 
positive rate (or hit rate).  The points on the graph show these hit rate and false alarm rates 
at different levels of an observer’s criterion.  In psychophysics, these points are usually 
determined by requiring an observer to give a rated confidence response, and so each point 
comes to represent sensitivity (d’) at a different criterion (c). 

Thus, an ordinal measurement of sensitivity, using a confidence-rating design, 

derived from the analysis of hit rates and false alarm rates seems a powerful tool to truly 
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determine whether an observer has any awareness of a stimulus.  It should be noted, 

however, that finding a positive d’ with such methods is not entirely sufficient to claim 

awareness; Azzopardi & Cowey (1997) showed that a blindsight patient (GY) declared no 

awareness and yet showed above-chance performance in a confidence-rating yes/no task 

and 2afc task.  Thus, problems exist even with carefully constructed signal detection 

methods, as “good performance” may imply nothing more than the processing of 

information below a threshold of awareness.  Contrarily, a d’ measurement that is not 

significantly different from 0 in a confidence-rating signal detection method is certainly 

powerful evidence of a lack of awareness.  In other words, a d’ of 0 may be sufficient but not 

necessary for implying lack of awareness.  A careful approach, therefore, is required that 

necessitates both a subjective report and an extensive objective measurement of sensitivity. 

The validity of the d’ measurement, however, is often restricted to the type of task 

used.  This is most applicable to scenarios in which d’ is used to claim an absence of 

awareness of a stimulus (e.g. a prime or cue) which has been shown to indirectly affect 

perception or performance.  An observer may, for instance, show a speeded discrimination 

of a target that is validly predicted by a masked (unseen) cue, compared to when it is not 

predicted.  A logical step would be then to determine in a subsequent detection task that 

observers can not discriminate the property of the cue that was central to the effect in the 

previous task (e.g. its location).  Some researchers rightfully argue for complete parity 

wherever possible between tasks that independently measure direct and indirect access to a 

cue (Reingold & Merikle, 1988).  The following criteria have been suggested: 

   

1. Task context: stimulus sequences are presented in the same way 

2. Stimulus states: performance of the same task twice, once on the cues and once on 

the targets 

3. Perceptual sensitivity: avoidance of response bias 

4. Same response metric: use of same scale to measure effects  

 
Typically, the above criteria are met in studies that set out to determine the unconscious 

effects of a cue/prime, although often with the exception of the “same response metric”.  

This is because the indirect measurement of the effect of a cue is typically done on a ratio 

scale (e.g. RT), whereas direct measurement is usually only required on a nominal or ordinal 
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scale (e.g. a dichotomous response, or a confidence-rating scale).  In addition to the above 

criteria, however, Vermeiren and Cleeremans (2012) argue that the two tasks should only 

be equated insofar as attention is not distributed differently between them.  Specifically, if 

observers are instructed to ignore a cue (or indeed not informed at all of its presence) in a 

cueing task, and then instructed to discriminate the cue (and only the cue) in a subsequent 

signal detection task to assess awareness, then the effect of voluntarily directing attention 

towards the cue results in an overestimation of perceptual sensitivity relative to the true 

level during the indirect measurement of the cue’s effect (which is what was initially 

intended to be measured!).  This is similar to the effects typically observed in studies of 

inattentional blindness, in which awareness of an otherwise very salient stimulus can be 

prevented simply by making it irrelevant to the task.  Pitts, Martinéz & Hillyard (2012) 

recently showed in an inattentional blindness paradigm that event-related potentials 

associated with low-level perceptual processes of contour integration do not automatically 

determine awareness of the stimuli.  This is unsurprising; however, in addition to a later 

component associated with awareness, there were also further widespread components 

that dissociated from those of contour integration and awareness and instead seemed to 

reflect whether the stimuli were task-relevant.  What could not be concluded in that study, 

however, was whether the subsequent components associated with task-relevance could 

impact on processes associated solely with awareness.  The isolation of the task-relevant 

components and awareness components in Pitts and colleagues (2012) study should lead to 

further clarification on this issue and lead to developing more appropriate measurements of 

awareness independently of task-relevance. 

Thus, there is no consensus on what are the most appropriate methods with which 

to determine absence of awareness.  This is most evident when experiments are designed to 

dissociate a non-conscious effect of a stimulus (a cue or prime, for example) from its 

conscious perception.  The greatest difficulty arises when attempting to equate the two 

tasks that independently measure non-conscious and conscious aspects of a stimulus or 

event, and can often result in overestimating sensitivity.  This is important to avoid 

mislabelling many potentially significant experimental findings as “misses”, when in fact 

they should be “hits”.  
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6.4. The present study 

 

The motivation of the experiments in this study was to determine whether objects 

can act as units of attentional selection even when they are not consciously seen.  This 

would be striking, not only because object-based attention involves a level of sophistication 

beyond simple spatial selection, but also because there is clear parity between the objects 

of attention and awareness in the present experiment that may be lacking in tasks solely 

employing simple spatial selection.   In the experiments described here, objects were 

defined by an orientation contrast to their background, but, crucially, the orientations of the 

texture elements were continually reversed.  In this thesis, it has been shown that 

orientation-reversing stimuli of this type have previously revealed that the perception of a 

border between two adjacent regions of texture persists despite the two regions being 

continually masked (Norman, Heywood & Kentridge, 2011).  In the following experiments 

the orientations were reversed at a frequency above which the conscious perception of the 

contour also vanishes. A similar phase-reversing masking procedure using luminance-

defined words has revealed an unconscious priming effect from masked words that were 

presented on the display for a total of ~267ms (Bermeitinger, Kuhlmann & Wentura, 2012).  

This implies that such a technique is capable of masking a stimulus from awareness, and 

nonetheless eliciting high-level information processing, despite its extended presentation.  

Additionally, as information that is masked through rapid temporal flicker is nonetheless 

available to induce attentional orienting (Lu, Cai, Shen, Zhou & Han, 2012), it was 

hypothesised that objects defined by rapid 2nd-order segmentation processes may 

nonetheless be processed at a level that allows object-based attention, whereas any 

awareness of those objects would be prevented by the continual masking of the stimuli.  

This technique therefore provides a useful tool for masking objects for the length of time 

that is necessary in a typical Egly et al (1994) object-based attention paradigm.  If an object-

based attention effect is found, it would imply that the objects’ contours were being 

segmented by the visual system’s 2nd-order segmentation processes and that information 

was being integrated into a high-level object representation.  
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6.5. Experiment 1 – object-based attention without awareness with fixed object 

positions/orientations 

 

In experiment 1, participants completed a standard Egly et al (1994) cueing task, in 

which they identified the colour of a target that was validly cued (50% of trials), invalidly 

cued, appearing at a location within the same object as the cue (25%) or invalidly cued 

appearing in the other  object (25%).  The objects remained in the same position for the 

entirety of each block of trials, as in the original Egly et al experiment. A subjective 

assessment of awareness was conducted subsequently to the attention task by asking 

subjects to answer a series of descriptive questions regarding the content of the 

experimental display. 

 

6.5.1. Methods  

Participants 

Sixteen naive observers participated, and all gave their written informed consent.  

Participants were students recruited through the Durham University Psychology 

department’s participant pool scheme, and were awarded course credits for their 

participation.  

 

Materials 

Stimuli in all experiments were generated using a Cambridge Research Systems 

ViSaGe Graphics System and were presented on a gamma-corrected ViewSonic 17’’ display 

monitor viewed at a distance of 41cm (participants rested their head on a chin rest).  The 

background had a luminance of 50cdm-2.  The screen resolution was set to 1024 x 768 pixels 

with a refresh rate of 100 Hz.  The ViSaGe Graphics System ensured that stimulus display 

and response timing were time-locked with the monitor’s refresh rate.  
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Figure 6.3 Illustrations of the stimuli in experiments 1-3 and of the general temporal 
sequence for all experiments; a simulated observer’s perception of those events; and 
examples of the different object positions in experiment 4. a) Full illustration of the trial 
sequence of experiments 1-3.  Note that there are fewer Gabor patches used to produce the 
objects in the illustration than in the actual experimental stimuli.  Here the target is invalidly 
cued between objects.  Double arrows indicate that the two frames are presented 
continually in alternation at a frequency of 16.7 Hz.  The temporal sequence described here 
can be applied generally to the other experiments. b) A simulated observers perception of 
the sequence shown in figure a.  Participants are not aware of the presence of the figures. c) 
Examples of three of the eight object positions used in experiment 4; relative to the fixation 
cross, they are bottom-left, top-left and centre-right.  Note that the illustration represents 
only a magnified section of the full stimuli.  The cue and target on each trial would only be 
presented within the 4 placeholders associated with the figures.  

 

Procedure 

Participants fixated a central cross.  Following a warning tone, a lattice (21° in width 

and in height) centred on the fixation cross consisting of 18 x 18 uniformly positioned Gabor 

patches appeared.  Each Gabor had a diameter of 0.6° and a spatial frequency of 2.7 

cycles/degree and was separated from its neighbours by 0.6°.  Each Gabor had a maximum 
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contrast of 100% with a Gaussian standard deviation of 0.2°.  See figure 6.3a for illustrations 

of the stimuli and procedure.  For 30ms, these Gabors were presented, each with a 

randomly determined orientation, as a mask before the onset of the objects.  Immediately 

following this, the Gabors would continually alternate between vertical and horizontal 

orientations at 16.7Hz.  Two identical rectangular objects (measuring 12 x 3 Gabor patches 

and presented 2 Gabors either side of fixation) were formed by an orientation contrast of 

90° to the background.  Thus, the objects were always defined by an orientation contrast of 

90° to that of their background even as the orientations of all the Gabors in the display 

alternated. In one session of trials they were positioned horizontally, above and below 

fixation, and in another they were vertical, to the right and to the left.  In four of the 

positions in the lattice, located 6 Gabor spaces vertically and horizontally in from the four 

corners, no Gabors were presented, as these locations served as placeholders for cues or 

targets.  Thus, one placeholder was located at either end of both figures.   

1000ms after the onset of object presentation a cue (white disc (luminance = 158 

cdm-2), 0.4° in diameter) appeared for 160ms in one of the four placeholders (determined 

randomly with equal probability on each trial).  Following the offset of the cue, the target 

disc (0.4° in diameter) appeared in one of three locations, and would either be red (CIE 1931 

x, y coordinates of 0.40, 0.31 with a luminance of 72.14 cdm-2) or green (CIE 1931 x, y 

coordinates of 0.30, 0.59 with a luminance of 81.06 cdm-2).  In valid trials (50% of all trials) 

the target would appear in the same position as the cue.  In invalid-within trials (25%) the 

target appeared in the adjacent placeholder that was within the same figure as the cue had 

been.  In invalid-between trials (25%) the target appeared in the adjacent placeholder that 

was within a different figure.  The colour of the target was determined randomly with equal 

probability on each trial.  Participants were instructed to discriminate the colour of the 

target disc by pressing one of two buttons.  The target remained on the screen until a 

response was made; following which the noise mask of random orientations was presented 

again for a further 30ms, ending the trial.  See figure 6.3 (a and b) for a depiction of the 

display sequence and a simulation of the observers’ perception during the sequence, 

respectively.  

Participants completed two blocks of 140 trials, each with a different figure 

orientation, with the order being counterbalanced across participants.  Following the 

completion of both trial sessions, participants were asked a short series of questions 
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designed to assess whether they had any awareness of the presence of figures in the 

display.  These were, in order: Can you identify the purpose of the task? Can you describe 

what you saw on the screen? Did you see anything other than the cross, flickering lines, 

white flash (cue) and target? Did you notice any outlines of shapes in the background of 

flickering lines? Was there any difference between the first and second session (one 

contained vertical figures, the other horizontal)?  After answering the questions, participants 

were then given a few additional trials with the reduced alternation rate of 4 Hz and were 

asked to describe anything in the display that was not visible in the experimental trials. 

 

6.5.2. Results and discussion 

Only correct trials were analysed.  The RTs were trimmed by first removing those 

that exceeded 1500ms or were less than 150ms, interpreted as unsuccessful button-presses 

or anticipatory responses.  The remaining data that fell outside 2 standard deviations from 

the mean per condition per participant were removed as outliers.  This procedure removed 

9.3% of all trials.  A within-participant ANOVA with the single factor Cue Validity was 

conducted on the mean values of the remaining RTs, where the overall means were 

407.8ms (valid), 426.0ms (invalid-within) and 432.7ms (invalid-between) as shown in figure 

6.4.  The main effect was significant (F(2,30)=82.73, p<0.001) indicating that the cue had a 

different effect on participants’ RTs depending on its position relative to the target and the 

figures.  A planned paired t-test revealed that RTs were significantly shorter on invalid-

within than for invalid-between trials (t(15)= 3.68,p=0.002), indicating that participants were 

quicker to respond to targets that appeared within the same object as the preceding cue 

relative to those that appeared in a different object; a classic replication of the object-based 

attentional effects of Egly and colleagues (1994).  No significant effect of accuracy was 

found between the conditions of cue validity (F<1); this indicates no trade-off between RT 

and accuracy.   

In response to debrief questions following the experimental sessions, participants 

showed no indication that they had any awareness of the objects that had influenced their 

responses.  When asked to speculate as to what the experiment’s aim might have been, 

most participants made some general comment on cue validity or congruency between 

target position (left/right) and response required (left/right), but none mentioned anything 

related to the presence of objects in the display.  Similarly, when asked to describe what 
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they saw on the screen they made no mention of the objects and none could identify that 

one session contained horizontal objects and the other vertical.  Indeed, when the 

participants were given the opportunity to view the display at a slower speed and asked to 

describe anything that had previously been invisible to them, they immediately pointed to 

the objects, accurately describing them as two rectangles.  This indicates that participants’ 

RTs, and thus their attention, were influenced independently of their awareness of those 

very objects that were responsible for the effect. 

 

Figure 6.4 RT results from unconscious object-based attention experiments 1-4, along with 
associated da values and statistics (where applicable).  Results from experiment 1 (N=16), 2 
(N=9), 3 (N=20) and 4 (N=8).  Participants are quicker to identify the colour of a target when 
it appears within the same object as a preceding cue compared with when it appears on a 
different object, whilst spatial distance is equated.  This is true despite participants denying 
any awareness of those objects.  In experiment 2, however, in which only within- and 
between-object conditions were included, this was not the case.  Single asterisks denote a 
significant paired t-test at the 5% level; double asterisks denote the same at the 1% level.  
Error bars show 1 standard error of the mean with between-participant variance omitted. 
Experiment da values and statistics are displayed above the associated experiment (for 3 
and 4); neither of the values were significantly above zero. 
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Although there is evidence here that object-based attention may operate without 

awareness, it can be argued that, despite the targets appearing at the two invalidly cued 

locations with equal probability, there is, nevertheless, a contingency which might drive 

implicit learning of an object-based selection strategy.  Targets appear three times as often 

within the same object as the cue (50% valid plus 25% within object invalid conditions) as 

they do in the other object (25% between objects invalid condition).  An important aspect of 

object-based attention, however, is that it should be determined simply by the arrangement 

of objects in the scene, rather than as a consequence of some implicitly learned association; 

it should be exogenous.  Lee, Kramer Mozer & Vecera (2012) manipulated cue-object 

contingency and showed that when the target appeared equally likely on the cued and non-

cued object, thus nulling the contingency, subjects were still overall quicker to respond in 

the within condition than in the between condition.  This demonstrates the exogenous 

nature of object-based attention, which is how it is typically assumed to operate.  It is 

unclear, therefore, whether the effect observed in experiment 1 of this study is the result of 

the automatic processing of the objects, or because of the object-based contingency 

between the cue and target.  Although it has not been shown conclusively, however, that 

such an effect could indeed arise purely from the presence of a contingency, it has been 

shown (Lee et al, 2012; Yeari & Goldsmith, 2010) that object-based attention may only be a 

default setting by the visual system which can be overridden by a highly competing spatial 

strategy; in other words, participants could restrict their attention to only one part of a 

perceptually completed object when it was highly strategically viable to do so.  The aim of 

the next experiment was thus to determine whether, in normal, conscious object-based 

attention, an object-based contingency is sufficient to produce an object-based attention 

effect. 

 

6.6. The importance of contingencies in (conscious) object-based attention studies – an 

experiment 

 

 The aim of this experiment was to demonstrate how an object-based attention 

effect can arise purely from a contingency between the cued-object and the target, and not 

because of the parallel processing of the objects in a scene.  To show this, a transient cue is 

used which predicts the target to appear more often on the non-cued object in a standard 



144 
 

Egly et al task.  This contingency is created by retaining the within- and between-object 

trials (each for 20% of trials), but removing the valid trials and replacing them with 

“diagonal” trials (60% of trials), in which the target appears in the diagonally opposite 

placeholder to that of the cue, and thus on the opposite object.  If an object-based attention 

effect can be brought about through the learning that the target appears more often on a 

particular object relative to the cue (in this case, the “non-cued object”; in the typical case, 

the “cued” object), then RTs for target identification should be shorter for “between” object 

trials relative to “within” object trials.   

 

6.6.1. Methods 

Participants 

Twenty naïve subjects took part in this experiment.  

 

Materials 

See previous experiment. 

 

Procedure 

The general procedure was the same as in the previous experiment, except that the 

objects were visible to the observers (i.e. the orientations of the Gabor patches did not 

alternate).  In addition, the SOA between the onset of the objects and of the cue was 

500ms, and the objects could assume either vertical or horizontal orientations (distributed 

randomly throughout each session).   

Subjects completed five sessions; each session contained 150 trials.  Within each 

session, three cue-target conditions three cueing conditions were included.  In “diagonal” 

trials (60% of all trials) the target would appear in the diagonally opposite placeholder as the 

cue.  In “within” trials (20%) the target appeared in the adjacent placeholder that was within 

the same figure as the cue had been.  In “between” trials (20%) the target appeared in the 

adjacent placeholder that was within a different figure.   
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Figure 6.5 RT results from the experiment demonstrating the importance of the cue-object 
contingency in (conscious) object-based attention experiments. The lower figure shows that, 
on average, subjects identified the colour of the target more quickly when it fell on a 
different object to that of the preceding cue.  This is because the cue predicted that the 
target would appear on the non-cued object 80% of the time.  The upper figure shows that 
this between-object RT advantage is apparent from the very first session, indicating that it is 
not a contingency that requires excessive exposure to be learned and to influence 
behaviour.  Single asterisks denote a significant paired t-test at the 5% level; double 
asterisks denote the same at the 1% level.  Error bars show 1 standard error of the mean 
with between-participant variance omitted. 

 

6.6.2. Results and discussion 

RTs were trimmed in the same way as previously described, removing 10.4% of all 

trials.  The remaining RTs were averaged across the sessions, and these averages were 

entered into a repeated measures ANOVA, with the single factor of cue validity (within, 

between, diagonal).  This was significant (F(2,38)=18.49, p<0.001), indicating that subjects’ RTs 

were affected by the validity of the cue.  The average RTs for each condition were as 

follows: 426.9ms (within), 421.7ms (between) and 414.4ms (diagonal).  Crucially, a planned 

paired t-test revealed that subjects were overall quicker to respond in the between-object 
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condition than in the within-object condition (t(19)=2.79, p=0.012).  See figure 6.5 for the 

results.  The finding that the diagonal location of the target yielded the shortest RT of all 

three conditions despite being the furthest distance from the cue is not surprising, as it is 

known from previous research that RTs to a target that appears in a spatially non-congruent 

location relative to the cue are relatively short provided that the location is validly predicted 

by the cue (Lambert et al, 1999). 

Accuracy rates were also analysed with a repeated measures ANOVA with the single 

factor of cue validity.  No effect was found (F(2,38)=0.89, p=0.418), indicating no trade-off 

between RT and accuracy across the 3 conditions. 

Further statistics were conducted to ensure that the observed between-object 

advantage in RT did not arise solely from an effect of the cue-validity on the immediately 

preceding trial, and instead reflected the contingency that could only have been learned 

through exposure to many trials (see Lee et al, 2012).  Criteria for outlier removal and RT 

analysis were similar to previously described, although trials were organised with respect to 

two factors: current trial validity (within vs. between) and previous trial validity (within vs. 

between).  The factor previous trial validity refers to the validity of the cue on the 

immediately preceding trial, in which “between” pertains to both the between and diagonal 

cue-validity conditions, as in both cases the cue is followed by the target on a different 

object.  As the previous trial validity must be included as a factor for this analysis, the first 

trial from each session was excluded from analysis by necessity.  The repeated measures 

ANOVA revealed a significant main effect of current trial validity (F(1,19)=5.06, p=0.037), with 

between-object RTs being overall shorter (424.9ms) than within-object RTs (431.0ms), and a 

marginally non-significant main effect of previous trial validity (F(1,19)=4.11, p=0.057), with 

RTs being shorter for trials following between-object trials (424.8ms) than those following 

within-object trials (431.1ms).  Importantly, however, there was no evidence of an 

interaction (F(1,19)=0.19, p=0.670), indicating that the between-object RT advantage was not 

specific to between-object trials that were immediately preceded by a between-object trial.  

These results further support the notion that the significant between-object advantage 

arose through the cue-object contingency that was present throughout the experiment, and 

not through a more transient contingency that may have been found on a trial-by-trial basis. 

This experiment has therefore shown that the typical object-based attention effect 

that is reported in many studies, and which is claimed to be exogenous, is not necessarily so.  
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The “between-object” RT advantage shown here can only have arisen by subjects directing 

their attention to the non-cued object after learning that the target is more likely (80% of 

the time) to appear on that object.  This is yet another experiment that challenges the 

dichotomy of purely exogenous and endogenously controlled attention (e.g. Lambert et al, 

1999), as the processing of the transient, peripheral cue in this experiment, and the 

“automatic” segmentation of the objects, is sensitive to the contingencies of the 

experimental procedure.   Importantly, as seen in figure 6.5, the effect of this contingency is 

apparent in the first session, indicating that it can be learned and used by an observer in 

little time (fewer than 150 trials).  Any experiments aiming to demonstrate the effects of 

“exogenous” object-based attention, therefore, including the first experiment described in 

this section, should consider the effect of the contingency between the cued-object and the 

target. It is important, therefore, to determine that the object-based effect found in the first 

experiment of the present study is not the result of a learned contingency between the 

object that is predicted by the cue and the target.    

 

6.7. Experiment 2 – removing object-based contingencies  

 

The purpose of this experiment was to show that the object-based attention effect 

observed in experiment one was purely exogenous and not the result of an unintended 

contingency.  In order to null the effect of this contingency, the orientation of the objects 

was randomly determined on each trial and the valid cue-target validity condition was 

removed, leaving only the within- and between-object conditions.  If objects can be selected 

as units of attention in the absence of awareness, then a within-object RT advantage should 

nonetheless be found with the use of this neutral cue. 

 

6.7.1. Methods  

Participants 

 Nine new naïve participants took part.  They were recruited in the same way as 

previously described. 

 

Materials 

 See experiment 1. 
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Procedure 

 The methods were very similar to experiment one, except that one session of 300 

trials was used.  Within the session, an equal number of within-object and between-object 

trials were presented, but no valid trials.  An equal number of trials contained vertical or 

horizontal objects, and these were randomly distributed throughout the session. 

 

6.7.2. Results and discussion 

 RTs were trimmed in the same way as previously described, removing 8.6% trials in 

total.  A paired t-test was conducted between RTs for the within- (433.3ms) and between- 

(428.89ms) object conditions, as shown in figure 6.4.  There was no significant effect 

(t(8)=1.073, p=0.315).  Additionally, no significant effect of accuracy was found between the 

conditions (t<1).  As in the previous experiment, subjects could not describe the objects 

when prompted to.   

Despite previous findings showing that object-based attention can be elicited 

through a purely exogenous, transient cue (Yeari & Goldsmith, 2010), no such effect was 

found in the present experiment.  There is, of course, an important methodological 

difference between the two studies: in the Yeari and Goldsmith (2010) experiment, the cue 

was neutral with respect to the objects because the target appeared equally likely in any of 

the four placeholders regardless of where the cue appeared.  In the present experiment, 

however, only the standard within- and between-object conditions were included, thus the 

target never appeared in the same location as the cue, whereas it did so 25% of the time in 

Yeari and Goldsmith’s (2010) experiment.   

 

6.8. Experiment 3 – a second approach to removing object-based contingencies and 

introducing an objective assessment of awareness 

 

The purpose of this next experiment was again to determine whether purely 

exogenous object-based attention can occur without awareness, by using the four cue-

target conditions of Yeari and Goldsmith (2010).  Targets therefore appeared in each of the 

four possible locations with equal probability (25%) and so were equally likely to appear in 

the same object as the cue or in the other object.  Additionally, this experiment improves on 

the previous ones as it includes an objective measure of awareness- a signal detection 
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procedure following the attention task.  There are many things to consider when devising a 

measure of awareness, and it is often difficult to achieve a measure which does not result in 

an overestimation of sensitivity (Vermieren & Cleeremans, 2012).  An objective measure of 

awareness is arguably more preferable to that of a subjective measure, however, because it 

can represent an observer’s sensitivity to a particular stimulus (relative to noise) 

independently of any response bias they might have.  Additionally, when assessing 

awareness using subjective measures (e.g. through post-experiment debriefs), it can be 

largely dependent on the subject’s memory of the task and stimuli as well as a response 

bias.  This experiment, therefore, also aims to show evidence of an object-based attention 

effect along with objective evidence that these objects are not consciously accessible. 

 

6.8.1. Methods  

Participants 

 Twenty new naïve participants took part.  They were recruited in the same way as 

previously described. 

 

Materials 

 See experiment 1. 

 

Procedure 

The general procedure remained the same as in experiment 1 and 2, and throughout 

each block of trials the orientations of the objects (horizontal/vertical) varied randomly from 

trial to trial.  In addition, four target locations were used, the fourth location being in a 

placeholder in the non-cued-object diagonally opposite the cue location. Targets appeared 

at each of the four locations with equal likelihood, ensuring that there was no contingency 

between the cue and the object within which the target appeared.  

 They each completed one practice block followed by 4 test blocks of 96 trials (48 

“horizontal” and 48 “vertical”, randomly distributed). Following the completion of all trial 

sessions and, as before, participants were asked the series of questions designed to probe 

awareness of the presence of figures in the display.  In addition, however, subjects also 

completed a signal detection task in which they were required to explicitly detect the 

presence of the objects.  Subjects completed two blocks, of 140 trials each, in which on each 
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trial they were presented with the flickering background which contained the objects on 

half the trials.  These trials were randomly interleaved with those in which the background 

was completely uniform (i.e. all of the orientations in the display simultaneously alternated 

between horizontal and vertical).  For those trials in which the objects were present, there 

were an equal number of horizontal and vertical trials.  The display duration was 1660ms, 

equivalent to the duration of the stimuli up until the onset of the target in the attention 

task, after which the subject indicated with one of two buttons whether the objects were 

present or absent, and then rated their confidence with that judgment on a scale of 1-4. 

 

6.8.2. Results and discussion 

Data from one of the participants were not included in the analysis because the 

goodness of fit for curve fitting in the da estimation was significantly low (p=0.018).  The RTs from 

the 4 test blocks were trimmed as before, resulting in exclusion of 7.5% of trials.  A repeated 

measures ANOVA revealed a significant main effect of cue validity on RT (F(3,54)=18.23, 

p<0.001), where the overall means were 414.1ms (valid), 426.8ms (invalid-within), 432.4ms 

(invalid-between) and 433.7ms (invalid-diagonal), as shown in figure 6.4.  A planned paired 

t-test determined that RTs were significantly shorter for invalid-within trials compared with 

invalid-between trials (t(18)=2.59, p=0.019). No significant effect of accuracy was found 

between the conditions of cue validity (F<1); this indicates no trade-off between RT and 

accuracy.   

As in the previous experiment, subjects could not describe the objects when 

prompted to.  Data from the signal-detection task were used to measure participants’ 

sensitivity to the presence of the objects.  Sensitivity was calculated by tabulating the 

number of responses for each of the eight confidence levels (4 ratings for both “present” 

and “absent” responses) for both “present” and “absent” trials.  The discriminability index 

da was calculated from these data using the software RScorePlus (Harvey, 2002) to fit a 

Gaussian unequal variance model.  da allows for unequal variance and is equivalent to d’ in 

the case of equal variance.  A higher da indicates a greater sensitivity to the target, and a da 

of zero indicates no sensitivity.  Overall, the average da was low (0.06), and it was not 

significantly above zero (t(18) = 1.88, p = 0.077), indicating that participants could not 

discriminate the signal (objects) from the noise (no objects).  
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This experiment again demonstrates that object-based attention can occur in the 

absence of awareness.  Importantly, because there was no contingency between the cued-

object and the location of the target, this was a purely exogenous from of object-based 

attention.  Furthermore, as the magnitudes of the within-object advantages found in this 

experiment and experiment 1 are comparable in size, the contingency between the cued-

object and target in experiment 1 did not have a considerable impact on the behavioural 

effects of object-based attention in the current paradigm.  Additionally, the objective 

assessment of awareness in addition to the subjects’ subjective reports strengthens the 

claim that subjects were not aware of the objects.  The average sensitivity rating was, 

however, only marginally not significantly different from 0, casting doubt on whether 

awareness of the objects was truly and entirely absent, and instead suggesting that perhaps 

awareness was only attenuated to a very low level.  This may have emerged as, in the 

current experimental setup, subjects could in theory have performed the detection task by 

scrutinising only a small single part of the display (for instance, at the location of an 

orientation contrast between the background and objects), rather than awareness of the 

objects per se.   

 

6.9. Experiment 4 – object-based attention without awareness with unpredictable 

object positions and orientations 

 

As the previous experiment found only a marginally non-significant da score, it is 

important to show that the attention effect is still found when there is more conclusive 

evidence for absence of awareness.  In order to pursue this, the subsequent experiments 

used a modified version of the stimuli in both the attention and awareness tasks.  

Specifically, the objects are made smaller and can appear unpredictably in a number of 

locations throughout the display.  An important aspect of object-based attention, in 

common with exogenous spatial attention, is that it can be deployed rapidly and in parallel 

across the visual scene (de-Wit, Cole, Kentridge & Milner, 2011).  The unpredictable 

placement of the objects, therefore, should have no significant effect on the observed 

object-based attention effect.  As subjects cannot perform the signal detection task under 

these conditions by scrutinising only a single small area of the display, their ability to detect 

the presence of the objects may be shown more conclusively to be no different than chance.   
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The objects in the present study therefore appeared at unpredictable locations and 

assumed unpredictable orientations on a given trial.  This is important also because it 

appeals to the automatic nature with which object-based attention is thought to take place. 

 

6.9.1. Methods 

Participants 

 Eight new naïve participants took part.  They were recruited in the same way as 

previously described. 

 

Materials 

See experiment 1 

 

Procedure 

The general methods remained the same as those in experiment 1; however, the 

objects were smaller and could occupy one of 8 potential positions on each trial and could 

be either vertically or horizontally oriented.   The background lattice was thus extended to 

consist of 22 x 22 Gabor patches (diameter of 0.4° and spatial frequency of 3.75 

cycles/degree) and contained 16 cue/target placeholders distributed in a 4 x 4 arrangement 

centred on the fixation cross with each one separated by 4 Gabors from its neighbours 

(vertically and horizontally).  Thus, there were 8 locations where the objects could be 

defined: top-left, top-centre, top-right, centre-left, centre-right, bottom-left, bottom-centre 

and bottom-right.  The figures measured 8 x 3 Gabor patches separated from one another 

by 2 Gabor spaces.  See figure 6.3c for an illustration of the stimuli.  The location of the pair 

of figures would be randomly determined with equal probability on each trial.  As in 

experiment 1, three target locations were used; valid (50% of trials), invalid-within (25%) 

and invalid-between (25%). The temporal sequence of the experiment was identical to that 

of the first.  

Eight new naive observers participated, and all gave their written informed consent.  

Participants completed one practice block followed by two blocks of 160 trials, each 

containing 80 “vertical” and 80 “horizontal” trials distributed randomly across each block.  In 

place of the post-experiment questionnaire, which was not used, a confidence-rating signal-

detection procedure was carried out for each participant.  Participants were presented with 
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the flickering background from the attention task with or without the objects present in one 

of the 8 locations in the display.  When present, the locations and orientations of the 

objects would be determined randomly with equal probability.  Participants had to indicate 

on which trials the objects were present and on which they were absent, by pressing one of 

two keys, and then to rate their confidence with that judgment on a scale of 1-4, by pressing 

one of four keys.  Participants were presented with 300 trials, consisting of 150 “present” 

and 150 “absent” trials, randomly distributed.  The stimuli would remain onscreen for 1160 

ms (equivalent to the pre-cue + cue stages of the attention task) before subjects were 

prompted to respond by an auditory cue.  Prior to this task, participants were not debriefed 

as to the exact nature of the objects; they were instead only instructed that on some trials 

the flickering pattern would be uniform throughout and that on others the display would 

contain a non-uniformity occurring at various unpredictable locations in the pattern.  

Participants were not shown the exact nature of the objects in order to better reflect their 

expectancies during the attention task, in which they had no knowledge of the structure of 

the pattern or of the objects that were driving the attentional effect.   

 

6.9.2. Results and discussion 

RTs from the attention task were trimmed with the same method as the previous 

experiments, removing 7.9% of all trials.  A within-participant ANOVA with respect to the 

single factor Cue Validity was conducted on the mean values of the remaining RTs, with 

overall means of 434.5ms (valid), 445.2ms (invalid-within) and 458.1 ms (invalid-between) 

as shown in figure 6.4. The main effect was significant (F(2,14)=11.78, p=0.001) indicating that 

the cue had a different effect on participants’ RTs depending on its position relative to the 

target and the figures.  A paired t-test revealed that RTs were shorter on invalid-within than 

for invalid-between trials (t(7)= 2.48, p=0.042), indicating that participants were faster to 

respond to targets that appeared within the same object as the preceding cue relative to 

those that appeared on a different object.  No significant effect of accuracy was found 

between the conditions of cue validity (F<1); this indicates no trade-off between RT and 

accuracy. 

Data from the signal-detection task were used to measure participants’ sensitivity to 

the presence of the objects.  Sensitivity was calculated by tabulating the number of 

responses for each of the eight confidence levels (4 ratings for both “present” and “absent” 
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responses) for both “present” and “absent” trials.  The discriminability index da was 

calculated from these data using the software RScorePlus (Harvey, 2002) to fit a Gaussian 

unequal variance model.  da allows for unequal variance and is equivalent to d’ in the case of 

equal variance.  A higher da indicates a greater sensitivity to the target, and a da of zero 

indicates no sensitivity.  Overall, participants’ da did not differ significantly from zero (mean 

da = 0.04; t(7) = 0.8, p = 0.476), indicating that participants could not discriminate the signal 

(objects) from the noise (no objects), and hence could have had no awareness of the 

objects.   

This experiment has shown that object-based attention occurs without awareness 

when the objects appear in unpredictable locations and assume unpredictable orientations 

on each trial.  This finding is consistent with how conscious object-based attention is 

thought to operate (in parallel across a visual scene) and so reinforces the notion that the 

effect demonstrated in these experiments truly reflects the workings of an “ordinary” 

object-based attention mechanism.  Furthermore, the statistic from the signal detection 

experiment is more conclusive in showing absence of awareness of the objects, further 

strengthening the claim that awareness of the objects was truly absent 

 

6.10. Experiment 5 – assessing awareness whilst maintaining parity between the 

attention and detection tasks  

 

In the previous task, evidence of object-based attention was found when subjects 

could not detect the presence of the objects significantly above chance in a signal detection 

procedure.  Criticisms could be made, however, on the basis that in the signal detection 

procedure, the exact nature of the objects was not revealed to the subjects.  The decision 

not to reveal the nature of the objects was made in order to equate the subjects’ knowledge 

between the two tasks as much as possible and thus avoiding an overestimation of 

sensitivity.  It could be argued, however, that the non-significant da may not represent a lack 

of awareness, but rather the inaccurate completion of the task by the subjects.  For the 

following experiment, therefore, it was decided to equate the tasks as much as possible and 

to reveal the nature of the objects to the subjects.   

Participants completed a standard Egly et al (1994) cueing task, in which they 

identified the colour of a target that was validly cued (50% of trials), invalidly cued within 
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the same object as the cue (25%) or invalidly cued in another object (25%).  The objects 

appeared at unpredictable locations and assumed unpredictable orientations on a given trial 

(in line with rapid and parallel processing characteristics of object-based attention; de-Wit 

et al, 2011).   

Awareness was then assessed by first revealing to the participants the nature of the 

objects and requiring them to view the stimuli from the attention task a second time.  In this 

second phase, participants made a decision on each trial as to whether the cue and target 

appeared within a single object or in different objects in a confidence-rating signal-detection 

procedure. 

 

6.10.1. Methods  

Participants 

Twenty naive observers participated, and all gave their informed consent.  

Participants were undergraduate and postgraduate students recruited through the Durham 

University Psychology Department’s participant pool scheme, and were awarded either 

course credits for their participation or a small financial compensation.  

 

Materials 

See previous experiment. 

 

Procedure 

See previous experiment.  There were only four potential object locations: above, 

below, left or right of fixation, one placeholder was located at either end of both figures and 

the spatial distance between these placeholders was equated.  For each block of trials, the 

objects were presented an equal number of times vertically and horizontally and the order 

of this was randomised within each block.  On each trial, the location of the objects was 

determined randomly with equal probability.   See figure 6.6 (a and b) for a depiction of the 

display sequence and a simulation of the observers’ perception during the sequence, 

respectively.  Figure 6.6c also shows examples of the different positions and orientations 

which the objects could assume.  

Participants completed 10 practice trials followed by three blocks of 120 

experimental trials.  Participants were then asked an open question to probe their visual 
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experience of the stimuli: they were asked to describe anything they noticed about the 

flickering background on which the white flash (cue) and coloured disc (target) were 

presented.  After answering the question, participants were then shown the display with a 

much reduced alternation rate of 4 Hz which explicitly revealed the nature of the objects in 

the display.  

 

 

 

 

 

 

 

 

Figure 6.6 Illustrations of the stimuli and the temporal sequence of experiment 5; a 
simulated observer’s perception of those events; and three examples of the different object 
positions and orientations.  a) Full illustration of the trial sequence.  Note that each box only 
shows a magnified portion of the entire stimulus display, focussed on the objects.  Here the 
objects appear below the fixation cross in a vertically-aligned arrangement and the target is 
invalidly cued within those objects.  Double arrows indicate that the two frames are 
presented continually in alternation at a frequency of 16.7 Hz.  In the signal-detection task, 
the final two frames (target frames) were only presented for a limited amount of time that 
was calibrated for each participant (see Methods) b) A simulated observers perception of 
the sequence shown in a.  Participants are not aware of the presence of the figures. c) 
Examples of the three object positions not shown in a; relative to the fixation cross, they are 
left, above and right.  The cue and target on each trial would only be presented within the 4 
placeholders associated with the figures. 
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The second phase of the experiment determined whether participants could identify 

“within-object” trials from “between-object” trials in a confidence-rating signal-detection 

procedure.  Participants were presented with an additional 3 blocks of 120 trials, preceded 

by 10 practice trials, each containing the same proportion of valid, invalid-within and 

invalid-between trials, and the same number of horizontally and vertically presented objects 

as in the previous attention task.  Other randomly-determined parameters (e.g. object 

position and orientation) and temporal characteristics remained consistent with the 

attention task, except that following the onset of the target, the display would only remain 

on the screen for a limited amount of time.  This was automatically determined individually 

for each participant by obtaining their largest RT from the attention task following the 

removal of outliers (removal criteria described in full in the Results section).  Participants 

had to indicate on which trials the cue and target appeared in the same object or in 

different objects by pressing one of two keys, and then to rate their confidence with that 

judgment on a scale of 1-4, by pressing one of four keys. 

A previous experiment, experiment 4 here, the essence of which was the same as 

the present study, strongly suggested that objects concealed from awareness in the manner 

described above could mediate object-based attention without awareness.  In the previous 

experiment participants were simply required to report whether or not the flickering display 

contained objects defined by an area of non-uniformity in the signal detection task.  We did 

not reveal the objects to the participants prior to this task (i.e. they were not shown the 

display at a rate of 4Hz), to minimise any discrepancy in their knowledge between the 

attention task and signal detection task, as such factors may lead to significant 

overestimations of sensitivity in the signal-detection task (Vermeiren & Cleeremans, 2012).  

In the present study, however, we aimed to adopt a more stringent assessment of 

awareness, by revealing the exact nature of the objects to the participants prior to the 

signal-detection task, notwithstanding the likelihood that this manipulation would result in 

an overestimation of sensitivity relative to the attention task. 
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Figure 6.7: Results from both the attention task and signal-detection task from experiment 
5. a) RT results from the attention task (N=20).  Participants were quicker to identify the 
colour of a target when it appeared within the same object as a preceding cue compared 
with when it appeared on a different object, whilst spatial distance was equated.  This is 
true despite participants denying any awareness of those objects.  Asterisk denotes a 
significant paired t-test at the 5% level.  Error bars show 1 standard error of the mean with 
between-participant variance omitted b) Average sensitivity (da) to the difference between 
within- and between-object trials.  This value is not statistically different from 0, indicating 
absence of awareness. c) Individual participants’ ROC.  All participants show an approximate 
linear plot indicating that they could not successfully maximise hit rate whilst minimising 
false alarm rate.  Each set of axes represents 5 of the total 20 participants’ ROC curves. d) 
Scatterplot of each participant’s RT advantage (between-object RT - within-object RT) versus 
sensitivity.  There is no observable association between the participants’ ability to 
discriminate within-object trials from between-object trials and their difference in RT 
between the two conditions. 
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6.10.2. Results and discussion 

RTs were trimmed using the same methods as in the previous experiments.  Overall, 

8.6% of all trials were discarded using these methods.  A within-participant ANOVA with the 

single factor Cue Validity was conducted on the mean values of the remaining RTs, with 

overall means of 421.5ms (valid), 440.1ms (invalid-within) and 446.7ms (invalid-between) as 

shown in figure 6.7a. The main effect was significant (F(2,38)=28.99, p<0.001) indicating that 

the cue had a different effect on participants’ RTs depending on its position relative to the 

target and the figures.  In the key analysis, a paired t-test revealed that RTs were shorter on 

invalid-within than for invalid-between trials (t(19)= 2.24, p=0.037), indicating that 

participants were faster to respond to targets that appeared within the same object as the 

preceding cue relative to those that appeared on a different object.  No significant effect of 

accuracy (valid: 96.3%, invalid-within: 96.1%, and invalid-between: 96.8%) was found 

between the conditions of cue validity (F(2,38)=0.45, p=0.639),  indicating no trade-off 

between RT and accuracy. 

In response to the open question asked regarding the content of the flickering 

background, most participants described it as being composed of “flickering crosses” or 

“flickering lines” and some would remark that there were parts of the background that were 

“missing” (the placeholders).  None, however, made any comments that could be 

interpreted in any way as awareness of the objects.  Data from the subsequent signal-

detection task were used to formally measure participants’ sensitivity to the objects.  The 

task measured participants’ ability to distinguish two categories of trial (“within-object” and 

“between-object”) that each occurred an equal number of times.  Participants indicated 

which category they judged each trial to belong to by pressing one of two keys, and then 

rated their confidence with that judgment on a scale of 1-4.  For the purposes of signal-

detection, this is analogous to a yes/no design, in which “between-object” trials are treated 

as “signal-present” and “within-object” trials are treated as “signal-absent (noise)”.  

Participants’ responses were first assigned to one of two categories (within/between) and 

the additional confidence report by the participant on this decision (on an integer scale of 1-

4) thus provided a total scale of 8 responses: ranging from very confident “within-object” (1) 

to very confident “between-object” (8).  Sensitivity was calculated by tabulating the number 

of responses for each of these eight confidence levels for both “within-object” and 
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“between-object” trials.  The discriminability index da was calculated from these data using 

the software RScorePlus (Harvey, 2002) to fit a Gaussian unequal variance model. 

da allows for unequal variance and is equivalent to d’ in the case of equal variance.  A 

higher da indicates a greater sensitivity to the signal, and a da of zero indicates no sensitivity.  

A negative da can represent an ability of an observer to discriminate the two conditions, but 

the conditions are labelled incorrectly by the observer (e.g. in the case of this experiment, 

responding consistently with the “within-object” response for “between-object” trials, and 

vice versa), however it can also simply be (and is more likely to be in this case) a 

consequence of sampling error. 

Overall, participants’ da (shown in figure 6.7b) did not differ significantly from zero 

(mean da = 0.01; t(19) = 0.32, p = 0.75), indicating that participants could not discriminate the 

two conditions of within-object and between-object trials, and hence it is extremely unlikely 

that they had any awareness of the objects.  Receiver operating characteristics (ROCs) were 

also computed from the same data for each participant.  Each curve contains 7 points (as a 

scale of n criteria, in this case 8, determines n-1 points on the curve), with each representing 

a single criterion that distinguishes one rating from the immediately lower rating (e.g. rating 

4 from rating 3, or rating 8 from rating 7).  The ROC curves are plotted with true positive 

rate (hit rate) vs. false positive rate (false alarm rate) in figure 6.7c; the more linear the plot, 

the less able the observer is to differentiate the two conditions.  As shown in figure 6.7c, no 

participant showed any ability to maximise hit rate whilst minimising false alarm rate (as 

would be indicated by a bowed curve), indicating that they could not accurately distinguish 

the conditions that were driving the object-based attention effects in the previous task. 

Figure 6.7d also shows a scatterplot of points for each individual participant’s within-

object RT advantage (calculated from between-object RT – within-object RT) versus 

sensitivity (da).  A parametric correlation test between these two variables is not significant 

(r(18)=-0.019, p=0.935), clearly indicating no association between the awareness of the 

objects and their effect on attention.  

 

 

 

 

 



161 
 

6.11. Experiment 6 – adopting the most stringent assessment of awareness 

 

Awareness in the previous task was assessed by measuring participants’ 

discrimination of “within-object” trials from “between-object” trials.  Although with this 

setup there is a great amount of parity between the attention task and the signal detection 

task (an important consideration when assessing effects of cues/primes without awareness; 

Reingold & Merikle, 1988), the dissociation in the results may have stemmed from an 

inappropriate level of task difficulty in the signal detection experiment as participants 

needed to encode and combine separate information regarding the objects, cue and target 

in order to make a successful response.  It is important, therefore, to demonstrate an 

absence of awareness of the objects when participants do not have such a cognitive 

demand.  Awareness was thus assessed in the following experiment by first revealing to the 

participants the nature of the objects and requiring them to view the stimuli from the 

attention task a second time.  In this second phase, however, only half of the trials 

contained the objects and it was the participants’ task to distinguish these “object-present” 

trials from those in which the objects were absent in a confidence-rating signal-detection 

procedure.  Although this does not have parity between the two tasks, it is arguably the 

most stringent assessment of the absence of awareness that is possible in this experiment.   

The following experiment is published in Psychological Science.  The citation is: 

Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2013). Object-based attention without 
awareness. Psychological Science, 24, 836-843 

It is reproduced here in its entirety as part of this chapter.  As the text has not been altered, 
some information will have already been discussed in the preceding sections of this chapter. 

 

6.11.1. Abstract 

Attention and awareness are often considered to be related. Some forms of 

attention can, however, facilitate the processing of stimuli that, nevertheless, remain 

unseen. It is unclear whether this dissociation extends beyond selection on the basis of 

primitive properties such as spatial location to situations in which there are more complex 

bases for attentional selection. The experiment described here shows that attentional 

selection at the level of objects can take place without giving rise to awareness of those 

objects.  Pairs of objects were continually masked, rendering them invisible to participants 
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performing a cued-target discrimination task.  When the cue and target occurred within the 

same object, discrimination was faster than when they occurred in different objects at the 

same spatial separation. Participants reported no awareness of the objects and were unable 

to detect them in a signal-detection task. Object-based attention, therefore, is not sufficient 

for object-awareness.   

 

6.11.2. Introduction 

There is an association between the phenomena of consciousness and attention so 

irresistible that one could readily conclude they were inextricably part of the same process 

(James, 1980).  As Lamme (2003) notes, both are selective: not all visual input reaches 

awareness, and only a fraction of it is treated with the efficacy that is offered by selective 

attention.  Thus it had long been assumed that prioritization of information by attention was 

both necessary and sufficient for consciousness (Mole, 2008).  Remarkable demonstrations 

of inattentional blindness, in which otherwise conspicuous visual events are rendered 

invisible with diverted attention, bolstered this assumption (Mack & Rock, 1998). 

Visual spatial attention reflects the voluntary or involuntary prioritization of 

information in a selected part of a visual scene (Posner, 1980).  Experimentally, Posner’s 

cueing task, in which a cue facilitates performance by speeding the discrimination of a 

target in the same location, has been considered the benchmark measurement of covert 

visual attention.  It has now been shown, however, that attention in this manner is not 

sufficient for generating visual awareness.  Kentridge, Heywood & Weiskrantz (1999) 

demonstrated this in a blindsight patient who declares no awareness of visual experience in 

his right hemifield as a result of unilateral striate cortex damage and yet retains remarkably 

accurate performance in some forced-choice discriminations made within that part of his 

visual field (Weiskrantz, 1986).  Selective attentional modulation was observed in this 

patient in his responses to cued stimuli compared with uncued stimuli in his blind field, in 

very much the same way as a normal “aware” observer in a Posner (1980) task.  Similar 

effects have since been found in normal observers, when a masked unseen prime has a 

greater effect on the subsequent discrimination of a target when attention is directed 

towards it (Kentridge, Nijboer & Heywood, 2008; see also Sumner, Tsai, Yu & Nachev, 2006). 

This experimental evidence strongly suggests that selective attention is not sufficient to give 

rise to awareness.  In parallel, magnetoencephalographic recordings have also pointed to 
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independent neural mechanisms regulating spatial attention and awareness in normal 

observers (Wyart & Tallon-Baudry, 2008).  

In the spotlight model of attention (Posner, 1980), selection is based on a simple 

spatial primitive in which attention is focussed on a single point in space and spreads 

uniformly around it.  Attention is, however, not limited to such simple, purely spatial, 

primitives; objects of arbitrary shape can form the “units” of attentional selection (Duncan, 

1984; Egly, Driver & Rafal, 1994).  Egly and colleagues (1994) demonstrated the importance 

of objects for the deployment of attention in the classic modification of Posner’s (1980) 

task, in which visual discriminations were shown to be more rapid when the target was seen 

to be within the same object as the preceding cue compared with when it was seen to be 

within a separate object, despite both cue-target pairings being equidistant.  This can be 

explained by a model in which attentional selection operates on the elementary figures that 

are preattentively segmented by the visual system10.  It has been argued that in the cases of 

dissociation of attention from awareness, it is only spatial attention that has been 

manipulated, whereas awareness has been assessed typically on the basis of the visibility of 

objects (Mole, 2008).  In other words, the unit of selection and the object of awareness may 

not have been truly equivalent in studies claiming to demonstrate dissociations between 

attention and awareness.  

The motivation of the present study was to determine whether objects can act as 

units of attentional selection even when they are not consciously seen.  This would be 

striking, not only because object-based attention involves a level of sophistication beyond 

simple spatial selection, but also because there is clear parity between the objects of 

attention and awareness in the present experiment that may be lacking in tasks solely 

employing simple spatial selection.   In the experiment described here, objects were defined 

by an orientation contrast to their background, but, crucially, the orientations of the texture 

elements were continually reversed.  Orientation-reversing stimuli of this type have 

previously revealed that the perception of a border between two adjacent regions of 

                                                           
10 The authors do not claim to disentangle a purely object-based form of attention from one 
that involves the selective spreading of what is fundamentally spatial attention within an 
object (see Martinez et al, 2006).   The only aim of this study was to show that the process 
of segregating visual information into objects for the purposes of attention was not a 
sufficient precondition for the awareness of those objects.    



164 
 

texture persists despite the two regions being continually masked (Norman, Heywood & 

Kentridge, 2011).  In the present experiment the orientations were reversed at a frequency 

above which the conscious perception of the contour also vanishes. We hypothesised that 

the contour between the objects and background may nonetheless be processed at a level 

that allows object-based attention, whereas any awareness of those objects would be 

prevented by the continual masking of the stimuli. 

Participants completed a standard Egly et al (1994) cueing task, in which they 

discriminated the colour of a target that was validly cued (50% of trials), invalidly cued 

within the same object as the cue (25%) or invalidly cued in another object (25%).  The 

objects appeared at unpredictable locations and assumed unpredictable orientations on a 

given trial (in line with rapid and parallel processing characteristics of object-based 

attention; de-Wit, Cole, Kentridge & Milner, 2011).   

Awareness was then assessed by first revealing to the participants the nature of the 

objects and requiring them to view the stimuli from the attention task a second time.  In this 

second phase, however, only half of the trials contained the objects and it was the 

participants’ task to distinguish these “object-present” trials from those in which the objects 

were absent in a confidence-rating signal-detection procedure. 

 

6.11.3. Methods  

Participants 

Ten naive observers participated, and all gave their informed consent.  Participants 

were undergraduate and postgraduate students recruited through the Durham University 

Psychology Department’s participant pool scheme, and were awarded either course credits 

for their participation or a small financial compensation.  

 

Materials 

Stimuli in all experiments were generated using a Cambridge Research Systems 

ViSaGe Graphics System and were presented on a gamma-corrected ViewSonic 17’’ display 

monitor viewed at a distance of 41cm (participants rested their head on a chin rest).  The 

background had a luminance of 50cdm-2.  The screen resolution was set to 1024 x 768 pixels 

with a refresh rate of 100 Hz.  The ViSaGe Graphics System ensured that stimulus display 

and response timing were time-locked with the monitor’s refresh rate.  
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Procedure 

Participants fixated a central cross.  Following a warning tone (frequency = 800Hz, 

duration = 100ms) and a delay of 500ms, a lattice (17.2° in width and in height) centred on 

the fixation cross, consisting of 22 x 22 Gabor patches arranged in a uniform array, 

appeared.  Each Gabor patch had a diameter of 0.4°, a spatial frequency of 3.75 

cycles/degree and an envelope with a standard deviation of 0.2°.  Each patch had a 

Michelson contrast of 90% and was separated from its neighbours by 0.4°. See figure 6.8a 

for illustrations of the stimuli and procedure.  For 30ms, these Gabor patches were 

presented, each with a randomly determined orientation, as a mask before the onset of the 

objects.  Immediately following this, the patches would continually alternate between 

vertical and horizontal orientations at 16.7Hz.  A pair of identical rectangular objects 

(composed of 8 x 3 Gabor patches and presented either above, below, to the left or to the 

right of fixation at a distance of one Gabor patch spacing) was formed by an orientation 

contrast of 90° to the background.  Thus, the objects were always defined by an orientation 

contrast of 90° to their background even as the orientations of all the Gabor patches in the 

display alternated.  The flicker rate of 16.7Hz implies that each frame is present on screen 

for 30ms; a short duration but one which is quite typical of stimuli in forward and backward 

masking paradigms.  The effectiveness of this flicker rate in concealing the objects from 

awareness was also verified in a number of pilot studies. 

In 16 of the Gabor positions, located in a 4 x 4 arrangement (i.e. at every 4th position, 

vertically and horizontally) the Gabor patches were absent, serving as placeholders for cues 

or targets.  This ensured that for each of the 4 possible object locations (above, below, left 

or right of fixation), one placeholder was located at either end of both figures and the 

spatial distance between these placeholders was equated.  For each block of trials, the 

objects were presented an equal number of times vertically and horizontally and the order 

of this was randomised within each block.  On each trial, the location of the objects was 

determined randomly with equal probability.  

250ms after the object onset, a cue (a white disc: luminance = 158 cdm-2, 0.4° in 

diameter) appeared for 160ms in one of the four placeholders associated with the object 

positions (determined randomly with equal probability on each trial).  Following the offset 

of the cue, the target disc (0.4° in diameter) appeared in one of three locations, and would 

either be red (CIE 1931 x, y coordinates of 0.40, 0.31 with a luminance of 72 cdm-2) or green 
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(CIE 1931 x, y coordinates of 0.30, 0.59 with a luminance of 81 cdm-2).  In valid trials (50% of 

all trials) the target would appear in the same position as the cue.  In invalid-within trials 

(25%) the target appeared in the adjacent placeholder within the same object in which the 

cue had been presented.  In invalid-between trials (25%) the target appeared in the adjacent 

placeholder that was within a different object.  The colour of the target was determined 

randomly with equal probability on each trial.  Participants were instructed to indicate the 

colour of the target disc (red/green) by pressing one of two buttons.  The target remained 

on the screen until a response was made; following which the noise mask of random 

orientations was presented again for a further 30ms, ending the trial.  See figure 6.8 (a and 

b) for a depiction of the display sequence and a simulation of the observers’ perception 

during the sequence, respectively.  Figure 6.8c also shows examples of the different 

positions and orientations which the objects could assume.  

Participants completed 10 practice trials followed by three blocks of 128 

experimental trials.  Participants were then asked an open question to probe their visual 

experience of the stimuli: they were asked to describe anything they noticed about the 

flickering background on which the white flash (cue) and coloured disc (target) were 

presented.  After answering the question, participants were then shown the display with a 

much reduced alternation rate of 4 Hz which explicitly revealed the nature of the objects in 

the display.   
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Figure 6.8: Illustrations of the stimuli and the temporal sequence of experiment 6; a 
simulated observer’s perception of those events; and three examples of the different object 
positions and orientations. a) Full illustration of the trial sequence.  Note that each box only 
shows a magnified portion of the entire stimulus display, focussed on the objects.  Here the 
objects appear below the fixation cross in a vertically-aligned arrangement and the target is 
invalidly cued within those objects.  Double arrows indicate that the two frames are 
presented continually in alternation at a frequency of 16.7Hz.  In the signal-detection task, 
the final two frames (target frames) were only presented for a limited amount of time that 
was calibrated for each participant (see Methods) b) A simulated observers perception of 
the sequence shown in a.  Participants are not aware of the presence of the figures. c) 
Examples of the three object positions not shown in a; relative to the fixation cross, they are 
left, above and right.  The cue and target on each trial would only be presented within the 4 
placeholders associated with the figures.     

The second phase of the experiment determined whether participants were 

sensitive to the presence of the objects in a confidence-rating signal-detection procedure.  

Participants were presented with an additional 3 blocks of 128 trials, preceded by 10 

practice trials, in which the objects were present only in half the number of trials.  When the 

objects were absent, all orientations in the display were homogenous and alternated every 

30ms between horizontal and vertical.  All randomly-determined parameters (e.g. object 

position and orientation, when present) and temporal characteristics remained consistent 
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with the attention task, except that following the onset of the target, the display would only 

remain on the screen for a limited amount of time.  This was automatically determined 

individually for each participant by obtaining their largest RT from the attention task 

following the removal of outliers (removal criteria described in full in the Results section).  

The mean of these values was 937ms (SD=158, max=1280ms, min=739ms).  Participants had 

to indicate on which trials the objects were present by pressing one of two keys, and then to 

rate their confidence with that judgment on a scale of 1-4, by pressing one of four keys.  

 
6.11.4. Results 

In the attention task only correct trials were analysed.  The RTs were trimmed by 

first removing those that exceeded 1500ms, interpreted as unsuccessful button-presses or 

momentary lapses in concentration, or were less than 200ms, interpreted as anticipatory 

responses.  The remaining data that fell outside 2 standard deviations from the mean per 

condition per participant were removed as outliers.  Overall, 6.2% of all trials were 

discarded.  A within-participant ANOVA with the single factor Cue Validity was conducted on 

the mean values of the remaining RTs, with overall means of 456.7ms (valid), 482.9ms 

(invalid-within) and 488.8ms (invalid-between) as shown in figure 6.9a. The main effect was 

significant (F(1.11,9.95)=25.61, p<0.001; Greenhouse-Geisser corrected) indicating that the cue 

had a different effect on participants’ RTs depending on its position relative to the target 

and the figures.  In the key analysis, a paired t-test revealed that RTs were shorter on 

invalid-within than for invalid-between trials (t(9)= 3.41, p=0.008), indicating that 

participants were faster to respond to targets that appeared within the same object as the 

preceding cue relative to those that appeared on a different object.  No significant effect of 

accuracy (valid: 97.7%, invalid-within: 97.5%, and invalid-between: 98.2%) was found 

between the conditions of cue validity (F(2,18)=0.48, p=0.626),  indicating no trade-off 

between RT and accuracy. 
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Figure 6.9: Results from both the attention task and signal-detection task from experiment 
6. a) RT results from the attention task (N= 10).  Participants were quicker to identify the 
colour of a target when it appeared within the same object as a preceding cue compared 
with when it appeared on a different object, whilst spatial distance was equated.  This is 
true despite participants denying any awareness of those objects.  A double asterisk 
denotes a significant paired t-test at the 1% level.  Error bars show 1 standard error of the 
mean with between-participant variance omitted b) Average sensitivity (da) to the preence 
of the objects (vs. their absence) in the signal detection task.  This value is not statistically 
different from 0, indicating absence of awareness. c) Individual participants’ ROC.  All 
participants show an approximate linear plot indicating that they could not successfully 
maximise hit rate whilst minimising false alarm rate.  Each set of axes represents either 3 or 
2 of the total 10 participants’ ROC curves. d) Scatterplot of each participant’s RT advantage 
(between-object RT - within-object RT) versus sensitivity.  There is no association between 
the participants’ ability to detect the presence of the objects and their difference in RT 
between the within-object and between-object conditions. 
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In response to the open question asked regarding the content of the flickering 

background, most participants described it as being composed of “flickering crosses” or 

“flickering lines” and some would remark that there were parts of the background that were 

“missing” (the placeholders).  None, however, made any comments that could be 

interpreted in any way as awareness of the objects.  Data from the subsequent signal-

detection task were used to formally measure participants’ sensitivity to the objects.  The 

task measured participants’ ability to distinguish two categories of trial (“objects-present” 

and “objects-absent”) that each occurred an equal number of times.  Participants indicated 

which category they judged each trial to belong to by pressing one of two keys, and then 

rated their confidence with that judgment on a scale of 1-4.  Participants’ responses were 

first assigned to one of two categories (present/absent) and the additional confidence 

report by the participant on this decision (on an integer scale of 1-4) thus provided a total 

scale of 8 responses: ranging from very confident “objects-present” (1) to very confident 

“objects-absent” (8).  Sensitivity was calculated by tabulating the number of responses for 

each of these eight confidence levels for both “objects-present” and “objects-absent” trials.  

The discriminability index da was calculated from these data using the software RScorePlus 

(Harvey, 2002) to fit a Gaussian unequal variance model.  da allows for unequal variance and 

is equivalent to d’ in the case of equal variance.  A higher da indicates a greater sensitivity to 

the signal, and a da of zero indicates no sensitivity.  A negative da can represent an ability of 

an observer to discriminate the two conditions, but the conditions are labelled incorrectly 

by the observer (e.g. in the case of this experiment, responding consistently with the 

“objects-present” response for “objects-absent” trials, and vice versa), however it can also 

simply be (and is more likely to be in this case) a consequence of sampling error.   

Overall, participants’ da (shown in figure 6.9b) did not differ significantly from zero 

(mean da = 0.01; t(9) = 0.32, p = 0.75), indicating that participants could not discriminate 

those trials in which the objects were present from those in which they were absent, and 

hence it is extremely unlikely that they had any awareness of the objects.  Receiver 

operating characteristics (ROCs) were also computed from the same data for each 

participant.  Each curve contains 7 points (as a scale of n criteria, in this case 8, determines 

n-1 points on the curve), with each representing a single criterion that distinguishes one 

rating from the immediately lower rating (e.g. rating 4 from rating 3, or rating 8 from rating 

7).  The ROC curves are plotted with true positive rate (hit rate) vs. false positive rate (false 
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alarm rate) in figure 6.9c; the more linear the plot, the less able the observer is to 

differentiate the two conditions.  As shown in figure 6.9c, no participant showed any ability 

to maximise hit rate whilst minimising false alarm rate (as would be indicated by a bowed 

curve), indicating that they could not accurately distinguish the conditions that were driving 

the object-based attention effects in the previous task. 

Figure 6.9d also shows a scatterplot of points for each individual participant’s within-

object RT advantage (calculated from between-object RT – within-object RT) versus 

sensitivity (da).  A parametric correlation test between these two variables is not significant 

(r(8)=0.10, p=0.78), clearly indicating no association between the awareness of the objects 

and their effect on attention.  

 

6.11.5. Discussion 

In this experiment, targets appearing within the same object as a cue were 

processed more rapidly than those appearing on a different object.  This is a standard 

demonstration of object-based attention (Egly et al, 1994), although participants showed no 

evidence of any conscious access to the objects as revealed through a signal-detection task.  

This is in line with the more general notion that engaging attention is not sufficient for 

awareness, which has previously been demonstrated (Kentridge et al, 1999; 2004; 2008; 

Sumner et al, 2006; Kanai, Tsuchiya & Verstraten, 2006; Koch & Tsuchiya, 2007) and that 

attention and awareness have distinct neural signatures (Wyart & Tallon-Baudry, 2008).  The 

magnitudes of the within-object advantages reported here are small but by no means 

atypical of those found using this paradigm with visible objects (see Reppa, Schmidt & Leek, 

2012).  Crucially, the present experiments refute the potential claims that previous work 

had only manipulated an early purely spatial form of attention, in which attention is not 

directed at an object per se, but rather simply the space which it occupies (Mole, 2008).  

Additionally, it is very important to note that the participants’ inability to detect the objects 

above-chance could not simply be attributed to a memory failure, as the participants were 

at liberty to make responses in the signal detection task at the instant they became aware of 

the objects.  

There are many issues to consider when choosing the most appropriate way to 

assess awareness in experiments that exploring unconscious attentional effects (Vermeiren 

& Cleeremans, 2012).  In the present experiment we report the most straightforward 
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measure – a test of participants’ ability to discriminate objects’ presence versus their 

absence.  The critical property that determines the unconscious attention effect, however, is 

the objects’ spatial location and orientation together with the relative positions of the cue 

and target on each trial.  Even if participants are unable to discriminate the presence and 

absence of objects per se they might conceivably retain a conscious impression as to 

whether cues and targets appeared within a single object. It could be argued, therefore, 

that in the signal detection task, participants should in fact be required to discriminate 

“within-object” from “between-object” trials, on the basis that this maximises the parity 

between the tasks measuring attention and awareness (Reingold & Merikle, 1988).  We 

conducted a separate experiment using the same general methods with an independent 

sample of 20 participants with this alternate signal detection task.  The results are 

reassuring, as the participants could not discriminate the two types of trial in a signal 

detection task and again demonstrated a reliable within-object reaction time advantage11.  

Thus, we have demonstrated using two variations of a signal detection task that both the 

objects’ presence and their spatial relationship with cues and targets are concealed from 

awareness.   The signal detection task used in the present study is arguably the most 

stringent assessment of awareness, as the task has a relatively low cognitive demand; 

participants do not need to encode and combine separate information regarding the 

objects, cue and target in order to make a successful response, as the task requires only 

knowledge concerning the objects’ presence. 

An important aspect of normal object-based attention is that it is effortless, and is 

deployed rapidly across a visual scene (de-Wit et al, 2011), which must certainly be true if 

we are to assume that these effects have any bearing on the mechanisms of everyday visual 

perception.  It appears to be an automatic rather than a voluntarily controlled process of 

selection. In the present experiment objects could appear randomly in one of 4 locations 

with vertical or horizontal orientation. Observing an object-based effect under these 

conditions is in keeping with the current understanding the operation of  automatic 

preattentive scene segmentation for the purposes of object-based attention.  If this finding 

does reflect an unconscious deployment of exogenous object-based attention, it also has 

wider implications for our understanding of the relationship between attention and 

                                                           
11 The result of the critical paired t-test between the within- and between-object trials was 
t(19)= 2.24, p=0.037. 
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awareness; Chica and colleagues (2011) have shown that behavioural and 

electrophysiological signatures of attention and awareness dissociate when attention is 

voluntarily controlled but show stronger correlation when attention is under exogenous 

control, lending weight to the suggestion that awareness automatically follows exogenous 

attention. The results of our experiment suggest that although exogenous attention may be 

necessary for awareness – exogenously controlled attention can act in the absence of 

awareness. 

The object-based attention effects observed in the present study stem from simple 

segmentation processes; however, the visual system also uses grouping principles to infer  

the true nature of the environment when complete segmentation information is not 

immediately available (i.e. when objects may be partially occluded).  Consequently, object-

based attention effects are still found for partially-occluded objects (Moore, Yantis & 

Vaughan, 1998).  An important step in future research, therefore, will be to determine 

whether such grouping principles that extend beyond simple segmentation processes 

impose a limitation on the functionality of object-based attention in the absence of 

awareness. 

The visual system is purported to process information of an object’s structure for 

purposes that do not automatically result in awareness.  This has been illustrated in cases of 

visual form agnosia, in which patients have no conscious access to the shapes of objects, 

arising from bilateral damage to the lateral occipital complex (LOC), an area selective to 

object shape (Grill-Spector, Kushnir, Edelman, Itzchak & Malach, 1998).  Yet, paradoxically, 

these patients may retain an ability to manipulate those objects appropriately in accordance 

with their shape (Milner et al, 1991).  Such a dissociation is believed to reflect the division of 

labour between the dorsal (subserving unconscious guiding of action towards objects) and 

ventral (subserving conscious perception and recognition of objects) streams of visual 

processing (Milner & Goodale, 1995).  de-Wit, Kentridge and Milner (2009a) showed that 

object-based attention could not be engaged in a patient with bilateral LOC damage despite 

their having an otherwise functional attention system.  This highlights the necessity of area 

LOC, a region of the ventral stream, in representing form for the purposes of object-based 

attention.  Although the ventral stream is viewed as predominantly a conscious processing 

stream, there are occasions in which activity within it correlates with stimulus information 

despite an absence of awareness of the stimuli (Dehaene et al, 2001; Sterzer, Haynes & 



174 
 

Rees, 2008).  Indeed, Sterzer and colleagues’ (2008) discovered ventral activity that 

differentiated images of faces from houses even when the stimuli were not entering 

awareness.  This high-level but unconscious categorization by the visual system is arguably a 

more complex process than that which determines the orientation of a pair of rectangles in 

an object-based attention task, and so it is not surprising to find evidence of unconscious 

ventral stream operations in the present study.  What is surprising, however, is that this 

unconscious ventral stream activity is capable of directing attention.  One possible 

explanation is that the forward and backward masking employed in this study substantially 

reduces the object-related activity in ventral areas to a level below the threshold of visual 

awareness but not that of attention.  Alternatively, however, the feedback from these 

ventral areas to primary visual cortex may be of critical importance (e.g. see Fahrenfort, 

Scholte & Lamme, 2007), something which is disrupted by the continual masking in the 

current experiment but which is, perhaps, not necessary for the operation of object-based 

attention.  

 
6.12. General discussion of study five 

 

The experiments reported here have shown numerous instances of object-based 

attention without awareness of the objects.  In the initial two experiments, the assessment 

of awareness came only from the participants’ report of their subjective experience of the 

experiment, which was acquired through a series of post-experiment questions.  It is 

unlikely that these questions carried a response bias towards not reporting the objects, as 

the questions were initially non-directive and gave the participants ample opportunity to 

describe their experience before explicitly addressing the presence of the objects.  There is, 

of course, a confounding factor in that the questionnaire was administered some minutes 

after completing the task, which introduced a component of visual memory that was 

required in reporting the objects but which was not required during the attention task.  The 

subsequent experiments therefore addressed this issue by requiring subjects to complete a 

secondary task following the attention task.  Across many variants of this task, essentially 

participants were unable to discriminate when the objects were present from when they 

were absent.  In experiment five, they were shown to be unable to discriminate “within-

object” trials from “between-object” trials, the critical property subserving the attentional 
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effect.  This was important as it may have been the case that participants experienced some 

perception that the cue and target fell within a single object compared to when they did 

not, without experiencing a conscious perception of the objects per se.  The final 

experiment (six), however, is certainly the most convincing argument that the object were 

truly invisible to the participants, as in this case the nature of the objects were fully revealed 

to the participants, and the task of discriminating “objects-present” from “objects-absent” 

trials is arguably the one which is the least cognitively demanding.  The somewhat tricky 

issue of how to appropriately assess awareness in unseen cueing/priming tasks has 

therefore been addressed in the present set of experiments by use of a variation of 

assessment techniques, ranging from subjective reports to the most sensitive confidence-

rating signal detection method that is possible. 

The question of whether the experiments reported here are truly measuring what is 

typically described as object-based attention has also been suitably addressed.  Importantly, 

the onset asynchrony between the cue and target (160ms) is typical of the exogenous 

properties of object-based attention, which require some time-course within the range of 

90 and 300ms to be successfully engaged (de-Wit et al, 2011).  The effect has also been 

shown to occur (experiment three) when the transient cue is not confounded with a 

contingency between the object on which it appears and the upcoming target, and the 

effect is also robust to when the objects appear at unpredictable locations and assume 

unpredictable orientations (experiments four to six).  This automatic and preattentive 

nature of object-based attention is an important one, and one which has not been suitably 

studied in previous attempts to dissociate object-based attention from awareness (Chou & 

Yeh, 2012; Ariga et al, 2007). 

The presence of the object-based attention effect implies that the 2nd-order 

contours that separate the figures from their background have been processes by the visual 

system insofar as they are integrated into a “unique representational entity” (Naber et al, 

2011, p.6), as the low-level segmentation components of visual perception are not sufficient 

to warrant such object-related facilitation (de-Wit et al, 2009; Naber et al, 2011).  It is very 

likely that this object-based attention necessitates the object-construction processes that 

occur in LOC (de-wit et al, 2009a).  It is a fair assumption, therefore, that the objects in these 

experiments are being encoded at a non-conscious level within LOC; an area of the ventral 

processing stream which is otherwise strongly associated with object awareness (e.g. 
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Carlson et al, 2007).  In Carlson et al’s study, object-substitution masking was used to render 

objects invisible; the critical difference between this method and the general one reported 

here may be that, in the present experiments, the crucial object information (i.e. the 

location of the contours) is shared between successive frames, albeit with a different phase.  

Early segmentation processes show signs of phase-invariance (e.g. Norman et al, 2011) and 

it is known that LOC is capable of representing the structure of objects despite gross 

changes in the information that defines them (Grill-Spector et al, 1998).  It is possible 

therefore, that the object-based attention effects observed in the present experiments 

reflect the processing ability of both low-level segmentation and high-level object-

construction in temporally integrating spatially congruent information (i.e. the positions of 

contours). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



177 
 

7. General discussion 

 

7.1. 2nd-order segmentation 

 

The work in this thesis was motivated by the clear distinction found in the visual 

system between its respective processing of the edges and regions of a visual scene.  This is 

most notably apparent with the perception of contours and surfaces based on 1st-order 

stimuli (Paradiso & Nakayama, 1991; Rogers-Ramachandran & Ramachandran, 1998; 

Breitmeyer, Kafaligönül, Ögmen, Mardon, Todd & Ziegler, 2006); considerably less is known, 

however, of the perception of those based on 2nd-order stimuli, to which the visual system 

is also very sensitive.  Studies one and two of this thesis specifically set out to develop our 

understanding of the processes of 2nd-order segmentation (often termed “texture 

segmentation”), specifically of mean orientation contrast.  It is thought that such 

segmentation is accomplished through a filter-rectify-filter process (see chapter 1 for an 

introduction, and Bergen, 1991, for a detailed review of such a model).  Its three-stage 

process clearly distinguishes itself from that which underlies 1st-order luminance 

segmentation, the basis of which can be found in as early as the centre-surround 

antagonistic structure of the receptive field of a single retinal ganglion cell (Kuffler, 1953; 

Hartline and Ratliff, 1957; 1958). 

Study one explored the extent to which 1st- and 2nd-order segmentation share 

certain processing characteristics.  It is known, for instance, that 1st-order contours can be 

extracted by the magnocellular subdivision of processing in a rapid, phase-insensitive 

manner (Saito, Tanaka, Isono, Yasuda & Mikami, 1989).  This means there are cells that are 

sensitive to the presence of a contour irrespective of its sign of contrast.  It is known that 

2nd-order segmentation is rapid, in contrast to 2nd-order discrimination, but whether or 

not this temporal processing advantage reflects the selective involvement of phase-

insensitive magnocellular processes is uncertain.  In two of the experiments in the first study 

a procedure developed by Rogers-Ramachandran and Ramachandran (1998) was adapted to 

examine 2nd-order segmentation.  Specifically, the orientations of two abutting fields of 

Gabor patches reversed temporally by 90°.  In line with Rogers-Ramachandran and 

Ramachandran’s original findings, subjects could readily pick out the contour (i.e. they could 
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segment) at a much higher frequency (~16Hz) than at which they could discriminate the sign 

of the orientations (~10Hz).  This effect was not found for comparable stimuli that differed 

in orientation variance (which do not automatically segment), indicating that the effect is 

specific to the edge-based mechanisms involved in segmentation.  The perception of the 

contour also increased with non-foveal viewing, another hallmark of magnocellular 

processing, whereas the discrimination of the sign of the contour did not.  The finding that 

2nd-order segmentation improves with non-foveal viewing is not a new one (Joffe & Scialfa, 

1995; Saarinen, Rovamo & Virsu, 1987); the experiment reported here, however, shows that 

this effect is related specifically to edge-based processes and further develops the 

dissociation between the two processes and helps our understanding of the respective 

neural processes that may be involved. 

Study two was important because there is little agreement as to the cortical locus of 

2nd-order segmentation, despite considerable efforts from studies of cell-recording (e.g. 

Knierim & van Essen, 1992; Sillito, Grieve, Jones, Cudeiro & Davis, 1995; Nothdurft, Gallant 

& van Essen, 2000; Lamme, Supèr, & Spekreijse, 1998; Lamme, Rodriguez-Rodriguez & 

Spekreise, 1999; Hupé, James, Girard & Bullier, 2001; Hegdé & Van Essen, 2000, 2003; 

Hegdé & Van Essen, 2004; El-Shamayleh and Movshon, 2011), neuroimaging (e.g. 

Thielscher, Kolle, Neumann, Spitzer & Gron, 2008; Kastner, de Weerd and Ungerleider, 

2000; Schira, Fahle, Donner, Kraft & Brandt, 2004; Montaser-Kouhsari, Landy, Heeger & 

Larsson, 2007; Hallum, Landy and Heeger, 2011), computational modelling (e.g. Thielscher & 

Neumann, 2007) and lesions in both non-human primates (e.g. Merigan, Nealey & Maunsell, 

1993; Merigan, 2000) and humans (e.g. Allen, Humphreys, Colin & Neumann, 2009).  

Specifically, it was shown in study two that patient MS has a functionally intact 2nd-order 

segmentation process; his ability to segment targets embedded even in complex “flow-

pattern” displays was well above chance, and he performed consistently less accurately 

when the target’s contours were masked (in line with findings from normal observers in 

study one), implying that he was using the information present at the contours when it was 

available to him.  Perhaps most importantly, however, MS was able to segment when the 

orientations reversed at a frequency of 12.5Hz, a level at which he was unable to 

discriminate the regions.  This is strong evidence that MS’s ability to segment is similar to 

that of normal observers in that it is rapid and mediated potentially by phase-insensitive 

channels. 
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The finding that MS retains a normal capacity to segment based on 2nd-order 

contrast has some important neuropsychological implications.  Some authors, for instance, 

have theorised that 2nd-order segmentation requires a recurrent flow of activity between 

mid-level areas (specifically the human homologue of “V4”) and low-level areas (V1 and V2), 

with the final representation occuring in V4 (Thielscher et al, 2008; Thielscher & Neumann, 

2009), a notion that is supported by evidence from neuroimaging (Kastner et al, 2000; 

Thielscher et al, 2008).  Lesion studies are invaluable in testing such a theory, and the 

experiments conducted with MS, whose lesion includes the area labelled as “V4”12 in related 

2nd-order segmentation studies (Thielscher et al, 2008; Thielscher & Neumann, 2009; Allen 

et al, 2009), clearly demonstrate that this region is not necessary for 2nd-order 

segmentation.  In which of the remaining intact regions in MS, then, does 2nd-order 

segmentation take place? A considerable body of evidence indicates that areas V1 (e.g. 

Lamme et al, 1998; 1999; Hupé et al, 2001; Hallum et al, 2011; Appelbaum, Ales & Norcia, 

2012) and V2 (Hegdé & Van Essen, 2000, 2003, 2004; Anzai, Peng & van Essen, 2007; 

Merigan, Nealey & Maunsell, 1993; Schira et al, 2004) exhibit the appropriate sensitivity to 

2nd-order contours.  The partial damage to area V2 in patient HJA may explain his severe 

impairment in segmenting a texture-defined bar (Allen et al, 2009), and the observation of 

activity in V4 in fMRI studies may only reflect feedforward projections from this area as well 

as attention-related effects which are difficult to rule out in imaging experiments; a theory 

which is supported by at least one imaging study (Schira et al, 2004).  Similarly, the 

sometimes observed activity in LOC (Thielscher et al, 2008; Larsson et al, 2006) is likely only 

to reflect the area’s more general role in form perception and not the processes of 

segmentation per se (Thielscher et al, 2008; Merigan, 2000).  In conclusion, although we 

cannot yet be certain whether V1 itself is sufficient or whether V213 is necessary, the results 

from MS quite convincingly show that “V4” is not responsible for segmentation. 

 

 

 

 

                                                           
12 Chapter 3 includes a note addressing the parity between macaque V4 and human V4 
13 Results from study four of this thesis that show a lower visual field superiority for 2nd-
order segmentation may imply a cortical locus at least at the level of V2. 
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7.2. Perception of orientation variance 

 

As described in the introduction to this thesis, the term “discrimination” when 

applied to texture perception is often reserved for those instances in which the regions of 

texture do not segment, typically either through spatial or temporal separation, and so 

discerning whether two regions are in fact different requires scrutiny.  In study one, the 

difference between segmenting and discriminating regions that differ in their mean 

orientation was evident, in that observers showed superior performance, in terms of 

accuracy, reaction times and flicker frequency thresholds, when segmentation was possible.  

When required to perform a very different type of analysis, however, their performance was 

quite different.  Specifically, when judging differences in orientation variance, they were 

consistently quicker when the patches of texture were separated compared to when they 

were abutting and showed identical flicker frequency thresholds in the two conditions.  

There is a clear distinction, therefore, between judgments of mean orientation and those of 

orientation variance.  The distinction is likely to reflect differences in processing 

requirements; whereas discontinuities in mean orientation, a first moment statistical 

property, can be detected by local edge-based processes, discontinuities in orientation 

variance, a second moment statistic, require regional integration.  Judgment of mean 

orientation, therefore, is likely to only involve the summation of activity arising from the 

orientation-specific cells in primary visual cortex, which may explain MS’s generally good 

performance in the discrimination conditions in the first two experiments of study two.  

Judgments of orientation variance, however, necessitate an estimation of how much 

dispersion there is from this particular mean value.   

As mentioned, variance discrimination in study one was shown to be made more 

quickly for separated patches than for abutting patches.  Wolfson and Landy (1998) briefly 

discussed that it might be expected that subjects would perform better on judgments of 

variance if the patches were separated, suggesting that the separation of the textures 

serves to clearly delineate the regions to be discerned.  The flexible “region of integration” 

associated with the encoding of spatially distributed orientation information (Dakin & Watt, 

1997; Dakin, 2001) may indeed benefit from the clear border definitions offered by the 

separation of the textures.  Dakin’s notion of a region of integration implies that there is a 

dedicated mechanism that is encoding the amount of orientation variance in a stimulus, an 



181 
 

idea developed further by Morgan, Chubb and Solomon (2008).  Study three set out to 

determine whether what was being represented by the visual system in the cases of 

orientation variance discrimination indeed originated from a dedicated processing 

mechanism that explicitly encoded this second moment regional statistic.  The 

psychophysical technique of adaptation was used to reveal perceptual aftereffects that 

were specific to high and low levels of orientation variance.  Specifically, when subjects 

adapted to a patch of low orientation variance, a subsequently viewed patch of medium 

variance was perceived to in fact have a larger degree of variance.  The complementary 

effect following adaptation to high variance was also found.  Much like adaptation to other 

stimulus features (e.g. motion, colour etc.) this reveals that orientation variance is explicitly 

encoded in the visual system by channels tuned to high and low variance, and that it is the 

neural activity within each of these channels that determines the perceptual output.  This 

finding adds to others which have shown selective adaptation to a mechanism that explicitly 

encodes the statistics of a visual image (e.g. density and glossiness).  Importantly, however, 

the results from the same study also imply that the level at which orientation variance is 

ultimately represented is not dependent on the low-level, local information present in the 

region.  Specifically, the randomisation of the mean orientation throughout the adaptation 

experiment ensured that adaptation effects to single orientations and mean orientation 

were ruled out; orientation variance, therefore, is encoded and represented independently 

of the individual orientations that constitute the texture. 

The aftereffects to orientation variance, however, were only specific to a retinotopic 

reference frame.  That is, when observers relocated their gaze between adaptation and test, 

no aftereffect was observed for stimuli presented in the same spatial location as the 

adapting stimuli, suggesting that the encoding of orientation variance is not spatiotopic.  

This is also true of the tilt aftereffect, which follows adaptation to a 1st-order orientation 

property.  Knapen, Rolfs, Wexler & Cavanagh (2010) argue that it would be unlikely to find 

spatiotopic aftereffects of orientation adaptation, due to the encoding of orientation being 

carried out in V1; remapping of the adaptation would require that the modified, adapted 

state of neurons be transmitted horizontally through the brain in any direction depending 

on the impending eye movement, necessitating a very dense connectivity in lower visual 

areas for which there seems to be no neurophysiological evidence.  It was theorised in study 

three that aftereffects to variance adaptation may have revealed spatiotopic encoding, due 
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to the large receptive fields that may be required to achieve second moment  orientation-

based estimations and the spatiotopic properties of visual areas that present such large 

receptive fields.  In study three, however, no evidence for this was found.  This may indicate 

that variance perception is achieved and represented at a much earlier level in the visual 

system than previously expected.  The results from experiment four in study three also 

develop this theory, as patient MS was shown to be able to discriminate levels of 

orientation variance.  Importantly, MS could not have achieved this on a purely local scale; 

the randomisation of the mean orientations in the stimuli ensured that an estimate of 

variance independently of mean orientation for at least two of the three textures was made.  

In light of recent evidence it may not be surprising that early cortical areas may encode 

orientation variance; primary visual cortex has been shown to be sensitive to long range 

contextual effects of orientation (Joo, Boynton & Murray, 2012).  Together, the results from 

these experiments suggest that even a second moment regional statistic of orientation 

processing may be computed as early as primary visual cortex.  

 

7.3. Cue-invariant segmentation 

 

As information processing in the ventral stream becomes more complex, it also 

becomes more object-oriented.  The neural representation of objects, which is found in 

lateral occipital complex (LOC; Malach et al, 1995; Goodale, Milner, Jakobson & Carey, 

1991), for instance, is cue-invariant (Grill-Spector, Kushnir, Edelman, Itzchak & Malach, 

1998).  This reflects the need to encode objects independently of how they are defined with 

respect to their environment, thus achieving a degree of perceptual constancy.  Study four 

set out to further our understanding of cue-invariant segmentation, and how extrastriate 

areas may contribute to its processing.  The study first showed that when the feature 

defining a target region rapidly alternated between one type of 2nd-order feature 

(orientation) and another (spatial frequency), the segmentation of this target was 

equivalent to that of standard single-cue segmentation.  This may imply neural synergy 

between the representation of contours by orientation and spatial frequency contrast, and 

the rapid cue-alternating stimuli offered a novel method with which to explore this aspect 

of visual processing. 
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 The second aim of study four was to determine whether this cue-invariant aspect of 

segmentation necessitated additional neural processing beyond the level of striate cortex 

than single-cue segmentation.  This was demonstrated by exploiting the upper-lower visual 

field asymmetry that is attributed to dedicated cortical processing at the level of V2 and 

beyond (Horton & Hoyt, 1991; He, Cavanagh & Intrilligator, 1996; Graham, Rico, Offen & 

Scott, 1999).  It was shown that observers were more sensitive to a figure defined by an 

alternating cue in the lower visual field than in the upper visual field, and that the 

magnitude of this asymmetry was considerably larger than that of single-cue segmentation.  

This effect was not present when observers were required to perform the task by 

discriminating the stimuli (i.e. with black border masks present), indicating that it is an 

effect specific to the construction of the figure’s contours.  A likely candidate subserving this 

process would seem to be LOC; an area which, in addition to its cue-invariance, shows a 

greater representation of the lower visual field (Sayres & Grill-Spector, 2008).  To test this 

theory, patient DF was tested on her ability to segment on the basis of the single- and 

alternating-cue stimuli.  As DF’s lesion includes LOC, it was theorised that she would be 

selectively impaired in segmenting a figure that was defined by a rapidly alternating cue 

compared to one defined by a single cue.  Her performance, however, was almost identical 

across the conditions, suggesting that the cortical area responsible for processing the 

alternating-cue stimulus is not found in LOC.  The neural representation of segmentation 

independently of the type of feature cue, therefore, may be found as early as V2, which has 

been shown to exhibit some degree of cue invariance (Leventhal, Wang, Schmolesky & 

Zhou, 1988; Marcar, Raiguel, Xiao & Orban, 2000).   

 

7.4. Segmenting objects as units of attention without awareness 

 

 The discussion in the previous section focussed on the importance of cue-invariant 

representations in higher level visual processing.  Cue-invariance represents a midway point 

between low-level segmentation and the construction of a meaningful perceptual object.  

Although it was quite clear from the previous set of experiments that LOC is not necessary 

for at least some forms of cue-invariant processing, it does seem to be necessary for the 

final construction of object representations; one corollary of which is the ability to select 

objects as units of attention.  Study five set out to determine whether an object-based 
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attention effect could be observed without awareness of the objects, and set out to show 

this under a variety of experimental procedures, which is highly preferable in measuring the 

implicit effects of unseen stimuli.  The objects were masked from awareness by reversing 

the sign of an orientation contrast that defined them at a level of 16.7Hz.   

In the initial two experiments, the assessment of awareness came only from the 

participants’ report of their subjective experience of the experiment, which was acquired 

through a series of post-experiment questions.  The subsequent experiments developed a 

more stringent assessment of awareness by requiring subjects to complete a secondary task 

following the attention task.  Across many variants of this task, essentially the results 

confirmed that participants were extremely unlikely to have had any conscious access to the 

objects.  A number of different procedures were used to measure the subjects’ sensitivity, 

and thus the issue of how to appropriately assess awareness in unseen cueing/priming tasks 

without overestimating or inaccurately measuring d’ (da in this case) was addressed, as 

subjects consistently failed to produce above-chance discrimination scores in the signal 

detection condition despite numerous different approaches.  The results from the 

experiments, therefore, are unlikely to simply reflect differences in task-demands between 

the attention and signal detection tasks. 

As the benefits conferred by object-based attention necessitate a unique 

representation of objecthood (Naber, Carlson, Verstaten & Einhäuser, 2011), the object-

based attention effect is very likely to necessitate the object-construction processes that 

occur in LOC (de-wit et al, 2009a).  It is a fair assumption, therefore, that the objects in these 

experiments are being encoded at a non-conscious level within LOC; an area of the ventral 

processing stream which is otherwise strongly associated with object awareness (e.g. 

Carlson et al, 2007).  In Carlson et al’s study, object-substitution masking was used to render 

objects invisible and they demonstrated that neural activity within this region correlated 

with the presence/absence of perception.  The critical difference between this method and 

the general one reported in study five of this thesis may be that, in study five, the crucial 

object information (i.e. the location of the contours) is shared between successive frames, 

albeit with a different phase.  Early segmentation processes show signs of phase-invariance 

(e.g. Norman et al, 2011) and it is known that LOC is capable of representing the structure of 

objects despite gross changes in the information that defines them (Grill-Spector et al, 

1998).  It is possible therefore, that the object-based attention effects observed in the 
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present experiments reflect the processing ability of both low-level segmentation and high-

level object-construction in temporally integrating spatially congruent information (i.e. the 

positions of contours).  At this point it is not possible to determine whether the associated 

object representation that is likely to be occurring in LOC is simply operating below a 

threshold of visual awareness, or whether the activity is instead qualitatively distinct 

somehow from that of normal conscious representation. 

The selection of the objects in this paradigm is clearly driven by the rapid 

segmentation processes that are capable of signalling a contour despite rapid changes in the 

sign across the contour.  In showing object-based attention without object awareness with 

such stimuli, these experiments have demonstrated that the transition between this low-

level segmentation and high-level object construction is an unconscious one, and that these 

object representations are even capable of being selectively enhanced by the visual 

system’s attentional processes.  This has much broader significance in the field of cognitive 

psychology, as it is a demonstration of attention selectively enhancing perceptual 

information that is not limited to a spatial reference frame.  Additionally, although the 

effect of attention on unseen stimuli has been well-studied (e.g. Kentridge, Heywood & 

Weiskrantz, 1999; Kentridge, Nijboer & Heywood, 2008; Wyart & Tallon-Baudry, 2008), it 

has been contended on the basis that there has been no parity between the unit of 

attention and the object of awareness (Mole, 2008).  In study five, however, it is clear that 

there is such parity, and so it strengthens the general claim that attention is not a sufficient 

precondition for awareness.   

The object-based attention effects observed in study four stem from simple 

segmentation processes; however, the visual system also uses grouping principles to infer  

the true nature of the environment when complete segmentation information is not 

immediately available (i.e. when objects may be partially occluded).  Consequently, object-

based attention effects are still found for partially-occluded objects (Moore, Yantis & 

Vaughan, 1998).  An important step in future research, therefore, will be to determine 

whether such grouping principles that extend beyond simple segmentation processes 

impose a limitation on the functionality of object-based attention in the absence of 

awareness.  Furthermore, it also remains to be seen whether a similar dissociation between 

attention and awareness is found for voluntarily directed object-based attention, although 
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there are clearly more difficulties one can envisage that would be associated with 

attempting to demonstrate this particular dissociation.   
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