

Durham E-Theses

The algal communities of colliery spoil heaps

Purvis, Bryan J.

How to cite:

Purvis, Bryan J. (1981) The algal communities of colliery spoil heaps, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7605/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
by

Bryan J。 Parvis
 (B, Sc 。 London)

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived from it should be acknowledged.

A thesis submitted for the degree of Master of Science in the University of Durham, England

Acknowledgements

```
I would like to thank Dr B. A。Whittong my supervisor, for many helpful discussions and much encouragement throughout this work. I am also grateful to Dr Ho Belcher for useful advise on the culturing and identification of soil algae and to Prof。 D. Boulter for the opportunity of working in the Botany Department.
I am indebted to the Royal Society Research in Schools Committee for the extencied loan of a microscope and to the headmaster and governors of the King's School, Tynemouth for unlimited use of school facilities.
Finally \(I\) would like to thank my wife without whose support and encouragement this project would never have been completed.
```


ABSTRACT

A survey of the soil algae present on old coal mine spoil heaps at East Holywell，Tyne and Wear（ O．So sheet NZ 37 ref． 313730 ）was carried out during 1979－1980。 Samples were taken at monthly intervals from eight permanent quadrats。 The sites chosen provided a range of spoil types． including some devoid of higher plants and others where colonization was well developed．Algae were isolated and their density quantified using a dilution plate technique。

A limited flora was recorded at favourable sites on both shale（ 15 genera）and washeries waste（19 genera）。

The density of algae in the spoil at sites which were stable，moist and had a pH of about 7 was comparable to that reported for a range of natural soils．

Seasonal fluctuations in algal density were recorded with a general increase in spring and late summer and a decrease in autumn and winter。 A marked decrease in mid－summer which coincided with a period of drought was recored at several sites。

At five of the eight sites both a small number of algal species and low population densities were recorded．This was ascribed to the extreme nature of the physical and chemical environment。 Evidence was however obtained that at one site the soil algae were acting as primary colonizers．

This thesis is entirely the result of my own work. It has not been accepted for any other degree, and is not being submitted for any other degree.

CONTENTS

page
List of Tables 9
List of Figures 12
List of Abbreviations 16
1 INTRODUCTION 17
1.1 INTRODUCTION 17
1.2 ECOLOGY OF PIT HEAJS 18
1.21 Physical conditions 18
1.211 Texture 18
1.212 Stability 20
1.213 Temperature 22
1.22 Chemical environment 23
1.221 Acidity 24
1.222 Toxicity 26
1.223 Nutrient status 27
1.23 Flora of pit heaps 28
1.3 ECOLOGY OF SOTL AIGAE 31
1.31 Occurrence 31
1.32 Density of soil algae 32
1.33 Factors affecting the distribution and abundance of soil algae 37
1.34 Seasonal variation in soil algae 41
1.4 ECOLOGICAL ROLE OF SOIL ALGAE 43
1.41 Colonization 43
1.42 Erosjon control 46
1.43 Contribution to the nutrient budget of soil 47
1.5 AIMS 49
2 MATERTALS AND METHODS 50
2.1 MEASUREMENT OF SOIL pH 50
2.2 COMPILATION OF SPIECIES LIST 51
page
2.3 MONTHLY SAMPLING OF SOIL ALGAE 52
2.31 Choice of sampling sites 52
2.32 Sampling technique 58
2.33 Storage of samples 59
2.4 METHOD OF EXAMINING SOIL ALGAE 62
2.41 Direct microscopic examination 62
2.42 Culture techniques 62
2.5 METHODS OF ESTIMATING ALGAL ABUNDANCE 64
2.51 Pigment analysis 64
2. 52 Most probable number technique 65
2.53 Dilution and plating techniques 65
2.6 METHOD USED IN THE MONTHLY SAMPLING PROGRAMME 66
2.61 Preparation of dilution plates 66
2. 62 Culture conditions for dilution plates 68
2.63 Counting of dilution plates 70
2.7 UNIALGAL CULTURES 71
2.8 DETAILED STUDY OF SOIL ULOTRICHALES 73
3 SITE DESCRIPTION 74
3.1 GEOGRAPHICAL DESCRIPTION 74
3.11 Location 74
3.12 Geology 74
3.2 HISTORY OF THE SITE 77
3.3 environmental conditions 79
3.31 Texture of spoil 79
3.32 Surface stability 81
3.33 Chemical conditions 85
3.34 Meteorological conditions 85
3.4 BIOLOGICAL STATUS 88
3.41 Washeries waste community 88
3.42 Shale community 88
page
4 RESULTS 914.1 ESTIMATES OF ABUNDANCE OF SOTL,ALGAE91
4.11 Effect of storage of spoil samples upon estimated density of soil algae 91
4.12 Monthly estimate of algal density 94
4.13 Occurrence and abundance of soil Ulotrichales in spoil samples 104
4.14 Occurrence and abundance of blue-green algae in spoil samples 108
4.2 SOIL ALGAE IDENTIFTED FROM SPOIL AT EAST HOLYWELL 110
5 RESULTS - TAXONOMY 117
5.1 DESGRIPTIONS OF ALGAE ISOLATED FROM COLLIERY SPOIL 117
5.11 Ulotrichales 117
5.12 Chaetophorales 136
5.13 Chlorococcales 163
6 DISCUSSION 187
6.1 INTRODUCTT ON 187
6.2 ALGAL FLORA OF COLLIERY SPOJL 187
6.21 Flora of sites $Y 1, G 1$ and $G 2$ 187
6.2.2 F1ora of sites B1 and B2 188
6.23 Flora of sites P1 and P2 189
6.24 Flora of site Y2 189
6.3 VARIATIONS IN ALGAL DENSITY IN COLLIERY SPOIL 190
6.31 Effect of methods employed upon estimates of algal density 190page
6.311 Storage of samples 190
6.312 Culture preparation 190
6.32 Sites with low al.gal density 191
6.33 Algal density on stable washeries waste 193
6.34 Algal density on bare neutral shale 195
6.4 SEASONAL PERIODICITY OF ALGAE IN COLLIERY SPOIL 195
6.41 Pattern of occurrence of algae in spoil 195
6.42 Variations in algal densjty at site Y 1 198
6.43 Variations in algal density at G sites 199
6.44 Seasonal variations in Ulotrichales 200
6.45 Variation in Cyanophyta 200
6.5 SIMILARITY OF EAST HOLYWELL TO OTHER SITES 201
6.51 Physical conditions 201
6.52 Chemical conditions 202
6.53 Biological status 203
6.54 Algal flora 204
6.55 Algal density 208
6.6 SUMMARY 208
APPENDIX 212
A1 DETAILED MONTHLY ESTIMATES OF AIGAL DENSITY AT EACH SITE 212
A2 ESTIMATION OF ALGAL SPORE INPUT FROM AERIAL PLANKTON 225
SUMMARY 227
REFERENCES 230

List of Tables

page
Table 1.1 Density of algae in differenttypes of soil36
Table 2.1 Features of the permanent quadrats 53
59 monthly sampling programme60microelements and low Mn 60
Table 2.4 Concentration of salts in Chu 10 medium61Table 2.5 Dilutions used for culturingmonthly samples at each site67
Table 3.1 Major coal seams in the MainProductive Group, Upper Carboniferous,S-E. Northumberland. Arranged indescending order76
Table 3.2 Coal seams mined at East Holywe 11 79Table 3.3 Characteristics of coal from theBeaumont seam at East Holywell80
Table 3.4 Detailed chemical composition ofcoal from the Beaumont seam atEast Holywell80
84
Table 3.5 Texture of spoil
Table 3.6 Species common in shale community at East Holywell 89
Table 4.1 Estimated density of algae in January samples after 2 weeks storage 92
Table 4.2 Estimated density of algae inJanuary samples after 5 monthsstorage93

page
Table ATo 4 Monthly estimates of algal density at site $Y 1$ 216
Table Al． 5 Monthly estimates of algal density at site Y2 217
Table A1．6 Monthly estimates of algal density at site P1 218
Table Al． 7 Monthly estimates of algal density at site P2 219
Table A1．8 Monthly estimates of algal density at site B1 220
Table Al．9 Monthly estimates of algal density at site B2 221
Table A1． 10 Monthly estimates of density of Ulotrichales at site G1 222
Table A1． 11 Monthly estimates of density of Ulotrichales at site Y1 223
Table A个。12 Monthly estimates of density of blue－green alage at site G1 224
Table A2。1 Estimates of algal spore input at low alsel density sites 226

List of Figures

Figo 2.1 Spoil surface at Y sites 54
Figo 2.2 Spoil surface at P sites 55
Figo 2.3 Spoil surface at G sites 56
Fig. 2.4 Spoil surface at B sites
Fige 2.5 Standard method for preparation of dilution cultures 69
Fig. 3.1 Map of East Holywe 11 spoil hears 75
Fig. 3.2 Shale areas at East Holywell 82
Fig. 3.3 Washeries waste area at East Holywell 83
Fig. 3.4 Snoil pH at East Holywell. 86
Fig. 3.5 Monthly variation in temperature and rainfall at Tynemouth, Tyne and Wear 87
Fig. 4. 1 Monthly variation in algal density at site G1 95
Fige 4. 2 Monthly variation in density of algae other than blue-greens at site G1 97
Fig. 4.3 Monthly variation in algal density at site G2 98
Fig. 4. 4 Monthly variation in algal density at site $Y 1$ 100
Fig. 4.5 Monthly variation in density of Ulotrichales at site G1 105
Fig。 406 Monthly variation in density of Ulotrichales at site Y 107
Figo 4o7 Monthly variation in density of blue-green alfoae at site G1 109
page

Figo	5.1	Iormidium crenulatum showing	
		indentation of cross walls	199
Fige	5.2	Hormidium crenulatum cells dividinc	120
Figo	5.3	Hormidium crenulatum field motorial	121
Fig。	5.4	Hormidium crenulatum filament	
		partly biseriate from 1 week old culture	122
Fig.	5.5	Hormidium creulatur shoring loon	
		structure	123
Fige	5.6	Hormidium flaccidum	125
Fig.	5.7	Hormidium flaccidur showing flexible	
		joint	1.25
Fig.	5.8	Hormidium flaccidum from 1 week old	
		cuiture	127
Fig.	5.9	Hormidium sterile	120
Figo	$5 \cdot 10$	Stichococcus bacillaris solitary	
		young cells	131
Fig.	5.11	Stichococcus bacillaris young cells	
		forming fragile filaments	132
Fig.	5.12	Stichococcus bactilaris old cells	133
Fig.	5.13	Stichococcus minor	135
Figo	5.14	Chlorosarcina spo cells from 2 day	
		old culture	137
Fig.	5.15	Chlorosarcina sp. cells from 23 day	
		old culture	138
Fig.	5.16	Chlorosarcinopsis minor in 2 day	
		old culture	140
Figo	5.17	Chlorosarcinopsis minor in 23 day	
		old culture	141
Figo	5.18	Jaagiella alpicola outline of colony	
		on agar in 2 month old culture	143

page

Fig． $5.19 \frac{\text { Jaagiella }}{\text { aerial fliament }} \frac{\text { alpola }}{}$ cells from	144

Fig． $5.20 \frac{\text { Jaagiella }}{\text { composed of tetrads of cells }} \frac{}{} \quad 146$
Fig．5．21 Jaagiella alpicola tip of basal filament 147
Fig． 5.22 Jaagiella alpicola terminal cells of basal filament 148
Fig．5．23 Zoospores of Jaagiella alpicola 149
Fig．5．24 Organism R4 151
Fig． 5.25 Cells of organism R10 in 2 day old culture 153
Fig． 5.26 Zoospore formation in organism 110 154
Fig．5．27 Groups of cells of organism R10 in 23 day old culture 155
Fig．5．28 Early stages of filament formation in 23 day old culture of organism R10 156
Fig．5．29 Short filaments formed at the edge of 46 day old colonies of organism R10157
Filament in 46 day old culture oforganism R10158
Fig。 5.31 Short filaments in 23 day old culture of organism R22 160
Figo 5．32 Groups of cells in 23 day old culture of organism R22 161
Fig． 5033 Organism R22 in 30 day old culture 162
Fig．5．34 Lobococcus incisa 164
Fig。 5.35 Zoospores of Lobococcus incisa 166
Fig。 5．36 Myrmecia spo 168
Fig．5．37 Muriella terrestris 179
page
Fig．5．38 Vegetative cells of Tetracystis sn。 172
Fig。 5． 39 Zoosporangia of Tetracystis spo 173
Figo 5.40 Zoospores of Tetracystis spo 174
Fig． 5.41 Young cell of Chlorococcum sp． 176
Fig．5．42 Old cell of Chlorococcum sp． 177
Fig．5043 Zoosporangium of Chlorococcum sp． 178
Fig。 5.44 Chlorella sp。 1 180
Fig．5．45 Chlorella sp． 2 181
Fig． 5.46 Chlorella sp． 2 release of autosporos 182
Fig。 5.47 Chlorella sp。2 183
Fig． 5.48 Chlorella spo 3 184
Fig．5．49 Pseudochlorella pyrenoidosa 186

List of Abbreviations

BTU	British Thermal Unit
${ }^{\circ} \mathrm{C}$	degrees centigrade
cm	centimetre
dof.	degrees of freedom
EDTA	ethylenediaminetetramacetic acid (disodium salt)
\sum	sum of
E	gram
kg	kilogram
km	kilometre
1	1itre
1b	pound
m	metre
mg	milligram
min	minute
m1	millilitre
mm	millimetre
um	micrometre
N	number in a sample
p	probability
s	second
$\overline{\mathrm{x}}$	mean

CRAPTER 1

IH2RODUCSION

1.1 INTRODUCTIOR

There are 3×10^{9} tonnes of colliery spodl in Great Britain spread over an area of 15 z 10^{3} hectares (Gutt ot 2lo, 1974). While most of this derelict land resulted from the activity of the coal industry during the industrial revolution, spoil is still being produced at a rate of 5 I 10^{7} tonnes per year. This apoil forms habitats of particular scientific interest. As Bradshaw (1970) has observed, artificial environments, like old mine sites, can give great rewards to researchers in the field of ecology beoause the habitats are distinctive. deifnable, often of kaow age and ecologically simple.

Soil algae are, apparently, almost ubiquitous; indeed it is rare to read in the literature of site from which they are sbsent. Under favourable conditions their ocology is complicated by an abundance of species and a complex pattern of interactions. They evidently colonize and inhabit colliery spoil, for conspicuous surface growths are visible at certain times of year. At such sites thole biology should be simplified by the severity of the physical chemical conditions. Therefore it was the oxdghal asm of this project to esteblish the axtetomee, and describe some of the features of the algal commaitios of colliery spoil in HaH . Bagland.
1.2 ECOLOGY OF PIT HEAPS
1.21 Physical Conditions
1.211 Texture

Commercially valuable coal is extracted from strata in the later Carboniferous. These rocks in $\mathrm{N}-\mathrm{E}$. England were formed in the delta of a great river which ran in a south westerly direction from a land mass to the north east (Willis, 1951). They consist of several different types, including limestone, shale, sandstone and coal in a regular sequence called the Yoredale Cyclothem. In mining operations a variety of rocks are excavated during the sinking of a shaft but the bulk of the spoil or waste material is formed during the coal extraction and is composed of the strata in the immediate neighbourhood of the coal seams. Therefore spoils may contain limestone, shale, flags, sandstone and seatearths (Doubleday, 1971). The actual composition of a particular heap depends upon the coal seams worked and there may be variation from one part of a heap to another as the operation of the mine moved from seam to seam.

Freshly tipped spoil has a range of particle sizes but typically the largest rarely exceed 30 cm . Spoil is characterised by having a very high content of "stones" which often amounts to $50-55 \%$ volume/ volume and by having only 25 - 30% volume/volume of particles $<2 \mathrm{~mm}$ (Rimmer, 1978). As a spoil ages the material of which it is made up weathers. The proportion of "stones" decreases and the proportion of soil forming particles increases. Richardson (1973) estimates that the weathering is generally to a depth of $10-20 \mathrm{~cm}$ after 20 years and that the proportion of particles $<2 \mathrm{~mm}$ increases by a factor of 2.5 in a similar time. The nature of the soil forming upon the surface of a spoil heap depends partly upon the size of the soil particles involved and partly
upon the size of the pores between the particles. In a healthy fertile soil there is a wide range of pore sizes which can be grouped into two basic categories; small pores (0.002 mm to 0.02 mm) and large pores ($>0.02 \mathrm{~mm}$). The smallest soil particles i.e. the clay particles, bond together to form groups called domains, which are up to 0.005 mm in diameter, and these domains may be grouped with silt particles to form microaggregates ($0.005-1.0 \mathrm{~mm}$) or with sand particles to form aggregates ($1.0=5.0 \mathrm{~mm}$) (Buckman 9 Brady, 1969).

The pores between domains and aggregates are the small pores or capillaries and these are chiefly responsible for the water holding capacity of a soil, while the large pores between larger particles are principally concerned with drainage and gaseous exchange. This structure depends heavily upon organic stabilizing agents to maintain it and the organic materials involved are thought to be polysaccharide gums which bond and crossolink soil particles (Swincer et al., 1969).

Raw shale has a low proportion of fine particles ($<2 \mathrm{~mm}$) and is totally devoid of organic matter. Its total porosity is therefore low, at $15-25 \%$, compared to an ideal agricultural soil which has $50-55 \%$. Consequently it has a low water holding capacity and is susceptible to drought. Weathering leads to an increase in the $<2 \mathrm{~mm}$ fraction but the lack of organic content to stabilize these particles results in their downward movement through the soil profile, which further reduces the porosity. On level or gently sloping weathered shale the decrease in porosity with depth is typically from 40% at or just below the surface to 5% at 30 cm depth (Rimmer, 1978)。 This results in poor drainage and waterlogging in winter. The surface of colliery spoil is therefore a
a habitat of extremes with waterlogging in winter and (Richardson s Green wood, 1967) subject to severe drought in summer. The development of a soil on the surface of this material will undoubtediy be influenced by the growth and development of the soil microflora of which the soil algae are an important part。

This picture of the physical nature of spoil material may be modified by the accidental burning of the pit heap. Colliery spoil contains a proportion of coal and other combustible material which, when high temperatures develop due to oxidation, results in spontaneous combustion. The actual ignition of the spoil occurs at very high temperatures, in excess of $800^{\circ} \mathrm{C}$ (Doubleday, 1971), deep within the heap. Ironically this may improve the surface environment by the removal of sulphur compounds, such es hydrogen sulphide and sulphur trioxide resulting in a consequent reduction in potential acidity. However, it does slow down the weathering so that mechanical analyses of red shale (burnt shale) show 60% of particles $<2 \mathrm{~mm}$ compared with 40% of such particles in unburnt shale after 50 years of weathering (Molyneux, 1963).

1.212 Stability

The loose rock fragments with their thin layer of weathered spoil form a very unstable environment, which is subject to three forms of erosion: a. sheet erosion - in which loose material is removed from the surface by the action of wind and water; b. gully erosion $=$ in which deep, steep sided channels are cut down the sides of the heap by running water; c. terrace slip o in which sparse vegetation forms a barrier to water running down the surface of the heap and behind which fine spoil accumulates forming a terrace. These terraces eventually become unstable
and slide down the slope.
The main agents of erosion are wind and water and the role of the second of these has been extensively studied. When rain falls on newly tipped spoil it easily soaks into the surface i.e. the spoil has a high infiltration capacity. The weathering of the spoil results in a reduction of the pore size of the material at the surface and a point is eventually reached when the infiltration rate is exceeded by the rainfall rate。 At this point run-off occurs. The time taken for this point to be reached and the amount of run-off which will occur depends upon a number of factors, the chief of which are:
a. texture of the spoil;
b. size and shape of the heap;
c. rainfall intensity and distribution.

On flat or gently sloping surfaces the texture of the spoil and the intensity of the rainfall are the most important factors. Spoil composed of very fine particles, such as the washery waste at East Holywell, have a very low porosity and will be subject to runcoff and hence erosion during light showers, while coarse shale will only be eroded when the rainfall is quite intense. As already explained the down washing of fine paritcles results in decreased porosity below the surface of quite coarse shale and this combined with the fact that in a heavy downpour the soil pores are reduced in size by the impact of raindrops, will mean that runcoff and hence erosion will occur on all types of spoil.

On sloping surfaces the angle of the slope is of paramount importance in determining the amount of run-off and it has been shown that while slopes of 30° or less are quite stable, slopes of 40° are highly
unstable. Only in the case of heaps composed of very coarse spoils are slopes as steep as 40° anywhere near stable. In research on loam soils Baver (1948) showed that the length of bare slopes is an important factor in determining the amount of erosion and this was particularly so during heavy rain.

Dennington and Chadwick ${ }^{\text {(1978 }}$) in a study of rainfall and run-off at three sites in Yorkshire showed that the amount of runooff was related to the amount of rainfall; between 34% and 38% of annual rainfall was lost in this way; a grass cover significantly reduced this figure. They ascribe this effect to: a. reduction in the rate at which rainfall reaches the spoil surface;
b. increased surface evaporation;
c. effect of vegetation upon the substrate structure.

No estimate seems to have been made of the amount of material lost due to the action of wind; however several workers have commented upon its probable significance. Certainly the experience of living in a mining area suggests that large quantities of material are removed from the surface of pit heaps as dust on dry windy days.

1.213 Temperature

The surface of bare soil is always subject to a wide temperature range, but that of colliery spoil is subject to even more extreme temperatures. Spoil, as already described, is usually in heaps and the amount of radiation/unit area is proportional to the cosine of the angle between the direction of the suns rays and the perpendicular to the surface. As many pit heaps have surfaces sloping at 30° to 40° this effect is exaggerated. Ludwig and Harper (1958) have summarised the relationship between soil colour and soil temperature
and the fact that colliery spoil is usually dark in colour means that it will be a better absorber and emitter of solar radiation and therefore subject to greater daily temperature ranges. Finally because of the texture of colliery spoil, it is usually very dry in summer and hence there will be a steep temperature gradient between the surface and a few centimetre below the surface.

Richardson (1958) recorded surface temperatures on a pit heap at Ouston in County Durham and showed that on a south facing slope with an angle of 30°, the temperature range in the surface 2 - 3 cm was $8=48^{\circ} \mathrm{C}$. In July 1953 he recorded temperatures in excess of $45^{\circ} \mathrm{C}$ lasting for periods between three and six hours on 16 succesaive days. A maximum recorded temperature of $57^{\circ} \mathrm{C}$ was maintained for one hour. Such temperature ranges are significant from the point of view of surface living algae. Lund (1967) pointed out that soil algae in the temperate regions do not tolerate temperatures much in excess of $30^{\circ} \mathrm{C}$ although deaiccated algal cells are able to withstand much higher temperatures than fully hydrated ones. These observations have been supported experimentally by Holm-Hansen (1963.)

1.22 Chemical Environment
 The chemical environment of colliery spoil is dominated by two features. Firstly there is often a high level of acidity which may result in some elements reaching toxic concentrations. Secondly there is usually a serious nutrient deficiency. These conditions result from the geological nature of the material making up the spoil. The commonest minerals present in spoil are aluminosilicates such as illite, muscovite, and kaolinite together with quartz, felspar, hematite,

geothite and iron pyrites (Doubleday, 1971).
1.221 Acidity

Acidity is the principle growtholimiting factor In many types of colliery waste (Chadwick, 1973). The majority of shale heaps from deep coal mining in Northumberland and Durham consist of moderately to intensely acid spoil. In a survey of 44 sites in N-E. England, Doubleday (1971) found that the pH of acid tips usually falls within the range 3.0 to 5.0. However, the pH of some types of shale may be as low as 1.5 to 2.0. At the other extreme values as high as 8.7 have been recorded. Gemmell (1977) summaries the most important factors influencing the pH of colliery shale as:
a. duration of exposure of the waste;
b. presence and mineral form of iron pyrites and the abundance of aluminium hydroxide; aresence and abundance of acid neutralizing materials such as calcium and magnesium carbonate minerals;
d. whether combustion has occurred.

The very low pH which develops on many pit heaps is the result of the weathering of iron sulphides. This may proceed along a number of multistage pathways, but Temple and Delchemps (1953) have stressed the role of autotrophic bacteria in the process and have postulated a pathway which accounts Por most of the observed facts about the process. Thiobacillus thiooxidans is prevalent in soils where pyrite is undergoing oxidation and T. ferrooxidans can be isolated from acid mine drainage. It is suggested that these orgenisms are involved in the following process:
a. finely divided pyrite or marcasite undergoes chemical oxidation to ferrous sulphate;
$\mathrm{FeS}_{2}+\mathrm{H}_{2} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$
b. bacterial oxidation of ferrous sulphate by Teferrooxidans occurs in acid solution;
$2 \mathrm{FeSO}_{4}+\frac{1}{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Pe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
c. ferric sulphate combines with finely divided pyrite resulting in reduction of the ferric sulphate and oxidation of the pyrite;
$\mathrm{Pe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{FeS}_{2} \rightarrow 3 \mathrm{PeSO}_{4}+2 \mathrm{~S}$
d. elemental sulphur is then oxidised by F. thiooxidans and it is the sulphuric acid produced in this last step which produces the very low pH , which in turn favours the continuation of the process.
$\mathrm{S}+3 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}$

The nature and mineral form of the iron pyrites in the waste seem to be important in governing the rate and degree of acidification. Studies in the U.S.A. (Carruccio, 1973) have revealed that framboidal pyrite is the most reactive form and probably the principal source of acidity in all colliery wastes. Its high reactivity is almost certainly a consequence Of its small grain size and large surface area exposed Por oxidation。

The combustion of colliery spoil results in the complete oxidation of pyrite. Therefore, although the
waste may have a very low initial pH , its potential acidity is absent and the pH will gradually rise as the shale weathers.

The exact level of pH will vary during a twelve month period due to climatic factors influencing the generation of acid. Baver (1927) reported that an acid soil showed a steady lowering of the pH from May to September and $\begin{aligned} & \text { illiams and Chadwick (1977) reported }\end{aligned}$ that the pH of acid colliery spoil was lowest in summer and autumn and highest in winter and spring. If the process postulated by Delchamps and Temple is accepted, it might be expected that the generation of acid and consequent lowering of the pH would be effected by changes in temperature and availability of water.

1.222 Toxicity

A consequence of the low pH of many spoils is that a number of metals become more soluble. Williams and Chadwick (1977) reported high levels of $\mathrm{Al}, \mathrm{Mn}, \mathrm{Cu}$, Zn and Fe in acid colliery spoil. They also noted a marked seasonal pattern in the concentrations of these elements and were able to show a significant difference between the concentrations of all these elements in winter and spring compared to summer and autumn. They ascribed these differences to changes in the rate of oxidation of iron pyrites resulting in changes in the amount of sulphuric acid in the spoil. Berg and Vogel (1973) summarise the available data on the relationship between exchangeable Al and pH and show a close relationship in which exchangeable Al increases with decreasing pH . They also report that Al is present in spoil at toxic concentrations when the pH is less than 5.5. Williams and Chadwick (1977) stress the difficulty of defining toxic concentrations of elements because the effect of particular concentrations
of particular elements upon vegetation depends to a great extent upon the other elements present. Harding (1970) reported that $0.5 \mathrm{mg} 1^{-1} \mathrm{Al}$ in calcium nitrate solution reduced root length of Agrostis tenuis by 50% but $27 \mathrm{mg} 1^{-1} \mathrm{Al}$ in a weak nutrient solution had little effect. However the levels of $A 1$ and Mn reported by Williams and Chadwick from their acid sites were so high that they would undoubtedly have a detrimental effect upon plant growth. In association with increased concentrations of other potentially phytotoxic elements such as Zn and Fe the overall chemical environment of acid spoil will certainly be hostile.
1.223 Nutrient Status

The low pH of much colliery spoil also affecto the availability of major plant nutrients. Phosphate fixation occurs in ecid conditions. Doubleday (1971) has outlined three ways in which this may occur in colliery spoil:
a. phosphate ions may combine with iron in solution to form a highly insoluble precipitate of ferric phosphate:
b. phosphates may react with labile aluminium released from clay minerals under acid conditions to form the highly insoluble aluminium phosphate;
c. phosphate may be absorbed in large quantities by amorphous fexric hydroxide which often forms as a coating over the mineral particles. This mechanism Is thought to be of principal importance. The consequence of these reactions is that there is little or no phosphate available in acid colliery spoil.

The other major plant nutrients i.e. nitrogen and potassium are not affected by the pH of the spoil but are usually in short supply. Although estimations
of total nitrogen show values which compare favourably with normal soils, estimations of available nitrogen give very low values. Williams?(1975) has shown that this is because much of the nitrogen is present in a fossilized form which is unavailable to plants. Nitrogen must be available as either ammonium or nitrate ions but both of these are readily lost by leaching on freely draining spoils. Nitrate is more readily leached than ammonium ions because the latter are held strongly by cation exchange capacity. In an analysis of spoil from five pit heaps in Yorkshire, values for available nitrate nitrogen of between 0.8 and $3.9 \mathrm{mg} \mathrm{kg}{ }^{-1}$ and for available ammonium nitrogen of 2.1 to $17.1 \mathrm{mg} \mathrm{kg}^{-1}$ were recorded (Tasker and Chadwick, 1978). When compared to an agricultural loam soil these values are seen to be very low.

Potassium is not subject to rapid leaching unless cation exchange capacity is very low or the development of acidity causes a rapid release of the element from clay minerals. However not until the pH falls below 4.0 is the availability of potassium likely to become limiting. Therefore this element is only in short supply on the most acid sites.

Trace elements are usually available in excess. Doubleday (1971) showed that with the exception of Al and Mn, none are likely to be present at toxic levels.

1.23 The Flora of Pit Heaps

The physical and chemical conditions described so Par present a very hostile environment. However natural colonization of colliery spoil does occur and on many heaps a climax community of woodland or scrub is achieved in a period of 80 years (Richardson, Shenton \&c Dicker, 1971). The process of colonization cannot begin immediately the spoil is tipped but must wait until
the conditions have ameliorated a little and the surface has been rendered receptive to plant propagules by weathering. Brierley (1956) and Greenwood (1963) both found that there were no particular pioneer species peculiar to this habitat but that colonization was achieved by plants from surrounding agricultural and waste land. An example of this fact is given by Richardson et al. (1971) in which it was reported that pit heaps in the western, upland part of Co. Durham were often colonized by Calluna vulgaris but similar sites in the central and eastern, lowland part of the county were not. Such a difference might be ascribed to the difference in altitude between the sites but it was also found that pit heaps next to isolated patches of moorland in the central and eastern regions were not only colonized by C. vulgaris but also by a range of other moorland species. Greenwood (1963) studied the flora of eight pit heaps in $N=E$. England in some detail. She found that certain plants were constant features of the pit heap community irrespective of its location and age. These five were Agrostis tenuis, Festuca rubra, Hieracium perpropinquum, Plantago lanceolata and Tussilago farfara. A further 11 species were common, occurring abundantly on seven out of the eight sites and only being absent from the very youngest site. They were Rubus sp., Arrhenatherum olatius. Deschampsia flexuosa, Festuca ovina, Holcus mollis, Heracleum sphondylium, Hieracium vulgatum, Hypochaeris radicata, Rumex acetosella, Pohlia nutans and Cladonia sp. These species also appear in similar lists from sites in Nottinghamshire, Derbyshire and S. Yorkshire (Brierley, 1956), in the Wigan district of S. Lancashire (Molyneux, 1963) and Durham (Pickersgill, 1971).

Greenwood (1963) observed that perennial species
with a means of vegetative propagation were especially common on pit heaps but pas unable to confirm the observation of Brierley (1956) that annuals played an important part in the colonization of young heaps. Both investigators found that a high proportion of the plants at such sites had wind borne seeds but Greenwood did not confirm Brierleys correlation between the percentage of wind dispersed plants in the flora and the age of the spoil heaps. A characteristic flora does seem to develop on pit heaps in which the most important capacity of the plants involved is an ability to survive severe drought. This means that the general appearance of these sites is of rough grass with a high proportion of perrenial herbs and with mosses and lichens playing an important part on the surface of the ground.

1.3 ECOLOGY OF SOIL ALGAE

1.31 Occurrence

Soil algae occur all around the world and form a part of nearly every type of terrestrial community. This world wide distribution has now been documented in an extensive literature, which has been reviewed by Shields and Durrell (1964). In the U.K. the first investigetions were carried out by Bristol (1919). She cultured algae from dried soil samples which had been collected over a number of years from the experimental plots at Rothampstead Experimental Station. In her work she demonstrated the remarkable ability of soil algae to survive drying for many years. In later work (Bristol, 1927) she cultured algae from fresh soil samples and made the first attempt to estimate their abundance. All of the soils which she studied were cultivated and the first records of algae occurring in uncultivated soils were reported by James (1935). His study however was on a very limited range of soils including two different woodland clay \quad Fritsch and John (1942) soils and a chalk soil. It was John (1942) who first conducted a study of a wide range of English soils and this was followed by a more limited survey of Scottish soils by Fenton (1943). The picture was completed by a detailed floristic, study of most of the major British soil types by Lund (1945). In recent years quantitative studies of English soils have been made by Broady (1979) a in which a range of soils were examined and an effort made to measure the abundance of algae in each soil type.

In the U.S.A. the earliest study was conducted on Colorado soils by Robbins (1912). This was followed by investigetions of the soil plora of the Missouri Botanic Garden (Moore \& Karrer, 1919; Moore \& Karrer, 1926). Durrell (1959) carried out an extensive survey of the
soils of Colorado and (1962) of Death Valley, California. Willson and Forest (1957) reported on the soils of the Oklahoma prairie and Bold and his coamorkers have investigated a number of Texas soils (Deason \& Bold, 1960; Chantanachat \&c Bold, 1962; Bischoff \&c Bold, 1963).

Soil flares have also been described from Cuba (Arce \& Bold, 1958), from Australia (Tchan \& whitehouse, 1953) , from India (Mitra, 1951), from Canada (Lowe \& Moyse, 1934), from the Belgian Congo Duvigneaud \& Symoens, 1950) and from Central America, Jamaica and South America (Durreli, 1963).

In Europe a series of studies was conducted on the soils of Denmark (Petersen 1935) and extensive floristic studies have been carried out in the U.S.S.R. The latter are nearly all reported in Russian but they have been reviewed in English by Forest (1965).

In recent years much interest has centred on the soils of Antartica and these have been described by Broady (1979b) 。

In the course of these studies almost every soil type in the temperate regions of the earth and a number of tropical soils have been investigated. Few soil samples have been reported as containing no algae and it is, in the experience of workers in this field, very unusual to discover a soil which is algae free (MacEntee, 1970).

1.32 Density of soil algae

Only a few of the studies of the soil flora have attempted to measure the density of algae。 Such measurements do pose considerable technioal problems and no one method will provide a completely satisfactory answer. Direct observation of soil filims is quite uninformative because few algae are visible and those which are cannot be identified. Lund (1945) developed

2 Cechnique of placiag a sterile coverslip on the guxfece of moigt moil axd then allowing colonization 08 it to occur. The coverslip can be examined setisfactorily and the algae present identilied but it is difficult to relate auch observetions to the ebundance of the orgenams in the soil. Cholodny (1930) used a similar technique in mhich microscope slides mere buxied ia the soil and, after colonizetion were stained and examined. Tchan (1953) suggested the use of Iluorescence microscopy for the direct counting of soil. algae because the ohlorophyll in theix cells will glow with a red fluorescence whioh emables them to be distinguished ifom soil particles. This method however has not found wide acceptance and las the disedvantage that classes of algas cannot be distinguished.

A totally different approach is to extract the pigment present in soil sample and measure its concentration by the amount of light wich it will absorb. The conoentration of pigment can bo taken as a meagure of the algal biomess. This method has been adopted by Siagh (1969) to astimate the density of blusegrean elge in Indian soile and by Shubers and Starks (1978) to astimato the algal biomess in cos2 mine poils. The disedvantages of this method are thes it only measures biomess and no indicasion of specios present is obteined. Fuxthermore its epplicetion is restricted to certaia typos 0% soils boceuse the ertraction technique collects pigronts other than chlorophyll such as humic actd and chlorophyll breakdown products.

The mosi widely used mothod bes bsea some form of dilurion culture metbod. This epprosch mas pionosera by Bristol (1927)。 She added asighed quantity of soil to known polume of starile culture medium and shook the minture sor half an hour. She then took
half of this mixture and prepared serial dilutions in which the soil concentration was halved on each occasion. 15 ml of each suspension was then inoculated into sterile sand and the density of algae was estimated by counting the tubes in which no algae appeared. A simplified version of this method was used by Petersen (1935). In more recent studies by King and Ward (1977) algal density was estimated by shaking 2 g of soil with 100 ml of Bold Basal Medium (Bischoff \& Bold, 1963) and then aseptically pipetting 1 ml of this suspension onto the surface of sterile agar medium. After spreading with a sterile inoculating loop the plates were incubated for three weeks and then the number of colonies which developed were counted. A very similar method was used by Broady (1979) with the additional precaution of drying the agar plate before pipetting the soil suspension so that conditions on the agar were not too wet.

All the plating and dilution techniques have the advantage that species can be enumerated but equally all are open to several criticisms. Firstly the kinds of algae which develop depends to some extent upon the cultural conditions provided. Liquid cultures will tend to encourage the growth of aquatic forms; for instance Bold has obtained Pandorina, a clearly aquatic species, from soil 30 cm below the surface of a pinewood. Pringsheim (1951) reported that when a small volume of soil was introduced into a large volume of culture medium Nostocaceas developed but when the volume of the soil added was increased the culture was dominated by diatoms. In addition changes in the composition of the culture medium can encourage and discourage various groups of algae. A second drawback of these methods is that all algae are counted equally
and no distinction is possible between resting stages and metabolically active algae. Finally, while the method works quite well for chlorophyceae and diatoms, Which are largely unicellular, it does underestimate the mucilaginous and filamentous forms. Blue-green algae with their mucous sheaths are very difficult to separate by shaking or homogenisation and variable results have been obtained for filamentous algae because of variation in their tendency to fragment.

The results obtained by several workers from dilution cultures show variations in the number of algae in different soils. Bristol Roach (1927) recorded numbers of algal germs in the surface soil of agricultural land varying from $91 \mathrm{~g}^{-1}$ to $105.5 \times 10^{3} \mathrm{~g}^{-1}$. Petersen (1935) obtained the results shown in Table 1.1 from surface soil in various habitats in Denmark.

TABLE 1.1 Density of algae in different types of soil (Petersen, 1935)

soil type	density (algal cells ml^{-1} of surface soil)
pasture	40×10^{3}
arable	10×10^{3}
garden loam	$200 \times 10^{3}-3 \times 10^{6}$
dune	200
heath	20×10^{3}
forest	10×10^{3}
clay	66×10^{3}

A summary of the earlier estimates obtained by various counting methods has been given by Lund (1967). Recent studies by King and Ward (1977) using the agar plating technique have recorded algal densities which varied from 54.16×10^{3} cells g^{-1} in the soil of a golf course to 5.74×10^{3} cells g^{-1} in woodland soil。 Broady ${ }^{2}$ (1979) a using the same technique as King and Ward found much larger differences between sites and recorded much higher algal densities. The lowest value he reports is for soil from a colliery spoil tip where he found 1×10^{3} algae cm^{-2} and the greatest number he found was $16.3 \times 10^{6} \mathrm{~cm}^{-2}$ from undisturbed Festuca grassland. Taking into account the different methods of expressing the results there is still a difference of one or two orders of magnitude between the findings of these two workers.

1.33 Factors affecting the distribution and abundance of soil algae

As green plants dependent upori light, soil algae are subject to the same limitations of the physical environment upon their growth and distribution, as other autotrophic organisms. They are generally found in greatest abundance at the soil surface, as would be expected by their requirement for light but it is true that they do occur down to considerable depths in the soil (Petersen, 1935). Indeed they are at times more abundant, a few centimetres below the surface (Shtina, 1959). This is now generally thought to be the result of the downward movement of cells due to water and soil animals. When such movement exceeds the rate of reproduction at the surface, the number of algae in sub-surface samples will exceed those at the surface. Alexander (1977) claims that algal cells below the surface probably exist in a dormant condition as aliens in a foreign environment.

Moisture is by far the most important factor (Shields \& Drovet, 1962) affecting algal abundance in the soil. These organisms are capable of surviving for many years in air dry soil but they only produce really large populations on damp soil. Bristol (1919) showed that one species of diatom could survive for at least 73 years in the air dry state and Trainor ${ }^{(1970)}$ has reported that in a soil from which he originally isolated 31 species in 16 genera after one year's storage, he was still able to isolate 11 species from nine genera after 10 years storage. Furthermore Trainor and McLean (1964) showed that when they introduced a measured amount of a Spongiochloris culture into sterile soil, they could recover 2×10^{5} cells g^{-1} after one year s air dry storage. On the other hand Tchan and Whitehousé (1953) have shown that waterlogging is also unfavourable to the
soil algal flora. Lund (1967) has shown that prolonged saturation of soil, providing it does not become anaerobic, results in the development of a typical ephemeral aquatic flora. Stokes (1940) estimated that the ideal moisture content of a soil for the growth and reproduction of soil algae was between 40% and 60% of its moisture holding capacity. Therefore in the soil algae we have a group of organisms intermediate in position between the aquatic and the aerial algae, with distinctive moisture requirements and not simply a depauperate aquatic community.

On a world wide scale it is difficult to separate the effect of moisture from that of pH because most arid soils are alkaline and most permanently wet soils are acidic (Shields and Durrell 1964). However pH is the most widely investigated environmental factor affecting soil algae. Lund (1967) suggests that its importance has been overestimated because of the ease with which it can be recorded. However the picture that emerges is that most species can grow on soil which is neither too acidic nor too alkaline i.e. pH 5.5 to 8.5. There are, however, distinct differences between the groups of algae in their pH range. A typical example of this is the findings of Granhall and Henriksson (1969) who carried out a survey of Swedish soils and found no blueagreen algae at sites with a pH of less than 5.0 and the greatest abundance at sites with a pH above 7.0. In fact several workers have shown that blue-green algae are more diverse and more abundant in alkaline soils. In acid goils, on the other hand Petersen (1935), John (1942) and Lund (1945) all noted the poor representation of diatoms and the dominance of Chlorophyta. At a more detailed level MacEntee, Schreckenberg and Bold (1972) have reported that palmelloid green algae are rare on acidic sites.

In a recent survey, Broady (1979) presented data that suggest that while the chlorophycean flora is equally diverse in acidic and alkaline soils, the density of green algae is much lower at low pH sites. Stokes (1940) also showed a decrease in the density of algae with lower pH although he did not distinguish between groups of algae. Finally MacEntee (1970) studied the effect of pH on the growth and spatial pattern of soil algae on strip-mine spoils in $N-E$. Pennsylvania. He reported the total absence of diatoms and the very low incidence of blue-greens, both of which he associated with the low pH of the site. In addition, he found that at no site were there more than six genera and when this is compared with the 16 genera reported from a single site by Trainor (1970) it suggests that acid colliery spoil has a very restricted flora.

As described in section 1.22 pH is connected to several other chemical factors including, the availability of inorganic nutrients. Lund (1945), (1946) and (1947) showed that calcareous soils which are rich in phosphorus and nitrogen have a considerably richer flora than other soils. However Shtina? (1959) did not find any marked effect upon the algal flora when she added phosphorus to experimental plots. This may have been due to an already sufficient supply of phosphorus in the soil as the existing level was not measured. There is little information available on the importance of potassium however there are some data on the importance of silicate. In a habitat composed largely of siliceous particles it is surprising to find that the concentration of silicate in the soil solution can be a factor limiting the distribution of certain diatoms (Lund, 1967).

The effect of temperature fluctuations depends upon the condition of the cells and the rate at which changes occur. Air dry algae can undoubtedly survive
temperatures far outside the range they are likely to encounter in nature. Trainor and McLean (1964) showed thet 2×10^{4} cells g^{-1} survived in air dry soil that had been heated to $100^{\circ} \mathrm{C}$ for one hour. This compared with 2×10^{5} cells 8^{-1} which could be isolated from similar soil which had not been heated. Therefore while a large number of cells had died a considerable proportion survived suck rigorous treatment. MacEnteo, Schreckenberg and Bold (1972) investigated the effect of temperature extremes upon the species diversity of air dry soil from pinewoods in New York State, U.S.A. They found that storage at $0^{\circ} \mathrm{C}$ for one week reduced the number of algal genera in the soil from six to one and that heating above $60^{\circ} \mathrm{C}$ for a period of time as short as one hour eliminated virtually all the algae in the soil. In contrast they found in soil from a drought affected pasture that Mostoc, Anabaena and Bracteococcue could survive heating for six hours at $100^{\circ} \mathrm{C}$ while Anabaena, Phormidium and Calothrix could survive heating for two hours at $110^{\circ} \mathrm{C}$. In the whole range of conditions which they investigated they found Tetracystis, Chlorococcum, Hormidium and Chlamydomonas to be especially resistant to temperature extremes. They also noted that these were the comonest algae isolated from fresh samples of the same soil. In nature the most extreme conditions in which algal communties have been examined are the takyars of Russia. Here abundant algae are found in sites where the surface temperatures reach $87^{\circ} \mathrm{C}$ in summer and $011.5^{\circ} \mathrm{C}$ in winter. It is clear from this deta thet while the number of alga present and the species diversity in a soil may be reduced by extreme temperatures, some of the commonest soil organisms can withstand a remarkable range of conditions.

The final factor to consider is the influence of other organisms upon the soil algae。 The activities of
man undoubtedly have a profound effect upon the soil flore as numerous surveys show changes in biomass and species diversity produced by agricultural techniques. Most of the early work reported more algae in disturbed agricultural land than in undisturbed natural habitats. but the recent survey by Broady (1979) reported the highest number of algae in undisturbed grassland sites. One human effect of particular interest is that of herbicides upon the soil flora. Cullimore and McCann (1977) and Metting and Rayburn (1979) both showed that at least some soil algae were sensitive to these compounds. In contrast the application of insecticides to rice fields has been shown to produce a distinct algal bloom (Ragu \& MacRae, 1967). This effect was shown to be due to the inhibition by the insecticide of amall crustaceans which normally feed upon the algae. This example highlights the possible role of heterotrophs in the regulation of soil algal populations. In isolation cultures it is common to find large numbers of soil amoebae, many of which are gorged with algal cells (author's observation) and these are probably a significant factor in the ecology of soil algae. Little work has been done in this field but Parker and Turner (1961) did study the interaction of algae with algae, algae with bacteria, algae with actinomycetes, algae with fungi and algae with protozoa in two membered cultures. They report a wide variety of interactions including cooperation, commensalism, competition, parasitism as well as direct predation.

1.34 Seasonal Variation in Soll Algae

In view of the previously described effects of soil moisture, temperature, inorganic salts and light upon soil algae it might be expected that they would show a regular seasonal periodicity. However the evidence
for this is fragmentary. 位Artin (1939) recorded the seasonal Feriaition in species isolated from virgin Utal soils by sampling at three monthly intervals over a two year period. H found Chlorococcum and diatoms to be the dominams alge at all times of year and that these were associated with various bluewgreen algae which showed no reguler periodicity. He did not give figures For the density of alges at all seasons but states that there were 8×10^{5} colls $\&^{\infty 1}$ in the soil in autumn and this number decreased during the winter and then increased again Prom June onwerds. Petersen (1935) recorded as a general observation that soil algae mere more abundant in spring and autumen and Lund (1945) recorded the seasonel varietion of diatoms in gexden soil and lound masime in spring and early sumer and egaiss in the autums. These differences corresponded to differences in reiniall and the lomest demaity is gummer slays occurred with the mid-summer drought. He recorded the lowest density of elgee in Februasy but ris unsble to discorn any semsonal gucoession of species. Blusagreen algee are seid to show maxked seasonel iluctuations (Fogg, Stewert, Fey
 recordad more blueagrean elgeo in desert soils in Hovember than in June or July. Broady (1979) recorded the aumber of algee cm ${ }^{-2}$ La a winter mheat field over seven months. The fixgt sample wes tsken limedistely after ploughing in October and thers was a stesdy increase in numbers up to May. This mas followed by shescy decrease in June Which coincided with a spoll or bor dry weathor. In this study, bomeror, thero is colonization of nemy axposed muricce as mell as seasonel veristion. It is therefore appareat twat there bes not bsen a study is which the mumbess of alge have boan recorded at regular intervels ofer a twolve month poriod at an undisturbed site。
1.4 ECOLOGICAL ROLS OF SOIL ALGAE
1.41 Colonization

The role of algae in the soil ecosystem has been investigeted from a number of angles. Their role as pioneer organisms in the colonization of bare earth has been extensively studied in a number of different circumstances. Fritsch and Salisbury (1915) commented upon the appearance of various algae as the first visible colonizers of burnt heath at Hindhead Common in England. They observed Cystococcus humicola as the primary colonizer associated with Gleocystis vesiculose, Scenedesmus obligeus, Trochiscia aspera and Mesotaenium violasceum. They also reported the observation of succession in the soil algal community, with these organisms being replaced by Hormidium flaccidum and Zygogonium oricetorum. Fritsch (1922) also reported succession in the colonization of rock surfaces in which the pioneers were blue-green algae such as Gloeocapsa, Gloeothece, Aphanocapss and Nostoc, which were succeeded by filamentous blueagreens like Lyngbya, Scytonema Stigonema and Hapalosiphon. He also observed that different algae act as colonizers on different soils. So that while the sandy soils which he examined were colonized by Zygogonium, the heavier soils were colonized by Hormidium and Prasiola.

In the United States, interest has centred on the soils of the arid south western states. Forest, Willson and Englahd (1959) removed blocks of prairie soil in Oklahoma, and after sterilization, replaced them in situ and recorded their colonization. They concluded that there were no special pioneer algae but that colonization was effected by the commonest algae in the surrounding natural prairie. They did not observe any successional sequence but noted that Chlorococcum humicola, Hantzschia amphioxus. Lyngbya aestuarii,

Navicula mutica and Pinnularia borealis were always common in both the natural prairie and the sterilized soil.

Volcanic eruptions in various parts of the world have offered unique opportunities of studying the colonization of large areas of totally sterile soil. The first such study was by Treub in (1888), when he visited the island of Krakatoa just three years after its dramatic eruption. He recorded the important role played by blue-green algae in the reoestablishment of vegetation there. His observations were confirmed by other expeditions such as that of Campbell it (1909). The cinders on the island were coated in algae such as Oscillatoria species which formed a black slimy film. The jelly matrix of these organisms provided a moist substrate in which the spores and, seeds of higher plants could germinate. Griggs (1933) recorded the colonization of volcanic ash at Katmai in Alaska. He reported the absence of blue-green algae on this occasion. Liverworts and green algae seemed to play a more important role. Brock (1973) cheilenged the widespread assumption of the pre-eminent role of blue-green algae in the first stages of colonization which was largely based upon the observations on Krakatoa. His study of Surtsey found that blue-greens were quite unimportant at this site and that mosses and associated chlorophyta were far more important. He suggested that the difference might be due to variations in temperature however he depended upon the identification of algae in fresh soil samples and this may be why he produced results at variance with those of Schwabe (1972). Schwabe found a wide variety of blue-green algae in Surtsey soil when it was examined in enrichment culture. Finally Carson and Brown (1978) studied the colonization and succession of soil algae
at Kilauea Iks in Hemeli. They also found that Chlorophyta wese the priaciple component of the soil flora and that Chlorolie species mare the inrst axd most wide apreed colonizors. They only pecorded blue-gresns é sices where there had been 80 me eccumuletion of humas. They described parious petterns O\& colonizafion and succession fhich they ascribed to Fariation in nutwient status, mointure level and accumulation of organdc matter.

Colliexy spoil has much in common fith volcanic ash. They are, because of the geological origing both initially devoid of algae. They both have a tendency to form acidic soils, with fairly high levels of metalso and carbon dioxide and sulphur dioxide are common at both situations. Colliery spoil however has the advantage from the researchers point of $\overline{\text { a }}$ on of being more commos and its production is not dependent upos unpredictable volanic events. Shubert and Starks (1978) beve studied the colonizetion and succession of soil sigeo on colliexy spoil in western North Dakota. Uaing species diversity, chlorophyll'a'measurement and phaeophytin measurement they baye shown a progressive increase ia the algal flore of a spoil as it agea. They have also reported definite succesaional tread which mas not just simple additios of species to an existing community but involved a complez pettern of changiag apecies composition。 Thoy measured an Limprorement in soil paremeters mich correleted significantly with soil algel succession and this prompts serexal question* as to the solo of soil algee when shoy
 conditiox.

1.42 Erosion Control

One consequence of the existence of a high algal density in soil is that they may promote the aggregation of soil particles (Marathé, 1972; Bailey, Mazurack \& Rosowski, 1973). Marathe reported that blue-green algae, inoculated into sterile garden soil produced 35.7 to 42.8\% increase in soil aggregation. This effect reaches its highest development in the arid areas of the south western states of the U.S.A. where algae form a crust over extensive areas of old fields and abandoned farm land. This crust has been described by Booth (1959), who investigated its significance in erosion control. This area of the U.S.A. was formerly oak savanna and was cleared for agriculture by burning. Bennett (1934) showed that this resulted in a massive increase in runoff with a consequent increase in erosion. Booth demonstrated that the effect of the algal crust, which has developed on this land, is to substantially reduce soil losses by binding together surface soil particles. In addition the algal crust does not slow down infiltration as might be supposed and in fact has been shown to improve it in very heavy rain. This results in a higher soil moisture content below the algal crust compared to bare soil. Fletcher and Martin (1948) showed that while a continuous algal crust does act as a barrier to possible colonizing seeds in the field, this effect is ameliorated by cracking and curling of the crust in dry conditions which allows seeds to enter. The uncurling of the crust when moisture returns, results in the retaining of the moisture in the soil and promotes the growth of seedlings below the crust.

1. 43 Contribution to the nutrient budget of soil
Francé (1913) states that Gernan farmers consider
'grune Schimmel auf der Erde a sure sign of abundant
crops. It would seem therefore that they have learned
in a purely practical way that a copious algal
vegetation on the surface of the ground is associated
with favourable conditions and a high yield of crops.
While this cannot be considered as scientific evidence
it is worthy of note because these folk lores often
contain a germ of truth. Algae like all other
autotrophic organisms will consume the mineral
nutrients in the soil and it might be assumed that in
doing so will deprive higher plants of these nutrients.
However, Petersen (1935) has pointed out that the major
algal growth is on or near the surface of the soil and
not in the region of the plant roots. There can
therefore be little or no direct competition and in
fact the assimilation of these nutrients by the algae
may retain nutrients which would otherwise be lost by
leaching. Furthermore there is some evidence that
algae may make certain nutrients more available to crop
plants. Fuller and Rogers (1952) compared the uptake of
radioactive labelled phosphate by barley plants from radioactive labelled phosphate by barley plants from $\mathrm{H}_{3} \mathrm{PO}_{4}$ and from a manure of Palmella algal culture. They concluded that while the amount of phosphate taken up from the two sources was approximately the same, the phosphate from the degenerating algal cells was in a more readily available form.

Of more general interest is the contribution to the nitrogen content of the soil made by blue-green algae. De (1939) demonstrated conclusively that blueagreen from the soil could fix atmospheric nitrogen. Earlier investigations claiming nitrogen fixation were all inconclusive because they failed to demonstrate the absence of bacterial contaminants
in the cultures used. De showed that Anabsena isolated from the soil of rice fields in India were capable of firing atmospheric nitrogen and that this process was inhibited by the presence of nitrate nitrogen in the culture medium. Furthermore he showed that approximately 35% of the fixed nitrogen was in the external medium and not in the cells. This available nitrogen might be released by excretion from the cells or become available upon the death and decomposition of the algae. In either case the nitrogen will become available to higher plants. Fogg (1947) has pointed out that blue-green algae have a high nitrogen content of 7 to 8% dry weight and a low C:N ratio of $10: 1$ so that bacterial decomposition will lead to the immediate production of amonia which is a form of nitrogen which is readily available to higher plants.

The occurrence of nitrogen fixing blue-green
c.g.(Henriksson et al, 1972 ; Wataneabe , Yamamoto, (1911)
algae in soils is widespread but their exact contribution has been most thoroughly investigated in desert soils
(MacRae Castro, 1967
and tropical soilsp Fletcher and Martin (1948) reported the presence of Nostoc and the absence of N_{2} fixing bacteria in desert soil and this was confirmed by Cameron and Fuller (1960). Shields Mitchell and Drouet (1957) measured the nitrogen content of such soils and found that algal crust contained an average of $8.2 \mathrm{mg} 1^{-1}$ of nitrate and nitrite nitrogen and $1639 \mathrm{mg} \mathrm{l}^{-1}$ amino nitrogen. Adjacent surface soil without an algal crust contained only $1.5 \mathrm{mg} 1^{-1}$ nitrate and nitrite nitrogen and $866 \mathrm{mg} \mathrm{l}^{-1}$ amino nitrogen. Thus it has been demonstrated that blue-green algae have the capacity to contribute to the soil ecosystem.

1.5 AIRS

In $\mathbb{H}-E$. England the presence of large numbers of algae in colliery spoil at certain times of year is clearly shown by conspicuous surface growth. The diversity of the algal flore of colliery spoil has been the subject oi studies in the UoSoA. (MacEntee, 1970; Shubert \& Starks, 1978) and in England (Broady, 1979)a but the results of these studies are not completely consistent. Therefore it was the first aim of this project to identify and describe the algae making up the soil community in different types of colliery spoil.

In addition it was planned to describe seasonal changes in these algae and various environmental variables in their vicinity, as a step towards providing an ${ }^{\text {nexplanation }}{ }^{\text {en }}$ of any differences observed. The site chosen provided a suitable range of spoil types, including ones devoid of higher plants and ones where colonization was well developed.

CEAPIER 2

MATERIALS AND METHODS

2.1 MEASUREMENT OF SOLL PH

During preliminary observations on the pit heaps at East Holywell it was noted that adjacent areas showed wide variations in soil pH and therefore a systematic survey was conducted.

Samples of approximately 50 g of soil were collected at 25 m intervals on the surface of the tip. Each sample was stored in a polythene bag for transport back to the laboratory for testing. Allen (1974) stated that prolonged storage of soil samples could lead to changes in pH. To minimise this offect testing was carried out as soon as possible, and never more than 6 hr after collection.

There are two methods available for the measurement of soil pH. The first of these is the colorimetric method which uses indicators whose colour changes with hydrogen ion activity. This method is useful for obtaining a rough indication of pH range, especially in the field, but with soils of the type found on pit heaps with a distinct colour, such methods are inaccurate.

The alternative is an electrometric method. This involves the measurement of pH using a glass electrode and a pH meter. As the pH meter used, a Beckman Chemoliate, was a school model with limited sensitivity. a combination of these methods was employed. The approximate pH of a sample was determined using Universal indicator and the pH meter was set to that range with a oitric acid/phosphate buffer. The precise pH value was then recorded with the meter. Tests with solutions of known pH showed that this method was
accurate to $\pm 0.2 \mathrm{pH}$ units.
The method of preparing a sample for pH measurement can have important affects upon the results obtained. The normal practice is to take measurements upon a slurry of soil and water, but the ratio of soil to water has been the subject of some controversy. Over the range from sticky soil to a soil/water ratio of 1 to 5 the change may be as much as 1 pH unit (Synder, ? 1935: Huberty \& Haas? 1940;).

In the light of these considerations the following standard method was adopted for the preparation and measurement of pH. A 100 ml beaker was half filled with soil and then distilled water was added up to the 100 ml mark. The soil and water were stirred with a glass rod for 30 and then allowed to stand for 15 min. Some of the supernatant was then removed and its approximate pH determined with universal indicator. The presise pH was then recorded using a pH meter whose electrode was always suspended in the water above the sedimented soil.

2.2 COMPILATION OF SPECIES LIST

As the flore of several pit heaps has been described in the literature. it was considered useful to compile a species list for the East Holywell site so that similarities and differences with other sites could be established. To this end all species in flower during May, June and July 1978 were collected and identified。 This was supplemented during the period March 1979 to February 1980 when in order to sample from the permanent quadrats, monthly visits were made to the site。 Upon each visit specimens of plants in flower and mosses in Pruit were collected and identified using standard references.

2.3 MONTHLY SAMPLING OF SOLL ALGAE

2.31 Choice of Sampling Sites

Physical conditions on the surface of a pit heap vary considerably in different parts of the heap. As described in Section 1.212 the stability of the surface material is greatly influenced by the slope of the surface. The temperature is influenced by the aspect of the slope as described in Section 1.213. Therefore it was decided that all the sampling sites should be flat so that they would receive equal amounts of light and rainfall and be subject to the same degree of erosion. All sites were away from buildings and tall vegetation so that no shade was cast which might further influence physical conditions. Finally, some parts of the East Holywell site were used regularly as footpaths and therefore all sites were situated in a little used area of the tip which was as free from human disturbance as possible.

The surface of the tip varied in three distinct ways. There were two spoil types; shale which was made up of burnt rock fragments and washeries waste which was a fine black dust. The shale areas of the tip showed marked variation in pH , with some areas having a pH of 4.0 while others had a pH of between 7.0 and 8.0. Finally some areas of the tip were covered with vegetation while others were completely bare. Four pairs of sites were selected to cover these variables as shown in Table 2.1 and Figs 2.1, 2.2, 2. 3 and 2.4.

TABLE 2.1 Features of the permanent quadrats

site code	spoil type	pH	vegetation
Y1	red shale	8.0	bare
Y2	red shale	7.0	bare
P1	red shale	3.8	bare
P2	red shale	4.0	bare
G1	black dust	7.0	Tussilago farfara
G2	black dust	7.0	Tussilago farfara
B1	black dust	7.0	bare
B2	black dust	7.0	bare

At each site a permanent $1 \mathrm{~m}^{2}$ quadrat was established. This was marked by colour coded stakes at the corners of the quadrat.

2.32 Sampling Technique

Each month at each site a quadrat frame was placed on the surface of the tip to enclose the permanent quadrat. Points were selected within the quadrat by obtaining a pair of random numbers (Fisher, R1965). The first number of this pair was used to fix the east/west line by measuring that number of centimetres down the north/south side of the quadrat. starting in the north west corner. The second number was used to fix the north/south line by measuring that number of centimetres along the east/west side of the quadrat starting at the north west corner. The intersection of these two lines was the sample point. The points chosen in this way were recorded on sampling maps for each quadrat so that the same point would not be sampled twice.

At each point, specified in the way just described, a sample of spoil was collected using a cylindrical borer 1 cm in diameter. This was pushed into the spoil to a depth of 1 cm and the sample cylinder of spoil thus obtained was pushed out with a glass rod. The sample collected therefore had a volume of 0.79 ml and represented $0.79 \mathrm{~cm}^{2}$ of tip surface area. In the event of the sampling point falling over a stone, the stone was collected and the sample taken from under the stone. At each site ten samples were collected in this way, each month for 12 months between March 1979 and February 1980. Sampling dates are shown in Table 2.2. The ten samples from each site, each month, were pooled to give the monthly sample for that site. The borer and glass rod were sterilised between sites by washing in alcohol and the collected material was transported to the laboratory in sterile specimen tubes.

TABLE 2.2 Dates samples were taken in the monthly sampling programme

March	13. 3. 79
April	19. 4.79
May	19.5.79
June	21.6 .79
July	31.7 .79
August	20.8.79
September	29.9.79
October	27.10 .79
November	27.11 .79
December	28.12 .79
January	30.1 .80
February	28.2 .80

2.33 Storage of samples

The freshly collected samples were spread upon sterile filter paper in sterile petri dishes and covered with sheets of filter paper. They were then allowed to dry at room temperature until they reached a constant weight. This normally took approximately 10 days. Once air dry the samples were packed into sterile specimen tubes and stored in a cool dark cupboard until required for culturing.

In the event a considerable time elapsed between the collection of samples and culturing. In order to establish the ffect of this storage upon the samples, the material collected in January 1980 was dried and cultured immediately i。e。effectively two weeks efter collection. A second set of cultures were established from the same material in June 1980 when they had been stored for findonths.

TABLE 2.3 Chu 10 culture medium with A/C microelements and low Mn

```
macronutrients
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{KH}_{2} \mathrm{PO}_{4}\) & \(15.6 \mathrm{Ec}^{-1}\) & use \(0.5 \mathrm{ml} \mathrm{J}^{-1}\) \\
\hline \(\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\) & 25.0 \% \(1^{-1}\) & use 1.0 ml 1 \\
\hline \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\) & \(57.6 \mathrm{~g}^{-1}\) & e 1.0 ml \\
\hline \(\mathrm{NaHCO}_{3}\) & \(15.85 \mathrm{E} \mathrm{C}^{-1}\) & use 1.0 ml \\
\hline \(\mathrm{Na}_{2} \mathrm{SiO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\) & \(43.5 \mathrm{E}^{-1}\) & use \(0.25 \mathrm{ml} 1^{-1}\) \\
\hline Fe/EDTA soluti & ntaining & \\
\hline Sodium EDTA & \(12.7 \mathrm{E} \mathrm{H}^{-1}\) & \\
\hline \(\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\) & \(9.7 \mathrm{~g}^{-1}\) & use \(0.25 \mathrm{ml} 1^{-1}\) \\
\hline
\end{tabular}
micronutrients \(=\mathrm{A} / \mathrm{C}\) microelements, low Mn
\(\mathrm{H}_{3} \mathrm{BO}_{3} \quad 2.86 \mathrm{~g} \mathrm{I}^{-1}\)
\(\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\)
    \(0.181 \mathrm{~g}^{-1}\)
\(\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\)
    \(0.222 \mathrm{E}^{-1}\)
\(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\)
    \(0.029 \mathrm{E} \mathrm{C}^{-1}\)
\(\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\)
\(\mathrm{Na}_{2} \mathrm{MO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\)
    \(0.042 \mathrm{~g} \mathrm{I}^{-1}\)
    \(0.027 \mathrm{E}^{-1}\)
use \(0.25 \mathrm{ml} 1^{-1}\) of this solution
Made up to one litre with distilled water and
solidified with \(1.5 \%\) agar
```

TABLE 2.4 Concentration of salts in Chu 10 modium

2.4 METHOD OF EXAMINING SOIL ALGAE

A variety of methods have been adopted by past workers to examine soil algae. However, the various techniques may be grouped under two headings.

2.41 Direct microscopic examination

The examination of small quantities of soil under the microscope is not very rewarding. The separation of algal cells from the multitude of soil particles is difficult and even in samples where algal cells are abundant, they are often in a stage which does not show the features necessary for identification. Lund (1947) used a technique in which he placed microscope coverslips on the surface of moist soil and when these had been colonized by the microflora he was able to examine them under the microscope. This method has the advantage of only collecting those algae which are actively growing in the soil but has the disadvantage of selecting only motile forms or those with a motile phase in their life cycle. Tchan (1953) developed a technique of direct observation using fluorescence microscopy in thich algal cells can be seperated from soil particles by the reddish fluorescence of the chlorophyll which they contain. This method also detects only those cells which are active in the soil but has the disadvantage that it is impossible to classify the cells seen.

2.42 Culture technigues

The limitations of direct observation just outlined have led most workers to adopt some form of culture technique. The least artificial form of culture is the moist plate technique of Lund (1947). In this method a quantity of soil in a petri dish is moistened with sterile water so that it is damp but not flooded.

It is then illuminated until large numbers of algae develop. This development of algae from soil may be speeded up by the addition of a nutrient medium in place of the water. Such a treatment is called an enrichment culture and is an approach favoured by many workers. In its most straightforward form an enrichment culture consists of a quantity of soil added to mineral medium in a flask and illuminated. Samples can be removed from the culture at intervals and the species present identified. This technique was first used by Bristol (1920) in her/pioneering work and has also been employed by John (1942) and Shubert and Starks (1978). It is open to the objection that the aquatic conditions of the culture may encourage aquatic and semi-aquatic species and suppress euterrestrial forms hence giving a misleading impression of the soil flora. To overcome this objection the mineral medium may be solidified with 1 - 2% agar and a soil suspension spread upon its surface. This method has been used by King and ward (1977) and Broady (1979).

Various mineral media have been devised for the culture of algae but all include a supply of the elements potassium, magnesium, calcium, sodium and phosphate, nitrate and sulphate plus various microelements.

In the light of these considerations it was decided to culture soil from East Holywell on mineral salt agar made up with Chu 10 medium (Chu Y942) plus microelement addition with low manganese, solidified with 1.5\% agar. The detailed composition of this medium is given in Tables 2.3 and 2.4. This medium has pH of 8.0 at normal working strengith and was used as such for neutral soil samples. To culture soil from acidic sites the pH of the mineral medium adjusted by the addition of appropriate quantities of
0.1E sulphuric acid until the pH wes lowered to 4.0. Sulphuric acid wes chosen for making this adjustment because as explained in Section 1.22 it is the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ which produces the lom pH of some colliexy apoils. During the preperation of acid Chu 10 it was necessary to eutoclave the acid mineral medium and the agar solution seperately and mix them just before pouring the pletes to avoid the hydrolysis of the agar. All media were sterilized by autoclaving for 20 min at $0.95 \mathrm{~kg} \mathrm{~cm}^{-2}$ which gives a temperature of $121^{\circ} \mathrm{C}$ 。 They were poured into sterile plastic petri dishea.

2.5 METHODS OP ESIIRASING ALGAL ABUNDANCE

Straightforward counting of algae present in soil semples is impossible with an ordinery microscope becsuse of the difficulty of direct observation and can only be achieved with fluorescence microscopy es described in Section 2.6. This has reanded in the development of Fexious indirect bechniques for the estimation of algal abundance. These methods may be considered under three moadings.

2.51 P1gment analysis

Using solvents it is possible to extract pigments from soil samples and to measure the concentration of pigment by the amount of light which it absorbs. If it is sasumed thet the pigments extracted are 811 from soil algae then the pigment conceatretion can be taken as a measure of 2Igel abundance. This method bes been used by Singh (1961) to estimate the abundance of blye-green alge in Indian soils and by Shubert and Stamks (1978) to estimete elgal abundance in cosl mine spoile. The disedvantages of this approach are that it only measures the total algal blomass and can give no indication of the abundance of the various groups of alges. Fuxthermore it has been suggested that it may over-estimets the number of algae present because
plgments such as humic acid and the breakdown products of chlorophyll are extracted along with the chlorophyll (Fogg at al o. 1973).

2.52 Most probable number techaique

This approach was developed by Bristol (1920) and was modified and improved by petersen (1935). A weighed quantity of soil is added to a known volume of culture medium and tenfold serial dilutions made down to a concentration of 10^{-8}. These cultures are incubated and illuminated for a period of time and then examined for the presence of algae. The most probable number of algae in the original sample is calculated from the number of cultures at each dilution which contain algae. Cullimore and $\mathrm{m}^{\mathrm{C}} \mathrm{Cann}^{2}$ (1977) used the technique and in addition to estimating the gross algal flora, also estimated the population of individual algal genera by noting the presence and ebsence of each geners at each dilution. However such data is difficult to interpret because differences in the community dynamics of cultures contedining innocula of different genera at different concentrations. The method in general is subject to the disadvantages common to all liquid cultures outlined in Section 2.62.

2.53 Dilution and plating techniques

The basis of this approach is that a weighed quantity of soil is suspended in a known volume of watere and a quantity of this suspension is spread upon a sterile mineral agar plate。 After incubation and illumination, colonies of algae develop on the surface of the agar which may be counted. If each colony develops from aingle algal cell, the number of colonies represents the number of algae in the suspension. Knowing the dilution of the suspension the number of cells in the soil sample may be calculated. This method has been used by King and ward (1977)。

Metting and Rayburn (1979) and Broady (1979) to estimate algal abundance.

2.6 METHOD USED IN THE MONTHLY SABPLING PROGRAMME
 In the light of the points discussed in the preceeding sections and because the work was to be carried out in secondary school biology laboratory it was decided to adopt a dilution and plating technique. This had the advantage of requiring no highly specialised equipment, but would give an estimate of both total algal abundance and the abundance of specific groups of algae. Furthermore it mould permit the isolation of particular algae into unialgal cultures for ldentification purposes.

2.61 Preparation of dilution plates

The air dried field samples were often compacted into hard lumps, especially those from sites B1 and B2, because of the amount of clay present in the sample. It was therefore decided to break up the samples by light grinding in a mortar but samples from sites P1, P2, Y1 and Y2 contained fragile shale fragments and therefore this treatment had to be kept to a minimum. A standard procedure was adopted of grinding for 30 s with a pestle covered with rubber tubing.

Samples from sites $P 1, P 2, Y 1$ and $Y 2$ also contained a high proportion of large particles $>0.25 \mathrm{~mm}$ in diameter. Details of the distribution of particles of different sizes are given in Table 3.5. These parificies would not remain suspended in water long enough to enable a representative sample to be removed from the suspension and therefore the ground air dried field samples were shaken in a set of Endecott soil sieves for 2 min and the $\leqslant 0.25 \mathrm{~mm}$ fraction collected. In order to standardise any effect of these pre-treatments upon the samples all samples were ground in a mortar
and sieved．
1 g of the $\leqslant 0.25 \mathrm{~mm}$ soil particles was then added to 100 ml of sterile distilled water and mixed in a blender for 2 min to produce an even suspension． This suspension was then diluted by the transfer of an appropriate aliquot to another tube and the addition of sterile distilled water to give dilutions of $5 \mathrm{~g}^{-1}, 1 \mathrm{~g}^{-1}$ and $0.5 \mathrm{~g} \mathrm{l}^{-1}$ 。 Preliminary testing indicated that this was the appropriate dilution range。 When applied to various spoils it was found that there were considerable differences in the numbers of algae present and not all these dilutions were appropriate at each site。 Dilutions were eventually selected which would give numbers of colonies greater than 5 and less than 500 on an agar plate。 The range of dilutions used for each site are given in Table 2．5．

TABLE 2．5 Dilutions used for culturing monthly samples at each site

site	dilutions used
G1	$0.5 \mathrm{~g}^{-1}, 1.0 \mathrm{~g} \mathrm{l}^{-1}$
G2	$0.5 \mathrm{El}^{-9}, 1.0 \mathrm{E} \mathrm{l}^{-1}$
Y1	$1.0 \mathrm{~g}^{-1}, 5.0 \mathrm{~g}^{-1}$
Y2	$10.0 \mathrm{~g}^{-1}$
B1	$10.0 \mathrm{~g}^{-1}$
B2	10.0 \＆${ }^{-1}$
P1	$10.0 \mathrm{~g}^{-1}$
P2	$10.0 \mathrm{~g}^{-1}$

Four 1 ml aliquots were pipetted from each suspension onto four replicate mineral agar plates． These cultures were then spread with a sterile inoculating loop and then incubated at room temperature
which varied between 8 and $18^{\circ} \mathrm{C}$. They were illuminated by two 40 watt daylight flucrescent tubes which provided a constant light ixtensity of $3 \mathrm{~mm}^{-2}$. Initial rosults obtained using this technique showed an unacceptably high degree of variability between roficates. Reoexamination of the plates showed that this was due to dense clusters of colonies on some plates. The colonies in each of these clusters were all of the same species and they were therfore probably formed by the bursting of reproductive bodies containing non-motile spores. As the colonies in a cluster were not widely dispersed it was likely that the bursting of the reproductive body occurred while the cells were suspended in the thin water film on the surface of the agar after being plated out. In order to eliminate this effect the agar plates were dried in an oven at $70^{\circ} \mathrm{C}$ for one hour with their lids removed and then cooled before the suspension was spread upon them. In addition the amount of inoculum was reduced to 0.5 ml . The effect of this was to reduce the amount of water on the surface of the plate and to cause that which was present to be absorbed into the surface of the agar in a time of one to sir hours. The procedure summarised in Fig. 2.5 was adopted as the standard method form the preparation of dilution cultures in the monthly sampling programme.

2.62 Culture conditions for dilution plates

The dilution cultures were placed on a plat bench With a white surface beneath lighting units containing two 40 watt daylight iluorescent tubes 50 cm above the cultures giving a constant illumination of $3 \mathrm{Wm}^{-2}$ at the culture surface。

It was not possible to control the temperature and therefore variation occurred between 8 and $18^{\circ} \mathrm{C}$ 。
However for most cultures most of the time the temperature

FIG 2.5 Standard method for preparation of dilution cultures

Abstract

was $16^{\circ} \mathrm{C}$ 。 Cultures from sites Gi and G2 produced algal colonies which were discernible aith the naked oye aiter 10 days．After 28 days adjacent colonies of the faster growing alges，on these plates tended to fuse．This was especially true at the $1 \mathrm{~g}^{-1}$ dilution and it made counting difficult after this time。 In contrast cultures from sites $\mathrm{X} 1, \mathrm{Y} 2, \mathrm{B1}, \mathrm{~B} 2$ and P 1 produced much slomer growing colonies which were only visible with the naked eye after 28 days．However although these colonies mere small they were clearly visible with a stereomicroscope at dey +28 ．In order to check that all colonies on these plates had developed to a visible size by day +28 ，set 0% plates were $1 \otimes f t$ for geveral months and counted at dey +56 and day＋112．No incresse in the number of colonies Wes detected and therefore all plates were counted after 28 deys illumanation in the montaly survey．

2．63 Counting of dilution platos

The number of algel colonies on each plate was between 5 and 500．This was ensured by the selection of eppropriate dilutions．The colonies were countod under a x 8．5 stereomicroscope。 To facilitate the counting of dense plates grid of centimetro squases was merked on the lid of a plastic petri dish and the plate to be counted was placed over the grid．The number of algal colonies in each square of the gred was counted and recorded on a score shest．The normal convention of counting colonies on the north and west boundaries of square and ignoring those on the south and east．was adopted．

Chlorophyte and diatoms presented fon problems in counciang beceuss they iorm discrete colonies which aro approximately circular in shepe。 Occasionally colonies hed developed in such close prozimity that
they had fused by the time of counting. To avoid differences in interpretation of fused colonies on different plates it mas decided to count only cleaxly sepsrate plant masses and to count fused colonies as one。

Cyanophyta presented a more difficult problem because they formed irregular spreading masses which quickly covered the plate. Therefore in most cases it was only possible to count totally independent plant masses and these must of en have been the product of the fusion of several colonies. The appearance of colonies of members of the Ulotrichales had a very characteristic wavy appearance on the surface of the agar. This was true of unicellular genera such as Stichococcus as well as for filamentous genera. Therefore colonies of this group were counted separately in order to follow changes in their abundance.

2.7 URIALGAL CULTURES

Isolated observations of soil algae are unsatisfactory for reliable identification. The organism may be in a stage of its life cycle which does not show its characteristic features and there are many examples of organisms which have been described as different species and subsequently shown to be different stages of one organism. Thus it was necessary to isolate organisms into unialgal cultures and to observe them systematically in order to obtain reliable identifications. This was only possible for a limited number of the algae observed because it took such a long time. The orgenisms on the dilution plates for the months of September, October and November 1979 were studied in this way.

Bold (1970) has described how the morphology of a colony formed by a particular species on agar may be
used as a supplementary attribute in the identification of soil algae. Therefore dilution plates were scanned with a $\times 8.5$ stereomicroscope and colonies showing different forms were isolated into unialgal culture. The differences between colonies used were:-
a. outline of colony - colonies with a regular outline were differentiated from those with an irregular outline;
b. texture of the colony - a distinction was made between smooth colonies, rough colonies and wavy colonies;
c. appearance of the surface of the colony a a
distinction was made between colonies with a moist surface and those with a dry surface.

Once a particular type of colony had been recognised, a single isolated colony of that type was picked from the surface of the agar with a sterile mounted needle under a stereomicroscope. This colony was then dispersed in a drop of sterile distilled water on a microscope slide and a drop of this suspension was then spread on a mineral agar slope with a sterile inoculating loop. These slopes were then incubated in a culture room which had a glass wall on its north side. The temperature of this room was maintained at a constant $14^{\circ} \mathrm{C}$. No artificial illumination was used but culture were only illuminated by the light from the north facing window. This work was done during May and the first two weoks of June 1980 and therefore the cultures were illuminated for approximately 18 hours per day. The cultures were examined after one and four weeks.

2.8 DETAILED STUDY OF SOIL ULOTRICHALES
 Hembers of the Ulotrichales were frequently
 encountered on the dilution plates and formed an important and easily recognised element in the soil flora of two sites. Material from the dilution plates, when examined micxoscopically showed numerous small variations which made it difficult to assign them to particular species. Therefore 30 colonies were isolated from the dilution plates of the samples collected in September and October 1979 and were cultured in the manner described in Section 2.7 .

CHAPTER 3

SITE DESCRIPTRION

3.1 GEOGRAPHICAL DESCRIPTION

3.11 Location

The Fenwick Pit is at East Holywell in the county of Tyne and wear ($0 . S$. sheet NZ 37 map ref. 313730). The spoil heaps occupy approximately two thirds of the aite of the mine which covers an area of eight hectares. The mine is one km northowest of the village of Earsdon on the flat S-E. Northumberland plain. It is bounded upon its southern border by the Briardene Burn and upon its western border by the road from Earsdon to Backworth (Fig. 3.1, p 75).

3.12 Geology

The SoE. Northumberland plain is built entirely upon coal bearing strata of Carboniferous age. Rocks of both the Upper Carboniferous and the Lower Carboniferous are present but it is the coal measures in the Upper Carboniferous which are important in terms of productivity. These strata have a maximum thickness of 610 m and are covered by sands, gravels and clays of Ice Age origin. They are composed of a series of sandstones, shales, fireclays and coals in a regular sequence called the Yoredal Cyclothem.

Mining at East Holywell has been in the Middle or Main Productive Group of these strata which includes the 14 mejor coal seams listed in table 3.1.

TABLE 3.1 Hajor coal seams in the Main Productive Group, Upper Carboniferous, S-E. Northumberland. Arranged in descending order (Trueman, 1954)

Closing Hill
Hebburn Fell
3/4 or 70 fathom
High main
Grey
Yard
Bensham
6/4
5/4
Low Main
Plessey
Beaumont
Tilley
Top Busty
3/4
Brockwell
Victoria
Marshall Green

The names of coal seams vary in different parts of the coal field and not only has the same seam been given different names in different places but the same name has been given to different seams in different places. The names used here are those of the Backworth ares of Northumberland which were in use during the working life of the Fenwick Pit (Trueman, 1954).

The seams vary in thickness throughout the coal field and therefore not every seam is worth mining at each site. They are separated by bands of sandstone,
locally called post-stone; shale, locally called metal and fireclay called seggar or seatearth。 It is these materials which make up much of a pit heap.

The geology of East Holywell has an additional complication in that a major fault called the 90 fathom dyke runs through the rocks in an eastomest direction, epproximately half a kilometre south of the main pit shaft. Dyke is the local name for a fault and should not be confused with igneous intrusions of the same name. This fault has a throw of 122 m in the cliff at Cullercoats where it is exposed and has on even greater throw inland near the mine site. This feature produced considerable problems during the working life of the pit.

3.2 HISTORY OF THE SITE

The Fenwick Pit was opened in 1828 and was operated by the East Holywell Coal Company until the nationalisation of the mines when it passed to the ownership of the Mationsl Coal Board. The company operated three pits in this area. The first also called the Church Pit, is described as the A pit in the company records. It worked the high main seam and was followed by the B pit about which little is known. The C and D pits are the shafts at the site of the modern mine buildings, and are in fact approximately one kilometre north of the A and B pits (East Holywell Coal Company Records).

There have bean pit heaps on the site since the beginning of mining operetions. According to a report of the Hewcestle Weekly Chronicle of 1873, the East Holywell Coal Company was sinking a new shaft. This was probably the C pit and was to mine the High and Low Main seams and the Yard seam. The same report records that the pit heap was in a very ragged
condition and was totally uncovered, from which we may infer that the original pit heap was not colonized by vegetation.

According to Mr R. Walker of 10 West View, Earsdon, a miner who worked in this and neighbouring pits for 51 years, the mine was substantially reorganised in the $1940^{\circ} \mathrm{s}$. The original pit heap was removed and used to fill subsidence ponds in the viojnity. . This reorganisation was completed in 1947 when coal washeries were installed on the site. At that time the existing pit heap was built in a rectangular shape with a depression in the centre. The sides and rim of this heap were formed from shale on the site and the depression in the centre was used as a settling lagoon for the washeries waste. The water from the lagoon was discharged into the Brierdene Burn.

The pit heap is at present burning as evidenced by the sulphurous fumes and steam produced by the central portion. The exact date at which this process began is not known but it must have been since 1947. Various smaller heaps surround the main heap and some of these are of fine coal. Others are of fused shale and probably came from the core of the original heap. This indicates that it too was burning and therefore the shale of the sides and rim of the main heap are of burnt or red shale.

According to a report of the East Holywell
Veterans Club, the mine worked eight seams during its operating life (Table 3.2). During the modern period, when the present pit heap material was brought to the surface, the mine was working the Beaumont seam. The coal from this seam was characteristically high in sulphur (Tables 3.3, p80 and 3.4, p80). It therefore seems reasonable to assume that the spoil from which
the pit heap was built had a high sulphur content．

TABLE 3．2 Coal seams mined at East Holywell （East Holywell Veterans Club Records）

nearest to the surface	High Main seam
	Main seam
	Yard seam
	$5 / 4$ seam
	Bensham seam
	Low Main seam
	Busty seam
deepest	$3 / 4$ seam
	Beaumont seam

Miners who worked the Fenwick Pit recall that it was a dry pit until it expanded into the Old Church pit workings．They also remember that the Fenwick had a reputation of being a mine with a lot of post－stone。

In its final years the Fenwick worked the Bensham and $5 / 4$ seams but by this time spoil was not being added to the pit heap．Instead it was being transported to other dumping sites at Backworth． The pit finally closed in 1973，and since that time the site has not been put to any other use．The present pit heap is scheduled to be reclaimed by Tyne and Wear County Council in the near future。

3．3 ENVIRONHENTAL CONDITIONS

3．31 Texture of spoil
There are two distinct types of colliery spoil at East Holywell．The sides and rim of the main heap are made of shale which is the direct product of mining

```
TABLE 3.3 Characteristics of coal from the Deaumont,
seam at East Holywell (NoC.R. Borinp Ronk)
total sulphur 1.5-2.0%
ash 5.0 - 7.5%
coal rank 502 (strongly cakinmi
600 (medium cokire)
volatile matter
36-42%
15.100-15,500 5TU 1h-1
2.0-4.0%
moisture
carbon
85-87%
```

TABIE 3.4 Detailed chemical composition of roal from the Beaumont seam at East Holyvell (Northumberland Coalfield Seam Map)

S
composed of
SO_{4} pyritic s organic S
0.03%
0.98%
CO_{2}
Cl
p
0.56%
1.65%

1. 57%
0.19\%
0.004%
operations (Fig. 3.2, p 82). The central portion of the main heap is made up of washeries waste, which is the dust that settles from the waste water from coal washing machines (Fig. 3.3. p83). The general distribution of these two types of waste can be seen in the map of the aite (Fig. 3.1, p 75)。

No detailed mechanical analysis of the spoil was made, but in the course of preparing material for culture, date was collected which gives some indication of the texture of different parts of the heap. Ten samples were collected from each of eight sites, four of which were on shale and four on washeries waste. Each sample was air dried and then lightly ground in a mortar with a rubber pestle. This procedure, necessary for the separation of soil particles, had the unfortunate effect of breaking up some of the softer shale fragments. The soil was then shaken in a set of Endecott soil sieves for 2 min . The air dry woight of the material retained in each sieve was recorded and used to determine the proportions of each particle size range at each site. The reaults are shown in Table 3.5, p 87 .

3.32 Suxface stability

Erosioa at Easi Holywell has been considerable。 The cesheries waste is covered with a network of drainage chanara and the sides of the tip are cut by deep gullies. Wind erosion is also probebly important. In Harch 1979 the spring tham resiulted in the melting of snow which had lain on the suriace of the tip for about 10 weaks. The snow had acted as a trap for wind blown particlos and with the melting this material was deposited as a layer over the surface of previous years vegetetion. At its thickest this amounted to 5 mm of dust. This illustrated dramatically the way in which material was being added to the surface as well

FTG. 3.3 Washeries waste area at East Holywe11.

TABIE 3.5 Texture of spoil

site	mean \%	mean \%	mean \%
	$\geqslant 2 \mathrm{~mm}$	coarse	fine sand
		sand	silt and
		2 mm -	c. 1 ay $<0.25 \mathrm{~mm}$
		0.25 mm	
Y 1	21.4 \% 7.4	60.8 ± 4.3	39.0 ± 4.3
Y2	21.4 ± 7.6	57.8 ± 4.0	42.1 ± 4.0
P1	15.9 ± 4.4	59.6 ± 4.6	40.4 ± 4.6
P2	15.2 ± 3.1	61.5 ± 1.7	38.5 ± 1.7
B 1	0	46.4 ± 5.7	52.6 ± 5.7
B2	0	37.0 ± 5.1	63.0 ± 5.1
G1	1.0	67.7 ± 4.6	31.0 ± 4.6
G2	0	58.3 ± 2.1	41.8 ± 2.1

as being removed by the action of the wind.
3.33 Chemical conditions

Heasurement of soil pH at various sites upon the pit heap showed wide variations. Therefore a systematic survey aas conducted using the methods described in Section 2.1. p 50 . The results of this survey are presented in Fig. 3.4, p 86 .
3.34 Meteorological conditions

Situated on the $N-E$. coast of England, East Holywell has a cool, dry, temperate climate. The period of study did have one unusual feature. Sampling began in March 1979 which was at the end of the hardeat winter for many jears. The site had been covered in deep snow throughout January and February and snow was still lying on the site in March. These conditions are unusual for this part of Britain.

Detailed weather measurements were not made on the site but the Coastguard atation at Tynemouth, four kn to the southeast records daily weather conditions and these are published by the British Meteorological Office. Pig. 3.5 shows the total rainfall and the mean maximum and mimimum temperature during the 28 days preceeding each sample date based upon this published data.

FIG 3.4 Spoil pH at East Holywell

3.4 BIOLOGICAL STATUS

The vegetation of several pit heaps has been
described in the literature（Section 1．23．p 28 ）。 In order to racilitate comperison between this site and others previously described it mas decided to compile a list of all the higher plant species occurring on the site．In this respect two quite seperate communities can be recognised：－ a．a community on washeries waste
b．a community on shale

3．41 Washeries waste community

Although it was not possible to exactly date the end of washeries operations，the mine was in full operation until the late 1960＇s therefore it is unlikely that colonization of this material has been possible for more than 10 years．The area was irregularly colonized by a very limited community of which Tussilago farfara was the dominant plant and which at times occurred in pure stands． This was accompanied by the mosses Bryum argenteum and Be bicolor．
3．42 Shale community
The shale was probably brought to the surface during the $1920^{\prime} s$ and $30^{\circ} \mathrm{s}$ ．It is known that it was subject to extensive re－grading in the late $1940^{\prime} s$ and therefore the surface has been available for colonization for approximately 35 years．Shale is very heterogenous and this shows in the pattern of vegetation．Some parts of the tip have 100% cover while others are totally barren．The north and east faces of the tip have the more dense vegetation． This is a common observation on sites such as this and is usually ascribed to lower temperatures and higher moisture during the ceitical mid－summer period et such locations．湔st areas of the shale ot the tip bad approximately 30% cover．The species list（Table 3．6，p89）was compiled during the summers of 1978 and1979．

TUBIE 3.6 Species common in shale community at Hast Hnlywell

Acer pseudoplatanus L ．
Arrostis temuis Sibth．
Arrhenatherum elatius（L。）Henuv．exJ \＆CoJresl．
Capsel1a bursa－pastoris（L．）Nedic．
Centalurea nigra L ．
Chamaenerion angustifolium（L．）Scop．
Cirsium arvense（L．）Scop．
Crataerus monogyna Jacq．
Dactylis flomerata L ．
Dactylorchis incarnata（L．）Vermeul．ssp．mulrhella II。－Harrof．
Deschampsia flexuosa（ 1. ）Trin。
Festuca ovina L．
Festuca rubra L ．
Fumaria officinalis L．
Heracleum sphondylium L ．
Hieracium perpropinquum L ．
Hieracium vulgatum L 。
Lamium purpureum L．
Linaria vulraris Millo
Matricaria matricarioides（Lesso）Porter
Papaver rhoeas L．
Plantafo lanceolata L 。
Ranunculus acris L 。
Reseda luteola L ．
Reseda lutea L ．
Rubus fruticosus agg．
Rumex acetosa L 。
Rumex crispus L ．

Sambucus nigra L。
Senecio jacobaea L。
Senecio vulcaris L 。
Sisymbrium officinale（ L 。）Scop。 Sonchus asper（ $\mathrm{L} \circ$ ）Hill

Sorbus aria agg．
Stellaria media（L。）Vill。
Taraxacum officinale Weber，sensu lato
Trifolium medium L 。
Tripleurospermum maritimum（L．）Koch sspoinodorum（Lo）Hydoex．
Vaarama
Tussilago farfara L ． Ulex europaeus L ．
Urtica dioca L ．
Veronica persica Poir．

Mosses

Bryum bicolor Dicks．
Bryum caespiticium Hedwo
Barbula convoluta Hedw．
Barbula fallax Hedw．
Campylopus paradoxus Wils．
Campylonus Dyriformis Schultz
Ceratodon purpureus Hedw．
Eurhynchium praelongum Hedw。
Pohlia nutans Hedw。
Polvtrichum piliferum Hedw。
Rhynchostegium confertum Dicks．

Lichens

Q1adoni．e sp．

CHAPTER 4

RESULTS

4.1 ESTIMATES OF ABUNDANCE OF SOIL ALGAE

4.11 The effect of storage of spoil samples
upon estimated density of soil algae
It was necessary to store the spoil samples for an average of five months before culturing (Section 2.33, p 59). In order to establish the effect of this treatment upon the samples, those collected in January 1980 were cultured two weeks after collection and again after five months storage. The estimated density of algae in these samples after two weeks is shown in Table 4.1 and after five months storage in Table 4.2. Algae were isolated from all the spoil samples after two weeks storage, however few cells were present in spoil from sites $\mathrm{Y} 2, \mathrm{P} 1, \mathrm{~B} 1$ and B 2 . After five months storage, samples from all sites showed a reduction in the density of algee. Samples from most sites showed a reduction of approximately 50% but those from site Y1 were more severely affected and showed a reduction of 71. 5%. The percentage reduction in the mean number of algae at each site is shown in Table 4.3.

TABLE 4.3 Reduction in the mean density of algae for each site after five months storage

Site	$\%$ reduction in mean density of elgae
$G 1$	49.05%
$G 2$	59.0%
$Y 1$	71.5%
$Y 2$	50.0%
$Y 1$	100.0%
$Z \%$	100.0%
$B C$	UC. $\%$

TARIE 4.1 Estimated density of al gae in thmary samples after 2 weeks storage $\left(\right.$ cells $\left.\mathcal{E}^{-1} \times 10^{3}\right)$

Site	G1	c2	Y1	Y2	M1	Di	182
$\begin{aligned} & \text { noplicate } \\ & \text { /dilution } \end{aligned}$							
1/0.5	276	50	-	-	-	-	-
$2 / 0.5$	114	118	-	-	-	-	-
3.06	128	78	-	-	-	-	-
$4,0.5$	128	84	-	-	-	-	-
1/1	102	90	199	-	-	-	-
2/1	82	69	174	$=$	-	-	-
3/1	100	40	145	-	-	-	-
4/1	119	38	152	\cdots	-	-	-
1/5	\cdots	∞	-	-	-	-	-
2/5	∞	-	-	-	-	-	-
3/5	-	-	-	-	\sim	-	-
4/5	∞	-	\sim	-	-	-	\cdots
1/10	-	-	-	0.5	0.2	0.6	0.7
2/10	\sim	$=$	-	1.4	0.1	0.1	0.2
3/10	-	-	-	1.2	0.0	0.0	0.4
4/10	-	∞	-	1.3	0.0	0.0	0.3
Morn	131.1	76.5	167.5	1.1	0.075	0.175	0.1
	± 60.5	± 24.	± 21.1	± 0 。	± 0.005	± 0.20	± 0.2

TABLE 4,2 Jstimated density of algae ir: January samples after 5 months storace (cells $g^{-1} \times 10^{3}$)

Sito	G1	G2	Y1	Y2	P1	B1	32
Reilicate /dilution							
$1 / 0.5$	74	22	-	$=$	-	\sim	-
$2 / 0.5$	66	40	-	-	-	-	-
$3 / 0.5$	64	24	$=$	\cdots	$=$	$=$	=
4/0.5	78	54	-	$=$	-	\bullet	-
1/1	61	27	48	-	-	-	-
2/1	65	30	54	-	-	-	-
3/1	40	34	47	-	-	-	-
4/1	71	20	57	-	-	-	\cdots
1/5	-	\cdots	48	-	\cdots	-	-
2/5	$=$	∞	38.6	-	-	-	-
3/5	-	-	39	-	-	-	-
4/5	\cdots	$=$	51.6	-	\boldsymbol{a}	\cdots	∞
1/10	\sim	$=$	\square	1.0	0.0	0.0	0.3
2/10	$=$	∞	\sim	0.1	0.0	0.0	0.2
3/10	\cdots	-	$=$	0.9	0.0	0.0	0.0
4/10	-	-	-	0.2	0.0	0.0	0.1
Sean	66.8	31.1	47.5	0.55	0.0	0.0	0.15
	± 809	± 11	± 0.0	± 0 。	-	-	± 0.13

4.12 Monthly estimate of algal density

The results for each culture are presented and are identified by a code which gives the site, the number of the replicate and the dilution of spoil used; e.g. G1/1/0.5 identifies a culture of spoil from site G1 which was the first relicate and in which spoil was spread on the plate in a suspension that contained $0.5 \mathrm{~g}^{-1}$ of spoil. The results of different dilutions are presented together with each density expressed as the number of viable algal units $\mathrm{g}^{-1} \times 10^{3}$.

The results obtained for site $G 1$ are presented in Table A1.1. Fig. 4.1 shows the mean monthly totals plotted with 95% confidence limits. These were computed from the data as

$$
\ddot{\pi}+t \times \mathrm{s} / \sqrt{\mathrm{N}}
$$

The results for December 1979 contain only four replicate estimates, obtained at dilution $0.5 \mathrm{~g} \mathrm{l}^{-1}$ because cultures prepared at a dilution of $1.0 \mathrm{E} \mathrm{I}^{-1}$ contained >500 colonies per plate and were judged too dense to count accurately. The smallest population was recorded in March 1979 when there were $14.5 \pm 3.9 \times 10^{3}$ algae g^{-1}. The largest population was in December 1979 when there were $183.5 \pm 25.1 \times 10^{3}$ algae g^{-1} 。 Fluctuations in the numbers occurred with peaks in the algal population in June 1979, September 1979 and December 1979.

Blue-green algae were a large and important component of the soil flora at this site and were recorded separately. The results are presented in Section 4.14. The soil flora at other sites was almost exclusively composed of Chlorophyta with occasional diatom colonies. In order to obtain comparable results for this site Table Al. 2 was compiled which shows the estimated monthly totals of algae other than blue-green algae. These results are displayed, plotted with 95% confidence limits in Fig. 4.2.

The results for site G2 are presented in Table A1. 3 and the monthly mean number of algae, plotted with 95\% confidence limits are displayed in Fig. 4.3. The range of values recorded at this site was much narrower than at G1. The lowest monthly mean was in January 1980 and was $31.4 \pm 11.3 \times 10^{3}$ algae g^{41} and the highest monthly mean, in March 1979 was $80.0 \pm 13.9 \times 10^{3}$ algae g^{-1}. In general there was little fluctuation from month to month at this site but there was a small steady increase in numbers during the spring and summer and an equivalent decrease in numbers in the autumn and winter. No results are available for September 1979 at this site because the quadrat was severely disturbed and it was thought that it would have to be abandoned. However on visiting the site in October 1979 no further disturbance had occurred and recording was recommenced.

（عOレ×レー slloว）Kt！suap 10610
（عOレ×レー s\｜oد）K\＆！suop｜DG｜D

The results for site $Y 1$ are presented in Table A1.3 and the monthly mean number of algae, plotted with 95\% confidence limits, are displayed in Fig. 4.4. Only four replicate estimates are available for September 1979 because cultures prepared at the lower dilution were judged too dense to count accurately, containing as they did more than 500 colonies per plate.

This site showed the widest range of values of any site. The smallest population was recorded in Harch 1979 when there were $1.4 \pm 0.8 \times 10^{3}$ algae g^{-1} of spoil and the largest population was recorded in September 1979 when there were $164 \pm 18.2 \times 10^{3}$ algae g^{-1} of spoil. For much of the year the population was around 40 to 50×10^{3} algae 8^{-1} with two distinct peaks in September 1979 and December 1979.

（عOレ×レー siloد）Kt！suap
FIG． 4.4 ：onthly variation in aljal density at site Y1

The results for sites $\mathrm{Y} 2, \mathrm{P} 1, \mathrm{P} 2, \mathrm{~B} 1$ and B 2 are presented in Tables A1.5, A1.6, A1.7, A1.8 and A1.9 respectively. The incidence of algae in the spoil at each of these sites was considerably lower than at the preceding sites and it was decided to adopt a minimum acceptable level of detection of five colonies per plate at any dilution. Below this level it was felt that isolated cells would have a disproportionate effect upon the population estimate. Suspensions with a concentration of more than $10 \mathrm{~g}^{-1}$ were not practical because the density of spoil particles at such high concentrations made the detection of algal colonies impossible. On many occassions the spoil from these sites contained no algae at all.

Spoil from site $Y 2$ contained some algae in every month except March 1979, but in June 79, Oct 79 and Dec 79 the numbers were so small as to be below the minimum acceptable level of detection, even when using a dilution of $10 \mathrm{~g}^{-1}$. Most algae were detected in the sample for September 1979 but even then the population only reached $1.43 \pm 0.5 \times 10^{3}$ algae g^{-1} 。

Spoil from site P1 contained even fewer algae than Y2. No algae at all were isolated from the samples for March 79, October 79, November 79, December 79, January 80 or February 80. Between April 79 and September 79 algae were present but always below the minimum acceptable detection level.

Spoil from site P2 contained more algae than P1 and the figures indicate a population level similar to that at Y2. Most algae were present in August 1979 when the population reached $1.5 \pm 0.5 \times 10^{3}$ algae g^{-1} 。 No results ware obtained for this site from October 79 to February 80 because the permanent quadrat was subjected to severe and continuous disturbance by motor cyclists.

Spoil from sites B1 and B2 contained such a low level of algae that the figures were below the minimum acceptable level of detection on all but one month of the year. In September 1979 the population at B1 reached $0.93 \pm 0.2 \times 10^{3}$ algae g^{-1} and at B 2 it reached $0.55 \pm 0.19 \mathrm{x} 10^{3}$ algae g^{-1}.

The mean monthly totals of viable algal units g^{-1} of spoil at each site are presented in summary in Table 4.4.

4.13 Occurrence and abundance of soil Ulotrichales

 in spoil samplesColonies of soil Ulotrichales were recognisable on the agar plates by their characteristic appearance。 The outline of the colonies was irregular and their gurface was thrown into radiating, wavy folds. These features were strongly marked in members of the filamentous genera but were also clearly detectable in unicellular forms such as Stichococcuse Tt was therefore possible to count the number of Ulotrichalean colonies at each site each month.

The Ulotrichales formed an important part of the soil flora. They were regularly detected at sites G1, G2 and Y1 and were isolated from sites B1 and B2 in September 1979. At site G2 some of these algae were isolated every month except March 1979. However, the numbers were always below the minimum acceptable level of detection at the dilutions used at this site. There was no marked seasonal fluctuation in the numbers although there were rather more present in July 1979.

At site G1 these algae were much more abundant and were detected every month except March and April 1979. The numbers increased in the spring with a peak in June 1979. This was followed by a decline in July followed by an annual maximum of $8.0 \pm 3.2 \times 10^{3}$ algae g^{-1} in September 1979. There was then a steady decline in numbers during the eutumn and winter. The results for this site are presented in Table A1. 10 and are displayed, plotted with 95% confidence limits in Fig. 4.5.

At site $Y 1$, Ulotrichalean colonies were recorded in every month except March 1979. The population was generally at a low level of around 1.0×10^{3} algae g^{-1} of spoil. This population level was similar to that at G2, however at the dilutions used for samples from this

site, sufficient algae were isolated to get a reasonably reliable estimate of the population. There were two distinct peaks in the population in June 1979 and in August 1979, when it reached $3.63 \pm 1.52 \times 10^{3}$ algae g^{-1} and $6.05 \pm 1.3 \times 10^{3}$ algae g^{-1} respectively. The results from this site are presented in Table A1. 11 and displayed, plotted with 95% confidence limits, in Fig. 4.6.

FIr. 4.6 ?onthly variation in density of untriclnles at sito y

4.14 Qccurrence and abundance of blue-green algae in the spoil semples
 Blue-green algae could be easily recognised on the surface of the agar plates by their characteristic colour and could therefore be counted separately. Isolated specimens were detected at site G2 in January 80, December 79, November 79 and Hay 79; at Y1, Y2, B1 and B2 in September 79 and at B2 in January 80 and B1 in March 79. However at site G1 blue-green algae were a large and important component in the soil flora. Numbers fluctuated widely from month to month, with few or no blue-greens being detected in March, April and May 1979 but dramatic peaks in the population being recorded in June 79, September 79 and December 79. The largest population recorded was in December 1979 when there were $107.5 \pm 19.55 \times 10^{3}$ blue-green algal units g^{-1} of spoil. The estimated numbers of blue-green algae present in the spoil each month are presented in Table A1. 12 and displayed, plotted with 95% confidence limits, in Fig.4.7。

FIG. 4.7 :Monthly variation in density of bluo-green alge at site G1

4.2 SOIL ALGAE IDENTIPIED FROM SPOIL AT EAST HOLYWELL

In Table 4.5 is presented a list of all the soil algae isolated and identified from spoil at East Holywell. The algae isolated from sample sites on washeries waste are listed site by site in Table 4.6 and in Table 4.7 the algae isolated from shale sites are listed in a similar fashion.

Algae of 29 different species were identified from the various sites. These include representatives of 24 genera. The majority of species (22) were Chlorophyta with just three species of Cyanophyta and two species of Bacillariophyta. This flora was most diverse at sites Y1, G1 and G2 and was markedly reduced in diversity at sites Y2, P1, P2, B1 and B2 (Table 4.8, p114). Several species were identified from a range of sites but only Chlorella sp. 2 was identified from every site (Table 4.9, p115).

Several species were found equally upon shale and washeries waste while some species were restricted to one or other of these spoil types (Table 4.10, pll6).

TABLE 4.5 Soil algae isolated from colliery spoil at East Holywell

Chlorophyta
Bracteacoccus sp.
Chlorococcum sp。
Chlorella sp。 1
Chlorella spo 2
Chlorella spe 3
Coccomyxa sp.
Lobococcus incisa Reisigl
Myrmecia sp.
Muriella terrestris B. Petersen
Pseudochlorella pyrenoidosa Lund
Spongiochloris spo
Tetracystis spo
Ulotrichales
Hormidium crenulatum Klebs
Hormidium flaccidum A. Braun
Hormidium sterile Deason et Bold
Stichococcus bacillaris Nageli
Stichococcus minor Nageli
Chaetophorales
Chlorosarcina sp.
Chlorosarcinopsis minor Herndon
Jaagiella alpicola Vischer
Chaetophorales R4
Chaetophorales R10
Chaetophorales R20
Chaetophorales R22
Cyanophyta
Anabaena sp.
Lyngbya spo
Oscillatoria spo
Bacillariophyta
Navicula spo
Pinnularia spo

Spectes	SITES			
	G1	G2	B1	B2
CHLOROPHYTA				
Bracteacoccus sp.	X	\%		
Chlorococcum sp.	X	X		
Chlorella spo 1	X	X		
Chlorella spo 2	X	x	x	X
Chlorella spo 3	X	X		
Coccomyxa sp.	X	X		
Lobococcus ineisa				
Myrmecia spo	x			
Muriella terrestris	K	x		
Pseudochlorella pyrenotiosa				
Spongiochloris spo				
Tetracystis spo	X	X		
Hormidium crenulatum	X			
Hormidium flaccidum	X			
Hormidium sterile				
Stchococcus bacillaris	X	x		
Stichococcus minor	X			
Chlorosarcina spo	\%	\%		
Chlorosarcinopsis minor				
Jaagiella alpicola	x	H		
Chaotophorales R4				
Chaetophorales R1O				
Chactophorales R20	X			
Chaotophorales R22		\mathbb{R}		
CYANOPHYTA				
Anabaena spo				X
Lyngbya spo	3	3	X	K
Oscillatoria spo	8			
BACILLARIOPHYTA				
Navicula spo	X			X
Planularia spo				

TABLE 4.7 Soil algae identified at sites on shale

SPECIES	SITES			
	是	12	P	$\mathbb{P} 2$
CHLOROPHYTA				
Bracteacoccus spo				
Chlorococcum spo	X			
Chlorella spo 1	X			
Chlorella spe 2	X	X	X	X
Chlorella spe 3	X	X		
Codcomyxa sp.	X	X		
Lobococcus Incisa	X			
Myrmecia sp.				
Muriella terrestris				
Pseudochlorella pyrenoidosa	X	X		
Spongiochloris sp.	X			
Tetracystis spo	X			
Hormidium crenulatum	X			
Hormidium flaccidum	X	X	X	
Hormidium sterile	X			
Stichococcus bacillaris	X			
Stichococcus minor				
Chlorosarcina sp.	\mathbf{X}			
Chlorosarcinopsis minor	X			
Jaagiella alpicola				
Chaetophorales R4	X			
Chaetophorales R10	X			
Chaetophorales R20				
Chaetophorales R22				
CYANOPHYTA				
Anabaena sp.				
Lyngbya spo				
Oscillatoria spo				
BACILLARIOPHYTA				
Navicula spo	X			
Pinnularia sp.	X			

[^0]
TABLE 4.8 Number of apecies recorded at each site

Site	number of species recorded
G1	19
G2	12
B1	2
B2	4
Y1	19
Y2	5
P1	2
P2	1

TABLE 4.9 Frequency of occurrence of algal species

Identified at all sites:
Chlorella sp. 2
Identified at four sites:
Lyngbya spo
Chlorella 3
Coccomyxa sp.
Hormidium flaccidum
Identified at three sites:
Chlorococcum sp.
Ch1orella sp. 1
Tetracystis sp.
Stichococcus bacillaris
Chlorosarcina sp.
Identified at two sites:
Bracteacoccus si.
Muriella terrestris
Pseudochlorella pyrenoidosa
Jaagiella alpicola
Navicula spo

TABLE 4. 10 Algae from sites with different spoil types

Species present on shale and washeries waste	Species present only on shale	Species present only on washeries waste
Chlorella sp. 1	Lobococcus incisa	Bracteococcus sp.
Chlorella sp. 2	Pseudochorella pyrenoidosa	Myrmecia sp.
Chlorella sp. 3	Spongiochloris sp.	Muriella terrestris
Chlorococcum sp.	Hormidium sterile	Stichococcus minor
Coccomyxa sp.	Chlorosarcinopsis minor	Jaagiella alpicola
Tetracystis sp.	Chaetophorales R4	Chaetophorales R2O
Hormidium flaccidum	Chaetophorales R10	Chaetophorales R22
Stichococcus bacillaris	Pinnularia sp.	Anabaena sp.
Chlorosarcina sp.		Lyngbya sp.
Navicula sp.		Oscillatoria sp.
Hormidium crenulatum		

CHAPTER 5

RESULTS - TAXONOMY

5.1 DESCRIPTIONS OF ALGAE ISOLATED FROM COLLTEDY SPOTL
 Algae were isolated from the dilution plates as described in Section 2.7. The following descriptions are based upon systematic observations of these unialgal cultures over periods of up to two months. Identifications were based on Bourrelly (1966), Bdd o Wynne (1978) and PickeH - Heaps (1975).
 5.11 Ulotrichales

Filamentous green algae of the order Ulotrichales were often isolated from sites G1, G2 and Y1 and occasionally from all other sites. The material examined in the dilution cultures was very variable and its characteristic features were often obscured by the accumulation of storage granules. This latter complication was due to the long period of incubation i。e. one month, which meant that almost all filaments were old, as most of these species grow very quickly in culture and are quite capable of making significant growth within one week. A number of isolates were made (Section 2.8) and observed systematically. They were ascribed to the following species using standard references (Bourrelly, 1966 ; Komaromy, 1976).

Hormidium crenulatum
This species was isolated from both the red shale area of the tip and the washeries waste. The isolate examined in culture was from site G1. The filaments were 15 to $18 \mu \mathrm{~m}$ in diameter and each cell was $\frac{1}{2} x$ to 1 x as long. The chloroplast was an incomplete band encircling approximately two thirds of the cell with a single pyrenoid which was normally quite distinct. The cell walls are rather thicker than in some species of Hormidium and the whole filament is covered by a thin mucilaginous sheath (Figs 5.1 \& 5.2). In field material the cell wall was considerably thicker as was the mucilaginous sheath. In older filaments the cells were in groups of 15 to 20 which although still connected into a continuous filament were separated from each other by apparently empty cells with thickened walls. These seemed to be points of flexibility in the filament but were no weaker than any other point as was shown by the fact that breaks in the filament occurred quite independently of these points (Fig. 5.3). In some regions of the older filaments longitudinal divisions occurred producing short regions of biseriate filaments (Fig. 5.4) which gave rise to loop like structures (Fig. 5.5) as described by Fritsch and John (1942).

$10 \mu \mathrm{~m}$

FIG 5.1 Hormidium crenulatum showine identation of cross walls

$10 \mu \mathrm{~m}$

FTG 502 Hormidium crenulatum cells dividing

$10 \mu \mathrm{~m}$

FJG 5.3 Hormidium crenulatum field material

FTG 5.4 Hormidium crenulatum filament partly biseriate
from 1 week old culture

FTr $5.5 \frac{\text { Homidium cronulatum showidr loor }}{\text { structure }}$

Hormidium flaccidum
Seventeen of the algae isolated could be ascribed to this species. They consisted of simple filaments varying in diameter from $5 \mu \mathrm{~m}$ to $12 \mu \mathrm{~m}$ which could be divided in to three size categories

$$
\begin{aligned}
& \text { a. } 5-7 \mu \mathrm{~m} \text { - } 12 \text { examples Fig. } 5.6 \\
& \text { b. } 7-9 \mu \mathrm{~m} \text { - } 3 \text { examples Fig. } 5.7 \\
& \text { c. } 11-12 \mu m=2 \text { examples Fig. } 5.8
\end{aligned}
$$

The cells were between 1π and $2 x$ as long as they were broad. The chloroplast was an incomplete band that extended over half of the cell wall. It contained a single distinct pyrenoid which was surrounded by starch. The filaments were of indeterminate length and in general showed no tendency to fragment (Piercy, 1917). However it was noted that a tendency to fragment did appear in old cultures and therefore this character seems to be a consequence of the physiological state of the organism rather than an inherited taxonomic character. Mattox and Bold (1962) described the size pange of this species as between 5 and $8 \mu \mathrm{~m}$ but Ramanathan (1962) describes it as between 5 and $14 \mu \mathrm{~m}$. In the examples observed a wide range of filament diameter was observed and as no clear distinction could be made between the narrower and broader filaments it was decided to adopt the wider size limits of Ramanathan。

FTG 5.6 Hormidium flaceidum

$10 \mu \mathrm{~m}$

FTG 5.7 Hormidium flaccjdum showing flexihle joint

$10 \mu \mathrm{~m}$

FTG $5.8 \frac{\text { Hormidium }}{\text { old culture }} \frac{\text { flaccidum }}{}$ from 1 week old culture

Hormidium sterile (Fig. 5.9)
One isolate from site $Y 1$ which had a colony form on agar similar to that formed by Stichococcus sp. 1.e. smooth shiny surface with irregular outline suggesting filaments, was identified as Hormidium sterile. It consisted of cells $5 \mu \mathrm{~m}$ wide which were 1 x to $1 \frac{1}{2} \mathrm{x}$ as long. Most cells were solitary but some were joined into short filaments of up to eight cells. The chloroplast was parietal and covered about half of the cell wall. In unstained preparations there appeared to be a very indistinct pyrenoid and when stained with iodine a pyrenoid was visible surrounded by starch. If a pyrenoid had not been present these cells would have been identified as a small species of Stichococcus but Deason and Bold (1960) described a species similar to this and named it Hormidium sterile. The cells of this isolate were somewhat shorter than those described by Bold and Deason but in view of the observations of Hayward (1974) on Stichococcus and the great variation in cell length in other members of these genera, cell length does not seem to be a very reliable character. No zoospores mere observed and Deason and Bold described the species as not producing zoospores, however Cain, Mattox and Stemart (1973) reported the successful induction of zoosporogenesis.

FTG 5.9 Hormidium sterile

Stichococcus bacillaris

Five algae isolated from sites $G 1$ and $Y 1$ were identified as belonging to this species．They all formed smooth colonies on agar which at first had a regular outline but in time developed filament like projections from the edges of the colony．The cells were $3=7 \mu \mathrm{~m}$ in diameter and varied from $1 x$ to $3 x$ as long as wide．They had a parietal chloroplast which mas always in a median position along the side of the cell and lacked a pyrenoid．On staining with iodine young cells were shown to contain a large single starch body within the chloroplast．The chloroplasts never encircled more than half of the cell．The majority of cells were solitary（Fig．5．10），however filaments of various lengths were observed．The longest seen was made up of 54 cells but more commonly the filaments were composed of two to eight cells． All filaments fregmented easily and the end walls were never in complete contact（Fig。 5．11）．Old cells have chloroplasts mhich are yellow green in colour and have one or two prominent oil droplets at the ends of the cell（Fig．5．12）。

FIG $5.10 \frac{\text { Stichococcus }}{\text { younc cells }}$ bacillaris solitary

FTG 5.11 Stichococcus bacillaris young cells forming fragile filament

FTM 5.12 Stizhococcus bacillaris old rells

6. Stichococcus minor

One isolate from site $G 1$ was ascribed to this species. The cells were $2 \mu \mathrm{~m}$ to $2.5 \mu \mathrm{~m}$ in diameter and $3 \mu \mathrm{~m}$ to $8 \mu \mathrm{~m}$ long. They had a parietal chloroplast lacking a pyrenoid and in old cells had oil droplets at the ends of the cell. The cells were always solitary and were never seen to form filaments (Fig. 5.13). They closely resemble \underline{S}. bacillaris but are consistently smaller and more rounded or elliptical then all of the isolates described as S. bacillaris. The cells described closely resemble those described by Grintzesco and Peterfi (1932).

FIr 5.13 Stichococcus minor
5.12 Chaetophorales

Sites Y1, G1 and G2 all yielded isolates which were identified as members of the Chaetophorales. Many of these were species that form cubical packets of cells but several were filamentous forms.

Chlorosarcina sp.
The colonies of this alga on agar were dark green in colour with an irregular outline and a moist lustrous surface. Solitary cells were spherical and up to $12.5 \mu \mathrm{~m}$ in diameter. Most cells formed packets of two, four or eight cells in which adjacent cell walls were flattened. The chloroplast was closely apprassed against the outside of the cell and contained no pyrenoid. The appearance of cells in a two day old culture is shom in Fig. 5.14 and their appearance in 23 day old culture is illustrated in Fig. 5.15.

FTG 5.14 Chlorosarcina spo cells from 2 day
old culture

FTG $5015 \frac{\text { Chlorosarcina }}{\text { old culture }}$ spolls from ?? day

Chlorosarcinopsis minor

This organism was isolated from the September sample at site Y1. The appearance of the colonies on agar was similar to Chlorosarcina. Individual cells varied in diameter form 6.5 to $10.0 \mu \mathrm{~m}$. In two day old culture (Fig. 5.16) most cells were solitary. They contained a single cup shaped chloroplast closely appressed to the wall of the cell, with a prominent single pyrenoid. In 23 day old cultures most cells formed rough cubical packets (Fig. 5.17). This organism conformed closely to the description given by Hernddn (1958).

FTG Fin Chlorosarcinopsis minor in ? : :
ald anl+11ro

$10 \mu \mathrm{~m}$

FTS $5.17 \frac{\text { Chlorosarcinopsis minor in } 23 \text { in }}{\text { old culture }}$

Jaagiella alpicola

Algae assigned to this species were isolated on several occasions from spoil at sites $G 1$ and $G 2$. The colonies on agar had a massive centre with radiating filaments around the edge, (Fig. 5.18). Part of the colony was pressed close to the agar or may even have been penetrating it and this part was made up of long multiseriate filaments which may be referred to as the basal system. The second part of the colony was raised above the agar as mound of cells and may be referred to as the aerial system. This part was made up of very short multiseriate filaments or cubical packets of cells. The larger colonies had a more massive aerial system and a reduced basal system while smaller colonies always had an extensive basal system and a reduced aerial system. This suggests that the basal system develops before the aerial system. The short aerial filaments taper from a maximum width of eight cells to a minimum width of two cells (Fig。 5.19). Each cell had a single parietal cup shaped chloroplast which was very dense and contained storage granules. \& pyrenoid was absent.

FTG 5.18 Jaagiella alpirola nutiva of colngy on agar in 2 month old culture

$10 \mu \mathrm{~m}$

FIG 5.19 Jaagiella alpicola cells from aerial filament

The basal filaments tapered from their wide and complex base (Fig. 5.20), to a single cell at their tip (Fig. 5.21). They were usually branched with short uniseriate filaments given off at regular intervals. The cells in the older parts of the basal filaments were identical to those in the aerial filaments but the cells near the tip of the basal filaments are elongated into short cylinders with a band like chloroplasts that encircles about two thirds of the cell. In these young basal cells there sometimes appeared to be one or two pyrenoids but these are not always present and were only visible in the terminal four cells (Fig. 5.22). Zoospore production was observed on a number of occasions (Fig. 5.23).

FTG 5.20 Jaagiella alpicola basal filamont composed of tetrads of cells

$10 \mu \mathrm{~m}$

FTG $5022 \frac{\text { Jaggiella }}{\text { of basal filament }} \frac{\text { alala }}{}$ terminal cells

$10 \mu \mathrm{~m}$

FTG 5.23 Zoospores of Jaagiella alpicola

Three other organisms which showed Chaetophoralean characteristics were isolated. These did not match any described species and therefore are referred to by the author's isolation code number. Organism R4

This organism which was isolated from site Y1, produced very rough small colonies which were clearly raised above the surface of the agar. It was extremely slow growing and after 20 days in culture was made up of a few groups of two or four cells with a tendency to form short filaments (Fig. 5.24). Each cell was broadly spherical and on average $8.8 \mu \mathrm{~m}$ in diameter. In some cells the shape was modified by mutual compression on adjacent walls. The chloroplast was parietal and usually appeared divided into two lobes. Two small pyrenoids were typically present.

FTG 5.24 Organism R4

This organism was isolated on three occasions from spoil at site Y1. On agar it formed solid irregular colonies with a ridged surface that gave the appearance of solid waves. In two day old cultures the cells were spherical green unicells, 5 to $10 \mu \mathrm{~m}$ in diameter, embedded in a thin jelly matrix. Each cell had a single cup shaped chloroplast with a single prominent pyrenoid (Fig. 5.25). Many cells in this young material were observed forming zoospores. This occurred by one cell dividing into two or rarely four zoospores which each had two flagella of equal length, a parietal chloroplast and a prominent stigma. Newly emerged zoospores were pear shaped but active zoospores were more elongated (Fig. 5.26). In 23 day old cultures the cells formed irregular groups (Fig. 5.27). The edges of the plant mass showed a distinct tendency to form short filaments made up of more elongated cells (Fig. 5.28). The cells at the edge of the colony remained green but the cells in the centre of the colony were bright orange as a result of abundant haematochrome in the vacuoles of the cells. Zoospore formation was less common in older cultures and was seen only once in 23 day old material. In 46 day old material the cells formed a creeping cushion in which the centre was bright orange and the edge was green. The centre of the colony formed a pseudoparenchyma and the edge was fringed with shomt filaments as shown in Figs 5.29, 5.30.

[^1]

FTG 5.26 Zoospore formation in organism R10

FTG 5.27 Groups of rells of organism llo
in 23 day old culture

FIG 5.28 Early stages of filament formation in 23 day old colture of orcanism R10

FTG 5029 Short filaments formed at the wire of 46 day old colonies of oreanism man

FTG 5030 Filament in 46 day old onlture of organism R 90

Organism R22

This organism was isolated from site G2. The
cells formed very reduced filaments which were uniseriate and branched. The branching occurred in three dimensions but in the 23 day old culture material no filament was longer than six cells. The cells were elongated, being at most $12 \mu \mathrm{~m}$ long and $5 \mu \mathrm{~m}$ wide. They had a parietal band shaped chloroplast with a clearly visible pyrenoid. Cells not forming part of a filament were spherical with an average diameter of $6.25 \mu \mathrm{~m}$ (Figs 5.31, 5.32). In 30 day old cultures most cells formed simple branched structures (Fig. 5.33). The organism was never seen to produce zoospores.

FTG 5.31 Short filaments in 23 day old culture of organism R??

$10 \mu \mathrm{~m}$

FTG 5.32 Groups of cells in 23 day old culture of oreanjam R2?

FTG 5.33 Orcanism R22 ir 30 day old oulture

5.13 Chlorococcales

The members of the Chlorococcales were by far the most common and most abundant algae at all the sites studied. Examination of field material of algae in this group was particularly confusing for they frequently did not show the characters necessary to distinguish genera. Material from 28 day dilution cultures was always so full of storage granules that few details of the cell contents could be discerned. It was therefore necessary to rely upon the appearance of colonies on agar to indicate the presence of different organisms. On this basis a number of organisms which each produced a characteristic colony type were isolated into unialgal culture and studied at regular intervals. Inevitably this approach will have resulted in some genera being overlooked because they formed a colony similar to another genus. The following descriptions are of the organisms studied in unialgal culture.

```
Lobococcus incise
    This organism was isolated on two separate
occasions from spoil at site Y1. It was a spherical
unicell with cell diameter that varied between
7 and 18 \mum. Each cell contained a parietal lobed
chloroplast. In small cells the chloroplast has two
lobes but in larger and older cells there were three
or four lobes (Fig. 5.34). There were no pyrenoids
present but there was a centre of starch storage in
each lobe of the chloroplast.
```


$10 \mu \mathrm{~m}$

FTG 5.3/ Lobococcus incisa

The cells were uninucleate and the nucleus was clearly visible in living cells. Reproduction was by zoospores and autospores. Zoospores had two flagella and were pear shaped upon release, however they rapidly rouncled off and became immobile (Fig。 5.35)。

b. 2 min after release

FTG 5.35 Zoospores of Lobococcus incisa

Myrmecia sp.
An organism was isolated from site G1 which was assigned to this genus. It was a non-motile unicell, $13 \mu \mathrm{~m}$ in diameter. The chloroplast was parietal and lacked a pyrenoid. The cell wall had a very distinctive polar thickening which was most apparent in older cells. The cells also turned orange due to the accumulation of secondary carotenoid pigments as they aged (Fig. 5.36)

$10 \mu \mathrm{~m}$

FTG 5.36 Myrmecia spo

Muriella terrestris

This organism was repeatedly isolated from spoil at sites G1 and G2．It formed smooth circular colonies on agar．The cells ranged from 5 to $17.5 \mu \mathrm{~m}$ in diameter but most were about 9 pm in diameter．Each cell contained several parietal chloroplasts which never contained a pyrenoid．The smaller cells contained two to three chloroplasts and the larger 15 or more。 Reproduction by the formation of autospores and the bursting of the mother cell wall was frequently observed but in hundreds of observations on this organism over a period of three years it was never seen to produce zoospores（Fig．5．37）。

FTG 5.37 Muriella terrestris

Tetracystis sp.
Members of this genus were isolated frequently from a number of sites, but the organism studied in culture and described here was obtained from spoil at site Y1. Single cells were spherical and had a diameter of $16.5 \mu \mathrm{~m}$. The chloroplast was parietal and cup shaped and contained a single prominent pyrenoid. The most distinctive feature however was the arrangemont of cells into groups of four by the vegetative division of a single cell (Fig. 5.38). These characteristic groups were present in young and old cultures. Zoosporangia releasing zoospores were observed in five day old cultures (Figs 5.39, 5,40)。

Brown and Bold (1964) have described twelve species of Tetracystis but in this study insufficient information was collected to identify the organism beyond the genus. Brown and Bold also assigned this genus to the Chaetophorales but as in all other section of this work we have preferred to follow Bourelly (1966) and place the organism with the Chlorococcales.

$10 \mu \mathrm{~m}$

FTG $5.3 R$ Vegetativo cells nf Tetracystis sp.

FTG 5.39 Zoosporangia of Tetracystis sp.

FTC 5.40 Zoospores of Tetracystis sp.

Chlorococcum sp.

Members of this genus were amongst the most common
algae isolated. The organism illustrated was from spoil at site Y 1 . The single cells were spherical and averaged 17 to $18 \mu \mathrm{~m}$ in diameter. The chloroplast was parietal and cup shaped with a single prominent pyrenoid (Fig. 5.41). In older cells the chloroplast had gaps so that it almost had a reticulate appearance (Fig. 5.42). Cells were in groups of four or eight but were always spherical. Zoospores were formed in a vesicle as shown in Fig. 5.43.

FIG 5041 Young cell of Chlorococcum spo

$10 \mu \mathrm{~m}$

FTG 5042 01d cell of Ch1orococcum sp.

FTG 5.43 Zoosporangium of chlorococcum sp.

Chlorella
Members of this genus were by far the most common algae found in colliery spoil. They were isolated from every site studied and were present in large numbers. There were numerous different forms present which varied in cell shape, cell size, presence of pyrenoid and form of chloroplast, however, all had the essential features of the genus ioe. they were solitary green unicells which reproduced by the production of autospores that were liberated by the rupture of the parent cell wall.

Chlorella sp. 1
The smallest organism observed was an average of $2.5 \mu \mathrm{~m}$ in diameter with a few cells reaching $5 \mu \mathrm{~m}$ in diameter. Hfost cells contained two distinct chloroplasts which lacked a pyrenoid, however, in larger cells one chloroplast was often lobed so that it appeared to have three chloroplasts (Fig. 5.44).
Chlorella sp. 2
Most members of this genus were between 5 and $7 \mu m$ in diameter. Some had a tendency to form oval cells and contained a single pyrenoid, (Figs $5.45,5.46$). Others were always spherical and always lacked a pyrenoid (Fig. 5.47)

Chlorella sp. 3
The largest member of the group observed, was $15 \mu m$ in diameter, with a single chloroplast and no pyrenoid. The chloroplast was frequently lobed (Fig. 5.48) 。

©
 0

FIG 5.44 Chlore11a spe 1

FIG 5.45 Chlorella spo 2

FTG 5.46 Chlorella spo 2 relcase of autospores

$10 \mu \mathrm{~m}$

FTr 5.47 Ch1ore11a sp. 2

$10 \mu \mathrm{~m}$

FTG 5.48 Ch1ore11a sp. 3

Pseudochlorella pyrenoidosa

A single isolate from site $Y 1$ which was originally identified as an oval Chlorella was subsequentiy shown in culture to accord with the description of Pseudochlorella pyrenoidosa. The cells were always ellipsoidal with a single band shaped chloroplast with a single prominent pyrenoid. It reached a maximum size of $12.5 \mu \mathrm{~m}$ in length and $6 \mu \mathrm{~m}$ in width. The organism was never seen to produce zoospores (Fig. 5.49).

PTM 5.l? Pseudochlorella pyrenoidosa

CHAPTER 6

DISCUSSION

6.1 INTRODUCTION

The algal flora of colliery spoil at East Holywell has a number of characteristic species and the algal density shows marked seasonal variations. These phenomena may be partially explained by the prevailing levels of certain environmental variables at the site.

6.2 ALGAL FLORA OF COLLIERY SPOIL

6.21 Flora of sites Y1, G1 and G2

A number of species (11) were found equally upon shale (Y1) and washeries waste (G1 and G2) but several species were restricted to one or other spoil type (Table 4.10, p116)。

This suggests that the general conditions necessary for the development of a soil algal community were fulfilled at these sites i.e. that the spoil surface was stable and not subject to severe erosion, that the moisture level in the surface layers was adequate and that the temperature never reached lethal levels. Chemically these sites were neutral and it is therefore likely that no substances reached toxic levels. The nutrient supply must have been adequate for the commoner soil algae.

The restriction of some algae to site $Y 1$ may be due to specific nutrient requirements which are met by the shale and not by the washeries waste. Alternatively it may be due to the inability of these species to tolerate the levels of a particular physical or chemical parameter at the washeries waste sites such as shading by higher plants.

Similar explanations may well account for the
differences in flore between sites G1 and G2. However, the frequent presence of bluesgreen algae at site G1 and their sporadic occurrence at $G 2$ is not readily explained. These sites are similar in their physical (Table 3.5, p 84) and chemical nature (Table 2.1, p 53) and both are colonized by Tussilago farfara. The only noticeable difference is that Tofarfara at GI is denser than at G2. This may alter the light level or the moisture level just enough to make colonization by blue-greens more likely.

All these sites are within an area of $100 \mathrm{~m}^{2}$ and, with considerable movement of material from one part of the tip to another by wind (Section 3.32,p81), it is unlikely that the difference between these sites is due to spatial isolation.

6.22 Flora of sites B1 and B2

At $B 1$ the flora was reduced to two species and at B2 to just four species (Table 4.6, p112)。 These sites are similar to G1 and G2 in terms of the physical texture of the spoil (Table 3.6, p 89) and pH (Table 2.1, p 53). Therefore these factors cannot be the cause of the observed differences. The major difference between B sites and G sites was that the latter were colonized by Tussilago fariena. The presence of this higher plant cover would alter the conditions at the spoil surface. In spring and summer the growth of the leaves of Tofarfara shaded the surface and kept it cool and moist. In autumn, the death of To farfara leaves supplied additional nutrients to the surface of the spoil and throughout the year the roots of Tofariara stabilized the surface This last effect may well be the most important because in wes conditions uncolonized washeries waste is subject to severe water erosion and in dry conditions it is subject to severe wind erosion (Section 3.32,p 81)。

6．23 Flora of sites P1 and P2
 At $P 1$ the flora ia reduced to two species and at P2 to a single species（Table 4．6，p112）。 These sites are similar to $Y 1$ in spoil texture（Table 3．5，p84） and none are colonized by higher plants．Therefore conditions of temperature，moisture and stability will be similar and cannot be responsible for differences between these sites．However P1 and P2 are both sites with a low spoil pH （Table 2．1，p53）。 Therefore the reduced flora may be due to lower pH directly or may be due to some substances reaching toxic level in acid conditions．Alternatively，the availability of plant nutrients，especially phosphorus，may be reduead in facid conditions（Section 1．223，p 27 ）and this may be limiting the development of a flora．

6.24 Plora of site $Y 2$

Site $Y 2$ had a flora consisting of only five species． This site is similar to Y in pH ，spoil texture and degree of higher plant colonization，therefore differences in moisture level．temperature or acidity seem unlikely to be the cause of the differences betmeen these sitea．Colliery spoil however，is very variable in its chemical composition（Section 1．22，p 23 ）and it may well be that the spoil at this site is deficient in essential plant nutrients or contains some substance which is toxic to soil algae。 Hore detailed measurement of chemical parameters is necessary to explain differences such as these．

6.3 VARIATIONS ITH ALGAL DENSITY IN COLLIERY SPOIL 6.31 Effect of methods employed upon estimate of algal donsity

6.311 Storage of samples

Samples of spoil collected each month were stored In an air dry condition (Section 2.33, p 59). This storage was necessary because of a delay in perfecting the standard culturing technique and resulted in samples being cultured 1 ive months after they had been collected. It was very likely that this treatment would alter the number of algee in the sample and therefore in order to quantify this effect, the sample for June 1980 was cultured immediately after air drying and again after five months storage. The results (Tables $4.1,4.2$ and 4.3) show that in spoil from all sites the algal density was reduced by storage. The sites which were of particular importance were G1, G2 and Y1 because these contained algae at a measurable density. These results suggest that the figures for algal density at site G1 and G2 in the main survey may be only half the number of algae which were in the spoil when it was first collected and the results for site $Y 1$ may represent only a quarter of the algae present at collection.

6.312 Culture preparation

The culture technique and culture medium can influence the types and number of algae isolated from a spoil sample (Sections $1.32, \mathrm{p} 32,2.4, \mathrm{p} 62$, 2.5, p 64) 。The agar plate technique used gives conditions of moisture, temperature and light which approximate to the conditions at the soil surface. However nutrient supply on the surface of mineral salt agar is likely to be much more favourable than in the soil and certainly more generous than on the surface of colliery spoil (Section 1.223, p 27). Many of the algae which grow
to form colonies on agar plates may perhaps not be growing actively in the spoil, but present simply as spores.

In the course of preparation of dilution cultures spoil and algae were subjected to relatively vigorous handling。 The grinding, sieving and blending of spoil with water (Section 2.61, p 66) may well have resulted in the destruction of some algal cells. Hewever it may also have caused filamentous algae to fragment and reproductive bodies to rupture. Whatever effects this treatment may have had they applied equally to all samples.

In the case of blueagreen algae the technique was really inappropriate to the estimation of their abundance. The majority of blueagreens isolated were iilamentous forms with a thin mucilaginous sheath such as Iyngbya sp. Such algae would not be readily separated by the agitation used and may well have fragmented irregularly. Furthermore theis rapid spreading growth over the surface of agar plates presented great difficulties in counting (Section 2.63, p70). Therefore the numbers presented in Fig. 4.7 , pl09 can be taken only as a general indication of their abundance.
6.32 Sites with low algal density

Numerous studies have been made of the algae in soils from many parts of the morld (Seciion 1.31, p 31)。 In these accounts mosi soil types in temperate regions and a number of tropical soils have been described. Throughout these reports it is extremely unusuel to find accounts of soils which are algae free. In this survey none of the sites were completely devoid of algae for the whole year but spoil from site $P 1$ contained no algae for six months of the year, site By contained no algae for seven months of the jear, site B2 contained no algae for four months of the year and site Y2 contained no algae
for one month. At other times the algal density of these sites mas extremely 10% and reached a maximum of only 1.43 स 10^{3} cells g^{-1} at site $Y 2$ in September 1979. At sites $B 1, B 2$ and P1 the algal density nover exceeded 1.0×10^{3} cells g^{-1}.

An attempt was made to measure the algal spore input from aerial plankton at these sites. The results (Appendix 2, p225) showed that P1, B1 and B2 were receiving an average of 2 cells cm^{-2} day ${ }^{-1}$. Thus even the very low populations recorded at these sites were greater than can be accounted for by aerial plankton accidentally falling on the surface. Site Y2, which was on the western rim of the tip and received the full force of the prevailing westerly winds showed an aerial plankton input of 21 cells cm^{-2} day ${ }^{-1}$. Although this is 10 times the rate of input at other sites it still seems insufficient to account for the number of algae in the spoil. Therefore it seems likely that some algae are growing in the spoil at these sites during the spring and summer.

The development of a substantial algal population at sites B 1 and B 2 may have been limited by adverse physical conditions or by a limited nutrient supply (Section 6.22, pl88)。 Like these sites, site P1 was devoid of higher plants but was a shale site。 The low level of algal density here was probably due to chemical rather than physical factors. The shale provided a stable substrate but the pH was recorded at 3.8. Several workers have noted a reduction in algal density at low pH sites, especially MacEntee (1970) who described a very restricted and depauperate flora on acid strip mine spoil in NoE. Pennsylvania, U.S.A. then it is recalled that low pH in colliery spoil may be associated with toric levels of several metals (Section 1.222, p 26) and with restricted availability of some nutrients
(Section 1.223, p 27), it is not surprising that very few algae were present at this site. Site P2, for which only incomplete data are available had similar physical and chemical characteristics to site P1 and showed a similar pattern of variation in algal density.

6.33 Algal density on stable washeries waste

Sites G1 and G2 were on washeries waste which was stabilized by Tussilago farfara. This was the only higher plant growing on this material and was associated with a limited number of mosses (Section 3.41, p88). Both sites had high algal densities at all times of year. However, site $G 1$ had a number of blue-green algae in the samples. In presenting the results for this site (Fig. 4.2, p 97 \& Table A1.2, p 214) it was decided to subtract the number of blue-greens from the total to give a figure for green algae and diatoms. This was done for two reasons. Firstly figures for blue-greens can only be taken as a general indication (Section 6.312, p 190) and secondly this procedure gives figures which may be compared with those for site G2 at which blue-greens did not form a significant element in the flora. When sites G1 and G2 are compared, it is seen that the density of green algae and diatoms in the spoil at each site is broadly similar (Table $60^{\circ}, \mathrm{p} 194$).

```
TABLE 6.1 Comparison of the range of algal density
    at sites G1 and G2
```

site Gi site G2

```
maximum density
of green algae
and dietoms
90.1\pm 13.9 80.0\pm = 13.9
(cells g}\mp@subsup{g}{}{-1}\times1\mp@subsup{0}{}{3}
minimum density
of green algae
and diatoms
    12.1\pm3.7 31.4\pm 11.3
(cells g
```

The high algal densities throughout the year at these sites indicate that washeries waste colonized by T. Parfara provided a suitable environment for algal growth. The marked contrast with B sites on uncolonized Washeries waste may be due to the amelioration of the physical conditions at the surface or to nutrient enrichment by the decaying T. fariara in the autumn (Section 6.22, pl88)。

6.34 Algal density on bare noutral shale
 Sites $Y 1$ and $Y 2$ were both site with a pH of between 7.0 and 8.0 and both were devoid of vegetation. They were adjacent to areas showing natural colonization and supporting floras similar to that described in Section 3.42, p88. Y2 has already been referred to in Section 6.31 because it supported a very limited algal population. In contrast site Y1 had a high algal density throughout the year. The mean algal density for the period March 1979 to February 1980 was 58.9×10^{3} algal cells g^{-1}.
 The physical conditions of these two sites were similar and the difference is likely to be due to differences in the chemical composition of the spoil (Section 6.24, p189).

6.4 SEASONAL PERIODICITY OF ALGAE IN COLLIERY SPOIL

6.41 Pattern of occurrence of algae in spoil

There was a clear seasonal pattern to the isolation of algae from several sites (Table f.?)。 While algae were isolated throughout the year from G1, G2, Y1 and Y2., At the other sites algae were only present at certain seasons.

Sites G1, G2, Y1 and Y2 were the sites at which most algal species were isolated and where the highest algal densities were recorded. At these sites conditions were most favourable to algal growth and seasonality was expressed in a variation in algal density (Sections 6.42, 6.43, p198).

At sites P1 and P2 algae were isolated only between April and September. These were acid sites from which few species were isolated and at which algal densities were always very low. It has been suggested (Sections 6.23, p189, 6.32, p199) that the depauperate flora and low algal density may be due to the low pH

and consequent toxic levels of metals or nutrient deficiencies. However there is evidence to suggest \checkmark that spoil pH is lower during the summer (Stokes, 194C and Baver, 1927) and measurements of mine on incubated spoil confirm that the pH of the spoil from these sites does drop at higher temperatures. April to September is of course the time when temperatures are highest (Fig. 3.3, p83). It may therefore be that during the summer the effect of low pH is sufficient to limit the species which can survive in this spoil but not such as to totally preclude the growth of algae. In winter the combination of adverse chemical and physical conditions may be so unfavourable that no algae can survive in the spoil.

At site B1 algae were present in the spoil in a more irregular pattern. The months when algae were isolated were those in which there was a considerable rainfall during the previous 28 days and when the mean temperature was higher (Fig. 3.3, p 83). This suggests that the growth of algae at this site was only totally precluded by lack of moisture and is merely limited by instability or lack of nutrient (Section 6.22 , pl88). This view is supported by the absence of algae from the spoil in July 1979 when there was a short midsummer drought (Fig. 3.3, p83).

At site B2 a pattern similar to that at B1 was recorded and as these sites are so similar it is probable that it may be explained in the same way.

6.42 Vapiations in algal density at site Y1

At site $Y \uparrow$ there was a steady increase in the algal density between March and June (Fig. 4.4, piO0). A full statistical analysis was not undertaken but the difference between monthly velues which were thought to be important was tested using a t test. t was compute as

The difference between the mean algal density in March and the mean algal density in June was signlficant ($t=5.57$ d dofo $=14, p=<0.01$) 。Themean algal density showed a small decrease between June and July when there was a short summer drought. This difference
 However it is consistent with a decrease in the algal population at other sites at this time of year (Section 6.41) and is thereiore probably a real effect. The algal density at this site reached its maximum velue in September 9979 and this wes followed by a deciine in October and November and a second paak in December.

Yf was complefely berren and therefore there wea no higher plant cover to modily the conditions at the surface of the spoil. The major influences upon the suxface coxditions must bave been the rainfall and tomperature. Comparison between Fig. 4.4, pl00 and Fig. 3.3. p 83 confimms that the pattern of change in algel density closely follows the pattern of weather
conditions favourable to algal growth.
6.43 Variation in algal density at G sites

If a comparison is made between the pattern of change in algal density at site G2 (Fig. 4.3, p98) and the pattern at site G1 (Fig. 4.2, p97) it can be seen that they are broadly similar. The variations are less dramatic than at site $Y 1$ and this may be due to the presence of a cover of higher plants which may result in less variation in the conditions at the surface of the spoil. At site $G 2$ there is a steady increase in algal density between April and July. The difference between these two months is significant ($t=6.1, d . f_{0}=14, p<0.001$) . This is followed by a decrease between October and January.

At site G1 there was an increase in algal density between March and June followed by a decrease in July. The difference between June and July is significant ($t=4.13$, d.f. $=14, \mathrm{p}<0.002$). This once again coincides with the midosummer drought. The algal density reaches a peak in September and then decreases until January. Therefore the general pattern at these sites is of an increase in algal density in the spring and summer and a decrease in the autumn and winter. The decrease in July at site Gi coincides with a similar decrease at aite $Y 1$ (Section 6.42, p198) and the failure to isolate algae from some sites (Section 6.41, p195). No similar decrease occurred at site G2 and there is no readily apparent explanation for this. It may be that the species present at G2 are less susceptible to drought conditions or that the spoil at this site dried out more slowly.

Abstract

6.44 Seasonal variation in Ulotrichales

At sites G1 and Y1 a clear pattern of seasonal variation in the density of Ulotrichales in the spoil wes recorded (Section 4.13, p904). This followed the general pattern of variation in total algal density at these sites (Sections 6.42, 6.43). Site G1 showed a steady increase between May and September and steady decrease between September and January. The uncolonized site Y1 once again showed more dramatic variations with peaks in the population in May and August. At both sites there was a drop in the density of these algae coincident with the mid-summer drought in July. At site Yi this drop was clearly significant but at site G1 it was not statistically significant $(t=0.9, ~ d . f .=14, p>0.1)$ 。 The general pattern is similar to that for the total algal density at these sites.

6.45 Variation in Cyanophyta

The pattern of variation in Cyanophyta seemed to be more closely linked to the available moisture. The three peaks which occurred in the density of these algae coincided fairly closely with the three occasions when the rainfall during the preceeding 28 days was at its highest i.e. June, September and December 1979。 It is perhaps not strictly accurate to call the variation in Cyanophyta seasonal because a season is defined in terms both of rainfall and temperature. However these algae do clearly respond to changes in weather conditions.

6.5 SIMILARITY OF EAST HOLYWELL TO OTHER SITES

6.51 Physical conditions

The shale at East Holywell is considerably
less stony than newly tipped shale, which according to Rimmer (1978) characteristically contains only 25% - 30% of material with a particle size $>2 \mathrm{~mm}$ 。 Furthermore, four samples of shale analysed by Molyneux (1963) had "stone" and gravel fractions which ranged from 40% - 63%. However, Richardson (1973) estimated that weathering in the surface layers of tips resulted in an increase in the $\leqslant 2 \mathrm{~mm}$ fraction by a factor of x 2.5 in 20 years. As this tip is thought. from historical evidence, to date from 1947, a less than 2 mm fraction in excess of 70% might be expected.

The high proportion of coarse sand in the spoil at East Holywell is also notable. Three of the samples analysed by Holyneux had less than 10% of the fine earth made up of such particles. One of his sites had up to 43\% of such particles and this he associated with the fact that the material had been burnt. The heap at East Holywell is burning at present time and evidence suggests (Section 3.2, p 77) that the original heap was also burning. Therefore the shale at East Holywell appears to be similar in composition to that described from other sites which have been subject to burning and have weathered for 33 years.

Washeries waste does not seem to have been the subject of any other investigations. As a soil forming material it has very special physical properties. These stem Prom the total absence of $>2 \mathrm{~mm}$ particles and the approximately equal proportions of coarse sand and clay particles. The occasional estones" which do occur in this material seem ro have been added by the action of animals or deposited by runcoff water from the surrounding rim. The results of this unusual particle
size distribution are that the material quickly becomes waterlogged because of the high proportion of clay particles. In fact even light rain produces pools on the surface of the tip. In dry conditions however, the surface does not become hard like clay but remains soft and powdery due to the high proportion of coarse sand. Both these properties reult in an unstable surface, snabject to severe sheet erosion. In wet conditions a considerable amount of runoopp will occur with the consequent removal of surface material and in dry conditions wind erosion will remove the powdery surface. This later effect has never been quantified but observations of mine (Section 3.32, p 81) suggest that it is of considerable importance.

The shale parts of the heap at East Holywell are also subject to orosion. The sides of the main heap are steep and where they are devoid of vegetation there is severe gully erosion. The vegetated areas show clear evidence of terrace slip. Therefore all parts of the tip with exception of the small flat areas covered with vegetation, have an unstable surface.

6.52 Chemical conditions

Seasonal variations have been reported in soil pH (Section 1.221. p 24). Baver (1927) recorded a steady drop in the pH of acid soils in Ohio, U.S.A. from April to September, followed by a rise to the original value by the spring. As measurements were taken in September 1978 at East Holywell. it is likely that the reported values are the extreme low points of the pH on acid areas at these tips.

The shale making up the sides and rim of the heap had a pH ranging from 3.2 to 7.4 and a mean pH of 5.0. The pattern, of groups of samples with radically different pH , is the result of material with very
different chemical properties from different parts of the mine being dumped next to each other. This is just what would be expected as the spoil will vary as mining operations moved through different strata.

Shale at East Holywell is typical of that found throughout the Northumberland and Durham coalfield (Section 1.221, p 24). As there is strong evidence that the shale here has been burnt it is to be expected that the pH of these sites will steadily rise due to leaching and the absence of potential acidity as a result of the combustion of the sulphur compounds. No evidence of such a change was obtained but the time scale of three years is probably too short to detect such changes.

The washeries waste is much less variable than the shale. The pH ranges from 6.2 to 7.6. This also is to be expected because this material has a common geological origin. Isolated low pH values on washeries waste were always associated with sites where the material was mixed with substantial quantities of shale.

6.53 Biological status

The shale community at East Holywell fits almost exactly the description of a typical pit heap flora in N-E. England given by Greenwoot́ (1963) (Section 1.23, p 28). Of the five species Greenwood found on all eight of the pit heaps which she studied, all were present at East Holywell. Of the eleven species which she recorded as very common, ten were found at East Holywell.

The present state of the vegetation on this heap is consistent with natural colonization over a period of 35 years and is halfway through the succession to woodland or scrub described in Section 1.23, p 28 .

Worthy of particular note was the rich moss layer at this site. It covered the shale surface in all
places where colonization had occurred and was the most visually distinctive feature of the vegetation.

6.54 Algal flora

Several workers have reported the number of genera isolated Prom different colliery spoils as a measure of the diversity of their algal flora. On this basis it is possible to compare the spoil at East Holywell to other sites (Table 6.3, p 205). The picture which emerges Prom this is that colliery spoil supports a rather restricted algal flora. The most diverse site was that in No Dakota, U.S.A. At that site 21 genera were recorded but even this was reduced in comparison with an adjacent unmined soil which contained 33 genera. At the English sites and at the acid site in $N=E$. Pennsylvania, U.S.A. the Plora was dominated by Chlorophyta with a few diatoms and a limited number of Cyanophyta. At only the N. Dakota site were there substantial numbers of Cyanophyta.

When a comparison is made on a similar basis to other soils it can be seen that the algal flora of colliery spoil is much less diverse than that of woodland or arable fields and similar in diversity to that of sand dunes (Table 6.4).
TABLE 6. 4 Comparison of diversity of algal flora in other soils
site total number ofgenera recorded
East Holywell
shale 15
East Holywell
washeries waste 19
arable field
(Broady, 1979)a 22
Rothampstead
classical
grassland 23
(Broady, 1979) a
gerden soil
(Broady , 1979) a 21
dune
(Broady, 1979) a 12
woodland
(King and Werd, 1977) 46
unmined site
adjacent to spoil
heap33(Shubert and Starks.1978)

6．55 Algal density

The results for algal density at East Holywell may be compared to those obtained by Broady（1979）for colliery spoil at Wardley，N－E．England．He reported algal densities of 2.5×10^{6} cells cm^{-2} on colliery shale closely covered with grass and 1.4×10^{6} cells cm^{-2} on shale covered with a sparse vegetation．On barren shale he reported 1×10^{3} cells cm^{-2} ．At East Holywell all the shale sites were uncolonized by higher plants and three of them，Y2，P1 and P2 had algal densities similar to those of Broady＇s uncolonized site．However site $Y 1$ had a maximum algal density of 164×10^{3} cells g^{-1} ．Allowing for the different method of expressing the results this is not very different from Broady＇s value for colonized sites．

The densities recorded at sites G1 and G2 （Tables A1．2 and A1．3，p 214）showed maxima of 132.5×10^{3} cells g^{-1} and 78.1×10^{3} cells g^{-1} respectively．When these figures and those for site Y1 are compared to those for other soils（Section 1．32，p 32 ） it can be seen that they are similar to those reported for a range of natural soils and rather lower than the figures for most cultivated soils．

6.6 SUMAARY

The algal flore recorded at East Holywell was similar to those described by MoEntee（1970）in NoE． Pennsylvansa，U．S．A．and Broady（1979）in NaE．England but different from that described by Shubert and Starks （ 1978 ，Starks，and Shubert 1979）${ }^{\text {a }}$（ Dakota，U．S．A．（Section 6．54，p 204 ）。 Although it was reduced in diversity compared to other soils，the algal density of favourable sites was similar to that of many natural soils（Section 6．55，p 208 ）。

The pattern of seasonal change in the occurrence and abundance of algee in colliery spoil was readily
discernable. The general increase in algae in the spoil in spring and lato summer, the decrease coincident with the mid-summer drought and the general decrease in the autumn confirmed the observations of previous workers (Section 1.34, p41) 。

The comparison of the results for algal diversity. algal density and seasonal variability enable some assessment to be made of the importance of various factors affecting the distribution and abundance of soil algae. Previous work has indicated that available moisture is the most important factor (Section 1.33. p 37). The following observations all seem to be due to differences In available moisture and confirm the prime importance of this factor: $=$
a. the contrast between B sites and G sites in algal diversity (Section 6.22, p188) and algal density (Section 6.32, p199):
b. the fluctuation in algal occurrence at site Bi (Section 6.41, p195);
c. the reduction in algal density coincident with the mid-aummer drought at site B1 (Section 6.41, p195)。 site Y1 (Section 6.42. p198), site G1 (Section 6.43, p199) and amongst Ulotrichales (Section 6.44, p 200);
d. the variation in the abundance of Cyanophyta (Section 6.45, p 200).

Other factors seem to limit the species which may colonize a soil and the density of algae which may develop in a soil but none seem to eliminate all algae from the soil as lack of moisture does.

The effect of pH cannot usually be separated from the effect of available moisture (Section $9.33, \mathrm{p} 37$) but in this study sites $Y 1$ and P sites had similar moisture conditions but different pH . The results confirm those of 1 feEnter (1970) that the diversity of the soil algal flora is substantially reduced at low $n \mathrm{H}$
sites and also show that algal density is reduced. The mechanism by which algal growth is limited at such acid sites is not clear and more detailed measurement of chemical parameters is needed to help clarify this pointo

In England the effect of temperature (Section 1.33, p 37) seems to be limited to affecting the rate of algal growth through metabolism. At no time must the surface temperature have reached lethal levels for the highost temperature was recorded in August 1979 and at no site was there a reduction in algal density.

It became clear as a result of the comparison between G and B sites that the conditions on the surface of the soil are substantially changed by the presence of a cover of higher plants and that this directly affects the soil algal flora. In the light of these results, masheries waste mould provide an opportunity for controlled experimeats to examine the interactive effects of shade,moisture and nutrients on the algal flora.

Finally it is possible to comment upon the ecological role of soil algae in colliery spoil. Newly tipped colliery spoil has been likened to volcanic ash in that it begins totally devoid of plant life (Section 1.4, p 43). It was supposed that soil algae would be important in colonizing barren shale as $\mathrm{Stan}^{-1} y$ and Shubert (1978) have reported. Broady (1979) had cast doubt upon the possibility of this as a result of the very low algal density which he measured in barren shale at Wardley, NaE. England. The results of this work suggest that at least at one site (Y1) algae were acting as primary colonizers. However they clearly do not always fulfil that role,for on washeries waste, substantial algal populations only appear in the spoil which has already been colonized by higher plants.

The action of algae in stabilizing the surface of spoil and thus reducing erosion, reported from other
situations (Section 1.42, p 46) is not clear cut on the surface of colliery spoil. It is true that the surface of washeries wasto with a high algal density did not show that intricate patterm of exosion channels visible at sites with a low algal density, but on the surface of shale no difference could be detected between sites with algas and those without.

In general it is clear that on colliery spoil many sites are near the limits of the conditions under which soil algae can survive. However on the more Pavourable parts of colliery spoil heaps algae do play a part at the beginning of natural colonization.

Appendix A1

DETATIED MONTHLY ESTTMATES OF ALG.X WXSTTY AT EACH STTE

TABLE A 1.2 Monthly estimates of alcal density minus blue-greens at site Gl (cells $g^{-1} \times 10^{3}$)
 Replicate

91/1/0.5	16.0	20.0	43.0	58.0	52.0	22.0	94.0	03.0	62.0	104.0	18.0	40.0
61/2/0.5	18.0	12.0	22.0	88.0	78.0	68.0	S2.0	78.0	4.4 .0	30.0	30.0	38.0
c1/3/0.5	10.0	14.0	11.0	82.0	16.0	71.0	84.0	88.0	18.0	ss.0	36.0	$\because 0$
01/4/0.5	12.0	10.0	43.0	101.0	50.0	0.10	0.4 .0	50.0	50.0	31.0	10.0	15.0
Q1\% $1 / 1$	11.0	20.0	31.0	0	10.0	70.0	30.0	ns.0	10.0	60.0	34.0	4.10
G1:2/1	6.0	20.0	27.0	83.0	50.0	65.0	120.0	80.0	55.0	01.0	32.0	18.0
[1, $3 / 1$	11.0	24.0	20.0	78.0	37.0	72.0	22.0	05.0	0.0	20.0	27.0	14.0
61 $1 / 1$	13.0	15.0	20.0	-8.0	7.7	nob	75.0	31.0	35.0	70.0	11.0	$3 \therefore .0$

 $\pm 2.7 \pm 1.2 \pm 8.5 \pm 11.0 \pm 12.0 \pm 8.0 \pm 13.0 \pm 11.5 \pm 7.2 \pm 21.5 \pm 7.0 \pm 10.0$

TABIL A1. 3 Monthly estimetes of algel Hensity et sitn G2 (cells $g^{-1} x 0^{3}$)

Sonth Werch 79 April 79 may 70 Junc 79 July 79 duE 70 Sert 70 oct 79 Nov 79 Dec 70 Jan $80 \quad$ Feb 80

Replicate

G2/1/0.5	56	22	70	60	78	86	-	84	58	48	22	62
G2/2/0.5	62	42	48	92	92	74	-	52	56	14	40	28
02/3/0.5	06	32	16	62	88	112	-	58	44	52	24	40
62/4/0.5	82	24	56	42	76	71	-	44	52	32	34	34
$02,1,1$	90	52	16	65	75	70	-	53	42	30	27	30
G2/2/1	80	62	53	79	73	66	-	52	48	54	30	39
62/3/1	88	56	00	80	67	62	-	57	31	55	3.1	38
G2,4,1	80	111	67	70	76	77	-	47	45	37	20	10
Mont	20.0	--	25.1	9.8	78	77.0	-	05.0	inoz	-20	3:\%	10.0
	± 13.0	± 11.75	± 10.1	± 15.7	$\pm \therefore 1$	± 10.0	-	$\therefore 12.3$	± 5.8	± 8.7	± 11.3	± 9.8

TAELE A1.4 Monthly estimates of alcal donsity at site Y 1 (cel.1s $\mathrm{E}^{-1} \mathrm{x} 10^{3}$)

Month March 79 April 79 Way 79 June 79 July 79 Aug 79 Sept 79 Oct 79 Nov 79 Dec 7 Jan 7 Feb 79 ?eplicate

$Y 1.11 / 1$	3	15	35	21	40	71	145	87	69	106	48	65
$\mathrm{Y} 1 / 2 / 1$	1	19	29	41	38	56	152	77	54	95	54	45
11/3/1	1	13	38	40	29	95	182	06	42	91	47	02
Y1,4	2	10	20	36	34	51	177	77	62	10.4	57	10
$11 / 1 / 5$	0.6	1.6	30	31.8	29.8	50.4	-	84.0	53.2	101.6	18	12.2
Y1, $2 / 5$	0.8	6.8	20.8	12.6	25.8	60.6	-	7.1 .4	50.6	109.6	38.5	44.8
Y1/3/5	1	8	35	30	26.2	0.9 .6	-	60.4	38.6	104.6	39	45.8
11/1/5	1.9	7.8	27.8	37.8	15.8	57.2	-	07.4	54.4	100	51.0	14.8
$\because \mathrm{an}$	1-:	10.6	32	30.0	30	03.2	101	75	53.1	10.5	17.	19.5
	$\pm \square_{0}$	± 408	± 401	± 8.3	± 7.4	± 11.	± 18	± 8.1	± 9.0	± 0.1	± 0.6	± 8.8

TABIE A?.5 Monthly estimates of alcal density at sitc Y? (oells $6^{-1} x 10^{3}$)

Month \quad March 70 April 79 May 79 June 79 July 79 Aug 79 Sept 79 Oct 79 Nov 79 Dec 79 Jan 80 Feb 80 Replicate

Y2:1/10	0.0	1.2	0.7	0.2	0.1	0.5	1.8	0.3	0.2	0.3	1.0	0.5
$\because 2 / 2 / 10$	0.0	1.2	0.1	0.3	0.2	0.0	0.9	1.6	0.2	0	1.	
12,3/10	0.0	0.5	0.8	0.0	0.2	0.0	1.1	0.5	0.0	0.2	0.1 0.0	0.7
Y 2/1\%10	0.0	0.9	0.2	0.2	0.3	1.2	1.9	0.8	0.1	0.5	0.2	1.3
$\therefore \mathrm{Can}$	0.0	0.25	0.53	0.18	0.28	0.88	1.43	0.80	0.13	n.	0.55	
	-	± 0.33	± 0.28	± 0.13	± 0.09	± 0.29	± 0.50	± 0.57	± 0.09	10.14	10.3 ± 0.47	± 0.45

```
TABLE Al.6 Monthly estimates of algal density at site P1 (cells g}\mp@subsup{g}{}{-1
```

Bonth March 79 April 79 May 79 June 79 July 79 Aug $79 \quad$ Sept 79 Oct 79 Nov 79 Dec 79 Jan $80 \quad$ Feb 80

Replicate

$P 1 / 1 / 10$	0.0	0.1	0.2	0.2	0.4	0.0	0.1	0.0	0.0	0.0	0.0	0.0
$P 1 / 2 / 10$	0.0	0.1	0.1	0.1	0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0
$P 1 / 3 / 10$	0.0	0.1	0.0	0.0	0.3	0.1	0.0	0.1	0.0	0.0	0.0	
$1 / 1 / 10$	0.0	0.0	0.2	0.0	0.0	0.3	0.2	0.0	0.0	0.0	0.0	0.0

Mean	0.0	0.075	0.125	0.075	0.225	0.150	0.100	0.0	0.0	0.0	0.0	0.0
	-	± 0.05	± 0.09	± 0.09	± 0.17	± 0.13	$+0.08$	-	-	-	-	

TABLE Al. 7 Monthly estimates of alcal density at site $P 2$ (cells $g^{-1} x \quad 10^{3}$)
 Replicate

Sonth shreh 79 April 70 may 79 June 79 July 70 Aug 79 Sept 70 Oct 79 Nov 79 Dec 79 Jan 80 feb 80 Seplicato

B1/1/10	0.0	0.0	0.3	0.1	0.1	0.2	1.1	0.1	0.0	0.0	0.0	0.1
31/2/10	0.0	0.0	0.1	0.0	0.0	0.6	0.8	0.0	0.1	$\theta .0$	0.0	0.1
11/3/10	0.1	0.0	0.0	0.0	0.0	0.2	0.7	0.1	0.1	0.0	0.0	0.1
13/4/10	0.0	0.0	0.3	0.2	0.1	0.1	1.1	0.1	0.0	0.0	0.0	0.1
?onn	0.0	0.0	0.05	0.08	0.0	0.25	0.03	0.0	0.0	0.0	0.0	0.1
	-	-	± 0 。	± 0.1	± 0	± 0.0	± 0.20	-	-	-	-	-0.0

TABIF A1.9 Monthly estimates of aleal density at site B? (cells $\mathrm{g}^{-1} \mathrm{x} 10^{3}$)

Wnth March 79 April 79 May 70 June 79 July 79 Aug 79 Sept 79 oct 79 sov 79 Dec 70 Jan En Febeo Replicate

132/1/10	0.0	0.0	0.0	0.1	0.2	0.8	0.7	0.0	0.0	0.0	0.3	0.0
$\mathrm{B} 2,12 / 10$	0.0	0.1	0.1	0.7	0.0	0.2	0.7	0.0	0.1	0.0	0.2	0.2
B2/3/10	0.0	0.0	0.3	0.1	0.2	0.0	0.5	0.1	0.2	0.0	0.0	0.1
52/4/10	0.0	0.0	0.5	0.0	0.2	0.4	0.3	0.0	0.0	0.0	0.1	0.0
Yern	0.0	0.0	0.23	0.23	0.15	0.35	$\bigcirc 0.55$	0.0	0.08	0.0	0.15	0.08
	-	-	± 0.3	± 0.3	± 0.1	± 0.	± 0.19	-	± 0.09	-	± 0.13	± 0.075

TABLE A1. 10 Monthly estimates of density of Ulotrichales at site G1 (cells $\mathrm{g}^{-1} \times 10^{3}$)
:Month March 79 April 79 May 79 June 79 July 79 Aug 79 Sept 79 Oct 79 Nov 79 Dec 79 Jan $80 \quad$ Feb 80 Replicate

G1/1/0.5	0.0	0.0	0.0	2.0	6.0	8.0	2.0	2.0	6.0	4.0	0.0	2.0
61/2/0.5	0.0	0.0	2.0	16.0	4.0	2.0	12.0	8.0	2,0	4.0	0.0	0.0
61/3/0.5	0.0	0.0	4.0	2.0	0.0	8.0	10,0	10.0	2.0	6.0	0.0	0.0
G1/4/0.5	0.0	0.0	0.0	4.0	6.0	10.0	10.0	0.0	4.0	2.0	2.0	0.0
G1/1/1	0.0	0.0	2.0	10.0	4.0	3.0	6.0	4.0	4.0	2.0	0.0	6.0
G1/2/1	0.0	0.0	2.0	7.0	5.0	8.0	8.0	8.0	7.0	6.0	0.0	2.0
G1/3/1	0.0	0.0	2.0	7.0	3.0	7.0	10.0	2.0	2.0	4.0	1.0	0.0
G1/1/1	0.0	0.0	2.0	1.0	7.0	5.0	6.0	8.0	3.0	4.0	2.0	0.0
Lean	0.0	0.0	1.75	0.13	4.38	6.38	S.0	5.25	3.75	4.0	0.525	1.25
	± 0.0	± 0.0	± 1.28	± 5.1	± 2.2	± 2.8	± 3.2	± 3.60	± 1.9	± 1.5	+0.02	$\underline{+}+1$

TABLE Al. 11 Monthly estimatos of density of Ulotrichales at site Y 1

$$
\left(\operatorname{cel} 1 \mathrm{~s} \mathrm{~g}^{-1} \times 10^{3}\right)
$$

Sonth \quad Iarch 70 April 70 Say 79 June 79 July 79 Aug 79 Sept 70 Oct 79 Nov 79 Dec 79 Jan 80 Feb 80 Boplicate

Y1/1/1	0.0	0.0	6.0	0.0	0.0	5.0	2.0	0.0	0.0	0.0	1.0	1.0
Y1, $1 / 1$	0.0	1.0	2.0	n.0	2.0	6.0	2.0	1.0	2.0	2.0	0.0	0.0
$12 / 3 / 1$	0.0	1.0	1.0	0.0	0.0	8.0	5.0	0.0	0.0	1.0	0.0	0.0
Y1, $1 / 1$	O.0	0.0	5.0	1.0	$\therefore 0$	5.0	3.0	0.0	1.0	0.0	0.0	0.0
:1,1/5	0.0	0.0	1.2	0.2	0.4	8.0	2.0	1.0	0.8	1.2	0.1	0.0
$11.2 / 5$	7.0	0.8	1.1	1.2	0.2	5.4	$\therefore .0$	0.0	$\because 2$	1.2	0.9	1.4
Y193\%	$0 \cdot 0$	0.1	$\therefore 0$	0.0	0.6	1.8	2.8	1. 0	0.1	1.0	0.8	0.1
$\cdots 1,5$	0.0	0.1	20.8	n.s	0.0	0.2	2.8	1.2	1.1	1.0	0.1	0.2
$\cdots \mathrm{n}$ n	0.0	0.15	3033	0.4	0.725	0.05	2.80	$0 \cdot \sim$	0.85	1.3	0.30	0.38
	± 0.0	± 0.1	± 1.5	± 0.5	± 0.32	± 1.3	± 0.09	± 0.73	$\div 0.7$	± 1.27	± 0.38	± 0.54

```
TABLE A1. 12 Monthly estimates of density of blue-green algae at site G1
(co11.s g
```

 Seplicate

(11/1/0.5	0.0	0.0	1.0	$\therefore 0.0$	0.0	10.0	44.0	21.0	20.0	110.0	26.0	24.0
91/3/0.5	0.0	2.0	2.0	3.20	2.0	6.0	38.0	18.0	28.0	134.0	36.0	34.0
61/3/0.5	2.0	0.0	0.0	24.0	2.0	12.0	50.0	34.0	28.0	90.0	28.0	20.0
61/3/0.5	4.0	2.0	5.0	12.0	0.0	12.0	36.0	26.0	26.0	90.0	38.0	16.0
G1/ $1 / 1$	5.0	0.0	0.0	31.0	7.0	13.0	$10_{0} 0$	29.0	21.0	-	27.0	13.0
G1/2/1	1.0	0.0	2.0	13.0	9.0	11.0	30.0	26.0	23.0	-	$2 ? .0$	20.0
C1/3/1	1.0	0.0	0.0	27.0	0.0	5.0	17.0	21.0	23.0	\cdots	2.20	20.0
61, 1/1/	0.7	0.0	8.0	11.0	0.0	7.0	10.0	34.0	21.0	-	27.0	22.0

Oenis	2.4	$0 .:$	3.25	35.75	1.0	9.5	12.4	20.0	03.75	107.5	28.1	21.1
	\cdots	± 0.9	± 2.0	± 8.2	± 3.4	$\pm \therefore 1$	± 5.6	± 5.4	± 3.2	± 19.55	± 5.7	± 6.2

Apnendix A?

ESTTMATTON OF MIGAL SPORE TNPYT FRON ARET:T. plaNkTON

Aleal spores werd constantly ammutia on the surface of the pit hoap from the arpint nlankton. Sites with very low alcal delsidy may not have contained any actively frowine alcae and the cells isolated may have been simply those settling out of the aerial plankton.

In order to quantify this alenl spore input at the surface of the tipg sterile Chu 10 acar plates were exposed at four sites for varying periods of time. These plites were then incubated under the same conditions as the monthly dilution plates. The number of aleal colonies developing upon these plates were counted as a measure of algal spore innut.

The measurements were taken on 2?nd. March 1980 in bright cold conditions with a licht westerly wind.

The results obtained are preserted in Table A2. 1.

From these results it was possiby, w calculate a crude estimate of the numbor or celts cm^{-2} day ${ }^{-1}$ arriving on the surface af the tip.

TABLE AR. 1 Estimates alral spone inmut at 1ov alral density sites $\left(\operatorname{cel} 1 \mathrm{~s} \mathrm{~cm}^{-2} \operatorname{day}^{-1}\right)$
number of algac nrrivinc.

$$
\left(\mathrm{cm}^{-2} \mathrm{day}^{-1}\right)
$$

site
P1
Y?
$B 1$
R2
replicate
1
$\therefore .56$
17.28
$\therefore .56$
1.20

2
1.6
21.76
2.88
1.28

3
1.6
24.64

148
1.1 ?
mean
$1.9 ?$
21.23

301

1. \because

SUMMiARY

buring a survey of the soil almas preseret on old coal mine spoil heaps at East Holywell， Tyme and fear，ejeght sites wero examined．Tre principhe characteristios of the sitoc lere ： N1 omd li？－meolonized washerjes wasto with a pH or ahout 7 g
（i）and G2－washeries waste with a pll of onout 7 onlonized hy Tussilaro farfara； P1 and P？－uncolonizod share with a plt of about t ； Y1 and Y2－moolonized shale with a plt or aront 7 o

The followiner ffiltures of the it leat
rommunities wore rearriod。
a．A reducod soil flora comsistina ar ar werios rrom 2h genora was present．The flowa trat

Anminatad by Chlorombyta（2？species）vith nom
a fow Cyarophyta（3 sponies）and bactilnwi wiyta （ 2 spocies）。
b．Mnst specios were iso？uter frow whorina

farfara and from shale sites with a ply of wont 7 o c．Q spories were foumd naly at shale sita．

10 only ni washeries waste while 11 smorina wore fown equatly on both enoin types．
d．A very denauperate fiora was present it aipe sites（D1，B2， 1 ，P2 2 Y？）whare fase than five apories of alrae were reonred．
e．l＇ontrichales were mororded ncessimmal＇ranm
 and is 1.
f．Cymonhyta were ammadant at oma rito（ix）no vनsheries waste。

```
ro At four sites (P{, R2, p1 P, P?) ron ajomG
coul.d be recovered from the spoji dt rortaiv
times of yoar. Furthermore, when alrao vore
nresent thejr density was always ver: lov and
cenerally did not exceed 1.0 x tn colls a*'0
he it favourable sites on both washeries ucate
(G1 &% G2) and shale (Y1) the density of tho
olgao in the spoil was similar to that reportod
for a range of natural. soils and lower than that
for most cultivated soils.
i. Storage of air dry samples of spooit for five
months led to a 50f reduction in the density of
algae in the spoil.
jo At sites where there were alface precfut in
the spoil throughout the year (G1, G2, Y1 % Ya)
there was a general increase in algal donsity
in spring; and late summer and a derrease in
antumm and winter.
k. There was a decrease in alegal density in
mid-summer at some sites (G1 & Y 1) and this
coincided with a period of drought.
1. Available moisture seemed to be the most
important factor limiting colonization arrl
controllinf, the density of algae in the spoil.
m. The number of species in the soil aloal
flora was reduced substantially at low pll sitas.
ne On washeries waste the presence of a cover
of himher plants was associated with an inorease
in both the number of species and the alrel
densityo This was probably due to the mom:
stable surface and increased avajlable monisture
but may possibly have heen due to nut:rient
enrichment.
```

O. Soil algae did not act as primary colonizers on washeries waste; this was nrobably due to the extreme instability of the surface。
pe Soil algae did act as primary colonizers at one neutral shale site (Y1). The absence of any colonization at other sites may well be due to the extreme cheminal and physical conditions preventiner permanent colonization by soil algae.

REFERENCHS

```
    ALEXANIER, Mo (1977) Introduction to Soil
    Microbiology (467 pp.) pp.73 - 88, John viley
    & Sons, New York.
    ALLEN, S.F.og(GTMESHAN, H.M., paRkTNSON, J.A.
?& (uJARMBY,C. (1974) Chemical Analysis of
    Ecolngical Materials (5%6pp.). Elackwel.l
    Scientific Publications.
    ARCE, G. & BOID, H.C. (1958) Some Chlorophyreae
    from Cuban soils. Am. I. Bot. 45, 492 - 503
    BMJLEY, D., MAZURAK, A.P. & BOSOWSKT; J.P. (1973)
    Aggregation of soil particles by algae.
    J. Phycol. 9, 99 - 101.
`RAVFR, L.D. (192.7) Factors affectinc the hydrogen
    ion concentration of soils. Snil Sci. 23, 399-114.
    BAVER, L.D. (1948) Soil Physics (!OQ pro)
    Chapman Hall, London.
    BENNETT, H.H. (1934) Soil erosion studies show
    vegetation has dominant role. U.S. Dep. Meric.
    YearB. 1934, 322 - 327.
/BERG, N.A. & VOGEL, W.g. (1973) Toxicity of acin
    con1 mine spoils to plants. In: Hutnik, R.,l. &
    Davis, G. (Eds) Ecology and Reclamation of
    Devasted Land (538 pp.) pp.57-67. Gordor
    & Breach, New York & London.
BTSCHOFF, H.W. & BOLD, H.C. (1963) Some snjl
    algae from Enchanted Ronk and relatod alesel
    species. Univ. of Texas Publ., 6318.
ABOLD, H.C. (1970) Some aspects of the tavomomy
    Of soill algae. Ann. N.Yo Acad. Sci., 175, 601 - 6.16.
    BOLD, H.C. & WYNNE, M.J. (1978) Tntroduction to
    the Alqae - Structure and Reproduction (%, no.)
    no. 140 - 147. Prentice - Hall, New Yrork.
```

BOOTH，W．E．（1959）Alerae as pioneers in plant succession and their importance in erosion control． Ecology，22（1），38－46
Bkilstav，A．D．（1970）plants and industrial waste． Trans．bot．Soc．Edinb．41，71－84． BIKTLRLEY，J．K．（1956）Some preliminary observations on the ecology of spoil heaps．J．Ecol．，44，383－ 390。
BRTSTOL，R．M．（1919）On the retention of vitality by algae from old stored soils．New phytol．，18， 92－107．
BRTSTOL，BoMb（1920）On the algal flora of some desiccated English soils：an important factor in soil biology．Ann．Bot．40，149－201． $v^{\text {BRISTOL }-R O A C H, ~ B o M . ~(1927) ~ O n ~ t h e ~ a l g a e ~ o f ~ s o m e ~}$ normal English soils J．agric．Sci．17，563－588． BROADY，P．A．（1979a）Quantitative and qualitative observations on green and yellow－green algae in some English soils．Br．phycol。J。 14，151－160． BROADY，P．A．（1979b）The terrestrial algae of Sign Island，South Orkney Islands． Br．Antarct．Surv，Sci．Rep．ge． BROCK，T．D．（1973）Primary colonization of Surtsey with reference to the blue－green alight．
Oikos 24．239－243。
BUCKMAN，H．O．\＆BRADY，N．C．（1969）The Nature and Properties of Soil（65ppo）Macmillan，London． CATN，J．R．，MATTOX，K．R．\＆STEWART，K．J．（1072）
Induction of zoosporocemesis in species of
Klobshormidium．Trans．Am．microsc．Soc．92， 398 －404． CAMERON，K。E．\＆FULLER，KoHl．（196n）Nitrogen
fixation by some algae in Arizona soils．
Soil Sci．Soc．Am．Proc．24，353－356．

CAMPBBLL，D．H．（1909）The new flora of krakatau． Am－Nat． $43,449-460$ 。
CARSON，J．L．\＆BROW，R．M．（1978）Studies of Hawaiian soil algae IJ Algal colonization and succession on a dated volcanic substrate．
J．Phycol．14（2），171－178．
OARUCCTO，F．T．（1973）Chamoterisation of stria
mino Arainage by nyito grain size anc ohomion？ Guality of existine eround wator．Jn：Hetmik， NoJ．í Davis，G．（Eds）Ecolncy and peclomotion of Devastated Iand（538 pro）pp． 176 － 193.
Cordon and Ereach，New York and Londori．
？CHADWTCK，M．J．（1973）Methods or assessment of acid colliery spoil as a medium for plant wowtho In：Hutnik，R．J． \bar{d} Davis，G．（Eds）Erologr and Reclamation of Devastated Land（ 538 ppo）．Cordon and Breach，New York \＆London。
\checkmark Chantanachat，S 。\＆BOLD，h．C．（1962）Some algae from arid soils．Univ，of Texas publ．，62！8， cholonny， N_{c}（1930）Uber ojne neve Motholp zur Untersuchung der Bodenmikroflora。 Arch．f．Mickrobiol．$\stackrel{1}{=}, 620$. ĆULLLMORE，D．R．\＆McCANN，A．E．（1977）Tnfluence of four herbicides on the algal flora of a pmerie soil．P1．Soil，46，499－510
\checkmark DE，P．K．（1939）The role of blue－creen al mao in nitrogen fixation in rice fields．proc．R． Soc．Lond．B．127，121－139． DEASON，T．R．\＆BOLD，HoC．（1960）Explorat．．．．y studiea of Texas soil algae．Uni．y．of Texas publa，inn？． DENNTNG：TON，V．N．\＆CHADNICK，MoJ．（1978） The nutrient budcet of colliery spoil tip st tes． I．app1．Ficol．．$\underline{\underline{15}, 303-316}$
＊See p^{241}

GDOBLEDAY，G．P．（1971）Soil forminematerials： their nature and assessment．Jn：Landscape Reclamation Vol．1，Univ．of Newoastle／Tyrio， I．P．C．Science and Terhnolomy Press，Guildford． DOUBLEDAY，G．F．（197？）levelopment and mararamant of soils on pit heaps．In：Landscape Roclamation Vol．2，Univ．of Newcastle／Tyne．I．p．C．Science and Technology Press，Gujudford．
JORRELL，L．W．（1959）Algae in Colorado soils． Am．Midl．Nat．，61，322－328． ！HRRLLL，L．${ }^{\prime}$（1962）Algae of Death Valley． Trans．Am．microsc．Soc．，81，268－273． HURRELL，L．E（1963）Algae in tropiral soils． Trans．Am。 microsc．Soc．8？， DUVTGNEAUD，P．\＆SYMOENS，J．J．（1950）
Sur ja strata alcale des formations herbouses du sud Conco belge． \mathbb{C} ．r ．hobd．Séanc．Aratl．Sci． Paris，230，676－678
FWNTON，E．N．（1943）The alene of certain voshead Farm soils．Trans．bot．Soc．Edinb．，33，1107－115。 FIETCHER，J．E．\＆MAJTIN，W．P．（1948）Some orfocts of alfae and moulds in the rain crust of fresert soils．Ecology，29，95－100．
\checkmark FOGG，$\quad \checkmark$ E．（1947）Nitrogen fixation by blue－green algae．Endeavour，6，172－175． FOGG，G．E．，STHWART，W。D．P．，FAY，Po \＆WMLNy，\therefore. （1973）The Blue Green Alcae（459 ppo）
Academic Press，London and New York． FOREST，H．S．，WILSON，D．L．\＆WNGLANT，？．B．（1059） Aral ostablishment on sterilized soil placol in an oklahoma prairie．Wcolncy，40（3），475－477，

＊See p^{241}

FOREST，H．S．（1965）The algal community T7
soviet soil studies．J．Phycol．，1，164－171．
\checkmark Pusace（1913）Das Edaphon，Munchor．
FRTMSCH，F．E．（192？）The terrestrial alman
I．Ecol．，10，220－236．
FRTPSCH，Febe \＆JOHN，R．P。（191？）An ocological
and taxonomic study of the aleae of British soilso
Ann．Bot．，6，371－395．
FRTTSCH，F．F。 \＆SALTSBUKY，F．J．（1915）
Further observations on the heath association
on Hinthead Common．New Phytol．， $14,116-138$ ． FULLER，W．H．R ROGLRS，R．N．（1952）Utilizatimn
of the phosphorus of the algal cells as monsured
by the Neubaner technique．Soil Sci．e，74，417－430．
GHMNELL，R．.(1977) The Colonization of Incuatrial
Wasteland（ 75 ppo ）Edward Arnold，linndow
JGlaNHALL，U．\＆HENHTKGON，E．（1969）Njtroerem
fixing blue－green alrae in Swedish soils．
0ikos，20，175－178。
GODENWOOD，E．F．（1963）Studies in the smmont of
nlants onto pit heaps．M．Sc．Thosis，Tnivaraity
of Newcastle upon Tyne e lemame
（OMGGS，N．F．（1933）The colonimetion ar Katmai ash，
a new and inoreanic soil．Am．J．Bote，？O，on－11？

a leturie des alories verte de Pommenta．
120v．A1801． 6 6．159－175．
＂oUTr，et al。（1974）A survey of the lacotiare， disposal and prospective uses of tho mojor
industrial by－products and waste matorians．
Curre Pape 19／7！Building Res．Jestakl．Fitford．
In ：Gemmell，R．P。 The Oolonization of Thanatrial
Wasteland（75 ppo）Dpo 3 Jetward Armate，Jomatone
／HMDTMA，C．P。（1970）plant avainalo nutriants in
colliery spoit and their rolation to scolraio
difformtiation withia popalations or loromtis


```
    BAYMIVD, J. (1974) Studies no the remeth of
    Stichococrus harillaris Naer. in culture.
    L. mir. Hiol. 4ssoc. U.K., 54, 261 - 268.
    HENRTKSSON, E., HNGTASD, R., MIMEN, \(\because . J\).
    Whs, I. (1972) Nitrneen fixation in smed; a
    sojls by blue - ereen alpae. In: Desilnchury,
    T.V. (Ed, ) Taxonomy and Biology of Hlun - wreen
    A1gae (591 pn.) pp.269-273. University of
    Madras, India.
    HOM - MNSBN, O. (10f3) The effects of temerature
    upon alpae. Nat. Lond. 194, 1014.
    UJAms, E.J. (1935) A: investimation of the almal
        month in some naturally occurime soils.
        Beih. Bot. Centralhl., 53(A), 549-53.
        JOHN, R.P. (1942) An ecological ant taxonomic
        study of the algae of British sojls I.
        The ristribution of the surface erowine alrme.
        Ann. Bot. 6 323-349.
        KTNG. J.M. R WARD, C.H. (1977) Distritution of
        edaphic algae as relater to land usace.
    phycologia, \(16(1), 23-30\).
    KOMAROMY, P. (1976) Sturlies on terrestrial
    Chlorhormidium (Kiitz) Fott species.
    Ann. Hist. Nat. Mus. Nat. Mung., 68, 39-14
    LOHE, O.W. \& MOYSL, A。V。 (1934) An investimation
    \(\checkmark\) of some Manitoba soils for tho presencenf soit
    alcae. Trans. R. Soc. Van. 28, 119-152.
    \(\checkmark\) LUPHTG, J.W. \& HARPiK, \(1 . J .(1958)\) The infliunnce
    of environment on seedling mortality VTTT,
    The infleuence of soil colour. J. Ecol., 45, 205-224.
```



```
    The ecology, size and taxonomy of Britis soill
    diatoms. New Phytol. 4 4, \(196-219\).
    See \(p^{241}\)
```

LUND, J.W.G. (1946) Observations on soil algae I. The ecology, size and taxonomy of British soil diatoms. New Phytol., 45, 56 - 110 .
IUND, Jow. (1947) Observations on soil alpae II.
Notes on groups other than diatoms. New mptol.
46, 35-60.
\checkmark LUND, J.w.G. (1967) Soil algae. In: Durges, A. \& Rav, F. (Eds) Soil Biology (531 po.) pp. 128-147. Academic Press, London and New York.
 (1972) Some observations on the distribution of edaphic algae. Soill Sci., 114, 171-179. Machmed, FoJ. (1970) A preliminary investimation of the soil algae of $\mathrm{N}-\mathrm{E}$. Pennsylvannia. Soil Sci., 110, 313-317. MacRAE, I.C. \& Castro, T.F. (1:67) Nitroper fixation in some tropical rice soils. Soly Sci. 103, 277-280.
MARATHE, K.V. (1972) Role of some blue-groen algae in soil ageregation. In: Desikachary, T.V. (d.) Taxonomy and Biology of Plue-green Alpae (591 pr .) py. 328 - 331. University of Madras, Tndia. MARTIN, T.L. (1939) The occurrence of alspa in some virgin Utah soils. proc. Soil Sci. Snc. Am., 4. $249-250$.

MATTOX, K.R. \& BOLD, H.C. (1962) The taxonomy of certain Ulotrichacean algae. Univ. of Texns l'ubl., 6222.

MuTPING, Bo\& Riyburn, w. (1979) The effecta nf the pre-emergence herbicide di-allate and the post-emergence herbicide MClA on the grovith of some soil algae. Phycologia 18(3), 269-97?. MTTRA, A.K。 (1951) The atime flora of cort:-in \checkmark Indian soils. Indian I. arric. Sci., 21, $357-37 \%$ -molynitx, J.K. (196.3) Som: coolorical :asments of colliery wasto haps around wigan, somb Lancashire. U. Ecolo, 51,315-321.

```
    MOORE, G.T. & KNTRER, J.I. (1919) A subterranean
``` flora，Ann．Mo．bot．Gdn．，6，281－307 MOORL，G．T．\＆KARRER，J．L．（1926）Further studies on the subterranean algal florn of the Missouri Botanical Garden．Ann．Nc．bot．Gdn．\(\stackrel{13}{\underline{=}}\) 101－117．
FARKER，B．C．\＆TURNER，B．L．（1961）＂Operational niches＂and＂Community interactive values＂as determined from in vitro studies of some soil． algae．Evolution，15，228－238． WeTERSEN，J．B．（1935）Studies on the biolocy and taxonomy of soil algae．Dansk．bot．Ark．8， 1 －183． \(\sqrt{\text { PICFMR icitLL，B．（1971）Studies in the mrowth of }}\) plants on pit heaps．MoSc．Thesis，University of Newcastie upon Tyne。 PICKETT－HEAPS，J．D．（1975）Green Alpae：Structure Reproduction and livolution in Selected Genera． Sinauer Assoc．Inco，Sunderland Mass． PIERCY，A．（1917）The structure and mode of Jife of a form of Hormidium flaccidum A．Braur
－Anne Bot．0s 31．513－537．
PRINGSHETM， E 。G。（1951）Methods for the cultivation of algae．In：Smith，G。M。（Ed。）Manual of lhycology （ 375 pp．）pp． 347 －357．Chronica Botanica Co． \(\checkmark\) RAGU，K。\＆MacRAE，I。C．（1967）The effect of the gamma－isomer of benzene hexachloride unon the microflora of submerged rice soils I．iffect upon algae．Cano J．Microbiol．13，173－180． RMMANATHAN，K．R．（1962）Ulotrichales．Thciant Council of Agricultural Research，New Dehli． RJCHARLSON，J．A。（1957）Derelict pit heans and their vegeation．Planning Outlook，\(\stackrel{4}{=} 15-22\). RICHARASON，J．A．（1958）The effect of tomperature on the growth of plants on pit．heaps．J．col． 46． 537 － 546 。
```

    NTCHARDSON, J.A. & GREFNWOOD, P.F. (1067)
    Soil. moisture tension in relation to plant
    colonization of pit heaps. Proc. Univ. Newcastle
    Phi1. Soc., 1, 129 - 136.
    RTCHAROSON, J.A., SHENTON, B.K. & DTCKET?, R.J.
    (1971) Botanical studies of natural and planted
    vegetation on colliery spoil heaps. In: Lardsrape
    Reclamation 1. pp. 84-99. T.P.C. Press.
    RTCHARDSON, J.A. (1973) Physical problems of
    growine plants on colliery waste. In& Chrdwick. M.J.
    & Goodman G.T. (Nds) The Ecology of Resource
    Degradation and lenewal (480 ppo) pp. 275-286
    Blackwell soientific Publications, London
    /RIMMLCR, D.L. (1978) The Physical Conditions
        of soil forming on reclaimed colliery shale
    ```
 Bul1. Br. Ecol. Soc.
 ROBBINS, W.W. (1912) Algae in some Colorado
 soils. Colorado agric. Exp. Stn. Bull., 186, 24-36.
 SCHWABE, G.H. (1972) Blue-green algae as nioneers
 on postvolcanic substrate (Surtsey/Iceland)
 In: Desiknchary, T.V. (Ed.) Taxonomy and Biology
 of Blue-green Algae (591 pp.) pp. 419 - 424.
 University of Madras, India.
 SHTBLDS, L.M. (1957) Algal and lichen floras in
 relation to nitrogen content of certain voloanic
 and arid range soils. Ecology, 38, 661-66?.
 EHTLLAS, L。Mo, MITCHELL, \(\because\) (C DROUFT, F。 (\(10-7\))
 Alga and lichen stabilized surface crust a= a
 soil nitrogen source。 Am。 Jo Boto, 44, 489-1.48.
 SHTLLDS, LAM。\& DROUFT, F。 (1962) Distrihution
 of terrestrial algae within the Nevada test aite.
 Am. J. Botos 49, 547-554。
SGHTELDS, L。M。\& JURRELL, L.W。 (1964) A!ren
 in relation to soil fertility。 Rot. Rev, 30, \(92-108\).

SHTINA, E.A. (1959) Algae of sod-podzolic soils ?39. of the Kirov district. Trudy. bot. Inst. Akad.
Nauk. SSSR., Ser. 2, Sporovye Rasteniya, 12, 36-141.
SHTTNA, E.A. (1972) Some peculiarities of the distribution of nitrogen fixing blue-green algae in soils, In: Desikarachary, T.V. (Ed.) Taxonomy and Biology of Blue-preen Alee (591 pp.) pp. 294 - 295. University of Madras, India. SHUBFRT, L.H. \& STARKS, T.L. (1978) Algal succession on orphaned coal mine spoils. In: Wadi, M.K. (Ed.) Ecology and Coal resource Development. Perceamon Press, New York. STNGH, R.N. (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New behli.

STOKES, J.L. (1940) The influeres of environmental factors upon the development of algae and other microorganisms in the soil, Soil Sci., 49, 171-184.
```

    STARKS, l.L. & SHUBERT, L..C. (1978) Algel
    colonization on a reclaimed surface mined area
    in western North Dakota. In: Wali, M.K. (Fr.)
    Ecology and Coal Resource Development. Yformamon
    Press, New York.
    ` SWTNCHR, G.D., OADES J.M. & GREENLANM D.N. (1969)
    The extraction, characterisation and simmitirance
    of soil. polysaccharides. Adv. Agron., 21, 105-235.
    TASKLR, A. & CHADWTCK, M.J. (1978)
    The miccodistribution of Ngrostis tonuis I.. on
    colliery spoil in relation to spoil chemjral
    variability. J. appl. Ecol., 15,551-5, 绿
    TCliNN, Y.T. (1953) Study of soil alreo I.
    Flourescence microscopy for the study of soil
    algae. Proc. Linn. Soc. N.S.W., 77, 265 - 269.
    * See p 241

```

TCHAN，Y＝T，\＆WHTTMOUSE，J．A＝（1953）
study of soil algae II The variation of the alcal population in sandy soilso proce Linno Soco

TEMPLE：K．L。 \＆DELCHAMPS：E．W．（1953）Autotrophic bacteria and the formation of acid in bituminous conl mines．Appl Microbiolo， \(1=255-259^{2}\) TRATNOR，\(\because\) 。R。 \＆MCLLAN，R．J．（1964）A stury of a new species of spongiochloris introducad into sterile soil．Am．J．Bot． \(51(1), 57-60\). \(\sqrt{ }\) TRATNOR，F。R。（1970）Survival of algae in desiccated soil。 Phycologia， \(9(2), 111\)－113． TREIR，Mo（1888）Notice sur la nouvelle flora ＇Je Krakatau。 Ann。 Jard。 Bote Bujtentary，\(\underset{=}{=}, 213-223\). TRTUEMAN，A。E．（1954）The Coalfields of Great
Britain。 Edward Arnold，London。 WATANABE，\(A \cdot \&\) YAMAMOTO，Y。（1971）A1gal nitrogen fixation in the tropics．In：Lie，Todo siulder， E．G。（Eds）Biological Nitrogen Fixation in Vatural and Agricultural Habitats．pp．403－413．
Plant and Soil，special volume．
／WJLIIAMS，F．J。\＆CHADNTCK M．J。（1977）Se：annal variation in the availability of plant nutmionts． in acid colliery spoilo J．appl．Ecol．\(\frac{11}{\underline{1} 919-931 .}\) \(\because\) WILIAS，LoJ．（1951）A Paleoreopraphical At1as of the British Isles and ddjacent parts of buropeo日lackie，Londone
／WTLLSON，D．\＆FOREST，H．S．（1957）An ruplosatary stindy on soil algae．Ecology，38，309－3＇？．

\section*{＊See \(p^{241}\)}

BCURR:SJIY, P. (1966) Les Alques d'wau Iouce Tome 1 les Algues Verte (475 pp.) Bditions N. Boubée \& Cie, faris.

BROM, F.R. \& BOLll, H. C. (1964) Comparative studies of the aleal genera Petracystis and Chlorococcum. Univ. of Texas Jubl. , 6417. CfU, \(\because .1 .(1, \ldots 2)\) The influence of the mineral composition of the medium on the growth of plaritonic aleae. J. WCol. \(30,2 \varepsilon 4-325\).
 Eiological, Amricultural and hedical Fesearch. Oliver \& Eoyd, Edirburgh.
Hiswa, . \(\because\). (195!) Studies on Chlorosphaeracean aleat fror: soil. ET. J. Bot., S5, \(295-300\).
 affected hy soil noisture ani other factors. Soil Eci.,红 455-47.

Shiver, E.F. (1c55) liethods for determinine the \(\mathrm{F}^{+}\)ion concentration of soils. U.S. Jent. Arric. Circ. 56.
 cycle ir colijer. joil. In : Chacwich, ini. \& Gondman,

 Gilicetion. Oxford.```

[^0]: X indicates presence at a site

[^1]: FTG 5.25 Calls of organisms 110 in 2 day old culture

