
Durham E-Theses

Fault tolerance in digital controllers using software

techniques

Halse, Robert G.

How to cite:

Halse, Robert G. (1984) Fault tolerance in digital controllers using software techniques, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7474/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7474/
 http://etheses.dur.ac.uk/7474/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

FAULT TOLERANCE IN DIGITAL CONTROLLERS USING

SOFTWARE TECHNIQUES

by

Robert G. Halse

FAULT TOLERANCE IN DIGITAL CONTROLLERS USING SOFTWARE TECHNIQUES

Robert G. Halse

ABSTRACT

Microprocessor based systems for controll ing gas supplies require very

high levels of reliability for safety reasons. Non-redundant systems are

considered to be inadequate, and an alternative approach is necessary. In

digital systems, transient faults are as much as fifty times more common

than permanent faults. Therefore mechanisms which allow for recovery from

transients will provide large improvements in reliability. However, to

enable effective design of recovery mechanisms it Is necessary to

understand failure modes.

The results from practical interference tests, designed to simulate

transient faults, are presented. They show that corruption to the correct

flow of program execution is a common failure, and that subsequent

instruction fetches can be performed from any of the memory locations.

Under these conditions any value of operation code can be interpreted as an

Instruction, including those undeclared by the manufacturers. Four

commonly used microprocessors are investigated to establish the functions

of the undeclared codes, and other undeclared operations are revealed.

Analyses on the sequence of events following a random jump into the

four main memory types of data, program, unused and input areas, are

presented. Recovery from this type of execution can be achieved by the

addition of restart codes into the areas, so that execution can transfer to

a recovery routine. The effect of this mechanism on the recovery process

is investigated.

Finally, some methods of testing systems, to check the levels of

reliability improvement obtained by these techniques, are considered.

ACKNOWLEDGEMENTS

I would like to express my gratitude to the people and organisations

that have contributed to the work presented in this thesis. In paricular.

to the Science and Engineering Research Council, and the British Gas

Corporation's Engineering Research Station at Killingworth. for providing

financial support. To my supervisor Dr. Clive Preece tor his

encouragement, guidance and general advice throughout the research. To Dr.

Ken Jenkins of the British Gas Corporation for providing much useful

information and equipment. To Dr. Mansour Sahardi for his interest and

discussion on the project. To Mandy for translation and typing work. To

the electrical technicians (Jack. Trevor, Michael. Colin. Steve. Ian and

lan) for their co-operat ion and assistance while I have been at the

university. Finally, I would like to thank the Fleetham family for

allowing me to practice my building skills on their house during my spare

time.

FAULT TOLERANCE IN DIGITAL CONTROLLERS USING

SOFTWARE TECHNIQUES

by

Robert G. Halse

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Thesis Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Science

University of Durham

November 1984

List of Contents

Section Page No.

List of Figures viii

List of Tables x

List of Symbols and Abbreviations xi

CHAPTER 1

Introduction and Review of System Reliability

1.1 The Need for a Reliable Controller 1

1.1.1 Present Mechanical Control 2

1.1.2 Future Micro-Electronic Control 4

1.2 Source of Failures 7

1.3 Methods of Increasing Reliability 9

1.3.1 Reducing Failures due to Design Errors 10

1.3.2 Reducing Failures due to Component Malfunctions 12

1.3.3 Reducing Failures due to Environmental Effects 15

1.4 Reliability Improvements Obtained 19

1.5 Importance of Error Detection 21

1.6 Possible Dangers of Adding Redundancy 24

1.7 Requirements for Different Applications 26

1.8 Contents of the Thesis 28

CHAPTER 2

Practical Tests to Determine Transient Failure Mechanisms

2.1 Introduction 31

2.2 Test System 32

2.2.1 Processor Board 32

2.2.2 Decoding Circuitry 33

2.2.3 Power Supply Unit 34

2.2.4 Software 34

2.2.4.1 SYSTEST 34

2.2.4.2 RAMTEST 35

2.3 Practical Tests Performed 36

2.4 Test Results 38

2.4.1 interference to the RAM 39

2.4.2 interference to the EPROM 41

2.4.3 Interference to the Processor 43

2.4.4 interference to the Complete System 44

2.5 Significance of the Results 46

2.6 Observations of Permanent Failures 46

2.6.1 Processor Failures 47

2.6.2 RAM Failure 49

2.6.3 Crystal Failure 49

2.7 Summary 50

CHAPTER 3

Undeclared Operations of Microprocessors

3.1 Introduction 52

3.2 Undeclared Operation Codes 52

3.3 Operations of the 8085 54

3.4 Operations of the 6800 56

3.4.1 Determination of the Undeclared Instructions 56

3.4.2 Functions of the Undeclared Codes 58

3.4.3 Cycling Through Memory 59

3.4.4 Comparison with Published Data 61

3.5 Operations of the 48-series Microprocessors 62

3.5.1 Undeclared Memory in the 8035 63

ii

3.5.2 Determining the Undeclared Instructions 64

3.5.3 The Effects of Executing the Undeclared Codes 65

3.5.3.1 Intel 8035/8048 65

3.5.3.2 NEC 8035/8048 66

3.5.4 Other Devices in the Series 67

3.6 Operations of the 68000 67

3.7 Operations of the 6809 and Z80 69

3.8 Implications of the Undeclared Operations on Reliability 70

3.8.1 Significance for Watchdog Design 70

3.8.2 Powering down to Enable Recovery 71

3.8.3 Use of Non-Maskable Interrupts 72

3.8.4 The Most Important Undeclared Operations 72

3.9 Summary 72

CHAPTER 4

Erroneous Execution in Data Areas

4.1 Introduction 74

4,1.1 Random Jump Within the Memory Map 75

4.2 Analysis of Execution 75

4.2.1 Response of Different Processors 77

4.2.2 Results from the Analysis 79

4.3 Transfer from the Data Area 79

4.3.1 Halt Instructions 79

4.3.2 Restart Instructions 80

4.3.3 Return Instructions 81

4.3.4 Unspecified Jumps 81

4.4 Modification to the Analysis 82

4.5 Improvements in Recovery 83

iii

4.6 Simulation of Execution in Data Areas 83

4.7 Optimum Seeding of Data 84

4.7.1 Data Structures for the 8085 84

4.7.2 Data Structures for the 6800 85

4.7.3 Data Structures for the 8048 85

4.7.4 Data Structures for the 68000 87

4.8 The Effect of Data Block Size on Recovery 87

4.9 Summary 88

CHAPTER 5

Erroneous Execution in Program Areas

5.1 introduction 89

5.2 Detailed Analysis 89

5.2.1 Comparison Between Instruction Sets 92

5.2.2 Comparison Between Actual Programs 93

5.3 Simplified Analysis 94

5.4 Comparison Between the Detailed and Simplified Analyses 96

5.5 Verification of Results 97

5.6 Improvements in Recovery 97

5.6.1 Low Level Detection 98

5.6.2 High Level Detection 99

5.7 Summary 100

CHAPTER 6

Erroneous Execution in Unused and Input/Output Areas

6.1 Introduction 101

6.2 Execution in Unused Areas 101

6.2.1 Unpopulated Memory Areas 102

6.2.2 Unpopulated Areas of the 8085 103

iv

6.2.3 Unpopulated Areas of the 8048 105

6.2.4 Unpopulated Areas of the 6800 and 68000 108

6.3 Execution in Memory Mapped I/O 108

6.3.1 Execution of Input Data by the 8048 110

6.4 Summary 111

CHAPTER 7

Flow of Execution Between Different Memory Areas

7.1 Introduction 112

7.2 Method of Analysis 112

7.3 Initial Error 113

7.4 Transfer from Different Memory Areas 113

7.5 Execution of an Infinite Loop 115

7.5.1 Loops in Data Areas 115

7.5.2 Loops in Unused Areas 116

7.5.3 Loops in Input Areas 117

7.6 The Expected Number of Instructions Executed 118

7.7 The Effects of Memory Map Usage on Erroneous Execution 119

7.7.1 Memory Maps of the 8085 120

7.7.1.1 Fault Tolerant Program Area 121

7.7.1.2 Fault Tolerant Data Area 122

7.7.1.3 Fault Tolerant Unused Areas 123

7.7.2 Memory Maps of the 6800 123

7.7.3 Memory Maps of the 68000 125

7.7.4 Memory Maps of the 8048 126

7.8 Number of Erroneous Instructions Executed 127

7.9 Probability of Data Corruption 128

7.10 Summary 128

v

CHAPTER 8

Selection of Error Detection Mechanisms

8.1 Introduction 131

8.2 Specific System Considered 131

8.3 The Effects of Adding Error Detection Mechanisms 132

8.3.1 The Non-Fault Tolerant System 132

8.3.2 Removal of Input Areas from the Memory Map 133

8.3.3 Addition of a Recovery Routine 134

8.3.4 Forcing Restart Instructions into the Unused Areas 135

8.3.5 Modifying the Program and Data Areas 135

8.3.6 Detection Within the Software 136

8.4 Watchdog Timers 137

8.5 Other Hardware Implemented Detection Mechanisms 139

8.5.1 Wait State Recognition 139

8.5.2 Illegal instruction Fetches 139

8.5.3 Detection of a Write Outside RAM Areas 140

8.5.4 Detection of Undeclared or Unused instructions 141

8.5.5 Voltage Level Detection 141

8.6 Choice of Mechanisms for General Systems 143

8.7 Summary 144

CHAPTER 9

Development of a Facility to Test Redundant Systems

9.1 Introduction 145

9.2 Fault Injection 146

9.3 Generation of Interrupts 148

9.4 Memory Boundary on Test Program 149

9.5 Software Design 152

vi

9.6 Initial Results 154

9.7 Possible Developments 156

9.8 Summary 157

CHAPTER 10

Conclusions

10.1 Introduction 158

10.2 Practical Tests to Determine Failure Mechanisms 158

10.3 Undeclared Operations in Microprocessors 159

10.4 Execution Following an Erroneous Jump 160

10.5 Recovery from Erroneous Execution 162

10.6 Choice of Recovery Mechanisms 163

10.7 Summary 164

References 166

Figures 179

Tables 211

APPENDICES

A1 Software to Test the Effects of Executing Undeclared 222
Operation Codes

A2 The Effects of Executing the Undeclared Operation Codes of 226
the 8035/8048

A3 Instruction Set Parameters 236

A4 Equations for Transfers within a Program Area 244

A5 Results of Execution in Unpopulated Memory Areas 248

A6 Software for the Fault Simulation Test Facility 250

vii

List of Figures

Figure Page No.

1.1 Typical Diaphragm Operated Regulator 179

1.2 Simple Microprocessor Control Arrangement 180

2.1 Block Diagram of the 8085 Test System 181

2.2 Layout of the Components 182

2.3 Logic Diagram of the Memory Decoding Circuitry 183

2.4 Circuit Diagram of the Test Power Supply Unit 184

3.1 Block Diagram of the 8035/8048 Test System 185

3.2 Full Instruction Set for the 8048 Manufactured by Intel 186

3.3 Full Instruction Set for the 8048 Manufactured by NEC 187

4.1 Erroneous Execution in Data Areas for Various Processors 188

4.2 Flow of Execution in Random Data 190

4.3 Recovery improvements Obtained by Seeding Data Areas 191

4.4 Average Number of Instructions Executed with Seeded Data 191
Areas

5.1 Erroneous Jump into a Program Area 192

5.2 Flow of Erroneous Execution in Program Areas 192

5.3 Erroneous Execution in Program Areas for Various Processors 193

5.4 Simplified Flow of Execution in Program Areas 194

5.5 Erroneous Execution in Program Areas of the 68000 195

6.1 Common Memory Arrangements for the 8048 195

7.1 Flow of Execution Between Different Memory Areas 196

7.2 The Effects of Adding Fault Tolerance to the Program Areas 197
of the 8085

7.3 The Effects of Adding Fault Tolerance to the Data Areas 198
of the 8085

7.4 The Effects of Adding Fault Tolerance to the Unused Memory 199
Areas of the 8085

viii

7.5 The Effects on the Average Number of Instructions Executed 200
by Adding Fault Tolerance to the 8085

7.6 The Effects of Adding Fault Tolerance to the Program Areas 201
of the 6800

7.7 The Effects of Adding Fault Tolerance to the Data Areas 202
of the 6800

7.8 The Effects of Adding Fault Tolerance to the Unused Memory 203
Areas of the 6800

7.9 Probability of Data Corruptions in the 8085 204

8.1 Memory Map of the Specific System Studied 205

8.2 Wait State Recognition Circuit 206

8.3 Circuit to Detect an Illegal Instruction Fetch 206

8.4 Circuit to Detect a Write into ROM 207

8.5 Circuit to Detect a Write Outside RAM Areas 207

9.1 Logic Required to Detect an Operation Code Fetch 208

9.2 Implementation of Logic on Test System 208

9.3 Circuit to Restrict Execution to 16 K of Memory 209

9.4 Software Flow Diagram for the Fault Injecting Test Facility 210

ix

List of Tables

Table Page No,

1.1 Reliability Requirements for Different Applications 211

2.1 Voltage Level at which Errors Occurred in 8155 RAM Chips 212

2.2 Location and Value of the First Errors Observed 212

2.3 First Data Corruptions in RAM chip R5 213

2.4 Length of Interruptions to the Test Supply, in Cycles. 214
Necessary to Cause Corruptions

3.1 Internal Memory of the 48-Series Microprocessors 214

4.1 Results of Execution in Random Data 215

4.2 Comparison Between Different Data Structures 215

5.1 Comparison Between Processors for Erroneous Execution in 216
Program Areas

5.2 Comparison Between Actual Programs 216

5.3 Results from the Simplified Analysis of Erroneous Execution 217
in Program Areas

5.4 Detailed Analysis of Modified Programs 217

6.1 Probability of Different Outcomes After a Random Jump into 218
an Unused Memory Area of an 8085

6.2 Outcomes After a Random Jump into an Unused Memory Area of 218
an 8085, Assuming Address Range C000 to FFFF is Unused

6.3 Transfer from Unpopulated Areas of an 8048 219

6.4 Transfer from Partially Decoded Memory Mapped Input Ports 219

7.1 Data Corruptions in the 8085 Caused by Erroneous Execution 220

8.1 Erroneous Execution Under Different System Arrangements 221

x

List of Symbols and Abbreviations

A/C Alternating Current

ACM Association of Computing Machinery

AFIPS American Federation of Information Processing Societies

AIAA American Institute of Aeronautics and Astronautics

CCD Charge-Coupled Device

CE Chip Enable

CMOS Complementary Metal Oxide Semiconductor

D/C Direct Current

DAG Demand Activated Governing

DX Op-Code Fetch from the Second Byte of a Double Byte Instruction

e The Exponential Function

EA External Access

EMI Electromagnetic Interference

EMP Electromagnetic Pulse

ENSIMAG Ecole Nationale Superieure D'lnformatlque et de Mathematiques
Appliquees Grenoble

EPROM Erasable Programmable Read Only Memory

FMEA Fault Mode Effect Analysis

FTCS Fault Tolerant Computing Symposium

HLT Halt Instruction

I Number of Instruction Cycles or Transfers

i.e. Integrated Circuit

I/O Input/Output

IEE Institution of Electrical Engineers

IEEE Institute of Electrical and Electronic Engineers

in. w.g. Inches Water Gauge

IRQ Interrupt Request

xi

J Joules

JMP Jump Instruction to a Non-Specif ic Location

K Number of Instructions Executed

K Kilo-Bytes

kV Kilo-Volts

L Length of Instructions in Bytes

In Natural Logarithm

LSI Large Scale Integration

LSTTL Low Power Schottky Transistor Transistor Logic

mA Mll l i -Amperes

mbar Mil l i -bars

mJ Mil l i-Joules

ms Mil l i -seconds

MHz Mega-Hertz

mm Millimetres

mV Milli-Volts

MTBF Mean Time Between Failures

N Number of Instructions Executed

N_ Total Number of Bytes in the Program Area
D

N o c Expected Number of Data Bytes Read
DC

N Number of Conditional Jump Instructions in the Instruction Set
O J

N D A Actual Number of Data Bytes in the Memory Map

N D) Number of Double Byte Instructions in the Program Area

N (Total Number of Instructions in the Program Area

N Number of Bytes Interpreted as Jumping Instructions

N^ Number of Execution Sequences of K Instructions

N L J Number of Bytes Interpreted as Jumping Instructions of Length L

xii

N LNJ

N NJ

N PB

N RST

N,

N,

N TB

N T I

NASA

NATO

N B A V

NEC

AV Nl

N I E

N I L

NMI

NMOS

NMR

NOP

N R A V

ns

op-code

P C J

P D

P DX

Number of Bytes Interpreted as Non-Jumping instructions of
Length L

Number of Bytes Interpreted as Non-Jumping Instructions

Number of Program Bytes which Appear in the Memory Map

Effective Number of Restart Instructions

Total Number of Execution Sequences

Total Number of Possible Op-Codes

Total Number of Bytes in the Memory Map

Number of Triple Byte Instructions in the Program Area

National Aeronautics and Space Administration

North Atlantic Treaty Organisation

Average or Expected Number of Bytes Read Before a Jump

Nippon Electric Company

Average or Expected Number of Instruction Executed Before a Jump

Expected Total Number of Instructions Executed

Upper Limit on the Number of Instructions Executed

Non-Maskable Interrupt

N-Channel Metal Oxide Semiconductor

N-Modular Redundancy

No Operation

Average Number of Instructions Executed Before Resuming Valid
Instruction Fetches

Nano-Second

Operation Code

Probability that a Conditional Instruction will cause a Jump

Probability of Entering a Data Area

Probability of Entering the Operand Field of a Double Byte
Instruction

A Proportion of the Total Errors

xiii

IL

LD

LI

LU

NC

Nl

NJ

RST

TXX

TXX

U

UU

UUL

UXi

Xf
P

XiU
P

XjXi
PXRST

PF

PROM

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi

Probabi
Instruct

Probabi
Instruct

ity of Entering an Area of Input Data

ity of Entering the Input Area Twice

ity of a Loop after Entering the Input Area Twice

ity of Interpreting a Jump Instruction

ity of Forming a Loop in the Data Area

ity of Forming a Loop in the Input Area

ity of Forming a Loop in the Unused Area

ity that Particular Data is Not Corrupted

ity of Executing a Given Number of Instructions or More

ity of Interpreting a Non-Jumping Instruction

ity of Entering a Program Area

ity of Resuming Valid Instruction Fetches

ity of Interpreting a Restart Instruction

ity of Entering the Second Byte of a Triple Byte
on

ity of Entering the Third Byte of a Triple Byte
on

Probability of Entering an Unused Memory Area

Probability of Entering the Unused Area Twice

Probability of a Loop after Entering the Unused Area Twice

Probability of a Transfer from an Unused Area to Memory Area Xi

Probability of Entering an Operand Field in the Program Area

Probability of Reaching a Particular Final State

Probability of Transfering from Memory Area Xi to an Unused Area

Probability of Transfering from Memory Area Xj to Memory Area Xi

Probability of Interpreting a Restart in an Operand Field

Pico-Farads

Programmable Read Only Memory

xiv

RAM Random Access Memory

RC Resistor and Capacitor

RET Return Instruction

RFI Radio Frequency Interference

ROM Read Only Memory

RST Restart Instruction

SDK System Design Kit

SEC/DED Single Error Correction/Double Error Detection

SERC Science and Engineering Research Council

SPC Jump Instruction to a Specific Location

SSI Small Scale Integration

TMR Triple Modular Redundancy

TXX Op-Code Fetch from the Second Byte of a Triple Byte Instruction

TXX Op-Code Fetch from the Third Byte of a Triple Byte Instruction

uF Micro-Farad

UPS Uninterruptible Power Supply

us Micro-Second

US United States

v Volts

Xf Represents a Particular Final State

Xi Represents a Particular Memory Area

Xj Represents Each of the Four Different Memory Areas

XV

No material contained In this thesis has previously been submitted

for a degree in this or any other university.

The copyright of this thesis rests with the author. No quotation

from it should be published without his prior written consent and

information derived from it should be acknowledged.

CHAPTER 1

Introduction and Review of System Reliability

1.1 The Need for a Reliable Controller

With the conversion from town gas to natural gas. the supply to the

consumer has changed from a large number of isolated networks to one fully

integrated distribution system. This system is connected to the supplies

of natural gas in the North and Irish seas, and transports It around the

country in large diameter pipes (up to 1050mm), at high pressures (up to 70

bar). The pressure is reduced in stages into smaller diameter pipes until

it is at a safe level to supply to the consumer.

An analogy can be. drawn with the National Grid for electricity supply,

where voltage corresponds to pressure, and current corresponds to flow

rate. However, unlike the electricity system, gas can and must be stored

within the network. This is necessary because the supply is obtained at a

constant rate from the gas fields, whereas the demand by the consumer

varies both throughout the day and throughout the year. Also any peak

demand within a particular area must be supplied locally due to the time

delay in transporting gas through the system. Therefore the network

presents a complex arrangement requiring sophisticated control.

At the high pressure end of the system large volumes of gas are being

handled, and small increases in efficiency result in significant f inancial

savings. Also failure at this level is likely to affect a large number of

consumers, and this justifies high expenditure on control and safety

equipment. As the pressures reduce, the quantities and hence the value of

gas being handled becomes less, and high expenditure on control equipment

is not justified. A low cost controller is therefore required and this is

the aim of the current research.

1

At the low pressure end of the system, accurate pressure control is

required for several reasons. Much of this part of the network is

constructed from short sections of cast iron pipes laid many years ago. and

it is estimated that there are almost 60 million joints. Small leaks can

occur but rarely create a safety problem. However, taken collectively they

represent a substantial loss of revenue. Therefore methods which reduce

this leakage can have both financial and safety benefits. An extensive

programme to replace old sections of the network has been in progress for

several years and has cost hundreds of millions of pounds. Meanwhile a

reduction of pressure within the system provides significant benefits by

reducing leakage, and also repair and maintenance costs. It can also

postpone eventual reinforcement of the network necessary to cater for

increased demand, thus saving revenue equivalent to borrowed capital

interest.

Obviously the pressure cannot be reduced below a certain level or the

gas would not reach the consumer. This would lead to the possibility of

air entering the pipework producing a potentially hazardous condition. Low

pressures can also affect the efficiency of some appliances. For these

reasons a statutory minimum pressure has been set. This is S in. w.g.

(inches water gauge) which is equivalent to the height of a column of water

that the pressure can support, and is approximately 12.3 mbar. Clearly the

aim is to supply the consumer with the minimum acceptable pressure

throughout the dally load cycle.

1.1.1 Present Mechanical Control

Traditionally, an entirely mechanical approach has been adopted for

the control of the low pressure distribution system. The use of diaphragm

operated gas regulators, as shown in figure 1.1. is widespread, with

2

approximately 17.000 installed throughout the country. They aim to reduce

the pressure to a steady value independent of the flow rate. This is

achieved by feeding back the down-stream pressure into a chamber under the

diaphragm. The force on the diaphragm is balanced by a spring or a series

of weights. Any imbalance causes the valve to open or close and has the

effect of increasing or reducing the down-stream pressure. By adjusting

the loading, different output pressures can be maintained. However, this

arrangement does not give perfect pressure control. The pressure tends to

fall as the flow rate increases, and this is known as the 'droop'

characteristic of the regulator.

So far only the pressure at the outlet of the regulator has been

considered. However, the consumer may be over a mile away from the outlet

and therefore, by simple fluid mechanics theory, a pressure drop will exist

along the pipework and will be proportional to the square of the flow rate.

Consequently, with the simple regulator described above, it is necessary to

set the output pressure at a higher level to guarantee that the consumer

will be supplied with at least the minimum statutory pressure, at times of

peak demand. Clearly this will result in a pressure well above the

statutory minimum at other times. This is refered to as the 'over

pressure' of the system, and has a maximum value of the sum of the

regulator droop, the pipework losses and a safety margin, as the flow rate

reduces. The safety margin is Included to allow back-up equipment to

intervene if an abnormally low pressure is detected. Obviously the aim is

to reduce the 'over pressure' to a minimum.

The above example considers only one regulator and one consumer, in

reality the situation is in fact far more complicated. Low pressure

networks can be fed by more than one regulator and supply several thousands

3

of consumers. Due to varying demands from the system, the low pressure

point may not always be at the same physical location. This makes

effective control even more difficult.

In the past, methods have been devised to provide automatic changes in

the set point of a regulator to try and follow the pattern of demand.

However, these do not operate directly on the district pressure, but on

other parameters which are associated with demand, such as the time of day

or the ambient temperature. Both of these parameters are not strongly

linked with demand but control based on them has provided some savings. A

third approach has used the flow through the regulator to adjust the set

point, and has proved most successful. This is commonly know as demand

activated governing (DAG).

Spearman (98) has reported a number of DAG schemes which have all

shown significant savings in repair and maintenance costs. They have

provided DAG by mechanical means but have several disadvantages. At least

three additional valves and a substantial amount of extra pipework is

required. A complex setting up and commissioning procedure is necessary to

ensure optimum performance, and this has to be repeated periodically to

allow for changes in the network or demand. Therefore there is scope for

further improvements.

1.1.2 Future Micro-Electronic Control

To overcome the problems with mechanically implemented DAG mentioned

above, and to allow for other developments, it has been proposed that

micro-electronic techniques could be applied to the control of gas

pressure. A simple arrangement for such a system is shown in figure 1.2.

It contains a microprocessor which reads the remote low pressure point from

a transducer, and activates the valve to maintain a steady supply. To

4

ensure overall system safety and availability, all three parts must be both

reliable and must be fai l-safe.

The valve could be operated by a simple solenoid providing only open

and closed positions. The pressure would then be controlled by pulse width

modulation on the supply to the solenoid. Although this is a simple

solution, it tends to be very unreliable due to the large number of

operations needed to maintain a steady pressure. Another disadvantage is

that failures in either of the normal operating positions produce dangerous

conditions.

A better solution would be to use a motorised valve. This will be

more reliable as actuations are only required when the pressure changes,

resulting in less mechanical wear. However, the response under fault

conditions will be poor.

The arrangement which has been used in initial trials with digital

control utilises an Indirect approach. The main pressure reduction

regulator is retained in the traditional configuration, but with the set

point controlled by the microprocessor. This provides a much better

solution as failure of the microprocessor system causes control to revert

to mechanical pressure regulation.

To adjust the set point a method of increasing and decreasing the

spring loading within the regulator is required. Two prototype

arrangements have been built. The first uses a stepper motor to adjust the

length of the spring and hence the loading. The second uses two solenoid

valves to feed up-stream or down-stream pressure under a second diaphragm

which acts on the spring to adjust the loading. The solenoid system is

preferred as it can be arranged to 'fall safe' on power failure, by setting

the regulator to its maximum set point. Burrow (20) states that generally

5

the 'fail safe' approach has been neglected. It is much cheaper to

implement than 'fail operational' designs, and is clearly acceptable in

this application as failure will only result in a reversion to a high

pressure setting within the network. The 'fail safe' approach still

ensures that no area drops below the statutory minimum pressure. The

stepper motor, however, will stay at its current position during a power

failure. As mentioned above, this reverts to mechanical control, but. if

demand increases, the low pressure point will fall below the statutory

minimum.

Initial trials have been carried out with both arrangements. As

mentioned previously, the ideal solution is to monitor the remote low

pressure point and relay the Information back to the controller, and this

requires some sort of telemetry link. The use of hard-wired links is

expensive, and therefore other methods of transmitting the data are being

investigated. However, a system operating in the United States, described

by Reese (84), uses telemetry and has shown that the cost of the equipment

can be recovered within the first year, due to the reduction in lost gas

alone.

These initial trials have shown that micro-electronic control of the

gas network is both feasible and economic. Another area to which it could

be applied is the control of storage facilities. As indicated previously,

it is necessary to store gas within the network and a number of

arrangements have been developed such as gas holders, liquefaction plants

and underground caverns. Recent interest has been directed towards the use

of the medium pressure part of the network as a means of storage, and can

be achieved by increasing the pressure and thus compressing the gas. This

is known as ' l ine-pack' and is possible in this particular part of the

6

network because the pipework is relatively new and does not suffer from

leakage.

Due to the very stringent safety requirements, it was felt that

further work should be carried out to investigate methods of increasing the

reliability of these control systems. British Gas has had long term

experience with mechanical regulators, and. as a result, has in-depth

knowledge and expertise on their operation. This has led to the

development of very reliable equipment. With regard to the control of the

low pressure network, micro-electronics has only recently been used by the

Corporation. Therefore, this work is aimed at investigating methods of

increasing the reliability of the micro-electronic parts of the systems.

1.2 Source of Failures

All equipment can fail, and usually does so in a variety of different

ways. In a complex electronic system the cause of failure can be due to

design errors, component failures or to environmental effects. in m ic ro ­

processor based systems, design errors can occur in both the hardware and

software, and can be introduced at the specification, implementation or

construction phases of a project. Shooman (92) gives an example of a data

acquisition system where, over a nine month period, nearly half the

failures were due to software errors. At the specification stage errors

can be made due to an insufficient knowledge of the system to be

controlled, or by an incomplete description of the required response under

all operating conditions. The importance of these errors is emphasised by

Soi and Gopal (97) who suggest that nearly 60% occur at this stage in the

software. At the implementation stage, the choice of the wrong type of

components in hardware, or the wrong algorithm in software, can lead to

failure. Finally, errors can be made during the construction of hardware

7

or the coding of software.

Components can fail due to a number of different failure mechanisms,

and generally they follow the familiar 'bath-tub' curve. It shows a high

failure rate at the beginning of their life due to manufacturing defects.

This is followed by a period of constant failure rate, due to random

effects, which is normally considered to be the useful life of the

component. After this period the failure rate increases again due to wear

out. A description of the types of failures observed in electronic

components is given by Doyle (31). and a study of microprocessor devices is

presented by Hnatek (47) who describes a number of physical failure

mechanisms and how they can be detected.

The correct operation of electrical and electronic systems can be

disturbed by environmental conditions. In analogue devices it can result

in noisy signals, but in digital equipment severe disruption of the

processing sequence can occur. Sources of disruption include radio

frequency interference (RFI). electromagnetic interference (EMI), radiation

effects, static discharges and power supply variations.

Whallen et al (113) have shown that RFl can disrupt digital circuits

by changing their state. Sources of EMI in high voltage substations are

listed by Pellegrini et al (79). and most are due to various forms of

switching. The effects of lightning are also considered. May and Woods

(64) highlight the problem of alpha particle interaction originating from

packaging material. This has become a problem with the development of

higher density chips, and affects most devices. General radiation effects

on semiconductors have been investigated by Sexton et al (90), and they

have shown that device parameters drift with dosage.

Faults can be either permanent or temporary. Permanent faults occur

8

as a result of catastrophic failure of a component or subsystem, and also

from inherent design errors. Some sources of temporary faults are

described by Ng and Avizienis (70) and include component drifts around the

limits of their specifications, and environmental factors. However, the

errors produced by permanent faults may appear temporary. For example, a

single node stuck at zero can only produce an error when it should be set

at one. and this is illustrated by Gunther and Carter (39). Also a part of

the circuit which is infrequently used may not cause any errors until it is

exercised. Goldberg (37) indicates that some design faults, such as timing

problems, can appear to be induced environmentally, and may be difficult to

distinguish. For these reasons faults can remain undetected for a

considerable length of t ime.

McConnel et al (61) draw a distinction between intermittent errors and

transient errors. Intermittents occur as a result of an underlying

permanent fault and will periodically reappear, whereas a particular

transient will occur only once. Ball and Hardle (5) indicate from

practical experience that 90% of field failures are intermittent and are

particularly difficult to isolate.

Most reliability work In the past has considered only stuck at faults.

More recently bridging faults have been considered where electrical contact

is made between adjacent tracks, and these are described by Kodandapani and

Pradham (52). Toschi and Watanbe (103) state that soft fails in memories

can also be due to data patterns, timing and read/write sequencing. All

these produce intermittent errors and are particularly difficult to

identify.

1.3 Methods of Increasing Reliability

There are two compU mentary approaches available to increase

9

reliability and these are described by Avizienis (4). The first attempts

to eliminate all sources of failure and is known as the fault intolerance

approach. The second recognises that failures will occur, and attempts to

mask their effects by the use of redundancy, this is known as fault

tolerance. To achieve very high reliability a combination of both these

approaches is necessary, and can be applied to each of the three sources of

failure described above.

1.3.1 Reducing Failures due to Design Errors

Errors in hardware design have been reduced to a very low level by the

implementation of rigorous procedures at all stages. Complex computer

programs are used to analyse and simulate the hardware to check for a

number of faults. Hazard and race conditions in logic circuits can be

detected, interconnections can be checked for the correct routing, and

loading on each node can be analysed to ensure, for example, that maximum

fan-out is not exceeded. Once the hardware is constructed, thorough

testing is carried out to verify correct operation.

Fault free design is more easily achieved due to recently developed

integrated circuits which have themselves been designed for simple

interconnection. This reduces the amount of work necessary by the system

designer, but increases the effort required by the chip designer. Design

errors within large scale integrated circuits (LSI) are more likely to

occur due to the increased complexity of these devices. This problem is

highlighted by Sequin (89).

An advantage with microprocessor based hardware is that the basic

circuit can be used for many applications. This reduces the possibility of

introducing errors into new projects. Software, however, has been treated

in a different manner in the past, and remains a serious source of failure.

10

This is due mainly to the unlimited way in which software can be arranged

and that, in almost all cases, new code is written for each application.

Recently much more emphasis has been placed on software reliability.

This is due to the increased proportional cost of the software within

systems, which results from increased complexity and reduced hardware

costs. Greenspan and McGowan (38) state that 70% of US Air Force computing

expenditure was for software in 1972, and this is expected to rise to 90%

by 1985. Both fault intolerant and fault tolerant approaches have been

investigated to alleviate this problem. The advantages of structured

programming are widely recognised, making programs easier to read and

understand, and thus simplifying the process of identifying errors. It

tends to force the programmer to divide the problem into a series of

modules. Nelson (66) reports on analyses which have shown that the error

rate increases with the routine size. This is because smaller modules are

far more easy to understand and test, and therefore methods which enforce

the use of smaller modules will increase reliability.

As well as the language itself, the environment under which programs

are developed is also important in enabling efficient testing and isolation

of errors. For these reasons the United States Department of Defense has

sponsored an extensive project to design a new language (Ada), and its

associated development environment. Programming in Ada is more difficult

than other languages due to tight restrictions on syntax and variable

types. But it facilitates the early detection of errors at both compile

and run time, reducing the overall development time. It also makes the

code easier to understand and modify. This is particularly important as

Dunn and Ullman (32) have shown; in badly written packages more errors can

be introduced than are removed at the debugging stage, making the whole

11

system less reliable.

The fault tolerant approach recognises that bugs will remain in the

software, and two methods of counteracting their effects have been

proposed. Randell (83) suggests the use of recovery blocks. In this

method an acceptance test is executed after each program module, and, if

the results fail the test, an alternate algorithm is used. This process

can be repeated until an acceptable set of results is obtained, or until

all the alternate algorithms have been tried. In the latter case a

different form of recovery must then be used. A practical example of

recovery blocks in action is given by Anderson and Kerr (1).

The other approach is called N-version programming as described by

Chudleigh (23). In this case all versions of a particular program module

are executed and a majority vote is taken on all the results.

Both methods have their own advantages and disadvantages. For

example, the recovery block procedure operates much faster In the absence

of errors, but. to enable accurate error detection, complex acceptance

tests are sometimes necessary. These can themselves be a source of error,

as can the voting software in N-version programming. However, in the

latter case the crit ical software is much smaller and will be less

susceptible to errors. A comparison between the two techniques is given by

Wei (109). He concludes that N-version programming is better than the use

of recovery blocks because of problems with acceptance tests.

1.3.2 Reducing Failures due to Component Malfunctions

Unlike design errors which can. theoretically, be eliminated from a

system, component failures are always possible. In the past both fault

tolerant and fault intolerant approaches have been favoured at different

times. In the early days of digital computers thousands of valves were

12

used in e a c h machine, and reliability was poor due to the high failure

rates of the components. Redundancy was n e c e s s a r y to improve performance.

With the advent of the transistor and the subsequent development of the

integrated circuit, less emphas is has been placed on redundancy due to the

vast i n c r e a s e in the reliability of the components. Examples of fault

tolerance in early computers is given by Carter and Bouricius (21).

In more recent years some computer applications have required even

higher levels of reliability. T h e s e Include c a s e s where human life is

involved or large financial l o s s e s are incurred on failure, s u c h as manned

and unmanned s p a c e flight, hospital life support equipment and aircraft

control. Attempts have been made to inc rease still further the reliability

of components used in these applications. Significant improvements can be

achieved by screen ing out weak dev ices , and Pappu et al (75) descr ibe

methods of detecting them. Burn- in is a popular technique whereby

equipment is operated at elevated temperatures before actual use. Even

with these improvements it has again been n e c e s s a r y to use the fault

tolerant approach.

A popular arrangement has been the use of triple modular redundancy

(TMR) which was first proposed by Von Neumann in 1956 (105). TMR cons is ts

of three identical modules, e a c h performing the same function, which are

connected to a majority voting circuit. If one module fails, the voting

circuit masks any errors by outputting the values from the other two.

Clearly this requires at least three times as much hardware as a simplex

system.

In many c a s e s the extra cost could not be justified, and. in these

c a s e s , dual systems have been used. They can be configured in a number of

ways. In a cold standby arrangement, a second module is maintained in an

13

inactive state and requires initialisation before use. Lonn et al (58)

descr ibe a hot standby system where the second module continually monitors

the p rocess , ready to take immediate control. In many control applications

the switch over to the standby system is performed manually after the

activation of an alarm. In a duplex arrangement both modules perform

identical operations and compar isons are made between their outputs. This

provides simple error detection but does not readily indicate which module

is in error.

As the cost of hardware has fallen and the requirements of reliability

have increased , more complex arrangements have been developed. N-modular

redundancy (NMR). where N represents the number of modules, has been

proposed in c a s e s where the reliability of TMR is considered insufficient.

Examples using four channe ls have been constructed for the F - 8 fighter

aircraft descr ibed by Bumby (19). and for NASA's s p a c e shuttle descr ibed by

Qelderloos and Wilson (36). In both c a s e s the requirement is for safe

operation in the p r e s e n c e of two failures.

An important property of these systems is that reliability is

drastically reduced after each failure. For example. TMR is at least twice

as unreliable a s a simplex system after a single failure, and therefore it

is important to repair failed modules quickly. In c losed systems, such as

unmanned spacecraf t , manual repair is not possible. NMR can be used to

survive several failures by increasing the number of modules.

Alternatively a number of standby spares can be provided so that the system

can reconfigure itself in order to substitute a failed component or

subsystem for a good one. This effectively provides automatic repair.

Wensley (110) proposes the use of a number of loosely connected units,

with the fault tolerance implemented by software. In this way critical

14

tasks can be executed on several units with voting carr ied out in the

program. This arrangement allows dynamic reconfiguration to eliminate

faulty units after they have been identified. This sort of arrangement is

commonly used in telephone switching equipment, and has also been proposed

for aircraft applications by Hamill and Phillips (40).

Hybrid systems utilising a combination of the above architectures to

exploit their individual advantages are becoming more popular. For

example, Hopkins (48) descr ibes a processing concept for s p a c e vehicles

which uses duplex. TMR and standby sparing.

1.3.3 Reducing Fai lures due to Environmental Effects

Significant improvements in reliability can be obtained by reducing

the effects of environmental phenomena. The fault intolerant approach does

this by providing a stable local environment for the equipment. Basu (9)

and Williamson (115) give comprehensive details of possible steps for

reducing the effects of noise, and indicate that the design of the system

enclosure is of great importance. In the United States the level of EMI

emitted from digital equipment is restricted. To meet these requirements

good shielding is n e c e s s a r y , which not only reduces emiss ions , but also

reduces the susceptibility of the equipment from external EMI.

Boothman (14) descr ibes methods of designing cabinets for optimum

shielding, and suggests the use of metals, metalised coatings on plastics

or conductive plast ics. Ideally a continuous unbroken metal enc losure

forming a Faraday cage is preferred in order to eliminate most electr ical

interference. However, all systems need to communicate with the outside

world and most require an external power supply. Therefore apertures in

the enclosure are inevitable and Boothman shows the importance of both

their size and location relative to the internal components. Rostek (86)

15

suggests a 'Rule of Thumb' of restricting maximum openings to 25mm for e a c h

nanosecond rise time of the digital circuits.

He also e m p h a s i s e s the importance of conducted interference on power

supply and signal l ines and suggests the use of comprehensive filtering.

Routing of power and signal cab les and the quality of their sheilding is

also important, and is d i s c u s s e d by Dick (30). With the development of

fibre optics, data transmission can be made far more s e c u r e . Dyer (33)

recommends their use . especial ly in military equipment, for immunity of

both EMI and the more damaging EMP generated by nuclear explosions.

As well as EMI super imposed on the power supply, brown-outs and b lack­

outs can occur , where the voltage is reduced or lost completely over a

period of time. In these c a s e s filtering alone is not sufficient. T h e s e

problems occur frequently and have led to the development of

uninterruptible power suppl ies (UPS) . A number of arrangements have been

developed for large installations, with the standby power source provided

by batteries or diesel generators. T h e s e are descr ibed by Sulway (99). and

in these c a s e s an A / C supply is maintained.

In smal ler systems batteries alone can directly provide the n e c e s s a r y

D/C levels. This has led to the development of higher capacity minature

batteries. such as the z inc /a i r type descr ibed by Pytches (82).

Rechargeable batteries can be trickle charged when the external s o u r c e is

available, ensuring that they are in good condition when required. This

sort of arrangement has been used in the NATO III communication satell ites

descr ibed by McKinney and Briggs (62). Solar cel ls provide the external

source to charge several sets of batteries, and are required for peak

demand and to ensure continuous operation during solar ec l ipses .

Other environmental factors such as mechanica l shock and vibration

16

must also be taken into account , and can usually be s u p p r e s s e d by suitable

damping. Thermal effects are a lso important. It is widely recognised that

high component temperature leads to an increased failure rate, it can also

c a u s e a general drift in component properties, therefore, methods which

restrict temperature such as cooling fins or convective fans will produce

benefits. However, the use of fans drawing air in from outside the cabinet

can have detrimental effects, s i n c e openings are required to allow for the

p a s s a g e of air, and these introduce the possibility of increasing the

susceptibility to EMI as descr ibed above. It a lso allows moisture, solid

particles and corrosive subs tances to enter the enc losure . Filtering can

be used to reduce the possibility of contamination, but in certain c a s e s a

totally sea led unit is preferred.

Shielding is effective In many c a s e s but does not prevent all external

interaction. Ziegler and Lanford (117) have shown that even half a metre

of concrete has little effect on reducing interference to c h a r g e - c o u p l e d

devices (CCD) from certain types of c o s m i c rays. However, they do suggest

that the orientation of the devices can be used to reduce the problem.

Shielding is a lso ineffective against internally generated interference and

alpha particle interaction originating from package material.

In these c a s e s the components themselves can be designed to be less

susceptible to certain disturbances. Brodsky (16) suggests methods of

improving RAM's against alpha particle attack, and Kim et al (51) descr ibe

methods of hardening devices against general forms of radiation. Certain

device technologies are inherently less susceptible to radiation than

others. Barton et al (8) show that bipolar devices are superior to

complementary metal oxide semiconductors (CMOS), which in turn are better

than N-channel devices (NMOS).

17

As descr ibed above, fault intolerance can be used to reduce the

influence of environmental phenomena. In genera l , great improvements can

be obtained for a small cost if careful consideration is taken at the

design stage. Additional improvements c a n be made but usually involve ever

increasing costs . In such c a s e s the fault tolerant approach is worth

while.

Environmental disturbances can either c a u s e permanent or temporary

damage to systems. With the precautions taken above, damage will be

reduced and transient effects will predominate. The redundancy techniques

mentioned in the previous section will be effective provided that

simultaneous faults in different channe ls do not occur . Much work has been

aimed at developing techniques to detect and correct errors in memory

systems. Most techniques rely on error detection and correction c o d e s ,

such as those proposed by Hamming (41). Extra bits of information are

added to each of the data words and these can indicate which particular bit

is in error if a fault occurs . Levine and Meyers (57) indicate the number

of check bits required for single error correction and double error

detection (S E C / D E D) . However, if more than two bits fail they may not be

detected or an erroneous correction may be made. In these c a s e s Walker et

al (108) descr ibe a memory system which is capable of masking off failed

bits to survive multiple faults.

Time redundancy is a useful means of counteracting transient faults.

This method uses the re-execution of a program segment at a later time. In

the anticipation that transient disturbances will have subsided. A number

of different stategies can be adopted. For example, a particular segment

could be executed repeatedly until two or three consecut ive results are the

same. Alternatively the segment could be executed a fixed number of times

18

and a majority vote taken. This is similar to N-version programming with

all versions Identical.

Rollback techniques are another effective defence against transient

faults. In this c a s e the program periodically saves information about its

current state. This is known as a checkpoint. When an error is detected,

execution can then be restarted at one of these points. O'Brien (72)

studies several checkpointing stategies. and he recognises that in control

applications the speed of recovery is usually crit ical , requiring the

frequent insertion of rollback points. He shows that a large overhead is

n e c e s s a r y with regard to both execution time and memory s p a c e . To limit

overheads, a checkpoint should be saved when the critical data is at a

minimum, and this will normally occur at the end of a calculation. It is

recommended that a checkpoint should be saved at least once during e a c h

control loop.

A disadvantage of this technique is that added complexity in the

software is both costly and prone to error. Barigazzl and Strigini (6)

suggest that the setting of recovery points should be transparent to the

programmer to overcome these problems. This has been implemented on the

Cm computer by Siewiorek (93). Checkpointing and rollback are similar to

the use of recovery blocks, where instead of using alternate algorithms the

s a m e segment Is repeated until an acceptlble set of results is obtained.

Lee et al (56) have proposed a method of reducing the programming

requirement in the use of recovery blocks by using a recovery c a c h e . This

automatically saves critical data as the program executes and could be used

in simple rollback recovery.

1.4 Reliability Improvements Obtained

To determine the improvements obtained by adding one of the features

19

descr ibed above, it is n e c e s s a r y to determine the failure rate of the

system with and without the modification. Modern microprocessor based

systems have high reliability with a mean time between failures (MTBF) of

several thousand hours. Therefore practical testing under normal operating

conditions is both time consuming and costly. For individual component

failure rates a number of data b a s e s exist, such as MIL -HDBK-217D (121)

compiled by the US Military, and HRD3 (122) compiled by British Te lecom.

HRD3 is based mainly on field data, whereas MIL-217D is based both on field

data and acce lera ted life testing. A comparison between various failure

rate data b a s e s is given by Siewiorek et al (94).

Accelerated life tests have become very popular. They aim to speed up

the failure process by subjecting the device to a more severe environment

than normal, such as increased humidity, vibration or temperature.

However, great ca re must be taken with the results. Siewiorek et al (94)

show how the Arrhenius equation can be used to translate acce lera ted test

data to ambient conditions and indicate that a factor of 62 difference in

predicted failure rate can be obtained by the cho ice of activation energy.

Another problem with acce le ra ted tests is that If the conditions are varied

too much, then failures due to other mechan isms can o c c u r which will not be

present under normal conditions, and this Is illustrated by Hart et al

(42).

However, these tests do provide useful results if c a r e is taken, but.

unfortunately, are normally carr ied out only at the component level. Full

system testing can be achieved but requires bulky equipment and is time

consuming. For these reasons a great deal of r e s e a r c h has been aimed at

modelling systems and predicting overall failure rates from the components.

To ass is t in the calculat ions several computer programs have been written,

20

s u c h as A R I E S , descr ibed by Ng and Avizienis (71). and PREDICTION,

descr ibed by Bell et al (10).

improvements obtained by techniques to counteract software design

errors are difficult to quantify. They are dependent on the knowledge of

the failure rate before and after implementation, and this information is

not readily available. Musa (65) states that assembly language programs

have an average of between 3-8 errors per 1000 lines before testing. He

proposes that the number remaining in a system is proportional to the time

between error detection during testing, and suggests that this can be used

to predict the failure rate of the final version. Hecht (44) proposes a

model for the reliability of software systems using recovery blocks, and

evaluates their effect iveness by trying 'what if numbers in the model. He

conc ludes that for a given level of reliability, the goal can be reached

more cheaply by using the fault tolerant approach.

An alternative approach to determine improvements is to simulate the

hardware on another computer. A variety of faults can then be injected

into the simulator and the response of the system observed. This method

was adopted for the Saturn V launch vehicle digital computer, and is

descr ibed by Ball and Hardie (5).

1.5 Importance of Error Detection

From the types of investigations mentioned above, a large number of

predictions have been made for the improvements obtained by e a c h of the

redundancy techniques. In many c a s e s a large variation in the results

exist, and this is due mainly to the assuptions made about failure

m e c h a n i s m s and recovery response . For most arrangements , error detection

and fault location is of prime importance, for both recovery and

maintenance. Triplex systems provide simple identification of single

21

failed units, whereas with duplex systems fault location is more difficult.

Significant benefits can be obtained with the addition of fault detection

mechan isms especial ly in systems relying on software implemented recovery.

A number of techniques have been developed and generally they fall

into two main catagories of continuous monitoring and periodic checking.

Continuous monitoring can be provided by self checking circuits or

arithmetic codes . Self checking circuits are designed to fail in a s e c u r e

manner, and are descr ibed by Williamson (114). One approach is to

duplicate all s ignals using complementary logic, and this is descr ibed by

Sedmak and Liebergot (88). In this way all single point faults and most

multiple faults are easily detected. Arithmetic codes are d i s c u s s e d by

Avizienis (3), they are an extension of error correcting codes in memories,

but their properties are maintained during arithmetic and some logical

operations. They c a n therefore be used to detect errors in memory, on the

bus and in the processor , but require spec ia l process ing units.

Periodic c h e c k s can be initiated by software to exercise all e lements

of the system, in order to test for correct operation. Barraclough et ai

(7) state that it is impossible to test for all faults, and therefore

partial testing of e a c h functional block is recommended. This approach is

adopted in an aircraft application, using duplex redundancy, descr ibed by

Johnson and Shaw (50). and is used in conjunction with other techniques

such as rollback and reconfiguration.

P r o c e s s o r testability is d i s c u s s e d by Robach et al (85), who suggest

that a systematic approach should be adopted where blocks are tested by

elements which have already been verified. Clearly, some blocks must be

assumed fault free initially, and the aim is to reduce this hard core to a

minimum. Smith (96) investigates four different methods of testing

22

processors and concludes that the systematic approach is the best. Example

programs for functional testing of the 8080 are given by Peckett (78) and

Nichols (69). The 6805 has an in-built test program which is descr ibed by

Boney (13). Unfortunately it requires a speci f ic external configuration

and therefore cannot be used as a built in test feature.

Random a c c e s s memory (RAM) tests have been studied extensively. It is

recognised that exhaustive testing for all possible pattern sensit ive

faults is not realistic. This has led to the development of a number of

selective tests which are designed to reveal certain expected faults.

Thatte and Abraham (102) descr ibe a number of failure m e c h a n i s m s and the

tests n e c e s s a r y to detect them. Read only memory (ROM) can be tested by

the evaluation of a c h e c k s u m , and this method is explained by Jack et al

(49). input and output lines can be c r o s s connected for testing, or in a

c losed loop control situation, the response to a small disturbance by the

controller can be monitored to reveal faults in all the interfacing

circuits. This latter procedure is suggested by Kurzhals and Deloach (55)

for an aircraft application.

T h e s e checking routines can be executed in a background mode similar

to that proposed by P r e e c e and Stewart (80). in all c a s e s the aim is to

detect errors quickly so that they cannot propogate and prevent recovery.

Using these methods it is possible to detect some faults before they have

disrupted program execution, and is due to the error latency of digital

circuits. This is the time taken for a fault to generate an error on the

output of the device. Shedletsky and McClusky (91) show that even in a

simple four state sequential circuit the error latency can be several tens

of c y c l e s , and will be far more in complex circuits.

T h e s e types of self checking procedures are particularly useful in

23

duplex arrangements and those using stand-by s p a r e s , to locate failed units

during operation. Another important use is in applications having short

mission times. For these, the importance of a fault free system prior to

use is illustrated by T a s a r (100) in connection with aircraft control. He

suggests that 90% of faults can be detected in this way. with only a basic

knowledge of the hardware.

Error detection is an Important aspect of fault to lerance, but without

error correction Kopetz (53) has shown that availability is reduced.

1.6 Possible Dangers of Adding Redundancy

Careful consideration must be taken when adding redundancy to a

system, as increased complexity can lead to design errors. Even correct

designs can be less reliable than non-redundant systems. For example, if a

single voting arrangement is adopted in a TMR system, then the voters must

be more reliable than a single channel to achieve an overall improvement,

and this is shown by Wakerly (107). In equipment containing standby

s p a r e s . Losq (59) has shown that a system with a large number of s p a r e s is

less reliable than the corresponding simplex arrangement, due to the

complexity of the switch. Elkland and Siewiorek (34) show that memory

error detection and correction systems can also be less reliable, due to

failure of the additional memory and correction circuits.

Another important factor is the concept of coverage which was first

introduced by Bouricius et al (15). It is the probability that a system

will recover from a fault without any loss of essent ia l information.

Clearly the aim is for a high level of coverage, and Arnold (2) has shown

that even a small percentage of uncovered faults has a severe effect on the

reliability of redundant systems. T h e s e faults are cal led common mode

failures, and can be the major source of system unreliability. Westermeier

24

(112) shows that adding redundancy with low coverage actually reduces

overall reliability.

Most of the techniques mentioned so far are designed to counteract

particular c l a s s e s of faults. If these fault types are not common in the

final system then the methods will be ineffective and may even reduce

overall reliability. For example, most fault tolerant memory systems are

designed to detect and correct single bit failures, where multiple bit

failures may be more common due to simultaneous disturbances in several

chips. Exhaustive memory tests to detect faults are not possible due to

restrictions of time. For this reason tests have been developed for

certain types of fault such as interactions between adjacent ce l ls .

However, Heftman (45) descr ibes modern devices with extra rows of ce l ls

which can be substituted for faulty ones. This severely reduces the

effectiveness of the tests.

Wulf (116) states that increasing the reliability of individual

components has little effect on the mission time, but increasing the

coverage of the most probable fault produces significant improvements. It

is therefore of great importance to know what type of failures will occur

in the real system, so that only methods suitable to counteract those

particular faults are adopted.

Previous sect ions have indicated that a particular error detection and

correction mechanism is not effective against all faults. It is therefore

n e c e s s a r y to use a number of techniques. Pearson et al (77) descr ibe a

hierarchical approach with different levels of fault recovery. At a low

level modular redundancy and memory protection are transparent to the

program, and are independent of the application. At higher levels the

mechan isms become more application dependent, with the use of software

25

techniques. The highest level must cover all other undetected faults, and

is usually provided by a watchdog timer. This device Is periodically

updated by the control program, and is normally configured to generate a

master reset if it fails to receive correct signals. The benefits obtained

by watchdogs are recognised, but the following chapters show that careful

consideration for their design is n e c e s s a r y .

1.7 Requirements for Different Applications

Different applications have varying operating requirements, and in

each c a s e a particular technique is sometimes n e c e s s a r y . A number of

applications and their specif icat ions are given in table 1.1. For systems

such as aircraft control very short program loops are n e c e s s a r y to maintain

stability. Therefore detection and correction of errors must occur very

rapidly, and requires the use of TMR or NMR. This usually prevents any

interruption of program execution.

In telephone switching systems, short interruptions are permissible,

but repair must be quick and effective. Emphas is is placed more on the

detection and isolation of faulty modules, and this is achieved by a large

number of process ing units e a c h adopting a duplex arrangement. In this way

faults within a particular unit are easily identified, while recovery is

performed by reallocation of process ing tasks.

In many industrial control situations, such as coal fired power

stations descr ibed by Bland et al (11), it is only n e c e s s a r y to detect an

error and to switch safely to mechanica l or manual control. In these

c a s e s , process ing power can be lost for several s e c o n d s or minutes without

severe damage to the plant.

For the British G a s application of micro-e lect ronic implementation of

DAG, the latter c a s e is acceptable for most networks. This is b e c a u s e only

26

the set point of the regulator requires adjustment with local mechanica l

control of the pressure . If the set point is changed too often then

instability between the two control mechan isms can occur . Spearman (98)

suggests a time interval between adjustments in the range of 5 to 120

seconds . Therefore a loss in processing time of a similar duration will

not be detrimental, provided that the regulator is not driven to its lowest

setting during failure. However, in networks containing large industrial

loads, rapid c h a n g e s in demand can occur and this requires a faster

response with a correspondingly shorter control loop.

An architecture for a small digital controller suitable for this

application has been proposed by Pearson (76). It cons is ts of a

triplicated processor arrangement with voting, connected to a single block

of RAM which contains single bit error correction and double bit error

detection. The control program is stored in two different EPROM's so that

if one fails the other one can be used. This architecture does have a high

coverage for a number of fault conditions, but is suscept ible to several

possible common mode failures, which can remain undetected by the hardware,

in these c a s e s detection and correction methods within the software are

required.

An alternative approach, which could be used , is descr ibed by O b a c -

Roda and Davles (73). They suggest using three independent microprocessor

systems connected in a ring structure. E a c h system operates in loose

sychronism with the other two. and voting on results is achieved in

software. A similar arrangement couid be used but with all the channe ls

working in complete isolation. The outputs could then be brought together

at the actuators, and even these could be isolated by using seperate ones

for each channel . With such isolation, Del lacorna et al (29) have

27

indicated that it would not be n e c e s s a r y to use the same processor in e a c h

unit, and therefore e a c h one could be designed and programmed by a

different development group to eliminate the possibility of nearly all

common mode failures.

By reducing the interaction between modules, a great deal of physical

and electrical isolation c a n be achieved, especial ly with the use of fibre

optics. Emfinger and Flannigan (35) descr ibe how physical isolation is

used to improve the survivability of a fighter aircraft from attack. The

use of these methods in the British G a s application could reduce the risks

from rare events such a direct lightning strikes and vehicle impacts, which

have occurred in the past.

1.8 Contents of the Thes is

The aim of the work descr ibed in this thesis is to investigate methods

of increasing system reliability with particular attention given to

software techniques. It has been indicated in the foregoing d iscuss ion

that both transient and intermittent failures are common, and therefore

improvements in this a rea are most likely to give significant benefits. To

prevent failure, both error detection and error correct ion must be

effective, and detection m e c h a n i s m s receive particular attention.

It has been shown that the actual failure m e c h a n i s m s are important in

the development of redundancy techniques. Most r e s e a r c h e r s have adopted a

policy of considering only single point failures. This is a legacy from

early reliability studies on systems containing descrete components and

small s c a l e integration (SSI) . With the development of large s c a l e

integration (LSI), it is an increasingly more complex process to analyse

systems at the transistor and gate levels. Also, faults are less likely to

be limited to single nodes due to their physical size and very c lose

28

proximity to each other. Despite this there is very little information

available about failure m e c h a n i s m s observed at the subsystem level.

Chapter 2 contains a description of a number of practical test which

were carr ied out on a small microprocessor based system. T h e s e were

primarily concerned with electr ical interference on the power supply rails.

Errors observed at the chip level are presented. The tests revealed that a

number of mechan isms exist which c a u s e the corruption of the program

counter, resulting in the possible resumption of execution at any location

in the memory map. This demonstrates the importance of the undeclared

operation c o d e s in microprocessors which may be read under these

conditions. Chapter 3 investigates the undeclared codes of several

p rocessors and reveals other undeclared properties.

Chapters 4. 5 and 6 look at the response of different p r o c e s s o r s to

erroneous execution in speci f ic parts of the memory maps. Analysis is

performed by a ser ies of mathematical models derived from Markov diagrams.

In some c a s e s they have been verified by computer simulations. Chapter 7

studies the flow of erroneous execution between different memory a r e a s , and

represents the response to a random jump within the memory map. A

comparison between p r o c e s s o r s and different memory arrangements are made,

and the effects of adding error detection is presented.

Chapter 8 shows how the reliability of speci f ic systems can be

improved by the addition of the techniques developed in the previous

sect ions, and also suggests some hardware detection m e c h a n i s m s . Chapter 9

descr ibes a testing facility which has been constructed to physically check

error detection and correct ion mechan isms. It allows the injection of a

large variety of faults, and permits rapid testing.

Finally, the conclus ions drawn from the research and the suggest ions

29

for future development are presented in chapter

30

C H A P T E R 2

Pract ical Tests to Determine Transient Fai lure Mechanisms

2.1 Introduction

It has been shown in the previous chapter that methods of increasing

the reliability of a system are generally designed to counteract a

particular fault type, and are only effective if these faults are common.

Ball and Hardie (5) have indicated that over 90% of field failures are due

to intermittent or transient faults. Therefore techniques which enable

recovery from the errors resulting from these faults will have a

significant effect on reliability. The c a u s e of these events have been

d i s c u s s e d , but details of their effects, especial ly at the time of failure,

are not fully understood. This is due to the random nature of their

o c c u r r e n c e , which means that analysis of failure is usually possible only

after the event when little data is available. The only indication that a

transient has occurred may be that the system has c r a s h e d or an erroneous

output has been made.

To enable the development of effective detection and recovery

techniques, it is n e c e s s a r y to have a more detailed understanding of the

mechan isms of failure. There are three methods available for

investigation, and these are theoretical evaluation, computer simulation

and practical tests. Theoretical evaluation rel ies on the assumption of

certain fault conditions, such as single nodes stuck at 0 or 1, and the

evaluation of their effects on the rest of the system. This is known as

fault mode effect analysis (FMEA). and provides information about possible

failure mechan isms . However, without a knowledge of the o c c u r r e n c e rate of

the assumed faults, it is not possible to determine the most common

failures.

31

With computer simulation, a model of the system at the transistor or

gate level is produced, and this was the approach adopted for the Saturn V

guidance computer descr ibed by Ball and Hardie (5). Faults can then be

simulated and the effects observed, but this suffers from the s a m e

disadvantages as FMEA. Pract ical tests are the only way of determining

which faults will occur in real systems. Once these have been establ ished.

FMEA and simulation can then be used more effectively.

Little information is available on practical testing of systems under

transient disturbances. Those which are reported have focused their

attention on methods of eliminating disruption by shielding or filtering.

For example, Teets (101) states that short interruptions, of a few mill i­

s e c o n d s , can c a u s e corruption to the contents of memory and also n o n -

programmed jumps. He suggests that these problems can be overcome by the

use of uninterruptible power supplies. Although vast improvements can be

made in this way. it is not 100% effective in all c a s e s , especia l ly for

unanticipated phenomena. For these c a s e s it is n e c e s s a r y to adopt the

fault tolerant approach.

This chapter descr ibes work carr ied out to identify possible failure

m e c h a n i s m s , in small digital control lers, by the use of practical tests.

2.2 Test System

The test system which has been constructed for the purpose of

identifying fault modes and their f requencies, is descr ibed in detail in

the following sect ions. The hardware consis ts of a single process ing board

powered by a purpose built power supply unit.

2.2.1 Processor Board

The processor board is based on the design of a small single board

computer given in the 8085 U s e r ' s Manual (119). However, a few

32

modifications have been made for this application. A block diagram of the

system is shown in figure 2.1, and the layout of the components is given in

figure 2.2. Two main modifications have been added. Extra circuitry has

been included to fully decode the on board memory, and an RS232 interface

provides serial communicat ions with a terminal.

The main components of the system a r e : -

8085 8 bit microprocessor

8155 256 byte RAM + 22 parallel I/O lines + timer

8755 2 K byte EPROM + 16 parallel I/O l ines

6.144 MHz Crystal

The power supplies to the three main integrated circuits, to the

decoding circuits and to the RS232 interface are not permanently connected

together, but are joined by removeable links. This allows the connection

of an alternative supply to different parts of the board, so that the

effects of interference on individual components can be observed. It

should then be possible to identify levels of interference that effect

different components before trying to analyse the whole system.

Resistors are connected to the data lines so that they can be pulled

high or low.

2.2.2 Decoding Circuitry

The decoding circuitry consis ts of three L S T T L integrated circui ts ,

and a logic diagram is given in figure 2.3. The inputs are taken from

address bits 8 -15 on the system bus and the outputs are connected to the

chip select pins on the memory devices. The 8755 EPROM chip is mapped to

the address range 0000 to 0 7 F F (hexadecimal) , and the 8155 RAM chip is

mapped to the range F F 0 0 to F F F F .

By fully decoding the memory and applying a suitable combination of

33

pull up and pull down resistors to the bus. a fixed data byte is forced

onto the data lines when an attempt is made to a c c e s s a non-populated

memory address . By setting the data byte equal to a restart instruction, a

software interrupt is generated when an instruction is fetched from a n o n -

existant memory location. This can be used to detect some transient

errors.

The chip se lec ts are connected via wire-wrap or soldered links so that

the behaviour of the system with full or partial decoding can be observed.

2.2.3 Power Supply Unit

For a computer to function correctly it is essent ia l for the

integrated circuits to be supplied with a good steady voltage. If the

power supply can filter out mains borne transients then fewer errors will

occur . The power supply therefore plays an important role in the overall

system reliability. A circuit diagram of the test supply unit is shown in

figure 2.4. The unit contains two transformers (one laminar and one

toroidal), and three smoothing capaci tors of different values. Two

switches allow the selction of any combination of transformer and smoothing

capacitor. This allows testing of the processor board to determine levels

of interference that c a u s e errors for different arrangements of the power

supply.

2.2.4 Software

Two software packages have been written to run on the test equipment.

One is designed to test the whole system and to display m e s s a g e s if an

error is detected. The other is for identifying data errors in the RAM

chip.

2.2.4.1 S Y S T E S T

S Y S T E S T is a software package designed to test the whole system. The

34

main part of the program writes a data byte into memory and then reads it

back again. It then compares the value with a reference byte stored in

memory and with another stored in the C register. if either values

disagree an error code is sent to the terminal. This p rocess continues by

using the same byte in s u c c e s s i v e memory locations until the whole memory

block F F 1 0 to F F F F has been tested. The data byte is incremented and the

p rocess repeats until all values have been tried. If no errors are

detected, a character is sent to the terminal to indicate that the system

is functioning correctly, and the program restarts at the beginning.

Recovery software is included at the low order a d d r e s s e s of the

memory, so that if a hardware interrupt, a software interrupt or a total

reset is erroneously executed, then an error code is sent to the terminal

and testing is restarted. This will occur if the program jumps into any of

the unpopulated memory, provided that full decoding is used and the data

lines are pulled high to force the execution of a Restart 7 instruction.

A number of different c o d e s are Included to indicate different errors

so that the type of failure can be easily recognised. The test system has

no monitor program, so the software package includes a subroutine to

generate the software controlled serial output. To output a character the

asci i code is passed to the routine in the C register, which then generates

the serial data together with start and stop bits.

2.2.4.2 RAMTEST

RAMTEST is a software package designed to test for data errors in the

RAM chip. The program requests a byte of data to be used in the test. It

then writes that value into all the RAM locations FFOO to F F F F . When

complete, a prompt is sent to the terminal and the program waits for an

input before continuing. The data is then read back and displayed at the

35

terminal before starting again with a new byte of data. By including the

wait between writing and reading, interference can be applied to the memory

device during writing, during reading, between writing and reading, or

during any combination of these.

This software is designed to test for corruption of the memory, and

therefore the program cannot use the RAM for its own operation. The

software includes a number of subroutines which deal with the serial

communicat ions. Subroutine cal ls are not used in the normal way, as the

tests would corrupt the system stack. Instead, the return a d d r e s s , at

which execution must resume, is loaded into the HL register pair. The

routine is then entered by a normal jump instruction. At completion the

PCHL instruction is used to load the program counter with the address

stored in the HL register pair, and execution continues at that address ,

in this way all information for the correct operation of the program is

stored in the internal registers of the processor rather than in memory.

2.3 Practical Tests Performed

Faults in digital circuits occur very infrequently, for example, a

system similar to that descr ibed above has been operating continuously for

over 4 months. O c c a s i o n a l interruptions to the power supply have c a u s e d

full resets , but apart from these, no other errors have been detected. In

order to observe the effects of faults, as they happen, it is n e c e s s a r y to

induce failure.

In the British G a s application, the digital controllers will be

situated in remote a reas and will generally receive their electr ical power

from street lighting circuits. T h e s e are not particularly c lean suppl ies,

due to noise picked up from a number of s o u r c e s . Bull (18) suggests that

interference on the supply from devices s u c h as thyristors. motors and gas

36

discharge lamps can c a u s e disruption, or even permanent damage, to digital

circuits. Therefore conducted interference on the power supply is expected

to be a possible source of failure, and the tests have been aimed at this

a rea .

Initial tests involved variations in the 5 volt supply rail. The

levels at which errors occurred were recorded during manual reductions of a

variable output supply. Other disturbances were created on the A / C mains

input to the experimental power supply unit, using a Schaffner interference

simulator. This consists of a main frame into which a number of plug-in

units can be fitted. Three s u c h units were available, and these c a u s e

short interruptions to the supply, or super impose high or low energy spikes

onto the mains.

The equipment generates interruptions of between 1.5ms and 500ms to

simulate the change over of generators or breaks in the line. The low

energy pulses of 2mJ have a rise time of 5ns or 10ns and an amplitude from

50 to 2,500 volts, to simulate interference from e lect romechanica l switches

and relays in c lose proximity. The high energy pulses of 2J have a r ise

time of approximately 0.3us and an amplitude of up to 5.000 volts to

simulate the effects of thyristors, atmospheric d ischarges , high voltage

current breakers and electr ical machinery.

All tests with the high energy pulses showed no observable disruption

to normal program execution. Using a digital storage s c o p e , the effects of

the spikes on the 5 volt rail were examined. With symmetric interference

applied between live and neutral, no fluctuations were seen on the rail.

However, with asymmetric interference between the two supply lines and

ground, a 0.2 MHz oscillation of 0.6v amplitude, damped out after four

c y c l e s , was observed. This produced a minimum of 4.4 volts on the supply.

37

which is shown later to be insufficient to c a u s e corruption. No variation

in the response occurred with different values of smoothing capaci tors .

To observe the effects of the other forms of interference, a Dolch

logic analyser with a personality pod for the 8085 was used. This not only

provides an indication of the states of e a c h of the pins on the p rocessor ,

during e a c h clock cyc le , but also provides a d isassembly of the

instructions executed. Unfortunately, with fast spikes the interference is

sufficiently harsh to affect the operation of both the system under test

and the logic analyser , and did not provide much useful data. Information

about program execution during voltage reductions and short interruptions

w a s readily obtained. However, during some testing, incorrect d i s ­

assembl ies were generated. This appeared to be due to the generation of

additional clock pulses within the pod. caus ing the analyser to take extra

erroneous samples . But by reverting to the display of binary states, it

was possible to evaluate the actual processor response .

2.4 Test Results

As mentioned above, the test system was designed so that separate

power supplies could be connected to e a c h major device. Therefore inter­

ference tests were carr ied out on the individual ch ips , before being

repeated on the whole board. This approach was adopted to try and identify

the most likely s o u r c e s of failure in a complete system. The results of

these tests are given in the following sect ions.

Investigations on the effects of adding pull-up or pull-down resistors

to the data l ines, revealed only minor variations in susceptibility to

interference. In all subsequent tests pull-up resistors were connected at

all times.

38

2,4.1 Interference to the RAM

A random a c c e s s memory (RAM) device has three main functions. T h e s e

are to accept data from another device, to store the information, and to

pass it back when required. Errors can occur during e a c h of these states,

and are termed write, data and read errors respectively. Voltage level

tests were carr ied out, using the RAMTEST software, to determine the

sensitivity of e a c h of these operations.

The voltage levels at which the first errors occurred for different

devices, are given in table 2.1. It shows that the read and write

operations are the most suscept ible to this sort of disturbance, while the

data remains valid internally until at least another 1.4 volt drop in the

supply. There is also a significant variation between devices. R3 and R4

were manufactured by Intel and are corrupted more easily than R5 and R6

which were manufactured by N E C . Slight variations in the level of first

corruptions were observed for different data values, but these were all

less than 80 mV.

An interesting observation was the variation in the location and value

of the first error for different data bytes. T h e s e are summar ised in table

2.2. All initial write errors gave a value of F F when read back, this was

the value to which all locations were initialised before disruption.

However, this was observed at various locations with the Intel dev ices ,

whereas the N E C devices always showed the first failure at location FF0O.

Similar observations were made with read errors, except one Intel device

showed single bit errors at various locations, while the other consistently

failed to F F at address FF00 . For data errors the first events observed

were single bit c h a n g e s , and these occurred at various locations. However,

a further reduction of only 50 mV resulted in multiple bit c h a n g e s .

39

Although errors occurred at various locations for different data

bytes, the results were always consistent for a particular device. For

example, the first data errors for RAM chip R5 are given in table 2.3.

This shows that bit c h a n g e s in the device are more likely in certain bit

positions. The table shows that, for device R5. bit 2 at address F F B F will

always be the first to change if it is set to zero. Similar results were

obtained for the other ch ips , but the errors occurred at different

locations. This information could be used to test for general corruptions

of data. The most susceptible bit could be checked periodically, and if

correct would indicate that other corruptions were unlikely. However, this

would create major problems in construction and maintenance, a s e a c h chip

would have to be tested and the software modified accordingly.

For short interruption testing, a variable resistor was connected in

parallel to the device under test, and adjusted to maintain a constant load

of 500 mA on the power supply unit. This arrangement was adopted to allow

compar isons to be made between different parts of the circuit. Table 2.4

shows the length of the interruption, in c y c l e s , which c a u s e d the first

errors for each part. As expected, a larger smoothing capacitor needed a

longer interruption before errors occurred .

During this testing, RAM chip R4 suffered a permanent failure, and

this is d i s c u s s e d further in section 2.6.2. Table 2.4 shows the results

for device R3, and in e a c h c a s e the 5 volt rail dropped to a minimum of

about 3.8 volts, before the first errors occurred . This is over 1 volt

higher than expected from the previous results. However, in this c a s e the

software package S Y S T E S T was being used , indicating that the susceptibility

to errors Is dependent on the program being executed. This was confirmed

by repeating the voltage reduction test while running S Y S T E S T , and showed

40

initial errors at around 3.8 volts.

Detailed investigations into the effects of applying low energy fast

spikes to individual devices were not carr ied out. This was b e c a u s e no

useful information could be obtained, from the logic analyser , due to

corruptions c a u s e d by the interference. Limited results for full board

testing under this type of interference are given in section 2.4.4.

Tests on early 4K RAMs have been carr ied out by Hnatek et al (46).

The device studied required three different voltage levels of +5v, - 5 v and

12v. Supply reductions to the 5v rail showed initial data errors at around

1.2v. which is similar to those observed for the 8155. He also discovered

devices which lost bits of data after 3 s e c o n d s if they were not a c c e s s e d .

Investigations showed that leakage currents, as a result of faulty

manufacture, c a u s e d the bits to change state. This failure mechanism is

particularly ser ious as in—circuit tests are designed to operate in the

shortest possible time and would not detect them. A preventive solution is

to refresh the memory as often as possible. The importance of this type of

refreshing in counteracting the effects of soft errors due to alpha

particle hits has been shown by Smith (95). However, in this c a s e

refreshing does not need to be carr ied out as often. An attempt to

reproduce delayed errors on modern devices was unsuccess fu l . Two 8155s and

sixteen 2114s were left u n a c c e s s e d for ten days while filled with the value

AA. This was repeated with complementary data, but in both c a s e s no errors

occurred.

2.4.2 Interference to the EPROM

Testing the erasable programmable read only memory (EPROM) was a much

simpler p r o c e s s , as voltage variations can only c a u s e read errors.

Initially the supply was gradually reduced until the program started

41

sending error codes to the terminal. Repeating the test with the logic

analyser connected showed no alteration in the voltage level at which first

errors occurred , indicating that it did not affect the results.

Single bit errors were observed at a level of 3.43 volts. T h e s e were

all changes from 0 to 1 in bit location 5, and occurred at a number of

a d d r e s s e s . This resulted in the misinterpretation of instructions or the

incorrect reading of operands. Further reductions in the supply c a u s e d

more bits to change from 0 to 1. until F F was read during e a c h instruction

fetch at a level of 3.25 volts. In this condition the restart 7

instruction is executed repeatedly, pushing a return address onto the stack

each time. This results in the stack extending through the entire memory

map. destroying all volatile data.

Only one device was tested in this way. However, in previous tests on

2716 E P R O M s , in a different system, similar results were observed. A

common failure for one device was the misreading of a jump a d d r e s s ,

resulting in execution passing to an unpopulated area of memory. Another

was the misreading of the operand in a compare instruction. In both c a s e s

the same bit showed a transition from 0 to 1. A similar device programmed

with identical data a lso showed these types of transitions but in different

bit locations. A similar response is therefore expected with other 8755s.

The lengths of interruptions n e c e s s a r y to c a u s e corruptions are given

in table 2.4. The minimum supply level reached for e a c h capacitor was

about 3.4 volts, which agrees with the previous results. One failure mode

encountered during interruptions was the repetitive execution of interrupt

routines. This was only observed with the logic analyser connected , and

was due to oscil lations on the interrupt l ines. The problem was cured by

removing the analyser , or by tying the lines low. Other failures were

42

similar to those for gradual reductions of the supply. Bit 5 showed the

initial failures with other bits corrupted during longer interruptions.

2.4.3 Interference to the P r o c e s s o r

Voltage reductions on the processor revealed initial errors at a level

of 2.74 volts, these consisted of bit 1 incorrectly read as 1 instead of 0.

at several a d d r e s s e s . At a level of 2.72 volts the program counter showed

signs of incorrect operation. This resulted in execution skipping over

single and multiple bytes in the program. For example, the third and

fourth bytes following a jump instruction were read as the jump address .

This sort of execution was observed in several parts of the program.

Continuous servicing of interrupts, in the s a m e way as in the previous

sect ion, was also observed. Again this was eliminated by grounding the

interrupt l ines. Another failure mode encountered, was the cyc l ic reading

of data through memory. In this c a s e the processor would read s u c c e s s i v e

locations to the end of the memory map. and then repeat from the beginning.

This mode was always entered if the supply was reduced to below 2.45 volts

and then raised slowly. The processor would not leave this state with the

application of a TRAP, which is supposed to be a non-maskab le interrupt. A

full reset is n e c e s s a r y to exit from this mode. A similar s e q u e n c e of

operation is encountered when certain o p - c o d e s are executed on the 6800.

The fact that no further useful processing Is performed under these

conditons is particularly important from a reliability point of view, and

this is d i s c u s s e d further in section 3.4.3.

The length of interruptions required to c a u s e errors in the processor

are given in table 2.4. First errors occurred when the supply reached a

minimum of about 2.8 volts. Incorrect read and write operations were

observed under these conditions. Slightly longer interruptions, caus ing a

43

dip down to 2.5 volts, revealed program counter malfunctions, as descr ibed

above. Further reductions c a u s e d the processor to execute a s e q u e n c e of

restart 7 instructions (F F) . but as the supply recovered the cyc l ic read

mode was entered. This occurred for all interruptions which resulted in

the supply rail falling to a value between 2.5 and 0.3 volts. If the

supply dropped below this range, the power-on reset circuit would generate

a correct reset.

2.4.4 interference to the Complete System

Raising the power supply slowly from 0 to 5 volts, for the whole

board, c a u s e d the processor to enter the cycl ic read mode. This indicates

that ca re must be exerc ised in starting up a system, and is to be expected

as the power-on reset circuit will not operate correctly unless the supply

is restored quickly.

Reductions in the power supply revealed initial memory read errors at

3.73 volts. This is a similar level to that observed with a reduction to

the RAM supply. At 3.66 volts, memory read errors occurred at the stack

locations, resulting in the incorrect execution of return instructions. At

3.46 volts, the system could not send error codes to the terminal. This

was due to the incorrect reading of the EPROM. and prevented normal

execution.

Interruption testing revealed comparable failures. The lengths of

interruptions required to c a u s e initial failures are given in table 2.4.

As expected, they are similar to those for the RAM. which is the most

susceptible part of the system to this sort of disturbance.

Low energy fast spikes were applied to the whole system, but even with

2.5 kV pulses having a 5 ns rise time, no observed failures were produced,

provided that correct earthing and shielding of the equipment was used.

44

Without such an arrangement, errors could be induced. As mentioned above,

the logic analyser could not be used effectively, to observe the point of

failure, as it suffered from the interference. However, it could be used

after the event to identify the final outcome of the fault.

Without grounding the c h a s s i s of the interference simulator,

corruption of the stack pointer so that it pointed to an address in the

EPROM, was observed. On returning from a subroutine, an arbitrary address

was retrieved, and execution continued from that point. Subsequent cal ls

attempted to overwrite the current stack position without s u c c e s s , and the

following returns passed execution back to the same location as before.

Corruption of the stack pointer was also observed during interruption

testing on another system. This shows the importance of checking the stack

pointer, or the return a d d r e s s , before leaving a subroutine.

The cyc l ic read mode could also be entered as a result of this type of

Interference. On another occas ion the wait state was entered, and by

applying a TRAP and observing the location to which execution returned, it

was possible to establish the last byte executed before the wait. The

processor had in fact read the operand of a conditional jump, which was

equivalent to the code for a HALT instruction. Again, the repetitive

servicing of interrupts was also observed, when the interrupt l ines were

allowed to float.

Finally, a few investigations were carr ied out with the ana lyser

connected. Although the output was corrupted, a few conditions could be

interpreted. T h e s e revealed o c c a s i o n s where the processor misread

instructions. For example, a triple byte Instruction was interpreted as

three single byte instructions.

45

2.5 Signif icance of the Results

The test programme descr ibed above, relied on the assumption that the

errors produced. under the various forms of interference. were

representative of those which do occur in real systems. As with

accelerated life testing, descr ibed in chapter 1. the experiments may

reveal mechan isms which do not occur under normal operating conditions.

However, the types of interference used were chosen to be similar to that

expected in the particular British G a s application being considered. The

aim was to simulate naturally occurr ing events, rather than to induce

failure by altering the environmental conditions.

Another factor which suggests that the failure m e c h a n i s m s observed

will occur under normal operating conditions, is that in many c a s e s a

particular mechan ism was observed as a result of different d isturbances.

This happened not only with similar interference on different parts of the

circuit, but a lso with different types of interference. The results for

the low energy fast spikes and the short interruptions are particularly

important. Gradual reductions are less significant b e c a u s e they appear the

same as short interruptions at the instruction level. Although sharp dips

seem to occur as a result of an interruption, the minimum voltage is

maintained for over a mil l isecond. During this time approximately one

thousand instructions will be executed. and therefore individual

instructions will s e e the interference as a steady low voltage level.

2.6 Observations of Permanent Fai lures

Although this work is aimed mainly at transient events, the detection

and recovery p r o c e s s e s should not be developed without consideration for

permanent failures. Over the past three years several permanent component

failures have been observed, and these are descr ibed in the following

46

sect ions.

2,6.1 P r o c e s s o r Fai lures

Two processor chips have experienced permanent failure, but despite

this they have not failed completely. Certain parts of the integrated

circuits still function correctly. Both failures occurred while the

processors were operating on an Intel 8085 system design kit (SDK) board.

The first p rocessor appeared to fail for no particular reason and may have

been a random failure. When connected to a system it s e e m s to success ive ly

read through every memory location from 0000 to F F F F and then repeats

continuously, in the s a m e way as the cycl ic read mode encountered during

interference testing. All the control s ignals are correct for a s u c c e s s f u l

read and the logic analyser confirms that the correct data for e a c h address

goes onto the data bus in the normal way.

This failure mechanism is particularly important when designing a

watchdog timer for a system. It would not s e e m unreasonable to retrigger

the timer on a certain address in the control program. Then if the system

c r a s h e d and execution no longer continued around that address , the watchdog

would reset the system and control would be restored. This arrangement is

proposed by Oppenheimer (74) to recover from transient d isturbances to the

power supply. However, if the cyc l ic read mode is entered, the trigger

address still appears at regular intervals and no reset or alarm would be

set off. if the timing of the watchdog is not critical. This state could

continue unnoticed for a considerable time. A complete memory cyc le lasts

for approximately 65 ms. with a 6.144 MHz crystal , and therefore the wa tch ­

dog must be set to a shorter time interval if address triggering is used.

Oppenheimer also suggests that the watchdog could be designed to generate a

non-maskable interrupt. It has been establ ished from the tests that s u c h

47

an interrupt is not recognised during the cycl ic read mode and therefore

cannot enable recovery from this state.

The second processor was damaged when the power supply failed during

interference testing. Interruptions which result in restoration of the

supply during a peak in the mains cycle c a u s e a sharp spike in the current

drawn. For the power supply used , the spike had a peak amplitude of up to

16 Amps, compared with a normal demand of approximately 300 mA. and was

often sufficient to blow the input fuse. The power supply failed during

interruption testing and was probably due to these surge currents. At the

s a m e time an L S T T L dual D flip-flop (74LS74) failed. All functions of the

chip were lost and it took a current of approximately 1 Amp when attached

to a 5 volt supply.

The only damage that appeared to occur to the p rocessor was that one

of the multiplexed address and data lines (AD5) stuck at ' V . This meant

that for e a c h instruction fetched, that particular bit would be read as a

' V . Therefore only half of the instructions could be read successfu l ly ,

but it seemed that for the instruction that the processor had read, the

correct execution followed. The program counter incremented internally in

the normal way. with only the single bit corrupted externally on the

address bus.

Again this failure is important when considering watchdog designs.

One method of resetting the timer is to connect it to a port, and to use

the OUT command. If a single bit stuck at ' V fault occurred which did not

affect the OUT instruction or the port a d d r e s s , then it Is possible for

execution to continue in such a way that the watchdog would not generate a

reset or alarm. This processor also entered the cycl ic read mode

occasional ly but with the failed bit stuck at '1 ' .

48

2.6.2 RAM Failure

During interruption testing a permanent failure in an 8155 RAM chip

occurred. Subsequent reading of the device gave a value of 3F at all

locations. The chip was removed from the circuit and later replaced, at

which time all locations appeared to be stuck at 00. At this stage the

device drew a current of over 0.5 amps, compared with a normal consumption

of about 40 mA.

The execution of the processor was affected. It operated with bit 7

stuck at 0, and read the value 3F from unpopulated memory. In the

resulting execution a HALT instruction was Incorrectly interpreted, caus ing

the processor to enter the WAIT state. During subsequent tests, the

processor would not respond in any way with the failed device in the

circuit.

2.6.3 Crystal Fai lure

During initial trials of the single board test system regular problems

were encountered in initiating correct operation of the processor . This

problem was particularly evident when the 5 volt supply was instantaneously

applied to the board. By slowing down the rise time of the 5 volt rail the

problem c e a s e d . However, the timing constraints for power on reset were

satisfied in the original state.

Further investigations revealed that the problem was c a u s e d by the

crystal. Under certain conditions it would oscil late at 18 MHz. three

times its rated frequency of 6.144 MHz. Once it had started at that

frequency it was n e c e s s a r y to apply a capac i tance to the crystal to force

it into its correct operation. A hardware reset had no effect, so a

watchdog timer connected to the reset line on the p rocessor would not

restore correct operation from this failed state.

49

This problem has been cured by permanently connect ing a 20 pF

capacitor from the crystal to ground. The 8085 U s e r ' s Manual (119)

suggests that this should be done for crystal f requencies below 4 MHz.

Their design for a single board computer does not include the capacitor ,

therefore they must consider it unnecessary at 6 MHz. This suggests that

the crystal may have been faulty. However, this fault did not appear when

four other p rocessors were tested. Three of these were manufactured by

N E C , whereas the other one, and the original, were manufactured by Intel.

This s e e m s to indicate an isolated fault in the internal oscillator circuit

of the suspect device. All other functions of the chip operated normally.

2.7 Summary

The aim of the tests descr ibed in this chapter, was to identify

failure m e c h a n i s m s which are likely to occur in digital controllers. The

mechan isms observed fit into two main catagor ies of corruption of data and

disruption in the s e q u e n c e of program execution. They both occurred under

different types of interference applied to various parts of the circuit ,

and suggests that they will occur in real systems.

Corruption of data results from interference to each of the main

elements of a digital system. Disturbances to the RAM allows data to be

destroyed within the device, or during read and write transfers. In the

c a s e of the EPROM and processor , incorrect interpretation of instructions

can result in the wrong data being a c c e s s e d or the wrong operations being

performed.

Disruption of the s e q u e n c e of program execution can also originate

from all three devices. Corruption of the stack data in the RAM results in

incorrect returns from subroutines. Misinterpretation of instructions, due

to interference in the EPROM or processor , c a n result in the execution of

50

erroneous jump, halt or stack operations. Disruption can also result from

the direct corruption of the stack pointer and the program counter within

the processor. Finally, the cycl ic read mode and repetitive servicing of

interrupts, both prevent any further meaningful execution.

Both these groups of failure are of great Importance in control

systems. The effects of data corruptions have been studied by a number of

researchers , and methods have been developed to detect and correct them.

These consist of the use of recovery blocks. N-version programming,

rollback, time redundancy and reasonableness checks , and are d i s c u s s e d in

chapter 1.

However, the sequence of events following disruption in the flow of

program execution, has received less attention, and is studied further in

chapters 4. 5, 6 and 7. It is of particular signif icance as without a

resumption of valid execution, the data correction methods mentioned above,

cannot function.

The results of the tests have shown that any value of op -code can be

executed by the processor , either as a result of misreading instructions,

or by access ing erroneous addresses . It is therefore necessary to know the

effects of every op-code . This is d iscussed further in the following

chapter.

It has been indicated that some failure mechanisms can have serious

implications for the effective operation of watchdog timers. Further

design considerations for these devices are also presented in the following

chapter.

51

C H A P T E R 3

Undeclared Operations of Microprocessors

3.1 Introduction

From a reliability point of view it is extremely important to know all

the possible operations of a microprocessor . Without a full knowledge of

their operation it may not be possible to design effective methods to

counteract the results of transient or permanent faults. The manufacturers

provide information about their dev ices , but this is not comprehensive . An

obvious area of omission is in the declaration of the effects of all

possible operation codes . This is important b e c a u s e the execution of a

program can depart from its normal route, either due to a programming error

or to some external interference. This has been demonstrated in the

practical tests, descr ibed in the previous chapter.

Other undeclared operations are difficult to reveal. For example,

the memory cycling mode on the 8085 was found by testing, and could not

otherwise have been forseen.

Three manufacturers (Intel, N E C and Motorola) were contacted to s e e

if they would re lease any further information other than that which is

readily available, but they were not prepared to do so. Therefore the

information required was only available from independent s o u r c e s , or had to

be establ ished by experimentation.

3.2 Undeclared Operation Codes

The full instruction map for most 8-bit microprocessors has a total of

256 possible instruction codes . T h e s e take the values 00 to F F in

hexadecimal. For a particular device a certain number of these codes will

be defined by the manufacturer to perform specif ic tasks, but usually this

does not cover the entire instruction map. The remaining codes remain

52

undeclared but inherently must operate in some way. An initial reaction

might be to a s s u m e that they perform in the s a m e manner as the Instruction

cal led a 'no-operat ion ' (NOP). This Is a slightly misleading name b e c a u s e

although no data is altered, the program counter is incremented by one.

Therefore even a NOP c a u s e s a change in the overall state of the processor .

Alternatively if these undeclared codes c a u s e a halt in the execution of

Instructions, this also is a change In the overall state.

As the codes are undeclared by the manufacturers there is a

possibility that they may not perform in a logical fashion, or may not be

repeatable even under similar conditions. Also, there is no guarantee that

a particular response on one processor will be observed on another. This

is particularly important where a specif ic processor is manufactured by

several different companies . In this c a s e it is possible that the chips

may be fabricated using different masks and it will be highly probable that

the undeclared codes will function differently. For example, it has been

suggested in (118) that Intel and National Semiconductor use the same masks

for the 8080, whereas N E C and AMD have developed independent designs. This

has been establ ished from the operation of the auxiliary carry flag, which

does not always function correctly on the first two manufacturers devices .

However, it is believed with the 8085 that Intel have speci f ied, to

other manufacturers, exactly what e a c h code should do. and the codes which

they say are undefined are in fact only undeclared to the final user of the

device. Similar c a s e s may also exist with other p r o c e s s o r s , but should be

treated with extreme caution as new modifications may depart from previous

arrangements. This has been demonstrated by Nemmour (67) who reports on

differences between 6800 microprocessors manufactured before and after 1977

by the same companies . He suggests that some of the c h a n g e s were to

53

correct design errors in the original masks.

The undeclared o p - c o d e s of various microprocessors are d i s c u s s e d in

the following sect ions , along with some other undisclosed functions.

3.3 Operations of the 8085

The 8085 is a typical 8 bit microprocessor with a 16 bit address bus.

it interprets all operation types from a single byte, and therefore 256

different o p - c o d e s exist. Intel only define 246 of these c o d e s leaving 10

undeclared. The functions performed by the undeclared codes have been

investigated by Dehnhardt and Sorensen (28). Not only do they perform in a

logical way, but they also provide some very useful operations, such as 16

bit additions, subtractions and rotations. The same results can be

achieved using s e q u e n c e s of other instructions, but this involves extra

execution time and memory s p a c e .

Also revealed in (28) is that two of the bits in the condition code

register, which are supposedly undefined, also perform in a logical

fashion. They state that bit 1 indicates a two's complement overflow,

whereas bit 5 indicates an unsigned overflow for data c h a n g e s between 0000

and F F F F , when executing 16 bit Increment and decrement instructions.

These flags are used by some of the undeclared instructions.

This leads to the question of why the codes and flags are not dec lared

by the manufacturers. The 8085 has c lose links with both the 8080 and the

Z80, with most of the o p - c o d e s performing in the same way. Therefore the

extra codes may have been left undeclared to maintain a high level of

software compatability between the devices. When asked about the c o d e s ,

the manufacturers stated that they could not be guaranteed to work under

all conditions, suggesting that pattern sensitive faults, introduced at the

design or manufacturing s tages , may be present.

54

Dehnhardt and S o r e n s e n (28) suggest that the o p - c o d e s and flags can be

used to e n h a n c e programming, and it is known that they have been used in

some applications. Clearly this is a dangerous situation if pattern

sensit ive faults do exist. Investigations on an Intel 8085 by Buchhoiz (17)

revealed pattern sensitivity in the over-flow flag. During addition and

subtraction. 25 particular operations resulted in the incorrect setting of

the flag. Similar errors were observed with the compare instruction.

As indicated above, p rocessors from different manufacturers, or

different batches, may vary in their response , and for this reason modern

devices were tested to compare with the published results. The undeclared

o p - c o d e s were executed on an Intel SDK board. The monitor program,

provided with the kit. allowed the setting of registers and flags prior to

the test, and also the interrogation of their values afterwards. A Dolch

logic analyser , with an 8085 personality pod. was connected to the

processor to enable all external pins to be monitored. Most of the

instructions c a n be checked without the analyser , especia l ly with a prior

knowledge of their operation. However, it does provide verification of

data transfers, and is particularly useful in monitoring the flow of

execution after conditional jump instructions. T h e s e operations are

difficult to monitor with software alone.

Full testing of all the instructions for every possible combination of

data values would take a considerable length of time. For this reason ,

tests were carr ied out, both with random data, and data se lected to c h e c k

speci f ic responses . All ten undeclared codes were executed on an N E C 8085

and responded in the same way as that descr ibed by Dehnhardt and S o r e n s e n .

NEC have developed Independent designs for the 8080 (118) and the 8035/8048

(see section 3.5), which suggests that Intel may have specif ied to other

55

manufacturers how all c o d e s of the 8085 must perform. A nuclear hardened

version of the 8085. descr ibed by Kim et al (51). was developed from

information provided by Intel and has all the o p - c o d e s defined. This

suggests that all 8085s should operate in the same way.

However, tests were carr ied out to attempt to reproduce the apparent

malfunctions observed by Buchholz (17). Both N E C and Intel 8085s were

subjected to the same operations which were reported to have incorrectly

set the proposed two's complement overflow flag. At all times during

testing the flag was set correctly. This indicates that the errors were

observed on an isolated faulty component, or that a fault existed in the

masks of a particular batch which has been corrected on other devices.

Another undeclared operation, which was discovered during interference

testing, is the continuous cycl ic reading of memory. This is descr ibed

further in chapter 2. and its implications for reliability are d i s c u s s e d in

section 3.8.1. Due to the complex structure of a microprocessor , other

modes of operation, which have not been d iscovered, may exist.

3.4 Operations of the 6800

The 6800 Is also an 8 bit microprocessor with a 16 bit address bus.

Again there are 256 different possible operation c o d e s , but only 197 are

defined, leaving 59 undeclared. The functions performed by all the c o d e s

have been studied by Nemmour (67). However, practical tests were carr ied

out to determine the operation of the undeclared c o d e s , without a prior

knowledge of the published results. The methods used are descr ibed in

detail as they can be used in the study of other p rocessors .

3.4.1 Determination of the Undeclared Instructions

Studying the positions of the undeclared c o d e s , in relation to the

defined instructions in the instruction map. provides a useful starting

56

point. A number of the undeclared codes are situated in adjacent

locations, suggesting that they may have similar operations but use

different addressing modes. By considering the defined c o d e s , alongside

the one under investigation, it is possible to suggest the likely

addressing mode. T h e s e suggest ions proved correct in the majority of c a s e s

and assisted greatly in the determination of many of the operations.

To c h e c k the expected operations provided by the c o d e s , they were

executed on a small 6800 based system. A short assembly program was

written to ass is t in the investigations, and a full listing is given in

appendix 1. It effectively u s e s the MIKBUQ routines to read in values from

the terminal and to set the registers accordingly, before the execution of

the required o p - c o d e . The data read in is stored in s u c c e s s i v e locations

in memory and then the stack pointer is set to the location above the

block. A return from interrupt Instruction is then executed to load the

correct values into the corresponding registers. This ensures that all the

registers and the condition codes can be set to any value. A se r i es of

software interrupt instructions are placed after the o p - c o d e to use the

MIKBUQ routine to print out the contents of the registers and condition

codes .

This provides a c lear indication of any c h a n g e s that have occurred

within the processor due to the specif ic o p - c o d e . However, it does not

give any indication of external events s u c h as reading and writing to

memory, and is of little use in c a s e s where a jump or branch is generated,

in these c a s e s a logic analyser was used to monitor the states of the

address and data b u s e s , and the read/write and valid memory address l ines.

This enabled all external data transfers to be monitored, and clearly

indicated the flow of execution after jump instructions. Without

57

monitoring the external pins of the processor , it would not have been

possible to establish all the operations performed.

3.4.2 Functions of the Undeclared Codes

The functions performed by the undeclared codes fit into two main

groups, those which perform totally new operations, and those which perform

identical or similar operations to the instructions already defined. Most

of the codes are similar to the ones specif ically defined by Motorola.

They perform roughly the s a m e operation but will manipulate the flags

differently or not change the contents of a register. For example there is

an add accumulators instruction indentical to the defined instruction

except that the half carry flag is not affected.

Some of the codes are Indentical to defined ones and appear to be due

to the instruction map not being fully decoded in some p laces . Examples of

this are the four addressing modes for the compare X register instructions.

These are normally c o d e s 8 C . 9 C . AC and B C . but also appear at C C . DC. E C

and F C . This suggests that bit 6 is ignored when the instructions are

decoded.

Some of the codes are substantially different and appear to perform

useful tasks, however these functions can also be performed by two or more

of the defined Instructions. For example there is an add accumulator to

the complement of memory instruction. It works for both accumulators , and

for all four addressing modes. All the flags except for the half carry and

the interrupt mask are affected by the result of the operation. Another

useful instruction performs a logical AND on the two accumulators and puts

the result in the A register, three of the flags are affected. A similar

instruction affects the flags but does not change the contents of the

accumulators.

58

Store immediate operations exist for the A. B and X registers and for

the stack pointer. To be consistent with the load immediate instructions

they should store the data in the memory locations immediately following

the instruction, but this does not occur . Instead, the first byte is

skipped and the data is written to the following locations. However, the

program counter Is adjusted accordingly so that the next instruction is

read from the location immediately after the one into which the last data

byte is written. This effectively makes the store A and B registers into

triple byte instructions, and the store X register and stack pointer into

instructions with four bytes. But in all c a s e s only one byte Is read.

3.4.3 Cycl ing Through Memory

Four of the undeclared o p - c o d e s c a u s e the p rocessor to cycle through

memory indefinitely. This state is of particular importance when

considering reliability. It means that if one of these o p - c o d e s is

inadvertently executed, either due to an error in programming or to some

external interference, then the processor will ' lock -up ' and will not

execute any further instructions until some external intervention is

initiated.

Operation codes 9D and DD c a u s e the processor to read through memory

starting at the direct address following the code. Once in this state it

will not respond to either a non-maskable interrupt (NMD or an interrupt

request (IRQ), even if the interrupt mask is c leared beforehand. The only

way of leaving this state is to exert a full reset on the processor . The

contents of the A. B and X registers are not altered from the state that

they were in before the o p - c o d e was executed. This was determined by

generating an interrupt immediately after the reset. Unfortunately the

interrupt will not occur until after the first instruction has been

59

executed. In the system used the first instruction loads the stack

pointer, and therefore its contents at the time of the reset could not be

determined.

Those condition codes which were not affected by the first instruction

or the reset, remained in the same state that they were in originally.

This suggests that no change occurs in any of the internal registers while

the processor is cycl ing through memory. Therefore the only data lost are

the contents of the program counter and the state of the interrupt mask,

which are both set by the reset sequence . The contents of the registers

will not be of great use after the reset, as some unforseen s e q u e n c e of

instructions will have been executed before the undeclared o p - c o d e was

reached. However they may give some sort of indication of how that

particular state was entered.

The result of executing operation c o d e s 3C and 3D is similar to that

obtained by the codes 9D and DD. in that the processor ends up cycl ing

through memory reading s u c c e s s i v e locations. After executing the code , it

differs by saving the address of the next byte onto the stack, before

reading the next location on the stack. it rereads the previous location

and then starts cycl ing through memory from the top of the stack.

While in this state the processor will not respond to NMI or IRQ, a s

before. Again the only means of leaving this state is by a reset. Nemmour

(67) suggests that this is due to the way in which interrupts function.

They do not respond until the completion of an instruction, and therefore,

b e c a u s e these operations never finish, no interrupts can be initiated.

However, the B and X registers are not changed from the state that

they were in before the undeclared o p - c o d e was executed, but the A register

is changed. Bits 1-7 are c leared while bit 0 remains unaffected. Again.

60

it was not possible to determine the value of the stack pointer after the

reset. If it remains unaltered then the address at the top of the stack

will point to the byte immediately after the illegal op-code that was

executed. This is a very important point when attempting to diagnose the

original fault, and could prove very useful.

The reason for these modes of operation is unclear, but it is

believed that they may be for testing purposes. Hayes and McCluskey (43)

propose a test sequence for the 8080 which starts by executing NOPs

repeatedly. This is designed to reveal faults on the address bus.

However, the cyclic read mode is not only suitable for revealing address

bus faults, but can also indicate data bus and memory failures.

3.4.4 Comparison with Published Data

The investigations by Nemmour (67) were carried out in a similar

manner, but in addition he studied the masks to enable cross checking with

practical tests. Devices from different manufacturers (SESCOSEM and

Motorola) were used, however these are constructed from identical masks.

In all cases the instructions operated in the same manner as the

independent Investigations described above. This shows consistency between

devices from the same manufacturer, but variations may be obtained if

different masks have been developed. Again, it is unclear why these

operations are not disclosed. Design or manufacturing difficulties could

have caused problems, and these may have been corrected subsequently.

Nemmour reveals several changes that were made to the masks in 1977.

some of these were to correct initial errors. For example, on original

devices, the application of a non-maskable interrupt, during certain cycles

of the execution of a software interrupt, caused the servicing of the

maskable interrupt routine. This sort of fault is particularly difficult

61

to locate, and others of a similar nature may exist.

3.5 Operations of the 48-serles Microprocessors

The 48-series microprocessors are also 8 bit devices but have a very

different architecture from the 8085 and 6800. They consist of a central

processing unit. 27 I/O lines, a single interrupt and an internal timer/

counter. In addition to this a quantity of internal read only and random

access memory is provided, the size of which depends on the particular

device, and is given in table 3.1. The processors are designed for small

scale control applications where the final program would reside in one of

the ROM based chips. The other devices are primarily for use in the

development and debugging stages.

The address bus is 12 bits wide allowing a maximum possible address

range of 4K bytes. The program counter is however only 11 bits long, and

effectively splits the memory map into two separate blocks. Access to each

area is controlled by software which can alter the most significant bit of

the address bus. The internal RAM is not accessed by the main bus. and its

contents can only be treated as data, no instruction fetches can be made

from it. Therefore the normal arrangement is to locate the program within

the 4K address range, and to use the internal RAM for data storage.

However, fixed data values can be stored in the main memory map, but they

are less easily accessed.

External memory devices can be attached to the processors to

supplement the internal memory. Alternatively, devices can be mapped to

the same locations as the internal ROM. and the processor forced to access

them instead. This can be used in the development stage, or to provide an

alternative program, such as for testing purposes.

The processors interpret the instruction type from 8 bits, and

62

therefore 256 possible op-codes exist. Only 230 are defined, leaving 26

undeclared. No published work on the undeclared operations of these

devices has been found, and therefore investigations were carried out to

determine the effects of executing the undeclared codes, and to discover

other undisclosed functions. Full details of these studies are given in

the following sections.

3.5.1 Undeclared Memory in the 8035

In all published literature, the major manufacturers state that the

8035. 8039 and 8040 have no internal ROM. However, it was suspected that

this might not be the case, and attempts were made to read internal memory

of 8035s as if they were 8048s. For nine devices from three different

manufacturers (Intel. NEC and National Semiconductor) a logical program of

up to IK was revealed. The Intel 8035 contained a games program which read

9 bits of parallel data from port 1 and test input T l , and used bit 7 of

port 2 and test input TO for transmitting and receiving serial data. It is

therefore clear that the 8035 is in fact an 8048 but sold under a different

name. When approached on this matter, Intel did admit that they are the

same device, and that 8048s which do not operate at the required speed, or

have faults in the ROM. are sold as 8035s.

This fact raises two important points. Firstly, any details of the

undeclared codes of the 8035 will relate directly to the 8048. Secondly,

the existence of an internal program might have serious consequences with

respect to reliability. The internal program is disabled by holding the

external access (EA) pin high, but an internal chip failure could cause the

pin to be disabled resulting in bus conflict or the correct execution of

the internal program. This could result in a dangerous sequence of signals

appearing at the ports and could mislead any external hardware monitoring

63

the state of the system.

The external access pin does not operate in the same way for all

8035s. If allowed to float, the Intel chip accesses the external memory,

whereas the NEC chip accesses the internal memory. For the National Semi­

conductor device access to both memories appears to occur. Normally the

pin would be tied high or low. but an internal wire bond failure, due to

thermal stress or vibration, could cause it to float. For this type of

failure a particular device will continue without error, depending on which

memory contains the main control program.

3.5.2 Determining the Undeclared Instructions

In order to determine the operation of the undeclared codes, a small

8035 based system was constructed. A block diagram of the system is shown

in figure 3.1. It consists of the processor, an 8-bit latch and a 2K

EPROM. The latch is necessary in order to demultiplex the address and data

bus. An EPROM emulator was used to enable quick and easy modifications to

the program being run.

The software used to investigate each code is given in appendix 1.

The program outputs the contents of the accumulator onto port 1, executes

the undeclared op-code and then re-outputs the accumulator to port 1.

before Incrementing the accumulator and restarting. All unused memory is

set to 04, this causes a jump to address 004 if an attempt is made to

execute outside the program. This method is also used to recover execution

after the undeclared code. A subroutine call during each cycle is included

to monitor the state of the stack.

A logic analyser was used to monitor the state of the ports and bus.

The clock output on the TO pin was used as the clock input to the logic

analyser, causing one sample to be taken during each T state. This is

64

equivalent to five samples during each program cycle. In this way it was

possible to determine the number of bytes associated with each code and the

number of cycles it took to execute. Any effects on the ports, bus or

accumulator could also be seen.

As the processor is designed to be used as a single chip controller,

many of the Instructions result in only internal actions, and cannot be

observed externally. In order to establish internal operations, further

investigations were carried out using a Prompt 48 microcomputer design aid.

This allows programs to be executed from RAM and enables access to all of

the internal registers and flags. Using this system it was possible to

reveal any internal effects of the undeclared codes.

3.5.3 The Effects of Executing the Undeclared Codes

A detailed list of the effects of executing each of the undeclared op­

codes is given in appendix 2. Unlike the 8085 and 6800, in this case,

processors from different manufacturers give different results. Devices

from the three manufacturers of Intel, NEC and National Semiconductor, were

studied. The results from the National Semiconductor 8035/8048 were

identical to those from Intel, and therefore have not been included in the

detailed descriptions in the appendix. It seems to be the case that

National Semiconductor do not produce independent designs for their

devices, and this is supported in (118).

The full instruction maps, including the undeclared codes, for both

the Intel and NEC devices are given in figures 3.2 and 3.3. Descriptions

of each of the operations of the undeclared codes are given below.

3.5.3.1 Intel 8035/8048

Figure 3.2 shows that, for the Intel chip, out of 26 undeclared codes.

17 perform a No-Operation, 4 cause a jump in execution and the remaining 5

65

affect the input/output lines. Three of the jump instructions are logical

extensions to the standard instruction set. They are conditional on a

particular flag being clear and. in the instruction map. they are adjacent

to their corresponding jump, conditional on the flag being set. The fourth

additional jump instruction is unconditional and branches to an address

within the current page. This is not provided for directly in the standard

instruction set, and enables program modules to be relocated on a different

page without modification.

Four of the additional I/O instructions are identical to codes in the

standard instruction set. They are copies of the four operations involving

port 2. and each one is adjacent to its copy in the instruction map.

suggesting that bit 0 is not used in decoding these instructions. The

fifth code involving the I/O lines has the value 38. By considering the

adjacent locations in the map. an OUTL BUS.A instruction would be expected,

which outputs the contents of the accumulator to the Bus. This undeclared

code does take two machine cycles to execute, which is necessary for an I/O

function, but no read or write signal is generated to perform a correct bus

operation. The value 00 does appear on the Bus during T4 of the second

machine cycle, but this does not seem to perform a useful task. No other

part of the processor appears to be affected.

3.5.3.2 NEC 8035/8048

Most of the undeclared codes for the NEC device are the same as those

already described above. All the jump and I/O operations are the same, but

six of the No-Operations have been replaced by useful instructions. Four

of these fit logically into the instruction map and perform functions not

previously provided. They fill the gaps for the indirect addressing modes

of the decrement, and the decrement and jump if not zero Instructions.

66

which are omitted from the standard instruction set. There does not seem

to be any logical reason why these instructions should be omitted. Errors

during initial development of the processor may have caused problems which

have now been corrected by NEC.

Two of the instructions perform functions totally unrelated to those

already defined. One has the effect of clearing the upper nibble of the

accumulator (bits 4-7). The other loads the accumulator with the lower 8

address bits of the next sequential instruction to be executed. The first

instruction is useful when manipulating nibbles, whereas the second could

be useful when debugging a program. In the latter case this code could be

placed in several locations in a program followed by an output to a port.

Then by monitoring the port it would be possible to trace execution past

these points.

3.5.4 Other Devices in the Series

All investigations were carried out on the 8035/8048. The only

declared difference, with the other devices in the series, is the size of

the internal memory. These chips are therefore likely to have similar

properties. For example, the undeclared op-codes are expected to function

in the same way as those in the 8035/8048. and the devices which are

defined as having no internal ROM are expected to have internal program

memory.

3.6 Operations of the 68000

The discussion up to now has been directed towards 8 bit micro­

processors, but it is now worth mentioning the Motorola 68000. which has a

16 bit internal architecture, and a 24 bit address bus. The type of

operation performed is determined from a full 16 bit data word, and

therefore the total number of possible op-codes is much greater than for an

67

8 bit machine, and is in fact 65.536. Obviously with such a large number

of possible codes, there will be a substantial quantity which are not

defined. The 68000 has 56 basic functions, but with ail the addressing

modes and register references approximately 45.800 op-codes perform defined

operations leaving over 19.700 unused. However, the processor has been

designed to signal an exception if it detects the illegal execution of any

of these codes. This effectively means that each one of them acts as if it

were a software interrupt.

A study of the full instruction map reveals that the unused codes

appear in isolated locations as well as large groups, some up to 4K. The

manufacturers state that codes in the large groups may be used in later

designs. For this reason they cause the execution of a different

exception handling routine from the other codes, if an attempt is made to

execute them. This allows the emulation of new instructions on the

original devices. It was felt that if any of the unused codes were going

to perform undeclared operations, then the isolated ones would be the most

likely to do so. For this reason, a number of the codes were executed on a

small 68000 based single board computer. In all the cases that were tried,

a correct response from the exception handling logic was observed. No

unusual operations were revealed.

As well as the detection of unused op-codes, internal logic is

provided to detect other erroneous states, such as an attempt to perform an

instruction fetch from an odd address. The processor is also specifically

designed to have external logic to detect unsuccessful memory transfers.

All these checking modes are important from a reliability point of view.

They reduce the probability of executing a large number of erroneous

instructions before detection.

68

Although this is an advantage in the detection of errors due to

transient faults, the permanent failure rate will be higher than that for 8

bit processors due to the Increased complexity of the chip. This may also

increase the susceptibility to transients.

3.7 Operations of the 6809 and Z80

The 6809 and Z80 are both 8 bit microprocessors, but they differ from

those described above. In some cases the instruction type is not

established from 8 bits alone. This allows the possibility of undeclared

op-codes at different levels. The 6809 is a modified version of the 6800.

and has a similar instruction set with the majority of the instructions, at

the first level, still having the same operation codes. This is

particularly evident in the ranges 20-2F and 4 0 - F F where nearly all the

codes are the same.

An Interesting point is that two of the previously undeclared codes

are replaced with Instructions which would logically be expected from

looking at the memory map. Code 21 has been programmed to execute a branch

never instruction, which is the logical opposite of code 20, the branch

always instruction. Code 9D executes a jump to subroutine using direct

addressing. This was a previously omitted form of addressing in calling

subroutines, and fits in between the other addressing modes. Nemmour (68)

has identified 498 undeclared op-codes, at different levels, in the 6809,

four of these cause the cyclic reading of memory in the same way as those

described for the 6800 and 8085.

No further studies were carried out on the 6809 and Z80. They have

been mentioned here to indicate possible problem areas for other processor

architectures.

69

3.8 Implications of the Undeclared Operations on Reliability

Undeclared operations of microprocessors can be divided into two broad

catagories. those which occur as a result of executing an undeclared op­

code, and those produced by other mechanisms. Most of the undeclared codes

in microprocessors operate in a similar way to the declared instructions,

and therefore their importance does not differ significantly from the

erroneous execution of defined instructions. However, there are some codes

which operate very differently, and are of great significance. These

result in the processor cycling through memory and prevent the execution of

further instructions until a reset. Therefore some sort of watchdog timer

must be included in a system to recover from these states.

3.8.1 Significance for Watchdog Design

When considering the design of a watchdog timer the following two

points should be noted. Firstly, the highest level of fault recovery must

initiate at least a full reset, and secondly the address lines alone should

not be used to trigger the timer. The second point is particularly

important In the 6800, which uses the address lines for calculating branch

and indexed addresses. The triggering must incorporate the write signal

which is never present unless a valid write operation is being performed.

The existence of memory cycling can be considered as an advantage or a

disadvantage depending on the application. If the accuracy of a system is

more important than its timing, then this mode of operation would be an

advantage as it has the effect of suspending execution, preventing any

further output. On the other hand if timing is more important, the

considerable amount of time which could elapse between the occurrence of

the fault and the detection of the error by the watchdog, would be a

disadvantage. Further time could be lost resetting the system and

70

I

reinitialising variables.

However, even in the first case, the major drawback is that recovery

has to be initiated by some hardware, if the timer fails the whole system

fails. A better solution would be to attempt to detect and correct errors

under program control and only rely on external hardware when this approach

fails. This cannot be achieved with these particular codes, therefore the

only method of providing a back-up procedure in the case of a watchdog

failure is to include further hardware to monitor its operation.

The existence of internal memory in the 8035. when being used for

control purposes, is also important for watchdog design. A chip failure,

such as a wire bond fracture or an internal short, can result in the

execution of the internal program. It may then operate In such a way that

the errors go undetected. This is possible, as the devices are used in I/O

intensive situations and therefore the ports, to which a watchdog would be

connected, will probably be highly active. If a simple triggering sequence

is used with non-critical timing the Internal program could generate

signals which would satisfy the timer. However, a complex triggering

sequence will reduce the likelihood of non-detection of this type of

failure.

3.8.2 Powering down to Enable Recovery

It has been shown by the crystal failure that it may be necessary to

provide a level of recovery which goes further than a reset and actually

powers down the system before powering up in a controlled manner. This is

because with the crystal oscillating at three times its natural frequency

the application of the reset has no effect and the power has to be removed

before correct operation will resume. This situation has been cured by the

addition of a small capacitor, but does at least demonstrate that it is not

71

always sufficient just to apply a reset.

3.8.3 Use of Non-Maskable Interrupts

The memory cycling mode has shown that non-maskable interrupts should

not be used to initiate recovery. However, if they are used for other

purposes, great care must be exercised in their handling. A noisy signal

on the input can cause multiple interrupts and result in a large quantity

of data being stored on the stack, which may result in overflow and the

overwriting of critical data areas. It is therefore advisable to reset the

stack at the beginning of the routine, if the return address is not

required, or to at least check that the stack pointer is within certain

limits.

3.8.4 The Most Important Undeclared Operations

The failure modes which present the major threat to the integrity of a

system are those which have not been discovered and cannot be forseen. Any

amount of time can be spent designing against the effects of known or

expected failure modes, but Inevitably it is the unknown modes which cannot

be designed against fully. It is hoped that high level detection

mechanisms, such as watchdogs, will allow recovery from these types of

failure.

3.9 Summary

This chapter has shown that microprocessors perform a number of

operations which are not declared by the manufacturers. Some of these can

have serious consequences in the design of error detection and correction

techniques, and therefore a knowledge of these modes of operation is

necessary in order to achieve high reliability.

A common failure mode observed during the interference testing,

described in chapter 2. was a transfer of program execution to a non-

72

specific memory location. This can result in instruction fetches from data

areas or operand fields, and any value of op-code can be read. The

functions performed by executing each op-code have been determined for the

8085. 6800. 8048 and 68000, either from published data or from practical

tests. With a knowledge of all the op-codes it is possible to predict the

flow of execution in different memory areas, after an erroneous jump, and

this is discussed in detail in chapters 4, 5. 6 and 7. From these studies

it is possible to design more effective error detection and recovery

processes.

It has been established that the undeclared operations do not always

function in the same way in devices from different manufacturers, and

changes can occur between different revisions of the masks. Therefore the

results may not always be consistent between any two devices. It has been

suggested by Nemmour (67). and by Dehnhardt and Sorensen (28). that the

undeclared codes can be used to enhance programming, but this would seem to

be a very dangerous practice.

73

CHAPTER 4

Erroneous Execution in Data Areas

4.1 Introduction

During the practical tests on the small single board system, described

in chapter 2. it was shown that corruption to the normal flow of execution

could be generated by applying different types of interference to

particular parts of the circuit. The three main elements on the board,

consisting of the processor. EPROM and RAM. could each cause such a

failure. Although the particular failure mechanism is different in each

case, they can be divided into the two main catagories of the

misinterpretation of instructions. and the incorrect return from

subroutines.

The misinterpretation of instructions occurs either due to the

incorrect transmission of data from the EPROM. or to the corruption of the

program counter within the processor resulting in the wrong bytes being

read. Incorrect returns from subroutines occur by the corruption of

either, the stack pointer within the processor, or the stack data stored in

the RAM.

The tests therefore show that this class of failure is likely to occur

in real systems under certain types of interference. It is particularly

important because without knowledge of the behaviour of a system after such

a failure, it Is not possible to effectively design hardware or software

methods to detect and correct system operation. For example, a common

solution to this problem is to attach a hardware watchdog timer but. as

will be shown later, without careful consideration to the design, certain

failures will not be detected by the circuit.

74

4,1,1 Random Jump Within the Memory Map

When program execution departs from its predefined sequence it must

continue at some other location. For the purpose of the following analysis

it is assumed that the location is random within the full memory map.

Therefore the failure mode being investigated is equivalent to the

erroneous execution of a jump instruction to a random address. For a

typical 8-bit microprocessor with a 16-bit address bus this gives a

possible 65.536 different locations at which execution could resume after

the fault.

However, certain parts of the memory map have different properties

dependent on the type and sequence of values which are read when various

locations are accessed. In the following sections three main categories

are studied, these are program areas, data areas and unused areas. The

effects of memory mapped input and output is also considered. This chapter

studies the flow of execution after a random jump into a data area.

4.2 Analysis of Execution

If as a result of an error execution resumes in a data area, the

processor will interpret the data as Instructions and perform the

corresponding operations. Obviously the type of data and its arrangement

in a particular block will depend very much on the application and method

of programming, and in the case of random access memory, will change during

execution of the program. Therefore to analyse this type of execution for

the general case it is necessary to assume that the sequence of bytes is

totally random.

From this it follows that when a data byte is interpreted as an

instruction one of two possible outcomes will be performed. Either, a jump

will be generated causing control to pass to another part of the memory

75

map. or a non-jumping instruction will be interpreted passing control to

the next logical byte. For the latter case the whole process repeats

again. If Pj . the probability of interpreting a jump instruction, is zero

then execution would continue to the end of the data block. However,

assuming random data. Pj will be dependent on the particular instruction

set of the processor, and is given by:-

N J

Where:- N . is the number of bytes which cause a jump or branch.

N-j. is the total number of possible op-codes (256 for a normal 8-

bit processor).

Clearly, P N J the probability of interpreting a non-jumping instruction is

given by:-

P N J = 1 - P j Eqn. 4.2

It follows that. P (K). the probability that K instructions will be
J

executed before control passes to another part of the memory map. can be

obtained from:-
fk—i) P.OO = P M , . P . Eqn. 4.3 J NJ J

An important quantity, which will be used later in chapter 8. is the

average or expected number of Instructions which will be executed before

the jump, N I A V , and is given by:-

Nl = 2 . K . P . (K) Eqn. 4.4

It Is useful for determining both the time taken to initiate recovery, and

the probability of corruption of specific data. The average number of

bytes read, N B A W . will be greater than N I A W because each instruction 3 AV a AV

interpreted can consist of one or more bytes, therefore NE3 A V will be given

76

by:-

°5! L . N L . N
N B A V = ^ ' A V " 1 5 ' ^—TT1 + IT1 E^n'45

L=1 NJ L=l J

Where:- N

L N j a n c l a r e t n e numbers of bytes Interpreted as non-jumping

and jumping instructions of length L

N N J and Nj are the total number of bytes interpreted as non-

jumping and jumping instructions.

To assist in the calculation of both N I A V and N B A V . a short FORTRAN

program was written. It requests a number of details about the particular

instruction set and then calculates the values using equations 4.4 and 4.5.

N B A V is used later in chapter 7 when considering the flow of execution

as it passes between different parts of the memory map. The following

section looks at a few microprocessors and goes through the necessary steps

to calculate the above quantities.

4.2.1 Response of Different Processors

To determine the expected response for a particular processor it is

necessary to make a detailed study of the instruction set. For execution

in the data area the important instructions are those which cause a jump or

transfer of program execution. Appendix 3 lists a number of parameters for

the 8085. 6800. 8048 and 68000 microprocessors, it includes the effects of

the undeclared codes. The importance of chapter 3 in determining the

undeclared op-codes is now clear, as without the knowledge of them

inaccurate results would be obtained.

The instructions are divided into two groups, those which always cause

a jump and those which are conditional on some internal state of

the processor. To include the properties of the conditional jump

instructions, equation 4.1 is modified to:-

77

N + P« ,<i> Eqn. 4.6

Where:- P

C J

(|) i s t n e probability that the ith op-code of N C J conditional

instructions causes a jump.

For ease of calculation it is assumed that there is a 50% chance that

a jump will occur. Although this is not strictly true in individual cases,

overall the assumption is valid. This is because in most cases the

instructions have a logical pair which tests the inverse state of a

particular condition, and therefore any variations in the probabilities

will be cancelled out. In this case equation 4.6 simplifies to:-

N, + 0.5 . N_.

However in a few cases a different approach was adopted. For the 8048

decrement and jump if not zero instructions, it is assumed that they always

cause a jump. Provided that the contents of the particular register

concerned is random, then there is only a 1 in 256 chance that the jump

will not occur. They are therefore grouped together with the other jump

instructions.

Special treatment has been given to the 68000 instruction set. This

is due to the fact that most of the instructions which can cause a transfer

of control have several possible outcomes. For example, the branch on

condition code instruction first makes a test and if not true, no branch

occurs. This is assumed to have a probability of 0.5 for the same reasons

as above. If a jump does occur it is assumed to be random, in which case

there is a 50% chance that the address will be odd. The processor can only

read instructions from even addresses and generates an exception if an

78

attempt is made to access an odd address. Therefore if a branch on

condition code instruction is executed, the probability of no jump is 0.5.

the probability of generating an exception is 0.25 and that of a successful

jump is also 0.25. To simplify the calculations the op-codes for this

instruction are split in the same proportions to give an effective number

of op-codes for each outcome. A similar treatment has been adopted with

the other Instructions and the proportions in which they are divided are

given in appendix 3.

4.2.2 Results from the Analysis

Using the data In appendix 3. together with the FORTRAN program

mentioned in section 4.2. values of P. . N I A W and N B A W have been evaluated
J AV AV

for the 8085. 6800. 8048 and 68000 processors. The values of these

quantities are given in table 4.1. The upper curve on each of the graphs

in figures 4.1 (a)-(e) show the probability that a certain number of

instructions, or less, will be executed before a jump. The other curves

will be explained in the following section.

4.3 Transfer from the Data Area

The analysis so far has only considered the number of instructions or

bytes read before a jump. It would also be useful to know where execution

will continue so that methods can be developed to generate an ordered

recovery to the correct program. Consideration of the jump instructions

reveals four distinct types of halts, restarts, returns and unspecified

jumps. These are shown in figure 4.2 and are described in detail below.

4.3.1 Halt Instructions

Halt instructions are those which prevent further execution of any

instructions until an interrupt is applied to the processor. If no

provision is made to exit from this state, then no recovery is possible.

79

4,3.2 Restart Instructions

Restart Instructions cause the processor to jump to a specified

location in the memory map. The particular address varies between

processors and can either be generated internally or is read from another

location. In the case of the 8085. restarts jump to the low end of memory

and continue to execute from that point. If no consideration for erroneous

restarts have been made then values read from those locations will be

interpreted as instructions.

Turner (104). In an example of a program for a security system, states

that it is all right to place the code over the restart vectors if they are

not being used. This would be acceptable as long as the system functions

without errors and is not susceptible to external interference, however

this is difficult to guarantee. If restarts do occur then execution will

resume at some location within the program, but will not necessarily pick

up correct instructions immediately, as shown in chapter 5.

The program in the example is short enough to finish before the end of

the restart table, in particular, it does not occupy the restart 7

location. This is of special importance because the op-code for the

restart instruction Is FF , and it is usually the case that unused locations

of ROM or EPROM are also left at FF. Therefore if such a code is

erroneously executed the processor will jump to the restart location,

immediately read another restart instruction and continue to loop

indefinitely. This condition is similar to the execution of a halt in that

no other instructions will be executed, except that a restart saves the

return address on the stack. If multiple restarts occur, the stack will

grow through the entire memory map destroying all the data.

On the 6800 a restart is generated by the software interrupt

80

instruction. It differs from the 8085 in that the address at which

execution resumes is read from the top end of memory. Therefore if those

particular locations have been used for some other purpose an unspecified

address wiil be read.

The restart instructions are of great importance in returning program

control to a recovery routine. In the following analysis it will be

assumed that the restart vectors have been set. and that full recovery is

achieved if any of the restart instructions are executed.

4.3.3 Return Instructions

If a return instruction is read, then execution will resume at the

address obtained from the top of the stack. This will result in control

passing back to the program provided that two conditions are met. Firstly,

the last Information pushed onto the stack before the fault must have been

a valid program address, and secondly, both the stack pointer and the stack

data must not have been corrupted by the fault or subsequent processing.

In the following sections it will be assumed that a valid program

address is not read from the stack, and therefore execution continues at

some undefined location, which is considered to be random in nature. This

is a reasonable approach if the programming technique has been adopted

where data is stored on the stack immediately after entering a subroutine.

In this case the return address from the subroutine only occupies the last

position on the stack for a very short time.

4.3.4 Unspecified Jumps

The last of the instructions are those which jump to a location

dependent either on the contents of the bytes following the instruction or

the contents of a register. In this case it is assumed that a random jump

occurs.

81

4.4 Modification to the Analysis

Having divided the jump instructions into the four groups mentioned

above, it is now possible to split the probability function, of equation

4.3. into its constituent parts corresponding to each group. The new

functions will be proportional to the original probability and will depend

on the relative number of each instruction type. For instance the

probability of a restart P R S T (K) is given by:-

N R S T
P R S T ° ° = IT- • P J (K > E < n - 4 8

J

Where:- n R S T i s t h e e f f e c t , v e number of restart instructions.

Similar equations can be obtained for the other three groups.

Figures 4.1 (a)-(e) show graphs for the probability function for each

of the processors under investigation. Two graphs (c) and (d) are given

for the 8048. one for each of the manufacturers. This is due to the

dissimilar instruction sets. However, no noticeable variation can be seen

in the results despite the differences.

The graphs show that the proportions of the different types of jump

vary enormously between processors. Assuming that recovery is only

obtained from restarts, as mentioned in section 4.3.2. the 68000 has the

best response by recovering on 95% of the occasions of a random jump into a

data area. This is due to the large number of undeclared op-codes which

effectively generate restarts by initiating exception handling. The 8085 is

the next best at 32%, followed by the 6800 at 4%. The 8048 has no restart

instructions and therefore cannot recover in this manner. These figures

represent the worst case, as recovery can be initiated after jumps to other

parts of the memory map, and these will be considered later in chapter 7.

82

4.5 improvements in Recovery

In order to increase the chances of successfully completing recovery

it is necessary to initiate the recovery process as quickly as possible, so

that the corruption of data is kept to a minimum. The easiest method of

initiating the process Is via the restarts, therefore the aim is to

increase the number of jumps caused by restarts and to reduce the number of

instructions executed prior to the jump.

The obvious solution is to seed the area with restart instructions,

additional to those found randomly within the data. The problem is to

establish the optimum number and position of the extra codes. An initial

reaction could be to split the data into separate blocks so that execution

can not transfer from one to another. This requires a string of adjacent

single byte restart instructions equal to the length of the longest

instruction. It will be shown later that this solution does not represent

the best use of resources in most cases.

4.6 Simulation of Execution in Data Areas

When considering the execution in non-random data, the derivation of

accurate equations to represent the response of the processor becomes very

complex. An alternative approach, which was adopted, is to simulate the

process on a computer. The program developed generates a block of random

data which can then be modified to Include certain types of instructions,

such as restarts. Then, starting at a particular location, it translates

the data into a sequence of instruction types, and calculates both the

number of instructions and the number of bytes encountered before a jump.

The data structures considered have consisted of a certain number of

random bytes separated by a given number of a particular instruction type.

Execution begins randomly between the start of the first block and the

83

start of the second block. In each complete run the response is evaluated

for a number of sequences, each one starting with a new set of data.

For a paricular sequence, the probability. P' (K). that K instructions

are executed from N Q sequences, is given by:-

N K
N

Eqn. 4.9

Where:- N is the number of sequences where K instructions are executed.

This will give a representative result provided that N c is large.

Initial runs were carried out with totally random data to provide a

means of determining a reasonable number of sequences for each run. The

value chosen was 5000. which consistently gave results within 2% of the

results obtained from the original analysis, proving that both methods are

consistent.

4.7 Optimum Seeding of Data

The optimum seeding of data was established by completing a number of

runs on the simulator with different data structures. A selection of the

results are shown in table 4.2. The percentage overhead signifies the

additional memory requirement, for a particular arrangement. However, for

a given overhead there are a number of ways in which the data can be

seeded.

4.7.1 Data Structures for the 8085

With the 8085 and a 20% overhead the following structures were

considered: 20 bytes of random data followed by 4 adjacent single byte

restarts. 15 followed by 3, 10 followed by 2 and finally, 5 followed by 1.

Assuming that execution of a restart generates a successful recovery, table

4.2 shows that the original suggestion of totally separating the data

blocks does not give the best chance of recovery. It also shows that no

84

advantage is achieved by separating the blocks by more than the length of

the longest instruction.

The best solution for the 8085 Is to spread the seeded data, such as

the Restart 7 instruction (op-code FF) . evenly throughout the data area.

Not only does this provide the greatest chance of recovery, but it also

gives the lowest average for the number of instructions executed before a

jump. One disadvantage of this arrangement is that execution is not

restrained within a block. It can skip over the restart instructions and

therefore there is no limit to the number of instructions which could be

read.

However, the probability of execution continuing for a long time is

small, and in this case a higher level of fault detection, such as a

hardware watchdog timer, should provide the necessary coverage.

4.7.2 Data Structures for the 6800

The 6800 gives a totally different set of results. The optimum

solution is to spread the restarts (sofware interrupt instruction code 3F)

within the data area, but rather than placing them individually, they

should be positioned in groups of two. The reason for this is the high

number of double and triple byte Instructions in the instruction set, which

increases the probability of skipping over individual bytes.

4.7.3 Data Structures for the 8048

A different approach is necessary for the 8048, because the

instruction set does not contain any restart type instructions. To

initiate recovery it is necessary to jump to a given location which

contains a recovery routine. This can be achieved using straight forward

jump instructions, but requires a greater overhead, as more than one byte

is needed for a given jump. The problem is to ensure that the instruction

85

is executed correctly, so that the address is not interpreted as an

instruction.

One possible solution is to make the address equal to the op-code of

the instruction. For example, the op-code 04 causes a jump to page 0 of

the address map. with the low order address being read from the second

byte. Therefore if execution enters a string of 04's at any point, control

will always transfer to address 004. Similar effects can be obtained with

the other jump instructions. An alternative method is to place one or more

no-operation (NOP) instructions before the jump.

However, in both cases it is important to consider the last byte in

the string. If just two bytes, such as 04, are used to separate the data

blocks then the second byte can be interpreted as an instruction. This

happens if either, a double byte Instruction is read immediately before it,

or if a direct jump to that byte occurs. This would result in a jump to an

unspecified location dependent on the first byte of the next data block.

By replacing the last byte with a NOP (00), execution in this case

will continue in the next data block and gives the opportunity of recovery

if It reaches the end of the block. Test results have shown that this does

in fact improve the probability of recovery.

The seeded data used for the results shown for the 8048 in table 4.2,

where 04, 04, 00 for the triple byte strings, and 04, 00 for the double

byte strings. In the first case control can pass to address 004 or 000,

and in the latter case only to 000. For a single recovery address the

first sequence could be changed to 00, 04, 00. Different recovery

addresses can be obtained using different jump instruction codes.

Table 4.2 shows that the optimum response is obtained with the double

byte strings. This is due to the. large proportion of single byte non-

86

jumping instructions in the instruction set. Separate runs for 8048's from

different manufacurers were not carried out due to the close agreement

obtained from previous analyses. Instead, the data used contained the

average number of particular instruction types.

4.7.4 Data Structures for the 68000

For the 68000 the level of recovery from execution in the data area is

95% without any modification to the system, apart from the addition of a

recovery routine. it is unlikely that any appreciable improvement will be

obtained by altering the structure of the data area. Therefore no further

analysis was carried out on this processor.

4.8 The Effect of Data Block Size on Recovery

Having obtained the optimum recovery string length for each of the

processors, a number of further simulations were carried out. These were

designed to determine the effects on recovery, of altering the data block

size. Obviously, a reduction in block size results in a greater

requirement for memory, to store the extra recovery strings, and therefore

has a greater overhead.

The results from these runs are given in figure 4.3. The graph shows

that a large improvement in recovery is obtained with only a small increase

in the data area. Further increases continue to make an improvement, but

with a reduced effect.

For all three processors the greatest benefits are obtained with an

increase in data area of around 20%. However, in most systems it is rare

that the whole data area is used, in which case the data should be seeded

with sufficient restarts to fill all the unused locations. This provides

an immediate improvement without the need for any alterations to the

hardware. If further improvements are required, additional memory is

87

necessary.

Figure 4.4 shows how the average number of instructions executed,

reduces as the amount of seeded data increases. The effects on the 8048

are less than that for the other two processors because the original

average is lower and the seeded data generates proportionally fewer

recoveries.

4.9 Summary

This chapter has shown how erroneous execution in data areas can be

detected and can then lead to recovery. All that is required is to force

the processor to jump to a specific location where a recovery routine is

initiated.

The 68000 microprocessor is particularly good in this respect, due to

the large number of illegal and unassigned instructions which invoke

exception handling. For the 8085. 6800 and 8048 it is necessary to seed

the data area with certain values to improve the probability of recovery.

The particular values required for each processor have been discussed,

together with their optimum grouping and positioning.

The results from this analysis are used in chapter 7 where the flow of

erroneous execution between different memory areas is considered.

88

CHAPTER 5

Erroneous Execution in Program Areas

5.1 Introduction

This chapter looks at the sequence of events following a random jump

into a program area, and derives equations for the probabilities of

different outcomes. Unlike the data area, the program area contains a

logical sequence of instructions and therefore a different approach is

necessary. Again the sequence of bytes will be dependent on the

application and the method of programming. In order to analyse the general

case, bytes in the program area are divided into different instruction

types, and then the probabilities of different sequences of these types are

studied.

The first analysis adopts a more detailed approach than the second by

allowing a greater number of byte types. It therefore gives better results

but has only been developed to cater for processors having single, double

or triple byte instructions. However, it could be extended to include four

byte instructions, such as those found on the Z80. The second analysis is

less accurate but can be applied to any processor regardless of instruction

length.

5.2 Detailed Analysis

When execution jumps randomly into a program area the first byte read

can either be a valid op-code from the program, or it can be an operand

from a multi-byte instruction. In both cases the processor will interpret

the byte as an instruction and perform the corresponding operation.

Figure 5.1 shows the type of byte which can be read. Clearly, the

probability of reaching each of the particular states is dependent on the

type of instructions in the program. P R (0) , the probability of resuming

89

valid instructions at the first cycle after the erroneous jump, is given

by:-

PRCO) = — Eqn. 5.1
B

Where:- N (is the total number of instructions in the program.

N B Is the total number of bytes in the program area.

P D X (0) . P T X X (0) and P T X X <0) , the probabilities of entering the operand

fields of double and triple byte instructions immediately after the

erroneous jump, are given by:-

N DI
P D A (0) = — Eqn. 5.2

P T X X (0) = P T X X (0) = TTT E < ^ 5 3

Where:- N Q (is the number of double byte instructions.

N T) is the number of triple byte instructions.

It is now necessary to consider the flow of execution after each of

the above states has been reached. For the case where a valid instruction

has been read, the processor will continue to fetch and execute valid

Instructions, as It will have resynchronised instruction fetches with the

program. However, this situation may not continue indefinitely if certain

instructions are encountered. For example a return from subroutine

instruction will cause an undefined jump If the stack pointer has been

corrupted, or if the last information pushed onto the stack was data rather

than a return address.

Where an operand byte is read, it could be interpreted in such a way

that control is passed to another part of the memory map. if the operand

byte is interpreted as a non-jumping instruction, then another byte would

90

be read, which again could either be a valid instruction or another operand

byte. As with the analysis of execution in data areas, it is useful to

know where execution continues if a jump occurs. Therefore the same

approach has been adopted where the jump instructions are divided into four

separate groups of halts, restarts, random jumps and returns.

The possible sequence of events after the initial jump is shown in

figure 5.2. Provided that the probability of entering the operand field is

less than one. execution will eventually perform a jump to another part of

the memory map or resynchronise instruction fetches with the program. In

order to calculate the likelihood of each of these two outcomes it is

necessary to determine all the possible ways of transferring from one state

to another.

This Is achieved by considering all the possible sequences of bytes

which allow transfer between the states. The probability that a particular

sequence will occur is obtained by multiplying together the probabilities

that certain types of bytes will appear in specified locations in the

sequence. The overall probability of a particular transfer, from one state

to another, is then obtained by adding together the probabilities that each

sequence for that transfer will occur.

A list of all the possible sequences for each of the transfers,

together with the derivation of the probability equations, is given in

appendix 4. It shows that each value can be determined provided that the

probability of certain bytes appearing in given locations is known. These

can be evaluated by assuming equal use of each instruction for a particular

processor and random data in the operand fields, or by analysing the

occurrence of certain types of bytes in programs under investigation.

It is then possible to find expressions for the probabilities that the

91

processor will have resumed execution of the program or will have

transferred to another part of the memory map at. I, instruction cycles

after the initial erroneous jump. These expressions are also given in

appendix 4. The final outcome of resuming or transferring is therefore

given by the probability equations when I is equal to infinity. In most

cases the probability that operand bytes are still being read after about

five cycles is small, and therefore it is only necessary to consider the

first ten cycles.

Again It is important to calculate the average number of instructions

executed, but in this case it is necessary to calculate a value for both of

the possible outcomes. N R ^ . the average number of instructions executed

before resuming, is given by:-

Similar expressions can be obtained for the average number of instructions

executed before the other outcomes.

Clearly the type of instructions in a particular instruction set. and

the way in which the instructions are used, will affect the overall

results. A comparison of different instruction sets and programs is given

In the following section.

5.2.1 Comparison Between Instruction Sets

The response of execution in program areas will obviously be dependent

on the arrangement and frequency of use of different Instruction types.

The analysis in the previous section requires a total of 24 different

parameters to enable a solution. These can be obtained directly from the

instruction set by assuming that each op-code is used the same number of

times, and that the data in the operand field is random.

NR AV
1=1

(P_(l) P_(l D)

P_(crf>)
Eqn. 5.4

92

Table 5.1 contains results obtained, using the previous assumpt ions,

for the 8085. 6800 and 8048 microprocessors . For all three p r o c e s s o r s it

shows that if execution enters a program a r e a , then there is over a 90%

probability that instruction fetches will resynchronise with the program.

It also indicates that the number of instructions executed before reaching

one of the final states is small . The average value in all c a s e s is less

than two, implying that very few erroneous instructions will be executed

and consequently little corruption of data will occur .

Only one figure has been given for the average number of instructions

executed before a transfer to another part of the memory map. b e c a u s e e a c h

individual transfer gave almost identical results. Similarly, for the

8048. one set of results is shown, as only slight variations were observed

between processors from different manufacturers.

Figures 5.3 (a), (b) and (c) show graphs of the relationship between

the probability of reaching a particular outcome and the number of

instructions executed, for e a c h of the p rocessors . They indicate the short

transition period between the initial erroneous jump into the program area

and the transfer to the next state. In all c a s e s the probability of still

reading an operand byte after five instruction cyc les is less than 0.5%.

5.2.2 Comparison Between Actual Programs

The results from the previous section give an indication of the

inherent properties of a particular instruction set. However, there are

many instructions, such as the logical operators which are rarely used , and

others such as the jump instructions, which are frequently used. Therefore

the previous results are unlikely to be representative of actual programs

using a particular instruction set.

In order to evaluate the effects of different instruction code usage .

93

a number of actual programs were analysed. Results from these ana lyses are

given in table 5.2. Programs A and C are monitor programs for small s c a l e

8085 and 6800 based systems respectively. They were chosen to give a

comparison between software designed to perform similar operations but

using a different instruction set. The table shows that the probability of

resuming valid instructions, and the average number of instructions

executed before reaching the final outcomes, are almost identical. There

is a slight variation in the probabilities where control transfers to

another part of the memory map. but these values are small anyway.

Programs B. D. E and F are taken from industrial control and data

transmission systems. Again, c lose agreement is obtained for the

probability of resuming valid instructions and for the average number of

instructions executed. These values are also similar to those given by the

monitor programs.

Therefore it s e e m s that for erroneous execution in program a r e a s , the

probability of resychronising instruction fetches with the program is

approximately 95%, regard less of the processor . This suggests that,

despite di f ferences in the instruction se ts , particular instruction types

tend to be used in the s a m e proportions.

5.3 Simplified Analysis

The previous analysis is suitable for p rocessors having single, double

and triple byte instructions, and could be extended to include four byte

instructions. However, to enable compar isons to be made with the 68000,

which has instructions up to five words long, a more simplified approach is

necessary . This is achieved by consider ing fewer execution states and less

complex transfers. Figure 5.4 shows the different states for this analysis

and the transfers between them. It shows that attempting an instruction

94

fetch from any of the operand fields is represented by the s a m e state.

The probability of resuming valid instructions immediately after the

erroneous jump. P R (n > - remains unchanged, and clearly the probability of

entering the operand field. P^W). is given by:-

P X«D) = 1 - P R (0) Eqn. 5.5

Again, if a valid instruction is read, the processor will continue in

step with the program. However, an instruction fetch from the operand

field will either pass control to another part of the memory map or the

next logical byte will be read. The probability of interpreting a jump

instruction is dependent on the proportion of bytes in the operand field

which will c a u s e a jump. If the data within the field is considered to be

random, then the probabilities of executing different jump instruction

types can be obtained from the proportion of e a c h particular type within

the instruction set. Alternatively they can be evaluated from the analysis

of particular programs under investigation.

If the next logical byte is read, this analysis a s s u m e s that the

probability of reading a valid instruction is dependent on the ratio of the

number of instructions in the program to the total number of bytes in the

program area , which is equal to P R (0) . This is effectively equivalent to

random fetches within the program area until either a valid instruction is

read or a jump is generated.

It follows that the probabilities that the processor has resumed or

jumped at the end of I. instruction c y c l e s after the erroneous jump, are

given by:-

P R (I) = P R (i - 1) + P R (0) . (1 - P) . P x (i - D Eqn. 5.6

P R S T (,) = P R S T (I ' 1 5 + P X R S T • P X (M) E ^ 5 7

Where: - P is the probability of reading any jump instruction type.
J

95

Ppg-pfl) is the probability of reaching the restart state within I

instruction cyc les of the erroneous jump.

P X R S T is the probability of reading a restart type instruction in

the operand field.

Similar expressions can be obtained for the other jump instruction types.

The probabilities of the final outcomes of resuming or transferring, is

given by the above equations when I is equal to infinity. In pract ice only

the first ten cyc les are important.

A compar ison between the results from this analysis and the previous

more detailed analysis is given in the following sect ion. It shows that

despite the different approach the results are in fairly c lose agreement.

5.4 Compar ison Between the Detailed and Simplified Analyses

The simplified analysis descr ibed above was carr ied out on e a c h of the

programs studied in section 5.2.2. and the results from these programs are

shown in table 5.3. By making a compar ison with the previous values in

table 5.2 it can be seen that both approaches give similar results.

Therefore the simplified analysis is an acceptable approximation to

erroneous execution in program a r e a s .

The main reason for developing this approach was to enable a

comparison to be made between the 8-bit p r o c e s s o r s and the 68000. which has

a 16-bit architecture. To obtain a set of results for the 68000. a monitor

program for a small single board system was investigated. Values for P (0)

and P D (0) were obtained by counting instructions within the software. The

other parameters were estimated by assuming that the operand fields

contained random data. This was n e c e s s a r y due to the large instruction map

of 65.536 c o d e s , which makes the determination of the effect of particular

values extremely difficult.

96

The results obtained for the 68000 are given in table 5.3. It shows

that the probability of resuming valid instruction fetches is around 20%

lower than for the 8-bit p rocessors . This difference is made up by the

increase in the number of restarts, in the form of exception handling. As

will be shown in section 5.6. this results in a better c h a n c e of detecting

errors quickly, and improves the prospects of recovery.

The relationship between the probability of reaching a particular

outcome, and the number of instructions executed, is given in figure 5.5.

The graph shows that the 68000 r e a c h e s the final outcome, of execution in

the program area , in approximately the s a m e time as the other p r o c e s s o r s .

This Is further supported by the average number of Instructions executed,

which also shows c lose agreement.

5.5 Verification of Results

In order to check the a c c u r a c y of the results, tests were carr ied out

on the monitor program for the 8085. From a set of random numbers, 200

a d d r e s s e s were selected which fell within the program area . Then starting

at e a c h of these a d d r e s s e s , the bytes were translated into instructions and

the flow of execution, which the processor would follow, was determined.

Only two possible outcomes were cons idered , that of resuming valid

instructions and that of a transfer to another part of the memory map. The

probability of resuming c a m e to 94.1%, and that of a jump to 5.9%.

Compar ison between these values and those in table 5.2, obtained from the

detailed analysis , show direct agreement proving that the p r o c e s s gives

accura te results.

5.6 Improvements in Recovery

To improve the c h a n c e s of recovery the p rocessor must be able to

detect that an error has occurred . This c a n be achieved by software in one

97

of two ways. Firstly, at a low level by increasing the probability that a

restart will be generated, or secondly at a higher level, by encouraging

execution to resynchronise with correct instructions and to detect the

error from within the program. The first solution will give the quickest

recovery, but as will be shown in the following sect ions , it is not easy to

attain.

5,6.1 Low Level Detection

This can be achieved, in the s a m e way as in the data a r e a , by

increasing the probability that a restart instruction will be interpreted,

it is therefore n e c e s s a r y to force the restart o p - c o d e s into the operand

fields within the program. The most commonly used operands are those which

contain program or data a d d r e s s e s . T h e s e can be forced to contain

particular values by the suitable positioning of memory blocks.

For example, many 8085 based systems contain RAM starting at address

2000 hexadecimal , and as a result a significant proportion of the third

bytes in triple byte instructions contain the value 20. By moving the data

area to the address range FFOO to F F F F these values are replaced by F F , the

restart 7 instruction. A similar arrangement is possible for the 6800 by

moving the data area to the address range 3F00 to 3 F F F , so that more bytes

of the value 3F (op-code for a software interrupt) appear in the operand

fields.

This type of procedure could also be employed with the 68000. For

this processor , address ranges A000 to A F F F and F000 to F F F F c a n be used .

These are all values of unassigned o p - c o d e s which initiate exception

handling if an attempt is made to execute them. This provides a much

larger data area of up to 8192 bytes if both blocks are used. This method

cannot be used for the 8048 b e c a u s e it does not have any restart type

98

instructions in the instruction set.

Table 5.4 shows the effect of increasing the number of restart type

instructions in the operand fields of the 8085 and 6800. It contains
X X X

results given by the detailed analysis for three programs. A . B and C .

where the modifications have been made. T h e s e correspond to the original

programs A. B and C in table 5.2. By comparing the values it c a n be s e e n

that the number of restarts are increased quite substantially, but still do

not form the major outcome from execution in this a rea .

A further means of increasing the number of restarts would be to move

the program area as well. However in most small systems containing only

one program area , this is not possible b e c a u s e the memory block must be

positioned to coincide with the reset , restart and interrupt vectors.

Also, in the c a s e of the 6800. b e c a u s e it only has one restart type

instruction, both the data area and the program area could not be moved to

utilise this effect.

For both p rocessors this is only suitable for data blocks up to 256

bytes long. Any larger a reas would i n c r e a s e the number of o p - c o d e s ,

adjacent to the restarts, within the operand field. For both the 8085 and

the 6800 this would reduce the c h a n c e s of recovery by introducing more

undesirable jump instruction types. Therefore, unless the data blocks c a n

be split up into 256 byte lengths, this does not provide a means of

increasing error detection which would Improve the c h a n c e s of recovery.

5.6.2 High Level Detection

Another way of detecting that an error has occurred is to encourage

execution to resume valid instruction fetches from the program. It is then

possible to test certain conditions from within the software. This would

seem to be the better solution in the c a s e of the 8085, 6800 and 8048

99

b e c a u s e there is already such a high probability that execution will

resychronise with the program.

This can be further increased by the same methods descr ibed in the

previous section. However, the positions to which the blocks of memory

should be moved, are to those which increase the number of non- jumping

instruction types within the operand fields. Ideally, single non- jumping

instructions should appear in the second byte of double byte instructions

and also in the third byte of triple byte instructions. Double non- jumping

types should appear in the second location of triple instructions.

It would be possible to write programs such that the above conditions

were met at all t imes, but this would impose tight restrictions on the

software, by eliminating the use of certain a d d r e s s e s and data.

5.7 Summary

This chapter has shown that after an erroneous jump into a program

area for the 8085, 6800 and 8048, execution has the probability of about

95% that it will resychronise instruction fetches with the program. Slight

variations in this figure c a n be obtained by suitable hardware design and

programming, but the most efficient method of detecting errors is from

within the software. A number of these software m e c h a n i s m s are descr ibed in

chapter 8.

For the 68000 processor the probability of resychronisat ion is much

lower at 72%. and the probability of a restart or exception is around 26%.

Therefore it is n e c e s s a r y to have a recovery routine at the restart

a d d r e s s e s and to have fault detection within the software.

The results from these ana lyses , together with those from the previous

chapter, are used in chapter 7 where the flow of execution between

different memory a reas is considered .

100

C H A P T E R 6

Erroneous Execution in Unused and Input/Output Areas

6.1 Introduction

This chapter looks at the response of different p r o c e s s o r s to an

erroneous jump into unused a r e a s of the memory map. and those parts which

are used for input and output devices. It then goes on to consider ways in

which recovery can be initiated from these types of execution.

6.2 Execution in Unused Areas

There are two distinct types of unused locations. Those parts of the

memory map which are not populated by memory dev ices , and those which do

reference particular devices but the locations within them are not used.

In the latter c a s e it has already been demonstrated, in chapter 4. that

with data a r e a s any spare locations should be used to s e e d the information

with restart instructions. However, with program a r e a s , no improvement in

recovery is obtained by dispersing the unused locations within the

software. Therefore they appear as a single block at the end of the

program area , or as smal ler groups separat ing program modules.

In most control systems the software is written into read only memory

In the form of PROM or EPROM. and consequently any unused locations are

left unprogrammed. usually taking the value F F in hexadecimal . In the c a s e

of the 8085 and 68000, instruction fetches from these locations generate

restarts. For the 8085 the restart 7 instruction is interpreted, and for

the 68000 an unassigned instruction is encountered which initiates

exception handling. Therefore recovery can be performed by a suitable

error handling routine.

For the 6800 and 8048, the o p - c o d e F F is interpreted as a non- jumping

instruction and therefore s u c c e s s i v e locations will be a c c e s s e d until

101

another memory area is reached . This can be prevented by using the

locations to pass control to a recovery routine, and can be achieved by

adding restart or jump instructions. For the 6800 all the spare locations

should be set to 3 F , the code for a software interrupt. Whereas , for the

8048 the value 04 can be used to generate a jump to location 004, in the

same way as that descr ibed in section 4.7.3. However the s u c c e s s of this

method for the 8048 depends on the amount of the memory map which is used ,

and the state of the memory bank se lect flip-flop after the error. This is

d i s c u s s e d further in section 6.2.3.

6.2.1 Unpopulated Memory Areas

Erroneous execution in unpopulated a reas of the memory map is

dependent on both the processor being used and the hardware attached to it.

in particular it is determined by the state of the data bus when no memory

devices are driving it high or low. When this state is known it is

possible to establish the instructions interpreted and how execution will

proceed.

This normally forces the processor to jump immediately to another

location or to repeatedly read a fixed value and to continue executing the

same instruction until a used block of memory is encountered. However, in

the c a s e of some processors which have a multiplexed address and data bus.

the address at which an instruction fetch is attempted remains on the bus

during the read cycle if there are no other external inf luences. This

results in a se r i es of consecut ive numbers being interpreted a s

instructions, with appropriate adjustments made where multibyte functions

are encountered. For this c a s e It is possible to trace through the

s e q u e n c e of instructions which will be executed, for a particular

instruction set, starting at e a c h possible address .

102

It is very simple to influence the response of a p rocessor when

reading unused memory locations. In this state the data l ines will tend to

float, and by attaching resistors between them and the power supply rai ls,

any value can be forced onto the bus. This can be used to generate a jump

to a speci f ic location and then to execute a recovery routine.

The following sect ions d i s c u s s the response of e a c h of the p r o c e s s o r s

being studied, and proposes methods of improving the c h a n c e s of recovery in

each c a s e .

6.2.2 Unpopulated Areas of the 8085

The 8085 has a multiplexed address and data bus. and as a result,

values read from unpopulated memory a reas are dependent on the capac i tance

and loading of the bus. Under normal conditions of the bus being connected

directly to buffers, the capac i tance and loading is such that the low order

byte of the address always remains valid during the subsequent read if it is

not driven to any speci f ic value.

As mentioned in the previous sect ion, this results in consecut ive

values being interpreted as instructions. T h e s e values can fall anywhere

in the range 00 to F F , and therefore there are 256 different positions

within the s e q u e n c e where execution can c o m m e n c e . The outome from entering

at e a c h of these locations has been determined by tracing through the

s e q u e n c e of instructions which the processor would interpret. For

s e q u e n c e s where conditional jump instructions are encountered, it was

assumed that the probability of a jump would be 50%. Such s e q u e n c e s were

divided proportionally into the different outcomes which could be

generated. Then the effective number of locations within the 256 byte page

which c a u s e each of the possible outcomes was calculated. T h e s e results

are given in appendix 5. together with the probability of e a c h of the

103

transfers.

As in the previous chapters , divisions into halts, restarts, random

jumps and returns can be made, but in this c a s e a number of speci f ic jumps

are also possible. The probabilities of e a c h of these groups, and the

average number of instructions executed before them, are given in table

6.1.

However, the speci f ic jumps occur to locations in the range C000 to

F F F F . and in most small s c a l e control applications it is unlikely that many

of these locations will be populated with memory. In this c a s e execution

will continue as before until another transfer is reached , and the effects

of this arrangement are shown In table 6.2.

The results indicate that on half of the o c c a s i o n s , of a random jump

into unpopulated a r e a s of the 8085. a halt will be executed. If no

mechanism is built into the system to recover from this situation then

total failure will occur . The other outcome which has a high probability

is that a return instruction will be executed. As mentioned in section

4.3.3. the address to which control p a s s e s in this c a s e depends on the

contents of the stack, and can either be a valid program address or a

random location.

The results also show that it is highly probable that a large number

of erroneous instructions will be executed before leaving the a r e a , with

the average for all transfers at around 40.

This type of execution can be totally eliminated by suitable loading

of the bus. as indicated In section 6.2.1. By applying pull-up resistors

between the data lines and the power supply rail the value F F will always

be read when unpopulated memory a r e a s are a c c e s s e d . This will result in

the interpretation of the restart 7 instruction, and recovery can then be

104

performed by a suitable routine.

6.2.3 Unpopulated Areas of the 8048

The 8048 u s e s a multiplexed address and data bus when a c c e s s i n g

external memory, and consequently a similar response to the 8085 is

observed when unpopulated a reas of the memory map are a c c e s s e d . Again the

low-order byte of the address remains on the bus during the read cyc le

under normal buffering arrangements.

The effect of a jump into e a c h of the 256 different possible locations

In the observed s e q u e n c e has been studied, and the results are given in

appendix 5. They show that on 88% of the o c c a s i o n s , of a random jump into

unpopulated a r e a s , a transfer to speci f ic locations occur . On 9% of the

o c c a s i o n s , a return instruction will be executed passing control to the

address stored at the top of the stack. The remaining 3% will c a u s e a

relative jump, dependent on the contents of the accumulator , to a location

within the 256 byte page being a c c e s s e d . This p a s s e s control back into the

unpopulated area where execution will continue until another transfer is

reached . When considering all t ransfers, the average number of

instructions executed is approximately 14.

For the 8048 the response of the processor after a transfer from

unpopulated memory is very dependent on the particular hardware

arrangements. This is due to its architecture which Is very different from

normal 8-bit p r o c e s s o r s , and is descr ibed in more detail in section 3.5.

Instruction fetches are limited to a 4K address s p a c e and are

referenced by a 12-bit bus. However, only 11 bits of the program counter

operate in the normal way. The 12th bit is set by the state of the memory

bank select flip-flop when a cal l to a subroutine or an absolute jump

o c c u r s , or is loaded from the stack when a return is executed. The state

105

of the flip-flop is only affected by the two instructions; se lec t memory

bank 0 and se lect memory bank 1.

This effectively splits the address range into two separate 2K blocks.

Therefore the execution following a transfer from an unpopulated area is

dependent on the state of the memory bank select flip-flop and the amount

of memory which is used. Figure 6.1 shows four common memory arrangements

for the 8048 which leave part of the memory map unused, in e a c h of these

arrangements a transfer out of the unpopulated area can result in execution

reentering the same area. Due to the layout of the instruction map. this

can occur a number of t imes, and in some c a s e s results in the possibility

of executing several hundred instructions before reaching the final state.

The final states reached after a random jump Into the unpopulated a rea for

each of the four arrangements, and for both conditions of the memory bank

select flip-flop, are given in table 6.3.

It shows that, under certain conditions, there is a high probability

that a return instruction will be reached , in which c a s e the address at the

top of the stack, after the error, determines the location at which

execution will continue. if the address is within the unpopulated a r e a ,

then the p r o c e s s will repeat, and execution of another return instruction

will probably occur . In this way the processor tends to s e a r c h through the

stack looking for a valid program address . However, during the erroneous

execution, a number of stack locations are corrupted, and if a valid

address is not found within the first few positions on the stack then an

infinite loop will be formed. If a valid program address is found then

execution will return to the program, but the memory bank se lect flip-flop

may be left in the wrong state. In this c a s e , if it is not reset before a

call or an absolute jump is executed, then control will pass to the wrong

106

memory block.

Execution in the unpopulated a reas can be controlled in some c a s e s by

suitable loading of the bus. The effect of jumping into a string of 04 's

has been d i s c u s s e d in previous sect ions , and this method can be employed

here by forcing the value onto the bus with suitable resistors connected to

the power supply rails. Unfortunately, this is only effective all of the

time for memory arrangements C and D. For the other two conditions

execution will loop continuously within the upper 2K block if the memory

bank select flip-flop is set to one.

An alternative solution is available for memory arrangement B. by

loading bits 1 to 7 on the bus with the values 1110010. This forces the

values E4 and E5 alternately into the unpopulated area . The corresponding

instructions interpreted by the processor are jump to address in page 7 and

select memory bank zero. In this way control will always transfer to

location 7E5 regardless of the position of the erroneous jump into the

unpopulated area .

For memory arrangement A, there is no simple method of ensuring that

control p a s s e s back to the program area . If the memory block is external

to the processor , then partial decoding can be used to create another image

of the program in the upper memory bank, and the solution for memory

arrangements C and D will then work. Otherwise, it is n e c e s s a r y to ensure

that a program address is always left on the stack and that the memory bank

select flip-flop is reset before e a c h call or absolute jump instruction in

the program. This will ensure that on most o c c a s i o n s control will pass

back to the program, provided that the stack and stack pointer are not

corrupted by the fault. For the o c c a s i o n s when an infinite loop is formed

it is n e c e s s a r y to rely on a higher level of recovery provided by external

107

hardware.

6.2.4 Unpopulated Areas of the 6800 and 68000

Both the 6800 and 68000 microprocessors have separate address and data

Puses . When a c c e s s i n g unpopulated a reas the data bus floats high and

therefore the value F F is read. For the 68000 this is interpreted as an

unassigned instruction and c a u s e s the immediate initiation of exception

handling, and provides a good method of recovery without any alteration to

the hardware.

In the c a s e of the 6800, the value F F is interpreted as a triple byte

instruction to store the X register using extended address ing . This means

that instruction fetches will occur at every third s u c c e s s i v e byte until

another memory block is encountered. One method of recovery from this

situation is to trap execution when it r e a c h e s the next block. However

this could result in a substantial delay if a large unpopulated a rea

exists, as the average number of instructions interpreted will be

proportional to the size of the block. Also the contents of the location

F F F F will be destroyed.

A better solution is to load the data bus so that the value 3F appears

in all the unpopulated a r e a s . This will Immediately generate a software

interrupt and enable rapid recovery without any further corruption of data.

6.3 Execution in Memory Mapped I/O

When Input and output devices are mapped into the normal memory a r e a ,

it is possible that an erroneous jump may occur into these locations. in

the c a s e of output l ines the response will be the same as that for unused

locations, as they will have no active effect on the bus. Therefore the

same approach can be adopted as for the unpopulated a r e a s , in the form of

bus loading to force certain values to be read.

108

For Input lines the external data will be interpreted as an

instruction and the corresponding function will be performed. If a number

of different ports appear in consecut ive locations they will appear to have

the same effect as a data a rea . However, it is common practice to

partially decode port a d d r e s s e s so that the same data will appear in a

number of consecutive locations, sometimes as much as 4K. As in the c a s e

of unused locations, this will result In an immediate jump or the

repetitive execution of the s a m e instruction. In the latter c a s e , the

average number of instructions executed will depend on the length of the

instruction interpreted and the size of the input a rea . The particular

response will change according to the state of the input l ines.

It has been a s s u m e d that the state of the lines is random in nature,

and from this the probabilities for the different outcomes have been

calculated for particular instruction sets. The results for the 8085. 6800

and 68000 are given in table 6.4.

For the 8085. execution will on most o c c a s i o n s exit from the block of

input data, but may take a substantial amount of time to do so if large

blocks exist. Alternatively, a number of specif ic jumps are possible. In

the previous ana lyses for execution in program and data a r e a s , these codes

produced random jumps b e c a u s e the operand fields were not dependent on the

particular code. In this c a s e the operand bytes are the s a m e as the code ,

and therefore jumps to speci f ic a d d r e s s e s are generated. Due to the layout

of the instruction map, these c a u s e control to transfer to particular

locations in the range C000 to F F F F .

For the 6800, again the majority of c a s e s will result in execution

leaving the area. However some of these are due to relative branches

backwards out of the beginning of the block. If the preceding a rea is

109

unused and the data lines have been left floating, then execution will pass

back to the input a rea and form a continuous loop until the data on the

port c h a n g e s .

Execution for the 68000 will tend to continue through to the end of

the a r e a or will generate a restart.

This type of execution can be eliminated in all three p r o c e s s o r s by

fully decoding the ports so that the input data only appears at single

locations. In the c a s e of the 8085 there is no need to use memory mapped

input, unless more than 2048 lines are required, and therefore should be

avoided if possible.

6.3.1 Execution of Input Data by the 8048

If no external memory is connected to an 8048 the bus can be used as a

port, and could be used for input data. In this c a s e the data will appear

at all memory locations which were previously left unpopulated in memory

arrangement A shown in figure 6.1. An erroneous jump into this a r e a with

the memory bank select flip-flop set at one, will provide no means of

e s c a p e as execution will be restricted within the upper 2K memory block.

With the flip-flop set at zero, the probability of forming an infinite loop

will depend on which half of the memory map the erroneous jump o c c u r s . For

the upper half the value is 96.7%, whereas for the lower half it is only

12.0%.

The formation of infinite loops should be prevented if at all possible

so that it is not n e c e s s a r y to rely on external hardware to initiate

recovery. This can be achieved by avoiding the use of the bus as a port.

However, if it is required it should be used for output and the same

precautions taken as those d i s c u s s e d for unpopulated a reas .

no

6.4 Summary

This chapter has shown that an erroneous jump into both unused and
input/output a r e a s can result in a complex s e q u e n c e of execution, which can
last several hundred instruction cyc les or even form infinite loops. In
the latter c a s e , recovery can only be initiated by the intervention of some
additional hardware.

Methods of controlling execution within these a r e a s have been

d i s c u s s e d , and a simple solution for most p r o c e s s o r s , of loading the data

bus. has been descr ibed.

The results obtained are used in the following chapter where the flow

of execution between different memory a reas is considered .

111

C H A P T E R 7

Flow of Execution Between Different Memory Areas

7.1 Introduction

The previous ana lyses have produced methods of determining the flow of

execution within certain types of memory a r e a s . This chapter cons iders the

transfer of execution between these a r e a s , to evaluate the overall response

of a processor after an erroneous jump to any location within the memory

map. Figure 7.1 shows the various states and transitions which will be

studied. Areas of memory mapped output are included with the unused a r e a s ,

as they have the s a m e effect. Four final states are present in the model,

these indicate that the processor is expected to halt operation, to enter

an infinite loop, to resume executing valid instructions or to recover from

the error.

7.2 Method of Analysis

This analysis u s e s a similar approach to that used for the erroneous

execution in program a r e a s and the equations derived are of the s a m e form.

For example, the probability of execution being in a particular memory area

after a given number of transfers, between the different a r e a s , is given

by:-

P X i (0 = ^ V M) - P X 1 X I E l " - ™

Where: - Xi represents a particular memory area .

X] represents e a c h of the four different a reas .

P XjXi i s t h e P r o l 3 a t) " i t y o f t n e transfer from Xj to Xi.

I is the number of transfers after the initial error.

The probability equations for reaching e a c h of the final states are

given by:-

112

P x f (.) = P X f (l - l) + 2 : P X j (M > . P X J X f Eqn.7.2

Where: - Xf represents a particular final state.

Solutions to these equations can be found for all positive integer

values of I. provided that the initial conditions and the probabilities for

e a c h of the transfers is known. The methods of evaluating these quantities

are given in the following three sect ions.

7.3 Initial Error

By assuming that the initial error c a u s e s a jump to a random location

within the memory map. it follows that the probability of entering e a c h of

the different a reas is proportional to the relative size of the block. In

this c a s e the size of the block includes all a reas where that particular

memory type appears . If certain memory devices are not fully decoded then

multiple copies of the data will appear in the map and therefore it will be

more likely that execution will enter that a rea .

The probability of entering the program area immediately after the

erroneous jump, P p (l) . is given by:-

N P B
P (1) = ^ p E - E q n . 7.3

T B

Where: - N D Q is the total number of program bytes which appear in the
r b

memory map.

N T n is the total number of bytes in the memory map.

PpCI) . P y H) and PjCD. the probabilities of entering the data a r e a s , the

unused a reas and the input a r e a s , are found in the same way.

7.4 Transfer from Different Memory Areas

Erroneous execution in different memory a reas has been considered in

the previous three chapters. They have shown that transfer out of e a c h of

113

the a r e a s is generated in up to five particular ways. T h e s e are; halts,

restarts, unspecified jumps, returns and specif ic jumps. Also, in the c a s e

of program a r e a s , execution can resychronise with the program and resume

valid instruction fetches.

T h e s e transfers can be easily converted into those given in figure

7.1. Clearly, the execution of halts and resuming valid instruction

fetches correspond directly and need no alteration. The restarts can have

a number of different effects, dependent on the processor and the contents

of particular locations.

In systems such as the 8085. where a restart c a u s e s execution to

c o m m e n c e at a given location, it is normally the c a s e that read only memory

will be mapped to these locations. if no consideration for erroneous

restarts has been included it is not uncommon for part of the program to

reside in this area. Under these conditions a restart will c a u s e a

transfer into a program area and execution will continue in the manner

descr ibed in chapter 5.

For other systems such as the 6800, the address at which execution

continues after a restart, is read from a particular location. Again, read

only memory will normally be mapped to this a rea , but in this c a s e ,

regard less of whether program or data appears at these locations, execution

will transfer to some arbitrary location within the memory map. If the

particular location is considered to be random, then a transfer similar to

the initial jump will occur . This is acceptable when analysing a single

restart for the general c a s e . However, any number of a particular restart

in a speci f ic system will always give the same result. This is considered

further in section 7.5.

For an erroneous restart in both types of system, recovery from the

114

error can be achieved by the addition of a suitable recovery routine which

is always executed when the restart o c c u r s .

The unspecif ied jumps c a u s e execution to transfer to arbitrary

locations within the memory map. similar to the condition descr ibed above.

T h e s e transfers are considered to be random in nature and therefore wiil

have the s a m e effect as the initial jump.

The returns c a u s e transfers dependent on the contents of the top of

the stack. In the following analysis it is assumed to be random and the

corresponding transfers are the same as the initial jump. This is a

reasonable assumption if the stack is used to store data as well as return

a d d r e s s e s , or if it is corrupted by the fault.

Finally, the specif ic jumps always c a u s e a fixed transfer to a

particular memory a rea .

7.5 Execution of an Infinite Loop

The type of execution which has not been determined In the previous

sect ions is the formation of an infinite loop. In this c a s e the p r o c e s s o r

continually executes a fixed s e q u e n c e of instructions, and no recovery is

possible without some external intervention. The formation of loops in

three different a r e a s have been considered . In all c a s e s the analysis

estimates the probability of executing the same bytes twice, and if this

happens it is a s s u m e d that a loop has formed. In real systems this

situation will not necessar i ly result in a loop, b e c a u s e data may change in

such a way that returns and conditional jump instructions will act in a

different way the second time that they are executed. Therefore the

analysis will tend to make an over estimate of the true value.

7.5.1 Loops in Data Areas

The first area in which a loop has been considered is the data a rea .

115

For this c a s e , at the end of each transfer after the initial error, a

calculation is made to determine the expected number of data bytes which

will have been read. This is obtained from the following equation:-

I
N B E (D = X P D (k) • N B A V Eqn. 7.4

k=l

Where:- N g E (l) i S t n e e x P e c t e d number of data bytes read after I

transfers.

N B A y is the average number of bytes read during erroneous

execution in data a reas .

Assuming that transfers into the data area are random, the probability of

entering a loop in the data a rea , P ^ (l) . is given by:-

N (I)
P L D (,) = P D (,) • "ITT- E< n' 7 5

DA

N D A is the actual number of data bytes in the memory map, it does not

include the extra bytes which appear if partial decoding is used. This is

important b e c a u s e without full decoding identical strings appear in more

than one location, and therefore It is more likely that a loop will form

with a particular string.

7.5.2 Loops In Unused Areas

Execution in unused a reas follows a number of fixed s e q u e n c e s for a

given processor and hardware arrangement. If a particular s e q u e n c e is

executed twice it is a s s u m e d that a loop has formed. Again this will tend

to give an over estimate, for the s a m e reasons as before. For this

analysis it is n e c e s s a r y to evaluate the probability that execution has

been in the unused area . For each state the following expression is u s e d : -

p u x i (l) = ^ p u x] (M) • pxjxi E ^ 7 6

116

Where: - p y x i (l) i s t h e P r o o a o " i t y o f execution in a given area after

execution in an unused area .

Xj corresponds to e a c h of the memory a r e a s .

XjXi represents the transfer from area Xj to Xi.

From this it follows that the probability of entering the unused area

twice, P (j u (|) ' is given by:-

4
p u u = ^ p u x i (,) • p x iu E * n - 1 1

1=1

Where: - P v . . . is the probability of a transfer from memory area Xi to the

unused area .

However, not all double entries into the unused a r e a s will c a u s e a loop,

b e c a u s e in some c a s e s a number of different s e q u e n c e s appear in the area .

Therefore P y j M . the probability of forming a loop in the unused a r e a , is

given by:-

P L U (,) = P U U L • P U U (,) E q n ' 7 8

P U U L i s t h e P r o b a b i , i t y o f forming a loop after entering the unused area

twice. in the following examples It is given a value equal to the

proportion of s e q u e n c e s which c a u s e specif ic transfers. This will a lso

give an over estimate for the probability of forming a loop, as the s e c o n d

transfer may not be the s a m e as the first. However the figures from the

overall analysis in the following sect ions, using the previous assumpt ions,

indicate that the probability of forming a loop is small . Therefore the

inaccurac ies in the model cannot have much of an effect on the final

results.

7.5.3 Loops in Input Areas

The formation of loops in the input a reas is treated in the s a m e way

as those for the unused a r e a s , and similar expressions to equations 7.6 and

117

7.7 are obtained. Therefore the probability of forming a loop in the input

a rea . R L |Cl>, is given by:-

P L I (I) = P I I L • P l i (l > E q n ' 7 9

Where:- P ((is the probability of entering the input a rea twice.

P |) L is the probability of forming a loop after entering the

input a rea twice.

P j) L is evaluated by consider ing Individual arrangements of the memory map.

For a single block it will take the value of 1. For multiple blocks which

are separated by other memory types, a value equal to the reciprocal of the

number of different blocks will give accurate results for the first reentry

to the a rea , but will be less accurate on subsequent entries. For adjacent

blocks execution can pass between them and the formation of a loop is more

likely. If the probability that execution p a s s e s through the a rea is high,

which is true for most p r o c e s s o r s , it will tend to reach the end of the

last block regardless of the starting point. In this c a s e the probability

P (| L tends to the value of 1.

7.6 The Expected Number of Instructions Executed

In the previous chapters the average number of instructions

interpreted during erroneous execution in e a c h of the memory a r e a s , has

been establ ished. Now by combining these values with the probabilities of

passing through the different a r e a s , it is possible to estimate, the

expected number of instructions executed. N l £ . between the original error

and reaching the final outcome. In the following examples it has been

obtained from:-

* (4- \
Nl^ = Pv-<l> • N I A W . Eqn. 7.10

1=1 \ t? X l A V 7
Where:- P y , (i) is the probability that execution is in the 'i'th memory

118

area at I states after the error.

N l A y . is the average number of instructions executed for the

corresponding memory area .

A more accurate result could be obtained by consider ing the average

number of instructions executed before each of the possible transfers.

T h e s e could then be combined with the probabilities of the corresponding

transfers, and would give individual values for e a c h of the outcomes.

However, in most c a s e s the averages do not vary significantly, and

therefore the overall value will be a reasonable approximation. The c a s e s

where a large variation does exist are for input and unused a reas where no

fault tolerance has been considered .

Once the expected number of instructions has been establ ished for a

particular system, the average length of time of erroneous execution c a n be

determined from the clock frequency. This is a very important quantity

when consider ing watchdog des igns , and is d i s c u s s e d further in sect ion 7.8.

It is also useful in determining the probable damage, to the data within

the system, that will be c a u s e d by the execution of erroneous instructions,

this is studied in section 7.9.

7.7 The Effects of Memory Map Usage on Erroneous Execution

The previous sect ions have built up a model for the flow of execution

following an erroneous jump to a random location in the memory map. From

this model a ser ies of investigations have been carr ied out to study the

effects of varying the amounts of different memory types. The improvements

achieved by adding the fault tolerant features, descr ibed in the previous

chapters , have also been studied. Clearly the results vary between

p r o c e s s o r s , and they are d i s c u s s e d individually in the following sect ions.

119

7,7,1 Memory Maps of the 8085

The values used to obtain results for this section are taken from the

ana lyses in the previous chapters. For e a c h of the memory a reas both fault

tolerant and non-fault tolerant structures are considered . For the data

area the fault tolerant c a s e consists of single restarts separating 5 byte

blocks, which is the optimum seeding with a 20% overhead. For the program

area the results from the standard and modified versions of program B are

used. Both the unloaded and loaded conditions of the bus are studied for

the unused areas . To simplify the results, no a r e a s of input data are

considered in this sect ion.

From this information the effects of varying the amounts of e a c h

memory a rea , and the addition of the fault tolerant features, have been

establ ished. When varying the size of one memory type it is inevitable

that at least one other must alter in size. To overcome this problem, the

size of e a c h particular memory type was varied between 2 and 62 K bytes,

while the other two filled the remainder of the s p a c e In equal proportions.

The effects of adding the fault tolerant features can then be seen by

comparing the results between the unmodified and the modified arrangements.

T h e s e are shown in graphical form in figures 7.2, 7.3, 7.4 and 7.5.

In e a c h c a s e the results for the non-fault tolerant memory a rea

include a recovery routine, so that the execution of any restart generates

an ordered recovery from the error. Without the routine, the restarts in

the 8085 c a u s e execution to transfer to the low order a d d r e s s e s . In most

c a s e s without any fault tolerance, the program will reside in this area .

Previous results have shown that around 95% of these transfers will c a u s e a

resumption of program execution. Therefore the removal of the recovery

routine forces nearly all of the outcomes, which previously generated

120

recovery, to resume program execution. A se r i es of tests were carr ied out

to check this arrangement, and they showed almost identical results for the

formation of loops and the execution of halts.

7.7.1.1 Fault Tolerant Program Area

Figure 7.2 shows the effects of adding fault tolerance to the program

area , by forcing restart Instructions into the operand fields. It shows

that the probability of recovery i n c r e a s e s with the program size , but even

with a large program most of the errors will result in a resumption of

program execution. Therefore it indicates that the most significant

improvements can be obtained by detecting the error after execution has

reentered the program.

However, this does not mean that no consideration should be given to

the positioning of memory types. In most systems memory map decoding is

arbitrary, and a number of different arrangements can be obtained with the

s a m e hardware, and only minor modifications to the interconnections between

decoders and memory devices. Therefore, if this concept is considered at

the design phase , no added cost in hardware or software design will be

incurred. Also the hardware reliability will not be reduced, as there are

no additional components.

The added advantage of detecting the error by the erroneous execution

of a restart, is the speed of recovery, which will be initiated within a

few instruction c y c l e s . If detection is carr ied out within the program, a

long delay is possible before reaching the checking routines, and even then

they may fail to detect the error. It would then remain uncorrected until

detected at a higher level, and would result in a further delay. This is

particularly important in critical high speed applications where errors

must be detected and corrected quickly.

121

7.7,1.2 Fault Tolerant Data Area

The effects of seeding the data area are shown in figure 7.3. As

expected the improvements obtained increase with the size of the data a r e a ,

but in all c a s e s it is only moderate. This has to be offset against the

increase in the amount of hardware necessary . In the example 20% extra

memory is required which will produce a corresponding d e c r e a s e in the

hardware reliability of the system.

This gives a c lear demonstration that adding fault tolerance for a

certain c l a s s of fault can reduce the reliability in connection with

another fault type, and therefore can result in an overall degredation of

the full system performance. It has been suggested by Castil lo et al (22)

that transient failures are up to 50 times more frequent than permanent

failures. This figure was obtained for medium sized computers which would

normally be subjected to stable electr ical and environmental conditions.

For industrial control conditions it is expected that the transient error

rate is much higher, and therefore the seeding of the data a rea may produce

an overall improvement. However, other methods of recovery can be employed

which are more likely to give a greater Improvement. T h e s e are descr ibed in

chapter 8, and require little extra hardware.

A disadvantage with these methods is the delay between the fault and

the detection of the subsequent errors , as mentioned in the previous

section. This is further illustrated in figure 7.5 (a), where the effect

on the average number of instructions executed before reaching the final

outcome, is shown for data a r e a s with and without fault tolerance. The

seeding of the data area results in fewer instructions being executed, and

will give a more rapid recovery. it is therefore useful in time critical

systems, particularly with large data a reas .

122

in systems which have extra capacity within the data a rea , an

improvement will always be made by using the spare locations to seed the

area with restarts, as no additional hardware is required.

7.7.1.3 Fault Tolerant Unused Areas

The effects of loading the bus. so that restart instructions are

interpreted when execution enters an unused a r e a , are shown in figure 7.4.

Once again the improvements achieved increase with the size of the a r e a ,

but in this c a s e they are quite substantial even for a small a rea . The

only extra hardware that is required are 8 pull up resistors. T h e s e

components are highly reliable when compared with integrated circuits, and

will have a negligible effect on the overall hardware reliability. Also

failure to open circuit by itself will not c a u s e total system failure, it

will only result in the response to an error reverting to the non-fault

tolerant condition.

An additional advantage of this arrangement is the reduction in the

number of erroneous instructions executed following a fault. This is shown

in figure 7.5 (b). Not only does it reduce the time taken to initiate

recovery, but it a lso reduces the probability of destroying data within the

system. The advantages of adding fault tolerance to the unused a r e a s are

very significant, and therefore should be incorporated in all 8085 systems.

7.7.2 Memory Maps of the 6800

The effects of adding fault tolerant features to the 6800 are shown in

figures 7.6, 7.7 and 7.8. As with the 8085, the non-fault tolerant memory

a r e a s are shown with a recovery routine. The restart on the 6800 reads the

address , at which execution resumes , from the high order memory area . If

the vector has not been set an arbitrary jump will occur , which is a s s u m e d

to be random. The memory map is considered to be arranged with the data

123

area at the low order a d d r e s s e s , and the program area at the high order

a d d r e s s e s . This Is the normal arrangement so that non-volati le memory is

resident at the restart and interrupt vectors, and so that direct

addressing can be used for frequently a c c e s s e d data in the zero page. With

this situation a jump into the non-fault tolerant unused a rea results in a

transfer back into the program area . Therefore most restarts, without the

vector set. will c a u s e a resumption of program execution.

Figure 7.6 shows the effects of adding fault tolerance to the program

area . A similar result Is obtained to the 8085 and the s a m e conc lus ions

can be drawn.

For the data a rea , fault tolerance is added in the form of two restart

bytes separating 10 byte blocks of data, representing the optimum

arrangement for a 20% overhead. A very different set of results are

obtained, and these are shown in figure 7.7. This Is due to the ratio

between the number of halt and restart instructions in the 6800 instruction

map. In this c a s e the seeding of the area with restarts does have a

significant effect. especial ly for systems with large data a reas .

Therefore it is more likely to produce an overall improvement in system

performance despite the additional hardware required. In any c a s e , spare

bytes should be used in pairs to separate blocks of data.

For the unused a r e a , the results are shown in figure 7.8. Again a

very different response is obtained from that given by the 8085. B e c a u s e

of the memory layout, erroneous execution in the non-fault tolerant unused

a rea , leads to a resumption of program execution. Therefore it might be

suggested that fault detection could be carr ied out within the program.

But as execution continues sequentially through the unused a r e a , a very

long delay could be generated. For example, the average number of

124

instructions executed in a 6K block will be 1024, b e c a u s e triple byte n o n -

jumping instructions are interpreted. Therefore fault tolerance in the

form of bus loading should be included in all 6800 systems to enable rapid

recovery from erroneous execution in unused a reas . As with the 8085. this

has a negligible effect on the hardware reliability.

7.7.3 Memory Maps of the 68000

For the 68000 significant Improvements cannot be obtained by forcing

restart instructions into the operand fields, as very few erroneous

instructions are interpreted during execution in program areas . As with

the other p r o c e s s o r s , on most o c c a s i o n s it is n e c e s s a r y to detect erroneous

execution in the program area from within the software. Very little effect

is possible on the execution in data a reas as very few instructions will be

executed. Also, approximately 95% of the transfers out of this a rea will

be restarts in the form of exception handling.

For the unused a rea it was shown, in section 6.2.4, that instruction

fetches will generate restarts by reading the code for an unass igned

operation. This occurs without any modifications. However in later

versions of the device, the code may be ass igned a function. Therefore in

view of future developments, a better solution would be to force a valid

restart instruction onto the bus.

The necessi ty of setting the restart vectors and providing a recovery

routine are obvious from the d iscuss ions for the other p rocessors . For the

68000 it is even more important b e c a u s e of the generation of restarts at

e a c h unused location. In the same way as the 6800 an arbitrary jump will

occur if the vector is not set. If the address to which execution

transfers is also unused another restart will be generated. This will

repeat in an infinite loop with no means of e s c a p e , except from external

125

intervention from hardware. Due to the large addressing range of 16 M

bytes, it is likely that only a small proportion will be used , especia l ly

for industrial control, and therefore the setting of the vectors is even

more critical.

7.7.4 Memory Maps of the 8048

Memory map variations for the 8048 are fairly limited. With 12

address l ines, instruction fetches are restricted to only 4 K of memory.

Random a c c e s s memory is mapped to separate locations and cannot be executed

as instructions. However fixed data can appear in the 4 K map and may

therefore be read as instructions under fault conditions.

Due to these tight constraints, very little c a n be done to the program

area to improve error detection. Again It is n e c e s s a r y to carry out the

checking p rocess from within the program. Seeding of the data a rea was

investigated in sect ion 4.7.3, and showed that improvements were very

slight due to the a b s e n c e of a restart instruction in the processor .

However, as the data is always known before execution, it is possible to

check for any s e q u e n c e s which would result in undesirable execution, s u c h

as an infinite loop. If such s e q u e n c e s are found, the data could be

rearranged to eliminate them.

The type of execution expected for different unused blocks was

d i s c u s s e d in section 6.2.3. Bus loading was shown to be particularly

important, as without it there is a high probability of forming an infinite

loop for certain arrangements.

B e c a u s e there is less scope for the detection and correction of errors

by the processor , it is n e c e s s a r y to rely more heavily on an external

hardware monitor, such as a watchdog timer. However, this can result in

long delays before correct execution is restored, due to the t ime-out

126

period of such devices.

7.8 Number of Erroneous Instructions Executed

In the previous sect ions the ana lyses have led to a figure for the

expected number of erroneous instructions executed between the initial

error and reaching the final state. This gives an indication of the

probable length of erroneous execution, but does not produce limits for the

most likely events.

T h e s e can be achieved by assuming that the distribution of the

probability. P ^ M - that N instructions or more will be executed, follows

an exponential curve. P N)

(N) Is then given by:-

P N | (N) = e ~ A " N Eqn. 7.11

Where: - A is a constant.

It c a n be shown that the expected value for this function is equal to

the reciprocal of A. From this information it is possible to determine

NI L > the limit of the number of instructions executed for a given

proportion. P £ , of the errors. T h e s e quantities are related by:-

N I L = - N I E . In P E Eqn. 7.12

Where: - N l £ is the expected number of instructions executed, determined

from the previous sect ions.

For example from equation 7.12. Nl^ takes the value 22.2 when N l £ is equal

to 9.65 and P £ Is equal to 0.1. This means that where the expected number

of instructions executed is 9.65. 90% of the errors will result in less

than 23 instructions being executed before reaching the final states. This

gives c lose agreement with figure 4.1 (a) for execution in the data area of

the 8085, which has an average number of instructions executed of 9.65. It

therefore suggests that this is likely to be a reasonable approximation for

the overall execution.

127

These limits are useful in estimating the proportion of errors which

will be detected by a watchdog for various time out periods. Another use

for these values is in estimating the damage to data within the system.

This is d iscussed further in the following section.

7.9 Probability of Data Corruption

Having establ ished a method of estimating the number of erroneous

instructions executed, it is possible to determine the probable effects

that this will have on the data within the system. Every instruction has

the effect of changing at least one quantity, as they ail alter the

contents of the program counter. For the 8085, the effective number of

instructions which change other quantities is shown in table 7.1, and the

probability that a single instruction will not c a u s e a corruption is a lso

given. This a s s u m e s that the instructions interpreted are totally random

in nature. For N Instructions the probability, P

N < ~ . (N) , t n a t n ° corruption

o c c u r s , is given by:-

P N C (N) = P N C (1) N E q n 7 1 3

Figure 7.9 shows how the probability, that no corruption will occur to

the accumulator and the B register, d e c r e a s e s as more instructions are

executed.

From values obtained using the previous sect ion, this leads to the

estimation of the lower bounds on the probability that no corruption to a

particular data element will occur . Using the previous example, of less

than 23 erroneous instructions being executed, the probability of no

corruption occurr ing to the B register in an 8085 Is 33.0%. Whereas the

probability of no corruption to the Accumulator is only 0.01%.

7.10 Summary

This chapter has used the information derived from the previous three

128

chapters , to determine the flow of erroneous execution following a jump to

a random location in the memory map. The effects of varying the amounts of

different memory types have been studied for a variety of p r o c e s s o r s , and

the relative merits of the different methods of introducing fault tolerance

to e a c h of the areas have been establ ished.

It has been shown for all p rocessors that bus loading, to c a u s e

restarts in unused locations, is a very effective way of initiating rapid

recovery. For example, with the 8085 the proportion of errors resulting in

recovery c a n be increased from around 20% to over 90%. This level of

improvement is obtained when only a small proportion of the memory map is

used, which is the c a s e in most small s c a l e industrial controllers.

The positioning of memory a r e a s , to introduce particular values into

the operand fields of programs, provides improvements of less than 10% and

also i n c r e a s e s the speed of recovery. Although the benefits are small the

method should be considered when designing systems, as these improvements

are obtained without involving any additional costs .

Seeding data a r e a s with restart instructions requires a substantial

inc rease in hardware If spare capacity is not available. Not only does

this i n c r e a s e costs but it also reduces the overall hardware reliability.

Only the 6800 showed the capability of a significant improvement in

recovery, and therefore it Is the only processor for which it is worth

considering the use of this method. However, In order to provide an

overall improvement the increase In reliability due to the recovery from

transient faults must be greater than the reduction in reliability due to

permanent hardware failures. Therefore significant improvements can only

be obtained, by this method, in systems which suffer from a high proportion

of transient failures.

129

Finally, methods of determining the limits of the number of erroneous

instructions executed, have been presented. These are used in the

following chapter, where examples of adding fault tolerance to a speci f ic

system will be studied.

130

C H A P T E R 8

Select ion of Error Detection Mechanisms

8.1 Introduction

In the previous chapters it has been shown that corruption to the flow

of program execution can occur in a number of ways. For this reason ,

methods have been proposed for the detection of erroneous execution so as

to enable the early initiation of recovery p r o c e s s e s . So far the

individual methods have been considered in isolation when applied to

general systems. This chapter looks at a specif ic system and investigates

the effects of adding e a c h of the mechan isms , to establ ish which ones

should be adopted. In addition, some hardware mechan isms to detect

erroneous execution are also d i s c u s s e d .

8.2 Speci f ic System Considered

The specif ic system considered Is a general purpose single board

computer based on the 8085 microprocessor . It has been used for a number

of applications within the British G a s Corporation. The system contains 4K

EPROM. 2K RAM. four 8 bit input ports and four 8 bit output ports. The

memory locations at which these devices can be a c c e s s e d are shown in figure

8.1. The EPROM, RAM and e a c h input port are se lected as 4K blocks,

therefore the RAM is mapped into two adjacent 2K blocks and e a c h individual

port can be a c c e s s e d from 4096 different locations. All the output ports

appear within a 4K block and are individually selected by the states of

four address lines. Therefore if all four lines are active, within the 4K

block, all the output ports will be selected together. This means that

individual output ports can be se lected from 2048 different a d d r e s s e s which

appear in blocks of 256 locations. Pul l -up resistors are connected to all

the data lines so that the value F F is read from all unused locations.

131

8.3 The Effects of Adding Error Detection Mechanisms

A number of ana lyses , on the effects of adding error detection

m e c h a n i s m s , have been carr ied out based on the layout of the system

descr ibed above. Results from these investigations are given in table 8.1.

Some fault tolerance was considered in the design of the system and has

already been incorporated. Therefore, to show the advantages of including

those features, additional studies have been performed on the corresponding

design without the features.

8.3.1 The Non-Faul t Tolerant System

The results for the entirely non-fault tolerant arrangement are

labelled 'A' in table 8.1. They show that a large number of jumps into

random locations within the memory map terminate with the entering of the

wait state, by the execution of a halt instruction. This is due to the

property of the unused locations which tend to lead execution towards the

halt instructions. Another observation made is the large number of

erroneous instructions executed before reaching one of the final states,

and this is due to the large portion of the memory which is mapped to very

loosely decoded input ports. In most c a s e s execution p a s s e s straight

through these a r e a s repeatedly executing the s a m e instruction several

hundred times.

From this set of basic results, the aim is to se lect error detection

m e c h a n i s m s to improve the response of the system under fault conditions.

It has been shown previously that some methods can produce an overall

degredation. despite an improvement with regard to an individual fault

type. This is usually as a result of increased complexity which is

inevitable when adding extra features. Therefore, it is c lear that any

additions must be both simple and effective against the considered fault.

132

For the error detection mechan isms studied in the previous chapters it

has been shown that their effectiveness is related to the size of the

particular memory block. Therefore the greatest improvements are obtained

by implementing the features associated with the largest blocks. For the

system considered , these consist of unused a reas and input ports.

8.3.2 Removal of Input Areas from the Memory Map

The input ports take up one quarter of the memory map, and therefore

will have a significant effect on the respose to a random jump.

Arrangement ' B ' cons iders the effect of removing the input ports from the

memory map. Table 8.1 shows that little change occurs in the probability
0

of reaching each of the final outcomes. However, a vast d e c r e a s e , of

nearly 95%, in the average number of erroneous instructions executed, is

produced.

A similar response is observed in section 8.3.4 when the ports are

removed while other features are present. A reduction in erroneous

execution is Important to limit the amount of damage which might be done

during that time. It a lso enables rapid recovery, which is required in

control situations where time is crit ical. It has been indicated so far

that the aim is to initiate a recovery p rocess . However, the recovery

p r o c e s s may not be s u c c e s s f u l if too much damage is done to the data within

the system. A d iscuss ion of the effects of delays in initiating a recovery

routine, on the s u c c e s s of recovery. Is presented by P r e e c e et al (81).

Therefore the improvements obtained by removing the ports are highly

desirable, and can be easily implemented in this c a s e . The 8085 allows for

separately mapped I/O by the use of the IO/M line from the processor . This

can be connected directly to the enable pins on the input buffers, and does

not require any other logic. Therefore, no detrimental effects to the

133

response to other fault types is expected, and clearly this modification

should be included.

8.3.3 Addition of a Recovery Routine

In the previous arrangements d i s c u s s e d , no specif ic recovery is

possible, as no provision has been made for it to occur . On approximately

one quarter of the o c c a s i o n s , execution does resume with the interpretation

of valid instructions. In a control application where all data is read in

at the beginning of each cyc le , the resumption of program execution will

give full recovery at the start of the next cycle . However, it is normally

the c a s e that information is passed from previous calculat ions, and

therefore a resumption of program execution will not provide acceptable

recovery. This mechanism is a lso unsuitable in c a s e s where a single wrong

output can be harmful to the system.

In these c a s e s it is n e c e s s a r y to include recovery software to

generate an ordered return to correct execution. This is written most

effectively as a restart routine, to enable easy a c c e s s and to

automatically initiate recovery when a restart instruction is erroneously

executed. The effect of adding a recovery routine, which is entered by any

restart instruction, is given by arrangement ' C in table 8.1. It shows

that over 15% of the final outcomes transfer from a resumption of program

execution to a complete recovery. However, the full benefits are not

real ised until efforts are made to force erroneous execution to interpret

more restarts.

The addition of a recovery routine does add to the complexity of the

system. If spare capacity is not available extra memory will be required

which will result in a reduction in overall hardware reliability. However,

provided that the routine is smal l , failures resulting from its

134

implementation will be negligible in relation to the benefits obtained, and

therefore it should be included.

8.3.4 Forcing Restart Instructions into the Unused Areas

The majority of the memory map is unused, and it was shown in chapter

6 that these locations could easily be made to appear as restart 7

instructions by the addition of pull-up resistors to the data l ines. This

modification is given in 'D ' . and represents the system as it was designed,

it demonstrates the vast improvements which can be obtained by this method,

lifting the proportion of errors leading to recovery to well over 90%.

However, the number of instructions executed before recovery can still be

very high, and this is due to the input a reas in the memory map.

Arrangement ' E ' shows the effect of removing the input ports from the

map while retaining the other features. As before, very little change

occurs in the proportion of the final outcomes, b e c a u s e , as indicated

previously, most execution p a s s e s straight through and r e a c h e s the unused

a r e a s following these blocks. However, the number of erroneous

instructions executed is reduced to single figures. in 90% of the c a s e s

less than 4 will be executed.

As Indicated above, implementation of this feature is straight forward

and has a negligible effect on hardware reliability, and should therefore

be included in the system.

8.3.5 Modifying the Program and Data Areas

it was shown, in chapters 4 and 5. that modification to the data and

program a r e a s does not produce large improvements In the error detection

process . Both these a r e a s are relatively smal l , in the system being

studied, and therefore little improvement is to be expected. The effects

of adding methods of encouraging recovery during erroneous execution in the

135

program and data areas are shown In arrangements F, Q. H and I. For the

program area , this consists of organising the software so that more restart

instructions appear in the operand fields. For the data a r e a s , restart

instructions are interspersed within the memory to limit erroneous

execution. Both methods do provide further improvements, but only of the

order of 1%.

The implementation of these techniques is complex with the placing of

tight restrictions on the software, or with the addition of extra hardware.

These both require significant development r e s o u r c e s , and can themselves

lead to design errors. The costs involved in implementation are not

justified for the level of improvements that can be obtained, and therefore

these techniques should not be included.

8.3.6 Detection Within the Software

The previous sect ions have shown that the preferred arrangement , for

the speci f ic system cons idered , is labelled ' E ' in table 8.1. In this c a s e

recovery from erroneous execution is expected on 93% of the o c c a s i o n s .

However, 6% of the time execution will resume with the valid interpretation

of instructions. Some of these can be detected by a watchdog timer, and

this is d i s c u s s e d below. For the other c a s e s it is n e c e s s a r y to detect the

errors from within the software.

If these errors are not detected, software fault tolerance against

other failures, such as memory errors , may operate incorrectly. For

example, the errors could c a u s e a jump into a reasonab leness test without

the preceeding code being executed. If the test failed the p rocessor would

retry that particular block of code and reapply the test. It could then

interpret the error as a transient and continue execution assuming that

full recovery had been achieved, when in fact a higher level of recovery

136

was required.

The flow of execution c a n be monitored in a number of ways.

Chudleigh (23) suggests the use of a ' re lay- runner ' in which a 'baton' or

password is carr ied along with execution. This can be implemented with a

single register which is incremented periodically during execution. Then

at various points in the control loop the contents of the register is

checked against the expected value. A d iscrepancy indicates that execution

has not followed the correct path. This technique does not require a

substantial amount of extra code. All that is required are single byte

increment instructions d ispersed throughout the program and a few

compar isons to check the register contents.

Alternatively, the flow of execution can be monitored by checking the

return a d d r e s s e s before leaving subroutines, or by periodically checking

the current stack level. However, the use of the stack has been shown to

be a possible source of errors , and can be eliminated completely while

still retaining subroutines. The return address can be loaded into the HL

register pair and then the PCHL Instruction c a u s e s the required transfer of

control. An advantage of this arrangement is that the address can be

stored in multiple locations and compar isons made between the values before

a transfer of control o c c u r s .
*

By using the techniques proposed above, together with those from the

previous sect ions , erroneous execution will result In the initiation of the

recovery p r o c e s s on around 99% of the o c c a s i o n s .

8.4 Watchdog Timers

Watchdog timers can be used to detect a proportion of the errors

resulting from erroneous execution. Some of the factors which must be

considered when designing them have been Indicated in previous chapters .

137

Their importance can now be seen from the results obtained for the system

descr ibed above. Control systems are usually configured so that the timer

is updated periodically: typically once during e a c h control loop. However,

tight constraints are not normally used. For example. Debelle et al (26)

descr ibe a control system for a power station boiler where the watchdog is

updated once every second . If a fault occurs immediately after an update

then a full second of erroneous execution could follow, and this

corresponds to the execution of approximately one million instructions.

Clearly a great deal of damage could occur in that time. More seriously,

if a simple updating mechanism is used , such as an a c c e s s to a single

a d d r e s s , then this could occur erroneously allowing further incorrect

execution.

However, the previous results have shown that, for a non-fault

tolerant system, erroneous execution will only last for a few thousand

instructions before a final state is reached. A watchdog will detect most

c a s e s where a loop is formed or where a wait state is entered, as the

trigger is unlikely to occur at the correct interval. A watchdog is less

likely to detect an error when execution resumes the interpretation of

valid instructions as the trigger s e q u e n c e will reappear.

With the addition of the error detection m e c h a n i s m s , the watchdog is

less effective as halts and loops are virtually eliminated. if the t ime­

out period is longer than twice the time interval between updates then no

errors , which resume program execution, will be detected. This is b e c a u s e

the worst c a s e is where a fault c a u s e s execution to jump from a point

immediately before an update, to a point immediately after. By reducing

the time-out period to the s a m e length as the update time, half the errors

will be detected. For the other half execution effectively jumps forward

138

and generates an update before the normal time. This situation can be

detected by setting a minimum time. Taken further, the watchdog could be

arranged to detect the update at a speci f ic clock cyc le , and could then

detect any s e q u e n c e of erroneous execution.

This p laces tight restrictions on both the hardware and the software,

and would probably lead to more failures due to other failure m e c h a n i s m s .

Therefore the use of watchdogs for the detection of erroneous execution is

ineffective If other mechan isms have been incorporated. However, it is

recognised that they must be built into systems requiring high reliability

to provide a level of recovery to cater for unanticipated faults.

8.5 Other Hardware Implemented Detection Mechanisms

A number of other hardware mechan isms to detect erroneous states can

be used, and a selection of these, applicable to the 8085. are descr ibed

below.

8.5.1 Walt State Recognition

The wait state can be detected, from the status l ines, by the simple

circuit shown in figure 8.2. A rising edge appears on the output as the

wait state Is entered. This can be connected directly to the TRAP pin on

the processor , so that the interrupt routine is initiated immediately after

the halt instruction has been executed. Recovery from this state would

also occur with a watchdog timer, but a long delay could result.

8.5.2 Illegal Instruction Fe tches

The status lines also indicate when an operation code fetch is being

performed. Therefore, the circuit shown in figure 8.3 can be used to

detect illegal instruction fetches outside the program area. The chip

enable (C D s ignals , from all devices containing instructions, are ANDed

together at gate 1, which produces a high output when none of the dev ices

139

are se lected . This s ignal , together with the status l ines, produces a

positive going pulse on the output of gate 2 if an instruction fetch is

attempted from an invalid area. This could also be connected directly to

the TRAP pin on the processor .

Illegal instruction fetches from the operand fields within the program

areas could be detected by the addition of an extra bit assoc ia ted with

e a c h location. The bit corresponding to a valid instruction could be

programmed to 0 while operands or data would be labelled with a 1.

Detection of an illegal instruction fetch within the program area could

then be achieved by replacing the output from gate 1 in figure 8.3 with the

extra data line. By adding a pull-up resistor to the line, all illegal

instruction fetches from any memory location would be detected.

This arrangement requires a substantial amount of extra hardware and

would not be worthwhile In the system being studied. The hardware could be

reduced by the development of 9 bit wide read only memories, as this would

limit the extra logic to only a few gates.

8.5.3 Detection of a Write Outside RAM Areas

A simple development from the circuit shown in figure 8.3, allows the

detection of a write into a program area , and a suitable circuit is shown

in figure 8.4. It is strongly recommended that programs should be stored

in read only memory for control applications, and in these c a s e s the above

circuit will be applicable. However, if it is n e c e s s a r y for the program to

be altered during normal operation, the circuit must be modified to disable

the output during loading of the program. At other t imes, while enabled,

it will provide some protection against corruption of the code.

This concept can be extended to the detection of any writes to

locations outside random a c c e s s memory a reas . A suitable circuit is shown

140

in figure 8.5. where the chip enables (C D are from all the RAM devices.

8.5.4 Detection of Undeclared or Unused Instructions

Another illegal state which can be detected is the execution of an

undeclared operation code. This has been investigated by Marchal and

Courtois (63) in connection with permanent s tuck-at failures on the data

l ines. They suggest that after failure the average detection time is 11

instruction cyc les for both the 6800 an 68000. This is a useful mechanism

in the 68000 b e c a u s e it is already built into the device. However, with

other p rocessors a substantial amount of extra hardware is required, and

therefore is not worthwhile. The effectiveness of this m e c h a n i s m , in

detecting erroneous execution after a transient fault, will be very low for

the specif ic system studied with the fault tolerant features added. This

is b e c a u s e very few erroneous Instructions are executed.

The detection p rocess is dependent on the number of undeclared

instructions in a processor . Clearly, it will be more effective for the

6800. which has 59 undeclared c o d e s , than for the 8085 which has only 10.

However, this concept could be extended further to detect all unused

operation codes within a particular program, but would require c h a n g e s in

the hardware when different instructions are used. Investigations into

instruction usage by Lunde (60) revealed that only 75% of the codes were

used , and that half of these accounted for 99% of the execution time.

Therefore programming with a reduced instruction set would not be severely

restrictive, and could be imposed for all programs. But even with this

arrangement detection of erroneous execution will still be limited.

8.5.5 Voltage Level Detection

The hardware mechan isms descr ibed above have all been designed to

detect errors after they have been produced. The voltage level detection

141

mechanism attempts to prevent errors occur ing by suspending execution while

the output from the power supply is insufficient to drive the system. This

mechanism can be implemented with a single 8 pin integrated circuit. The

Texas 7705 monitors the power supply rail and holds the reset line, to the

processor , low while the voltage is less than 4.75 volts. When the supply

r ises above this value the reset is held low for an additional time

interval, which is set by an RC network. This allows the internal state of

the processor to stabil ise before correct execution c a n commence .

Interruption testing, similar to that descr ibed in chapter 2. was

repeated with the voltage level detection circuit added. For short

interruptions, which did not c a u s e the supply to drop below 4.66 volts, no

errors were detected. For all other interruptions a full reset occurred

when the supply was restored.

A disadvantage of this arrangement is that the delay in restoring

execution can be relatively long. For example, a delay of 10 ms is

recommended for the 8085 (119). and 50 ms is recommended for the 8035/8048

(120). Tests on the processor , descr ibed in chapter 2, showed that it

could recover from an interruption which c a u s e d the supply to drop to as

low as 2.5 volts. However, disruption to program execution will o c c u r

while the supply is between 2.5 and 3.8 volts, but once it has been

restored, the recovery mechan isms descr ibed above can initiate the recovery

p rocess within m i c r o - s e c o n d s . In c a s e s where rapid recovery is required, a

voltage level detection circuit should be set to activate at around 2.5

volts, and the other mechan isms can be used to recover from smal ler dips in

the supply. Alternatively, a second level detection circuit could be set

at a higher level to initiate an Interrupt routine as soon as the supply

r e a c h e s the level above which no errors will occur .

142

8.6 Choice of Mechanisms for Genera l Systems

The previous sect ions have shown that hardware mechan isms to detect

erroneous execution, are not effective for the system descr ibed in section

8.2. with fault tolerance added. This is b e c a u s e it has a good response to

erroneous execution, which is due to the large proportion of the memory map

which is unused. In systems where more of the map is populated the

response will be different. However, the unused a reas and input a r e a s

should be looked at first before considering other parts of the map.

For systems containing a large data a r e a , the hardware mechanism to

detect instruction fetches outside the program area will be effective. For

large program a r e a s the mechanism to detect instruction fetches from the
but

operand and data fields should be considered,^they can only produce small

improvements. This is b e c a u s e most erroneous jumps into program a r e a s

result in an immediate resumption of the interpretation of valid

instructions. Therefore detection within the software will give greater

improvements than the hardware method.

This type of procedure to se lect detection m e c h a n i s m s can generally be

followed for other systems. However, the e a s e of implementation of some

mechan isms will depend on the particular processor . For example, the

detection of an Illegal instruction is built into the 68000. and in order

to generate recovery a suitable routine Is all that is required.

Conversely, the indication of an operation code fetch in the 6800 is not

readily available, and therefore instruction fetches from illegal locations

are difficult to detect. For single chip p r o c e s s o r s , such as the

8035/8048. there is less scope for the implementation of detection

mechan isms as few signals are available externally. For these reasons

mechan isms must be chosen with consideration for both the memory map usage

143

and the e a s e of implementation.

8.7 Summary

This chapter has investigated the implementation, on a speci f ic

system, of the detection m e c h a n i s m s for erroneous execution, which were

studied earlier. It has shown that a very high level of detection c a n be

achieved by minor hardware c h a n g e s , and with the addition of some extra

software.

Other detection mechan isms have been studied, and their effectiveness

for different systems has been indicated. It has been establ ished that the

choice of m e c h a n i s m s , to achieve the greatest improvements in reliability,

depends on both the memory map usage and the processor within the system.

144

C H A P T E R 9

Development of a Facility to Test Redundant Systems

9.1 Introduction

This chapter presents the development of a facility to test the

response of digital control systems which are subjected to a variety of

transient disturbances. Testing is n e c e s s a r y to check the correct

functioning of the error detection and recovery mechan isms . With redundant

software parts of the code will not be executed under normal operating

conditions. The test facility a ims to simulate faults to enable all paths

in the program to be executed.

Several other methods of testing were considered. For example, field

trials provide accurate results but. due to the infrequent rate of failures

in digital sys tems, they require a considerable length of time before any

improvements c a n be establ ished. Another important factor is that failure

of the system in the field could have ser ious c o n s e q u e n c e s , although this

can be avoided by testing the system in a monitoring mode without any

direct control.

To reduce the period of testing, methods can be used to i n c r e a s e the

failure rate by subjecting the system to a hostile environment. This

approach was adopted for the tests, descr ibed in chapter 2, to investigate

failure mechan isms. During those tests it was establ ished that different

hardware did not always react in exactly the s a m e way. Therefore, to

obtain a representative set of results for all hardware it is n e c e s s a r y to

test a large number of components.

A solution, which speeds up the whole procedure, is to use simulation.

This approach was adopted for the Saturn V guidance computer, and is

descr ibed by Ball and Hardie (5). In this c a s e all internal functions of

145

the computer were simulated at the gate level, and the effects of single

node stuck at 0 or 1 faults were investigated. A less detailed approach

was adopted by Courtois (24) for a 6800 system. Instead of consider ing the

gate level of the processor , a functional simulation was developed.

Clearly, this reduces the amount of work required in the development of the

model.

An alternative solution is to simulate faults on an actual processor .

This eliminates the need for a detailed knowledge of the internal workings

of the device, and prevents the introduction of errors into the simulation

at this stage. A small 8085 based system was developed using this

approach, and it is descr ibed in detail in the following sect ions. It was

designed around an Intel 8085 system design kit (SDK) board, which has an

additional memory card containing up to 6K RAM and 8K EPROM. Hardware

modifications to the printed circuit boards were kept to a minimum to allow

the system to be used for other purposes.

9.2 Fault Injection

To enable full testing it is n e c e s s a r y to simulate faults so that the

recovery process c a n be observed. A number of methods of fault injection

were considered. A simple solution would be to corrupt the data, address

and control buses by deliberately holding individual l ines high or low. A

more sophisticated version could involve some logic circuitry to monitor

the lines and inject faults when a certain pattern appears , or at defined

time Intervals.

This sort of approach has been adopted by Decouty et al (27). Their

system intercepts s ignals before reaching individual chips in a similar way

to the memory masking circuit descr ibed below. However, they are careful

not to generate any short cicuits which clearly c a n occur in real systems.

146

Therefore, only a limited number of different faults are allowed, and these

consist of s t u c k - a t - 0 and s tuck-at -1 conditions.

An alternative arrangement is to use a second microprocessor which

s h a r e s part of the memory with the main processor , it would then be able

to monitor the execution of the test routines and, when predefined

conditions occur , inject faults into the system. T h e s e could involve

corruption of the system buses , or data stored in the shared memory. A

wide range of faults could be simulated in this way, with the exception of

corruption of the internal registers of the microprocessor . For these to

be changed to specif ic values it is n e c e s s a r y for the p rocessor to execute

valid load instructions, and therefore cannot be achieved externally.

The dual processor approach has been used by Kuczynski and Pr ice (54).

but was limited to investigating the specif ic fault condition of single bit

corruptions in the program code. To achieve this, the s e c o n d processor

copies the corrupted program into a shared memory block which emulates the

EPROM of the system under test. The test system is then started and the

following execution observed. Although this has given some useful results

for that particular fault condition. It cannot be used to simulate other

faults.

The solution which was finally adopted is much more flexible and only

uses a single microprocessor . External logic circuitry generates an

interrupt during execution of the test program. The interrupt routine c a n

be written to simulate a large number of faults, and corruption of the test

program, stored data and internal registers can be implemented. The timing

of the interrupt is set by the control software, so both the type of fault

and the position in the program, that it o c c u r s , can be easily altered.

147

9,3 Generation of Interrupts

To provide thorough testing, it is desirable to inject faults in as

many p laces as possible. Interrupts are only recognised at the completion

of execution of an instruction. Therefore to inject the greatest number of

faults, by this method, it is n e c e s s a r y to c a u s e an interrupt during the

execution of e a c h instruction.

In order to generate interrupts at s u c c e s s i v e locations in a program,

the expansion 8155 (Memory- I /O-Timer) i.e. on the SDK board is used. The

timer section is designed to give an output after a certain number of

pulses have been applied to its input. The number of pulses needed before

triggering is programmable, and can be set by the system software. In

order to be able to c a u s e an interrupt during s u c c e s s i v e locations in the

program it is n e c e s s a r y to generate one pulse for e a c h instruction. This

is achieved by detecting an operation code fetch which can be determined by

the condition of the status lines SO, S I and IO/M". For an o p - c o d e fetch

they are 1.1.0 respectively. Combining these together with logic is

insufficient for the input to the timer, as this conditon remains steady

throughout certain single byte instructions. For example, a string of no

operations (NOPs) will produce a single pulse. By including the status of

the read (RD) line, which is low for only a short period of the o p - c o d e

fetch, it is possible to generate a single pulse for e a c h individual

instruction.

The logic requires that the output is high when SO and S I are high

together with 1 0 / ^ and RD being low. In boolean a lgebra: -

F = A . B . C . D Eqn . 9.1

= A . B + C . D Eqn. 9.2

= A . B + C + D Eqn. 9.3

148

Where: - F is the output.

A. B. C and D are the inputs.

The circuit shown in figure 9.1 satisfies the logic given by equation

9.3 by using OR. NOR and NAND gates. However, to reduce the number of

devices n e c e s s a r y , only NOR and NAND gates were used. Figure 9.2 shows the

final layout that is wired onto the SDK board. SO, S I . IO/M and RD* signals

are all taken from the expansion bus. and the TIMER IN signal is connected

to the input of the 8155. Output from the Timer (TIMER OUT) is connected

to the interrupt 7.5 (RST 7.5) pin on the 8085. This pin is also used for

the Vector Interrupt (VECT INTR) key on the SDK keypad which incorporates

an R C network to prevent multiple interrupts. Therefore, to ensure a quick

sharp response to the timer out s ignal , the RC network has to be

d isconnected.

9.4 Memory Boundary on Test Programs

The test facility descr ibed so far is capable of providing useful

results for faults involving the data of a test routine. However, if

faults are injected into the program itself, causing corruption of the

program counter, then control could be passed to the SDK monitor. To

prevent this from occurr ing, additional hardware was designed to restrict

the test routine to a section of memory away from the monitor. However,

during execution of the control program, and during the interrupt routines,

it is n e c e s s a r y to allow the processor to have a c c e s s to all locations.

Due to the layout of the system It was not possible to restrict the

test routine to half of the memory map, as this would prevent the control

program from using the expansion memory board. It was therefore decided to

allocate the top quarter (16K) of the map for use by the test routine, and

this requires that the top two address lines (A14. A15) are held high

149

during execution of the routine. To satisfy the buffers and address

decoders , it is n e c e s s a r y to control the two address lines before they

reach the SDK board.

The solution adopted was to construct a small circuit ra ised above the

SDK board. A 40 pin wire-wrap socket , plugged into the normal p rocessor

location, provides the electr ical connect ions, and the mechanica l support,

for the extra circuit board. All of the lines make direct contact between

the 8085 and the SDK board, except the pins associa ted with A14 and AT5

which are diverted through the extra logic to enable some memory a c c e s s e s

to be restricted.

Careful consideration was needed between the timing of the control

software and the masking of the address lines to ensure the correct

transition between the control and test programs. This is achieved by

writing to certain ports, which the extra logic circuitry detects and

latches. However, the masking is not altered until the processor has read

the following jump instruction.

Four transitions to and from the test routine occur for e a c h run.

Three of these, (from the control program to test routine, fault routine to

test routine, and test routine back to the control program) are e a c h

catered for by the above solution. The fourth transition, c a u s e d by the

fault injecting interrupt, is treated in a slightly different manner. The

logic detects the Interrupt acknowledge on the status l ines, and waits

until after the return address has been pushed onto the stack, before

releasing the address l ines.

Figure 9.3 shows the circuit diagram for the address masking logic.

In addition to the details shown. 1 Kilo-ohm pull up resistors have been

connected to all the data and control s ignals taken from the micro -

150

processor , and 0.1 uF capaci tors have been connected a c r o s s the power

supplies to most of the devices.

The circuit operates in the following manner. Writing any value to

one of the ports F C . FD. F E and F F . will c a u s e a short low level pulse at

the output of i.e. 3. and presetting of flip-flop 4a will occur , forcing

the Q" output low. The SO status line remains high until the end of the op ­

code fetch for the jump instruction, and then remains low until both

address bytes have been read. During this time the output from the OR gate

(5a) will have changed from a high level to a low level. The rising level

of the SO line will produce a similar rise on the output of 5a. and

triggering of both flip-flops 4a and 6b will occur , c learing 4a. Fl ip-f lop

6b has its inverted output fed back into its input, so that the output is

toggled e a c h time the device is triggered. The Q output is connected to

two OR gates, 5c and 5d, these form the link between the p rocessor and the

SDK board for the two address lines A14 and A15. When the Q output from 6b

is high, A14 and A15 on the SDK board remain fixed high, whereas with a low

output they follow the normal outputs from the processor .

For the transition c a u s e d by the interrupt, the bottom half of the

circuit is activated. After the interrupt has occur red , the status l ines

indicate that it has been acknowleged. A short low level pulse is

generated at the output of 2a which presets the flip-flop 4b. The S I

status line goes low during the writing of the return address onto the

stack. At the end of this operation a rising edge occurs at the output of

5b. triggering the flip-flop 6a and setting its "0* output low. This c lears

6b allowing normal address ing , and also c lears both flip-flops 4b and 6a.

Provided that the logic is triggered in the correct s e q u e n c e of. an

output to port, an Interrupt, and two more outputs to port, then the

151

desired masking will occur . To ensure the correct initialisation of the

logic, the reset line is connected to flip-flop 4a and. through the NAND

gates 7a and 7b. to flip-flop 6b. Therefore when a reset is activated on

the SDK board. 4a and 6b are c leared which in turn c lear both 4b and 6a.

9.5 Software Design

When designing the control software three main criteria were

cons idered , speed of operation, e a s e of reprogramming and flexibility. The

time taken to complete each individual test is of great importance, as

injecting faults during the execution of e a c h instruction can lead to a

very large number of runs. Therefore the control software needs to be

short and efficient. However, to enable quick changeover to injecting a

different fault, or testing another routine, it was desirable to make

reprogramming as simple as possible. T h e s e two criteria have conflicting

requirements, so a compromise solution was adopted. In addition to this

the overall flexibility of the system had to be considered. The aim was to

avoid the necessi ty of rewriting most of the basic control software when

new test routines or fault types are developed.

Figure 9.4 shows the final structure of the program, and fully

commented listings appear in Appendix 6. Basical ly , the test routine is

executed a number of t imes, injecting a fault in s u c c e s s i v e points of the

program, until e a c h location has been tested. It is reloaded into the test

a rea before e a c h run so that corruption of the code does not affect later

tests. However, this is only representative of systems which execute

programs stored in RAM. For high reliability applications the software

must not be held in volatile storage to ensure that the program cannot be

corrupted during erroneous execution or other disturbances. To simulate

both arrangements of volatile and non-volatile program memory, an EPROM

152

emulator can be mapped into the test a rea and the write line can be

connected , or not. accordingly.

In more detail, the program performs the following operations. It

starts by storing the initial value of the timer trigger into memory for

future use. An opening m e s s a g e is displayed on the terminal requesting the

end address of the test routine, and the routine is then copied into the

test a rea . The 8155 Timer i.e. is set so that it will generate the

interrupt at the correct moment, and the initialisation subroutine is

cal led to set initial values in the system. The timer is started, and the

masking hardware, descr ibed above, is enabled to restrict execution to the

upper 16K memory block. Control is passed to the test routine and

continues until the interrupt is generated, releasing the masking

circuitry. The interrupt routine sets the upper two address bits on the

stack pointer, before retrieving the return a d d r e s s , to ensure that it is

read from wtihin the upper memory area . The address is then saved a s part

of a jump instruction at the end of the interrupt routine. The software

has been arranged so that the last two bytes are mapped into RAM. to enable

the return address to be written into them, whereas the rest of the program

is in EPROM.

All the internal registers are then saved , so that the fault injection

routine does not affect the internal status of the processor unless this is

intended. The 'fault' is then injected by call ing a subroutine which

c h a n g e s the required data. The stack pointer and internal registers are

reloaded with their original or modified values, the address mask is set.

and execution returns to the test program at the point at which the

interrupt occurred.

At the end of the test routine the address mask is reset and a jump is

153

made back into the control program. A check is made to ensure that the

interrupt has occur red , and indicates whether there are still more

locations to be tested. If all locations have been tried, then a closing

m e s s a g e is sent to the terminal and execution returns to the SDK monitor.

Otherwise, a subroutine is cal led to check the results. For a correct

solution an ' S ' is sent to the terminal to indicate s u c c e s s , alternatively,

in the c a s e of a failure, the value of the timer trigger is printed. The

program continues by jumping to the start, where the trigger is incremented

and the whole p rocess is repeated.

9.6 Initial Results

Initial testing was carr ied out by simulating data corruptions only.

The effects of these are reasonably straight forward to predict, and

therefore the results from the test facility were easily verified. For

example, a non-fault tolerant 8 bit addition routine was investigated. It

read two numbers, from separate locations, into the internal registers,

added them together and stored the answer back in the memory. As expected,

corruptions to the input data in memory only c a u s e d errors If they occurred

before reading the information into the registers. Conversely, corruption

of the output location in memory only c a u s e d errors after the result had

been stored.

This trivial c a s e shows that the susceptibility of systems to

transient memory faults c a n be reduced by holding critical data within the

processor for as long as possible. But clearly, this will i nc rease the

susceptibility to register faults. This demonstrates the necessi ty to know

which fault types are most common. The practical tests descr ibed in

chapter 2 indicated that the memory was less resistant to interference than

the processor , and therefore the registers provide a safer storage area .

154

Obviously, all the data cannot be stored in the registers, and

consequently, an alternative approach is necessary . Hardware methods s u c h

as protective coding has been d i s c u s s e d , but these can fail due to multiple

bit faults or transients affecting the correction mechan isms . To overcome

these problems, or in the c a s e where no memory protection is available,

individual data can be stored in several locations. Clearly, this requires

a large amount of extra memory s p a c e , and can only be justified for

critical data.

A simple 8 bit addition routine incorporating triple storage was

investigated. Even such a bas ic operation can be organised in several

different ways. For example, the data could be compared as it is read in.

and a single set chosen for manipulation by a majority vote or select ion of

a mid-value. The result would then be stored in memory, either in a single

location or in three separate locations. Alternatively, calculat ions could

be carr ied out on all three se ts , and a selection made before storage.

Taken one stage further, separation could be maintained throughout, and

compar isons made after a number of other operations.

When consider ing corruptions of single locations, multiple storage of

data gives large improvements in reliability. However, this must not be

considered in isolation. It is possible for a large number of locations to

become corrupted. This can occur as a result of an extensive memory

disturbance, or by erroneous execution overwriting data. In the latter

c a s e an erroneous loop containing a ca l l , without a return, will overwrite

all volatile memory with the same 16 bit word. it is therefore suggested

that if multiple copies are used, then they should not all be stored in an

identical way. For example, one or more copies could be complemented.

This will i nc rease the complexity of the checking routines, but will be

155

more effective against extensive errors.

So far only data corruptions have been considered. Disruption to the

flow of execution is possible, and this can also be tested on this system.

However, a few problems are envisaged with this type of error, and

suggestions for modifications are given in the following sect ion.

9.7 Possible Developments

For data corruptions alone, execution will follow a logical s e q u e n c e

of instructions, provided that the software does not contain any errors.

However, with the disruption in the s e q u e n c e of execution, an arbitrary

combination of instructions will be interpreted and as a result the test

facility can fail in two ways. Firstly, the erroneous execution of an

output to one of the ports F C , FD. F E and F F will c a u s e the premature

activation of the masking circuit, and an unpredictable response will

follow. Secondly, the formation of a continuous loop within the test

routine will prevent the return to the control program, and thus s u s p e n d

any further runs.

The former c a s e occurs infrequently as the probability of picking s u c h

an instruction at random is approximately 1 in 16,000. But if a large

number of runs are attempted the failure rate may be unacceptable. It can

be improved by tightening the conditions required to activate the masking

circuit and could be achieved by testing for a particular value at the

port. The formation of loops is more likely, however the resulting

problems can be reduced by adding another hardware timer. This would be

set at the beginning of e a c h run, and if it 'timed out' before execution

re -entered the control software a failure would be indicated and the next

run initiated. Alternatively, the s a m e timer as that used for fault

injection could be reset before leaving the fault routine, so as to allow a

156

maximum time for further execution.

Finally, to obtain meaningful results, it is n e c e s s a r y to perform a

very large number of runs. In order to simplify the analys is , it is

suggested that the output, from the test facility, is captured by an

intelligent device which can perform data reduction operations. This would

enable the rapid evaluation of both the number and type of the failed runs.

9.8 Summary

This chapter has presented some ideas on how testing can be performed

on fault tolerant software, and a particular facility has been descr ibed in

detail. in this type of software, execution will pass through different

segments depending on the number and type of errors in the system. Under

normal operating conditions errors will be rare, and testing of all

segments is not possible without fault injection. The test facility

therefore provides an aid to the full functional testing of fault tolerant

routines.

157

C H A P T E R 10

Conclus ions

10.1 Introduction

It is generally accepted that transient and intermittent faults are

far more common, in digital c ircuits, than permanent faults. It has been

suggested that they are as much as 50 times more likely. Therefore, in

order to obtain high reliability, the greatest improvements will be

achieved by designing in mechan isms to counteract the effects of

transients. However, recovery cannot be initiated until errors have been

detected and therefore the detection mechan isms play a very important role

in the recovery p r o c e s s .

Investigations have been carr ied out into detection m e c h a n i s m s with

particular emphasis on software techniques. However, they cannot be

evaluated until the modes of failure are understood. For this reason

practical tests were performed to study actual failure modes. T h e s e

attempted to reproduce the type of transient d isturbances which are

expected in industrial control applications.

10.2 Pract ical Tests to Determine Fai lure Mechanisms

The results of the tests showed that two broad types of failures can

occur ; corruption to the data within the system, and disruption to the

correct flow of program execution. Both of these groups of failures

occurred under different types of interference to e a c h of the main elements

of the system. The fact that similar failures occur under different

operating conditions indicates that they will appear in real systems. This

is true even if the types of interference, used during testing, were not

representative of those which do occur in industrial controllers.

Data errors c a n be detected and corrected either by external hardware.

158

or internally by the software. Hardware m e c h a n i s m s have been investigated

thoroughly in the past and the majority of current systems are designed to

detect and correct single bit errors. The tests did show that single bit

errors do occur , but are restricted to a narrow band of interference level.

In the majority of c a s e s multiple bit errors occurred and therefore single

bit correction m e c h a n i s m s would not be effective.

Errors in the flow of program execution are more ser ious, as these

result in the interpretation of an unspecif ied s e q u e n c e of instructions.

While in this state the processor cannot perform any useful tasks, and the

data error correction mechan isms cannot work. Therefore it is of paramount

importance to be able to detect this type of failure so that it is possible

to re -es tab l ish useful execution.

In order to be able to develop suitable detection m e c h a n i s m s , it is

n e c e s s a r y to determine the s e q u e n c e of events following corruption of

execution. The tests indicated that a fault can c a u s e an erroneous jump to

any location in the memory map and that, subsequently, the values read

would be interpreted as instructions. This revealed the importance of

knowing the exact function of every possible operation code in a m i c r o ­

processor .

10.3 Undeclared Operations in Microprocessors

Investigations were carr ied out to discover the effects of executing

the codes which are undeclared by the manufacturers. In most c a s e s useful

operations were revealed, which leads to the question of why these

instructions are not declared. The manufacturers were not willing to

reveal information on this subject, but it is believed that some of the

codes are left undeclared to retain compatibility between different

dev ices , whereas others are not d isc losed b e c a u s e original design errors

159

mean that they do not function correctly under all operating conditions.

Some of the codes are particularly undesirable from a reliability

point of view. T h e s e are the ones which c a u s e the processor to cyc le

continually through memory reading s u c c e s s i v e locations indefinitely. The

only means of recovery from this state is a full reset which has to be

generated by some external hardware. This has revealed that not only is it

n e c e s s a r y to have external hardware to enable recovery from some errors,

but also the way in which it is designed is important. For example,

watchdog timers which generate interrupts, or are updated by the a c c e s s to

a single a d d r e s s , will not be effective.

Other undeclared operations of microprocessors have also been

discovered, such as the cycling through memory in the 8085 as a result of

power supply disturbances. T h e s e operations are particularly important

b e c a u s e they cannot be forseen readily, unlike the functions of the

undeclared c o d e s which, clearly, must exist. Without a full knowledge of

all possible operations in microprocessors it is more difficult to design

effective error detection and correction mechan isms. This demonstrates the

need for a much more co-operat ive attitude from the manufacturers in

revealing full information about their devices.

10.4 Execution Following an Erroneous Jump

Having determined the functions of all the operation codes of the

8085. 6800, 8035/8048 and 68000. ana lyses were performed to establ ish the

s e q u e n c e of events following an erroneous jump to a random location. The

execution which follows depends on the particular type of memory into which

the jump o c c u r s . Four different memory types were cons idered; data a r e a s ,

program a r e a s , unused areas and input a reas .

Data a r e a s were a s s u m e d to contain random values, and therefore e a c h

160

operation code was equally likely to be read. It was found that execution

would interpret a number of instructions before encountering a jump. The

average ranged from between 2 and 10. depending on the processor .

Program areas contain a logical s e q u e n c e of instructions, but an

erroneous jump will not necessar i ly pass control directly to a valid

instruction, as an operand field can be read. However, the analysis

revealed that there is a high probability that a valid instruction will be

read immediately, in which c a s e the processor will continue to read valid

instructions in step with the program. If an operand field is entered

initially, the probability of reading a valid instruction at the next fetch

is very high, and it has been shown that resynchronisat ion with the program

tends to occur very rapidly, usually in less than three or four instruction

cyc les .

For unused a r e a s the response depends on the state of the data bus

when no active devices are connected to it. and this is determined by the

processor and associa ted hardware. If the bus floats high the value F F

will be read. Depending on the instruction set. this may be interpreted as

a jump instruction in which c a s e control will pass e lsewhere , otherwise the

next location will be a c c e s s e d and the process will repeat until another

memory block is encountered. For p rocessors with a multiplexed address and

data bus the address can remain valid during the subsequent read cyc le .

This results in the execution of a predefined s e q u e n c e of instructions

dependent on the instruction set and the location of the first read. For

the 8085 this type of execution terminates with a halt for about one half

of the initial starting points.

The data from input ports can be read as instructions if the ports are

memory mapped. For a number of ports which are fully decoded into adjacent

161

locations they will appear to have the s a m e properties as data a r e a s , and

can be treated in the s a m e way. However, it is common practice to use only

partial decoding, and therefore the s a m e value will appear in adjacent

locations, sometimes in as many as 4 K. With rapidly changing data on the

ports a s e q u e n c e of different instructions will be read, but in the

analysis presented it was a s s u m e d that data remains stable for several

mil l iseconds. In this c a s e a jump instruction will be interpreted

immediately, or the same instruction will be executed repeatedly until the

end of the block is reached .

10.5 Recovery from Erroneous Execution

Having establ ished the possible s e q u e n c e s of execution following an

erroneous jump for a non-fault tolerant system, methods were considered

which would allow recovery from erroneous execution. Clearly, the aim is

to force the processor to execute a recovery routine and this c a n be

achieved by encouraging the execution of a restart instruction.

For the data a rea the code for a restart can be placed at regular

intervals so that they may be read as instructions if execution enters the

area . However, if multibyte instructions appear before them, they are less

likely to be executed. This can be overcome by grouping the restart codes

together. Investigations were carr ied out to determine both the optimum

spacing and optimum grouping to give the greatest benefits. It was

establ ished that around a 20% content of restart codes provides the best

solution, but that the optimum grouping depends on the particular

instruction set. In c a s e s where there are a large number of multibyte

instructions the restart codes should be grouped together in two's or

three's . Although there is an increase in the probability of recovery,

from erroneous execution in this a rea , by using this method it is not

162

considered worthwhile. This is due to the large amount of extra hardware

that is required, which will itself be prone to failure. A hardware

mechanism to detect operation code fetches from data a r e a s has been

presented. It provides immediate detection using only a few simple logic

gates and will therefore be much more effective.

The contents of the program a r e a s can be influenced by the positioning

of various memory blocks. For example, the a d d r e s s e s in a heavily a c c e s s e d

data area will appear in many locations in the program. Therefore by

certain positioning of blocks particular o p - c o d e s can be made to appear

more often. This concept was investigated, but revealed that only marginal

improvements in recovery could be obtained. As before, in most c a s e s

execution resynchronises with the program. Therefore m e c h a n i s m s

incorporated in the software are more effective, to detect that execution

has not followed the correct path.

The unused a r e a s can be modified very simply and effectively by the

addition of resistors between the data and power supply l ines. This forces

a single value into all locations and can be selected to be equivalent to a

restart Instruction, so that recovery is Initiated immediately. This

should be incorporated in all systems.

For the input a r e a s the ports should be removed from the memory map.

if possible, otherwise a high level of decoding should be used. This is

particularly important if rapid recovery is required as large blocks of

input data can lead to very long s e q u e n c e s of erroneous execution.

10.6 Choice of Recovery Mechanisms

The choice of a particular combination of mechan isms depends on the

size of e a c h type of memory. General ly , modification to the unused a r e a s ,

and detection within the program, should be included. The addition of a

163

combination of these techniques ensures that erroneous execution will be

detected quickly in most c a s e s , but there will be o c c a s i o n s when they will

fail. It is therefore n e c e s s a r y to provide a higher level of detection in

the form of a hardware watchdog timer. It has been shown that the design

of s u c h a timer is important. For example, simple updating methods should

be avoided as these may be erroneously generated under fault conditions.

Interrupts must not be used to initiate recovery, as they may not function.

At least a full reset must be used , and in some c a s e s it may be n e c e s s a r y

to power-down the system before recovery is possible.

10.7 Summary

This thesis has concentrated on error detection m e c h a n i s m s , however

the recovery process is equally important and requires careful

considerat ion. It may vary from a simple reset to a thorough c h e c k - o u t of

the entire system followed by an attempt to reconstruct all critical data

that was lost.

The techniques studied provide the greatest improvements to n o n -

redundant systems. They can also be used in redundant systems to enable

the recovery of a failed unit or to recover from common mode failures. For

the British G a s application of digital control. a simplex system

incorporating these techniques and, perhaps, containing some additional

fa i l -safe m e c h a n i s m s , may be considered to give high enough reliability.

If higher standards are required it will be n e c e s s a r y to adopt a redundant

arrangement in the hardware. This can be achieved in a number of ways,

from a tightly coupled system with voting at e a c h clock cyc le , to a very

loosely coupled system maintaining separate channe ls from the t ransducers

to the actuators.

The latter arrangement is preferred because it essential ly cons is ts of

164

several simplex channe ls , which will all receive the full benefits from the

techniques descr ibed above. Taken individually, each channel will be easy

to design and maintain, and will therefore be more readily accepted into an

industry which has been concerned traditionally with mechanica l

controllers. The arrangement is highly immune to common mode fai lures, and

is also very adaptable for other applications requiring different levels ot

reliability. It is simply a c a s e of adding or removing modules as

required.

Finally, for any application requiring high reliability, full testing

of the system is essent ia l before it undertakes active control. Some

methods of testing have been presented, but these should be followed by

comprehensive field trials to establish whether specif ied levels of

reliability have been reached .

165

References

1 Anderson. T. and Kerr. R.. 'Recovery Blocks in Action' . University of

Newcastle upon Tyne. Technica l Report S e r i e s , No. 93. July

1976. pp. 1-11.

2 Arnold, T .F . , 'The Concept of Coverage and Its Effect on the

Reliability Model of a Repairable Sys tem' . I E E E Trans .

Computers. Vol C - 2 2 , No. 3. March 1973, pp. 251-254.

3 Avizienis. A.. 'Arithmetic Algorithms for E r r o r - C o d e d Operands ' . I E E E

Trans. Computers. Vol C - 2 2 . No. 6, June 1973. pp. 567-572 .

4 Avizienis. A., 'Faul t -Tolerant Sys tems ' , I E E E Trans . Computers, Vol

C - 2 5 . No. 12. December 1976. pp. 1304-1312.

5 Bal l , M. and Hardie, F. , 'Effects and Detection of Intermittent

Fai lures in Digital Sys tems ' , AF IPS Proc. Spring Joint Computer

Conference . 1969, pp. 329-335 .

6 Barigazzi, G . , and Striginl, L , 'Appl icat ion-Transparent Setting of

Recovery Points' , 13th Annual Int. F T C S . June 1983, pp. 48 -55 .

7 Barraclough. W., Ch iang , A.C.L. and Sohl , W., 'Techniques for Testing

the Microcomputer Family, Proc. I E E E , Vol 64, No. 6. June 1976.

pp. 943-950.

8 Barton, S.K. et a l , 'Communicat ions Engineering R e s e a r c h Satell ite' .

S E R C Report. Rutherford Appleton Labs. R A L - 8 4 - 0 1 6 , March 1984.

9 B a s u , R.N., 'Measurement of Small Signals in a Noisy Environment' .

IEE Conference on Electr ical Interference in Instrumentation,

1970, pp. 109-114.

10 Bell , E.M.. Kwiatkowski. C. and R o s s . C . E . J . , 'Computer Aids for

Reliability Prediction and Spares Provisioning', E lectr ica l

Communicat ion, Vol 54, No. 2, 1979, pp. 136-142.

166

11 Bland. G.M.S.. Bradbury. K.J. and Smith T.D.. 'Distributed Computer

Control of a Large Coal Fired Generat ing Unit:- A Design

Study'. IEE Conference on Distributed Computer Control.

November 1977. pp. 1-12.

12 Bologna. S . et al.« 'A Computerized Protection System for a Fast

R e s e a r c h Reactor ' , I E E E Trans . Nuclear S c i e n c e . Vol N S - 2 7 . No.

1. February 1980. pp. 803-807.

13 Boney, J . . 'Let Your Next Microcomputer Check Itself and Cut Down

Your Testing Overhead' . Electronic Design. September 1979. pp.

100-105.

14 Boothman, G. , 'Designing B u s i n e s s Machine Cabinets for Optimal EMI

Shielding' . Wescon '82 Conference Record . Anaheim. USA.

September 1982. pp. 1 1 - 1 / 1 - 5 .

15 Bouric ius. W.G.. Carter , W.C.. J e s s e p . D.C.. Schne ider , P.R. and

Wadia. A.B. . 'Reliability Modelling for Fault Tolerant

Computers ' . I E E E Trans . Computers. Vol C - 2 0 , No. 11, November

1971, pp. 1306-1311.

16 Brodsky, M.. 'Hardening RAMs Against Soft E r r o r s ' , E lec t ron ics . April

1980. pp. 117-122.

17 Buchholz. S . . 'Besitzt der Mlkroprozessor Intel 8085 ein Overflow-

F l a g ? ' , fernmeide-praxis. Vol 58. June 1981. pp. 428-436 .

18 Bull. J .H. , ' Interference to instumentation due to Transients in the

Supply System' , IEE Conf. Electr ical Interference on

Instrumentation, 1970, pp. 94 -100 .

19 Bumby, E.A., 'Redundancy Management for F ly -by-Wire Sys tems ' , AlAA

Guidance and Control Conference , Paper 72-884, 1972. pp. 1-5.

167

20 Burrow. L.D.. 'The Fail Soft Design of Complex Sys tems ' . IEE Conf. on

Distributed Computer Control. November 1977. pp. 151-156.

21 Carter. W.C. and Bourlc ius. W.G.. 'A Survey of Fault Tolerant

Computer Architecture and its Evaluation' . Computer. Vol 1.

January 1971. pp. 9 -16 .

22 Castil lo. X.. McConnel . S.R. and Siewiorek. D.P., 'Derivation and

Calibration of a Transient Error Reliability Model'. I E E E

Trans . Computers, Vol C - 3 1 . No. 7. July 1982. pp. 658-671 .

23 Chudleigh. M.. 'Software Must be Tolerant Too' . Computer Sys tems,

December 1982. pp. 43 -45 .

24 Courtois. B.. 'Some Results About the Efficiency of Simple Mechan isms

for the Detection of Microcomputer Malfunctions'. 9th Annual

International F T C S , June 1979. pp. 71-74 .

25 De. B.B. and Krarau, H.B.. ' Fau l t -To le rance In a Multiprocessor.

Digital Switching System' , I E E E Trans . Reliability, Vol R -30 .

No. 3, August 1981, pp. 246-252 .

26 Debelle, J . et al , 'F i rst Belgian Application of a Digital Computer

for the Control of a 280 MW Boiler of the Thermal Power Station

at G e n k - L a n g e r l o ' . Digital Computer Applications to P r o c e s s

Control. 1977. pp. 769-788.

27 Decouty. B.. Michel, G. and Wagner. C . 'An Evaluation Tool of Fault

Detection Mechanisms Eff iciency' . 10th Annual International

F T C S . October 1980. pp. 225-227 .

28 Dehnhardt. W. and S o r e n s e n . V.M., 'Unspecif ied 8085 O p - C o d e s E n h a n c e

Programming' . E lec t ron ics , 18th January 1979, pp. 144-145.

168

29 Del lacorna. L . Morganti. M. and Novielli. Q., 'A M ic ro -p rocessor

Based Control Unit for High Availability Applications' . 10th

Annual Int. F T C S . 1980. pp. 357-362 .

30 Dick. I.J.. 'Low Frequency Electr ical Interference in P r o c e s s Control

Computing' . I E E Conference on Electr ica l Interference in

Instrumentation. 1970. pp. 74-80 .

31 Doyle. E.A. Jr . . 'How Parts Fa i l ' . I E E E Spectrum, Vol 18. No. 10.

October 1981. pp. 36 -43 .

32 Dunn. R.H. and Ullman. R.S. . 'A Workable Software Quality/Reliability

P lan ' . Proc. Annual Reliability and Maintainability Symposium.

1978. pp. 210-217 .

33 Dyer, Q.. 'Protecting Military Systems and Equipment from EMP' .

Communicat ions International, April 1982.

34 Elkland, S.A. and Siewiorek, D.P., 'Reliability and Performance of

Er ror -Correct ing Memory and Register Arrays ' . I E E E Trans .

Computers. Vol C - 2 9 . No. 10, October 1980, pp. 920-927 .

35 Emfinger, J . , and F lannlgan, J . . 'Fly by Wire Technology' , AIAA

Guidance and Control Conference , Paper 72 -882 , 1972. pp. 1-6.

36 Gelder loos, H.C. and Wilson D.V.. 'Redundancy Management of Shuttle

Flight Control S e n s o r s ' . Proc. I E E E Conf. on Dec is ion and

Control. 1976. pp. 462 -475 .

37 Goldberg. J . . 'New Problems in Fault -Tolerant Computing' . 5th Annual

International F T C S . 1975. pp. 29 -34 .

38 G r e e n s p a n , S . J . and McGowan. C.L. . 'Structuring Software Development

for Reliability'. Microelectronics and Reliability. Vol 17.

1978. pp. 75-84 .

169

39 Gunther. N.L. and Carter, W.C., 'Remarks on the Probability of

Detecting Faul ts ' , 10th Annual Int. F T C S , 1980, pp. 213-215 .

40 Hamill, T .G. and Phillips, R.. 'A Fault Tolerant Reconfigurable

Multiprocessor System' , IEE Conference on Distributed Computer

Control, November 1977, pp. 139-144.

41 Hamming. R.W., 'Error Detecting and Error Correcting C o d e s ' , Bell

Systems Techn ica l Journal . Vol 29. 1960. pp. 147-160.

42 Hart. A.. Teng. T. and McKenna. A., 'Reliability Influences from

Electr ical Overstress on LSI Dev ices ' , 18th Annual Proc, of

Reliability P h y s i c s . April 1980. pp. 190-196.

43 Hayes, J .P . and McCluskey. E . J . , 'Testability Considerat ions in

M i c r o p r o c e s s o r - B a s e d Design ' . I E E E Computer. Vol 13, No. 3.

March 1980. pp. 17-26.

44 Hecht, H.. 'Faul t -Tolerant Software for R e a l - T i m e Applicat ions' .

Computing Surveys, Vol 8, No. 4, December 1976, pp. 391-407 .

45 Heftman, E . , 'Growing Concern over Memory Soft Errors Prompts Intense

Alpha-Part ic le R e s e a r c h ' , Electronic Design, April 1979, p. 27.

46 Hnatek, E.R, G r a v e s , W. and Schmitt, R.G., 'How Static is the Static

4K RAM?' , I E E E Semiconductor Test Symposium. 1976, pp. 3 -8 .

47 Hnatek, E.R., 'Microprocessor Device Reliability', M icroprocessors ,

Vol 1. No. 5, June 1977, pp. 299 -303 .

48 Hopkins, A . L Jr . , 'A Fault Tolerant Information Process ing Concept

for S p a c e Veh ic les ' , I E E E Trans . Computers. Vol C - 2 0 . November

1971. pp. 1394-1403.

49 J a c k . L.A.. Kinney. L . L and Berg, R.O.. 'Compar ison of Alternative

Self Check Techniques in Semiconductor Memories' , 7th Annual

International F T C S , 1977, pp. 170-174.

170

50 Johnson . J.N. and Shaw. J . L . 'System Malfunction Detection &

Correction Studies Software for a Fault Tolerant Computer -

Dual P r o c e s s o r with Monitor'. Boeing Company, Document Number

D 1 8 0 - 1 9 2 4 9 - 2 . July 1976. pp. 1-21.

51 Kim. W.S. et al . 'Radiat ion-Hard Design Principles Utilised in CMOS

8085 Microprocessor Family' . I E E E Trans . Nuclear S c i e n c e . Vol

N S - 3 0 . No. 6. December 1983. pp. 4229-4234.

52 Kodandapani. K .L and Pradhan. D.K.. 'Undetectability of Bridging

Faults and Validity of Stuck-At Fault Test S e t s ' . I E E E Trans .

Computers. Vol C - 2 9 , No. 1. January 1980. pp. 55 -59 .

53 Kopetz. H.. 'Software Reliability'. Macmilian P r e s s . 1979.

54 Kuczynski, M. and Pr ice . B . L . 'EPROM Evaluation: A Technique for

the Software Evaluation of Microprocessor B a s e d Burner

Control lers' . British G a s Internal Report. July 1982. (British

G a s reports are not normally available to other organisations).

55 Kurzhals. P.R. and Deloach. R.. 'integrity in Flight Control

Sys tems ' . Proc. Joint Automatic Control Conference . Vol 1.

1977. pp. 489-497 .

56 Lee . P .E . , Ghani . N. and Heron, K., 'A Recovery C a c h e for the P D P -

11', I E E E Trans . Computers. Vol C - 2 9 . No. 6. June 1980. pp.

546 -549 .

57 Levine. L and Meyers. W.. 'Semiconductor Memory Reliability with

Error Detecting and Correcting C o d e s ' . I E E E Computer. Vol 9.

No. 10. October 1976. pp. 43 -50 .

171

58 Lonn. W.M.. Moore. G.H. and Speckman . B.M., 'Operating Exper ience

with Dual DDC Computer System Pittsburg Power Plant Unit

No.7'. Proc. 16th Int. I.S.A. Power Instrumentation Symposium.

Vol 16 A73. 1973. pp. 75 -85 .

59 Losq. J . . ' Influence of Fault-Detection and Switching Mechanisms on

the Reliability of Stand-by Sys tems ' . 5th Annual International

F T C S . 1975. pp. 81 -86 .

60 Lunde. A., 'Emper ica l Evaluation of Some Features of Instruction Set

P r o c e s s o r Archi tectures ' . Communicat ions of the ACM. Vol 20.

No. 3. March 1977, pp. 143-153.

61 McConnel , S.R., Siewlorek, D.P. and T s a o . M.M., 'The Measurment and

Analysis of Transient Errors in Digital Computer Sys tems ' . I E E E

C h l 3 9 6 - l / 7 9 / 0 0 0 0 - 0 0 6 7 $ 0 0 . 7 5 . 1979. pp. 67 -70 .

62 McKinney, H.N. and Briggs. D . C . 'E lectr ica l Power Subsystem for the

NATO III Communicat ions Satall ite' , 11th Int. Energy Convers ion

Conference , 1976. paper 769242. pp. 1408-1413.

63 Marchal . P. and Courtois, B., 'On Detecting the Hardware Fa i lures

Disrupting Programs in Microprocessors ' . 12th Annual

International F T C S . 1982. pp. 249-256 .

64 May. T .C. and Woods. M.H., 'A New Physical Mechanism for Soft Errors

in Dynamic Memories' . Proc. Int. Reliability Phys ics Symposium.

April 1978. pp. 33 -40 .

65 Musa, J .D. . 'Measuring and Managing Software Reliability'. I E E E

Proceeding of the 2nd Annual Conference on Computers and

Communicat ions. March 1983. pp. 105-109.

66 Nelson. E . C . , 'Software Reliability'. 5th Annual International F T C S .

1975. pp. 24 -28 .

172

6 7 N e m m o u r , M. . ' E t u d e d u F o n c t i o n n e m e n t I n t e r n e d e s M l c r o p r o c e s s e u r s

6 8 0 0 ' . E N S I M A Q , F i n a l R e p o r t (N M 4) , G r e n o b l e . M a y 1 9 7 9 .

6 8 N e m m o u r , M. , ' E t u d e d u F o n c t i o n n e m e n t d u M i c r o p r o c e s s e u r M C 6 8 0 9 ' .

E N S I M A G . C o n t r a c t E D F I 2 5 I A 2 7 3 9 . G r e n o b l e .

6 9 N i c h o l s . N. , ' 8 0 8 0 / 8 0 8 0 A M i c r o c o m p u t e r ' . I n t e l R e l i a b i l i t y R e p o r t .

R R - 1 0 . M a r c h 1 9 7 6 . p p . 1 - 1 0 .

7 0 N g . Y.W. a n d A v i z i e n i s . A . . ' A M o d e l f o r T r a n s i e n t a n d P e r m a n e n t

F a u l t R e c o v e r y in C l o s e d F a u l t T o l e r a n t S y s t e m s ' . 6 t h A n n u a l

I n t e r n a t i o n a l F T C S . 1 9 7 6 . p p . 1 8 2 - 1 8 8 .

71 N g . Y.W. a n d A v i z i e n i s . A . . ' A R I E S - A n A u t o m a t e d R e l i a b i l i t y

E s t i m a t i o n S y s t e m f o r R e d u n d a n t D i g i t a l S t r u c t u r e s ' . P r o c . 1 9 7 7

A n n u a l R e l i a b i l i t y a n d M a i n t a i n a b i l i t y S y m p o s i u m . U S A . J a n u a r y

1 9 7 7 . p p . 1 0 8 - 1 1 3 .

7 2 O ' B r i e n . F .J . . ' R o l l b a c k P o i n t I n s e r t i o n S t r a t e g i e s ' . 6 t h A n n u a l

I n t e r n a t i o n a l F T C S . 1 9 7 6 . p p . 1 3 8 - 1 4 2 .

73 O b a c - R o d a , V. a n d D a v i e s . O . J . , ' A s p e c t s o f F a u l t T o l e r a n t R i n g

S t r u c t u r e s ' , IEE C o l l o q u i m . L o n d o n . D i g e s t N o . 1 9 8 2 / 6 7 , O c t o b e r

1 9 8 2 , p p . 3 / 1 - 9 .

7 4 O p p e n h e i m e r , C P . , ' R e l i a b l e D e s i g n s B e g i n w i t h t h e B a s i c s ' , C o m p u t e r

D e s i g n . A u g u s t 1 9 8 3 . p p . 9 3 - 9 9 .

75 P a p p u , R.V., H a r r i s . E. a n d Y a t e s . M. . ' S c r e e n i n g M e t h o d s a n d

E x p e r i e n c e w i t h M O S M e m o r y ' . M i c r o e l e c t r o n i c s a n d R e l i a b i l i t y .

V o l 17 . N o . 1 . 1 9 7 8 . p p . 1 9 3 - 2 0 0 .

7 6 P e a r s o n . J . C . . ' R e l i a b i l i t y o f S m a l l D i g i t a l C o n t r o l l e r s ' , P h D

T h e s i s , U n i v e r s i t y o f D u r h a m , 1 9 8 3 .

1 7 3

77 P e a r s o n , J . C . , H a l s e . R.G. a n d P r e e c e , C . ' R e l i a b l e D i g i t a l

C o n t r o l l e r A r c h i t e c t u r e f o r G a s D i s t r i b u t i o n R e g u l a t o r s ' .

R e l i a b i l i t y E n g i n e e r i n g , Vo l 8 , 1 9 8 4 , p p . 1 7 9 - 1 8 9 .

78 P e c k e t t , D., ' F a u l t - F i n d i n g w i t h A i d o f S e l f - T e s t P r o g r a m s ' ,

P r a c t i c a l C o m p u t i n g , D e c e m b e r 1 9 7 9 , p p . 1 0 2 - 1 0 7 .

7 9 P e l l e g r i n i , G . , R a i m o , A . a n d R e y n a u d . C , ' E M C P r o b l e m s in H.V. S u b -

S t a t i o n s ' , I E E E I n t e r n a t i o n a l S y m p o s i u m o n E l e c t r o m a g n e t i c

C o m p a t a b i l i t y , 1 9 7 6 , p p . 1 0 6 - 1 0 9 .

8 0 P r e e c e , C. a n d S t e w a r t T ,R. , ' M u l t i l e v e l F a u l t R e c o v e r y i n R e a l - T i m e

D i g i t a l C o n t r o l l e r s ' , IEE C o l l o q u i m , L o n d o n , M a y 1 9 7 9 .

8 1 P r e e c e , C , P e a r s o n , J .C . a n d H a l s e , R .G. , ' T h e I n t r o d u c t i o n o f F a u l t

T o l e r a n c e i n t o D i g i t a l l y C o n t r o l l e d G a s R e g u l a t o r s ' . In t . G a s

R e s e a r c h C o n f e r e n c e , L o n d o n . J u n e 1 9 8 3 .

8 2 P y t c h e s , D. , ' Z i n c - A i r C e l l s : P o w e r S o u r c e o f t h e F u t u r e ' .

E l e c t r o n i c s a n d P o w e r , V o l 2 9 , N o . 7 / 8 , J u l y 1 9 8 3 , p p . 5 7 7 - 5 8 0 .

8 3 R a n d e l l , B., ' S y s t e m S t r u c t u r e f o r S o f w a r e F a u l t T o l e r a n c e ' , I E E E

T r a n s . S o f t w a r e E n g i n e e r i n g , V o l S E - 1 , N o . 2 , J u n e 1 9 7 5 , p p .

2 2 0 - 2 3 2 .

8 4 R e e s e , S .E . , ' L o w P o i n t C o n t r o l S y s t e m R e d u c e s G a s L o s s e s ' , P i p e l i n e

a n d G a s J o u r n a l , J u l y 1 9 7 5 , p p . 4 2 - 4 6 .

8 5 R o b a c h , C S a u c i e r , G , a n d L e b r u n , J . , ' P r o c e s s o r T e s t a b i l i t y a n d

D e s i g n C o n s e q u e n c e s ' , I E E E T r a n s . C o m p u t e r s , V o l C - 2 5 , N o .

6 , J u n e 1 9 7 6 , p p . 6 4 5 - 6 5 2 .

8 6 R o s t e k , P . M . , ' T e c h n i q u e s o f S h i e l d i n g a n d F i l t e r i n g D i g i t a l

C o m p u t e r s f o r E M I S u s c e p t i b i l i t y ' , I E E E E l e c t r o m a g n e t i c

C o m p a t i b i l i t y S y m p o s i u m R e c o r d , S a n A n t o n i o , U S A , O c t o b e r 1 9 7 5 ,

S e s s i o n 4 B , p p . e l - 7 .

1 7 4

8 7 R u s s e l l . P .J . . ' N o n - C o m m e r c i a l N o n - S t o p P r o c e s s i n g ' . C o m p u t e r

S y s t e m s . D e c e m b e r 1 9 8 2 . p p . 4 7 - 4 9 .

8 8 S e d m a k , R .M. a n d L i e b e r g o t . H . L . ' F a u l t - T o l e r a n c e o f a G e n e r a l

P u r p o s e C o m p u t e r I m p l e m e n t e d by V e r y L a r g e S c a l e I n t e g r a t i o n ' .

8 t h A n n u a l I n t e r n a t i o n a l F T C S . J u n e 1 9 7 8 , p p . 1 3 7 - 1 4 3 .

8 9 S e q u i n . C . H . . ' I n s t r u c t i o n in M O S LSI S y s t e m s D e s i g n ' , I E E E C o m p u t e r .

M a r c h 1 9 8 0 . p p . 6 7 - 7 3 .

9 0 S e x t o n . F.W. e t a l . ' R a d i a t i o n T e s t i n g o f t h e C M O S 8 0 8 5 M i c r o ­

p r o c e s s o r F a m i l y ' . I E E E T r a n s . N u c l e a r S c i e n c e . V o l N S - 3 0 . N o .

6 . D e c e m b e r 1 9 8 3 . p p . 4 2 3 5 - 4 2 3 9 .

9 1 S h e d l e t s k y . J . J . a n d M c C l u s k y , E .J . . ' T h e E r r o r L a t e n c y of a F a u l t i n

a S e q u e n t i a l D i g i t a l C i r c u i t ' . I E E E T r a n s . C o m p u t e r s . V o l C - 2 5 .

N o . 6 . J u n e 1 9 7 6 . p p . 6 5 5 - 6 5 9 .

9 2 S h o o m a n . M.L. . ' T h e S p e c t r e o f S o f t w a r e R e l i a b i l i t y a n d i t s

E x o r c i s m ' , P r o c e e d i n g s o f t h e J o i n t A u t o m a t i c C o n t r o l

C o n f e r e n c e . 1 9 7 7 , p p . 2 2 5 - 2 3 1 .

9 3 S i e w i o r e k . D.P. . ' T r a n s p a r e n c y in D i s t r i b u t e d , F a u l t T o l e r a n t

C o m p u t i n g S y s t e m s ' , 14 th I n t e r n a t i o n a l C o m p u t e r S o c i e t y

C o n f e r e n c e , p p . 2 7 6 - 2 7 8 .

9 4 S i e w i o r e k , D .P . , K i n i , V. , J o o b b a n i , R. a n d B e l l i s . H. , ' A C a s e S t u d y

o f C . m m p . C m * a n d C . v m p : P a r t l l - P r e d i c t i n g a n d C a l i b r a t i n g

R e l i a b i l i t y o f M u l t i p r o c e s s o r S y s t e m s ' . P r o c . o f I E E E , V o l 6 6 .

N o . 1 0 . O c t o b e r 1 9 7 8 , p p . 1 2 0 0 - 1 2 2 0 .

9 5 S m i t h , A . L . , ' H a r d a n d S o f t F a i l u r e s in D y n a m i c R A M F a u l t T o l e r a n t

M e m o r i e s ' , I E E E T r a n s . R e l i a b i l i t y , Vo l R - 3 0 , N o . 1 , A p r i l

1 9 8 1 , p p . 5 8 - 6 0 .

175

9 6 S m i t h , D .H . . ' M i c r o p r o c e s s o r T e s t i n g - M e t h o d o r M a d n e s s ' . I E E E S e m i ­

c o n d u c t o r T e s t S y m p o s i u m . 1 9 7 6 . p p . 2 7 - 2 9 .

9 7 S o i . l .M . a n d Q o p a l , K.. ' S o m e A s p e c t s of R e l i a b l e S o f t w a r e

P a c k a g e s ' , M i c r o e l e c t r o n i c R e l i a b i l i t y . Vo l 1 9 , 1 9 7 9 . p p . 3 7 9 -

3 8 6 .

9 8 S p e a r m a n , C.A. , ' I m p r o v e d D i s t r i c t P r e s s u r e C o n t r o l ' , T h e I n s t i t u t i o n

of G a s E n g i n e e r s . 8 t h M a r c h . 1 9 7 7 .

9 9 S u l w a y , B.. ' A C E m e r g e n c y a n d U n i n t e r r u p t i b l e P o w e r S u p p l i e s ' .

C o m m u n i c a t i o n s I n t e r n a t i o n a l , V o l 3 , D e c e m b e r 1 9 7 6 , p p . 6 2 - 6 5 .

1 0 0 T a s a r . V., ' A n a l y s i s o f F a u l t D e t e c t i o n C o v e r a g e o f a S e l f - T e s t

S o f t w a r e P r o g r a m ' , 8 t h A n n u a l In t . F T C S . J u n e 1 9 7 8 . p p . 6 5 - 7 1 .

1 0 1 T e e t s . R .M. , ' P r o t e c t i n g M i n i c o m p u t e r s f r o m P o w e r L i n e

P e r t u r b a t i o n s ' , C o m p u t e r D e s i g n , V o l 1 5 . J u n e 1 9 7 6 , p p . 9 9 - 1 0 4 .

1 0 2 T h a t t e , S . M . a n d A b r a h a m , J .A . , ' T e s t i n g o f S e m i c o n d u c t o r R a n d o m

A c c e s s M e m o r i e s ' . 7 t h A n n u a l In t . F T C S . 1 9 7 7 , p p . 8 1 - 8 7 .

1 0 3 T o s c h i . E.A. a n d W a t a n a b e . T . , ' A n A l l - S e m i c o n d u c t o r M e m o r y w i t h

F a u l t D e t e c t i o n , C o r r e c t i o n , a n d L o g g i n g ' , H P J o u r n a l , p p . 8 -

13 .

1 0 4 T u r n e r , R.C., ' R e a l - T i m e P r o g r a m m i n g w i t h M i c r o c o m p u t e r s ' , L e x i n g t o n

B o o k s , T o r o n t o , 1 9 8 0 .

1 0 5 V o n N e u m a n n , J . , ' P r o b a b i l i s t i c s , L o g i s t i c s a n d t h e S y n t h e s i s o f

R e l i a b l e O r g a n i s m s f r o m U n r e l i a b l e C o m p o n e n t s ' , A u t o m a t a

S t u d i e s f r o m A n n a l s o f M a t h e m a t i c a l S t u d i e s N o . 3 4 , P r i n c e t o n

U n i v e r s i t y P r e s s . 1 9 5 6 . p p . 4 3 - 9 9 .

106 W a c h t e r . W . J . . ' S y s t e m M a l f u n c t i o n D e t e c t i o n a n d C o r r e c t i o n ' , 5 t h

A n n u a l I n t e r n a t i o n a l F T C S , 1 9 7 5 , p p . 1 9 6 - 2 0 1 .

176

107 W a k e r l y , J . F . . ' M i c r o c o m p u t e r R e l i a b i l i t y I m p r o v e m e n t U s i n g T r i p l e -

M o d u l a r R e d u n d a n c y ' , P r o c . I E E E , V o l 6 4 , N o . 6 , J u n e 1 9 7 6 . p p .

8 8 9 - 8 9 5 .

108 W a l k e r . W . K . S . . S u n d b e r g , C.W. a n d B l a c k , C . J . , ' A R e l i a b l e

S p a c e b o r n e M e m o r y w i t h a S i n g l e E r r o r a n d E r a s u r e C o r r e c t i o n

S c h e m e ' , I E E E T r a n s . C o m p u t e r s , V o l C - 2 8 , N o . 7, J u l y 1 9 7 9 , p p .

4 9 3 - 5 0 0 .

109 W e i . A .Y . , ' R e a l T i m e P r o g r a m m i n g w i t h F a u l t T o l e r a n c e ' , P h D T h e s i s .

U n i v e r s i t y o f i l i i n o i s , U S A , 1 9 8 1 .

110 W e n s l e y , J . H . , ' S I F T - S o f t w a r e I m p l e m e n t e d F a u l t T o l e r a n c e ' , A F I P S

C o n f e r e n c e P r o c e e d i n g s , Vo l 4 1 , P a r t 1 , 1 9 7 2 , p p . 2 4 3 - 2 5 3 .

111 W e n s l e y . J . H . a n d Lev i t t . K .N. . ' A C o m p a r a t i v e S t u d y o f A r c h i t e c t u r e s

f o r F a u l t - T o l e r a n c e ' , 4 t h A n n u a l I n t e r n a t i o n a l F T C S , J u n e 1 9 7 4 ,

p p . 4 - (1 6 - 2 1) .

1 1 2 W e s t e r m e l e r . T . F . , ' R e d u n d a n c y M a n a g e m e n t o f D i g i t a l F l y - b y - W i r e

S y s t e m s ' , P r o c . J o i n t A u t o m a t i c C o n t r o l C o n f e r e n c e , V o l 1 .

1 9 7 7 , p p . 2 7 2 - 2 7 7 .

113 W h a l i e n . J . J . , T r o n t , J . , L a r s o n , C .E . a n d R o e , J . M . , ' C o m p t e r - A i d e d

A n a l y s i s o f RFI E f f e c t s in I n t e g r a t e d C i r c u i t s ' , I E E E E l e c t r o ­

m a g n e t i c C o m p a t i b i l i t y S y m p o s i u m , J u n e 1 9 7 8 , p p . 6 4 - 7 0 .

1 1 4 W i l l i a m s o n , I., ' D e s i g n o f S e l f - C h e c k i n g a n d F a u l t - T o l e r a n t M i c r o ­

p r o g r a m m e d C o n t r o l l e r s ' , I E E E C o n f . C o m p u t e r S y s t e m s a n d

T e c h n o l o g y , 1 9 7 7 , p p . 1 9 3 - 2 0 4 .

115 W i l l i a m s o n , T. , ' D e s i g n i n g M i c r o c o n t r o l l e r S y s t e m s f o r E l e c t r i c a l l y

N o i s y E n v i r o n m e n t s ' , I n t e l C o r p o r a t i o n , A p p l i c a t i o n N o t e A P -

1 2 5 , F e b r u a r y 1 9 8 2 .

177

116 W u l f . W.A . . ' R e l i a b l e H a r d w a r e / S o f t w a r e A r c h i t e c t u r e ' . I E E E T r a n s .

S o f t w a r e E n g i n e e r i n g . V o l S E - 1 , N o . 2 , J u n e 1 9 7 5 . p p . 2 3 3 - 2 4 0 .

1 1 7 Z i e g l e r . J . F . a n d L a n f o r d . J . F . . ' E f f e c t of C o s m i c R a y s o n C o m p u t e r

M e m o r i e s ' . S c i e n c e . V o l 2 0 6 . N o v e m b e r 1 9 7 9 . p p . 7 7 6 - 7 8 8 .

118 . ' T h e 8 0 8 0 A s A r e N o t A l l A l i k e ; Y o u S h o u l d K n o w t h e

D i f f e r e n c e s ' . E l e c t r o n i c D e s i g n , 1 8 t h J a n u a r y 1 9 7 7 . p p . 4 1 - 4 2 .

1 1 9 , ' M C S - 8 0 / 8 5 F a m i l y U s e r ' s M a n u a l ' , I n t e l C o r p o r a t i o n , 1 9 7 9 .

120 , ' 4 8 - S e r i e s M i c r o c o m p u t e r s H a n d b o o k ' , N a t i o n a l S e m i c i n d u c t o r

C o r p o r a t i o n , 1 9 8 0 .

121 , ' M I L - H D B K - 2 1 7 D R e l i a b i l i t y P r e d i c t i o n o f E l e c t r o n i c

E q u i p m e n t ' , U.S. D e p a r t m e n t o f D e f e n s e . J a n u a r y 1 9 8 2 .

1 2 2 . ' H R D 3 H a n d b o o k o f R e l i a b i l i t y D a t a ' , B r i t i s h T e l e c o m .

M a t e r i a l s a n d C o m p o n e n t s C e n t r e . B i r m i n g h a m , J a n u a r y 1 9 8 4 .

178

INLET
P R E S S U R E

OUTLET
PRESSURE

J ^

OUTLET INLET

F i g u r e l . l T y p i c a l D i a p h r a g m O p e r a t e d R e g u l a t o r

179

LU

CO

a

a

CO
CO
HI

CO
CO

CO

LU

X 0

a <
A

180

Vcc

MANUAL
RESET

Q Q
« 8 8085

N I
a

O

< < |£r|52(E o i- S x <r <
/ \ I I I M I 1 1 1 1 I I

RESET IN

GND

Q Q Q
Z Z 2
(3(3(3 g

>

Vcc-
Vcc-
Vcc •

Vcc vcc

1>

74LS04 74LS30

A 11-15) A 11-15 A 11-15

74LS30

A 11-15

A 8-10

A 8-10
PROG/CE

8755A

C E
I0R
Vdd

CLK
RESET
IQ/M
WR
m

ALE

AD 0-7

C E

8155

RESET
10/M

ALE

AO 0-7

F i g u r e 2,1 B l o c k D i a g r a m o f t h e 8085 T e s t S y s t e m

181

25 WAY D-CONNECTOR

74LS30

74LS04

74LS30

8 0 8 5

6.144

8 7 5 5 A

8 1 5 5

F i g u r e 2 .2 L a y o u t o f t h e C o m p o n e n t s

182

A D A D A D A D 4 12 10 8

A D A D A D A D
5 13 11

R A M > S E L E C T

A D A D A D A D A D
15 13 12 11 4

V Y Y
Y Y

> 5v

E P R O M
S E L E C T

F i g u r e 2 .3 L o g i c D i a g r a m of t h e M e m o r y D e c o d i n g C i r c u i t r y

183

>
ID

>
O

Q

o

P
«; £
C CO (0 c i : co

O

CM
CC

W W •) -

O

o
o
CO
I o
I
<o
o

^ n u u n i_ O O
ctj ~ ~
C CJ O
z : CO <D
C Q . Q .
CO CO CO
- J o o

LL LL
3 3

3 2

4 5 0

0 0 0
o 0 0

° ^
CM CM Tj-

w. o
O CM
1— CM

o J2
— 10
O CU
Q.
CO £
o I
LL O

<3- f

O
<n
w
CD
LT

£
.c
O
o

m 2
0
CO

O
O

c
CD
CD
t_
O

1— C M " - C M C O f u O i — CM»—
(- l - O O O O O t E C E Q CM

CO

o

co
o

CM
o

o lr

7

c
>
a
a
co

CD

o a.
CO
CD

co

E
cu
a
CO

3
o
O

CM
CD
k.
3
a

m r Y Y T

CM
H

9

/

() •

LU

1 8 4

o o >

i
03

CL
Q .
>

I
o

LU
[O

I
o

Q
2

>

co

co

co

>

>
o

CO

Q I
Q
5 CO

h - - J
O

CO
Q

CM
CO
CO

I
o
O
Q o

• • •

Q

CO

CO

co

CM o
CM CM

0. a. CO

o O CO
O \
>

co
i— CJ o

CO
—I _l

CO

< < 1-X X

UJ
_l
<

CO
r>
CO

<
UJ

t-
LU
CO
111
GC

z
UJ
CO
Cu

Q

>
o

r
2

>
o

>
to

3

Q.

O
CM

U.
Q .

O
CM

E
a>

>
co
V>
CO

CO
o

CO

CO
o
CO
CD
r .

E
w
a
CD

O
O
GO

CO
CO
3
a
LL

1 8 5

0 1 2 3 4 S 6 7 8 9 A B C D E F

NOP

tB. IC

•MOP"

IB , IC

OUTL
BUS.R
IB.2C

RUB
R , *d
2B .2C

jnp
QXX

2B .2C

EM
1

t B . t C

•JNTF"
add

2B .2C

DEC
R

IB , 1C

IMS
fl.BUS
tB.2C

IN
fl.Pl
1B.2C

1M
fl,P2
IB.2C

• 1M«
R .P2
1B.2C

nOUD
A.P4
I B . 2 C

nouo
R,PS
1B.2C

nouD
fl.PS
1B.2C

nouo
A.P?
IB . 2 C

IMC
9R0

IB . IC

IMC
8RI

IB, IC

JBO
add

2B .2C

RDDC
R.ftd
2B .2C

CALL
OXX

2B.2C

D\S
1

IB , 1C

J T F
add

2B.2C

IMC
fl

t B . l C

INC
RO

IB. IC

IMC
Rt

tB, tC

IMC
R2

tfl, t c

IMC
R3

IB . tC

IMC
R4

I B , tC

INC
RS

tB, tC

INC
R6

IB , tC

INC
R7

tB. tC
XCH

A.8R0
IB, IC

XCH
R,«R1
I f l.lC

•MOP"

t B . l C

nou
fl,#d
2B.2C

j n p
t x x

2B .2C

EM
TCMT1
I B . tC

JMTO
add

2B.2C

CLR
fl

tB, 1C

XCH
fl.RO
IB . 1C

XCH
fl.Rt
I B , 1C

XCH
fl,R2
t B . t C

XCH
FI.R3
t B . l C

XCH
fl,R4
I B , 1C

XCH
fl.RS
IB, tC

XCH
fl.RG
t B . t C

XCH
A,R7
I B . tC

XCHJJ
A.iRO
IB, 1C

XCHD
fl,8Rl
t B . l C

JB1
add

2B.2C

•MOP'

tB, 1C

CALL
1XX

2B.2C

D1S
TCMTI
IB , tC

JTO
add

2B.2C

CPL
fl

tB, tC

•BUS'
IDLE
IB.2C

OUTL
PI .A
IB.2C

OUTL
P2,fl

1B.2C

•OUTL'
P2,fl
IB.2C

MOUD
P4,fl
IB.2C

nouo
PS,A
tB,2C

nOUD
PS,A
tB.2C

MOUD
P?,A
IB.2C

ORL
fl.iRO
IB, tC

ORL
fl,8Rt
IB , 1C

nou
fl,T

tB.t C

ORL
fl,»d
2B.2C

JMP
2XX

2B.2C

STR7
CM7

IB.1C

JNTl
add

2B.2C

SUflP
fl

IB, I C

ORL
R.RO
IB, tC

ORL
A,R1
I B . 1C

ORL
fl,R2
IB, I C

ORL
R,R3
IB . tC

ORL
A.R4
I B , tC

ORL
fl.RS
t B . l C

ORL
fl,R6
t B . l C

ORL
A.R?
I B , I C

HfiL
fl,«RO
IB , 1C

RML
fl.SRl
tB, I C

JB2
add

2B.2C

RML
R,#d

2B.2C

CRLL
2XX

2B .2C

STRT
T

IB , tC

J T l
add

2B.2C

DA
fl

IB, tC

RNL
R.RO
t B . l C

AML
A,R1
I B , I C

RML
fl,R2
tB, IC

RNL
R.R3
tB, IC

flML
A.R4
I B . t C

RNL
fl.RS
tB, tC

flNL
fl.RS
IB , IC

ANL
A.R7
I B , tC

ADD
R.gRO
IB , IC

RUB
A.8RI
IB , I C

n o u

T,fl
I B . I C

• NOP'

I B . I C

JttP
3XX

2B.2C

STOP
TCMT
I B . I C

•JMFl"
add

2B.2C

RRC
fl

tB, tC

ADD
R.RO
Ifl, 1C

HDD
H.Rl
I B , 1C

ADD
fl,R2
tB, tC

ADD
R.R3
IB, tC

ADD
A.R4
tB. tC

ADD
fl.RS
tB. tC

ADD
A,R6
IB , tC

ADD
H.R7
t B . t C

RDDC
A.BRO
IB , 1C

RflflC
R.flRt
tB, tC

JB3
add

2B.2C

•MOP»

t B . l C

CALL
3XX

2B.2C

EM70
CLK

t B . t C

J F l
add

2B.2C

RR
R

tB, tC

RDDC
fl.RO
I B . t C

ADDC
A,Rl
tB, tC

RDDC
fl,R2
I B , 1C

RDDC
R.R3
IB , 1C

RDDC
A.R4
I B , tC

RDDC
R .RS
IB, 1C

ADDC
fl.RG
I B , 1C

ADDC
A.R7
I B . IC

noux
R.8R0
1B.2C

noux
R.SRt
1B.2C

• MOP»

1B.1C

RET

IB.2C

JttP
4XX

2B.2C

CLR
FO

I B . tC

JM1
add

2B.2C

• MOP"

IB , tC

ORL
BUS.#d
2B.2C

ORL
Pt , # d
2B . 2C

ORL
P2 ,#d
2B.2C

•ORL«
P2,#d
2B.2C

ORLD
P4.A
IB . 2 C

ORLD
PS.fl
IB . 2 C

ORLD
P6 ,A
IB.2C

ORLD
P7,A
1B.2C

noux
SRO.fl
IB.2C

noux
e R i . f l
1B.2C

JB4
add

2B.2C

RETR

tB,2C

CRLL
4XX

2B .2C

CPL
FO

tB. 1C

JM2
add

2B.2C

CLR
C

I B , 1C

RNL
BUS,#d
2B.2C

ANL
P l , # d
2B.2C

flNL
P2 ,#d
2B.2C

• flNL'
P2 ,#d
2B.2C

AMLD
P4.A
tB,2C

RMLD
PS, A
IB.2C

AMLD
PG,A
1B.2C

AMLD
P7.A
IB .2C

nou
8R0.R
IB. 1C

nou
8Rl , A
tB, IC

• NOP'

IB, 1C

noup
R.8A
1B.2C

JNP
5XX

2B.2C

CLR
F t

I B . I C

•JMFO"
add

2B.2C

CPL
C

tB. 1C

nou
R0.fi
I B . I C

nou
Rt ,A
I B , 1C

nou
R2 ,A
IB, IC

nou
R3,fl
tB, tC

nou
R4.fl

tB , I C

nou
RS .A
IB, tC

nou
R6 .A
I B . I C

nou
R7,A
tB, 1C

nou
8R0,»d
2B.2C

n o u
8Rt , #d
2B.2C

JBS
add

2B.2C

JnPP
8A

tB,2C

CALL
SXX

2B.2C

CPL
Ft

t f l.lC

JFO
add

2B.2C

•NOP'

1B.1C

nou
R0.»d
2B.2C

nou
Rt ,ftd
2B.2C

nou
R2,»d
2B.2C

nou
R3 .»d
2B.2C

nou
R4 ,#d
2B.2C

nou
RS,»d
2B.2C

nou
R6 .#d
2B.2C

nou
R7,#d
2B.2C

•NOP'

IB . 1C

•MOP'

IB, 1C

•MOP'

tB. tC

•MOP»

tB. tC

JMP
e x x

2B .2C

SEL
RBO

IB , tC

JZ
add

2B .2C

nou
fl.PSU
I B . t C

DEC
RO

IB . 1C

DEC
Rl

I B , tC

DEC
R2

tB, IC

DEC
R3

IB , 1C

DEC
R4

I B , tC

DEC
RS

IB, tC

DEC
R6

IB, tC

DEC
R7

tB, tC
XRL

R.SRO
I B . I C

XRL
R.8R1
t B . l C

JB6
add

2B.2C

XRL
fl,#d
2B.2C

CALL
e x x

2B.2C

SEL
RBI

tB, tC

•JHPP"
add

2B.2C

n o u
PSU.fl
tB, I C

XRL
R.RO
1B.IC

XRL
fl.Rt
I B , 1C

XRL
R.R2
tB, tC

XRL
R,R3
IB , 1C

XRL
fl,R4
tB, tC

XRL
R.RS
l f l . t C

XRL
A.R6
1B.1C

XRL
A.R7
I B , 1C

•NOP*

tB. tC

•MOP'

tB, IC

•MOP'

I B . I C

M0UP3
fl.8fl
IB.2C

j n p
7XX

2B.2C

SEL
HBO

I B , tC

JMC
add

2B .2C

RL
A

IB , tC

OJNZ
RO.add
2B.2C

DJMZ
Rt . a d d
2B .2C

DJN2
R2 ,adc
2B.2C

DJMZ
R3 ,adc
2B.2C

DJMZ
R4,adc
2B . 2C

DJMZ
RS .adC
2B .2C

DJMZ
R6,add
2B.2C

DJN2
R?,add
2B.2C

nou
R.SRO
IB, 1C

nou
fl.SRt
t B . l C

JB7
add

2B.2C

•MOP"

IB . t C

CALL
7XX

2B.2C

SEL
nBt

tB, tC

JC
add

2B.2C

RLC
A

tB, IC

nou
R,R0
tB. IC

nou
fl.Rt
tB, tC

nou
R.R2
1B.IC

nou
R .R3
tB, tC

nou
R .R4
tB. tC

nou
fl.RS
I B . 1C

nou
fl,R6
IB. 1C

nou
A,R7
tB, 1C

« - INDIRECT ADDRESSING
- innEDlflTE ADDRESS1MG
B - BYTES
C - CYCLES

add - ADDRESS
d - DATA
• • - UNDECLARED INSTRUCTION

F i g u r e 3 .2 F u l l I n s t r u c t i o n S e t f o r t h e 8 0 4 8 M a n u f a c t u r e d bv I n t e l

1 8 6

http://R0.fi

0 1 2 3 4 S S 7 8 S A B C D E F

MOP

13, 1C

•MOP*

1B.IC

0U7L
BUS.fl
1B.2C

ROB
A.#d
2B.2C

JOP
OXX

2B.2C

EM
1

IB, I C

•JM7F«
add

2B.2C

DEC
A

IB, tC

IMS
A. BUS
1B.2C

1M
A.Pt
1B.2C

1M
A.P2
IB, 2C

•1M«
A.P2
1B.2C

nouo
A.P4
1B.2C

HOUD
A. PS
1B.2C

nouo
A, PS
1B.2C

nouo
A.P7
IB.2C

IMC
«R0
13. IC

IMC
«R1

\B.\C

J BO
add
2B.2C

AODC
A ,*d
2B.2C

CALL
OXX
2B.2C

BIS
1

I B , IC

J7F
add

2B, 2C

IMC
A

1B.IC

IMC
RO

IB. IC

IMC
Rl

IB, 1C

IMC
R2

IB, 1C

IMC
R3

IB, 1C

IMC
R4

IB. IC

IMC
R S

IB.IC

IMC
RS

I B . IC

IMC
R7

IB. 1C
XCH

fl.BRO
\B, 1C

XCH
H. i R t
1B.IC

•nou«
A.PC+l
IB, IC

nou
fl,#d
2B.2C

j n p
t x x

2B.2C

EM
7CN71
IB, IC

JM70
add

2B.2C

CLR
A

1B.1C

XCH
fl.RO
IB.tC

XCH
A.RI
I B , IC

XCH
A.R2
IB , I C

XCH
A.R3
IB. IC

XCH
A.R4
IB. 1C

XCH
A.RS
IB.1C

XCH
R.R6
IB, 1C

XCH
A.R7
IB, I C

XCHD
A.8RO
IB, I C

XCRD
H , « R t
1B.1C

JB1
add
2B.2C

•MOP«

IB.1C

CALL
t x x

2B.2C

OIS
TCMT1
I B , 1C

J70
add

2B.2C

CPL
A

1B.1C

•BUS*
IDLE
IB.2C

0U7L
Pt.A
1B.2C

0U7L
P2.A
I B , 2C

•0U7L*
P2,A
IB.2C

nouB
P4.A
1B.2C

n o u o
PS, A
IB.2C

n o u o
PS, A
IS, 2C

n o u o
P7.A
IB, 2C

ORL
fl,«R0
13,1C

ORL
A , « R l
IB, 1C

nou
fl,T

IB, IC

ORL
fl,»d
2B.2C

j n p
2XX
2B.2C

S7R7
c m

IB, 1C

JM71
add

2B.2C

SUAP
A

1B.1C

ORL
R.RO
IB.tC

ORL
R . R t
13. 1C

ORL
A.R2
IB, 1C

ORL
A.R3
IB.1C

ORL
R.R4
1B.1C

ORL
R . R S
1B.1C

ORL
R.R6
13,1C

ORL
A.R7
IB. 1C

ANL
A.8R0
IB, tC

AML
A.8R1
1B.1C

JB2
add
2B.2C

AML
R,«d
2B.2C

CALL
2XX
2B.2C

S7R7
7

IB, 1C

J71
add

2B.2C

DA
A

I B , IC

ANL
fl.RO
1B.1C

AML
A . R l
I B . I C

AML
A.R2
IB.tC

AML
R.R3
IB, 1C

RML
R.R4
1B.1C

AML
A.RS
IB, IC

ANL
A.R6
13. IC

AML
A.R7
IB, I C

AW)
A,«R0
I B . I C

ADO
A.tRl
I B , t C

nou
7.A

I B.1C

•MOP»

13,IC

j n p
3XX
2B.2C

S70P
7CM7
1B.1C

«JMF1«
add

2S.2C

RRC
A

l B . t C

ABB
fl.RO
1B.IC

ROD
A.Rl
13.1C

ROD
A.R2
1 3 , I C

ABB
A.R3
13, IC

ROB
A.R4
13.1C

ROD
A,RS
13,1C

RDD
R.R6
13.1C

ADD
A,R7
13, I C

RDDC
A.WO
IB, 1C

RDDC
fl,«Rt
1B.1C

JB3
add
2B.2C

»NOP»

1B.IC

CALL
3XX

2B.2C

EM70
CLK

IB, I C

JFl
add

2B.2C

RR
A

IB, tC

RBBC
fl.RO
IB.tC

RDDC
A . R l
13,1C

AD3C
A.R2
13, IC

RDDC
A.R3
1B.1C

RDDC
A.R4
IB.IC

RDDC
A . R S
IB. 1C

RDBC
A.RS
13, IC

RDDC
R.R7
I B , I C

naux
A,«R0
\B.2C

noux
A.IRl
13,2C

•NOP»

IB.1C

RE7

IB.2C

JHP
4XX

2B.2C

CLR
FO

1B.1C

JM1
add

2B.2C

• CLR*
A4-A7
I B . t C

ORL
BUS,#o
2B.2C

ORL
P l , # d
23,2C

ORL
P2 . #d
2B.2C

•ORL'
P2 ,#d
2fl, 2C

ORLB
P4.A
1B.2C

ORLD
PS.A
1B.2C

ORU)
PS,A

I B . 2C

ORLD
P7.A
I B , 2C

n o u x
«R0,A
\B.2C

n o u x

•Rt.A
13.2C

JB4
add

2B.2C

RE7R

1B.2C

CALL
4XX

2B.2C

CPL
FO

I B , I C

JM2
add

2B.2C

CLR
C

IB . t C

RML
BUS.td
2B.2C

AML
P l . t d
2B.2C

AML
P2 ,#d
2B.2C

•AML»
P2 , * d
23,2C

AMU)
P4,A
1B.2C

AML3
PS, A
IB.2C

RMLB
PS,A
13.2C

ANLD
P7,A
1B.2C

n o u

8R0.A
\B, 1C

nou
8R1.A
IB, 1C

•MOP*

IB.1C

n o u p
n , « n
IB.2C

Jnp
5XX
23,2C

CLR
F t

1B.IC

•JNFO'
add

2B.2C

CPL
C

1B.1C

n o u

RO.A
I B . I C

n o u

R l.A
13, IC

nou
R2.A
13,1C

nou
R3.A
IB, 1C

nou
R4.A
I B . 1C

nou
RS,A
13,IC

n o u

R6.A
13.1C

nou
R7.A
13,1C

nou
8R0 , td
2B.2C

n o u
•Rl,#d
2B.2C

JBS
add
2B.2C

j n p p

«R
IB.2C

CALL
5XX
2B.2C

CPL
F t

tB, tC

JFO
add

2B.2C

•NOP*

tB. tC

nou
R0 ,«d
2B.2C

n o u

Rt , # d
2B.2C

nou
R2 . t d
2J.2C

nou
R3 ,«d
23. 2C

n o u
R4 ,»d
23,2C

n o u
RS,»d
23.2C

nou
R6.#d
23.2C

n o u
R7 , «d
2B.2C

•DEC'
«R0

IB, IC

•BEC»
«R1

IB, IC

•MOP»

IB, IC

•MOP'

I B , 1C

JHP
6XX
2B.2C

SEL
R30

IB, I C

J2
add

2B.2C

nou
A.PSU
IB, IC

DEC
RO

IB.tC

DEC
R l

13,1C

BEC
R2

IB.IC

DEC
R3

13. 1C

BEC
R4

13.1C

BEC
RS

IB, 1C

DEC
RS

IB, 1C

DEC
R7

13, I C
XRL
A.8R0
1B.1C

XRL
A.8R1
1B.1C

JB6
add
2B.2C

XRL
A,»d
23,2C

CALL
6XX
23,2C

SEL
RBI
1B.1C

•JMPP«
add

2B.2C

nou
PSU.A
I B , 1C

XRL
R.RO
1B.1C

XRL
A . R l
IB, 1C

XRL
A.R2
13 . t C

XRL
A.R3
13, IC

XRL
A.R4
1B.1C

XRL
A.RS
13.1C

XRL
A.R6
13.IC

XRL
A.R7
IB. 1C

•DJM2»
tRO,ad
23.2C

•DJN2'
SRl .ad
2B.2C

•MOP»

IB.1C

HOUP3
fl.SA
1B.2C

j n p
7XX
2B.2C

SEL
nBO

IB, 1C

JMC
add

2B.2C

RL
A

IB. 1C

DJM2
RO.add
2B.2C

DJN2
R l . a d d
23.2C

BJM2
R2,ado
23.2C

DJM2
R3 .add
23,2C

0JM2
R4 ,add
23,2C

BJM2
RS.add
23.2C

BJM2
R6.add
23.2C

DJNZ
R7.add
23.2C

nou
H.SRO
\B, IC

nou
A, i R t
13,1C

JB7
add
2B.2C

•NOP'

IB.1C

CALL
7XX

23,2C

SEL
nBi

\B, IC

JC
add

2B.2C

RLC
A

I B . I C

n o u

R,R0
IB.IC

nou
R.Rl
I B . I C

nou
A,R2
1 3 , K

nou
R.R3
IB. 1C

nou
A.R4
I B . I C

nou
R.RS
IB, 1C

nou
R,RS
13. IC

nou
A.R7
I B . I C

« - 1MD1REC7 ADDRESSIMG
• - lnn£DlA7E ADDRESSING
B - BY7ES
C - CYCLES

add - BBDRESS
d - DR7A
• • - UNDECLARED 1NS7RUC710M

F i g u r e 3 .3 F u l l I n s t r u c t i o n S e t f o r t h e 8 0 4 8 M a n u f a c t u r e d by N E C

187

file:///B./C
file:///B.2C
file:///B.2C

100
UJ

f- 30
RETURN EXECUTION i n

80 DATA AREA

70

9 SO
jun?

50

40

30

RESTART 20

l—I l l l I l—I—i—I—I—i—i—i—i—i F " H I—1—1—I—I—I—t—I I—I—I—I—I—I—I—I—1
20 2S 30 35 40

INSTRUCTIONS EXECUTED AFTER ERROR

F i g u r e 4 . 1 (a) E r r o n e o u s E x e c u t i o n in D a t a A r e a s o f t h e 8 0 8 5

100
UJ

RETURfl F 30
in

EXECUTION I N
80 DATA AREA

70

° SO

JUNP 50

40

30

20 RESTART

HALT

l—l—) t—I—I I I I—t—<—t—I I—I—I—I—I—I—I—I—I—I—I I—I
0 5 10 IS 20 25 30 35 40

INSTRUCTIONS EXECUTED AFTER ERROR

F i g u r e 4 .1 (b) E r r o n e o u s E x e c u t i o n in t h e D a t a A r e a s o f t h e 6 8 0 0

188

100
RETURN

F 30
EXECUTION IM

80 DATA AREA

70

5 SO

50 JUNP

40

30

20

10

t * • *—I—I—l—I—l—l i i—l—(—t—i—i—i—I l—l—l l—l l—l t l — i — l — i — i — t

10 IS 20 25 30 3S 40
INSTRUCTIONS EXECUTED AFTER ERROR

Figure 4.1 (c) Erroneous Execution in the Data Areas of the NEC 8048

too
RETURfl Ui

F 30
in

EXECUTION I ft
60 DATA AREA

70

9 60

SO jurip

40

30

20

10

0 • — I — I — I — I — I — I — I — I — I — t — i — I I I • • < — I — I — I — (— j 1 — I — I — I — I 1 1 — i — I — I — I — I 1—H— I — I I I (

0 S 10 IS 20 2S 30 35 40
IMSTRUCTIO/IS EXECUTED AFTER ERROR

Figure 4.1 (d) Erroneous Execution in the Data Areas of the Intel 8048

189

100 junp

so EXECUTION in
DflTH HREfl

SO

70

60

RESTART SO

40

30

20

i
0 S 10 IS 20

INSTRUCTIONS EXECUTED AFTER ERROR

Figure 4.1 (e) Erroneous Execution in the Data Areas of the 68000

^ERRONEOUS JUMP

C) HALT RETURN

READ
DATA
BYTE

) UNSPECIFIED RESTART
JUMP

Figure 4.2 Flow of Execution in Random Data

190

10 20 30 40 50 60 70 80 30 100
2 OUERHEflD OF EXTRA flErlORY

Figure 4.3 Recovery Improvements Obtained by Seeding the Data Areas

10
in r
2 3 t-u 3
in r

B +

7 +

5 E f

5 ••

4 ••

3 ••

2 ••

1 -•

0

8048

6800
8085

•H 1 1 I 1 » I I I 1 H

EO 60 70 80 30 100
2 OUERHEftD OP EXTRA flETiORY

— i —

10
—(—
20

—t—
30

—t—
40

Figure 4.4 Average Number of instructions Executed with Seeded Data Areas

191

ERRONEOUS JUMP

C DX

C RESUME
TXX VALID

INSTRUCTIONS

TXX

Figure 5.1 Erroneous Jump into a Program Area

ERRONEOUS JUMP

HALT

DX

RESTART
RESUME

TXX VAL D
INSTRUCTIONS

RANDOM
UMP

TXX

C RETURN

Figure 5.2 Flow of Erroneous Execution in Program Areas

192

RETURN
100

RflMUon Jun? OPERRftD
FIELD F 30

in

80

^ 70

° SO

50

RESUME 40

30

20

to

1
INSTRUCT10nS EXECUTED AFTER ERROR

Figure 5.3 (a) Erroneous Execution in Program Areas of the 8085

RETURN
100

Rflwjon junp Li

f= 30 QPERHWJ RESTART in
FIELD

80

70

° 60

SO

RESUT1E 40

30

20

10

INSTRUCTIONS EXECUTED AFTER ERROR

Figure 5.3 (b) Erroneous Execution in the Program Areas of the 6800

193

100

£ 30
10

80 +

70 +

S GO +

50 ••

40 ••

30 ••

20 ••

10 ••

0

OPERAND
FIELD

RANDOM jOnT"

RESUME

-t- -»
3 4 S

INSTRUCT I OriS EXECUTED AFTER ERROR

Figure 5.3 (c) Erroneous Execution in the Program Areas of the 8048

RESUME
VALID

NSTRUCTIONS

ERRONEOUS J

HALT

OPERAND
FIELD

RETURN

Figure 5.4 Simplified Flow of Execution in Program Areas

194

100
.RflfiDon junr

OPERAND
F I E U)

3 4 5

INSTRUCTIONS EXECUTED AFTER ERROR

Figure 5.5 Erroneous Execution in Program Areas of the 68000

23 u n
JPOPULATED AREAS

FFF

COO
BFF

800
7FF

400
3FF

000

D

Figure 6.1 Common Memory Arrangements for the 8048

195

ERRONEOUS JUMP

UNUSED
AREAS

DATA
AREAS

HALT

LOOP

INPUT
AREAS

PROGRAM
AREAS

G 0 RESUME

RECOVER

Figure 7.1 Flow of Execution Between Different Memory Areas

196

8085 UITH RECOVERY ROUTINE ONLY
100

LOOP
30

3
b 80 HALT

- 70

5 60

RESUHE M 50

40

30

20

RECOUER

0 32 24 40 56 64 48
SIZE OF PROGRAfl AREA IN KILOBYTES

8085 UITH FAULT TOLERANT PROGRAM AREA
100

Li LOOP
30

fe 80 HALT

- 70

m 60
RESUNE

N 50

40

30

20

RECOUER

I

56 64 32 40 48 24 8
SIZE OF PROGRAfl AREA Ifl KILOBYTES

Fiaure 7.2 The Effects of Addina Fault Tolerance to the
Proaram Areas of the 8085

197

SO 85 UITH RECOUERY ROUTINE ONLY
100

Id LOOP
30

HALT BO

70

5 60

M 50

RESUME
40

30

RECOUER 20

I
16 24 32 40 48 S6 64

SIZE OP DATA AREA in KILOBYTES

BOBS UITH FAULT TOLERANT DATA AREA

Ui LOOP
30

MALT
it 80

70

5 60

M SO RESUHE

40
RECCUER

30

20

0 ' t i l t 1 1 1 l i 1 1 1 l 1 1 »
0 8 16 24 32 40 48 S6 64

SIZE OF DATA AREA Ifl KILOBYTES

Figure 7.3 The Effects of Adding Fault Tolerance to the
Data Areas of the 8085

198

BOSS U1TH RECOUERY ROUTINE ONLY
too

u
i

30

£ 80

- 70
HALT

s
S 60

REsurte
M SO

40

30

20

10 RECOUER

0 t
8 16 24 32 40 48 56 64

SIZE OF UNUSED AREA IN KILOBYTES

8085 UITH FAULT TOLERANT UNUSED AREA
100

30

& 80
REsurte

70

oo 60

SO

40
RECOUER

30

20

10

i t t
64 56 48 32 40 24 8

SIZE OF UNUSED AREA IN KILOBYTES

Fiaure 7.4 The Effects of Adding Fault Tolerance to the
Unused Memory Areas of the 8085

199

(a) Results for Different Sizes of Data Areas
30

Ul NON—FAULT TOLERANT

UJ
x 26 ui

y 20

in

" 15 is
FAULT TOLERANT

UJ

10

0
64 56 46 32 40 16 24 0

SIZE OF DATA AREA in KILOBYTES

(b) Results for Different Sizes of Unused Areas
70 T

UJ

Ul 60

in

SO

ui E 40 MOM-FAULT TOLERANT

19

30 Ul

20

FAULT TOLERANT

0 4 1 1 1 1 1 — l 1 »
0 8 16 24 32 40 48 56 64

SIZE OF UNUSED AREA IN KILOBYTES

Figure 7.5 The Effects on the Average Number of Instructions Executed
by Adding Fault Tolerance to the 8085

200

6800 UITH RECOUERY ROUT1ME OHLY

100
LOOP

u

§

SO HflLT

80

70

3 60

SO
RESUME

40

30

20

RECOUER

64 S6 48 32 24 40
SIZE OF PROGRAM AREA 1M KILOBYTES

6800 UITH FAULT TOLERAMT PROGRAM AREA
100 T

u c o
" 30 +

& 80 +
>

at
£ 60 + o at

N SO +

40 +

'LOOP

HALT

RESUME

30 ••

20

10

0
RECOUER

—I—

16
-t- - t - -+- •+-

24 32 40 48 SG
SIZE OF PROGRAM AREA IN KILOBYTES

64

Figure 7.6 The Effects of Adding Fault Tolerance to the
Program Areas of the 6800

201

6800 UITH RECOVERY ROUTINE ONLY
too

ui LOO?

SO

80
HALT

70

n 60

» 50 RESUME

40

30

20

10

RECOUER

24 32 40 48 56 64
SIZE OF DATA AREA IN KILOBYTES

6800 UITH FAULT TOLERANT BATA AREA
LOOP

100 HALT

SO

B: SO

70
RESUNE

« 60

M SO

40

RECOUER 30

20

0 J 1 1 1 1 1 1 1 > 1 - 1 ' 1 ' ' —

0 8 16 24 32 40 48 56
SIZE OF DATA AREA IN KILOBYTES

Figure 7.7 The Effects of Adding Fault Tolerance to the
Data Areas of the 6800

202

6800 UITH RECOUERY ROUTIDE OMLY
100

LOOP
HALT SO

t 80

70

m 60

RESUME
M SO

40

30

20

10

RECOUER
t

64 32 56 8 24 48 40
SIZE OF UMUSEJ) AREA in KILOBYTES

6800 UITH FAULT TOLERANT UflUSED AREA
100

HALT
i

so

fe 80

70

RESUnt 5 60

M SO

40
RECOUER

30

20

10

I
64 56 48 32 24 40 16 8

SIZE OF UnUSEB AREA in KILOBYTES

Fiaure 7.8 The Effects of Addina Fault Tolerance to the
Unused Memory Areas of the 6800

203

100

30

80

* 70

> 60
B REGISTER

is SO

40

RCCUTlULflTOR
30

20

10

i

30 25 20 10
MUflflER OF INSTRUCTIONS EXECUTED

Figure 7.9 Probability of Data Corruptions in the 8085

204

c c c c

8000
7FFF

7000
6FFF

6000
5FFF

5000
4FFF

4000
3FFF

3000
2FFF

2000
1FFF

1000
OFFF

0000

(32K) UNUSED

(4K) SINGLE 8 BIT INPUT PORT

(4K) SINGLE 8 BIT INPUT PORT

(4K)

<4K)

SINGLE 8 BIT INPUT PORT

(4K) UNUSED

SINGLE 8 BIT INPUT PORT

(4K) FOUR 8 BIT OUTPUT PORTS (256 BYTE BLOCKS)

(4K) 2K RAM (APPEARS TWICE)

(4K) 4K EPROM

Figure 8.1 Memory Map of the Specific System Studied

205

3 > ALE
INT SO

SI

Figure 8.2 Wait State Recognition Circuit

C T > 1 CE
CE

CE

ALE INT

IO/M

SI SO

Figure 8.3 Circuit to Detect an Illegal instruction Fetch

206

WR

CE INT 1
CE

CE

Figure 8.4 Circuit to Detect a Write into ROM

WR

INT

Figure 8.5 Circuit to Detect a Write Outside the RAM Areas

207

> B

D

Figure 9.1 Logic Required to Detect Operation Code Fetches

> SO
l a

SI

3 > TIMER IN
2a

Id IO/M
2d

RD i

Figure 9.2 Implementation of Logic on Test System

208

4 cn

t r
Q. to

co
CO

o
CD P CO
UJ co ca

CO
o

A
to CD

CO

a
CO

Q. (a "11/

A CO
CO C5

UJ
CO LU P 01

o

<3=i CM CM

UJ

5 co

2

CO CO

CO
209

START

SEND MESSAGE.
READ IN LIMIT

OF TEST PROGRAM

TRANSFER TEST
PROGRAM FROM INSTANT

ROM INTO RAM

SET TIMER
TO CAUSE
INTERRUPT

I

INITIALISE REG'S
IN PROCESSOR

START TIMER
AND JUMP INTO
TEST PROGRAM

HAS
INTERRUPT"

.OCCURRED,

YES

CHECK
RESULT

PROGRAM

INJECT FAULT BY
INTERRUPT ROUTINE

SEND MESSAGE
AND FINAL

VALUE OF TIMER

OUTPUT 'S' FOR
SUCCESS. OR TIMER
COUNT FOR FAILURE

J

(ST0P)

Figure 9.4 Software Flow Diagram for the Fault Injecting Test Facility

210

Type of
Application

Requirements Reference

Batch
Processing

Recovery time of between
10 minutes and 2 hours

m

Communications Recovery time of 1-15 minutes 111

Telephone
Switching

Less than 2 hours down-t ime in 40 years
Less than 2 calls lost in 10.000

25

Typical
Industrial

Recovery within 250 mil l iseconds 87

Aerospace Recovery within 10 mil l iseconds m

Space 98% survivability over 5 years 106

Nuclear Reactor
Safety System

—6
10 - probability of failure on demand 12

Aircraft 10 - probability of failure during
a 10 hour flight

110

Table 1.1 Reliability Requirements for Different Applications

211

DEVICE
ERROR TYPE

DEVICE
WRITE DATA READ

R3 3.33 1.13 3.31

R4 2.99 1.16 3.26

R5 2.61 1.10 2.61

R6 2.37 0.91 2.38

Table 2.1 Voltage Levels at which First Errors Oecurreq
in 8155 RAM Chips

ERROR TYPE

DEVICE WRITE DATA READ

LOCATION VALUE LOCATION VALUE LOCATION VALUE

R3 VARIOUS FF VARIOUS
SINGLE

BIT
ERROR

FF00 FF

R4 VARIOUS FF VARIOUS
SINGLE

BIT
ERROR

VARIOUS
SINGLE

BIT
ERROR

R5 FF00 FF VARIOUS
SINGLE

BIT
ERROR

FFOO FF

R6 FF00 FF VARIOUS
SINGLE

BIT
ERROR

FFOO FF

Table 2.2 Location and Value of the First Errors Observeo

212

DATA ADDRESS

HEX
BINARY

HEX HEX
D 7 D 6 D 5 ° 4 o ° 2 0 , 1 ° 0

HEX

00 0 0 0 0 0 0 0 0 FFBF

n 0 0 0 1 0 0 0 1 FFBF

22 0 0 1 0 0 0 1 0 FFBF

33 0 0 1 1 0 0 1 1 FFBF

88 1 0 0 0 1 0 0 0 FFBF

99 1 0 0 1 1 0 0 1 FFBF

AA 1 0 1 0 1 0 1 0 FFBF

BB 1 0 1 1 1 0 1 1 FFBF

44 0 1 0 0 0 1 0 0 FF3F

66 0 1 1 0 0 1 1 0 FF3F

C C 1 1 0 0 1 1 0 0 FF3F

EE 1 1 1 0 1 1 1 0 FF3F

55 0 1 0 1 0 1 0 1 FFFA

DD 1 1 0 1 1 1 0 1 FFFA

77 0 1 1 1 0 1 1 1 FFEC

FF 1
1

1 1 1
1

1 1 FF4B

0 1 - FIRST BITS CORRUPTED

Table 2.3 First Data Corruotions in RAM Chio R5

213

DEVICE
SIZE OF CAPACITOR IN TEST SUPPLY MINIMUM

VOLTAGE
REACHED

DEVICE
2.200 uF 4.700 uF 10.000 uF

MINIMUM
VOLTAGE
REACHED

Cycles Cycles Cycles Volts

RAM 1.50 3.25 7.25 3.8

EPROM 1.75 3.25 7.75 3.4

PROCESSOR 2.00 4.25 9.25 2.8

COMPLETE
SYSTEM

1.50 3.50 7.25 3.8

Table 2.4 Length of Interruptions to the Test Supply (in Cycles)
Necessary to Cause Corruptions

DEVICE RAM ROM EPROM

8035 64x8 NONE

8039 128x8 NONE

8040 256x8 NONE

8048 64x8 !Kx8

8049 128x8 2Kx8

8050 256x8 4Kx8

8748 64x8 1Kx8

8749 128x8 2Kx8

Table 3.1 Internal Memory of the 48-Series Microprocessors

214

PROCESSOR
PROBABILITY
OF A JUMP

"7
AVERAGE NUMBER
OF INSTRUCTIONS
EXECUTED (N I A W) AV

AVERAGE NUMBER
OF BYTES

EXECUTED (NB ..)
AV

8085 0.1035 9.65 12.5

6800 0.1035 9.65 18.5

8048
(INTEL)

0.1543 6.48 8.3

8048
(NEC)

0.1621 6.16 7.9

68000 0.3436 2.91

Table 4.1 Results of Execution in Random Data

PR
O

C
ES

SO
R

BL
O

C
K

SI
ZE

O

F
D

A
TA

LE
N

G
TH

 O
F

R
EC

O
VE

R
Y

S
TR

IN
G

%
 O

V
E

R
H

E
A

D

|

A
V

E
R

A
G

E
N

U
M

B
E

R

1
O

F
IN

S
TR

U
C

TI
O

N
S

E

X
E

C
U

TE
D

J

% PROBABILITY
OF OUTCOME

PR
O

C
ES

SO
R

BL
O

C
K

SI
ZE

O

F
D

A
TA

LE
N

G
TH

 O
F

R
EC

O
VE

R
Y

S
TR

IN
G

%
 O

V
E

R
H

E
A

D

|

A
V

E
R

A
G

E
N

U
M

B
E

R

1
O

F
IN

S
TR

U
C

TI
O

N
S

E

X
E

C
U

TE
D

J

H
A

LT

R
E

S
TA

R
T

(R
E

C
O

V
E

R
Y

)

R
A

N
D

O
M

JU

M
P

R
E

TU
R

N

8085 20 4 20 5.0 1.9 68.4 21.3 8.4

8085 15 3 20 4.5 1.5 73.8 17.8 6.9

8085 10 o (_ 20 3.9 1.3 77.9 14.6 6.2

8085 5 1 20 3.2 0.9 84.1 10.6 4.4

6800 15 o 20 3.7 6.0 70.7 19.5 3.8

6800 10 2 20 3.3 4.7 74.1 17.1 4.1

6800 5 1 20 3.5 5.4 72.1 18.6 3.9

8048 15 o 20 4.1 0.0 42.7 54.4 2.9

8048 10 0 20 4.1 0.0 46.3 51.0 2.7

Table 4.2 Comoarison Between Different Data Structures

215

P
R

O
C

E
S

S
O

R

%

H
AL

T

%

R
E

S
TA

R
T

|

%

R
A

N
D

O
M

 J
U

M
P

%

R
ET

U
R

N

%

R
E

S
U

M
E

A
V

.
N

o.

IN
S

TR
U

C
TI

O
N

S

E
X

E
C

U
TE

D

BE
FO

R
E

A
N

Y
TR

A
N

S
FE

R

A
V

N
o.

IN

ST
R

U
C

TI
O

N
S

E
X

E
C

U
TE

D

BE
FO

R
E

R
E

S
U

M
IN

G

P
R

O
G

R
A

M

8085 0.1 1.0 1.4 0.6 96.9 1.2 0.3

6800 1.6 0.3 5.2 1.3 91.6 1.7 0.7

8048 0.0 0.0 3.5 0.2 96.3 1.0 0.2

Table 5.1 Comparison Between Processors for Erroneous Execution
in Program Areas

P
R

O
C

E
S

S
O

R

P
R

O
G

R
A

M

%

H
AL

T

%

R
E

S
TA

R
T

%

R
AN

D
O

M

JU
M

P

%

R
E

TU
R

N

%

R
ES

U
M

E

A
V

N
o.

IN

S
TR

U
C

TI
O

N
S

E

X
E

C
U

TE
D

BE

FO
R

E
A

N
Y

TR
A

N
S

FE
R

A
V

N
o.

IN

S
TR

U
C

TI
O

N
S

E

X
E

C
U

TE
D

BE

FO
R

E
R

E
S

U
M

IN
G

P

R
O

G
R

A
M

8085 A 0.0 2.8 2.2 0.9 94.1 1.2 0.7

8085 B 0.1 1.5 1.8 1.0 95.6 1.2 0.7

6800 C 0.0 0.6 2.6 2.4 94.4 1.5 0.7

8048 D 0.0 0.0 4.1 0.3 95.6 1.1 0.3

3048 E 0.0 0.0 3.7 0.2 96.1 1.1 0.3

8048 F 0.0 0.0 4.0 0.3 95.7 1.0 0.3

Table 5.2 Comparison Between Actual Programs

216

P
R

O
C

E
S

S
O

R

|

P
R

O
G

R
A

M

%

H
AL

T

%

R
E

S
TA

R
T

%

R
AN

D
O

M

JU
M

P

%

R
ET

U
R

N

%

R
E

S
U

M
E

AV
.

N
o.

 I
N

ST
R

U
C

TI
O

N
S

1
E

X
E

C
U

TE
D

BE

FO
R

E
A

N
Y

TR
A

N
S

FE
R

|

AV
 N

o.
 I

N
S

TR
U

C
TI

O
N

S

1
E

X
E

C
U

TE
D

B

E
FO

R
E

R

E
S

U
M

IN
G

 P
R

O
G

R
A

M

|

8085 A 0.0 4.1 3.2 1.3 91.4 1.8 0.8

8085 B 0.2 2.4 2.8 1.6 93.0 1.8 0.8

6800 C 0.0 0.7 3.2 2.8 93.3 1.8 0.8

8048 D 0.0 0.0 5.5 0.4 94.1 1.4 0.4

8048 E 0.0 0.0 4.7 0.3 95.0 1.4 0.4

8048 F 0.0 0.0 5.0 0.4 94.6 1.3 0.3

68000 G 0.0 26.1 1.5 0.0 72.4 1.5 0.5

Table 5.3 Results from the Simplified Analysis
of Erroneous Execution in Program Areas

PR
O

C
ES

SO
R

P
R

O
G

R
A

M

%

H
A

LT

%

R
E

S
TA

R
T

%

R
AN

D
O

M

JU
M

P

%

R
ET

U
R

N

%

R
ES

U
M

E

A
V

.
N

o.

IN
S

TR
U

C
TI

O
N

S

E
X

E
C

U
TE

D

B
E

FO
R

E
A

N
Y

TR
A

N
S

FE
R

AV

 N
o.

IN

S
TR

U
C

TI
O

N
S

E

X
E

C
U

TE
D

BE

FO
R

E
R

E
S

U
M

IN
G

P

R
O

G
R

A
M

8085
X

A 0.0 8.6 2.2 0.9 88.3 1.3 0.6

3085
X

B 0.1 19.1 1.8 1.0 78.0 1.3 0.5

6800
X

C 0.0 5.9 2.4 2.2 89.5 1.4 0.6

Table 5.4 Detailed Analysis of Modified Programs

217

TYPE
OF

TRANSFER
% PROBABILITY

AVERAGE NUMBER
OF INSTRUCTIONS

EXECUTED

HALT 47.7 54.6

RESTART 5.8 1.6

RANDOM
JUMP

3.0 3.75

RETURN 35.0 33.6

SPECIFIC
JUMP

8.5 2.2

ALL 100.0 38.2

Table 6.1 Probability of Different Outcomes after a Random j u m p
into an Unused Memory Area of an 8085

TYPE
OF

TRANSFER
% PROBABILITY

AVERAGE NUMBER
OF INSTRUCTIONS

EXECUTED

HALT 49.7 55.7

RESTART 7.2 2.3

RANDOM
JUMP

5.0 5.0

RETURN 38.1 31.3

ALL 100.0 40.0

Table 6.2 Outcomes after a Random Jump into an Unused Memory Area
of an 8085, Assuming Address Range C000 to FFFF is Unused

218

MEMORY
ARRANGEMENT

(see fig. 6.1)

STATE OF MEMORY
8ANK SELECT

FLIP-FLOP
AFTER ERROR

% PROBABILITY OF TRANSFER
MEMORY

ARRANGEMENT
(see fig. 6.1)

STATE OF MEMORY
8ANK SELECT

FLIP-FLOP
AFTER ERROR

JUMP OUT OF
UNUSED AREA

RETURN LOOP

A 0 4-9.8 49.2 1.0

A 1 0.0 99.0 1.0

B 0 90.5 9.4 0.1

B 1 29.2 69.8 1.0

C 0 90.9 9.0 0.1

C 1 89.8 9.2 1.0

D 0 89.8 9.2 1.0

D 1 90.9 9.0 0.1

Table 6.3 Transfer from Unpopulated Memory Areas of an 8048

P
R

O
C

E
S

S
O

R

%

H
A

LT

%

R
E

S
TA

R
T

%

R
A

N
D

O
M

JU

M
P

%

R
E

TU
R

N

%

S
P

E
C

IF
IC

JU

M
P

%

E
X

IT
 F

R
O

M

BL
O

C
K

8085 0.4 3.3 0.4- 2.0 4-. 3 89.6

6800 2.0 0.4- 1.2 1.6 1.2 93.6

63000 0.0 32.5 1.9 0.0 0.0 65.6

Table 6.4- Transfer from Partially Decoded Memory Mapped Input Ports

219

LOCATION
OF DATA

NUMBER OF
INSTRUCTIONS
WHICH CAUSE
CORRUPTION

PROBABILITY THAT
A SINGLE
INSTRUCTION WILL
NOT CORRUPT DAT

ACCUMULATOR 84 0.672

B REGISTER 12 0.953

C REGISTER 14 0.945

D REGISTER 16 0.938

E REGISTER 18 0.930

H REGISTER 22 0.914

L REGISTER 24 0.906

STACK POINTER 30.5 0.881

MEMORY 34.5 0.865

ALL FLAGS 105 0.590

SIGN FLAG 45.5 0.822

ZERO FLAG 45.5 0.822

AUXILIARY
CARRY FLAG

45.5 0.822

PARITY FLAG 45.5 0.822

CARRY FLAG 44.5 0.826

Table 7.1 Data Corruptions in the 8085 Caused bv Erroneous Execution

220

S
Y

S
T

E
M

 A
R

R
A

N
G

E
M

E
N

T

N
O

N
-M

E
M

O
R

Y
 M

A
P

P
E

D
 P

O
R

T
S

R
E

C
O

V
E

R
Y

R

O
U

TI
N

E

P
U

L
L

-U
P

S
 O

N
 D

A
T

A
 L

IN
E

S

M
O

D
IF

IE
D

 P
R

O
G

R
A

M
 A

R
E

A

FU
LL

 R
A

M

D
E

C
O

D
IN

G

S
E

E
D

E
D

 D
A

T
A

 A
R

E
A

F INAL O U T C O M E R E A C H E D

E
X

P
E

C
T

E
D

 N
U

M
B

E
R

O

F
E

R
R

O
N

E
O

U
S

IN

S
T

R
U

C
T

IO
N

S

E
X

E
C

U
T

E
D

90
%

 C
O

N
FI

D
E

N
C

E

LI
M

IT

O
N

 T
H

E
 N

U
M

B
E

R

O
F

IN
S

T
R

U
C

T
IO

N
S

E

X
E

C
U

T
E

D

S
Y

S
T

E
M

 A
R

R
A

N
G

E
M

E
N

T

N
O

N
-M

E
M

O
R

Y
 M

A
P

P
E

D
 P

O
R

T
S

R
E

C
O

V
E

R
Y

R

O
U

TI
N

E

P
U

L
L

-U
P

S
 O

N
 D

A
T

A
 L

IN
E

S

M
O

D
IF

IE
D

 P
R

O
G

R
A

M
 A

R
E

A

FU
LL

 R
A

M

D
E

C
O

D
IN

G

S
E

E
D

E
D

 D
A

T
A

 A
R

E
A

%

H
A

LT

%

LO
O

P

%

R
E

S
U

M
E

%

R
E

C
O

V
E

R

E
X

P
E

C
T

E
D

 N
U

M
B

E
R

O

F
E

R
R

O
N

E
O

U
S

IN

S
T

R
U

C
T

IO
N

S

E
X

E
C

U
T

E
D

90
%

 C
O

N
FI

D
E

N
C

E

LI
M

IT

O
N

 T
H

E
 N

U
M

B
E

R

O
F

IN
S

T
R

U
C

T
IO

N
S

E

X
E

C
U

T
E

D

A 65.2 10.5 24.3 0.0 1045.3 2406.9

B y 69.2 7.8 23.0 0.0 56.6 130.3

C y 67.2 7.7 9.9 15.2 1055.6 2430.6

D y y 0.4 0.4 6.4 93.0 682.2 1570.8

E y y y 0.3 0.0 6.2 93.5 1.6 3.7

F y y y y 0.3 0.0 5.1 94.7 1.6 3.7

G y y y y 0.1 0.0 6.1 93.8 1.3 3.0

H y y y y y 0.0 0.0 6.0 94.0 1.1 2.5

l y y y y y y 0.0 0.0 4.9 95.1 1.1 2.5

Table 8.1 Er roneous Execution Under Different System Arrangements

221

Appendix 1. Software to Test the Effects of Executing Undeclared

Operation Codes

This appendix contains full commented listings of the programs used to

identify the effects of executing the undeclared operation codes of the

6800 and 8035/8048. Similar techniques, as those illustrated, c a n be

employed on other microprocessors . However, the software alone is not

usually sufficient to identify all functions, and it is n e c e s s a r y to use

additional techniques such as the monitoring of all external s ignals with a

logic analyser.

A1.1 Listing of the 6800 Test Program

NAM M6800
x x x x x x x x x x x x x x x x * * x x * * x x x * x * x x * x x x * x x x x x * x * x x x x x x x x x * x x * x * x

X

« * * * * * M 6 8 0 0 . A S M * * * * *
X

K X

X

* THIS PROGRAM IS D E S I G N E D TO T E S T THE U N D E C L A R E D
O P - C O D E S IN T H E MOTOROLA 6800 M I C R O P R O C E S S O R

X

* IT ALSO T E S T S IF THE INTERRUPTS A R E DISABLED BY THEM
X

X

X

E1D1 O U T E E E EQU $E1D1 ROUTINE TO OUTPUT A C H A R A C T E R
E055 BYTE EQU $E055 R E A D S IN A BYTE O F DATA IN HEX
E 0 E 3 CONTRO EQU $ E 0 E 3 ENTRY POINT INTO MIKBUG
E 0 7 E PDATA1

ft
EQU $ E 0 7 E ROUTINE TO OUTPUT A STRING

1FF0 ORG $ 1 F F 0 S E T STACK LOCATIONS
1FF0 0001 STACK RMB 1 POSITION O F TOP O F STACK
I F F ! 0001 C T E M P RMB 1 S P A C E FOR CONDITION C O D E S
1FF2 0001 BTEMP RMB 1 S P A C E FOR ACCUMULATOR B
1FF3 0001 ATEMP RMB 1 S P A C E FOR ACCUMULATOR A
1FF4 0001 XTEMPH RMB 1 HIGH BYTE OF X R E G I S T E R
1FF5 0001 XTEMPL RMB 1 LOW BYTE OF X R E G I S T E R
1FF6 0002 PTEMP

X
RMB 2 S P A C E FOR RETURN A D D R E S S

A048 ORG •A048 S E T START A D D R E S S FOR MIKBUG G
A048 0100 GOADD FDB $0100 COMMAND
A000 ORG $A000
A000 0200 FDB IRQVEC S E T V E C T O R FOR IRQ
A006 ORG $A006
A006 0210 FDB NMIVEC S E T V E C T O R FOR NMI

222

6800 Test Program (cont.)

ORG $0100 START OF T E S T PROGRAM

0100
0103
0106
0109
010C
010F
0112
0115
0118
one
011E
0121
0124
0127
012A
012D
0130
0133
0134
0135
0136
0137
0138
0139
013A
0138
013D
013E
013F
0140
0141

C E 0137
F F 1FF6
BD 0142
BD E055
B7 1FF1
BD 014D
BD E055
B7 1 F F 2
BD 014D
BD E055
B7 1FF3
BD 014D
BD E055
B7 1 F F 4
BD E055
B7 1 F F 5
8E 1FF0
3B
01
01
01
01
01
01
01
20 F7
3F
3F
3F
3F
3F

START

R E S U

T E S T !

LDX
STX
J S R
J S R
STAA
J S R
J S R
STAA
J S R '
J S R
STAA
J S R
J S R
STAA
J S R
STAA
LDS
RTI
NOP
NOP
NOP
NOP
NOP
NOP
NOP
BRA
SWI
SWI
SWI
SWI
SWI

- R E S U
PTEMP
C R L F
B Y T E
C T E M P
S P A C E
BYTE
BTEMP
S P A C E
BYTE
ATEMP
S P A C E
BYTE
XTEMPH
BYTE
XTEMPL
' S T A C K

LOAD A D D R E S S TO GO TO A F T E R RTI
S T O R E VALUE ON STACK
S E T TERMINAL ON NEW LINE
READ IN BYTE FOR CONDITION C O D E S
S T O R E ONTO S T A C K

READ IN BYTE FOR ACCUMULATOR B
S T O R E ONTO S T A C K

READ IN BYTE FOR ACCUMULATOR A
S T O R E ONTO S T A C K

READ IN HIGH BYTE OF X R E G I S T E R
S T O R E ONTO S T A C K
READ IN LOW BYTE OF X R E G I S T E R
S T O R E ONTO S T A C K
LOAD S T A C K TO POINT TO DATA BLOCK
LOAD R E G S AND JUMP TO T E S T LOC
NOPS IN LOOP TO WAIT FOR INTERRUPT

T E S T BYTE CAN B E I N S E R T E D BY HAND
IN ONE OF T H E S E LOCATIONS

START LOOP UNTIL INTERRUPT

STRING OF S O F T W A R E INTERRUPTS TO
C A P T U R E EXECUTION A F T E R T E S T C O D E
N E C E S S A R Y FOR S I N G L E . DOUBLE
OR TRIPLE BYTE INSTRUCTIONS

S U B R O U T I N E S

0142 86 0D
0144 BD E1D1
0147 86 OA
0149 BD E1D1
014C 39

C R L F LDAA
J S R
LDAA
J S R
RTS

"$0D
O U T E E E
"$0A
O U T E E E

SUBROUTINE TO OUTPUT A C A R R I A G E
RETURN AND LINE F E E D TO THE
TERMINAL

014D 86 20
014F BD E1D1
0152 86 20
0154 BD E1D1
0157 39

S P A C E LDAA
J S R
LDAA
J S R
RTS

-$20
O U T E E E
'$20
O U T E E E

SUBROUTINE TO OUTPUT A
TO THE TERMINAL

S P A C E

223

6800 Test Program (cont.)

0200

0200 C E 0217
0203 BD E 0 7 E
0206 3B

0210 C E 021F
0213 BD E 0 7 E
0216 3B

0217 20
0218 20
0219 49
021A 52
021B 51
021C 20
021D 20
021E 04
021F 20
0220 20
0221 4 E
0222 4D
0223 49
0224 20
0225 20
0226 04

INTERRUPT S E R V I C E ROUTINES

ORG $0200

IRQVEC LDX
J S R
RTI

" IRQSTR LOAD S T A R T A D D R E S S OF STRING
PDATA1 PRINT STRING TO INDICATE IRQ

ORG $0210

NMIVEC LDX
J S R
RTI

* NMISTR LOAD START A D D R E S S OF STRING
PDATA1 PRINT STRING TO INDICATE NMI

IRQSTR F C C / IRQ / STRING PRINTED BY IRQ

F C B $04 DELIMITER
NMISTR F C C / NMI / STRING PRINTED BY NMI

F C B $04 DELIMITER

END

224

A1.2 Listing of the 8035/8048 Test Program

O l > l l I < l l * * t « > < « I > > < > > < « l t < « I l l * > < I l t X * l > l t X l l I l t > I I I I « < X l t < « «) ! < l t « < X l l > > (« I > l t > < l t

; PROGRAM TO T E S T THE U N D E C L A R E D O P C O D E S OF THE 8035/8048

ALL UNUSED LOCATIONS A R E S E T TO 04. THIS F O R C E S A JUMP TO
A D D R E S S 004 IF PROGRAM EXECUTION IS A T T E M P T E D OUTSIDE T H E
NORMAL PROGRAM A R E A

000 64 JMP 0300 JUMP TO INITIALISATION BLOCK
001 00
002 04 UNUSED LOCATIONS S E T TO 04
003 04
004 39 OUTL P I , A OUTPUT C O N T E N T S OF ACCUMULATOR TO PORT
005 83 R E T R E T U R N TO MAIN LOOP
006 04
007 04 U N U S E D LOCATIONS S E T TO 04. C A U S E S JUMP
008 04 TO A D D R E S S 004 IF E X E C U T E D

MAIN PROGRAM LOOP

100 75 ENT0 CLK S E T TO AS A C L O C K OUTPUT FOR LOGIC ANALYSER
101 17 INC A INCREMENT T E S T BYTE IN ACCUMULATOR
102 54 CALL 0200 CALL ROUTINE TO E X E C U T E U N D E C L A R E D C O D E
103 00
104 24 JMP 0101 JUMP BACK TO BEGINNING OF LOOP
105 01
106 04
107 04 UNUSED LOCATIONS

SUBROUTINE TO E X E C U T E U N D E C L A R E D C O D E

200 39 OUTL P I . A OUTPUT C O N T E N T S OF ACCUMULATOR TO PORT
201 XX S P A C E FOR U N D E C L A R E D C O D E
202 04 S E Q U E N C E OF LOCATIONS S E T TO 04, THIS E N S U R E S
203 04 THAT EXECUTION WILL T R A N S F E R TO LOCATION 004
204 04 R E G A R D L E S S OF WHETHER THE U N D E C L A R E D C O D E IS
205 04 A S I N G L E . DOUBLE OR TRIPLE BYTE INSTRUCTION

C O D E FOR INITIALISATION OF P R O C E S S O R ON R E S E T

300 23 MOV A,0AAH S E T S ACCUMULATOR TO THE VALUE AA
301 AA
302 00 NOP S P A C E FOR SETT ING OTHER R E G I S T E R S OR F L A G S
303 00 NOP
304 24 JMP 0100 JUMP TO BEGINNING OF MAIN LOOP
305 00
306 04 UNUSED LOCATIONS S E T TO 04
307 04

END

225

Appendix 2. The Effects of Executing the Undeclared Operation C o d e s of the

8035/8048

Appendix 2 contains a detailed description of the operations performed

by all the instruction codes which are not declared for the 8035/8048.

They appear in numerical order and are referenced by their hexadecimal

value. In c a s e s where the code performs a different function for different

manufacturers, this is clearly marked and both operations are descr ibed.

Symbols Used

The symbols used and the layout of the definitions is very similar to

that used in the National Semiconductor 4 8 - S e r i e s Microcomputers Handbook

(120). Reference should be made to the handbook for descriptions of the

standard instruction set.

Symbols Description

A The Accumulator
The Auxiliary Carry Flag
Program Memory Address
Bit Designator (b = 0-7)
The Bank Switch
The Bus Port
Carry Flag
Clock Signal
Event Counter
Nibble Designator (4 bits)
Number or Expression (8 bits)
Memory Bank F l ip -F lop
F lags 0,1
Interrupt
" In-Page" Operation Designator
Port Designator (p = 1,2 or 4 -7)
Program Status Word
Register Designator (r = 0,1 or 0-7)
Stack Pointer
Timer
Timer Flag
Testable Inputs 0,1
External RAM
Prefix for Immediate data
Prefix for Indirect Address
Contents of Accumulator
Contents of Location Addressed by A
Replaced By

AC
addr
Bb
B S
BUS
C
CLK
CNT
D
data
DBF
F0.F1

P
Pp
PSW
Rr
S P
T
TF
T0,T1
X

e
(A)
((A))
<

226

Operation Code:

Mnemonic:

Operation:

Description:

Note:

Spec ia l
Conditions:

01 01

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

S a m e operation as the defined instruction (code 00).

Cyc les : 1
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Spec ia l
Conditions:

06 06

J N T F addr

Jump to specif ied address if timer flag is c lear .

(PC 0-7) < addr if TF=0
(PC) < (PC) + 2 if TF=1

If the internal t imer/counter flag is set to a logic
zero, the contents of the program counter are replaced
by the address bits from byte 2. If the t imer/counter
flag is a logic one, the next sequential instruction is
executed.

This instruction is the logical inverse of the J T F
instruction, except that the t imer/counter flag is not
affected.

Cyc les :
Bytes:

2
2

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Spec ia l

Conditions:

0B 0B

IN A.P2

Input data to accumulator from port 2

(A) < (P2)

Data present at port 2 is input into the accumulator.

S a m e operation as the defined instruction (code OA).

Cyc les : 2
Bytes: 1

227

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Spec ia l
Conditions:

22

MOV A.PC+1

* * N E C 8048 ONLY*" 22

Move contents of the
accumulator and increment.

(A) < (PC) + 1

program counter into the

The contents of the program counter are moved to the
accumulator and then the accumulator is incremented by
one. After executing this instruction the accumulator
contains the address of the next sequential instruction.

This function is only performed by the processor
manufactured by N E C .

C y c l e s : 1
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Description:

Note:

Specia l
Conditions:

22 " I N T E L 8048 ONLY*« 22

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

This code performs a no operation (code 00) on the 8048
manufactured by Intel. It performs a different function
on the p rocessor made by N E C .

Cyc les : 1
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Description:

Note:

Specia l

Conditions:

33 33

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction.

S a m e operation as the defined instruction (code 00).

C y c l e s : 1
Bytes: 1

228

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Spec ia l
Conditions:

38 38

BUS IDLE

No specif ic operation on the Bus

(BUS) < 00

The value 00 appears on the Bus during T4 of the second
cycle of the instruction, but no read or write signal is
generated. Therefore a valid Bus operation is not
performed.

This code does not appear to perform any useful
function.

Cyc les : 2
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Spec ia l
Conditions:

3B 3B

OUTL P2.A

Output contents of accumulator to port 2.

(P2) < (A)

The contents of the accumulator are p laced, and latched,
at the output port 2.

S a m e operation as the defined instruction (code 3A).

Cyc les : 2
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Description:

Note:

Specia l

Conditions:

63 63

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction.

Same operation as the defined instruction (code 00).

Cyc les : 1
Bytes: 1

229

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Specia l
Conditions:

66 66

JNF1 addr

Jump to specified address if flag 1 is c lear .

(PC 0-7) < addr. if F1=0
(PC) < (PC) + 2. if F l = l

If flag 1 is at a logic zero, the contents of the
program counter are replaced by the address bits from
byte 2. If flag 1 is a logic one. the next sequential
instruction is executed.

This instruction is the logical inverse of the JF1
instruction.

C y c l e s : 2
Bytes: 2

Operation Codes :

Mnemonic:

Operation:

Description:

Note:

Specia l
Conditions:

73,82 73,82

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

S a m e operation as the defined instruction (code 00).

C y c l e s : 1
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Specia l
Conditions:

87 " N E C 8048 ONLY** 87

C L R A 4 - 7

C lear accumulator high nibble.

(A4-7) < 0

Accumulator bits 4 through 7 are c leared to zero.

This function is only performed by the processor
manufactured by N E C .

Cyc les :
Bytes:

230

Operation Code:

Mnemonic:

Operation:

Description:

Note:

Specia l
Conditions:

87 " I N T E L 8048 ONLY* * 87

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

This code performs a no operation (code 00) on the 8048
manufactured by Intel. It performs a different function
on the processor made by N E C .

C y c l e s : 1
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Specia l
Conditions:

8B

ORL p2 .#data

8B

Logica l -OR- immedia te specif ied data with contents of
port 2.

(P2) < (P2) OR data

The data contained In byte 2 is logically ORed with the
data on port 2. and the results are sent back to the
port.

S a m e operation as the defined instruction (code 8A).

Cyc les :
Bytes:

2
2

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Specia l

Conditions:

9B 9B

ANL P2 .#da ta

Logica l -AND- immediate specif ied data with port 2.

(P2) < (P2) AND data

The data contained in byte 2 are logically ANDed
immediately with the data on port 2, and the results are
sent back to the port.

S a m e operation as the defined instruction (code 9A).

C y c l e s :
Bytes:

2
2

231

Operation Code:

Mnemonic:

Operation:

Description:

Note:

Spec ia l
Conditions:

A2 A2

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

S a m e operation as the defined instruction (code 00).

Cyc les : 1
Bytes: 1

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

A6

JNFO addr

A6

Jump to specif ied address if flag 0 is c lear .

(PC 0-7) < addr. if F0=0
(PC) < (PC) + 2. if F0=1

If flag 0 is at a logic zero, the contents of the
program counter are replaced by the address bits from
byte 2. If flag 0 is at a logic one. the next
sequential instruction is executed.

This instruction is the
instruction.

logical inverse of the JFO

Spec ia l
Conditions:

C y c l e s :
Bytes:

2
2

Operation Code:

Mnemonic:

Operation:

Description:

Note:

Spec ia l

Conditions:

B7 B7

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

S a m e operation as the defined instruction (code 00).

Cyc les : 1
Bytes: 1

232

Operation Codes:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Spec ia l
Conditions:

C0.C1 * * N E C 8048 ONLY**

D E C § Rr

Decrement- indi rect contents of RAM by one.

CO.Cl

((Rr)) < ((Rr)) + 1, where r = 0 or 1

The contents of the internal RAM location as addressed
by bits 0 through 5 of register 'r ' , are decremented by
one.

This function is only performed by the processor
manufactured by NEC.

Cyc les :
Bytes:

Operation Codes :

Mnemonic:

Operation:

Description:

Note:

Specia l
Conditions:

C0.C1 " I N T E L 8048 ONLY* * C0.C1

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction.

T h e s e codes perform a no operation (code 00) on the 8048
manufactured by Intel. They perform a different
function on the processor made by N E C .

Cyc les :
Bytes:

1

Operation Codes:

Mnemonic:

Operation:

Description:

Note:

Spec ia l

Conditions:

C 2 . C 3 C 2 . C 3

NOP

No operation performed.

No operation is performed: execution continues with the
next sequential instruction

S a m e operation as the defined instruction (code 00).

Cyc les : 1
Bytes: 1

233

Operation Code:

Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Specia l
Conditions:

D6 D6

JMPP addr

Jump to specif ied address within address page.

(PC 0-7) < addr

The contents of the program counter are replaced by the
address bits from byte 2.

Performs an unconditional jump within the current
address page. This operation is not provided in the
standard instruction set.

Cyc les : 2
Bytes: 2

Operation Codes:

Mnemonic:

Operation:

E0 .E1

DJNZ § Rr addr

' N E C 8048 ONLY* * E0 .E1

Decrement- indi rect contents of RAM. test contents, jump
if not zero.

Symbolic
Representation:

((Rr)) < ((Rr)) - 1:
(PC 0-7) < addr.
(PC) < (PC) + 2.

where r = 0 or
if ((Rr)) = 0
if ((Rr)) = 0

1

Description:

Note:

Spec ia l
Conditions:

The contents of the internal RAM location, as addressed
by bits 0 through 5 of register r. are decremented by
one. and then tested to s e e if the contents equal zero.
If the contents of the location equal zero, the next
sequential instruction is executed. If the location is
not zero, control p a s s e s to the instruction at the
address designated in byte 2.

This function is only performed by the p rocessor
manufactured by N E C . and provides an operation which is
not available from the standard instruction set.

Cyc les :
Bytes:

2
2

234

Operation Codes:

Mnemonic:

Operation:

Description:

Note:

E0 .E1 " I N T E L 8048 ONLY** E0 ,E1

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

These c o d e s perform a no operation (code 00) on the 8048
manufactured by Intel. They perform a different
function on the processor made by NEC.

Specia l
Conditions:

C y c l e s : 1
Bytes: 1

Operation Codes:

Mnemonic:

Operation:

Description:

Note:

Spec ia l
Conditions:

E 2 . F 3 E 2 . F 3

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction.

S a m e operation as the defined instruction (code 00).

C y c l e s : 1
Bytes: 1

235

Appendix 3. Instruction Set Parameters

This appendix contains details of the instruction set parameters for

the 8085. 6800. 8048 and 68000 microprocessors .

A3.1 Instruction Set Parameters for the 8085

The 8085 contains the following instruction types: -

Single Byte Instructions Declared Undeclared Total

Non-Jumping 183 5 188
Conditional Jump 8 1 9
Jump 11 0 11

Total 202 6 208

Double Byte Instructions Declared Undeclared Total

Non-Jumping 18 2 20
Conditional Jump 0 0 0
Jump 0 0 0

Total 18 2 20

Triple Byte Instructions Declared Undeclared Total

Non-Jumping 8 0 8
Conditional Jump 16 2 18
Jump 2 0 2

Total 26 2 28

All Instructions Declared Undeclared Total

Non-Jumping 209 7 216
Conditional Jump 24 3 27
Jump 13 0 13

Total 246 10 256

The effective number of jump instructions is 26.5.

236

Jump Instruction Types for the 8085

Unconditional Jumps Conditional Jumps

Code Mnemonic Length Type Code Mnemonic Length Type

C3 JMP 3 JMP C2 JNZ 3 JMP
CD CALL 3 JMP CA JZ 3 JMP
C9 RET 1 RET D2 JNC 3 JMP
C7 RST 0 1 RST DA JC 3 JMP
CF RST 1 1 RST E2 JPO 3 JMP
D7 RST 2 1 RST EA JPE 3 JMP
DF RST 3 1 RST F2 JP 3 JMP
E7 RST 4 1 RST FA JM 3 JMP
EF RST 5 1 RST C4 CNZ 3 JMP
F7 RST 6 1 RST CC CZ 3 JMP
FF RST 7 1 RST D4 CNC 3 JMP
E9 PCHL 1 JMP DC CC 3 JMP
76 HLT 1 HLT E4 CPO 3 JMP

EC CPE 3 JMP
F4 CP 3 JMP
FC CM 3 JMP
CO RNZ 1 RET
C8 RZ 1 RET
DO RNC 1 RET
D8 RC 1 RET
E0 RPO 1 RET
E8 RPE 1 RET
FO RP 1 RET
F8 RM 1 RET
DD >«• 3 JMP
FD X X X 3 JMP
CB 1 RST

HLT — Halt Instructions.
JMP — Jump Instructions.
RST — Restart instructions.
RET — Return Instructions.

x x x — undefined Instructions.

237

A3.2 Instruction Set Parameters for the 6800

The 6800 contains the following instruction types:-

Single Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

Double Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

Triple Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

Four Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

All Instructions

Non-Jumping
Conditional Jump
Jump

Total

Declared

47
0
4

51

Declared

85
14
4

103

Declared

41
0
2

43

Declared

0
0
0

Declared

173
14
10

197

Undeclared

25
0
4

29

Undeclared

12
1
4

17

Undeclared

10
0
1

11

Undeclared

2
0
0

Undeclared

49
1
9

59

Total

72
0
8

80

Total

97
15
8

120

Total

51
0
3

54

Total

2
0
0

2

Total

222
15
19

256

The effective number of jump instructions is 26.5.

238

Jump Instruction Types for the 6800

Unconditional Jumps Conditional Jumps

Code Mnemonic Length Type Code Mnemonic Length Type

20 BRA 2 JMP 22 BHl 2 JMP
6E JMP(I) 2 JMP 23 BLS 2 JMP
7E JMP(E) 3 JMP 24 BCC 2 JMP
8D BSFt 2 JMP 25 BCS 2 JMP
AD JSR(I) 2 JMP 26 BNE 2 JMP
BD JSR(E) 3 JMP 27 BEQ 2 JMP
39 RTS 1 RET 28 BVC 2 JMP
3B RTI 1 RET 29 BVS 2 JMP
3E WAI 1 HLT 2A BPL 2 JMP
3F SWI 1 RST 2B BMI 2 JMP
38 * * « 1 RET 2C BGE 2 JMP
3A * * « 1 RET 2D BLT 2 JMP
3C « » 1 HLT 2E BGT 2 JMP
3D X X X 1 HLT 2F BLE 2 JMP
9D X X X 2 HLT 21 X X X 2 JMP
CD X X X 2 JMP
DD X X X 2 HLT
ED X X X 2 JMP
FD X X X 3 JMP

HLT — Halt Instructions.
JMP — Jump Instructions.
RET — Return Instructions.
RST — Restart Instructions.

x x x — undefined Instructions.

(I) — Indexed Addressing.
(E) — Extended Addressing.

239

A3.3 Instruction Set Parameters for the 8048

The 8048 instruction set is dependent on the manufacturer of the

device. The main figures given are for processors made by Intel. Figures

in brackets show the variations for processors made by NEC.

Single Byte instructions

Non-Jumping
Conditional Jump
Jump

Total

Double Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

All Instructions

Non-Jumping
Conditional Jump
Jump

Total

Declared

161
0
3

164

Declared

22
20
24

66

Declared

183
20
27

230

Undeclared

20(18)
0
0

20(18)

Undeclared

2
3
1(3)

6(8)

Undeclared

22(20)
3

1(3)

26

Total

181(179)
0
3

184(182)

Total

24
23

25(27)

72(74)

Total
205(203)

23

28(30)

256
The effective number of jump instructions is 39.5 (41.5).

240

Jump Instruction Types for the 8048

Unconditional Jumps Conditional Jumps

Code Mnemonic Length Type Code Mnemonic Length Type

04 JMP OXX 2 JMP 12 JBO 2 JMP
24 JMP 1XX 2 JMP 32 JB1 2 JMP
44 JMP 2XX 2 JMP 52 JB2 2 JMP
64 JMP 3XX 2 JMP 72 JB3 2 JMP
84 JMP 4XX 2 JMP 92 JB4 2 JMP
A4 JMP 5XX 2 JMP B2 JB5 2 JMP
C4 JMP 6XX 2 JMP D2 JB6 2 JMP
E4 JMP 7XX 2 JMP F2 JB7 2 JMP
14 CALL OXX 2 JMP 06 x x x 2 JMP
34 CALL 1XX 2 JMP 16 JTF 2 JMP
54 CALL 2XX 2 JMP 26 JNTO 2 JMP
74 CALL 3XX 2 JMP 36 JTO 2 JMP
94 CALL 4XX 2 JMP 46 JNT1 2 JMP
B4 CALL 5XX 2 JMP 56 JT1 2 JMP
D4 CALL 6XX 2 JMP 66 X X X 2 JMP
F4 CALL 7XX 2 JMP 76 JF1 2 JMP
B3 JMP 9A 1 JMP 86 JNI 2 JMP
D6 X X X 2 JMP 96 JNZ 2 JMP
E8 DJNZ RO 2 JMP A6 X X X 2 JMP
E9 DJNZ m 2 JMP B6 JFO 2 JMP
EA DJNZ R2 2 JMP C6 JZ 2 JMP
EB DJNZ R3 2 JMP E6 JNC 2 JMP
EC DJNZ R4 2 JMP F6 JC 2 JMP
ED DJNZ R5 2 JMP
EE DJNZ R6 2 JMP
EF DJNZ R7 2 JMP
83 RET 1 RET
93 RETR 1 RET

NEC 8048 ONLY

EO DJNZ §R0 2 JMP
El DJNZ 8R1 2 JMP

HLT — Halt Instructions.
JMP — Jump Instructions.
RET — Return Instructions.
RST — Restart Instructions.

x x x — undefined Instructions.

XX — Low-order Byte of Jump Address.

241

A3.4 Instruction Set Parameters for the 68000

The 68000 contains the following instruction types:-

All Instructions Declared Undeclared Total

Non-Jumping
Conditional Jump
Jump

41021
4210

20305

0
0
0

41021
4210

20305

Total 65536 0 65536

Jump Instruction Types for the 68000

For the 68000 it is not acceptable to assume that conditional jump

instructions will cause transfer of execution on 50% of the occasions that

they are executed. The list on the following page shows how the different

instructions have been divided into the effective number of codes which

fall into particular groups. Further details of the divisions are given in

section 4.2.1.

242

Jump Instruction Types for the 68000 (cont.)

Instruction No. Codes Non-Jump Exception(RST) Jump (Type)

Bcc
BRA
BSR
CHK
DBcc
JMP
JSR
RTR
RTS
TRAP
TRAPV

3584
256
256
424
128
28
28

1
1

16
1

1792
0
0

106
64

0

Privilege instructions

STOP 1
RESET 1
RTE 1
MOVE to SR 53
ANDI to SR 1
EORI to SR 1
ORI to SR 1
MOVE USP 16

0
0
0
0
0.5

0
0.5
0

26.5
0.5
0.5
0.5
8

896
128
128
318

32
14
14
0.5
0.5

16
0.5

0.5
0.5
0.5

26.5
0.5
0.5
0.5
8

896
128
128

0
32
14
14

(JMP)
(JMP)
(JMP)

Totals 4798 1999 1585

In addition to those mentioned above, there are

unassigned op-codes which generate an exception if they are

Overall Instruction Grouping

(JMP)
(JMP)
(JMP)

0.5 (RET)
0.5 (RET)
0
0

0.5 (HLT)
0
0.5 (RET)
0
0
0
0
0

1214

19.717 illegal or

executed.

HLT — Halt Instuctions.

JMP — Random Jump Instructions.

RET — Return Instructions.

RST — Restart Instructions.

Non-Jumping Instructions.

Total

Effective Number

0.5

1212.0

1.5

21302.0

43020.0

65536.0

243

Appendix 4, Equations for Transfers within a Program Area

This appendix contains the detailed derivation of the probability

equations governing the transfers between states, during erroneous

execution in program areas. The following derivations are valid for

processors having single, double and triple byte instructions only.

in order to calculate the probabilities of reaching a particular

state, it is necessary to determine the possible ways of transferring form

one state to another. All the possible transfers from the three different

operand fields are shown below. In all cases the first byte read is the

fourth in the sequence.

Transfer from State QX.

Transfer to Jump

Transfer to Resume

D J

Transfer to DX

Transfer to TXX

Transfer to TXX

D S V
D D S V . . .
D T S S V . .
D T D X y . .

D D D X . . .
D T S D X . .

D D T X X . .
D T S T X X .

D T T X X . .

Transfer from State TXX

Transfer to Jump

Transfer to Resume

T X J

Transfer to DX

Transfer to TXX

T X S y
T X D S V , . .
T X T S S V . .
T X T D X V . .

T X D D X . . .
T X T S D X , .

T X D T X X . .
T X T S T X X .

Transfer to TXX T X T T X X .

244

Transfer from State TXX

Transfer to Jump . . T J X .

Transfer to Resume . . T D X y . . .
. . T T X S V . .

Transfer to DX . . T T X D X .

Transfer to TXX . . T T X T X X .

Transfer to TXX . . T S X .

The symbols used are as fol lows:-

Byte interpreted as an instruction.

V Any valid instruction bytes.
X Operand byte of any value.

S Single byte instruction op-code in the program.
D Double byte instruction op-code in the program.
T Triple byte instruction op-code in the program.

S Operand byte interpreted as a single byte non-jumping instruction.
D Operand byte interpreted as a double byte non-Jumping instruction.
T Operand byte interpreted as a triple byte non-jumping instruction.

J Operand byte interpreted as a jump instruction type.

X Operand byte interpreted as an instruction.

The probability that a particular transfer occurs is evaluated by

multiplying together the probabilities that each specific byte appears in

that sequence. For example, the transfer from the operand field of a

double byte instruction to resuming valid instruction fetches can be

achieved in four different ways. The probability of each sequence is given

by:-

PD2<R1
Eqn. A4.1

P D£R2 • p s Eqn. A4.2

PD.£R3 P D T • p s • p s Eqn. A4.3

PD2<R4 P D I P D Eqn. A4.4

Where:- R is the state of resuming valid instruction fetches.

245

DXR represents the transfer from DX to R.

For all the other quantities the same nomenclature has been used as above,

so that the probability of interpreting an operand byte of a double byte

instruction, as a single byte non-jumping instruction, is represented by

p
DS '

As the transfer can occur in any one of these ways, the overall

probability of the transfer, P Q X R . is given by:-
P = P + P + P + P Fnn A4 5 DXT-I DXR1 DXR2 DXR3 DXR4 c q n ' * °

Similar expressions can be obtained for all the other transfers.

The probability of a specific byte appearing at a given location is

obtained from the ratio of that byte type to the total number of locations.

For example P n c is given by:-

N D S
P D S = Eqn. A4.6

Where:- is the number of single byte non-jumping instructions which

appear in the operand field of double byte instructions.

N D) is the number of double byte instructions.

Pg is given by:-

N S I
P s = - j jS - Eqn. A4.7

Where:- Ng (is the number of single byte instructions in the program

area.

IMj is the total number of instructions.

Values of these probabilities can either be obtained by assuming equal

use of each instruction and random data in the operand fields, or by

analysing actual programs.

From the above expressions it is possible to derive equations for the

246

probability of being at a particular state. I instruction cycles after the

erroneous jump. They are of the following form:-

V" = V M) • PDXDX + P T X X (M) ' PTXXDX + P T X X (M) ' PT^XDX

Eqn. A4.8

Where:- DXDX represents the transfer from DX to DX.

TXXDX represents the transfer from TXX to DX.

TXXDX represents the transfer from TXX to DX.

Similar expressions can be obtained for P T X X (I > and P T X X (I) .

For the probabilities of a jump to another part of the memory map or

of resuming valid instruction fetches, the values are cumulative because it

is assumed that once in these states, execution cannot transfer elsewhere.

Therefore the following expressions apply:-

P R (I) = P R (M) + P D X (. - D . P D X R + P ^ (M > . P T X 2 i R

+ P T * X (M) • P T X X R Eqn. A4.9

The analysis of section 5.2 treats the jump instruction types as four

separate groups. For clarity, the derivations so far have only considered

a single jump type. However the expressions for the individual groups are

the same as for the overall group, except that the probabilities of a

particular jump type appearing in the operand field are reduced

proportionally.

Section 5.2 also shows that the probabilit ies, when I equals zero, can

be found. Therefore the probabilities for all other positive integer

values of l can be evaluated from the above equations.

247

Appendix 5. Results of Execution in Unpopulated Memory Areas

This appendix gives detailed results of the execution following an

erroneous jump into unpopulated memory areas of the 8048 and 8085. For

both processsors instruction fetches read back the lower order byte of the

address and therefore a 256 byte sequence appears in these areas. The

results below show the effective number of starting points within the

sequence which give a particular transfer, and from this the probability of

each outcome has been calculated.

A5.1 Unpopulated Area Execution for the 8048

Final Instruction Effective Number of % Probability
Executed Start Addresses of Transfer

JUMP 005/805 1.0 0.4
CALL 015/815 15.0 5.9
JUMP 125/925 1.0 0.4
CALL 135/935 46.0 18.0
JUMP 245/A45 1.0 0.4
CALL 255/A55 15.5 6.1
JUMP 365/B65 31.5 12.3
CALL 375/B75 16.0 6.3
JUMP 485/C85 1.0 0.4
CALL 495/C95 8.0 3.1
JUMP 5A5/DA5 16.0 6.3
CALL 5B5/DB5 7.5 2.9
JUMP 6C5/EC5 16.0 6.3
CALL 6D5/ED5 8.0 3.1
JUMP 7E5/FE5 24.0 9.4
CALL 7F5/FF5 15.0 5.9

CALL 815 0.5 0.2
CALL 935 0.5 0.2
CALL 7F5 1.0 0.4

JUMP §A 8.5 3.3

RET 15.0 5.9
RETR 8.0 3.1

Where two addresses have been given the transfer is dependent on the

state of the memory bank select f l ip-f lop, and the corresponding address

will be used.

248

A5.2 Unpopulated Area Execution for the 8085

Address or Instruction Effective Number
Reached

HALT
RETURN

Address in HL Register
DFDE
FFFE
RESTART 4
RESTART 5
RESTART 6
RESTART 7
F4F3

Address in DE Register
RESTART 1

Address in BC Register
RESTART 0
CFCE
RESTART 2
RESTART 3
C4C3
C5C4
D4D3
DCDB
E4E3
E6E5
EEED
F6F5
FCFB
FEFD
CECD

Address in PSW
C6C5
CCCB
RESTART 8
DEDD
ECEB
D6D5

of Start Addresses

122.2
89.6

3.5
3.0
2.2
2.0
2.0
2.0
2.0
1.9
1.9
1.8
1.5
1.5
1.5
1.5
1.5
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.8
0.8
0.5
0.5
0.5
0.5
0.5
0.5

% Probability
of Transfer

47.7
35.0

1.4
1.2
0.9
0.8
0.8
0.8
0.8
0.7
0.7
0.7
0.6
0.6
0.6
0.6
0.6
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.3
0.3
0.2
0.2
0.2
0.2
0.2
0.2

Transfer
Type

HLT
RET
JMP
SPC
SPC
RST
RST
RST
RST
SPC
JMP
RST
JMP
RST
SPC
RST
RST
SPC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
JMP
SPC
SPC
RST
SPC
SPC
SPC

Transfer types:- HLT Hall.
RST Restart.
JMP Random Jump.
RET Return.
SPC Specific Jump.

249

Appendix 6. Software for the Fault Simulation Test Facility

This appendix contains full commented listings of the software written

modules. CONTROL is the control program which organises the sequence of

runs and calls the other modules. PREFAULT is the main core of the

interrupt service routine. It retrieves the return address from the stack

and saves all the registers before call ing the fault injection routine.

Both of these modules provide the basis for all testing and do not require

alteration.

The remaining modules are test dependent and have to be rewritten for

different faults or test programs. For these modules, the listings show a

specific example. INIT initialises the state of the test system before

each run. FAULT simulates the desired fault during the interrupt routine.

CHECK gives an indication of the correctness of the result after execution.

TEST Is the program to be tested.

A6.1 CONTROL - Main Control Program

CONTROL PROGRAM FOR TESTING FAULT TOLERANT ROUTINES
IT INJECTS A FAULT AT SUCCESSIVE LOCATIONS IN THE TEST PROGRAM

THE TESTING FACILITY USES THE TIMER SECTION OF THE 8155 ON THE SDK BOARD
TO GENERATE INTERRUPTS AT DIFFERENT POINTS IN THE PROGRAM.

THE INTERRUPT ROUTINE CAN THEN BE USED TO INJECT 'FAULTS' INTO THE SYSTEM

for the fault simulation test facility. It is split into a number of

BY CORRUPTING REGISTERS OR MEMORY LOCATIONS.

BLKEND EQU
BLKST EQU
CHECK EQU
CIN EQU
COUT EQU
ENDTC EQU
GETAD EQU
INIT EQU
MASK EQU

020B6H
07FFFH
08700H
00820H
00850H
02008H
00626H
08500H
02007H

STORE FOR END OF PROG ADDRESS
START OF PROGRAM ADDRESS
LOCATION OF CHECKING ROUTINE
READS IN SERIAL BYTE INTO A AND C REGS
OUTPUTS SERIAL CHARACTER IN C REG
STORES FINAL VALUE OF TIMER COUNT
READS ADDRESS INTO BC REGS
LOCATION OF ROUTINE TO INITIALISE REGS
TEMPORARY STORE FOR INTERRUPT MASK

250

CONTROL (cont.)

MONIT EQU 00408H :RETURN ADDRESS INTO SDK BOARD MONITOR
NUMFLG EQU 02005H .FLAG FOR SINGLE FAULT INJECTION
PROG EQU 0C000H .START OF TEST PROGRAM
RUNNUM EQU 02003H .HOLDS THE VALUE OF THE CURRENT RUN NO.
STACK EQU 020B0H .STACK POINTER
TCOUNT EQU 020C0H .LOCATION FOR TIMER COUNT
TIMFLG EQU 02006H .FLAG FOR SINGLE LOCATION FAULT INJECTION
UPDAD EQU 00362H ;DISPLAYS CONTENTS OF HL ON SDK BOARD

ASEG
ORG 09800H .LOCATE PROGRAM

LXI SP.STACK .SETS STACK FOR CONTROL PROG USE
Dl .DISABLES INTERRUPTS WHILE SETTING TIMER
LXI H.06H .SET TIMER COUNT FOR FIRST RUN
SHLD TCOUNT .'SAVES VALUE
MVI A.000H .SET FLAGS
STA TIMFLG
STA NUMFLG
LXI H.00000H .SET RUN NUMBER
SHLD RUNNUM
LXI H.MESS1 ;LOADS START ADDRESS OF MESSAGE
CALL STRING .AND OUTPUTS STRING
CALL GETAD ;READS IN END OF PROGRAM BLOCK
MOV H.B .TRANSFER BLOCK END AND SAVE
MOV L.C
SHLD BLKEND
LXI H.MESS2 .READY MESSAGE AND SEND
CALL STRING
CALL CIN .READ IN SINGLE BYTE
ANI 07FH .REMOVE EXTRA BIT
CPI 'S ' ;CHECK IF SINGLE LOCATION REQUIRED
JNZ SKIP1 .IF ALL LOCATIONS SKIP RESETTING FLAGS
LXI H.MESS3
MVI A.OFFH .SET SINGLE LOCATION FLAG
STA TIMFLG
CALL STRING .REQUEST COUNT FOR SINGLE LOCATION
CALL GETAD .READ IN TIMER COUNT
MOV H.B .TRANSFER TO HL
MOV L C
SHLD TCOUNT .STORE NEW VALUE OF TIMER COUNT

SKIP!: LXI H.MESS4 .READY MESSAGE AND SEND
CALL STRING
CALL CIN ;READ IN SINGLE BYTE
ANI 07FH ;REMOVE EXTRA BIT
CPI 'S ' ;CHECK FOR SINGLE FAULT INJECTION
JNZ START ;IF FULL RUN START EXECUTION
MVI A.OFFH .SET RUN NUMBER FLAG
STA NUMFLG
LXI H.MESS5 ;READY MESSAGE AND SEND
CALL STRING
CALL GETAD ;READ IN RUN NUMBER

251

CONTROL (cont.)

START:

MOVE:

MOV H.B
MOV L C
SHLD RUNNUM
JMP START
LHLD TCOUNT
INX H
SHLD TCOUNT
LXI SP.STACK
LHLD TCOUNT
SHLD ENDTC
CALL UP DAD
LXI B.BLKST
LXI D.PROG-1
LHLD BLKEND
INX B
INX D
LDAX B
STAX D
MOV A.L
CMP E
JNZ MOVE
MOV A.H
CMP D
JNZ MOVE
LHLD TCOUNT
MVI A.040H
OUT 028H
MOV A.L
OUT 02CH
MOV A.H
OUT 02DH
CALL INIT
MVI A.OCOH
OUT 028H
MVI A.01BH
SIM
POP PSW
LXI SP.0C800H
El
OUT OFFH
JMP PROG

:MOVE VALUE INTO HL

STORE VALUE IN MEMORY
SKIP INCREMENT OF COUNTER
RESET COUNTER FOR NEXT RUN

SET STACK FOR CONTROL PROGRAM USE
LOAD TIMER COUNT INTO HL REGS
SAVES VALUE FOR DISPLAY ON COMPLETION
DISPLAY VALUE ON SDK BOARD
LOAD BLOCK START ADDRESS IN ROM
LOAD BLOCK START ADDRESS IN RAM
LOAD BLOCK END ADDRESS IN RAM
INCREMENT POINTERS

;READ IN BYTE FROM INSTANT ROM
.STORE BYTE IN RAM
.CHECK FOR END OF BLOCK

.LOAD COUNT FOR PROGRAMMING TIMER
;STOP TIMER IF RUNNING

.LOADS LOW ORDER BYTE OF COUNT

.LOADS HIGH ORDER BYTE OF COUNT

.'INITIALISES REGISTERS BEFORE TEST

.START COUNT

;SET INTERRUPT TO ENABLE RST 7.5

;RESETS PSW BEFORE TEST
.SET STACK BEFORE JUMP

.TRIGGERS HARDWARE TO MASK OFF A14.A15

.•JUMPS INTO PROGRAM TO BE TESTED

FOR THE FIRST RUN AN INTERRUPT WILL OCCUR DURING THE JUMP INSTRUCTION.
IT IS THEREFORE POSSIBLE TO INJECT A 'FAULT' BEFORE EXECUTION OF THE
FIRST INSTRUCTION IN THE TEST PROGRAM.

AFTER A COMPLETE RUN OF THE TEST PROGRAM. FOLLOWING CODE WILL BE
EXECUTED TO DETERMINE SUCCESS OR FAILURE. THEN OUTPUT THE RESULT.

ORG

RETURN: LXI

09900H .FIX RETURN ADDRESS

SP.STACK ;RESET STACK AFTER TEST

252

CONTROL (cont.)

FAIL:
T E S T ! :

T E S T 2 :

PREND:

RIM
STA MASK
MVI A.010H
SIM
CALL C H E C K
J N C FAIL
MVI C . ' S '
C A L L COUT
JMP T E S T !
C A L L OUTTC
LDA TIMFLG
INR A
JZ T E S T 2
LDA MASK
ANI 040H
JZ ISTART
LXI H.0006H
SHLD TCOUNT
LDA NUMFLG
INR A
J Z PREND
MVI C.ODH
CALL COUT
MVI C O AH
C A L L COUT
LHLD RUNNUM
INX H
SHLD RUNNUM
C A L L OUTNUM
MVI C . ' " '
C A L L C O U T
JMP S T A R T

MVI A.010H
SIM
LXI H.MESS6
C A L L STRING
LHLD E N D T C
CALL OUTNUM
LXI H.MESS7
CALL STRING
LHLD RUNNUM
C A L L OUTNUM
MVI C.01AH
C A L L COUT
JMP MONIT

READ IN S T A T E O F I N T E R R U P T S
S T O R E IN TEMP LOCATION
R E S E T I N T E R R U P T O F F

SUBROUTINE TO C H E C K IF C O R R E C T R E S U L T S
CARRY NOT S E T IF U N S U C C E S S F U L
OUTPUTS ' S ' TO INDICATE S U C C E S S

R E T U R N S A F T E R SENDING ' S '
OUTPUTS TIMER COUNT
T E S T FOR S I NGLE LOCATION FAULT

S IN GL E RUN JUMP TO S E C O N D T E S T
RELOAD S T A T E OF I N T E R R U P T S
T E S T S TO S E E IF MORE RUNS R E Q U I R E D
G O E S BACK FOR NEXT RUN
R E S E T TIMER COUNT FOR NEXT S E T OF RUNS
SAVE VALUE FOR LATER U S E
LOAD T E S T FLAG INTO A C C

JUMP IF S I NGLE RUN OR END
S E N D C R . L F TO P L A C E RUN NUMBER IN
L E F T HAND COLUMN OF LINE

LOAD RUN NUMBER
INCREMENT READY FOR NEXT RUN
SAVE FOR LATER U S E
O U T P U T S VALUE TO S C R E E N
OUTPUT ' * ' TO MARK RUN NUMBER

;JUMP BACK FOR NEXT RUN

; R E S E T RST7.5 FLIP FLOP TO O F F

;OUTPUTS TERMINATING M E S S A G E

.OUTPUT VALUE O F TIMER COUNT

;OUTPUT VALUE OF RUN NUMBER

;SEND END OF F I L E MARKER

:JUMP BACK TO SDK MONITOR

M E S S ! :

M E S S 2 :

M E S S 3 :

DB
DB
DB
DB
DB

ODH.OAH.'FAULT TOLERANT TEST ING FACILITY' .0DH.0AH.0AH
' T E S T PROGRAM LOCATED FROM C000 TO $'
ODH.OAH.OAH.'TYPE " S " FOR FAULT INJECTION AT A S I N G L E '
' LOCATION $'
ODH.OAH.OAH.'ENTER TIMER COUNT FOR R E Q U I R E D LOCATION $'

253

CONTROL (cont.)

MESS4: DB ODH.OAH.OAH.'TYPE " S " FOR S INGLE RUN ON E A C H '
DB 'LOCATION $'

M E S S 5 : DB ODH.OAH.OAH.'ENTER RUN NUMBER FOR R E Q U I R E D RUN $'
MESS6: DB 0DH.0AH.07H /EXECUTION TERMINATED AT TIMER COUNT $'
MESS7: DB '. AND RUN NUMBER $'

SUBROUTINE — STRING C A L L S : - COUT

ROUTINE TO OUTPUT A STRING OF C H A R A C T E R S DELIMITED BY A '$ '
START A D D R E S S O F STRING MUST B E IN T H E HL R E G PAIR

MOV C M .'GET BYTE FROM MEMORY
MOV A . C ; C H E C K FOR DELIMITER
CPI ' $ '
RZ .RETURN IF END OF M E S S A G E
P U S H H .SAVE MEMORY A D D R E S S
CALL C O U T .OUTPUT C H A R A C T E R
POP H
INX H . INCREMENT A D D R E S S POINTER
JMP STRING .GO BACK FOR NEXT C H A R A C T E R

X

SUBROUTINE - - OUTTC/COUTNUM) C A L L S — AOUT, CONV. COUT

C O N V E R T S 16 BIT A D D R E S S S T O R E D IN 'TCOUNT' . (OR IN HL R E G I S T E R PAIR).
INTO 4 ASCII C O D E S AND OUTPUTS THEM TO THE SERIAL PORT

X X X X X X X X X R X X R X X X * X X * X * X * X X * * « X

OUTTC: LHLD TCOUNT
OUTNUM: MOV A.H

CALL AOUT
MOV A.L
CALL AOUT
R E T

LOAD IN NUMBER FOR OUTPUT

OUTPUTS HIGH BYTE

OUTPUTS LOW BYTE

x

SUROUTINE — AOUT C A L L S — CONV. COUT

C O N V E R T S S I N G L E BYTE IN ACCUMULATOR INTO TWO ASCII C O D E S AND O U T P U T S
THEM TO THE S E R I A L LINE

x x x x x x * « * x x x x x x x x x x x x * x x * x x x x x x x x * x * x x x x x x x x x x x x x x x

AOUT: MOV B.A
RAR

. S A V E S BYTE IN B R E G

.SHIFTS U P P E R BITS

254

http://0DH.0AH.07H/

CONTROL (cont.)

RAR
RAR
RAR
ANI OFH MASK O F F U P P E R 4 BITS
CALL CONV C O N V E R T S TO ASCII AND
MOV A.B R E S T O R E VALUE
ANI OFH MASKS O F F BITS
CALL CONV C O N V E R T S AND S E N D S
R E T

SUBROUTINE — CONV C A L L S — COUT

C O N V E R T S HEX DIGIT IN ACCUMULATOR TO ASCII AND O U T P U T S TO S E R I A L PORT

X

CONV:

SKIPC:

ADI 030H ;CONVERT TO ASCII
CPI 03AH . C H E C K IF 0 -9
JM SKIPC
ADI 07H R E A D J U S T S FOR A - F
MOV C.A .MOVE C O D E TO C R E G
CALL COUT ;OUTPUTS ASCII C O D E
R E T

END

A6.2 P R E F A U L T - Main Core of Interrupt Serv ice Routine

• x

THIS IS THE FAULT INJECTING ROUTINE

IT IS E X E C U T E D A F T E R A RST 7.5 INTERRUPT. IT S A V E S T H E C U R R E N T STACK
POINTER AND ALL THE R E G I S T E R S . IT R E T R I E V E S T H E RETURN A D D R E S S FROM
MEMORY AND S T O R E S IT AS PART OF THE JUMP INSTRUCTION AT THE END OF
THIS ROUTINE. A SUBROUTINE IS THEN C A L L E D TO ACTUALLY INJECT THE FAULT
B E F O R E REINSTATING ALL T H E R E G I S T E R S AND T H E ORIGINAL STACK POINTER.

C A L L S :- FAULT

X R X

CYTEMP EQU 020B2H
DUMMY EQU 00000H
HLTEMP EQU 020B0H
FAULT EQU 08600H
S P T E M P EQU 020B4H
STACK EQU 020B0H

TEMP S T O R E FOR CARRY FLAG
DUMMY A D D R E S S C H A N G E D LATER
TEMP S T O R E FOR HL R E G I S T E R S
LOCATON OF FAULT INJECTING ROUTINE
TEMP S T O R E FOR S T A C K POINTER
TEMP STACK POINTER FOR THIS ROUTINE

255

P R E F A U L T (cont.)

A S E G
ORG 0 9 F C 2 H

SKIP:

SHLD HLTEMP
MVI H.OOOH
J N C SKIP
MVI H.OFFH
SHLD C Y T E M P
LXI H,00000H
DAD S P
LXI S P . S T A C K
PUSH D
PUSH B
PUSH PSW
MOV E . L
MOV D.H
INX H
INX H
SHLD S P T E M P
XCHG
MOV A.H
ORI OCOH
MOV H.A
MOV E.M
INX H
MOV D.M
XCHG
SHLD RETURN+1

CALL FAULT

POP PSW
POP B
POP D
LHLD C Y T E M P
DAD H
LHLD S P T E M P
S P H L
LHLD HLTEMP
OUT OFFH
JMP DUMMY

END

. S E T A D D R E S S SO LAST TWO B Y T E S IN RAM

.SAVE HL R E G I S T E R S

. P R E P A R E TO S E T TEMPORARY CARRY FLAG
; T E S T C U R R E N T CARRY FLAG
; R E S E T TO INDICATE CARRY WAS S E T
.SAVE TEMPORARY CARRY FLAG
;CLEAR HL R E G S
. G E T C U R R E N T S T A C K POINTER INTO HL R E G S
,'LOAD TEMPORARY STACK POINTER
.SAVE ALL R E G I S T E R S

; S T O R E COPY OF ORIGINAL SP IN DE R E G S

.ADJUST OLD S P FOR REMOVAL OF RETURN
; A D D R E S S
.SAVE VALUE IN TEMP S T O R E
.RETURN OLD S P INTO HL R E G S
; S E T U P P E R TWO BITS SO THAT S T A C K POINTS
; TO MASKED A R E A
.'RETURN HIGH B Y T E TO H R E G
. G E T LOW BYTE OF R E T U R N A D D R E S S

; G E T HIGH BYTE
. T R A N S F E R TO HL R E G S
; S T O R E AS PART O F JUMP INSTRUCTION

.CALL ROUTINE TO INJECT FAULT

. R E S T O R E ALL R E G I S T E R S

R E T R I E V E TEMPORARY CARRY F L A G
R E S E T CARRY F L A G
G E T OLD STACK POINTER
R E S E T STACK FOR T E S T PROGRAM U S E
R E S T O R E HL R E G S
S E T UP MASKING CIRCUITRY
DUMMY C H A N G E D DURING EXECUTION

256

A6.3 FAULT - Simulates Desired Fault

THIS IS A FAULT INJECTING ROUTINE WHICH C O R R U P T S DATA IN MEMORY LOCATIONS
C100 AND C101.

FLAG S E T TO OFFH ON LAST RUN
S T O R A G E LOCATION FOR THE RUN NUMBER
LOCATION OF INPUTS INTO T E S T ROUTINE

LOADS IN RUN NUMBER
LOAD A D D R E S S OF INPUTS INTO DE R E G S
SWAP HL FOR DE
C L E A R B R E G READY FOR LAST RUN FLAG
T R A N S F E R HIGH BYTE OF RUNNUM INTO A C C
T E S T LOW O R D E R BIT
NO CORRUPTION IF BIT NOT S E T
C O R R U P T MEMORY BYTE
S E T HALF OF LAST RUN FLAG
RELOAD HIGH BYTE OF RUN NUMBER
T E S T S E C O N D BIT
NO CORRUPTION IF BIT NOT S E T
S E T A D D R E S S IN HL R E G TO HIGH B Y T E
C O R R U P T HIGH BYTE IN MEMORY
S E T S E C O N D HALF OF LAST RUN FLAG
ADD BOTH HALVES OF FLAG T O G E T H E R
MOVE FLAG TO B R E G
LOAD LOW BYTE OF RUN NUMBER INTO A C C
T E S T FOR LAST RUN
RETURN IF NOT LAST RUN
MOVE F L A G INTO A C C
S T O R E FLAG IN MEMORY

NUMFLG E Q U 02005H
RUNNUM E Q U 02003H
VAL E Q U 0C100H

FAULT: LHLD RUNNUM
LXI D.VAL
XCHG
MVI B.OOH
MOV A.D
ANI 01H
JZ S K I P !
MOV M.E
MVI B.OFH

S K I P ! : MOV A.D
ANI 02 H
J Z SKIP2
INX H
MOV M.E
MVI A.OFOH
ADD B
MOV B.A

SKIP2: MOV A . E
INR A
RNZ
MOV A.B
STA NUMFLG
R E T
END

257

A6.4 INIT - Initialisation Routine

«««««««»«««««««««««««««««««««««««««««««««««»««««««««««*«*«»««««««««««««»»

THIS ROUTINE S E T S UP INITIAL S T A T U S OF THE P R O C E S S O R

H A A K A A A A A A A f t A A A A A A A A A A A A A A A A A A K S A A A A A X A A A A A A A A A A A A A A A A n A j X A A A A X A A A A A t t A A A A A

E R R F L G EQU 0 C 7 F F H .LOCATION OF E R R O R F L A G

LXI H.00O0OH
XTHL
PUSH H
LXI B.00O0OH
LXI D.OOOOOH
LXI H.00000H
MVI A.OFFH
STA E R R F L G
R E T
END

S E T WHAT WILL B E C O M E THE PSW
P U S H E S HL ONTO S T A C K . R E M O V E S R E T ADD
R E P L A C E S RETURN A D D R E S S ONTO STACK
S E T INITIAL VALUE FOR BC R E G S
S E T INITIAL VALUE FOR DE R E G S
S E T INITIAL VALUE FOR HL R E G S
S E T S A R E G TO F F
S E T S E R R O R FLAG

A6.5 C H E C K - C h e c k s Result after Execution

R S R R * X R R R R R R R f i R R R R R R R R R R R R R H R R R R R * * * R « R R « R X * * R R R R * R R * * * R R R » R n a R R R K n R R R * R «

C H E C K I N G ROUTINE TO T E S T FOR S U C C E S S OR FAILURE OF T H E T E S T PROGRAM

X

VAL3 EQU O C n O H

C H E C K : LDA VAL3
CPI 055H
JNZ C L E A R
S T C
R E T

C L E A R : XRA A
R E T
END

A6.6 T E S T - Program to be Tested

L O C A T I O N OF ANSWER FROM T E S T PROGRAM

LOAD IN ANSWER FROM T E S T PROGRAM
C H E C K HIGH BYTE
C L E A R CARRY AND R E T U R N
S E T CARRY TO INDICATE S U C C E S S

. C L E A R CARRY

x

THIS PROGRAM ADDS TWO 8 -B IT NUMBERS T O G E T H E R AND S T O R E S THE R E S U L T

INCLUDES E R R O R DETECTION AND C O R R E C T I O N S O F T W A R E

E R R F L G EQU 0 C 7 F F H
RETURN EQU 09900H
START EQU 0C000H

S T O R E FOR E R R O R FLAG
RETURN A D D R E S S TO CONTROL PROGRAM
START A D D R E S S OF PROGRAM

258

T E S T (cont.)

A S E G
ORG S T A R T

LXI SP.STACK+1C
LDA VAL11
MOV B.A
LDA VAL12
S U B B
JZ READ2
XRA A
STA E R R F L G
LDA VAL13
MOV C.A
S U B B
JZ READ2

MOV B.C
READ2: LDA VAL21

MOV C.A
LDA VAL22
S U B C
JZ C A L C
XRA A
STA E R R F L G
LDA VAL23
MOV D.A
S U B C
JZ C A L C
MOV C D

C A L C : MOV A.B
ADD C
STA VAL3
Dl
OUT OFFH
JMP RETURN

ORG START+100H

VAL11 DB 012H
VAL13 DB 012H
VAL12 DB 012H
VAL21 DB 043H
VAL22 DB 043H
VAL23 DB 043H

ORG START+110H
VAL3: DB 000H

.LOAD STACK POINTER

.'LOAD IN F IRST VARIABLE

LOAD IN S E C O N D COPY
S U B T R A C T VALUES
IF BOTH EQUAL. U S E VALUE IN B R E G
C L E A R ACCUMULATOR
Z E R O FLAG TO INDICATE E R R O R
READ IN THIRD COPY
TEMP S T O R E IN C R E G
T E S T IF EQUAL
U S E VALUE IN B R E G
IF ONLY ONE ERROR. MUST B E IN VAL11
T R A N S F E R THIRD COPY TO B R E G AND U S E
R E P E A T FOR OTHER INPUT USING C R E G

; C L E A R ACCUMULATOR
; C L E A R FLAG TO INDICATE E R R O R

T R A N S F E R F IRST INPUT TO A C C
ADD TO S E C O N D INPUT
S T O R E THE R E S U L T
P R E V E N T ANY F U R T H E R INTERRUPTS
C L E A R S M A S K F O R R E T U R N T O C O N T R O L PROG
JUMP BACK TO CONTROL PROGRAM

STACK: .BOTTOM OF STACK
END

259

