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FAULT TOLERANCE IN DIGITAL CONTROLLERS USING SOFTWARE TECHNIQUES 

Robert G. Halse 

ABSTRACT 

Microprocessor based systems for controll ing gas supplies require very 

high levels of reliability for safety reasons. Non-redundant systems are 

considered to be inadequate, and an alternative approach is necessary. In 

digital systems, transient faults are as much as fifty times more common 

than permanent faults. Therefore mechanisms which allow for recovery from 

transients will provide large improvements in reliability. However, to 

enable effective design of recovery mechanisms it Is necessary to 

understand failure modes. 

The results from practical interference tests, designed to simulate 

transient faults, are presented. They show that corruption to the correct 

flow of program execution is a common failure, and that subsequent 

instruction fetches can be performed from any of the memory locations. 

Under these conditions any value of operation code can be interpreted as an 

Instruction, including those undeclared by the manufacturers. Four 

commonly used microprocessors are investigated to establish the functions 

of the undeclared codes, and other undeclared operations are revealed. 

Analyses on the sequence of events following a random jump into the 

four main memory types of data, program, unused and input areas, are 

presented. Recovery from this type of execution can be achieved by the 

addition of restart codes into the areas, so that execution can transfer to 

a recovery routine. The effect of this mechanism on the recovery process 

is investigated. 

Finally, some methods of testing systems, to check the levels of 

reliability improvement obtained by these techniques, are considered. 
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CHAPTER 1 

Introduction and Review of System Reliability 

1.1 The Need for a Reliable Controller 

With the conversion from town gas to natural gas. the supply to the 

consumer has changed from a large number of isolated networks to one fully 

integrated distribution system. This system is connected to the supplies 

of natural gas in the North and Irish seas, and transports It around the 

country in large diameter pipes (up to 1050mm), at high pressures (up to 70 

bar). The pressure is reduced in stages into smaller diameter pipes until 

it is at a safe level to supply to the consumer. 

An analogy can be. drawn with the National Grid for electricity supply, 

where voltage corresponds to pressure, and current corresponds to flow 

rate. However, unlike the electricity system, gas can and must be stored 

within the network. This is necessary because the supply is obtained at a 

constant rate from the gas fields, whereas the demand by the consumer 

varies both throughout the day and throughout the year. Also any peak 

demand within a particular area must be supplied locally due to the time 

delay in transporting gas through the system. Therefore the network 

presents a complex arrangement requiring sophisticated control. 

At the high pressure end of the system large volumes of gas are being 

handled, and small increases in efficiency result in significant f inancial 

savings. Also failure at this level is likely to affect a large number of 

consumers, and this justifies high expenditure on control and safety 

equipment. As the pressures reduce, the quantities and hence the value of 

gas being handled becomes less, and high expenditure on control equipment 

is not justified. A low cost controller is therefore required and this is 

the aim of the current research. 
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At the low pressure end of the system, accurate pressure control is 

required for several reasons. Much of this part of the network is 

constructed from short sections of cast iron pipes laid many years ago. and 

it is estimated that there are almost 60 million joints. Small leaks can 

occur but rarely create a safety problem. However, taken collectively they 

represent a substantial loss of revenue. Therefore methods which reduce 

this leakage can have both financial and safety benefits. An extensive 

programme to replace old sections of the network has been in progress for 

several years and has cost hundreds of millions of pounds. Meanwhile a 

reduction of pressure within the system provides significant benefits by 

reducing leakage, and also repair and maintenance costs. It can also 

postpone eventual reinforcement of the network necessary to cater for 

increased demand, thus saving revenue equivalent to borrowed capital 

interest. 

Obviously the pressure cannot be reduced below a certain level or the 

gas would not reach the consumer. This would lead to the possibility of 

air entering the pipework producing a potentially hazardous condition. Low 

pressures can also affect the efficiency of some appliances. For these 

reasons a statutory minimum pressure has been set. This is S in. w.g. 

(inches water gauge) which is equivalent to the height of a column of water 

that the pressure can support, and is approximately 12.3 mbar. Clearly the 

aim is to supply the consumer with the minimum acceptable pressure 

throughout the dally load cycle. 

1.1.1 Present Mechanical Control 

Traditionally, an entirely mechanical approach has been adopted for 

the control of the low pressure distribution system. The use of diaphragm 

operated gas regulators, as shown in figure 1.1. is widespread, with 
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approximately 17.000 installed throughout the country. They aim to reduce 

the pressure to a steady value independent of the flow rate. This is 

achieved by feeding back the down-stream pressure into a chamber under the 

diaphragm. The force on the diaphragm is balanced by a spring or a series 

of weights. Any imbalance causes the valve to open or close and has the 

effect of increasing or reducing the down-stream pressure. By adjusting 

the loading, different output pressures can be maintained. However, this 

arrangement does not give perfect pressure control. The pressure tends to 

fall as the flow rate increases, and this is known as the 'droop' 

characteristic of the regulator. 

So far only the pressure at the outlet of the regulator has been 

considered. However, the consumer may be over a mile away from the outlet 

and therefore, by simple fluid mechanics theory, a pressure drop will exist 

along the pipework and will be proportional to the square of the flow rate. 

Consequently, with the simple regulator described above, it is necessary to 

set the output pressure at a higher level to guarantee that the consumer 

will be supplied with at least the minimum statutory pressure, at times of 

peak demand. Clearly this will result in a pressure well above the 

statutory minimum at other times. This is refered to as the 'over 

pressure' of the system, and has a maximum value of the sum of the 

regulator droop, the pipework losses and a safety margin, as the flow rate 

reduces. The safety margin is Included to allow back-up equipment to 

intervene if an abnormally low pressure is detected. Obviously the aim is 

to reduce the 'over pressure' to a minimum. 

The above example considers only one regulator and one consumer, in 

reality the situation is in fact far more complicated. Low pressure 

networks can be fed by more than one regulator and supply several thousands 
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of consumers. Due to varying demands from the system, the low pressure 

point may not always be at the same physical location. This makes 

effective control even more difficult. 

In the past, methods have been devised to provide automatic changes in 

the set point of a regulator to try and follow the pattern of demand. 

However, these do not operate directly on the district pressure, but on 

other parameters which are associated with demand, such as the time of day 

or the ambient temperature. Both of these parameters are not strongly 

linked with demand but control based on them has provided some savings. A 

third approach has used the flow through the regulator to adjust the set 

point, and has proved most successful. This is commonly know as demand 

activated governing (DAG). 

Spearman (98) has reported a number of DAG schemes which have all 

shown significant savings in repair and maintenance costs. They have 

provided DAG by mechanical means but have several disadvantages. At least 

three additional valves and a substantial amount of extra pipework is 

required. A complex setting up and commissioning procedure is necessary to 

ensure optimum performance, and this has to be repeated periodically to 

allow for changes in the network or demand. Therefore there is scope for 

further improvements. 

1.1.2 Future Micro-Electronic Control 

To overcome the problems with mechanically implemented DAG mentioned 

above, and to allow for other developments, it has been proposed that 

micro-electronic techniques could be applied to the control of gas 

pressure. A simple arrangement for such a system is shown in figure 1.2. 

It contains a microprocessor which reads the remote low pressure point from 

a transducer, and activates the valve to maintain a steady supply. To 
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ensure overall system safety and availability, all three parts must be both 

reliable and must be fai l-safe. 

The valve could be operated by a simple solenoid providing only open 

and closed positions. The pressure would then be controlled by pulse width 

modulation on the supply to the solenoid. Although this is a simple 

solution, it tends to be very unreliable due to the large number of 

operations needed to maintain a steady pressure. Another disadvantage is 

that failures in either of the normal operating positions produce dangerous 

conditions. 

A better solution would be to use a motorised valve. This will be 

more reliable as actuations are only required when the pressure changes, 

resulting in less mechanical wear. However, the response under fault 

conditions will be poor. 

The arrangement which has been used in initial trials with digital 

control utilises an Indirect approach. The main pressure reduction 

regulator is retained in the traditional configuration, but with the set 

point controlled by the microprocessor. This provides a much better 

solution as failure of the microprocessor system causes control to revert 

to mechanical pressure regulation. 

To adjust the set point a method of increasing and decreasing the 

spring loading within the regulator is required. Two prototype 

arrangements have been built. The first uses a stepper motor to adjust the 

length of the spring and hence the loading. The second uses two solenoid 

valves to feed up-stream or down-stream pressure under a second diaphragm 

which acts on the spring to adjust the loading. The solenoid system is 

preferred as it can be arranged to 'fall safe' on power failure, by setting 

the regulator to its maximum set point. Burrow (20) states that generally 
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the 'fail safe' approach has been neglected. It is much cheaper to 

implement than 'fail operational' designs, and is clearly acceptable in 

this application as failure will only result in a reversion to a high 

pressure setting within the network. The 'fail safe' approach still 

ensures that no area drops below the statutory minimum pressure. The 

stepper motor, however, will stay at its current position during a power 

failure. As mentioned above, this reverts to mechanical control, but. if 

demand increases, the low pressure point will fall below the statutory 

minimum. 

Initial trials have been carried out with both arrangements. As 

mentioned previously, the ideal solution is to monitor the remote low 

pressure point and relay the Information back to the controller, and this 

requires some sort of telemetry link. The use of hard-wired links is 

expensive, and therefore other methods of transmitting the data are being 

investigated. However, a system operating in the United States, described 

by Reese (84), uses telemetry and has shown that the cost of the equipment 

can be recovered within the first year, due to the reduction in lost gas 

alone. 

These initial trials have shown that micro-electronic control of the 

gas network is both feasible and economic. Another area to which it could 

be applied is the control of storage facilities. As indicated previously, 

it is necessary to store gas within the network and a number of 

arrangements have been developed such as gas holders, liquefaction plants 

and underground caverns. Recent interest has been directed towards the use 

of the medium pressure part of the network as a means of storage, and can 

be achieved by increasing the pressure and thus compressing the gas. This 

is known as ' l ine-pack' and is possible in this particular part of the 
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network because the pipework is relatively new and does not suffer from 

leakage. 

Due to the very stringent safety requirements, it was felt that 

further work should be carried out to investigate methods of increasing the 

reliability of these control systems. British Gas has had long term 

experience with mechanical regulators, and. as a result, has in-depth 

knowledge and expertise on their operation. This has led to the 

development of very reliable equipment. With regard to the control of the 

low pressure network, micro-electronics has only recently been used by the 

Corporation. Therefore, this work is aimed at investigating methods of 

increasing the reliability of the micro-electronic parts of the systems. 

1.2 Source of Failures 

All equipment can fail, and usually does so in a variety of different 

ways. In a complex electronic system the cause of failure can be due to 

design errors, component failures or to environmental effects. in m ic ro ­

processor based systems, design errors can occur in both the hardware and 

software, and can be introduced at the specification, implementation or 

construction phases of a project. Shooman (92) gives an example of a data 

acquisition system where, over a nine month period, nearly half the 

failures were due to software errors. At the specification stage errors 

can be made due to an insufficient knowledge of the system to be 

controlled, or by an incomplete description of the required response under 

all operating conditions. The importance of these errors is emphasised by 

Soi and Gopal (97) who suggest that nearly 60% occur at this stage in the 

software. At the implementation stage, the choice of the wrong type of 

components in hardware, or the wrong algorithm in software, can lead to 

failure. Finally, errors can be made during the construction of hardware 
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or the coding of software. 

Components can fail due to a number of different failure mechanisms, 

and generally they follow the familiar 'bath-tub' curve. It shows a high 

failure rate at the beginning of their life due to manufacturing defects. 

This is followed by a period of constant failure rate, due to random 

effects, which is normally considered to be the useful life of the 

component. After this period the failure rate increases again due to wear 

out. A description of the types of failures observed in electronic 

components is given by Doyle (31). and a study of microprocessor devices is 

presented by Hnatek (47) who describes a number of physical failure 

mechanisms and how they can be detected. 

The correct operation of electrical and electronic systems can be 

disturbed by environmental conditions. In analogue devices it can result 

in noisy signals, but in digital equipment severe disruption of the 

processing sequence can occur. Sources of disruption include radio 

frequency interference (RFI). electromagnetic interference (EMI), radiation 

effects, static discharges and power supply variations. 

Whallen et al (113) have shown that RFl can disrupt digital circuits 

by changing their state. Sources of EMI in high voltage substations are 

listed by Pellegrini et al (79). and most are due to various forms of 

switching. The effects of lightning are also considered. May and Woods 

(64) highlight the problem of alpha particle interaction originating from 

packaging material. This has become a problem with the development of 

higher density chips, and affects most devices. General radiation effects 

on semiconductors have been investigated by Sexton et al (90), and they 

have shown that device parameters drift with dosage. 

Faults can be either permanent or temporary. Permanent faults occur 
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as a result of catastrophic failure of a component or subsystem, and also 

from inherent design errors. Some sources of temporary faults are 

described by Ng and Avizienis (70) and include component drifts around the 

limits of their specifications, and environmental factors. However, the 

errors produced by permanent faults may appear temporary. For example, a 

single node stuck at zero can only produce an error when it should be set 

at one. and this is illustrated by Gunther and Carter (39). Also a part of 

the circuit which is infrequently used may not cause any errors until it is 

exercised. Goldberg (37) indicates that some design faults, such as timing 

problems, can appear to be induced environmentally, and may be difficult to 

distinguish. For these reasons faults can remain undetected for a 

considerable length of t ime. 

McConnel et al (61) draw a distinction between intermittent errors and 

transient errors. Intermittents occur as a result of an underlying 

permanent fault and will periodically reappear, whereas a particular 

transient will occur only once. Ball and Hardle (5) indicate from 

practical experience that 90% of field failures are intermittent and are 

particularly difficult to isolate. 

Most reliability work In the past has considered only stuck at faults. 

More recently bridging faults have been considered where electrical contact 

is made between adjacent tracks, and these are described by Kodandapani and 

Pradham (52). Toschi and Watanbe (103) state that soft fails in memories 

can also be due to data patterns, timing and read/write sequencing. All 

these produce intermittent errors and are particularly difficult to 

identify. 

1.3 Methods of Increasing Reliability 

There are two compU mentary approaches available to increase 
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reliability and these are described by Avizienis (4). The first attempts 

to eliminate all sources of failure and is known as the fault intolerance 

approach. The second recognises that failures will occur, and attempts to 

mask their effects by the use of redundancy, this is known as fault 

tolerance. To achieve very high reliability a combination of both these 

approaches is necessary, and can be applied to each of the three sources of 

failure described above. 

1.3.1 Reducing Failures due to Design Errors 

Errors in hardware design have been reduced to a very low level by the 

implementation of rigorous procedures at all stages. Complex computer 

programs are used to analyse and simulate the hardware to check for a 

number of faults. Hazard and race conditions in logic circuits can be 

detected, interconnections can be checked for the correct routing, and 

loading on each node can be analysed to ensure, for example, that maximum 

fan-out is not exceeded. Once the hardware is constructed, thorough 

testing is carried out to verify correct operation. 

Fault free design is more easily achieved due to recently developed 

integrated circuits which have themselves been designed for simple 

interconnection. This reduces the amount of work necessary by the system 

designer, but increases the effort required by the chip designer. Design 

errors within large scale integrated circuits (LSI) are more likely to 

occur due to the increased complexity of these devices. This problem is 

highlighted by Sequin (89). 

An advantage with microprocessor based hardware is that the basic 

circuit can be used for many applications. This reduces the possibility of 

introducing errors into new projects. Software, however, has been treated 

in a different manner in the past, and remains a serious source of failure. 
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This is due mainly to the unlimited way in which software can be arranged 

and that, in almost all cases, new code is written for each application. 

Recently much more emphasis has been placed on software reliability. 

This is due to the increased proportional cost of the software within 

systems, which results from increased complexity and reduced hardware 

costs. Greenspan and McGowan (38) state that 70% of US Air Force computing 

expenditure was for software in 1972, and this is expected to rise to 90% 

by 1985. Both fault intolerant and fault tolerant approaches have been 

investigated to alleviate this problem. The advantages of structured 

programming are widely recognised, making programs easier to read and 

understand, and thus simplifying the process of identifying errors. It 

tends to force the programmer to divide the problem into a series of 

modules. Nelson (66) reports on analyses which have shown that the error 

rate increases with the routine size. This is because smaller modules are 

far more easy to understand and test, and therefore methods which enforce 

the use of smaller modules will increase reliability. 

As well as the language itself, the environment under which programs 

are developed is also important in enabling efficient testing and isolation 

of errors. For these reasons the United States Department of Defense has 

sponsored an extensive project to design a new language (Ada), and its 

associated development environment. Programming in Ada is more difficult 

than other languages due to tight restrictions on syntax and variable 

types. But it facilitates the early detection of errors at both compile 

and run time, reducing the overall development time. It also makes the 

code easier to understand and modify. This is particularly important as 

Dunn and Ullman (32) have shown; in badly written packages more errors can 

be introduced than are removed at the debugging stage, making the whole 
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system less reliable. 

The fault tolerant approach recognises that bugs will remain in the 

software, and two methods of counteracting their effects have been 

proposed. Randell (83) suggests the use of recovery blocks. In this 

method an acceptance test is executed after each program module, and, if 

the results fail the test, an alternate algorithm is used. This process 

can be repeated until an acceptable set of results is obtained, or until 

all the alternate algorithms have been tried. In the latter case a 

different form of recovery must then be used. A practical example of 

recovery blocks in action is given by Anderson and Kerr (1). 

The other approach is called N-version programming as described by 

Chudleigh (23). In this case all versions of a particular program module 

are executed and a majority vote is taken on all the results. 

Both methods have their own advantages and disadvantages. For 

example, the recovery block procedure operates much faster In the absence 

of errors, but. to enable accurate error detection, complex acceptance 

tests are sometimes necessary. These can themselves be a source of error, 

as can the voting software in N-version programming. However, in the 

latter case the crit ical software is much smaller and will be less 

susceptible to errors. A comparison between the two techniques is given by 

Wei (109). He concludes that N-version programming is better than the use 

of recovery blocks because of problems with acceptance tests. 

1.3.2 Reducing Failures due to Component Malfunctions 

Unlike design errors which can. theoretically, be eliminated from a 

system, component failures are always possible. In the past both fault 

tolerant and fault intolerant approaches have been favoured at different 

times. In the early days of digital computers thousands of valves were 
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used in e a c h machine, and reliability was poor due to the high failure 

rates of the components. Redundancy was n e c e s s a r y to improve performance. 

With the advent of the transistor and the subsequent development of the 

integrated circuit, less emphas is has been placed on redundancy due to the 

vast i n c r e a s e in the reliability of the components. Examples of fault 

tolerance in early computers is given by Carter and Bouricius (21). 

In more recent years some computer applications have required even 

higher levels of reliability. T h e s e Include c a s e s where human life is 

involved or large financial l o s s e s are incurred on failure, s u c h as manned 

and unmanned s p a c e flight, hospital life support equipment and aircraft 

control. Attempts have been made to inc rease still further the reliability 

of components used in these applications. Significant improvements can be 

achieved by screen ing out weak dev ices , and Pappu et al (75) descr ibe 

methods of detecting them. Burn- in is a popular technique whereby 

equipment is operated at elevated temperatures before actual use. Even 

with these improvements it has again been n e c e s s a r y to use the fault 

tolerant approach. 

A popular arrangement has been the use of triple modular redundancy 

(TMR) which was first proposed by Von Neumann in 1956 (105). TMR cons is ts 

of three identical modules, e a c h performing the same function, which are 

connected to a majority voting circuit. If one module fails, the voting 

circuit masks any errors by outputting the values from the other two. 

Clearly this requires at least three times as much hardware as a simplex 

system. 

In many c a s e s the extra cost could not be justified, and. in these 

c a s e s , dual systems have been used. They can be configured in a number of 

ways. In a cold standby arrangement, a second module is maintained in an 
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inactive state and requires initialisation before use. Lonn et al (58) 

descr ibe a hot standby system where the second module continually monitors 

the p rocess , ready to take immediate control. In many control applications 

the switch over to the standby system is performed manually after the 

activation of an alarm. In a duplex arrangement both modules perform 

identical operations and compar isons are made between their outputs. This 

provides simple error detection but does not readily indicate which module 

is in error. 

As the cost of hardware has fallen and the requirements of reliability 

have increased , more complex arrangements have been developed. N-modular 

redundancy (NMR). where N represents the number of modules, has been 

proposed in c a s e s where the reliability of TMR is considered insufficient. 

Examples using four channe ls have been constructed for the F - 8 fighter 

aircraft descr ibed by Bumby (19). and for NASA's s p a c e shuttle descr ibed by 

Qelderloos and Wilson (36). In both c a s e s the requirement is for safe 

operation in the p r e s e n c e of two failures. 

An important property of these systems is that reliability is 

drastically reduced after each failure. For example. TMR is at least twice 

as unreliable a s a simplex system after a single failure, and therefore it 

is important to repair failed modules quickly. In c losed systems, such as 

unmanned spacecraf t , manual repair is not possible. NMR can be used to 

survive several failures by increasing the number of modules. 

Alternatively a number of standby spares can be provided so that the system 

can reconfigure itself in order to substitute a failed component or 

subsystem for a good one. This effectively provides automatic repair. 

Wensley (110) proposes the use of a number of loosely connected units, 

with the fault tolerance implemented by software. In this way critical 
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tasks can be executed on several units with voting carr ied out in the 

program. This arrangement allows dynamic reconfiguration to eliminate 

faulty units after they have been identified. This sort of arrangement is 

commonly used in telephone switching equipment, and has also been proposed 

for aircraft applications by Hamill and Phillips (40). 

Hybrid systems utilising a combination of the above architectures to 

exploit their individual advantages are becoming more popular. For 

example, Hopkins (48) descr ibes a processing concept for s p a c e vehicles 

which uses duplex. TMR and standby sparing. 

1.3.3 Reducing Fai lures due to Environmental Effects 

Significant improvements in reliability can be obtained by reducing 

the effects of environmental phenomena. The fault intolerant approach does 

this by providing a stable local environment for the equipment. Basu (9) 

and Williamson (115) give comprehensive details of possible steps for 

reducing the effects of noise, and indicate that the design of the system 

enclosure is of great importance. In the United States the level of EMI 

emitted from digital equipment is restricted. To meet these requirements 

good shielding is n e c e s s a r y , which not only reduces emiss ions , but also 

reduces the susceptibility of the equipment from external EMI. 

Boothman (14) descr ibes methods of designing cabinets for optimum 

shielding, and suggests the use of metals, metalised coatings on plastics 

or conductive plast ics. Ideally a continuous unbroken metal enc losure 

forming a Faraday cage is preferred in order to eliminate most electr ical 

interference. However, all systems need to communicate with the outside 

world and most require an external power supply. Therefore apertures in 

the enclosure are inevitable and Boothman shows the importance of both 

their size and location relative to the internal components. Rostek (86) 
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suggests a 'Rule of Thumb' of restricting maximum openings to 25mm for e a c h 

nanosecond rise time of the digital circuits. 

He also e m p h a s i s e s the importance of conducted interference on power 

supply and signal l ines and suggests the use of comprehensive filtering. 

Routing of power and signal cab les and the quality of their sheilding is 

also important, and is d i s c u s s e d by Dick (30). With the development of 

fibre optics, data transmission can be made far more s e c u r e . Dyer (33) 

recommends their use . especial ly in military equipment, for immunity of 

both EMI and the more damaging EMP generated by nuclear explosions. 

As well as EMI super imposed on the power supply, brown-outs and b lack­

outs can occur , where the voltage is reduced or lost completely over a 

period of time. In these c a s e s filtering alone is not sufficient. T h e s e 

problems occur frequently and have led to the development of 

uninterruptible power suppl ies (UPS) . A number of arrangements have been 

developed for large installations, with the standby power source provided 

by batteries or diesel generators. T h e s e are descr ibed by Sulway (99). and 

in these c a s e s an A / C supply is maintained. 

In smal ler systems batteries alone can directly provide the n e c e s s a r y 

D/C levels. This has led to the development of higher capacity minature 

batteries. such as the z inc /a i r type descr ibed by Pytches (82). 

Rechargeable batteries can be trickle charged when the external s o u r c e is 

available, ensuring that they are in good condition when required. This 

sort of arrangement has been used in the NATO III communication satell ites 

descr ibed by McKinney and Briggs (62). Solar cel ls provide the external 

source to charge several sets of batteries, and are required for peak 

demand and to ensure continuous operation during solar ec l ipses . 

Other environmental factors such as mechanica l shock and vibration 
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must also be taken into account , and can usually be s u p p r e s s e d by suitable 

damping. Thermal effects are a lso important. It is widely recognised that 

high component temperature leads to an increased failure rate, it can also 

c a u s e a general drift in component properties, therefore, methods which 

restrict temperature such as cooling fins or convective fans will produce 

benefits. However, the use of fans drawing air in from outside the cabinet 

can have detrimental effects, s i n c e openings are required to allow for the 

p a s s a g e of air, and these introduce the possibility of increasing the 

susceptibility to EMI as descr ibed above. It a lso allows moisture, solid 

particles and corrosive subs tances to enter the enc losure . Filtering can 

be used to reduce the possibility of contamination, but in certain c a s e s a 

totally sea led unit is preferred. 

Shielding is effective In many c a s e s but does not prevent all external 

interaction. Ziegler and Lanford (117) have shown that even half a metre 

of concrete has little effect on reducing interference to c h a r g e - c o u p l e d 

devices (CCD) from certain types of c o s m i c rays. However, they do suggest 

that the orientation of the devices can be used to reduce the problem. 

Shielding is a lso ineffective against internally generated interference and 

alpha particle interaction originating from package material. 

In these c a s e s the components themselves can be designed to be less 

susceptible to certain disturbances. Brodsky (16) suggests methods of 

improving RAM's against alpha particle attack, and Kim et al (51) descr ibe 

methods of hardening devices against general forms of radiation. Certain 

device technologies are inherently less susceptible to radiation than 

others. Barton et al (8) show that bipolar devices are superior to 

complementary metal oxide semiconductors (CMOS), which in turn are better 

than N-channel devices (NMOS). 
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As descr ibed above, fault intolerance can be used to reduce the 

influence of environmental phenomena. In genera l , great improvements can 

be obtained for a small cost if careful consideration is taken at the 

design stage. Additional improvements c a n be made but usually involve ever 

increasing costs . In such c a s e s the fault tolerant approach is worth 

while. 

Environmental disturbances can either c a u s e permanent or temporary 

damage to systems. With the precautions taken above, damage will be 

reduced and transient effects will predominate. The redundancy techniques 

mentioned in the previous section will be effective provided that 

simultaneous faults in different channe ls do not occur . Much work has been 

aimed at developing techniques to detect and correct errors in memory 

systems. Most techniques rely on error detection and correction c o d e s , 

such as those proposed by Hamming (41). Extra bits of information are 

added to each of the data words and these can indicate which particular bit 

is in error if a fault occurs . Levine and Meyers (57) indicate the number 

of check bits required for single error correction and double error 

detection ( S E C / D E D ) . However, if more than two bits fail they may not be 

detected or an erroneous correction may be made. In these c a s e s Walker et 

al (108) descr ibe a memory system which is capable of masking off failed 

bits to survive multiple faults. 

Time redundancy is a useful means of counteracting transient faults. 

This method uses the re-execution of a program segment at a later time. In 

the anticipation that transient disturbances will have subsided. A number 

of different stategies can be adopted. For example, a particular segment 

could be executed repeatedly until two or three consecut ive results are the 

same. Alternatively the segment could be executed a fixed number of times 
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and a majority vote taken. This is similar to N-version programming with 

all versions Identical. 

Rollback techniques are another effective defence against transient 

faults. In this c a s e the program periodically saves information about its 

current state. This is known as a checkpoint. When an error is detected, 

execution can then be restarted at one of these points. O'Brien (72) 

studies several checkpointing stategies. and he recognises that in control 

applications the speed of recovery is usually crit ical , requiring the 

frequent insertion of rollback points. He shows that a large overhead is 

n e c e s s a r y with regard to both execution time and memory s p a c e . To limit 

overheads, a checkpoint should be saved when the critical data is at a 

minimum, and this will normally occur at the end of a calculation. It is 

recommended that a checkpoint should be saved at least once during e a c h 

control loop. 

A disadvantage of this technique is that added complexity in the 

software is both costly and prone to error. Barigazzl and Strigini (6) 

suggest that the setting of recovery points should be transparent to the 

programmer to overcome these problems. This has been implemented on the 

Cm computer by Siewiorek (93). Checkpointing and rollback are similar to 

the use of recovery blocks, where instead of using alternate algorithms the 

s a m e segment Is repeated until an acceptlble set of results is obtained. 

Lee et al (56) have proposed a method of reducing the programming 

requirement in the use of recovery blocks by using a recovery c a c h e . This 

automatically saves critical data as the program executes and could be used 

in simple rollback recovery. 

1.4 Reliability Improvements Obtained 

To determine the improvements obtained by adding one of the features 
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descr ibed above, it is n e c e s s a r y to determine the failure rate of the 

system with and without the modification. Modern microprocessor based 

systems have high reliability with a mean time between failures (MTBF) of 

several thousand hours. Therefore practical testing under normal operating 

conditions is both time consuming and costly. For individual component 

failure rates a number of data b a s e s exist, such as MIL -HDBK-217D (121) 

compiled by the US Military, and HRD3 (122) compiled by British Te lecom. 

HRD3 is based mainly on field data, whereas MIL-217D is based both on field 

data and acce lera ted life testing. A comparison between various failure 

rate data b a s e s is given by Siewiorek et al (94). 

Accelerated life tests have become very popular. They aim to speed up 

the failure process by subjecting the device to a more severe environment 

than normal, such as increased humidity, vibration or temperature. 

However, great ca re must be taken with the results. Siewiorek et al (94) 

show how the Arrhenius equation can be used to translate acce lera ted test 

data to ambient conditions and indicate that a factor of 62 difference in 

predicted failure rate can be obtained by the cho ice of activation energy. 

Another problem with acce le ra ted tests is that If the conditions are varied 

too much, then failures due to other mechan isms can o c c u r which will not be 

present under normal conditions, and this Is illustrated by Hart et al 

(42). 

However, these tests do provide useful results if c a r e is taken, but. 

unfortunately, are normally carr ied out only at the component level. Full 

system testing can be achieved but requires bulky equipment and is time 

consuming. For these reasons a great deal of r e s e a r c h has been aimed at 

modelling systems and predicting overall failure rates from the components. 

To ass is t in the calculat ions several computer programs have been written, 
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s u c h as A R I E S , descr ibed by Ng and Avizienis (71). and PREDICTION, 

descr ibed by Bell et al (10). 

improvements obtained by techniques to counteract software design 

errors are difficult to quantify. They are dependent on the knowledge of 

the failure rate before and after implementation, and this information is 

not readily available. Musa (65) states that assembly language programs 

have an average of between 3-8 errors per 1000 lines before testing. He 

proposes that the number remaining in a system is proportional to the time 

between error detection during testing, and suggests that this can be used 

to predict the failure rate of the final version. Hecht (44) proposes a 

model for the reliability of software systems using recovery blocks, and 

evaluates their effect iveness by trying 'what if numbers in the model. He 

conc ludes that for a given level of reliability, the goal can be reached 

more cheaply by using the fault tolerant approach. 

An alternative approach to determine improvements is to simulate the 

hardware on another computer. A variety of faults can then be injected 

into the simulator and the response of the system observed. This method 

was adopted for the Saturn V launch vehicle digital computer, and is 

descr ibed by Ball and Hardie (5). 

1.5 Importance of Error Detection 

From the types of investigations mentioned above, a large number of 

predictions have been made for the improvements obtained by e a c h of the 

redundancy techniques. In many c a s e s a large variation in the results 

exist, and this is due mainly to the assuptions made about failure 

m e c h a n i s m s and recovery response . For most arrangements , error detection 

and fault location is of prime importance, for both recovery and 

maintenance. Triplex systems provide simple identification of single 
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failed units, whereas with duplex systems fault location is more difficult. 

Significant benefits can be obtained with the addition of fault detection 

mechan isms especial ly in systems relying on software implemented recovery. 

A number of techniques have been developed and generally they fall 

into two main catagories of continuous monitoring and periodic checking. 

Continuous monitoring can be provided by self checking circuits or 

arithmetic codes . Self checking circuits are designed to fail in a s e c u r e 

manner, and are descr ibed by Williamson (114). One approach is to 

duplicate all s ignals using complementary logic, and this is descr ibed by 

Sedmak and Liebergot (88). In this way all single point faults and most 

multiple faults are easily detected. Arithmetic codes are d i s c u s s e d by 

Avizienis (3), they are an extension of error correcting codes in memories, 

but their properties are maintained during arithmetic and some logical 

operations. They c a n therefore be used to detect errors in memory, on the 

bus and in the processor , but require spec ia l process ing units. 

Periodic c h e c k s can be initiated by software to exercise all e lements 

of the system, in order to test for correct operation. Barraclough et ai 

(7) state that it is impossible to test for all faults, and therefore 

partial testing of e a c h functional block is recommended. This approach is 

adopted in an aircraft application, using duplex redundancy, descr ibed by 

Johnson and Shaw (50). and is used in conjunction with other techniques 

such as rollback and reconfiguration. 

P r o c e s s o r testability is d i s c u s s e d by Robach et al (85), who suggest 

that a systematic approach should be adopted where blocks are tested by 

elements which have already been verified. Clearly, some blocks must be 

assumed fault free initially, and the aim is to reduce this hard core to a 

minimum. Smith (96) investigates four different methods of testing 
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processors and concludes that the systematic approach is the best. Example 

programs for functional testing of the 8080 are given by Peckett (78) and 

Nichols (69). The 6805 has an in-built test program which is descr ibed by 

Boney (13). Unfortunately it requires a speci f ic external configuration 

and therefore cannot be used as a built in test feature. 

Random a c c e s s memory (RAM) tests have been studied extensively. It is 

recognised that exhaustive testing for all possible pattern sensit ive 

faults is not realistic. This has led to the development of a number of 

selective tests which are designed to reveal certain expected faults. 

Thatte and Abraham (102) descr ibe a number of failure m e c h a n i s m s and the 

tests n e c e s s a r y to detect them. Read only memory (ROM) can be tested by 

the evaluation of a c h e c k s u m , and this method is explained by Jack et al 

(49). input and output lines can be c r o s s connected for testing, or in a 

c losed loop control situation, the response to a small disturbance by the 

controller can be monitored to reveal faults in all the interfacing 

circuits. This latter procedure is suggested by Kurzhals and Deloach (55) 

for an aircraft application. 

T h e s e checking routines can be executed in a background mode similar 

to that proposed by P r e e c e and Stewart (80). in all c a s e s the aim is to 

detect errors quickly so that they cannot propogate and prevent recovery. 

Using these methods it is possible to detect some faults before they have 

disrupted program execution, and is due to the error latency of digital 

circuits. This is the time taken for a fault to generate an error on the 

output of the device. Shedletsky and McClusky (91) show that even in a 

simple four state sequential circuit the error latency can be several tens 

of c y c l e s , and will be far more in complex circuits. 

T h e s e types of self checking procedures are particularly useful in 
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duplex arrangements and those using stand-by s p a r e s , to locate failed units 

during operation. Another important use is in applications having short 

mission times. For these, the importance of a fault free system prior to 

use is illustrated by T a s a r (100) in connection with aircraft control. He 

suggests that 90% of faults can be detected in this way. with only a basic 

knowledge of the hardware. 

Error detection is an Important aspect of fault to lerance, but without 

error correction Kopetz (53) has shown that availability is reduced. 

1.6 Possible Dangers of Adding Redundancy 

Careful consideration must be taken when adding redundancy to a 

system, as increased complexity can lead to design errors. Even correct 

designs can be less reliable than non-redundant systems. For example, if a 

single voting arrangement is adopted in a TMR system, then the voters must 

be more reliable than a single channel to achieve an overall improvement, 

and this is shown by Wakerly (107). In equipment containing standby 

s p a r e s . Losq (59) has shown that a system with a large number of s p a r e s is 

less reliable than the corresponding simplex arrangement, due to the 

complexity of the switch. Elkland and Siewiorek (34) show that memory 

error detection and correction systems can also be less reliable, due to 

failure of the additional memory and correction circuits. 

Another important factor is the concept of coverage which was first 

introduced by Bouricius et al (15). It is the probability that a system 

will recover from a fault without any loss of essent ia l information. 

Clearly the aim is for a high level of coverage, and Arnold (2) has shown 

that even a small percentage of uncovered faults has a severe effect on the 

reliability of redundant systems. T h e s e faults are cal led common mode 

failures, and can be the major source of system unreliability. Westermeier 
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(112) shows that adding redundancy with low coverage actually reduces 

overall reliability. 

Most of the techniques mentioned so far are designed to counteract 

particular c l a s s e s of faults. If these fault types are not common in the 

final system then the methods will be ineffective and may even reduce 

overall reliability. For example, most fault tolerant memory systems are 

designed to detect and correct single bit failures, where multiple bit 

failures may be more common due to simultaneous disturbances in several 

chips. Exhaustive memory tests to detect faults are not possible due to 

restrictions of time. For this reason tests have been developed for 

certain types of fault such as interactions between adjacent ce l ls . 

However, Heftman (45) descr ibes modern devices with extra rows of ce l ls 

which can be substituted for faulty ones. This severely reduces the 

effectiveness of the tests. 

Wulf (116) states that increasing the reliability of individual 

components has little effect on the mission time, but increasing the 

coverage of the most probable fault produces significant improvements. It 

is therefore of great importance to know what type of failures will occur 

in the real system, so that only methods suitable to counteract those 

particular faults are adopted. 

Previous sect ions have indicated that a particular error detection and 

correction mechanism is not effective against all faults. It is therefore 

n e c e s s a r y to use a number of techniques. Pearson et al (77) descr ibe a 

hierarchical approach with different levels of fault recovery. At a low 

level modular redundancy and memory protection are transparent to the 

program, and are independent of the application. At higher levels the 

mechan isms become more application dependent, with the use of software 
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techniques. The highest level must cover all other undetected faults, and 

is usually provided by a watchdog timer. This device Is periodically 

updated by the control program, and is normally configured to generate a 

master reset if it fails to receive correct signals. The benefits obtained 

by watchdogs are recognised, but the following chapters show that careful 

consideration for their design is n e c e s s a r y . 

1.7 Requirements for Different Applications 

Different applications have varying operating requirements, and in 

each c a s e a particular technique is sometimes n e c e s s a r y . A number of 

applications and their specif icat ions are given in table 1.1. For systems 

such as aircraft control very short program loops are n e c e s s a r y to maintain 

stability. Therefore detection and correction of errors must occur very 

rapidly, and requires the use of TMR or NMR. This usually prevents any 

interruption of program execution. 

In telephone switching systems, short interruptions are permissible, 

but repair must be quick and effective. Emphas is is placed more on the 

detection and isolation of faulty modules, and this is achieved by a large 

number of process ing units e a c h adopting a duplex arrangement. In this way 

faults within a particular unit are easily identified, while recovery is 

performed by reallocation of process ing tasks. 

In many industrial control situations, such as coal fired power 

stations descr ibed by Bland et al (11), it is only n e c e s s a r y to detect an 

error and to switch safely to mechanica l or manual control. In these 

c a s e s , process ing power can be lost for several s e c o n d s or minutes without 

severe damage to the plant. 

For the British G a s application of micro-e lect ronic implementation of 

DAG, the latter c a s e is acceptable for most networks. This is b e c a u s e only 
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the set point of the regulator requires adjustment with local mechanica l 

control of the pressure . If the set point is changed too often then 

instability between the two control mechan isms can occur . Spearman (98) 

suggests a time interval between adjustments in the range of 5 to 120 

seconds . Therefore a loss in processing time of a similar duration will 

not be detrimental, provided that the regulator is not driven to its lowest 

setting during failure. However, in networks containing large industrial 

loads, rapid c h a n g e s in demand can occur and this requires a faster 

response with a correspondingly shorter control loop. 

An architecture for a small digital controller suitable for this 

application has been proposed by Pearson (76). It cons is ts of a 

triplicated processor arrangement with voting, connected to a single block 

of RAM which contains single bit error correction and double bit error 

detection. The control program is stored in two different EPROM's so that 

if one fails the other one can be used. This architecture does have a high 

coverage for a number of fault conditions, but is suscept ible to several 

possible common mode failures, which can remain undetected by the hardware, 

in these c a s e s detection and correction methods within the software are 

required. 

An alternative approach, which could be used , is descr ibed by O b a c -

Roda and Davles (73). They suggest using three independent microprocessor 

systems connected in a ring structure. E a c h system operates in loose 

sychronism with the other two. and voting on results is achieved in 

software. A similar arrangement couid be used but with all the channe ls 

working in complete isolation. The outputs could then be brought together 

at the actuators, and even these could be isolated by using seperate ones 

for each channel . With such isolation, Del lacorna et al (29) have 
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indicated that it would not be n e c e s s a r y to use the same processor in e a c h 

unit, and therefore e a c h one could be designed and programmed by a 

different development group to eliminate the possibility of nearly all 

common mode failures. 

By reducing the interaction between modules, a great deal of physical 

and electrical isolation c a n be achieved, especial ly with the use of fibre 

optics. Emfinger and Flannigan (35) descr ibe how physical isolation is 

used to improve the survivability of a fighter aircraft from attack. The 

use of these methods in the British G a s application could reduce the risks 

from rare events such a direct lightning strikes and vehicle impacts, which 

have occurred in the past. 

1.8 Contents of the Thes is 

The aim of the work descr ibed in this thesis is to investigate methods 

of increasing system reliability with particular attention given to 

software techniques. It has been indicated in the foregoing d iscuss ion 

that both transient and intermittent failures are common, and therefore 

improvements in this a rea are most likely to give significant benefits. To 

prevent failure, both error detection and error correct ion must be 

effective, and detection m e c h a n i s m s receive particular attention. 

It has been shown that the actual failure m e c h a n i s m s are important in 

the development of redundancy techniques. Most r e s e a r c h e r s have adopted a 

policy of considering only single point failures. This is a legacy from 

early reliability studies on systems containing descrete components and 

small s c a l e integration (SSI) . With the development of large s c a l e 

integration (LSI), it is an increasingly more complex process to analyse 

systems at the transistor and gate levels. Also, faults are less likely to 

be limited to single nodes due to their physical size and very c lose 
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proximity to each other. Despite this there is very little information 

available about failure m e c h a n i s m s observed at the subsystem level. 

Chapter 2 contains a description of a number of practical test which 

were carr ied out on a small microprocessor based system. T h e s e were 

primarily concerned with electr ical interference on the power supply rails. 

Errors observed at the chip level are presented. The tests revealed that a 

number of mechan isms exist which c a u s e the corruption of the program 

counter, resulting in the possible resumption of execution at any location 

in the memory map. This demonstrates the importance of the undeclared 

operation c o d e s in microprocessors which may be read under these 

conditions. Chapter 3 investigates the undeclared codes of several 

p rocessors and reveals other undeclared properties. 

Chapters 4. 5 and 6 look at the response of different p r o c e s s o r s to 

erroneous execution in speci f ic parts of the memory maps. Analysis is 

performed by a ser ies of mathematical models derived from Markov diagrams. 

In some c a s e s they have been verified by computer simulations. Chapter 7 

studies the flow of erroneous execution between different memory a r e a s , and 

represents the response to a random jump within the memory map. A 

comparison between p r o c e s s o r s and different memory arrangements are made, 

and the effects of adding error detection is presented. 

Chapter 8 shows how the reliability of speci f ic systems can be 

improved by the addition of the techniques developed in the previous 

sect ions, and also suggests some hardware detection m e c h a n i s m s . Chapter 9 

descr ibes a testing facility which has been constructed to physically check 

error detection and correct ion mechan isms. It allows the injection of a 

large variety of faults, and permits rapid testing. 

Finally, the conclus ions drawn from the research and the suggest ions 
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for future development are presented in chapter 
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C H A P T E R 2 

Pract ical Tests to Determine Transient Fai lure Mechanisms 

2.1 Introduction 

It has been shown in the previous chapter that methods of increasing 

the reliability of a system are generally designed to counteract a 

particular fault type, and are only effective if these faults are common. 

Ball and Hardie (5) have indicated that over 90% of field failures are due 

to intermittent or transient faults. Therefore techniques which enable 

recovery from the errors resulting from these faults will have a 

significant effect on reliability. The c a u s e of these events have been 

d i s c u s s e d , but details of their effects, especial ly at the time of failure, 

are not fully understood. This is due to the random nature of their 

o c c u r r e n c e , which means that analysis of failure is usually possible only 

after the event when little data is available. The only indication that a 

transient has occurred may be that the system has c r a s h e d or an erroneous 

output has been made. 

To enable the development of effective detection and recovery 

techniques, it is n e c e s s a r y to have a more detailed understanding of the 

mechan isms of failure. There are three methods available for 

investigation, and these are theoretical evaluation, computer simulation 

and practical tests. Theoretical evaluation rel ies on the assumption of 

certain fault conditions, such as single nodes stuck at 0 or 1, and the 

evaluation of their effects on the rest of the system. This is known as 

fault mode effect analysis (FMEA). and provides information about possible 

failure mechan isms . However, without a knowledge of the o c c u r r e n c e rate of 

the assumed faults, it is not possible to determine the most common 

failures. 
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With computer simulation, a model of the system at the transistor or 

gate level is produced, and this was the approach adopted for the Saturn V 

guidance computer descr ibed by Ball and Hardie (5). Faults can then be 

simulated and the effects observed, but this suffers from the s a m e 

disadvantages as FMEA. Pract ical tests are the only way of determining 

which faults will occur in real systems. Once these have been establ ished. 

FMEA and simulation can then be used more effectively. 

Little information is available on practical testing of systems under 

transient disturbances. Those which are reported have focused their 

attention on methods of eliminating disruption by shielding or filtering. 

For example, Teets (101) states that short interruptions, of a few mill i­

s e c o n d s , can c a u s e corruption to the contents of memory and also n o n -

programmed jumps. He suggests that these problems can be overcome by the 

use of uninterruptible power supplies. Although vast improvements can be 

made in this way. it is not 100% effective in all c a s e s , especia l ly for 

unanticipated phenomena. For these c a s e s it is n e c e s s a r y to adopt the 

fault tolerant approach. 

This chapter descr ibes work carr ied out to identify possible failure 

m e c h a n i s m s , in small digital control lers, by the use of practical tests. 

2.2 Test System 

The test system which has been constructed for the purpose of 

identifying fault modes and their f requencies, is descr ibed in detail in 

the following sect ions. The hardware consis ts of a single process ing board 

powered by a purpose built power supply unit. 

2.2.1 Processor Board 

The processor board is based on the design of a small single board 

computer given in the 8085 U s e r ' s Manual (119). However, a few 
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modifications have been made for this application. A block diagram of the 

system is shown in figure 2.1, and the layout of the components is given in 

figure 2.2. Two main modifications have been added. Extra circuitry has 

been included to fully decode the on board memory, and an RS232 interface 

provides serial communicat ions with a terminal. 

The main components of the system a r e : -

8085 8 bit microprocessor 

8155 256 byte RAM + 22 parallel I/O lines + timer 

8755 2 K byte EPROM + 16 parallel I/O l ines 

6.144 MHz Crystal 

The power supplies to the three main integrated circuits, to the 

decoding circuits and to the RS232 interface are not permanently connected 

together, but are joined by removeable links. This allows the connection 

of an alternative supply to different parts of the board, so that the 

effects of interference on individual components can be observed. It 

should then be possible to identify levels of interference that effect 

different components before trying to analyse the whole system. 

Resistors are connected to the data lines so that they can be pulled 

high or low. 

2.2.2 Decoding Circuitry 

The decoding circuitry consis ts of three L S T T L integrated circui ts , 

and a logic diagram is given in figure 2.3. The inputs are taken from 

address bits 8 -15 on the system bus and the outputs are connected to the 

chip select pins on the memory devices. The 8755 EPROM chip is mapped to 

the address range 0000 to 0 7 F F (hexadecimal) , and the 8155 RAM chip is 

mapped to the range F F 0 0 to F F F F . 

By fully decoding the memory and applying a suitable combination of 
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pull up and pull down resistors to the bus. a fixed data byte is forced 

onto the data lines when an attempt is made to a c c e s s a non-populated 

memory address . By setting the data byte equal to a restart instruction, a 

software interrupt is generated when an instruction is fetched from a n o n -

existant memory location. This can be used to detect some transient 

errors. 

The chip se lec ts are connected via wire-wrap or soldered links so that 

the behaviour of the system with full or partial decoding can be observed. 

2.2.3 Power Supply Unit 

For a computer to function correctly it is essent ia l for the 

integrated circuits to be supplied with a good steady voltage. If the 

power supply can filter out mains borne transients then fewer errors will 

occur . The power supply therefore plays an important role in the overall 

system reliability. A circuit diagram of the test supply unit is shown in 

figure 2.4. The unit contains two transformers (one laminar and one 

toroidal), and three smoothing capaci tors of different values. Two 

switches allow the selction of any combination of transformer and smoothing 

capacitor. This allows testing of the processor board to determine levels 

of interference that c a u s e errors for different arrangements of the power 

supply. 

2.2.4 Software 

Two software packages have been written to run on the test equipment. 

One is designed to test the whole system and to display m e s s a g e s if an 

error is detected. The other is for identifying data errors in the RAM 

chip. 

2.2.4.1 S Y S T E S T 

S Y S T E S T is a software package designed to test the whole system. The 
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main part of the program writes a data byte into memory and then reads it 

back again. It then compares the value with a reference byte stored in 

memory and with another stored in the C register. if either values 

disagree an error code is sent to the terminal. This p rocess continues by 

using the same byte in s u c c e s s i v e memory locations until the whole memory 

block F F 1 0 to F F F F has been tested. The data byte is incremented and the 

p rocess repeats until all values have been tried. If no errors are 

detected, a character is sent to the terminal to indicate that the system 

is functioning correctly, and the program restarts at the beginning. 

Recovery software is included at the low order a d d r e s s e s of the 

memory, so that if a hardware interrupt, a software interrupt or a total 

reset is erroneously executed, then an error code is sent to the terminal 

and testing is restarted. This will occur if the program jumps into any of 

the unpopulated memory, provided that full decoding is used and the data 

lines are pulled high to force the execution of a Restart 7 instruction. 

A number of different c o d e s are Included to indicate different errors 

so that the type of failure can be easily recognised. The test system has 

no monitor program, so the software package includes a subroutine to 

generate the software controlled serial output. To output a character the 

asci i code is passed to the routine in the C register, which then generates 

the serial data together with start and stop bits. 

2.2.4.2 RAMTEST 

RAMTEST is a software package designed to test for data errors in the 

RAM chip. The program requests a byte of data to be used in the test. It 

then writes that value into all the RAM locations FFOO to F F F F . When 

complete, a prompt is sent to the terminal and the program waits for an 

input before continuing. The data is then read back and displayed at the 
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terminal before starting again with a new byte of data. By including the 

wait between writing and reading, interference can be applied to the memory 

device during writing, during reading, between writing and reading, or 

during any combination of these. 

This software is designed to test for corruption of the memory, and 

therefore the program cannot use the RAM for its own operation. The 

software includes a number of subroutines which deal with the serial 

communicat ions. Subroutine cal ls are not used in the normal way, as the 

tests would corrupt the system stack. Instead, the return a d d r e s s , at 

which execution must resume, is loaded into the HL register pair. The 

routine is then entered by a normal jump instruction. At completion the 

PCHL instruction is used to load the program counter with the address 

stored in the HL register pair, and execution continues at that address , 

in this way all information for the correct operation of the program is 

stored in the internal registers of the processor rather than in memory. 

2.3 Practical Tests Performed 

Faults in digital circuits occur very infrequently, for example, a 

system similar to that descr ibed above has been operating continuously for 

over 4 months. O c c a s i o n a l interruptions to the power supply have c a u s e d 

full resets , but apart from these, no other errors have been detected. In 

order to observe the effects of faults, as they happen, it is n e c e s s a r y to 

induce failure. 

In the British G a s application, the digital controllers will be 

situated in remote a reas and will generally receive their electr ical power 

from street lighting circuits. T h e s e are not particularly c lean suppl ies, 

due to noise picked up from a number of s o u r c e s . Bull (18) suggests that 

interference on the supply from devices s u c h as thyristors. motors and gas 
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discharge lamps can c a u s e disruption, or even permanent damage, to digital 

circuits. Therefore conducted interference on the power supply is expected 

to be a possible source of failure, and the tests have been aimed at this 

a rea . 

Initial tests involved variations in the 5 volt supply rail. The 

levels at which errors occurred were recorded during manual reductions of a 

variable output supply. Other disturbances were created on the A / C mains 

input to the experimental power supply unit, using a Schaffner interference 

simulator. This consists of a main frame into which a number of plug-in 

units can be fitted. Three s u c h units were available, and these c a u s e 

short interruptions to the supply, or super impose high or low energy spikes 

onto the mains. 

The equipment generates interruptions of between 1.5ms and 500ms to 

simulate the change over of generators or breaks in the line. The low 

energy pulses of 2mJ have a rise time of 5ns or 10ns and an amplitude from 

50 to 2,500 volts, to simulate interference from e lect romechanica l switches 

and relays in c lose proximity. The high energy pulses of 2J have a r ise 

time of approximately 0.3us and an amplitude of up to 5.000 volts to 

simulate the effects of thyristors, atmospheric d ischarges , high voltage 

current breakers and electr ical machinery. 

All tests with the high energy pulses showed no observable disruption 

to normal program execution. Using a digital storage s c o p e , the effects of 

the spikes on the 5 volt rail were examined. With symmetric interference 

applied between live and neutral, no fluctuations were seen on the rail. 

However, with asymmetric interference between the two supply lines and 

ground, a 0.2 MHz oscillation of 0.6v amplitude, damped out after four 

c y c l e s , was observed. This produced a minimum of 4.4 volts on the supply. 

37 



which is shown later to be insufficient to c a u s e corruption. No variation 

in the response occurred with different values of smoothing capaci tors . 

To observe the effects of the other forms of interference, a Dolch 

logic analyser with a personality pod for the 8085 was used. This not only 

provides an indication of the states of e a c h of the pins on the p rocessor , 

during e a c h clock cyc le , but also provides a d isassembly of the 

instructions executed. Unfortunately, with fast spikes the interference is 

sufficiently harsh to affect the operation of both the system under test 

and the logic analyser , and did not provide much useful data. Information 

about program execution during voltage reductions and short interruptions 

w a s readily obtained. However, during some testing, incorrect d i s ­

assembl ies were generated. This appeared to be due to the generation of 

additional clock pulses within the pod. caus ing the analyser to take extra 

erroneous samples . But by reverting to the display of binary states, it 

was possible to evaluate the actual processor response . 

2.4 Test Results 

As mentioned above, the test system was designed so that separate 

power supplies could be connected to e a c h major device. Therefore inter­

ference tests were carr ied out on the individual ch ips , before being 

repeated on the whole board. This approach was adopted to try and identify 

the most likely s o u r c e s of failure in a complete system. The results of 

these tests are given in the following sect ions. 

Investigations on the effects of adding pull-up or pull-down resistors 

to the data l ines, revealed only minor variations in susceptibility to 

interference. In all subsequent tests pull-up resistors were connected at 

all times. 
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2,4.1 Interference to the RAM 

A random a c c e s s memory (RAM) device has three main functions. T h e s e 

are to accept data from another device, to store the information, and to 

pass it back when required. Errors can occur during e a c h of these states, 

and are termed write, data and read errors respectively. Voltage level 

tests were carr ied out, using the RAMTEST software, to determine the 

sensitivity of e a c h of these operations. 

The voltage levels at which the first errors occurred for different 

devices, are given in table 2.1. It shows that the read and write 

operations are the most suscept ible to this sort of disturbance, while the 

data remains valid internally until at least another 1.4 volt drop in the 

supply. There is also a significant variation between devices. R3 and R4 

were manufactured by Intel and are corrupted more easily than R5 and R6 

which were manufactured by N E C . Slight variations in the level of first 

corruptions were observed for different data values, but these were all 

less than 80 mV. 

An interesting observation was the variation in the location and value 

of the first error for different data bytes. T h e s e are summar ised in table 

2.2. All initial write errors gave a value of F F when read back, this was 

the value to which all locations were initialised before disruption. 

However, this was observed at various locations with the Intel dev ices , 

whereas the N E C devices always showed the first failure at location FF0O. 

Similar observations were made with read errors, except one Intel device 

showed single bit errors at various locations, while the other consistently 

failed to F F at address FF00 . For data errors the first events observed 

were single bit c h a n g e s , and these occurred at various locations. However, 

a further reduction of only 50 mV resulted in multiple bit c h a n g e s . 

39 



Although errors occurred at various locations for different data 

bytes, the results were always consistent for a particular device. For 

example, the first data errors for RAM chip R5 are given in table 2.3. 

This shows that bit c h a n g e s in the device are more likely in certain bit 

positions. The table shows that, for device R5. bit 2 at address F F B F will 

always be the first to change if it is set to zero. Similar results were 

obtained for the other ch ips , but the errors occurred at different 

locations. This information could be used to test for general corruptions 

of data. The most susceptible bit could be checked periodically, and if 

correct would indicate that other corruptions were unlikely. However, this 

would create major problems in construction and maintenance, a s e a c h chip 

would have to be tested and the software modified accordingly. 

For short interruption testing, a variable resistor was connected in 

parallel to the device under test, and adjusted to maintain a constant load 

of 500 mA on the power supply unit. This arrangement was adopted to allow 

compar isons to be made between different parts of the circuit. Table 2.4 

shows the length of the interruption, in c y c l e s , which c a u s e d the first 

errors for each part. As expected, a larger smoothing capacitor needed a 

longer interruption before errors occurred . 

During this testing, RAM chip R4 suffered a permanent failure, and 

this is d i s c u s s e d further in section 2.6.2. Table 2.4 shows the results 

for device R3, and in e a c h c a s e the 5 volt rail dropped to a minimum of 

about 3.8 volts, before the first errors occurred . This is over 1 volt 

higher than expected from the previous results. However, in this c a s e the 

software package S Y S T E S T was being used , indicating that the susceptibility 

to errors Is dependent on the program being executed. This was confirmed 

by repeating the voltage reduction test while running S Y S T E S T , and showed 
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initial errors at around 3.8 volts. 

Detailed investigations into the effects of applying low energy fast 

spikes to individual devices were not carr ied out. This was b e c a u s e no 

useful information could be obtained, from the logic analyser , due to 

corruptions c a u s e d by the interference. Limited results for full board 

testing under this type of interference are given in section 2.4.4. 

Tests on early 4K RAMs have been carr ied out by Hnatek et al (46). 

The device studied required three different voltage levels of +5v, - 5 v and 

12v. Supply reductions to the 5v rail showed initial data errors at around 

1.2v. which is similar to those observed for the 8155. He also discovered 

devices which lost bits of data after 3 s e c o n d s if they were not a c c e s s e d . 

Investigations showed that leakage currents, as a result of faulty 

manufacture, c a u s e d the bits to change state. This failure mechanism is 

particularly ser ious as in—circuit tests are designed to operate in the 

shortest possible time and would not detect them. A preventive solution is 

to refresh the memory as often as possible. The importance of this type of 

refreshing in counteracting the effects of soft errors due to alpha 

particle hits has been shown by Smith (95). However, in this c a s e 

refreshing does not need to be carr ied out as often. An attempt to 

reproduce delayed errors on modern devices was unsuccess fu l . Two 8155s and 

sixteen 2114s were left u n a c c e s s e d for ten days while filled with the value 

AA. This was repeated with complementary data, but in both c a s e s no errors 

occurred. 

2.4.2 Interference to the EPROM 

Testing the erasable programmable read only memory (EPROM) was a much 

simpler p r o c e s s , as voltage variations can only c a u s e read errors. 

Initially the supply was gradually reduced until the program started 
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sending error codes to the terminal. Repeating the test with the logic 

analyser connected showed no alteration in the voltage level at which first 

errors occurred , indicating that it did not affect the results. 

Single bit errors were observed at a level of 3.43 volts. T h e s e were 

all changes from 0 to 1 in bit location 5, and occurred at a number of 

a d d r e s s e s . This resulted in the misinterpretation of instructions or the 

incorrect reading of operands. Further reductions in the supply c a u s e d 

more bits to change from 0 to 1. until F F was read during e a c h instruction 

fetch at a level of 3.25 volts. In this condition the restart 7 

instruction is executed repeatedly, pushing a return address onto the stack 

each time. This results in the stack extending through the entire memory 

map. destroying all volatile data. 

Only one device was tested in this way. However, in previous tests on 

2716 E P R O M s , in a different system, similar results were observed. A 

common failure for one device was the misreading of a jump a d d r e s s , 

resulting in execution passing to an unpopulated area of memory. Another 

was the misreading of the operand in a compare instruction. In both c a s e s 

the same bit showed a transition from 0 to 1. A similar device programmed 

with identical data a lso showed these types of transitions but in different 

bit locations. A similar response is therefore expected with other 8755s. 

The lengths of interruptions n e c e s s a r y to c a u s e corruptions are given 

in table 2.4. The minimum supply level reached for e a c h capacitor was 

about 3.4 volts, which agrees with the previous results. One failure mode 

encountered during interruptions was the repetitive execution of interrupt 

routines. This was only observed with the logic analyser connected , and 

was due to oscil lations on the interrupt l ines. The problem was cured by 

removing the analyser , or by tying the lines low. Other failures were 
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similar to those for gradual reductions of the supply. Bit 5 showed the 

initial failures with other bits corrupted during longer interruptions. 

2.4.3 Interference to the P r o c e s s o r 

Voltage reductions on the processor revealed initial errors at a level 

of 2.74 volts, these consisted of bit 1 incorrectly read as 1 instead of 0. 

at several a d d r e s s e s . At a level of 2.72 volts the program counter showed 

signs of incorrect operation. This resulted in execution skipping over 

single and multiple bytes in the program. For example, the third and 

fourth bytes following a jump instruction were read as the jump address . 

This sort of execution was observed in several parts of the program. 

Continuous servicing of interrupts, in the s a m e way as in the previous 

sect ion, was also observed. Again this was eliminated by grounding the 

interrupt l ines. Another failure mode encountered, was the cyc l ic reading 

of data through memory. In this c a s e the processor would read s u c c e s s i v e 

locations to the end of the memory map. and then repeat from the beginning. 

This mode was always entered if the supply was reduced to below 2.45 volts 

and then raised slowly. The processor would not leave this state with the 

application of a TRAP, which is supposed to be a non-maskab le interrupt. A 

full reset is n e c e s s a r y to exit from this mode. A similar s e q u e n c e of 

operation is encountered when certain o p - c o d e s are executed on the 6800. 

The fact that no further useful processing Is performed under these 

conditons is particularly important from a reliability point of view, and 

this is d i s c u s s e d further in section 3.4.3. 

The length of interruptions required to c a u s e errors in the processor 

are given in table 2.4. First errors occurred when the supply reached a 

minimum of about 2.8 volts. Incorrect read and write operations were 

observed under these conditions. Slightly longer interruptions, caus ing a 
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dip down to 2.5 volts, revealed program counter malfunctions, as descr ibed 

above. Further reductions c a u s e d the processor to execute a s e q u e n c e of 

restart 7 instructions ( F F ) . but as the supply recovered the cyc l ic read 

mode was entered. This occurred for all interruptions which resulted in 

the supply rail falling to a value between 2.5 and 0.3 volts. If the 

supply dropped below this range, the power-on reset circuit would generate 

a correct reset. 

2.4.4 interference to the Complete System 

Raising the power supply slowly from 0 to 5 volts, for the whole 

board, c a u s e d the processor to enter the cycl ic read mode. This indicates 

that ca re must be exerc ised in starting up a system, and is to be expected 

as the power-on reset circuit will not operate correctly unless the supply 

is restored quickly. 

Reductions in the power supply revealed initial memory read errors at 

3.73 volts. This is a similar level to that observed with a reduction to 

the RAM supply. At 3.66 volts, memory read errors occurred at the stack 

locations, resulting in the incorrect execution of return instructions. At 

3.46 volts, the system could not send error codes to the terminal. This 

was due to the incorrect reading of the EPROM. and prevented normal 

execution. 

Interruption testing revealed comparable failures. The lengths of 

interruptions required to c a u s e initial failures are given in table 2.4. 

As expected, they are similar to those for the RAM. which is the most 

susceptible part of the system to this sort of disturbance. 

Low energy fast spikes were applied to the whole system, but even with 

2.5 kV pulses having a 5 ns rise time, no observed failures were produced, 

provided that correct earthing and shielding of the equipment was used. 
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Without such an arrangement, errors could be induced. As mentioned above, 

the logic analyser could not be used effectively, to observe the point of 

failure, as it suffered from the interference. However, it could be used 

after the event to identify the final outcome of the fault. 

Without grounding the c h a s s i s of the interference simulator, 

corruption of the stack pointer so that it pointed to an address in the 

EPROM, was observed. On returning from a subroutine, an arbitrary address 

was retrieved, and execution continued from that point. Subsequent cal ls 

attempted to overwrite the current stack position without s u c c e s s , and the 

following returns passed execution back to the same location as before. 

Corruption of the stack pointer was also observed during interruption 

testing on another system. This shows the importance of checking the stack 

pointer, or the return a d d r e s s , before leaving a subroutine. 

The cyc l ic read mode could also be entered as a result of this type of 

Interference. On another occas ion the wait state was entered, and by 

applying a TRAP and observing the location to which execution returned, it 

was possible to establish the last byte executed before the wait. The 

processor had in fact read the operand of a conditional jump, which was 

equivalent to the code for a HALT instruction. Again, the repetitive 

servicing of interrupts was also observed, when the interrupt l ines were 

allowed to float. 

Finally, a few investigations were carr ied out with the ana lyser 

connected. Although the output was corrupted, a few conditions could be 

interpreted. T h e s e revealed o c c a s i o n s where the processor misread 

instructions. For example, a triple byte Instruction was interpreted as 

three single byte instructions. 
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2.5 Signif icance of the Results 

The test programme descr ibed above, relied on the assumption that the 

errors produced. under the various forms of interference. were 

representative of those which do occur in real systems. As with 

accelerated life testing, descr ibed in chapter 1. the experiments may 

reveal mechan isms which do not occur under normal operating conditions. 

However, the types of interference used were chosen to be similar to that 

expected in the particular British G a s application being considered. The 

aim was to simulate naturally occurr ing events, rather than to induce 

failure by altering the environmental conditions. 

Another factor which suggests that the failure m e c h a n i s m s observed 

will occur under normal operating conditions, is that in many c a s e s a 

particular mechan ism was observed as a result of different d isturbances. 

This happened not only with similar interference on different parts of the 

circuit, but a lso with different types of interference. The results for 

the low energy fast spikes and the short interruptions are particularly 

important. Gradual reductions are less significant b e c a u s e they appear the 

same as short interruptions at the instruction level. Although sharp dips 

seem to occur as a result of an interruption, the minimum voltage is 

maintained for over a mil l isecond. During this time approximately one 

thousand instructions will be executed. and therefore individual 

instructions will s e e the interference as a steady low voltage level. 

2.6 Observations of Permanent Fai lures 

Although this work is aimed mainly at transient events, the detection 

and recovery p r o c e s s e s should not be developed without consideration for 

permanent failures. Over the past three years several permanent component 

failures have been observed, and these are descr ibed in the following 
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sect ions. 

2,6.1 P r o c e s s o r Fai lures 

Two processor chips have experienced permanent failure, but despite 

this they have not failed completely. Certain parts of the integrated 

circuits still function correctly. Both failures occurred while the 

processors were operating on an Intel 8085 system design kit (SDK) board. 

The first p rocessor appeared to fail for no particular reason and may have 

been a random failure. When connected to a system it s e e m s to success ive ly 

read through every memory location from 0000 to F F F F and then repeats 

continuously, in the s a m e way as the cycl ic read mode encountered during 

interference testing. All the control s ignals are correct for a s u c c e s s f u l 

read and the logic analyser confirms that the correct data for e a c h address 

goes onto the data bus in the normal way. 

This failure mechanism is particularly important when designing a 

watchdog timer for a system. It would not s e e m unreasonable to retrigger 

the timer on a certain address in the control program. Then if the system 

c r a s h e d and execution no longer continued around that address , the watchdog 

would reset the system and control would be restored. This arrangement is 

proposed by Oppenheimer (74) to recover from transient d isturbances to the 

power supply. However, if the cyc l ic read mode is entered, the trigger 

address still appears at regular intervals and no reset or alarm would be 

set off. if the timing of the watchdog is not critical. This state could 

continue unnoticed for a considerable time. A complete memory cyc le lasts 

for approximately 65 ms. with a 6.144 MHz crystal , and therefore the wa tch ­

dog must be set to a shorter time interval if address triggering is used. 

Oppenheimer also suggests that the watchdog could be designed to generate a 

non-maskable interrupt. It has been establ ished from the tests that s u c h 
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an interrupt is not recognised during the cycl ic read mode and therefore 

cannot enable recovery from this state. 

The second processor was damaged when the power supply failed during 

interference testing. Interruptions which result in restoration of the 

supply during a peak in the mains cycle c a u s e a sharp spike in the current 

drawn. For the power supply used , the spike had a peak amplitude of up to 

16 Amps, compared with a normal demand of approximately 300 mA. and was 

often sufficient to blow the input fuse. The power supply failed during 

interruption testing and was probably due to these surge currents. At the 

s a m e time an L S T T L dual D flip-flop (74LS74) failed. All functions of the 

chip were lost and it took a current of approximately 1 Amp when attached 

to a 5 volt supply. 

The only damage that appeared to occur to the p rocessor was that one 

of the multiplexed address and data lines (AD5) stuck at ' V . This meant 

that for e a c h instruction fetched, that particular bit would be read as a 

' V . Therefore only half of the instructions could be read successfu l ly , 

but it seemed that for the instruction that the processor had read, the 

correct execution followed. The program counter incremented internally in 

the normal way. with only the single bit corrupted externally on the 

address bus. 

Again this failure is important when considering watchdog designs. 

One method of resetting the timer is to connect it to a port, and to use 

the OUT command. If a single bit stuck at ' V fault occurred which did not 

affect the OUT instruction or the port a d d r e s s , then it Is possible for 

execution to continue in such a way that the watchdog would not generate a 

reset or alarm. This processor also entered the cycl ic read mode 

occasional ly but with the failed bit stuck at '1 ' . 
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2.6.2 RAM Failure 

During interruption testing a permanent failure in an 8155 RAM chip 

occurred. Subsequent reading of the device gave a value of 3F at all 

locations. The chip was removed from the circuit and later replaced, at 

which time all locations appeared to be stuck at 00. At this stage the 

device drew a current of over 0.5 amps, compared with a normal consumption 

of about 40 mA. 

The execution of the processor was affected. It operated with bit 7 

stuck at 0, and read the value 3F from unpopulated memory. In the 

resulting execution a HALT instruction was Incorrectly interpreted, caus ing 

the processor to enter the WAIT state. During subsequent tests, the 

processor would not respond in any way with the failed device in the 

circuit. 

2.6.3 Crystal Fai lure 

During initial trials of the single board test system regular problems 

were encountered in initiating correct operation of the processor . This 

problem was particularly evident when the 5 volt supply was instantaneously 

applied to the board. By slowing down the rise time of the 5 volt rail the 

problem c e a s e d . However, the timing constraints for power on reset were 

satisfied in the original state. 

Further investigations revealed that the problem was c a u s e d by the 

crystal. Under certain conditions it would oscil late at 18 MHz. three 

times its rated frequency of 6.144 MHz. Once it had started at that 

frequency it was n e c e s s a r y to apply a capac i tance to the crystal to force 

it into its correct operation. A hardware reset had no effect, so a 

watchdog timer connected to the reset line on the p rocessor would not 

restore correct operation from this failed state. 
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This problem has been cured by permanently connect ing a 20 pF 

capacitor from the crystal to ground. The 8085 U s e r ' s Manual (119) 

suggests that this should be done for crystal f requencies below 4 MHz. 

Their design for a single board computer does not include the capacitor , 

therefore they must consider it unnecessary at 6 MHz. This suggests that 

the crystal may have been faulty. However, this fault did not appear when 

four other p rocessors were tested. Three of these were manufactured by 

N E C , whereas the other one, and the original, were manufactured by Intel. 

This s e e m s to indicate an isolated fault in the internal oscillator circuit 

of the suspect device. All other functions of the chip operated normally. 

2.7 Summary 

The aim of the tests descr ibed in this chapter, was to identify 

failure m e c h a n i s m s which are likely to occur in digital controllers. The 

mechan isms observed fit into two main catagor ies of corruption of data and 

disruption in the s e q u e n c e of program execution. They both occurred under 

different types of interference applied to various parts of the circuit , 

and suggests that they will occur in real systems. 

Corruption of data results from interference to each of the main 

elements of a digital system. Disturbances to the RAM allows data to be 

destroyed within the device, or during read and write transfers. In the 

c a s e of the EPROM and processor , incorrect interpretation of instructions 

can result in the wrong data being a c c e s s e d or the wrong operations being 

performed. 

Disruption of the s e q u e n c e of program execution can also originate 

from all three devices. Corruption of the stack data in the RAM results in 

incorrect returns from subroutines. Misinterpretation of instructions, due 

to interference in the EPROM or processor , c a n result in the execution of 
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erroneous jump, halt or stack operations. Disruption can also result from 

the direct corruption of the stack pointer and the program counter within 

the processor. Finally, the cycl ic read mode and repetitive servicing of 

interrupts, both prevent any further meaningful execution. 

Both these groups of failure are of great Importance in control 

systems. The effects of data corruptions have been studied by a number of 

researchers , and methods have been developed to detect and correct them. 

These consist of the use of recovery blocks. N-version programming, 

rollback, time redundancy and reasonableness checks , and are d i s c u s s e d in 

chapter 1. 

However, the sequence of events following disruption in the flow of 

program execution, has received less attention, and is studied further in 

chapters 4. 5, 6 and 7. It is of particular signif icance as without a 

resumption of valid execution, the data correction methods mentioned above, 

cannot function. 

The results of the tests have shown that any value of op -code can be 

executed by the processor , either as a result of misreading instructions, 

or by access ing erroneous addresses . It is therefore necessary to know the 

effects of every op-code . This is d iscussed further in the following 

chapter. 

It has been indicated that some failure mechanisms can have serious 

implications for the effective operation of watchdog timers. Further 

design considerations for these devices are also presented in the following 

chapter. 
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C H A P T E R 3 

Undeclared Operations of Microprocessors 

3.1 Introduction 

From a reliability point of view it is extremely important to know all 

the possible operations of a microprocessor . Without a full knowledge of 

their operation it may not be possible to design effective methods to 

counteract the results of transient or permanent faults. The manufacturers 

provide information about their dev ices , but this is not comprehensive . An 

obvious area of omission is in the declaration of the effects of all 

possible operation codes . This is important b e c a u s e the execution of a 

program can depart from its normal route, either due to a programming error 

or to some external interference. This has been demonstrated in the 

practical tests, descr ibed in the previous chapter. 

Other undeclared operations are difficult to reveal. For example, 

the memory cycling mode on the 8085 was found by testing, and could not 

otherwise have been forseen. 

Three manufacturers (Intel, N E C and Motorola) were contacted to s e e 

if they would re lease any further information other than that which is 

readily available, but they were not prepared to do so. Therefore the 

information required was only available from independent s o u r c e s , or had to 

be establ ished by experimentation. 

3.2 Undeclared Operation Codes 

The full instruction map for most 8-bit microprocessors has a total of 

256 possible instruction codes . T h e s e take the values 00 to F F in 

hexadecimal. For a particular device a certain number of these codes will 

be defined by the manufacturer to perform specif ic tasks, but usually this 

does not cover the entire instruction map. The remaining codes remain 
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undeclared but inherently must operate in some way. An initial reaction 

might be to a s s u m e that they perform in the s a m e manner as the Instruction 

cal led a 'no-operat ion ' (NOP). This Is a slightly misleading name b e c a u s e 

although no data is altered, the program counter is incremented by one. 

Therefore even a NOP c a u s e s a change in the overall state of the processor . 

Alternatively if these undeclared codes c a u s e a halt in the execution of 

Instructions, this also is a change In the overall state. 

As the codes are undeclared by the manufacturers there is a 

possibility that they may not perform in a logical fashion, or may not be 

repeatable even under similar conditions. Also, there is no guarantee that 

a particular response on one processor will be observed on another. This 

is particularly important where a specif ic processor is manufactured by 

several different companies . In this c a s e it is possible that the chips 

may be fabricated using different masks and it will be highly probable that 

the undeclared codes will function differently. For example, it has been 

suggested in (118) that Intel and National Semiconductor use the same masks 

for the 8080, whereas N E C and AMD have developed independent designs. This 

has been establ ished from the operation of the auxiliary carry flag, which 

does not always function correctly on the first two manufacturers devices . 

However, it is believed with the 8085 that Intel have speci f ied, to 

other manufacturers, exactly what e a c h code should do. and the codes which 

they say are undefined are in fact only undeclared to the final user of the 

device. Similar c a s e s may also exist with other p r o c e s s o r s , but should be 

treated with extreme caution as new modifications may depart from previous 

arrangements. This has been demonstrated by Nemmour (67) who reports on 

differences between 6800 microprocessors manufactured before and after 1977 

by the same companies . He suggests that some of the c h a n g e s were to 

53 



correct design errors in the original masks. 

The undeclared o p - c o d e s of various microprocessors are d i s c u s s e d in 

the following sect ions , along with some other undisclosed functions. 

3.3 Operations of the 8085 

The 8085 is a typical 8 bit microprocessor with a 16 bit address bus. 

it interprets all operation types from a single byte, and therefore 256 

different o p - c o d e s exist. Intel only define 246 of these c o d e s leaving 10 

undeclared. The functions performed by the undeclared codes have been 

investigated by Dehnhardt and Sorensen (28). Not only do they perform in a 

logical way, but they also provide some very useful operations, such as 16 

bit additions, subtractions and rotations. The same results can be 

achieved using s e q u e n c e s of other instructions, but this involves extra 

execution time and memory s p a c e . 

Also revealed in (28) is that two of the bits in the condition code 

register, which are supposedly undefined, also perform in a logical 

fashion. They state that bit 1 indicates a two's complement overflow, 

whereas bit 5 indicates an unsigned overflow for data c h a n g e s between 0000 

and F F F F , when executing 16 bit Increment and decrement instructions. 

These flags are used by some of the undeclared instructions. 

This leads to the question of why the codes and flags are not dec lared 

by the manufacturers. The 8085 has c lose links with both the 8080 and the 

Z80, with most of the o p - c o d e s performing in the same way. Therefore the 

extra codes may have been left undeclared to maintain a high level of 

software compatability between the devices. When asked about the c o d e s , 

the manufacturers stated that they could not be guaranteed to work under 

all conditions, suggesting that pattern sensitive faults, introduced at the 

design or manufacturing s tages , may be present. 
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Dehnhardt and S o r e n s e n (28) suggest that the o p - c o d e s and flags can be 

used to e n h a n c e programming, and it is known that they have been used in 

some applications. Clearly this is a dangerous situation if pattern 

sensit ive faults do exist. Investigations on an Intel 8085 by Buchhoiz (17) 

revealed pattern sensitivity in the over-flow flag. During addition and 

subtraction. 25 particular operations resulted in the incorrect setting of 

the flag. Similar errors were observed with the compare instruction. 

As indicated above, p rocessors from different manufacturers, or 

different batches, may vary in their response , and for this reason modern 

devices were tested to compare with the published results. The undeclared 

o p - c o d e s were executed on an Intel SDK board. The monitor program, 

provided with the kit. allowed the setting of registers and flags prior to 

the test, and also the interrogation of their values afterwards. A Dolch 

logic analyser , with an 8085 personality pod. was connected to the 

processor to enable all external pins to be monitored. Most of the 

instructions c a n be checked without the analyser , especia l ly with a prior 

knowledge of their operation. However, it does provide verification of 

data transfers, and is particularly useful in monitoring the flow of 

execution after conditional jump instructions. T h e s e operations are 

difficult to monitor with software alone. 

Full testing of all the instructions for every possible combination of 

data values would take a considerable length of time. For this reason , 

tests were carr ied out, both with random data, and data se lected to c h e c k 

speci f ic responses . All ten undeclared codes were executed on an N E C 8085 

and responded in the same way as that descr ibed by Dehnhardt and S o r e n s e n . 

NEC have developed Independent designs for the 8080 (118) and the 8035/8048 

(see section 3.5), which suggests that Intel may have specif ied to other 
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manufacturers how all c o d e s of the 8085 must perform. A nuclear hardened 

version of the 8085. descr ibed by Kim et al (51). was developed from 

information provided by Intel and has all the o p - c o d e s defined. This 

suggests that all 8085s should operate in the same way. 

However, tests were carr ied out to attempt to reproduce the apparent 

malfunctions observed by Buchholz (17). Both N E C and Intel 8085s were 

subjected to the same operations which were reported to have incorrectly 

set the proposed two's complement overflow flag. At all times during 

testing the flag was set correctly. This indicates that the errors were 

observed on an isolated faulty component, or that a fault existed in the 

masks of a particular batch which has been corrected on other devices. 

Another undeclared operation, which was discovered during interference 

testing, is the continuous cycl ic reading of memory. This is descr ibed 

further in chapter 2. and its implications for reliability are d i s c u s s e d in 

section 3.8.1. Due to the complex structure of a microprocessor , other 

modes of operation, which have not been d iscovered, may exist. 

3.4 Operations of the 6800 

The 6800 Is also an 8 bit microprocessor with a 16 bit address bus. 

Again there are 256 different possible operation c o d e s , but only 197 are 

defined, leaving 59 undeclared. The functions performed by all the c o d e s 

have been studied by Nemmour (67). However, practical tests were carr ied 

out to determine the operation of the undeclared c o d e s , without a prior 

knowledge of the published results. The methods used are descr ibed in 

detail as they can be used in the study of other p rocessors . 

3.4.1 Determination of the Undeclared Instructions 

Studying the positions of the undeclared c o d e s , in relation to the 

defined instructions in the instruction map. provides a useful starting 
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point. A number of the undeclared codes are situated in adjacent 

locations, suggesting that they may have similar operations but use 

different addressing modes. By considering the defined c o d e s , alongside 

the one under investigation, it is possible to suggest the likely 

addressing mode. T h e s e suggest ions proved correct in the majority of c a s e s 

and assisted greatly in the determination of many of the operations. 

To c h e c k the expected operations provided by the c o d e s , they were 

executed on a small 6800 based system. A short assembly program was 

written to ass is t in the investigations, and a full listing is given in 

appendix 1. It effectively u s e s the MIKBUQ routines to read in values from 

the terminal and to set the registers accordingly, before the execution of 

the required o p - c o d e . The data read in is stored in s u c c e s s i v e locations 

in memory and then the stack pointer is set to the location above the 

block. A return from interrupt Instruction is then executed to load the 

correct values into the corresponding registers. This ensures that all the 

registers and the condition codes can be set to any value. A se r i es of 

software interrupt instructions are placed after the o p - c o d e to use the 

MIKBUQ routine to print out the contents of the registers and condition 

codes . 

This provides a c lear indication of any c h a n g e s that have occurred 

within the processor due to the specif ic o p - c o d e . However, it does not 

give any indication of external events s u c h as reading and writing to 

memory, and is of little use in c a s e s where a jump or branch is generated, 

in these c a s e s a logic analyser was used to monitor the states of the 

address and data b u s e s , and the read/write and valid memory address l ines. 

This enabled all external data transfers to be monitored, and clearly 

indicated the flow of execution after jump instructions. Without 
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monitoring the external pins of the processor , it would not have been 

possible to establish all the operations performed. 

3.4.2 Functions of the Undeclared Codes 

The functions performed by the undeclared codes fit into two main 

groups, those which perform totally new operations, and those which perform 

identical or similar operations to the instructions already defined. Most 

of the codes are similar to the ones specif ically defined by Motorola. 

They perform roughly the s a m e operation but will manipulate the flags 

differently or not change the contents of a register. For example there is 

an add accumulators instruction indentical to the defined instruction 

except that the half carry flag is not affected. 

Some of the codes are Indentical to defined ones and appear to be due 

to the instruction map not being fully decoded in some p laces . Examples of 

this are the four addressing modes for the compare X register instructions. 

These are normally c o d e s 8 C . 9 C . AC and B C . but also appear at C C . DC. E C 

and F C . This suggests that bit 6 is ignored when the instructions are 

decoded. 

Some of the codes are substantially different and appear to perform 

useful tasks, however these functions can also be performed by two or more 

of the defined Instructions. For example there is an add accumulator to 

the complement of memory instruction. It works for both accumulators , and 

for all four addressing modes. All the flags except for the half carry and 

the interrupt mask are affected by the result of the operation. Another 

useful instruction performs a logical AND on the two accumulators and puts 

the result in the A register, three of the flags are affected. A similar 

instruction affects the flags but does not change the contents of the 

accumulators. 

58 



Store immediate operations exist for the A. B and X registers and for 

the stack pointer. To be consistent with the load immediate instructions 

they should store the data in the memory locations immediately following 

the instruction, but this does not occur . Instead, the first byte is 

skipped and the data is written to the following locations. However, the 

program counter Is adjusted accordingly so that the next instruction is 

read from the location immediately after the one into which the last data 

byte is written. This effectively makes the store A and B registers into 

triple byte instructions, and the store X register and stack pointer into 

instructions with four bytes. But in all c a s e s only one byte Is read. 

3.4.3 Cycl ing Through Memory 

Four of the undeclared o p - c o d e s c a u s e the p rocessor to cycle through 

memory indefinitely. This state is of particular importance when 

considering reliability. It means that if one of these o p - c o d e s is 

inadvertently executed, either due to an error in programming or to some 

external interference, then the processor will ' lock -up ' and will not 

execute any further instructions until some external intervention is 

initiated. 

Operation codes 9D and DD c a u s e the processor to read through memory 

starting at the direct address following the code. Once in this state it 

will not respond to either a non-maskable interrupt (NMD or an interrupt 

request (IRQ), even if the interrupt mask is c leared beforehand. The only 

way of leaving this state is to exert a full reset on the processor . The 

contents of the A. B and X registers are not altered from the state that 

they were in before the o p - c o d e was executed. This was determined by 

generating an interrupt immediately after the reset. Unfortunately the 

interrupt will not occur until after the first instruction has been 
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executed. In the system used the first instruction loads the stack 

pointer, and therefore its contents at the time of the reset could not be 

determined. 

Those condition codes which were not affected by the first instruction 

or the reset, remained in the same state that they were in originally. 

This suggests that no change occurs in any of the internal registers while 

the processor is cycl ing through memory. Therefore the only data lost are 

the contents of the program counter and the state of the interrupt mask, 

which are both set by the reset sequence . The contents of the registers 

will not be of great use after the reset, as some unforseen s e q u e n c e of 

instructions will have been executed before the undeclared o p - c o d e was 

reached. However they may give some sort of indication of how that 

particular state was entered. 

The result of executing operation c o d e s 3C and 3D is similar to that 

obtained by the codes 9D and DD. in that the processor ends up cycl ing 

through memory reading s u c c e s s i v e locations. After executing the code , it 

differs by saving the address of the next byte onto the stack, before 

reading the next location on the stack. it rereads the previous location 

and then starts cycl ing through memory from the top of the stack. 

While in this state the processor will not respond to NMI or IRQ, a s 

before. Again the only means of leaving this state is by a reset. Nemmour 

(67) suggests that this is due to the way in which interrupts function. 

They do not respond until the completion of an instruction, and therefore, 

b e c a u s e these operations never finish, no interrupts can be initiated. 

However, the B and X registers are not changed from the state that 

they were in before the undeclared o p - c o d e was executed, but the A register 

is changed. Bits 1-7 are c leared while bit 0 remains unaffected. Again. 
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it was not possible to determine the value of the stack pointer after the 

reset. If it remains unaltered then the address at the top of the stack 

will point to the byte immediately after the illegal op-code that was 

executed. This is a very important point when attempting to diagnose the 

original fault, and could prove very useful. 

The reason for these modes of operation is unclear, but it is 

believed that they may be for testing purposes. Hayes and McCluskey (43) 

propose a test sequence for the 8080 which starts by executing NOPs 

repeatedly. This is designed to reveal faults on the address bus. 

However, the cyclic read mode is not only suitable for revealing address 

bus faults, but can also indicate data bus and memory failures. 

3.4.4 Comparison with Published Data 

The investigations by Nemmour (67) were carried out in a similar 

manner, but in addition he studied the masks to enable cross checking with 

practical tests. Devices from different manufacturers (SESCOSEM and 

Motorola) were used, however these are constructed from identical masks. 

In all cases the instructions operated in the same manner as the 

independent Investigations described above. This shows consistency between 

devices from the same manufacturer, but variations may be obtained if 

different masks have been developed. Again, it is unclear why these 

operations are not disclosed. Design or manufacturing difficulties could 

have caused problems, and these may have been corrected subsequently. 

Nemmour reveals several changes that were made to the masks in 1977. 

some of these were to correct initial errors. For example, on original 

devices, the application of a non-maskable interrupt, during certain cycles 

of the execution of a software interrupt, caused the servicing of the 

maskable interrupt routine. This sort of fault is particularly difficult 
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to locate, and others of a similar nature may exist. 

3.5 Operations of the 48-serles Microprocessors 

The 48-series microprocessors are also 8 bit devices but have a very 

different architecture from the 8085 and 6800. They consist of a central 

processing unit. 27 I/O lines, a single interrupt and an internal timer/ 

counter. In addition to this a quantity of internal read only and random 

access memory is provided, the size of which depends on the particular 

device, and is given in table 3.1. The processors are designed for small 

scale control applications where the final program would reside in one of 

the ROM based chips. The other devices are primarily for use in the 

development and debugging stages. 

The address bus is 12 bits wide allowing a maximum possible address 

range of 4K bytes. The program counter is however only 11 bits long, and 

effectively splits the memory map into two separate blocks. Access to each 

area is controlled by software which can alter the most significant bit of 

the address bus. The internal RAM is not accessed by the main bus. and its 

contents can only be treated as data, no instruction fetches can be made 

from it. Therefore the normal arrangement is to locate the program within 

the 4K address range, and to use the internal RAM for data storage. 

However, fixed data values can be stored in the main memory map, but they 

are less easily accessed. 

External memory devices can be attached to the processors to 

supplement the internal memory. Alternatively, devices can be mapped to 

the same locations as the internal ROM. and the processor forced to access 

them instead. This can be used in the development stage, or to provide an 

alternative program, such as for testing purposes. 

The processors interpret the instruction type from 8 bits, and 

62 



therefore 256 possible op-codes exist. Only 230 are defined, leaving 26 

undeclared. No published work on the undeclared operations of these 

devices has been found, and therefore investigations were carried out to 

determine the effects of executing the undeclared codes, and to discover 

other undisclosed functions. Full details of these studies are given in 

the following sections. 

3.5.1 Undeclared Memory in the 8035 

In all published literature, the major manufacturers state that the 

8035. 8039 and 8040 have no internal ROM. However, it was suspected that 

this might not be the case, and attempts were made to read internal memory 

of 8035s as if they were 8048s. For nine devices from three different 

manufacturers (Intel. NEC and National Semiconductor) a logical program of 

up to IK was revealed. The Intel 8035 contained a games program which read 

9 bits of parallel data from port 1 and test input T l , and used bit 7 of 

port 2 and test input TO for transmitting and receiving serial data. It is 

therefore clear that the 8035 is in fact an 8048 but sold under a different 

name. When approached on this matter, Intel did admit that they are the 

same device, and that 8048s which do not operate at the required speed, or 

have faults in the ROM. are sold as 8035s. 

This fact raises two important points. Firstly, any details of the 

undeclared codes of the 8035 will relate directly to the 8048. Secondly, 

the existence of an internal program might have serious consequences with 

respect to reliability. The internal program is disabled by holding the 

external access (EA) pin high, but an internal chip failure could cause the 

pin to be disabled resulting in bus conflict or the correct execution of 

the internal program. This could result in a dangerous sequence of signals 

appearing at the ports and could mislead any external hardware monitoring 
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the state of the system. 

The external access pin does not operate in the same way for all 

8035s. If allowed to float, the Intel chip accesses the external memory, 

whereas the NEC chip accesses the internal memory. For the National Semi­

conductor device access to both memories appears to occur. Normally the 

pin would be tied high or low. but an internal wire bond failure, due to 

thermal stress or vibration, could cause it to float. For this type of 

failure a particular device will continue without error, depending on which 

memory contains the main control program. 

3.5.2 Determining the Undeclared Instructions 

In order to determine the operation of the undeclared codes, a small 

8035 based system was constructed. A block diagram of the system is shown 

in figure 3.1. It consists of the processor, an 8-bit latch and a 2K 

EPROM. The latch is necessary in order to demultiplex the address and data 

bus. An EPROM emulator was used to enable quick and easy modifications to 

the program being run. 

The software used to investigate each code is given in appendix 1. 

The program outputs the contents of the accumulator onto port 1, executes 

the undeclared op-code and then re-outputs the accumulator to port 1. 

before Incrementing the accumulator and restarting. All unused memory is 

set to 04, this causes a jump to address 004 if an attempt is made to 

execute outside the program. This method is also used to recover execution 

after the undeclared code. A subroutine call during each cycle is included 

to monitor the state of the stack. 

A logic analyser was used to monitor the state of the ports and bus. 

The clock output on the TO pin was used as the clock input to the logic 

analyser, causing one sample to be taken during each T state. This is 

64 



equivalent to five samples during each program cycle. In this way it was 

possible to determine the number of bytes associated with each code and the 

number of cycles it took to execute. Any effects on the ports, bus or 

accumulator could also be seen. 

As the processor is designed to be used as a single chip controller, 

many of the Instructions result in only internal actions, and cannot be 

observed externally. In order to establish internal operations, further 

investigations were carried out using a Prompt 48 microcomputer design aid. 

This allows programs to be executed from RAM and enables access to all of 

the internal registers and flags. Using this system it was possible to 

reveal any internal effects of the undeclared codes. 

3.5.3 The Effects of Executing the Undeclared Codes 

A detailed list of the effects of executing each of the undeclared op­

codes is given in appendix 2. Unlike the 8085 and 6800, in this case, 

processors from different manufacturers give different results. Devices 

from the three manufacturers of Intel, NEC and National Semiconductor, were 

studied. The results from the National Semiconductor 8035/8048 were 

identical to those from Intel, and therefore have not been included in the 

detailed descriptions in the appendix. It seems to be the case that 

National Semiconductor do not produce independent designs for their 

devices, and this is supported in (118). 

The full instruction maps, including the undeclared codes, for both 

the Intel and NEC devices are given in figures 3.2 and 3.3. Descriptions 

of each of the operations of the undeclared codes are given below. 

3.5.3.1 Intel 8035/8048 

Figure 3.2 shows that, for the Intel chip, out of 26 undeclared codes. 

17 perform a No-Operation, 4 cause a jump in execution and the remaining 5 
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affect the input/output lines. Three of the jump instructions are logical 

extensions to the standard instruction set. They are conditional on a 

particular flag being clear and. in the instruction map. they are adjacent 

to their corresponding jump, conditional on the flag being set. The fourth 

additional jump instruction is unconditional and branches to an address 

within the current page. This is not provided for directly in the standard 

instruction set, and enables program modules to be relocated on a different 

page without modification. 

Four of the additional I/O instructions are identical to codes in the 

standard instruction set. They are copies of the four operations involving 

port 2. and each one is adjacent to its copy in the instruction map. 

suggesting that bit 0 is not used in decoding these instructions. The 

fifth code involving the I/O lines has the value 38. By considering the 

adjacent locations in the map. an OUTL BUS.A instruction would be expected, 

which outputs the contents of the accumulator to the Bus. This undeclared 

code does take two machine cycles to execute, which is necessary for an I/O 

function, but no read or write signal is generated to perform a correct bus 

operation. The value 00 does appear on the Bus during T4 of the second 

machine cycle, but this does not seem to perform a useful task. No other 

part of the processor appears to be affected. 

3.5.3.2 NEC 8035/8048 

Most of the undeclared codes for the NEC device are the same as those 

already described above. All the jump and I/O operations are the same, but 

six of the No-Operations have been replaced by useful instructions. Four 

of these fit logically into the instruction map and perform functions not 

previously provided. They fill the gaps for the indirect addressing modes 

of the decrement, and the decrement and jump if not zero Instructions. 
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which are omitted from the standard instruction set. There does not seem 

to be any logical reason why these instructions should be omitted. Errors 

during initial development of the processor may have caused problems which 

have now been corrected by NEC. 

Two of the instructions perform functions totally unrelated to those 

already defined. One has the effect of clearing the upper nibble of the 

accumulator (bits 4-7). The other loads the accumulator with the lower 8 

address bits of the next sequential instruction to be executed. The first 

instruction is useful when manipulating nibbles, whereas the second could 

be useful when debugging a program. In the latter case this code could be 

placed in several locations in a program followed by an output to a port. 

Then by monitoring the port it would be possible to trace execution past 

these points. 

3.5.4 Other Devices in the Series 

All investigations were carried out on the 8035/8048. The only 

declared difference, with the other devices in the series, is the size of 

the internal memory. These chips are therefore likely to have similar 

properties. For example, the undeclared op-codes are expected to function 

in the same way as those in the 8035/8048. and the devices which are 

defined as having no internal ROM are expected to have internal program 

memory. 

3.6 Operations of the 68000 

The discussion up to now has been directed towards 8 bit micro­

processors, but it is now worth mentioning the Motorola 68000. which has a 

16 bit internal architecture, and a 24 bit address bus. The type of 

operation performed is determined from a full 16 bit data word, and 

therefore the total number of possible op-codes is much greater than for an 
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8 bit machine, and is in fact 65.536. Obviously with such a large number 

of possible codes, there will be a substantial quantity which are not 

defined. The 68000 has 56 basic functions, but with ail the addressing 

modes and register references approximately 45.800 op-codes perform defined 

operations leaving over 19.700 unused. However, the processor has been 

designed to signal an exception if it detects the illegal execution of any 

of these codes. This effectively means that each one of them acts as if it 

were a software interrupt. 

A study of the full instruction map reveals that the unused codes 

appear in isolated locations as well as large groups, some up to 4K. The 

manufacturers state that codes in the large groups may be used in later 

designs. For this reason they cause the execution of a different 

exception handling routine from the other codes, if an attempt is made to 

execute them. This allows the emulation of new instructions on the 

original devices. It was felt that if any of the unused codes were going 

to perform undeclared operations, then the isolated ones would be the most 

likely to do so. For this reason, a number of the codes were executed on a 

small 68000 based single board computer. In all the cases that were tried, 

a correct response from the exception handling logic was observed. No 

unusual operations were revealed. 

As well as the detection of unused op-codes, internal logic is 

provided to detect other erroneous states, such as an attempt to perform an 

instruction fetch from an odd address. The processor is also specifically 

designed to have external logic to detect unsuccessful memory transfers. 

All these checking modes are important from a reliability point of view. 

They reduce the probability of executing a large number of erroneous 

instructions before detection. 
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Although this is an advantage in the detection of errors due to 

transient faults, the permanent failure rate will be higher than that for 8 

bit processors due to the Increased complexity of the chip. This may also 

increase the susceptibility to transients. 

3.7 Operations of the 6809 and Z80 

The 6809 and Z80 are both 8 bit microprocessors, but they differ from 

those described above. In some cases the instruction type is not 

established from 8 bits alone. This allows the possibility of undeclared 

op-codes at different levels. The 6809 is a modified version of the 6800. 

and has a similar instruction set with the majority of the instructions, at 

the first level, still having the same operation codes. This is 

particularly evident in the ranges 20-2F and 4 0 - F F where nearly all the 

codes are the same. 

An Interesting point is that two of the previously undeclared codes 

are replaced with Instructions which would logically be expected from 

looking at the memory map. Code 21 has been programmed to execute a branch 

never instruction, which is the logical opposite of code 20, the branch 

always instruction. Code 9D executes a jump to subroutine using direct 

addressing. This was a previously omitted form of addressing in calling 

subroutines, and fits in between the other addressing modes. Nemmour (68) 

has identified 498 undeclared op-codes, at different levels, in the 6809, 

four of these cause the cyclic reading of memory in the same way as those 

described for the 6800 and 8085. 

No further studies were carried out on the 6809 and Z80. They have 

been mentioned here to indicate possible problem areas for other processor 

architectures. 
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3.8 Implications of the Undeclared Operations on Reliability 

Undeclared operations of microprocessors can be divided into two broad 

catagories. those which occur as a result of executing an undeclared op­

code, and those produced by other mechanisms. Most of the undeclared codes 

in microprocessors operate in a similar way to the declared instructions, 

and therefore their importance does not differ significantly from the 

erroneous execution of defined instructions. However, there are some codes 

which operate very differently, and are of great significance. These 

result in the processor cycling through memory and prevent the execution of 

further instructions until a reset. Therefore some sort of watchdog timer 

must be included in a system to recover from these states. 

3.8.1 Significance for Watchdog Design 

When considering the design of a watchdog timer the following two 

points should be noted. Firstly, the highest level of fault recovery must 

initiate at least a full reset, and secondly the address lines alone should 

not be used to trigger the timer. The second point is particularly 

important In the 6800, which uses the address lines for calculating branch 

and indexed addresses. The triggering must incorporate the write signal 

which is never present unless a valid write operation is being performed. 

The existence of memory cycling can be considered as an advantage or a 

disadvantage depending on the application. If the accuracy of a system is 

more important than its timing, then this mode of operation would be an 

advantage as it has the effect of suspending execution, preventing any 

further output. On the other hand if timing is more important, the 

considerable amount of time which could elapse between the occurrence of 

the fault and the detection of the error by the watchdog, would be a 

disadvantage. Further time could be lost resetting the system and 
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reinitialising variables. 

However, even in the first case, the major drawback is that recovery 

has to be initiated by some hardware, if the timer fails the whole system 

fails. A better solution would be to attempt to detect and correct errors 

under program control and only rely on external hardware when this approach 

fails. This cannot be achieved with these particular codes, therefore the 

only method of providing a back-up procedure in the case of a watchdog 

failure is to include further hardware to monitor its operation. 

The existence of internal memory in the 8035. when being used for 

control purposes, is also important for watchdog design. A chip failure, 

such as a wire bond fracture or an internal short, can result in the 

execution of the internal program. It may then operate In such a way that 

the errors go undetected. This is possible, as the devices are used in I/O 

intensive situations and therefore the ports, to which a watchdog would be 

connected, will probably be highly active. If a simple triggering sequence 

is used with non-critical timing the Internal program could generate 

signals which would satisfy the timer. However, a complex triggering 

sequence will reduce the likelihood of non-detection of this type of 

failure. 

3.8.2 Powering down to Enable Recovery 

It has been shown by the crystal failure that it may be necessary to 

provide a level of recovery which goes further than a reset and actually 

powers down the system before powering up in a controlled manner. This is 

because with the crystal oscillating at three times its natural frequency 

the application of the reset has no effect and the power has to be removed 

before correct operation will resume. This situation has been cured by the 

addition of a small capacitor, but does at least demonstrate that it is not 
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always sufficient just to apply a reset. 

3.8.3 Use of Non-Maskable Interrupts 

The memory cycling mode has shown that non-maskable interrupts should 

not be used to initiate recovery. However, if they are used for other 

purposes, great care must be exercised in their handling. A noisy signal 

on the input can cause multiple interrupts and result in a large quantity 

of data being stored on the stack, which may result in overflow and the 

overwriting of critical data areas. It is therefore advisable to reset the 

stack at the beginning of the routine, if the return address is not 

required, or to at least check that the stack pointer is within certain 

limits. 

3.8.4 The Most Important Undeclared Operations 

The failure modes which present the major threat to the integrity of a 

system are those which have not been discovered and cannot be forseen. Any 

amount of time can be spent designing against the effects of known or 

expected failure modes, but Inevitably it is the unknown modes which cannot 

be designed against fully. It is hoped that high level detection 

mechanisms, such as watchdogs, will allow recovery from these types of 

failure. 

3.9 Summary 

This chapter has shown that microprocessors perform a number of 

operations which are not declared by the manufacturers. Some of these can 

have serious consequences in the design of error detection and correction 

techniques, and therefore a knowledge of these modes of operation is 

necessary in order to achieve high reliability. 

A common failure mode observed during the interference testing, 

described in chapter 2. was a transfer of program execution to a non-
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specific memory location. This can result in instruction fetches from data 

areas or operand fields, and any value of op-code can be read. The 

functions performed by executing each op-code have been determined for the 

8085. 6800. 8048 and 68000, either from published data or from practical 

tests. With a knowledge of all the op-codes it is possible to predict the 

flow of execution in different memory areas, after an erroneous jump, and 

this is discussed in detail in chapters 4, 5. 6 and 7. From these studies 

it is possible to design more effective error detection and recovery 

processes. 

It has been established that the undeclared operations do not always 

function in the same way in devices from different manufacturers, and 

changes can occur between different revisions of the masks. Therefore the 

results may not always be consistent between any two devices. It has been 

suggested by Nemmour (67). and by Dehnhardt and Sorensen (28). that the 

undeclared codes can be used to enhance programming, but this would seem to 

be a very dangerous practice. 
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CHAPTER 4 

Erroneous Execution in Data Areas 

4.1 Introduction 

During the practical tests on the small single board system, described 

in chapter 2. it was shown that corruption to the normal flow of execution 

could be generated by applying different types of interference to 

particular parts of the circuit. The three main elements on the board, 

consisting of the processor. EPROM and RAM. could each cause such a 

failure. Although the particular failure mechanism is different in each 

case, they can be divided into the two main catagories of the 

misinterpretation of instructions. and the incorrect return from 

subroutines. 

The misinterpretation of instructions occurs either due to the 

incorrect transmission of data from the EPROM. or to the corruption of the 

program counter within the processor resulting in the wrong bytes being 

read. Incorrect returns from subroutines occur by the corruption of 

either, the stack pointer within the processor, or the stack data stored in 

the RAM. 

The tests therefore show that this class of failure is likely to occur 

in real systems under certain types of interference. It is particularly 

important because without knowledge of the behaviour of a system after such 

a failure, it Is not possible to effectively design hardware or software 

methods to detect and correct system operation. For example, a common 

solution to this problem is to attach a hardware watchdog timer but. as 

will be shown later, without careful consideration to the design, certain 

failures will not be detected by the circuit. 
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4,1,1 Random Jump Within the Memory Map 

When program execution departs from its predefined sequence it must 

continue at some other location. For the purpose of the following analysis 

it is assumed that the location is random within the full memory map. 

Therefore the failure mode being investigated is equivalent to the 

erroneous execution of a jump instruction to a random address. For a 

typical 8-bit microprocessor with a 16-bit address bus this gives a 

possible 65.536 different locations at which execution could resume after 

the fault. 

However, certain parts of the memory map have different properties 

dependent on the type and sequence of values which are read when various 

locations are accessed. In the following sections three main categories 

are studied, these are program areas, data areas and unused areas. The 

effects of memory mapped input and output is also considered. This chapter 

studies the flow of execution after a random jump into a data area. 

4.2 Analysis of Execution 

If as a result of an error execution resumes in a data area, the 

processor will interpret the data as Instructions and perform the 

corresponding operations. Obviously the type of data and its arrangement 

in a particular block will depend very much on the application and method 

of programming, and in the case of random access memory, will change during 

execution of the program. Therefore to analyse this type of execution for 

the general case it is necessary to assume that the sequence of bytes is 

totally random. 

From this it follows that when a data byte is interpreted as an 

instruction one of two possible outcomes will be performed. Either, a jump 

will be generated causing control to pass to another part of the memory 
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map. or a non-jumping instruction will be interpreted passing control to 

the next logical byte. For the latter case the whole process repeats 

again. If Pj . the probability of interpreting a jump instruction, is zero 

then execution would continue to the end of the data block. However, 

assuming random data. Pj will be dependent on the particular instruction 

set of the processor, and is given by:-

N J 

Where:- N . is the number of bytes which cause a jump or branch. 

N-j. is the total number of possible op-codes (256 for a normal 8-

bit processor). 

Clearly, P N J the probability of interpreting a non-jumping instruction is 

given by:-

P N J = 1 - P j Eqn. 4.2 

It follows that. P (K). the probability that K instructions will be 
J 

executed before control passes to another part of the memory map. can be 

obtained from:-
fk—i) P.OO = P M , . P . Eqn. 4.3 J NJ J 

An important quantity, which will be used later in chapter 8. is the 

average or expected number of Instructions which will be executed before 

the jump, N I A V , and is given by:-

Nl = 2 . K . P . ( K ) Eqn. 4.4 

It Is useful for determining both the time taken to initiate recovery, and 

the probability of corruption of specific data. The average number of 

bytes read, N B A W . will be greater than N I A W because each instruction 3 AV a AV 

interpreted can consist of one or more bytes, therefore NE3 A V will be given 
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by:-

°5! L . N L . N 
N B A V = ^ ' A V " 1 5 ' ^—TT1 + IT1 E^n'45 

L=1 NJ L=l J 

Where:- N

L N j a n c l a r e t n e numbers of bytes Interpreted as non-jumping 

and jumping instructions of length L 

N N J and Nj are the total number of bytes interpreted as non-

jumping and jumping instructions. 

To assist in the calculation of both N I A V and N B A V . a short FORTRAN 

program was written. It requests a number of details about the particular 

instruction set and then calculates the values using equations 4.4 and 4.5. 

N B A V is used later in chapter 7 when considering the flow of execution 

as it passes between different parts of the memory map. The following 

section looks at a few microprocessors and goes through the necessary steps 

to calculate the above quantities. 

4.2.1 Response of Different Processors 

To determine the expected response for a particular processor it is 

necessary to make a detailed study of the instruction set. For execution 

in the data area the important instructions are those which cause a jump or 

transfer of program execution. Appendix 3 lists a number of parameters for 

the 8085. 6800. 8048 and 68000 microprocessors, it includes the effects of 

the undeclared codes. The importance of chapter 3 in determining the 

undeclared op-codes is now clear, as without the knowledge of them 

inaccurate results would be obtained. 

The instructions are divided into two groups, those which always cause 

a jump and those which are conditional on some internal state of 

the processor. To include the properties of the conditional jump 

instructions, equation 4.1 is modified to:-
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N + P« ,<i> Eqn. 4.6 

Where:- P

C J

( | ) i s t n e probability that the ith op-code of N C J conditional 

instructions causes a jump. 

For ease of calculation it is assumed that there is a 50% chance that 

a jump will occur. Although this is not strictly true in individual cases, 

overall the assumption is valid. This is because in most cases the 

instructions have a logical pair which tests the inverse state of a 

particular condition, and therefore any variations in the probabilities 

will be cancelled out. In this case equation 4.6 simplifies to:-

N, + 0.5 . N_. 

However in a few cases a different approach was adopted. For the 8048 

decrement and jump if not zero instructions, it is assumed that they always 

cause a jump. Provided that the contents of the particular register 

concerned is random, then there is only a 1 in 256 chance that the jump 

will not occur. They are therefore grouped together with the other jump 

instructions. 

Special treatment has been given to the 68000 instruction set. This 

is due to the fact that most of the instructions which can cause a transfer 

of control have several possible outcomes. For example, the branch on 

condition code instruction first makes a test and if not true, no branch 

occurs. This is assumed to have a probability of 0.5 for the same reasons 

as above. If a jump does occur it is assumed to be random, in which case 

there is a 50% chance that the address will be odd. The processor can only 

read instructions from even addresses and generates an exception if an 
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attempt is made to access an odd address. Therefore if a branch on 

condition code instruction is executed, the probability of no jump is 0.5. 

the probability of generating an exception is 0.25 and that of a successful 

jump is also 0.25. To simplify the calculations the op-codes for this 

instruction are split in the same proportions to give an effective number 

of op-codes for each outcome. A similar treatment has been adopted with 

the other Instructions and the proportions in which they are divided are 

given in appendix 3. 

4.2.2 Results from the Analysis 

Using the data In appendix 3. together with the FORTRAN program 

mentioned in section 4.2. values of P. . N I A W and N B A W have been evaluated 
J AV AV 

for the 8085. 6800. 8048 and 68000 processors. The values of these 

quantities are given in table 4.1. The upper curve on each of the graphs 

in figures 4.1 (a)-(e) show the probability that a certain number of 

instructions, or less, will be executed before a jump. The other curves 

will be explained in the following section. 

4.3 Transfer from the Data Area 

The analysis so far has only considered the number of instructions or 

bytes read before a jump. It would also be useful to know where execution 

will continue so that methods can be developed to generate an ordered 

recovery to the correct program. Consideration of the jump instructions 

reveals four distinct types of halts, restarts, returns and unspecified 

jumps. These are shown in figure 4.2 and are described in detail below. 

4.3.1 Halt Instructions 

Halt instructions are those which prevent further execution of any 

instructions until an interrupt is applied to the processor. If no 

provision is made to exit from this state, then no recovery is possible. 
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4,3.2 Restart Instructions 

Restart Instructions cause the processor to jump to a specified 

location in the memory map. The particular address varies between 

processors and can either be generated internally or is read from another 

location. In the case of the 8085. restarts jump to the low end of memory 

and continue to execute from that point. If no consideration for erroneous 

restarts have been made then values read from those locations will be 

interpreted as instructions. 

Turner (104). In an example of a program for a security system, states 

that it is all right to place the code over the restart vectors if they are 

not being used. This would be acceptable as long as the system functions 

without errors and is not susceptible to external interference, however 

this is difficult to guarantee. If restarts do occur then execution will 

resume at some location within the program, but will not necessarily pick 

up correct instructions immediately, as shown in chapter 5. 

The program in the example is short enough to finish before the end of 

the restart table, in particular, it does not occupy the restart 7 

location. This is of special importance because the op-code for the 

restart instruction Is FF , and it is usually the case that unused locations 

of ROM or EPROM are also left at FF. Therefore if such a code is 

erroneously executed the processor will jump to the restart location, 

immediately read another restart instruction and continue to loop 

indefinitely. This condition is similar to the execution of a halt in that 

no other instructions will be executed, except that a restart saves the 

return address on the stack. If multiple restarts occur, the stack will 

grow through the entire memory map destroying all the data. 

On the 6800 a restart is generated by the software interrupt 
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instruction. It differs from the 8085 in that the address at which 

execution resumes is read from the top end of memory. Therefore if those 

particular locations have been used for some other purpose an unspecified 

address wiil be read. 

The restart instructions are of great importance in returning program 

control to a recovery routine. In the following analysis it will be 

assumed that the restart vectors have been set. and that full recovery is 

achieved if any of the restart instructions are executed. 

4.3.3 Return Instructions 

If a return instruction is read, then execution will resume at the 

address obtained from the top of the stack. This will result in control 

passing back to the program provided that two conditions are met. Firstly, 

the last Information pushed onto the stack before the fault must have been 

a valid program address, and secondly, both the stack pointer and the stack 

data must not have been corrupted by the fault or subsequent processing. 

In the following sections it will be assumed that a valid program 

address is not read from the stack, and therefore execution continues at 

some undefined location, which is considered to be random in nature. This 

is a reasonable approach if the programming technique has been adopted 

where data is stored on the stack immediately after entering a subroutine. 

In this case the return address from the subroutine only occupies the last 

position on the stack for a very short time. 

4.3.4 Unspecified Jumps 

The last of the instructions are those which jump to a location 

dependent either on the contents of the bytes following the instruction or 

the contents of a register. In this case it is assumed that a random jump 

occurs. 
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4.4 Modification to the Analysis 

Having divided the jump instructions into the four groups mentioned 

above, it is now possible to split the probability function, of equation 

4.3. into its constituent parts corresponding to each group. The new 

functions will be proportional to the original probability and will depend 

on the relative number of each instruction type. For instance the 

probability of a restart P R S T ( K ) is given by:-

N R S T 
P R S T ° ° = IT- • P J ( K > E < n - 4 8 

J 

Where:- n R S T i s t h e e f f e c t , v e number of restart instructions. 

Similar equations can be obtained for the other three groups. 

Figures 4.1 (a)-(e) show graphs for the probability function for each 

of the processors under investigation. Two graphs (c) and (d) are given 

for the 8048. one for each of the manufacturers. This is due to the 

dissimilar instruction sets. However, no noticeable variation can be seen 

in the results despite the differences. 

The graphs show that the proportions of the different types of jump 

vary enormously between processors. Assuming that recovery is only 

obtained from restarts, as mentioned in section 4.3.2. the 68000 has the 

best response by recovering on 95% of the occasions of a random jump into a 

data area. This is due to the large number of undeclared op-codes which 

effectively generate restarts by initiating exception handling. The 8085 is 

the next best at 32%, followed by the 6800 at 4%. The 8048 has no restart 

instructions and therefore cannot recover in this manner. These figures 

represent the worst case, as recovery can be initiated after jumps to other 

parts of the memory map, and these will be considered later in chapter 7. 
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4.5 improvements in Recovery 

In order to increase the chances of successfully completing recovery 

it is necessary to initiate the recovery process as quickly as possible, so 

that the corruption of data is kept to a minimum. The easiest method of 

initiating the process Is via the restarts, therefore the aim is to 

increase the number of jumps caused by restarts and to reduce the number of 

instructions executed prior to the jump. 

The obvious solution is to seed the area with restart instructions, 

additional to those found randomly within the data. The problem is to 

establish the optimum number and position of the extra codes. An initial 

reaction could be to split the data into separate blocks so that execution 

can not transfer from one to another. This requires a string of adjacent 

single byte restart instructions equal to the length of the longest 

instruction. It will be shown later that this solution does not represent 

the best use of resources in most cases. 

4.6 Simulation of Execution in Data Areas 

When considering the execution in non-random data, the derivation of 

accurate equations to represent the response of the processor becomes very 

complex. An alternative approach, which was adopted, is to simulate the 

process on a computer. The program developed generates a block of random 

data which can then be modified to Include certain types of instructions, 

such as restarts. Then, starting at a particular location, it translates 

the data into a sequence of instruction types, and calculates both the 

number of instructions and the number of bytes encountered before a jump. 

The data structures considered have consisted of a certain number of 

random bytes separated by a given number of a particular instruction type. 

Execution begins randomly between the start of the first block and the 
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start of the second block. In each complete run the response is evaluated 

for a number of sequences, each one starting with a new set of data. 

For a paricular sequence, the probability. P' (K). that K instructions 

are executed from N Q sequences, is given by:-

N K 
N 

Eqn. 4.9 

Where:- N is the number of sequences where K instructions are executed. 

This will give a representative result provided that N c is large. 

Initial runs were carried out with totally random data to provide a 

means of determining a reasonable number of sequences for each run. The 

value chosen was 5000. which consistently gave results within 2% of the 

results obtained from the original analysis, proving that both methods are 

consistent. 

4.7 Optimum Seeding of Data 

The optimum seeding of data was established by completing a number of 

runs on the simulator with different data structures. A selection of the 

results are shown in table 4.2. The percentage overhead signifies the 

additional memory requirement, for a particular arrangement. However, for 

a given overhead there are a number of ways in which the data can be 

seeded. 

4.7.1 Data Structures for the 8085 

With the 8085 and a 20% overhead the following structures were 

considered: 20 bytes of random data followed by 4 adjacent single byte 

restarts. 15 followed by 3, 10 followed by 2 and finally, 5 followed by 1. 

Assuming that execution of a restart generates a successful recovery, table 

4.2 shows that the original suggestion of totally separating the data 

blocks does not give the best chance of recovery. It also shows that no 
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advantage is achieved by separating the blocks by more than the length of 

the longest instruction. 

The best solution for the 8085 Is to spread the seeded data, such as 

the Restart 7 instruction (op-code FF) . evenly throughout the data area. 

Not only does this provide the greatest chance of recovery, but it also 

gives the lowest average for the number of instructions executed before a 

jump. One disadvantage of this arrangement is that execution is not 

restrained within a block. It can skip over the restart instructions and 

therefore there is no limit to the number of instructions which could be 

read. 

However, the probability of execution continuing for a long time is 

small, and in this case a higher level of fault detection, such as a 

hardware watchdog timer, should provide the necessary coverage. 

4.7.2 Data Structures for the 6800 

The 6800 gives a totally different set of results. The optimum 

solution is to spread the restarts (sofware interrupt instruction code 3F) 

within the data area, but rather than placing them individually, they 

should be positioned in groups of two. The reason for this is the high 

number of double and triple byte Instructions in the instruction set, which 

increases the probability of skipping over individual bytes. 

4.7.3 Data Structures for the 8048 

A different approach is necessary for the 8048, because the 

instruction set does not contain any restart type instructions. To 

initiate recovery it is necessary to jump to a given location which 

contains a recovery routine. This can be achieved using straight forward 

jump instructions, but requires a greater overhead, as more than one byte 

is needed for a given jump. The problem is to ensure that the instruction 
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is executed correctly, so that the address is not interpreted as an 

instruction. 

One possible solution is to make the address equal to the op-code of 

the instruction. For example, the op-code 04 causes a jump to page 0 of 

the address map. with the low order address being read from the second 

byte. Therefore if execution enters a string of 04's at any point, control 

will always transfer to address 004. Similar effects can be obtained with 

the other jump instructions. An alternative method is to place one or more 

no-operation (NOP) instructions before the jump. 

However, in both cases it is important to consider the last byte in 

the string. If just two bytes, such as 04, are used to separate the data 

blocks then the second byte can be interpreted as an instruction. This 

happens if either, a double byte Instruction is read immediately before it, 

or if a direct jump to that byte occurs. This would result in a jump to an 

unspecified location dependent on the first byte of the next data block. 

By replacing the last byte with a NOP (00), execution in this case 

will continue in the next data block and gives the opportunity of recovery 

if It reaches the end of the block. Test results have shown that this does 

in fact improve the probability of recovery. 

The seeded data used for the results shown for the 8048 in table 4.2, 

where 04, 04, 00 for the triple byte strings, and 04, 00 for the double 

byte strings. In the first case control can pass to address 004 or 000, 

and in the latter case only to 000. For a single recovery address the 

first sequence could be changed to 00, 04, 00. Different recovery 

addresses can be obtained using different jump instruction codes. 

Table 4.2 shows that the optimum response is obtained with the double 

byte strings. This is due to the. large proportion of single byte non-
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jumping instructions in the instruction set. Separate runs for 8048's from 

different manufacurers were not carried out due to the close agreement 

obtained from previous analyses. Instead, the data used contained the 

average number of particular instruction types. 

4.7.4 Data Structures for the 68000 

For the 68000 the level of recovery from execution in the data area is 

95% without any modification to the system, apart from the addition of a 

recovery routine. it is unlikely that any appreciable improvement will be 

obtained by altering the structure of the data area. Therefore no further 

analysis was carried out on this processor. 

4.8 The Effect of Data Block Size on Recovery 

Having obtained the optimum recovery string length for each of the 

processors, a number of further simulations were carried out. These were 

designed to determine the effects on recovery, of altering the data block 

size. Obviously, a reduction in block size results in a greater 

requirement for memory, to store the extra recovery strings, and therefore 

has a greater overhead. 

The results from these runs are given in figure 4.3. The graph shows 

that a large improvement in recovery is obtained with only a small increase 

in the data area. Further increases continue to make an improvement, but 

with a reduced effect. 

For all three processors the greatest benefits are obtained with an 

increase in data area of around 20%. However, in most systems it is rare 

that the whole data area is used, in which case the data should be seeded 

with sufficient restarts to fill all the unused locations. This provides 

an immediate improvement without the need for any alterations to the 

hardware. If further improvements are required, additional memory is 
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necessary. 

Figure 4.4 shows how the average number of instructions executed, 

reduces as the amount of seeded data increases. The effects on the 8048 

are less than that for the other two processors because the original 

average is lower and the seeded data generates proportionally fewer 

recoveries. 

4.9 Summary 

This chapter has shown how erroneous execution in data areas can be 

detected and can then lead to recovery. All that is required is to force 

the processor to jump to a specific location where a recovery routine is 

initiated. 

The 68000 microprocessor is particularly good in this respect, due to 

the large number of illegal and unassigned instructions which invoke 

exception handling. For the 8085. 6800 and 8048 it is necessary to seed 

the data area with certain values to improve the probability of recovery. 

The particular values required for each processor have been discussed, 

together with their optimum grouping and positioning. 

The results from this analysis are used in chapter 7 where the flow of 

erroneous execution between different memory areas is considered. 
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CHAPTER 5 

Erroneous Execution in Program Areas 

5.1 Introduction 

This chapter looks at the sequence of events following a random jump 

into a program area, and derives equations for the probabilities of 

different outcomes. Unlike the data area, the program area contains a 

logical sequence of instructions and therefore a different approach is 

necessary. Again the sequence of bytes will be dependent on the 

application and the method of programming. In order to analyse the general 

case, bytes in the program area are divided into different instruction 

types, and then the probabilities of different sequences of these types are 

studied. 

The first analysis adopts a more detailed approach than the second by 

allowing a greater number of byte types. It therefore gives better results 

but has only been developed to cater for processors having single, double 

or triple byte instructions. However, it could be extended to include four 

byte instructions, such as those found on the Z80. The second analysis is 

less accurate but can be applied to any processor regardless of instruction 

length. 

5.2 Detailed Analysis 

When execution jumps randomly into a program area the first byte read 

can either be a valid op-code from the program, or it can be an operand 

from a multi-byte instruction. In both cases the processor will interpret 

the byte as an instruction and perform the corresponding operation. 

Figure 5.1 shows the type of byte which can be read. Clearly, the 

probability of reaching each of the particular states is dependent on the 

type of instructions in the program. P R (0) , the probability of resuming 
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valid instructions at the first cycle after the erroneous jump, is given 

by:-

PRCO) = — Eqn. 5.1 
B 

Where:- N ( is the total number of instructions in the program. 

N B Is the total number of bytes in the program area. 

P D X ( 0 ) . P T X X ( 0 ) and P T X X <0) , the probabilities of entering the operand 

fields of double and triple byte instructions immediately after the 

erroneous jump, are given by:-

N DI 
P D A ( 0 ) = — Eqn. 5.2 

P T X X ( 0 ) = P T X X ( 0 ) = TTT E < ^ 5 3 

Where:- N Q ( is the number of double byte instructions. 

N T ) is the number of triple byte instructions. 

It is now necessary to consider the flow of execution after each of 

the above states has been reached. For the case where a valid instruction 

has been read, the processor will continue to fetch and execute valid 

Instructions, as It will have resynchronised instruction fetches with the 

program. However, this situation may not continue indefinitely if certain 

instructions are encountered. For example a return from subroutine 

instruction will cause an undefined jump If the stack pointer has been 

corrupted, or if the last information pushed onto the stack was data rather 

than a return address. 

Where an operand byte is read, it could be interpreted in such a way 

that control is passed to another part of the memory map. if the operand 

byte is interpreted as a non-jumping instruction, then another byte would 
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be read, which again could either be a valid instruction or another operand 

byte. As with the analysis of execution in data areas, it is useful to 

know where execution continues if a jump occurs. Therefore the same 

approach has been adopted where the jump instructions are divided into four 

separate groups of halts, restarts, random jumps and returns. 

The possible sequence of events after the initial jump is shown in 

figure 5.2. Provided that the probability of entering the operand field is 

less than one. execution will eventually perform a jump to another part of 

the memory map or resynchronise instruction fetches with the program. In 

order to calculate the likelihood of each of these two outcomes it is 

necessary to determine all the possible ways of transferring from one state 

to another. 

This Is achieved by considering all the possible sequences of bytes 

which allow transfer between the states. The probability that a particular 

sequence will occur is obtained by multiplying together the probabilities 

that certain types of bytes will appear in specified locations in the 

sequence. The overall probability of a particular transfer, from one state 

to another, is then obtained by adding together the probabilities that each 

sequence for that transfer will occur. 

A list of all the possible sequences for each of the transfers, 

together with the derivation of the probability equations, is given in 

appendix 4. It shows that each value can be determined provided that the 

probability of certain bytes appearing in given locations is known. These 

can be evaluated by assuming equal use of each instruction for a particular 

processor and random data in the operand fields, or by analysing the 

occurrence of certain types of bytes in programs under investigation. 

It is then possible to find expressions for the probabilities that the 
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processor will have resumed execution of the program or will have 

transferred to another part of the memory map at. I, instruction cycles 

after the initial erroneous jump. These expressions are also given in 

appendix 4. The final outcome of resuming or transferring is therefore 

given by the probability equations when I is equal to infinity. In most 

cases the probability that operand bytes are still being read after about 

five cycles is small, and therefore it is only necessary to consider the 

first ten cycles. 

Again It is important to calculate the average number of instructions 

executed, but in this case it is necessary to calculate a value for both of 

the possible outcomes. N R ^ . the average number of instructions executed 

before resuming, is given by:-

Similar expressions can be obtained for the average number of instructions 

executed before the other outcomes. 

Clearly the type of instructions in a particular instruction set. and 

the way in which the instructions are used, will affect the overall 

results. A comparison of different instruction sets and programs is given 

In the following section. 

5.2.1 Comparison Between Instruction Sets 

The response of execution in program areas will obviously be dependent 

on the arrangement and frequency of use of different Instruction types. 

The analysis in the previous section requires a total of 24 different 

parameters to enable a solution. These can be obtained directly from the 

instruction set by assuming that each op-code is used the same number of 

times, and that the data in the operand field is random. 

NR AV 
1=1 

(P_(l) P_(l D ) 

P_(crf>) 
Eqn. 5.4 
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Table 5.1 contains results obtained, using the previous assumpt ions, 

for the 8085. 6800 and 8048 microprocessors . For all three p r o c e s s o r s it 

shows that if execution enters a program a r e a , then there is over a 90% 

probability that instruction fetches will resynchronise with the program. 

It also indicates that the number of instructions executed before reaching 

one of the final states is small . The average value in all c a s e s is less 

than two, implying that very few erroneous instructions will be executed 

and consequently little corruption of data will occur . 

Only one figure has been given for the average number of instructions 

executed before a transfer to another part of the memory map. b e c a u s e e a c h 

individual transfer gave almost identical results. Similarly, for the 

8048. one set of results is shown, as only slight variations were observed 

between processors from different manufacturers. 

Figures 5.3 (a), (b) and (c) show graphs of the relationship between 

the probability of reaching a particular outcome and the number of 

instructions executed, for e a c h of the p rocessors . They indicate the short 

transition period between the initial erroneous jump into the program area 

and the transfer to the next state. In all c a s e s the probability of still 

reading an operand byte after five instruction cyc les is less than 0.5%. 

5.2.2 Comparison Between Actual Programs 

The results from the previous section give an indication of the 

inherent properties of a particular instruction set. However, there are 

many instructions, such as the logical operators which are rarely used , and 

others such as the jump instructions, which are frequently used. Therefore 

the previous results are unlikely to be representative of actual programs 

using a particular instruction set. 

In order to evaluate the effects of different instruction code usage . 
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a number of actual programs were analysed. Results from these ana lyses are 

given in table 5.2. Programs A and C are monitor programs for small s c a l e 

8085 and 6800 based systems respectively. They were chosen to give a 

comparison between software designed to perform similar operations but 

using a different instruction set. The table shows that the probability of 

resuming valid instructions, and the average number of instructions 

executed before reaching the final outcomes, are almost identical. There 

is a slight variation in the probabilities where control transfers to 

another part of the memory map. but these values are small anyway. 

Programs B. D. E and F are taken from industrial control and data 

transmission systems. Again, c lose agreement is obtained for the 

probability of resuming valid instructions and for the average number of 

instructions executed. These values are also similar to those given by the 

monitor programs. 

Therefore it s e e m s that for erroneous execution in program a r e a s , the 

probability of resychronising instruction fetches with the program is 

approximately 95%, regard less of the processor . This suggests that, 

despite di f ferences in the instruction se ts , particular instruction types 

tend to be used in the s a m e proportions. 

5.3 Simplified Analysis 

The previous analysis is suitable for p rocessors having single, double 

and triple byte instructions, and could be extended to include four byte 

instructions. However, to enable compar isons to be made with the 68000, 

which has instructions up to five words long, a more simplified approach is 

necessary . This is achieved by consider ing fewer execution states and less 

complex transfers. Figure 5.4 shows the different states for this analysis 

and the transfers between them. It shows that attempting an instruction 
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fetch from any of the operand fields is represented by the s a m e state. 

The probability of resuming valid instructions immediately after the 

erroneous jump. P R ( n > - remains unchanged, and clearly the probability of 

entering the operand field. P^W). is given by:-

P X«D) = 1 - P R ( 0 ) Eqn. 5.5 

Again, if a valid instruction is read, the processor will continue in 

step with the program. However, an instruction fetch from the operand 

field will either pass control to another part of the memory map or the 

next logical byte will be read. The probability of interpreting a jump 

instruction is dependent on the proportion of bytes in the operand field 

which will c a u s e a jump. If the data within the field is considered to be 

random, then the probabilities of executing different jump instruction 

types can be obtained from the proportion of e a c h particular type within 

the instruction set. Alternatively they can be evaluated from the analysis 

of particular programs under investigation. 

If the next logical byte is read, this analysis a s s u m e s that the 

probability of reading a valid instruction is dependent on the ratio of the 

number of instructions in the program to the total number of bytes in the 

program area , which is equal to P R ( 0 ) . This is effectively equivalent to 

random fetches within the program area until either a valid instruction is 

read or a jump is generated. 

It follows that the probabilities that the processor has resumed or 

jumped at the end of I. instruction c y c l e s after the erroneous jump, are 

given by:-

P R ( I ) = P R ( i - 1) + P R ( 0 ) . (1 - P ) . P x ( i - D Eqn. 5.6 

P R S T ( , ) = P R S T ( I ' 1 5 + P X R S T • P X ( M ) E ^ 5 7 

Where: - P is the probability of reading any jump instruction type. 
J 
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Ppg-pfl) is the probability of reaching the restart state within I 

instruction cyc les of the erroneous jump. 

P X R S T is the probability of reading a restart type instruction in 

the operand field. 

Similar expressions can be obtained for the other jump instruction types. 

The probabilities of the final outcomes of resuming or transferring, is 

given by the above equations when I is equal to infinity. In pract ice only 

the first ten cyc les are important. 

A compar ison between the results from this analysis and the previous 

more detailed analysis is given in the following sect ion. It shows that 

despite the different approach the results are in fairly c lose agreement. 

5.4 Compar ison Between the Detailed and Simplified Analyses 

The simplified analysis descr ibed above was carr ied out on e a c h of the 

programs studied in section 5.2.2. and the results from these programs are 

shown in table 5.3. By making a compar ison with the previous values in 

table 5.2 it can be seen that both approaches give similar results. 

Therefore the simplified analysis is an acceptable approximation to 

erroneous execution in program a r e a s . 

The main reason for developing this approach was to enable a 

comparison to be made between the 8-bit p r o c e s s o r s and the 68000. which has 

a 16-bit architecture. To obtain a set of results for the 68000. a monitor 

program for a small single board system was investigated. Values for P (0) 

and P D ( 0 ) were obtained by counting instructions within the software. The 

other parameters were estimated by assuming that the operand fields 

contained random data. This was n e c e s s a r y due to the large instruction map 

of 65.536 c o d e s , which makes the determination of the effect of particular 

values extremely difficult. 
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The results obtained for the 68000 are given in table 5.3. It shows 

that the probability of resuming valid instruction fetches is around 20% 

lower than for the 8-bit p rocessors . This difference is made up by the 

increase in the number of restarts, in the form of exception handling. As 

will be shown in section 5.6. this results in a better c h a n c e of detecting 

errors quickly, and improves the prospects of recovery. 

The relationship between the probability of reaching a particular 

outcome, and the number of instructions executed, is given in figure 5.5. 

The graph shows that the 68000 r e a c h e s the final outcome, of execution in 

the program area , in approximately the s a m e time as the other p r o c e s s o r s . 

This Is further supported by the average number of Instructions executed, 

which also shows c lose agreement. 

5.5 Verification of Results 

In order to check the a c c u r a c y of the results, tests were carr ied out 

on the monitor program for the 8085. From a set of random numbers, 200 

a d d r e s s e s were selected which fell within the program area . Then starting 

at e a c h of these a d d r e s s e s , the bytes were translated into instructions and 

the flow of execution, which the processor would follow, was determined. 

Only two possible outcomes were cons idered , that of resuming valid 

instructions and that of a transfer to another part of the memory map. The 

probability of resuming c a m e to 94.1%, and that of a jump to 5.9%. 

Compar ison between these values and those in table 5.2, obtained from the 

detailed analysis , show direct agreement proving that the p r o c e s s gives 

accura te results. 

5.6 Improvements in Recovery 

To improve the c h a n c e s of recovery the p rocessor must be able to 

detect that an error has occurred . This c a n be achieved by software in one 
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of two ways. Firstly, at a low level by increasing the probability that a 

restart will be generated, or secondly at a higher level, by encouraging 

execution to resynchronise with correct instructions and to detect the 

error from within the program. The first solution will give the quickest 

recovery, but as will be shown in the following sect ions , it is not easy to 

attain. 

5,6.1 Low Level Detection 

This can be achieved, in the s a m e way as in the data a r e a , by 

increasing the probability that a restart instruction will be interpreted, 

it is therefore n e c e s s a r y to force the restart o p - c o d e s into the operand 

fields within the program. The most commonly used operands are those which 

contain program or data a d d r e s s e s . T h e s e can be forced to contain 

particular values by the suitable positioning of memory blocks. 

For example, many 8085 based systems contain RAM starting at address 

2000 hexadecimal , and as a result a significant proportion of the third 

bytes in triple byte instructions contain the value 20. By moving the data 

area to the address range FFOO to F F F F these values are replaced by F F , the 

restart 7 instruction. A similar arrangement is possible for the 6800 by 

moving the data area to the address range 3F00 to 3 F F F , so that more bytes 

of the value 3F (op-code for a software interrupt) appear in the operand 

fields. 

This type of procedure could also be employed with the 68000. For 

this processor , address ranges A000 to A F F F and F000 to F F F F c a n be used . 

These are all values of unassigned o p - c o d e s which initiate exception 

handling if an attempt is made to execute them. This provides a much 

larger data area of up to 8192 bytes if both blocks are used. This method 

cannot be used for the 8048 b e c a u s e it does not have any restart type 
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instructions in the instruction set. 

Table 5.4 shows the effect of increasing the number of restart type 

instructions in the operand fields of the 8085 and 6800. It contains 
X X X 

results given by the detailed analysis for three programs. A . B and C . 

where the modifications have been made. T h e s e correspond to the original 

programs A. B and C in table 5.2. By comparing the values it c a n be s e e n 

that the number of restarts are increased quite substantially, but still do 

not form the major outcome from execution in this a rea . 

A further means of increasing the number of restarts would be to move 

the program area as well. However in most small systems containing only 

one program area , this is not possible b e c a u s e the memory block must be 

positioned to coincide with the reset , restart and interrupt vectors. 

Also, in the c a s e of the 6800. b e c a u s e it only has one restart type 

instruction, both the data area and the program area could not be moved to 

utilise this effect. 

For both p rocessors this is only suitable for data blocks up to 256 

bytes long. Any larger a reas would i n c r e a s e the number of o p - c o d e s , 

adjacent to the restarts, within the operand field. For both the 8085 and 

the 6800 this would reduce the c h a n c e s of recovery by introducing more 

undesirable jump instruction types. Therefore, unless the data blocks c a n 

be split up into 256 byte lengths, this does not provide a means of 

increasing error detection which would Improve the c h a n c e s of recovery. 

5.6.2 High Level Detection 

Another way of detecting that an error has occurred is to encourage 

execution to resume valid instruction fetches from the program. It is then 

possible to test certain conditions from within the software. This would 

seem to be the better solution in the c a s e of the 8085, 6800 and 8048 
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b e c a u s e there is already such a high probability that execution will 

resychronise with the program. 

This can be further increased by the same methods descr ibed in the 

previous section. However, the positions to which the blocks of memory 

should be moved, are to those which increase the number of non- jumping 

instruction types within the operand fields. Ideally, single non- jumping 

instructions should appear in the second byte of double byte instructions 

and also in the third byte of triple byte instructions. Double non- jumping 

types should appear in the second location of triple instructions. 

It would be possible to write programs such that the above conditions 

were met at all t imes, but this would impose tight restrictions on the 

software, by eliminating the use of certain a d d r e s s e s and data. 

5.7 Summary 

This chapter has shown that after an erroneous jump into a program 

area for the 8085, 6800 and 8048, execution has the probability of about 

95% that it will resychronise instruction fetches with the program. Slight 

variations in this figure c a n be obtained by suitable hardware design and 

programming, but the most efficient method of detecting errors is from 

within the software. A number of these software m e c h a n i s m s are descr ibed in 

chapter 8. 

For the 68000 processor the probability of resychronisat ion is much 

lower at 72%. and the probability of a restart or exception is around 26%. 

Therefore it is n e c e s s a r y to have a recovery routine at the restart 

a d d r e s s e s and to have fault detection within the software. 

The results from these ana lyses , together with those from the previous 

chapter, are used in chapter 7 where the flow of execution between 

different memory a reas is considered . 
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C H A P T E R 6 

Erroneous Execution in Unused and Input/Output Areas 

6.1 Introduction 

This chapter looks at the response of different p r o c e s s o r s to an 

erroneous jump into unused a r e a s of the memory map. and those parts which 

are used for input and output devices. It then goes on to consider ways in 

which recovery can be initiated from these types of execution. 

6.2 Execution in Unused Areas 

There are two distinct types of unused locations. Those parts of the 

memory map which are not populated by memory dev ices , and those which do 

reference particular devices but the locations within them are not used. 

In the latter c a s e it has already been demonstrated, in chapter 4. that 

with data a r e a s any spare locations should be used to s e e d the information 

with restart instructions. However, with program a r e a s , no improvement in 

recovery is obtained by dispersing the unused locations within the 

software. Therefore they appear as a single block at the end of the 

program area , or as smal ler groups separat ing program modules. 

In most control systems the software is written into read only memory 

In the form of PROM or EPROM. and consequently any unused locations are 

left unprogrammed. usually taking the value F F in hexadecimal . In the c a s e 

of the 8085 and 68000, instruction fetches from these locations generate 

restarts. For the 8085 the restart 7 instruction is interpreted, and for 

the 68000 an unassigned instruction is encountered which initiates 

exception handling. Therefore recovery can be performed by a suitable 

error handling routine. 

For the 6800 and 8048, the o p - c o d e F F is interpreted as a non- jumping 

instruction and therefore s u c c e s s i v e locations will be a c c e s s e d until 
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another memory area is reached . This can be prevented by using the 

locations to pass control to a recovery routine, and can be achieved by 

adding restart or jump instructions. For the 6800 all the spare locations 

should be set to 3 F , the code for a software interrupt. Whereas , for the 

8048 the value 04 can be used to generate a jump to location 004, in the 

same way as that descr ibed in section 4.7.3. However the s u c c e s s of this 

method for the 8048 depends on the amount of the memory map which is used , 

and the state of the memory bank se lect flip-flop after the error. This is 

d i s c u s s e d further in section 6.2.3. 

6.2.1 Unpopulated Memory Areas 

Erroneous execution in unpopulated a reas of the memory map is 

dependent on both the processor being used and the hardware attached to it. 

in particular it is determined by the state of the data bus when no memory 

devices are driving it high or low. When this state is known it is 

possible to establish the instructions interpreted and how execution will 

proceed. 

This normally forces the processor to jump immediately to another 

location or to repeatedly read a fixed value and to continue executing the 

same instruction until a used block of memory is encountered. However, in 

the c a s e of some processors which have a multiplexed address and data bus. 

the address at which an instruction fetch is attempted remains on the bus 

during the read cycle if there are no other external inf luences. This 

results in a se r i es of consecut ive numbers being interpreted a s 

instructions, with appropriate adjustments made where multibyte functions 

are encountered. For this c a s e It is possible to trace through the 

s e q u e n c e of instructions which will be executed, for a particular 

instruction set, starting at e a c h possible address . 
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It is very simple to influence the response of a p rocessor when 

reading unused memory locations. In this state the data l ines will tend to 

float, and by attaching resistors between them and the power supply rai ls, 

any value can be forced onto the bus. This can be used to generate a jump 

to a speci f ic location and then to execute a recovery routine. 

The following sect ions d i s c u s s the response of e a c h of the p r o c e s s o r s 

being studied, and proposes methods of improving the c h a n c e s of recovery in 

each c a s e . 

6.2.2 Unpopulated Areas of the 8085 

The 8085 has a multiplexed address and data bus. and as a result, 

values read from unpopulated memory a reas are dependent on the capac i tance 

and loading of the bus. Under normal conditions of the bus being connected 

directly to buffers, the capac i tance and loading is such that the low order 

byte of the address always remains valid during the subsequent read if it is 

not driven to any speci f ic value. 

As mentioned in the previous sect ion, this results in consecut ive 

values being interpreted as instructions. T h e s e values can fall anywhere 

in the range 00 to F F , and therefore there are 256 different positions 

within the s e q u e n c e where execution can c o m m e n c e . The outome from entering 

at e a c h of these locations has been determined by tracing through the 

s e q u e n c e of instructions which the processor would interpret. For 

s e q u e n c e s where conditional jump instructions are encountered, it was 

assumed that the probability of a jump would be 50%. Such s e q u e n c e s were 

divided proportionally into the different outcomes which could be 

generated. Then the effective number of locations within the 256 byte page 

which c a u s e each of the possible outcomes was calculated. T h e s e results 

are given in appendix 5. together with the probability of e a c h of the 
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transfers. 

As in the previous chapters , divisions into halts, restarts, random 

jumps and returns can be made, but in this c a s e a number of speci f ic jumps 

are also possible. The probabilities of e a c h of these groups, and the 

average number of instructions executed before them, are given in table 

6.1. 

However, the speci f ic jumps occur to locations in the range C000 to 

F F F F . and in most small s c a l e control applications it is unlikely that many 

of these locations will be populated with memory. In this c a s e execution 

will continue as before until another transfer is reached , and the effects 

of this arrangement are shown In table 6.2. 

The results indicate that on half of the o c c a s i o n s , of a random jump 

into unpopulated a r e a s of the 8085. a halt will be executed. If no 

mechanism is built into the system to recover from this situation then 

total failure will occur . The other outcome which has a high probability 

is that a return instruction will be executed. As mentioned in section 

4.3.3. the address to which control p a s s e s in this c a s e depends on the 

contents of the stack, and can either be a valid program address or a 

random location. 

The results also show that it is highly probable that a large number 

of erroneous instructions will be executed before leaving the a r e a , with 

the average for all transfers at around 40. 

This type of execution can be totally eliminated by suitable loading 

of the bus. as indicated In section 6.2.1. By applying pull-up resistors 

between the data lines and the power supply rail the value F F will always 

be read when unpopulated memory a r e a s are a c c e s s e d . This will result in 

the interpretation of the restart 7 instruction, and recovery can then be 
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performed by a suitable routine. 

6.2.3 Unpopulated Areas of the 8048 

The 8048 u s e s a multiplexed address and data bus when a c c e s s i n g 

external memory, and consequently a similar response to the 8085 is 

observed when unpopulated a reas of the memory map are a c c e s s e d . Again the 

low-order byte of the address remains on the bus during the read cyc le 

under normal buffering arrangements. 

The effect of a jump into e a c h of the 256 different possible locations 

In the observed s e q u e n c e has been studied, and the results are given in 

appendix 5. They show that on 88% of the o c c a s i o n s , of a random jump into 

unpopulated a r e a s , a transfer to speci f ic locations occur . On 9% of the 

o c c a s i o n s , a return instruction will be executed passing control to the 

address stored at the top of the stack. The remaining 3% will c a u s e a 

relative jump, dependent on the contents of the accumulator , to a location 

within the 256 byte page being a c c e s s e d . This p a s s e s control back into the 

unpopulated area where execution will continue until another transfer is 

reached . When considering all t ransfers, the average number of 

instructions executed is approximately 14. 

For the 8048 the response of the processor after a transfer from 

unpopulated memory is very dependent on the particular hardware 

arrangements. This is due to its architecture which Is very different from 

normal 8-bit p r o c e s s o r s , and is descr ibed in more detail in section 3.5. 

Instruction fetches are limited to a 4K address s p a c e and are 

referenced by a 12-bit bus. However, only 11 bits of the program counter 

operate in the normal way. The 12th bit is set by the state of the memory 

bank select flip-flop when a cal l to a subroutine or an absolute jump 

o c c u r s , or is loaded from the stack when a return is executed. The state 
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of the flip-flop is only affected by the two instructions; se lec t memory 

bank 0 and se lect memory bank 1. 

This effectively splits the address range into two separate 2K blocks. 

Therefore the execution following a transfer from an unpopulated area is 

dependent on the state of the memory bank select flip-flop and the amount 

of memory which is used. Figure 6.1 shows four common memory arrangements 

for the 8048 which leave part of the memory map unused, in e a c h of these 

arrangements a transfer out of the unpopulated area can result in execution 

reentering the same area. Due to the layout of the instruction map. this 

can occur a number of t imes, and in some c a s e s results in the possibility 

of executing several hundred instructions before reaching the final state. 

The final states reached after a random jump Into the unpopulated a rea for 

each of the four arrangements, and for both conditions of the memory bank 

select flip-flop, are given in table 6.3. 

It shows that, under certain conditions, there is a high probability 

that a return instruction will be reached , in which c a s e the address at the 

top of the stack, after the error, determines the location at which 

execution will continue. if the address is within the unpopulated a r e a , 

then the p r o c e s s will repeat, and execution of another return instruction 

will probably occur . In this way the processor tends to s e a r c h through the 

stack looking for a valid program address . However, during the erroneous 

execution, a number of stack locations are corrupted, and if a valid 

address is not found within the first few positions on the stack then an 

infinite loop will be formed. If a valid program address is found then 

execution will return to the program, but the memory bank se lect flip-flop 

may be left in the wrong state. In this c a s e , if it is not reset before a 

call or an absolute jump is executed, then control will pass to the wrong 
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memory block. 

Execution in the unpopulated a reas can be controlled in some c a s e s by 

suitable loading of the bus. The effect of jumping into a string of 04 's 

has been d i s c u s s e d in previous sect ions , and this method can be employed 

here by forcing the value onto the bus with suitable resistors connected to 

the power supply rails. Unfortunately, this is only effective all of the 

time for memory arrangements C and D. For the other two conditions 

execution will loop continuously within the upper 2K block if the memory 

bank select flip-flop is set to one. 

An alternative solution is available for memory arrangement B. by 

loading bits 1 to 7 on the bus with the values 1110010. This forces the 

values E4 and E5 alternately into the unpopulated area . The corresponding 

instructions interpreted by the processor are jump to address in page 7 and 

select memory bank zero. In this way control will always transfer to 

location 7E5 regardless of the position of the erroneous jump into the 

unpopulated area . 

For memory arrangement A, there is no simple method of ensuring that 

control p a s s e s back to the program area . If the memory block is external 

to the processor , then partial decoding can be used to create another image 

of the program in the upper memory bank, and the solution for memory 

arrangements C and D will then work. Otherwise, it is n e c e s s a r y to ensure 

that a program address is always left on the stack and that the memory bank 

select flip-flop is reset before e a c h call or absolute jump instruction in 

the program. This will ensure that on most o c c a s i o n s control will pass 

back to the program, provided that the stack and stack pointer are not 

corrupted by the fault. For the o c c a s i o n s when an infinite loop is formed 

it is n e c e s s a r y to rely on a higher level of recovery provided by external 
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hardware. 

6.2.4 Unpopulated Areas of the 6800 and 68000 

Both the 6800 and 68000 microprocessors have separate address and data 

Puses . When a c c e s s i n g unpopulated a reas the data bus floats high and 

therefore the value F F is read. For the 68000 this is interpreted as an 

unassigned instruction and c a u s e s the immediate initiation of exception 

handling, and provides a good method of recovery without any alteration to 

the hardware. 

In the c a s e of the 6800, the value F F is interpreted as a triple byte 

instruction to store the X register using extended address ing . This means 

that instruction fetches will occur at every third s u c c e s s i v e byte until 

another memory block is encountered. One method of recovery from this 

situation is to trap execution when it r e a c h e s the next block. However 

this could result in a substantial delay if a large unpopulated a rea 

exists, as the average number of instructions interpreted will be 

proportional to the size of the block. Also the contents of the location 

F F F F will be destroyed. 

A better solution is to load the data bus so that the value 3F appears 

in all the unpopulated a r e a s . This will Immediately generate a software 

interrupt and enable rapid recovery without any further corruption of data. 

6.3 Execution in Memory Mapped I/O 

When Input and output devices are mapped into the normal memory a r e a , 

it is possible that an erroneous jump may occur into these locations. in 

the c a s e of output l ines the response will be the same as that for unused 

locations, as they will have no active effect on the bus. Therefore the 

same approach can be adopted as for the unpopulated a r e a s , in the form of 

bus loading to force certain values to be read. 
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For Input lines the external data will be interpreted as an 

instruction and the corresponding function will be performed. If a number 

of different ports appear in consecut ive locations they will appear to have 

the same effect as a data a rea . However, it is common practice to 

partially decode port a d d r e s s e s so that the same data will appear in a 

number of consecutive locations, sometimes as much as 4K. As in the c a s e 

of unused locations, this will result In an immediate jump or the 

repetitive execution of the s a m e instruction. In the latter c a s e , the 

average number of instructions executed will depend on the length of the 

instruction interpreted and the size of the input a rea . The particular 

response will change according to the state of the input l ines. 

It has been a s s u m e d that the state of the lines is random in nature, 

and from this the probabilities for the different outcomes have been 

calculated for particular instruction sets. The results for the 8085. 6800 

and 68000 are given in table 6.4. 

For the 8085. execution will on most o c c a s i o n s exit from the block of 

input data, but may take a substantial amount of time to do so if large 

blocks exist. Alternatively, a number of specif ic jumps are possible. In 

the previous ana lyses for execution in program and data a r e a s , these codes 

produced random jumps b e c a u s e the operand fields were not dependent on the 

particular code. In this c a s e the operand bytes are the s a m e as the code , 

and therefore jumps to speci f ic a d d r e s s e s are generated. Due to the layout 

of the instruction map, these c a u s e control to transfer to particular 

locations in the range C000 to F F F F . 

For the 6800, again the majority of c a s e s will result in execution 

leaving the area. However some of these are due to relative branches 

backwards out of the beginning of the block. If the preceding a rea is 
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unused and the data lines have been left floating, then execution will pass 

back to the input a rea and form a continuous loop until the data on the 

port c h a n g e s . 

Execution for the 68000 will tend to continue through to the end of 

the a r e a or will generate a restart. 

This type of execution can be eliminated in all three p r o c e s s o r s by 

fully decoding the ports so that the input data only appears at single 

locations. In the c a s e of the 8085 there is no need to use memory mapped 

input, unless more than 2048 lines are required, and therefore should be 

avoided if possible. 

6.3.1 Execution of Input Data by the 8048 

If no external memory is connected to an 8048 the bus can be used as a 

port, and could be used for input data. In this c a s e the data will appear 

at all memory locations which were previously left unpopulated in memory 

arrangement A shown in figure 6.1. An erroneous jump into this a r e a with 

the memory bank select flip-flop set at one, will provide no means of 

e s c a p e as execution will be restricted within the upper 2K memory block. 

With the flip-flop set at zero, the probability of forming an infinite loop 

will depend on which half of the memory map the erroneous jump o c c u r s . For 

the upper half the value is 96.7%, whereas for the lower half it is only 

12.0%. 

The formation of infinite loops should be prevented if at all possible 

so that it is not n e c e s s a r y to rely on external hardware to initiate 

recovery. This can be achieved by avoiding the use of the bus as a port. 

However, if it is required it should be used for output and the same 

precautions taken as those d i s c u s s e d for unpopulated a reas . 

no 



6.4 Summary 

This chapter has shown that an erroneous jump into both unused and 
input/output a r e a s can result in a complex s e q u e n c e of execution, which can 
last several hundred instruction cyc les or even form infinite loops. In 
the latter c a s e , recovery can only be initiated by the intervention of some 
additional hardware. 

Methods of controlling execution within these a r e a s have been 

d i s c u s s e d , and a simple solution for most p r o c e s s o r s , of loading the data 

bus. has been descr ibed. 

The results obtained are used in the following chapter where the flow 

of execution between different memory a reas is considered . 
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C H A P T E R 7 

Flow of Execution Between Different Memory Areas 

7.1 Introduction 

The previous ana lyses have produced methods of determining the flow of 

execution within certain types of memory a r e a s . This chapter cons iders the 

transfer of execution between these a r e a s , to evaluate the overall response 

of a processor after an erroneous jump to any location within the memory 

map. Figure 7.1 shows the various states and transitions which will be 

studied. Areas of memory mapped output are included with the unused a r e a s , 

as they have the s a m e effect. Four final states are present in the model, 

these indicate that the processor is expected to halt operation, to enter 

an infinite loop, to resume executing valid instructions or to recover from 

the error. 

7.2 Method of Analysis 

This analysis u s e s a similar approach to that used for the erroneous 

execution in program a r e a s and the equations derived are of the s a m e form. 

For example, the probability of execution being in a particular memory area 

after a given number of transfers, between the different a r e a s , is given 

by:-

P X i ( 0 = ^ V M ) - P X 1 X I E l " - ™ 

Where: - Xi represents a particular memory area . 

X] represents e a c h of the four different a reas . 

P XjXi i s t h e P r o l 3 a t ) " i t y o f t n e transfer from Xj to Xi. 

I is the number of transfers after the initial error. 

The probability equations for reaching e a c h of the final states are 

given by:-

112 



P x f ( . ) = P X f ( l - l ) + 2 : P X j ( M > . P X J X f Eqn.7.2 

Where: - Xf represents a particular final state. 

Solutions to these equations can be found for all positive integer 

values of I. provided that the initial conditions and the probabilities for 

e a c h of the transfers is known. The methods of evaluating these quantities 

are given in the following three sect ions. 

7.3 Initial Error 

By assuming that the initial error c a u s e s a jump to a random location 

within the memory map. it follows that the probability of entering e a c h of 

the different a reas is proportional to the relative size of the block. In 

this c a s e the size of the block includes all a reas where that particular 

memory type appears . If certain memory devices are not fully decoded then 

multiple copies of the data will appear in the map and therefore it will be 

more likely that execution will enter that a rea . 

The probability of entering the program area immediately after the 

erroneous jump, P p ( l ) . is given by:-

N P B 
P (1) = ^ p E - E q n . 7.3 

T B 

Where: - N D Q is the total number of program bytes which appear in the 
r b 

memory map. 

N T n is the total number of bytes in the memory map. 

PpCI) . P y H ) and PjCD. the probabilities of entering the data a r e a s , the 

unused a reas and the input a r e a s , are found in the same way. 

7.4 Transfer from Different Memory Areas 

Erroneous execution in different memory a reas has been considered in 

the previous three chapters. They have shown that transfer out of e a c h of 
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the a r e a s is generated in up to five particular ways. T h e s e are; halts, 

restarts, unspecified jumps, returns and specif ic jumps. Also, in the c a s e 

of program a r e a s , execution can resychronise with the program and resume 

valid instruction fetches. 

T h e s e transfers can be easily converted into those given in figure 

7.1. Clearly, the execution of halts and resuming valid instruction 

fetches correspond directly and need no alteration. The restarts can have 

a number of different effects, dependent on the processor and the contents 

of particular locations. 

In systems such as the 8085. where a restart c a u s e s execution to 

c o m m e n c e at a given location, it is normally the c a s e that read only memory 

will be mapped to these locations. if no consideration for erroneous 

restarts has been included it is not uncommon for part of the program to 

reside in this area. Under these conditions a restart will c a u s e a 

transfer into a program area and execution will continue in the manner 

descr ibed in chapter 5. 

For other systems such as the 6800, the address at which execution 

continues after a restart, is read from a particular location. Again, read 

only memory will normally be mapped to this a rea , but in this c a s e , 

regard less of whether program or data appears at these locations, execution 

will transfer to some arbitrary location within the memory map. If the 

particular location is considered to be random, then a transfer similar to 

the initial jump will occur . This is acceptable when analysing a single 

restart for the general c a s e . However, any number of a particular restart 

in a speci f ic system will always give the same result. This is considered 

further in section 7.5. 

For an erroneous restart in both types of system, recovery from the 
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error can be achieved by the addition of a suitable recovery routine which 

is always executed when the restart o c c u r s . 

The unspecif ied jumps c a u s e execution to transfer to arbitrary 

locations within the memory map. similar to the condition descr ibed above. 

T h e s e transfers are considered to be random in nature and therefore wiil 

have the s a m e effect as the initial jump. 

The returns c a u s e transfers dependent on the contents of the top of 

the stack. In the following analysis it is assumed to be random and the 

corresponding transfers are the same as the initial jump. This is a 

reasonable assumption if the stack is used to store data as well as return 

a d d r e s s e s , or if it is corrupted by the fault. 

Finally, the specif ic jumps always c a u s e a fixed transfer to a 

particular memory a rea . 

7.5 Execution of an Infinite Loop 

The type of execution which has not been determined In the previous 

sect ions is the formation of an infinite loop. In this c a s e the p r o c e s s o r 

continually executes a fixed s e q u e n c e of instructions, and no recovery is 

possible without some external intervention. The formation of loops in 

three different a r e a s have been considered . In all c a s e s the analysis 

estimates the probability of executing the same bytes twice, and if this 

happens it is a s s u m e d that a loop has formed. In real systems this 

situation will not necessar i ly result in a loop, b e c a u s e data may change in 

such a way that returns and conditional jump instructions will act in a 

different way the second time that they are executed. Therefore the 

analysis will tend to make an over estimate of the true value. 

7.5.1 Loops in Data Areas 

The first area in which a loop has been considered is the data a rea . 
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For this c a s e , at the end of each transfer after the initial error, a 

calculation is made to determine the expected number of data bytes which 

will have been read. This is obtained from the following equation:-

I 
N B E ( D = X P D ( k ) • N B A V Eqn. 7.4 

k=l 

Where:- N g E ( l ) i S t n e e x P e c t e d number of data bytes read after I 

transfers. 

N B A y is the average number of bytes read during erroneous 

execution in data a reas . 

Assuming that transfers into the data area are random, the probability of 

entering a loop in the data a rea , P ^ ( l ) . is given by:-

N (I) 
P L D ( , ) = P D ( , ) • "ITT- E< n' 7 5 

DA 

N D A is the actual number of data bytes in the memory map, it does not 

include the extra bytes which appear if partial decoding is used. This is 

important b e c a u s e without full decoding identical strings appear in more 

than one location, and therefore It is more likely that a loop will form 

with a particular string. 

7.5.2 Loops In Unused Areas 

Execution in unused a reas follows a number of fixed s e q u e n c e s for a 

given processor and hardware arrangement. If a particular s e q u e n c e is 

executed twice it is a s s u m e d that a loop has formed. Again this will tend 

to give an over estimate, for the s a m e reasons as before. For this 

analysis it is n e c e s s a r y to evaluate the probability that execution has 

been in the unused area . For each state the following expression is u s e d : -

p u x i ( l ) = ^ p u x ] ( M ) • pxjxi E ^ 7 6 
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Where: - p y x i ( l ) i s t h e P r o o a o " i t y o f execution in a given area after 

execution in an unused area . 

Xj corresponds to e a c h of the memory a r e a s . 

XjXi represents the transfer from area Xj to Xi. 

From this it follows that the probability of entering the unused area 

twice, P ( j u ( | ) ' is given by:-

4 
p u u = ^ p u x i ( , ) • p x iu E * n - 1 1 

1=1 

Where: - P v . . . is the probability of a transfer from memory area Xi to the 

unused area . 

However, not all double entries into the unused a r e a s will c a u s e a loop, 

b e c a u s e in some c a s e s a number of different s e q u e n c e s appear in the area . 

Therefore P y j M . the probability of forming a loop in the unused a r e a , is 

given by:-

P L U ( , ) = P U U L • P U U ( , ) E q n ' 7 8 

P U U L i s t h e P r o b a b i , i t y o f forming a loop after entering the unused area 

twice. in the following examples It is given a value equal to the 

proportion of s e q u e n c e s which c a u s e specif ic transfers. This will a lso 

give an over estimate for the probability of forming a loop, as the s e c o n d 

transfer may not be the s a m e as the first. However the figures from the 

overall analysis in the following sect ions, using the previous assumpt ions, 

indicate that the probability of forming a loop is small . Therefore the 

inaccurac ies in the model cannot have much of an effect on the final 

results. 

7.5.3 Loops in Input Areas 

The formation of loops in the input a reas is treated in the s a m e way 

as those for the unused a r e a s , and similar expressions to equations 7.6 and 
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7.7 are obtained. Therefore the probability of forming a loop in the input 

a rea . R L |Cl>, is given by:-

P L I ( I ) = P I I L • P l i ( l > E q n ' 7 9 

Where:- P ( ( is the probability of entering the input a rea twice. 

P | ) L is the probability of forming a loop after entering the 

input a rea twice. 

P j ) L is evaluated by consider ing Individual arrangements of the memory map. 

For a single block it will take the value of 1. For multiple blocks which 

are separated by other memory types, a value equal to the reciprocal of the 

number of different blocks will give accurate results for the first reentry 

to the a rea , but will be less accurate on subsequent entries. For adjacent 

blocks execution can pass between them and the formation of a loop is more 

likely. If the probability that execution p a s s e s through the a rea is high, 

which is true for most p r o c e s s o r s , it will tend to reach the end of the 

last block regardless of the starting point. In this c a s e the probability 

P ( | L tends to the value of 1. 

7.6 The Expected Number of Instructions Executed 

In the previous chapters the average number of instructions 

interpreted during erroneous execution in e a c h of the memory a r e a s , has 

been establ ished. Now by combining these values with the probabilities of 

passing through the different a r e a s , it is possible to estimate, the 

expected number of instructions executed. N l £ . between the original error 

and reaching the final outcome. In the following examples it has been 

obtained from:-

* ( 4- \ 
Nl^ = Pv-<l> • N I A W . Eqn. 7.10 

1=1 \ t? X l A V 7 
Where:- P y , ( i ) is the probability that execution is in the 'i'th memory 
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area at I states after the error. 

N l A y . is the average number of instructions executed for the 

corresponding memory area . 

A more accurate result could be obtained by consider ing the average 

number of instructions executed before each of the possible transfers. 

T h e s e could then be combined with the probabilities of the corresponding 

transfers, and would give individual values for e a c h of the outcomes. 

However, in most c a s e s the averages do not vary significantly, and 

therefore the overall value will be a reasonable approximation. The c a s e s 

where a large variation does exist are for input and unused a reas where no 

fault tolerance has been considered . 

Once the expected number of instructions has been establ ished for a 

particular system, the average length of time of erroneous execution c a n be 

determined from the clock frequency. This is a very important quantity 

when consider ing watchdog des igns , and is d i s c u s s e d further in sect ion 7.8. 

It is also useful in determining the probable damage, to the data within 

the system, that will be c a u s e d by the execution of erroneous instructions, 

this is studied in section 7.9. 

7.7 The Effects of Memory Map Usage on Erroneous Execution 

The previous sect ions have built up a model for the flow of execution 

following an erroneous jump to a random location in the memory map. From 

this model a ser ies of investigations have been carr ied out to study the 

effects of varying the amounts of different memory types. The improvements 

achieved by adding the fault tolerant features, descr ibed in the previous 

chapters , have also been studied. Clearly the results vary between 

p r o c e s s o r s , and they are d i s c u s s e d individually in the following sect ions. 
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7,7,1 Memory Maps of the 8085 

The values used to obtain results for this section are taken from the 

ana lyses in the previous chapters. For e a c h of the memory a reas both fault 

tolerant and non-fault tolerant structures are considered . For the data 

area the fault tolerant c a s e consists of single restarts separating 5 byte 

blocks, which is the optimum seeding with a 20% overhead. For the program 

area the results from the standard and modified versions of program B are 

used. Both the unloaded and loaded conditions of the bus are studied for 

the unused areas . To simplify the results, no a r e a s of input data are 

considered in this sect ion. 

From this information the effects of varying the amounts of e a c h 

memory a rea , and the addition of the fault tolerant features, have been 

establ ished. When varying the size of one memory type it is inevitable 

that at least one other must alter in size. To overcome this problem, the 

size of e a c h particular memory type was varied between 2 and 62 K bytes, 

while the other two filled the remainder of the s p a c e In equal proportions. 

The effects of adding the fault tolerant features can then be seen by 

comparing the results between the unmodified and the modified arrangements. 

T h e s e are shown in graphical form in figures 7.2, 7.3, 7.4 and 7.5. 

In e a c h c a s e the results for the non-fault tolerant memory a rea 

include a recovery routine, so that the execution of any restart generates 

an ordered recovery from the error. Without the routine, the restarts in 

the 8085 c a u s e execution to transfer to the low order a d d r e s s e s . In most 

c a s e s without any fault tolerance, the program will reside in this area . 

Previous results have shown that around 95% of these transfers will c a u s e a 

resumption of program execution. Therefore the removal of the recovery 

routine forces nearly all of the outcomes, which previously generated 
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recovery, to resume program execution. A se r i es of tests were carr ied out 

to check this arrangement, and they showed almost identical results for the 

formation of loops and the execution of halts. 

7.7.1.1 Fault Tolerant Program Area 

Figure 7.2 shows the effects of adding fault tolerance to the program 

area , by forcing restart Instructions into the operand fields. It shows 

that the probability of recovery i n c r e a s e s with the program size , but even 

with a large program most of the errors will result in a resumption of 

program execution. Therefore it indicates that the most significant 

improvements can be obtained by detecting the error after execution has 

reentered the program. 

However, this does not mean that no consideration should be given to 

the positioning of memory types. In most systems memory map decoding is 

arbitrary, and a number of different arrangements can be obtained with the 

s a m e hardware, and only minor modifications to the interconnections between 

decoders and memory devices. Therefore, if this concept is considered at 

the design phase , no added cost in hardware or software design will be 

incurred. Also the hardware reliability will not be reduced, as there are 

no additional components. 

The added advantage of detecting the error by the erroneous execution 

of a restart, is the speed of recovery, which will be initiated within a 

few instruction c y c l e s . If detection is carr ied out within the program, a 

long delay is possible before reaching the checking routines, and even then 

they may fail to detect the error. It would then remain uncorrected until 

detected at a higher level, and would result in a further delay. This is 

particularly important in critical high speed applications where errors 

must be detected and corrected quickly. 
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7.7,1.2 Fault Tolerant Data Area 

The effects of seeding the data area are shown in figure 7.3. As 

expected the improvements obtained increase with the size of the data a r e a , 

but in all c a s e s it is only moderate. This has to be offset against the 

increase in the amount of hardware necessary . In the example 20% extra 

memory is required which will produce a corresponding d e c r e a s e in the 

hardware reliability of the system. 

This gives a c lear demonstration that adding fault tolerance for a 

certain c l a s s of fault can reduce the reliability in connection with 

another fault type, and therefore can result in an overall degredation of 

the full system performance. It has been suggested by Castil lo et al (22) 

that transient failures are up to 50 times more frequent than permanent 

failures. This figure was obtained for medium sized computers which would 

normally be subjected to stable electr ical and environmental conditions. 

For industrial control conditions it is expected that the transient error 

rate is much higher, and therefore the seeding of the data a rea may produce 

an overall improvement. However, other methods of recovery can be employed 

which are more likely to give a greater Improvement. T h e s e are descr ibed in 

chapter 8, and require little extra hardware. 

A disadvantage with these methods is the delay between the fault and 

the detection of the subsequent errors , as mentioned in the previous 

section. This is further illustrated in figure 7.5 (a), where the effect 

on the average number of instructions executed before reaching the final 

outcome, is shown for data a r e a s with and without fault tolerance. The 

seeding of the data area results in fewer instructions being executed, and 

will give a more rapid recovery. it is therefore useful in time critical 

systems, particularly with large data a reas . 
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in systems which have extra capacity within the data a rea , an 

improvement will always be made by using the spare locations to seed the 

area with restarts, as no additional hardware is required. 

7.7.1.3 Fault Tolerant Unused Areas 

The effects of loading the bus. so that restart instructions are 

interpreted when execution enters an unused a r e a , are shown in figure 7.4. 

Once again the improvements achieved increase with the size of the a r e a , 

but in this c a s e they are quite substantial even for a small a rea . The 

only extra hardware that is required are 8 pull up resistors. T h e s e 

components are highly reliable when compared with integrated circuits, and 

will have a negligible effect on the overall hardware reliability. Also 

failure to open circuit by itself will not c a u s e total system failure, it 

will only result in the response to an error reverting to the non-fault 

tolerant condition. 

An additional advantage of this arrangement is the reduction in the 

number of erroneous instructions executed following a fault. This is shown 

in figure 7.5 (b). Not only does it reduce the time taken to initiate 

recovery, but it a lso reduces the probability of destroying data within the 

system. The advantages of adding fault tolerance to the unused a r e a s are 

very significant, and therefore should be incorporated in all 8085 systems. 

7.7.2 Memory Maps of the 6800 

The effects of adding fault tolerant features to the 6800 are shown in 

figures 7.6, 7.7 and 7.8. As with the 8085, the non-fault tolerant memory 

a r e a s are shown with a recovery routine. The restart on the 6800 reads the 

address , at which execution resumes , from the high order memory area . If 

the vector has not been set an arbitrary jump will occur , which is a s s u m e d 

to be random. The memory map is considered to be arranged with the data 
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area at the low order a d d r e s s e s , and the program area at the high order 

a d d r e s s e s . This Is the normal arrangement so that non-volati le memory is 

resident at the restart and interrupt vectors, and so that direct 

addressing can be used for frequently a c c e s s e d data in the zero page. With 

this situation a jump into the non-fault tolerant unused a rea results in a 

transfer back into the program area . Therefore most restarts, without the 

vector set. will c a u s e a resumption of program execution. 

Figure 7.6 shows the effects of adding fault tolerance to the program 

area . A similar result Is obtained to the 8085 and the s a m e conc lus ions 

can be drawn. 

For the data a rea , fault tolerance is added in the form of two restart 

bytes separating 10 byte blocks of data, representing the optimum 

arrangement for a 20% overhead. A very different set of results are 

obtained, and these are shown in figure 7.7. This Is due to the ratio 

between the number of halt and restart instructions in the 6800 instruction 

map. In this c a s e the seeding of the area with restarts does have a 

significant effect. especial ly for systems with large data a reas . 

Therefore it is more likely to produce an overall improvement in system 

performance despite the additional hardware required. In any c a s e , spare 

bytes should be used in pairs to separate blocks of data. 

For the unused a r e a , the results are shown in figure 7.8. Again a 

very different response is obtained from that given by the 8085. B e c a u s e 

of the memory layout, erroneous execution in the non-fault tolerant unused 

a rea , leads to a resumption of program execution. Therefore it might be 

suggested that fault detection could be carr ied out within the program. 

But as execution continues sequentially through the unused a r e a , a very 

long delay could be generated. For example, the average number of 
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instructions executed in a 6K block will be 1024, b e c a u s e triple byte n o n -

jumping instructions are interpreted. Therefore fault tolerance in the 

form of bus loading should be included in all 6800 systems to enable rapid 

recovery from erroneous execution in unused a reas . As with the 8085. this 

has a negligible effect on the hardware reliability. 

7.7.3 Memory Maps of the 68000 

For the 68000 significant Improvements cannot be obtained by forcing 

restart instructions into the operand fields, as very few erroneous 

instructions are interpreted during execution in program areas . As with 

the other p r o c e s s o r s , on most o c c a s i o n s it is n e c e s s a r y to detect erroneous 

execution in the program area from within the software. Very little effect 

is possible on the execution in data a reas as very few instructions will be 

executed. Also, approximately 95% of the transfers out of this a rea will 

be restarts in the form of exception handling. 

For the unused a rea it was shown, in section 6.2.4, that instruction 

fetches will generate restarts by reading the code for an unass igned 

operation. This occurs without any modifications. However in later 

versions of the device, the code may be ass igned a function. Therefore in 

view of future developments, a better solution would be to force a valid 

restart instruction onto the bus. 

The necessi ty of setting the restart vectors and providing a recovery 

routine are obvious from the d iscuss ions for the other p rocessors . For the 

68000 it is even more important b e c a u s e of the generation of restarts at 

e a c h unused location. In the same way as the 6800 an arbitrary jump will 

occur if the vector is not set. If the address to which execution 

transfers is also unused another restart will be generated. This will 

repeat in an infinite loop with no means of e s c a p e , except from external 
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intervention from hardware. Due to the large addressing range of 16 M 

bytes, it is likely that only a small proportion will be used , especia l ly 

for industrial control, and therefore the setting of the vectors is even 

more critical. 

7.7.4 Memory Maps of the 8048 

Memory map variations for the 8048 are fairly limited. With 12 

address l ines, instruction fetches are restricted to only 4 K of memory. 

Random a c c e s s memory is mapped to separate locations and cannot be executed 

as instructions. However fixed data can appear in the 4 K map and may 

therefore be read as instructions under fault conditions. 

Due to these tight constraints, very little c a n be done to the program 

area to improve error detection. Again It is n e c e s s a r y to carry out the 

checking p rocess from within the program. Seeding of the data a rea was 

investigated in sect ion 4.7.3, and showed that improvements were very 

slight due to the a b s e n c e of a restart instruction in the processor . 

However, as the data is always known before execution, it is possible to 

check for any s e q u e n c e s which would result in undesirable execution, s u c h 

as an infinite loop. If such s e q u e n c e s are found, the data could be 

rearranged to eliminate them. 

The type of execution expected for different unused blocks was 

d i s c u s s e d in section 6.2.3. Bus loading was shown to be particularly 

important, as without it there is a high probability of forming an infinite 

loop for certain arrangements. 

B e c a u s e there is less scope for the detection and correction of errors 

by the processor , it is n e c e s s a r y to rely more heavily on an external 

hardware monitor, such as a watchdog timer. However, this can result in 

long delays before correct execution is restored, due to the t ime-out 
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period of such devices. 

7.8 Number of Erroneous Instructions Executed 

In the previous sect ions the ana lyses have led to a figure for the 

expected number of erroneous instructions executed between the initial 

error and reaching the final state. This gives an indication of the 

probable length of erroneous execution, but does not produce limits for the 

most likely events. 

T h e s e can be achieved by assuming that the distribution of the 

probability. P ^ M - that N instructions or more will be executed, follows 

an exponential curve. P N )

( N ) Is then given by:-

P N | ( N ) = e ~ A " N Eqn. 7.11 

Where: - A is a constant. 

It c a n be shown that the expected value for this function is equal to 

the reciprocal of A. From this information it is possible to determine 

NI L > the limit of the number of instructions executed for a given 

proportion. P £ , of the errors. T h e s e quantities are related by:-

N I L = - N I E . In P E Eqn. 7.12 

Where: - N l £ is the expected number of instructions executed, determined 

from the previous sect ions. 

For example from equation 7.12. Nl^ takes the value 22.2 when N l £ is equal 

to 9.65 and P £ Is equal to 0.1. This means that where the expected number 

of instructions executed is 9.65. 90% of the errors will result in less 

than 23 instructions being executed before reaching the final states. This 

gives c lose agreement with figure 4.1 (a) for execution in the data area of 

the 8085, which has an average number of instructions executed of 9.65. It 

therefore suggests that this is likely to be a reasonable approximation for 

the overall execution. 
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These limits are useful in estimating the proportion of errors which 

will be detected by a watchdog for various time out periods. Another use 

for these values is in estimating the damage to data within the system. 

This is d iscussed further in the following section. 

7.9 Probability of Data Corruption 

Having establ ished a method of estimating the number of erroneous 

instructions executed, it is possible to determine the probable effects 

that this will have on the data within the system. Every instruction has 

the effect of changing at least one quantity, as they ail alter the 

contents of the program counter. For the 8085, the effective number of 

instructions which change other quantities is shown in table 7.1, and the 

probability that a single instruction will not c a u s e a corruption is a lso 

given. This a s s u m e s that the instructions interpreted are totally random 

in nature. For N Instructions the probability, P

N < ~ . ( N ) , t n a t n ° corruption 

o c c u r s , is given by:-

P N C ( N ) = P N C ( 1 ) N E q n 7 1 3 

Figure 7.9 shows how the probability, that no corruption will occur to 

the accumulator and the B register, d e c r e a s e s as more instructions are 

executed. 

From values obtained using the previous sect ion, this leads to the 

estimation of the lower bounds on the probability that no corruption to a 

particular data element will occur . Using the previous example, of less 

than 23 erroneous instructions being executed, the probability of no 

corruption occurr ing to the B register in an 8085 Is 33.0%. Whereas the 

probability of no corruption to the Accumulator is only 0.01%. 

7.10 Summary 

This chapter has used the information derived from the previous three 
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chapters , to determine the flow of erroneous execution following a jump to 

a random location in the memory map. The effects of varying the amounts of 

different memory types have been studied for a variety of p r o c e s s o r s , and 

the relative merits of the different methods of introducing fault tolerance 

to e a c h of the areas have been establ ished. 

It has been shown for all p rocessors that bus loading, to c a u s e 

restarts in unused locations, is a very effective way of initiating rapid 

recovery. For example, with the 8085 the proportion of errors resulting in 

recovery c a n be increased from around 20% to over 90%. This level of 

improvement is obtained when only a small proportion of the memory map is 

used, which is the c a s e in most small s c a l e industrial controllers. 

The positioning of memory a r e a s , to introduce particular values into 

the operand fields of programs, provides improvements of less than 10% and 

also i n c r e a s e s the speed of recovery. Although the benefits are small the 

method should be considered when designing systems, as these improvements 

are obtained without involving any additional costs . 

Seeding data a r e a s with restart instructions requires a substantial 

inc rease in hardware If spare capacity is not available. Not only does 

this i n c r e a s e costs but it also reduces the overall hardware reliability. 

Only the 6800 showed the capability of a significant improvement in 

recovery, and therefore it Is the only processor for which it is worth 

considering the use of this method. However, In order to provide an 

overall improvement the increase In reliability due to the recovery from 

transient faults must be greater than the reduction in reliability due to 

permanent hardware failures. Therefore significant improvements can only 

be obtained, by this method, in systems which suffer from a high proportion 

of transient failures. 

129 



Finally, methods of determining the limits of the number of erroneous 

instructions executed, have been presented. These are used in the 

following chapter, where examples of adding fault tolerance to a speci f ic 

system will be studied. 
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C H A P T E R 8 

Select ion of Error Detection Mechanisms 

8.1 Introduction 

In the previous chapters it has been shown that corruption to the flow 

of program execution can occur in a number of ways. For this reason , 

methods have been proposed for the detection of erroneous execution so as 

to enable the early initiation of recovery p r o c e s s e s . So far the 

individual methods have been considered in isolation when applied to 

general systems. This chapter looks at a specif ic system and investigates 

the effects of adding e a c h of the mechan isms , to establ ish which ones 

should be adopted. In addition, some hardware mechan isms to detect 

erroneous execution are also d i s c u s s e d . 

8.2 Speci f ic System Considered 

The specif ic system considered Is a general purpose single board 

computer based on the 8085 microprocessor . It has been used for a number 

of applications within the British G a s Corporation. The system contains 4K 

EPROM. 2K RAM. four 8 bit input ports and four 8 bit output ports. The 

memory locations at which these devices can be a c c e s s e d are shown in figure 

8.1. The EPROM, RAM and e a c h input port are se lected as 4K blocks, 

therefore the RAM is mapped into two adjacent 2K blocks and e a c h individual 

port can be a c c e s s e d from 4096 different locations. All the output ports 

appear within a 4K block and are individually selected by the states of 

four address lines. Therefore if all four lines are active, within the 4K 

block, all the output ports will be selected together. This means that 

individual output ports can be se lected from 2048 different a d d r e s s e s which 

appear in blocks of 256 locations. Pul l -up resistors are connected to all 

the data lines so that the value F F is read from all unused locations. 
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8.3 The Effects of Adding Error Detection Mechanisms 

A number of ana lyses , on the effects of adding error detection 

m e c h a n i s m s , have been carr ied out based on the layout of the system 

descr ibed above. Results from these investigations are given in table 8.1. 

Some fault tolerance was considered in the design of the system and has 

already been incorporated. Therefore, to show the advantages of including 

those features, additional studies have been performed on the corresponding 

design without the features. 

8.3.1 The Non-Faul t Tolerant System 

The results for the entirely non-fault tolerant arrangement are 

labelled 'A' in table 8.1. They show that a large number of jumps into 

random locations within the memory map terminate with the entering of the 

wait state, by the execution of a halt instruction. This is due to the 

property of the unused locations which tend to lead execution towards the 

halt instructions. Another observation made is the large number of 

erroneous instructions executed before reaching one of the final states, 

and this is due to the large portion of the memory which is mapped to very 

loosely decoded input ports. In most c a s e s execution p a s s e s straight 

through these a r e a s repeatedly executing the s a m e instruction several 

hundred times. 

From this set of basic results, the aim is to se lect error detection 

m e c h a n i s m s to improve the response of the system under fault conditions. 

It has been shown previously that some methods can produce an overall 

degredation. despite an improvement with regard to an individual fault 

type. This is usually as a result of increased complexity which is 

inevitable when adding extra features. Therefore, it is c lear that any 

additions must be both simple and effective against the considered fault. 
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For the error detection mechan isms studied in the previous chapters it 

has been shown that their effectiveness is related to the size of the 

particular memory block. Therefore the greatest improvements are obtained 

by implementing the features associated with the largest blocks. For the 

system considered , these consist of unused a reas and input ports. 

8.3.2 Removal of Input Areas from the Memory Map 

The input ports take up one quarter of the memory map, and therefore 

will have a significant effect on the respose to a random jump. 

Arrangement ' B ' cons iders the effect of removing the input ports from the 

memory map. Table 8.1 shows that little change occurs in the probability 
0 

of reaching each of the final outcomes. However, a vast d e c r e a s e , of 

nearly 95%, in the average number of erroneous instructions executed, is 

produced. 

A similar response is observed in section 8.3.4 when the ports are 

removed while other features are present. A reduction in erroneous 

execution is Important to limit the amount of damage which might be done 

during that time. It a lso enables rapid recovery, which is required in 

control situations where time is crit ical. It has been indicated so far 

that the aim is to initiate a recovery p rocess . However, the recovery 

p r o c e s s may not be s u c c e s s f u l if too much damage is done to the data within 

the system. A d iscuss ion of the effects of delays in initiating a recovery 

routine, on the s u c c e s s of recovery. Is presented by P r e e c e et al (81). 

Therefore the improvements obtained by removing the ports are highly 

desirable, and can be easily implemented in this c a s e . The 8085 allows for 

separately mapped I/O by the use of the IO/M line from the processor . This 

can be connected directly to the enable pins on the input buffers, and does 

not require any other logic. Therefore, no detrimental effects to the 
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response to other fault types is expected, and clearly this modification 

should be included. 

8.3.3 Addition of a Recovery Routine 

In the previous arrangements d i s c u s s e d , no specif ic recovery is 

possible, as no provision has been made for it to occur . On approximately 

one quarter of the o c c a s i o n s , execution does resume with the interpretation 

of valid instructions. In a control application where all data is read in 

at the beginning of each cyc le , the resumption of program execution will 

give full recovery at the start of the next cycle . However, it is normally 

the c a s e that information is passed from previous calculat ions, and 

therefore a resumption of program execution will not provide acceptable 

recovery. This mechanism is a lso unsuitable in c a s e s where a single wrong 

output can be harmful to the system. 

In these c a s e s it is n e c e s s a r y to include recovery software to 

generate an ordered return to correct execution. This is written most 

effectively as a restart routine, to enable easy a c c e s s and to 

automatically initiate recovery when a restart instruction is erroneously 

executed. The effect of adding a recovery routine, which is entered by any 

restart instruction, is given by arrangement ' C in table 8.1. It shows 

that over 15% of the final outcomes transfer from a resumption of program 

execution to a complete recovery. However, the full benefits are not 

real ised until efforts are made to force erroneous execution to interpret 

more restarts. 

The addition of a recovery routine does add to the complexity of the 

system. If spare capacity is not available extra memory will be required 

which will result in a reduction in overall hardware reliability. However, 

provided that the routine is smal l , failures resulting from its 
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implementation will be negligible in relation to the benefits obtained, and 

therefore it should be included. 

8.3.4 Forcing Restart Instructions into the Unused Areas 

The majority of the memory map is unused, and it was shown in chapter 

6 that these locations could easily be made to appear as restart 7 

instructions by the addition of pull-up resistors to the data l ines. This 

modification is given in 'D ' . and represents the system as it was designed, 

it demonstrates the vast improvements which can be obtained by this method, 

lifting the proportion of errors leading to recovery to well over 90%. 

However, the number of instructions executed before recovery can still be 

very high, and this is due to the input a reas in the memory map. 

Arrangement ' E ' shows the effect of removing the input ports from the 

map while retaining the other features. As before, very little change 

occurs in the proportion of the final outcomes, b e c a u s e , as indicated 

previously, most execution p a s s e s straight through and r e a c h e s the unused 

a r e a s following these blocks. However, the number of erroneous 

instructions executed is reduced to single figures. in 90% of the c a s e s 

less than 4 will be executed. 

As Indicated above, implementation of this feature is straight forward 

and has a negligible effect on hardware reliability, and should therefore 

be included in the system. 

8.3.5 Modifying the Program and Data Areas 

it was shown, in chapters 4 and 5. that modification to the data and 

program a r e a s does not produce large improvements In the error detection 

process . Both these a r e a s are relatively smal l , in the system being 

studied, and therefore little improvement is to be expected. The effects 

of adding methods of encouraging recovery during erroneous execution in the 
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program and data areas are shown In arrangements F, Q. H and I. For the 

program area , this consists of organising the software so that more restart 

instructions appear in the operand fields. For the data a r e a s , restart 

instructions are interspersed within the memory to limit erroneous 

execution. Both methods do provide further improvements, but only of the 

order of 1%. 

The implementation of these techniques is complex with the placing of 

tight restrictions on the software, or with the addition of extra hardware. 

These both require significant development r e s o u r c e s , and can themselves 

lead to design errors. The costs involved in implementation are not 

justified for the level of improvements that can be obtained, and therefore 

these techniques should not be included. 

8.3.6 Detection Within the Software 

The previous sect ions have shown that the preferred arrangement , for 

the speci f ic system cons idered , is labelled ' E ' in table 8.1. In this c a s e 

recovery from erroneous execution is expected on 93% of the o c c a s i o n s . 

However, 6% of the time execution will resume with the valid interpretation 

of instructions. Some of these can be detected by a watchdog timer, and 

this is d i s c u s s e d below. For the other c a s e s it is n e c e s s a r y to detect the 

errors from within the software. 

If these errors are not detected, software fault tolerance against 

other failures, such as memory errors , may operate incorrectly. For 

example, the errors could c a u s e a jump into a reasonab leness test without 

the preceeding code being executed. If the test failed the p rocessor would 

retry that particular block of code and reapply the test. It could then 

interpret the error as a transient and continue execution assuming that 

full recovery had been achieved, when in fact a higher level of recovery 
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was required. 

The flow of execution c a n be monitored in a number of ways. 

Chudleigh (23) suggests the use of a ' re lay- runner ' in which a 'baton' or 

password is carr ied along with execution. This can be implemented with a 

single register which is incremented periodically during execution. Then 

at various points in the control loop the contents of the register is 

checked against the expected value. A d iscrepancy indicates that execution 

has not followed the correct path. This technique does not require a 

substantial amount of extra code. All that is required are single byte 

increment instructions d ispersed throughout the program and a few 

compar isons to check the register contents. 

Alternatively, the flow of execution can be monitored by checking the 

return a d d r e s s e s before leaving subroutines, or by periodically checking 

the current stack level. However, the use of the stack has been shown to 

be a possible source of errors , and can be eliminated completely while 

still retaining subroutines. The return address can be loaded into the HL 

register pair and then the PCHL Instruction c a u s e s the required transfer of 

control. An advantage of this arrangement is that the address can be 

stored in multiple locations and compar isons made between the values before 

a transfer of control o c c u r s . 
* 

By using the techniques proposed above, together with those from the 

previous sect ions , erroneous execution will result In the initiation of the 

recovery p r o c e s s on around 99% of the o c c a s i o n s . 

8.4 Watchdog Timers 

Watchdog timers can be used to detect a proportion of the errors 

resulting from erroneous execution. Some of the factors which must be 

considered when designing them have been Indicated in previous chapters . 
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Their importance can now be seen from the results obtained for the system 

descr ibed above. Control systems are usually configured so that the timer 

is updated periodically: typically once during e a c h control loop. However, 

tight constraints are not normally used. For example. Debelle et al (26) 

descr ibe a control system for a power station boiler where the watchdog is 

updated once every second . If a fault occurs immediately after an update 

then a full second of erroneous execution could follow, and this 

corresponds to the execution of approximately one million instructions. 

Clearly a great deal of damage could occur in that time. More seriously, 

if a simple updating mechanism is used , such as an a c c e s s to a single 

a d d r e s s , then this could occur erroneously allowing further incorrect 

execution. 

However, the previous results have shown that, for a non-fault 

tolerant system, erroneous execution will only last for a few thousand 

instructions before a final state is reached. A watchdog will detect most 

c a s e s where a loop is formed or where a wait state is entered, as the 

trigger is unlikely to occur at the correct interval. A watchdog is less 

likely to detect an error when execution resumes the interpretation of 

valid instructions as the trigger s e q u e n c e will reappear. 

With the addition of the error detection m e c h a n i s m s , the watchdog is 

less effective as halts and loops are virtually eliminated. if the t ime­

out period is longer than twice the time interval between updates then no 

errors , which resume program execution, will be detected. This is b e c a u s e 

the worst c a s e is where a fault c a u s e s execution to jump from a point 

immediately before an update, to a point immediately after. By reducing 

the time-out period to the s a m e length as the update time, half the errors 

will be detected. For the other half execution effectively jumps forward 
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and generates an update before the normal time. This situation can be 

detected by setting a minimum time. Taken further, the watchdog could be 

arranged to detect the update at a speci f ic clock cyc le , and could then 

detect any s e q u e n c e of erroneous execution. 

This p laces tight restrictions on both the hardware and the software, 

and would probably lead to more failures due to other failure m e c h a n i s m s . 

Therefore the use of watchdogs for the detection of erroneous execution is 

ineffective If other mechan isms have been incorporated. However, it is 

recognised that they must be built into systems requiring high reliability 

to provide a level of recovery to cater for unanticipated faults. 

8.5 Other Hardware Implemented Detection Mechanisms 

A number of other hardware mechan isms to detect erroneous states can 

be used, and a selection of these, applicable to the 8085. are descr ibed 

below. 

8.5.1 Walt State Recognition 

The wait state can be detected, from the status l ines, by the simple 

circuit shown in figure 8.2. A rising edge appears on the output as the 

wait state Is entered. This can be connected directly to the TRAP pin on 

the processor , so that the interrupt routine is initiated immediately after 

the halt instruction has been executed. Recovery from this state would 

also occur with a watchdog timer, but a long delay could result. 

8.5.2 Illegal Instruction Fe tches 

The status lines also indicate when an operation code fetch is being 

performed. Therefore, the circuit shown in figure 8.3 can be used to 

detect illegal instruction fetches outside the program area. The chip 

enable ( C D s ignals , from all devices containing instructions, are ANDed 

together at gate 1, which produces a high output when none of the dev ices 
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are se lected . This s ignal , together with the status l ines, produces a 

positive going pulse on the output of gate 2 if an instruction fetch is 

attempted from an invalid area. This could also be connected directly to 

the TRAP pin on the processor . 

Illegal instruction fetches from the operand fields within the program 

areas could be detected by the addition of an extra bit assoc ia ted with 

e a c h location. The bit corresponding to a valid instruction could be 

programmed to 0 while operands or data would be labelled with a 1. 

Detection of an illegal instruction fetch within the program area could 

then be achieved by replacing the output from gate 1 in figure 8.3 with the 

extra data line. By adding a pull-up resistor to the line, all illegal 

instruction fetches from any memory location would be detected. 

This arrangement requires a substantial amount of extra hardware and 

would not be worthwhile In the system being studied. The hardware could be 

reduced by the development of 9 bit wide read only memories, as this would 

limit the extra logic to only a few gates. 

8.5.3 Detection of a Write Outside RAM Areas 

A simple development from the circuit shown in figure 8.3, allows the 

detection of a write into a program area , and a suitable circuit is shown 

in figure 8.4. It is strongly recommended that programs should be stored 

in read only memory for control applications, and in these c a s e s the above 

circuit will be applicable. However, if it is n e c e s s a r y for the program to 

be altered during normal operation, the circuit must be modified to disable 

the output during loading of the program. At other t imes, while enabled, 

it will provide some protection against corruption of the code. 

This concept can be extended to the detection of any writes to 

locations outside random a c c e s s memory a reas . A suitable circuit is shown 
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in figure 8.5. where the chip enables ( C D are from all the RAM devices. 

8.5.4 Detection of Undeclared or Unused Instructions 

Another illegal state which can be detected is the execution of an 

undeclared operation code. This has been investigated by Marchal and 

Courtois (63) in connection with permanent s tuck-at failures on the data 

l ines. They suggest that after failure the average detection time is 11 

instruction cyc les for both the 6800 an 68000. This is a useful mechanism 

in the 68000 b e c a u s e it is already built into the device. However, with 

other p rocessors a substantial amount of extra hardware is required, and 

therefore is not worthwhile. The effectiveness of this m e c h a n i s m , in 

detecting erroneous execution after a transient fault, will be very low for 

the specif ic system studied with the fault tolerant features added. This 

is b e c a u s e very few erroneous Instructions are executed. 

The detection p rocess is dependent on the number of undeclared 

instructions in a processor . Clearly, it will be more effective for the 

6800. which has 59 undeclared c o d e s , than for the 8085 which has only 10. 

However, this concept could be extended further to detect all unused 

operation codes within a particular program, but would require c h a n g e s in 

the hardware when different instructions are used. Investigations into 

instruction usage by Lunde (60) revealed that only 75% of the codes were 

used , and that half of these accounted for 99% of the execution time. 

Therefore programming with a reduced instruction set would not be severely 

restrictive, and could be imposed for all programs. But even with this 

arrangement detection of erroneous execution will still be limited. 

8.5.5 Voltage Level Detection 

The hardware mechan isms descr ibed above have all been designed to 

detect errors after they have been produced. The voltage level detection 
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mechanism attempts to prevent errors occur ing by suspending execution while 

the output from the power supply is insufficient to drive the system. This 

mechanism can be implemented with a single 8 pin integrated circuit. The 

Texas 7705 monitors the power supply rail and holds the reset line, to the 

processor , low while the voltage is less than 4.75 volts. When the supply 

r ises above this value the reset is held low for an additional time 

interval, which is set by an RC network. This allows the internal state of 

the processor to stabil ise before correct execution c a n commence . 

Interruption testing, similar to that descr ibed in chapter 2. was 

repeated with the voltage level detection circuit added. For short 

interruptions, which did not c a u s e the supply to drop below 4.66 volts, no 

errors were detected. For all other interruptions a full reset occurred 

when the supply was restored. 

A disadvantage of this arrangement is that the delay in restoring 

execution can be relatively long. For example, a delay of 10 ms is 

recommended for the 8085 (119). and 50 ms is recommended for the 8035/8048 

(120). Tests on the processor , descr ibed in chapter 2, showed that it 

could recover from an interruption which c a u s e d the supply to drop to as 

low as 2.5 volts. However, disruption to program execution will o c c u r 

while the supply is between 2.5 and 3.8 volts, but once it has been 

restored, the recovery mechan isms descr ibed above can initiate the recovery 

p rocess within m i c r o - s e c o n d s . In c a s e s where rapid recovery is required, a 

voltage level detection circuit should be set to activate at around 2.5 

volts, and the other mechan isms can be used to recover from smal ler dips in 

the supply. Alternatively, a second level detection circuit could be set 

at a higher level to initiate an Interrupt routine as soon as the supply 

r e a c h e s the level above which no errors will occur . 
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8.6 Choice of Mechanisms for Genera l Systems 

The previous sect ions have shown that hardware mechan isms to detect 

erroneous execution, are not effective for the system descr ibed in section 

8.2. with fault tolerance added. This is b e c a u s e it has a good response to 

erroneous execution, which is due to the large proportion of the memory map 

which is unused. In systems where more of the map is populated the 

response will be different. However, the unused a reas and input a r e a s 

should be looked at first before considering other parts of the map. 

For systems containing a large data a r e a , the hardware mechanism to 

detect instruction fetches outside the program area will be effective. For 

large program a r e a s the mechanism to detect instruction fetches from the 
but 

operand and data fields should be considered,^they can only produce small 

improvements. This is b e c a u s e most erroneous jumps into program a r e a s 

result in an immediate resumption of the interpretation of valid 

instructions. Therefore detection within the software will give greater 

improvements than the hardware method. 

This type of procedure to se lect detection m e c h a n i s m s can generally be 

followed for other systems. However, the e a s e of implementation of some 

mechan isms will depend on the particular processor . For example, the 

detection of an Illegal instruction is built into the 68000. and in order 

to generate recovery a suitable routine Is all that is required. 

Conversely, the indication of an operation code fetch in the 6800 is not 

readily available, and therefore instruction fetches from illegal locations 

are difficult to detect. For single chip p r o c e s s o r s , such as the 

8035/8048. there is less scope for the implementation of detection 

mechan isms as few signals are available externally. For these reasons 

mechan isms must be chosen with consideration for both the memory map usage 
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and the e a s e of implementation. 

8.7 Summary 

This chapter has investigated the implementation, on a speci f ic 

system, of the detection m e c h a n i s m s for erroneous execution, which were 

studied earlier. It has shown that a very high level of detection c a n be 

achieved by minor hardware c h a n g e s , and with the addition of some extra 

software. 

Other detection mechan isms have been studied, and their effectiveness 

for different systems has been indicated. It has been establ ished that the 

choice of m e c h a n i s m s , to achieve the greatest improvements in reliability, 

depends on both the memory map usage and the processor within the system. 
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C H A P T E R 9 

Development of a Facility to Test Redundant Systems 

9.1 Introduction 

This chapter presents the development of a facility to test the 

response of digital control systems which are subjected to a variety of 

transient disturbances. Testing is n e c e s s a r y to check the correct 

functioning of the error detection and recovery mechan isms . With redundant 

software parts of the code will not be executed under normal operating 

conditions. The test facility a ims to simulate faults to enable all paths 

in the program to be executed. 

Several other methods of testing were considered. For example, field 

trials provide accurate results but. due to the infrequent rate of failures 

in digital sys tems, they require a considerable length of time before any 

improvements c a n be establ ished. Another important factor is that failure 

of the system in the field could have ser ious c o n s e q u e n c e s , although this 

can be avoided by testing the system in a monitoring mode without any 

direct control. 

To reduce the period of testing, methods can be used to i n c r e a s e the 

failure rate by subjecting the system to a hostile environment. This 

approach was adopted for the tests, descr ibed in chapter 2, to investigate 

failure mechan isms. During those tests it was establ ished that different 

hardware did not always react in exactly the s a m e way. Therefore, to 

obtain a representative set of results for all hardware it is n e c e s s a r y to 

test a large number of components. 

A solution, which speeds up the whole procedure, is to use simulation. 

This approach was adopted for the Saturn V guidance computer, and is 

descr ibed by Ball and Hardie (5). In this c a s e all internal functions of 
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the computer were simulated at the gate level, and the effects of single 

node stuck at 0 or 1 faults were investigated. A less detailed approach 

was adopted by Courtois (24) for a 6800 system. Instead of consider ing the 

gate level of the processor , a functional simulation was developed. 

Clearly, this reduces the amount of work required in the development of the 

model. 

An alternative solution is to simulate faults on an actual processor . 

This eliminates the need for a detailed knowledge of the internal workings 

of the device, and prevents the introduction of errors into the simulation 

at this stage. A small 8085 based system was developed using this 

approach, and it is descr ibed in detail in the following sect ions. It was 

designed around an Intel 8085 system design kit (SDK) board, which has an 

additional memory card containing up to 6K RAM and 8K EPROM. Hardware 

modifications to the printed circuit boards were kept to a minimum to allow 

the system to be used for other purposes. 

9.2 Fault Injection 

To enable full testing it is n e c e s s a r y to simulate faults so that the 

recovery process c a n be observed. A number of methods of fault injection 

were considered. A simple solution would be to corrupt the data, address 

and control buses by deliberately holding individual l ines high or low. A 

more sophisticated version could involve some logic circuitry to monitor 

the lines and inject faults when a certain pattern appears , or at defined 

time Intervals. 

This sort of approach has been adopted by Decouty et al (27). Their 

system intercepts s ignals before reaching individual chips in a similar way 

to the memory masking circuit descr ibed below. However, they are careful 

not to generate any short cicuits which clearly c a n occur in real systems. 
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Therefore, only a limited number of different faults are allowed, and these 

consist of s t u c k - a t - 0 and s tuck-at -1 conditions. 

An alternative arrangement is to use a second microprocessor which 

s h a r e s part of the memory with the main processor , it would then be able 

to monitor the execution of the test routines and, when predefined 

conditions occur , inject faults into the system. T h e s e could involve 

corruption of the system buses , or data stored in the shared memory. A 

wide range of faults could be simulated in this way, with the exception of 

corruption of the internal registers of the microprocessor . For these to 

be changed to specif ic values it is n e c e s s a r y for the p rocessor to execute 

valid load instructions, and therefore cannot be achieved externally. 

The dual processor approach has been used by Kuczynski and Pr ice (54). 

but was limited to investigating the specif ic fault condition of single bit 

corruptions in the program code. To achieve this, the s e c o n d processor 

copies the corrupted program into a shared memory block which emulates the 

EPROM of the system under test. The test system is then started and the 

following execution observed. Although this has given some useful results 

for that particular fault condition. It cannot be used to simulate other 

faults. 

The solution which was finally adopted is much more flexible and only 

uses a single microprocessor . External logic circuitry generates an 

interrupt during execution of the test program. The interrupt routine c a n 

be written to simulate a large number of faults, and corruption of the test 

program, stored data and internal registers can be implemented. The timing 

of the interrupt is set by the control software, so both the type of fault 

and the position in the program, that it o c c u r s , can be easily altered. 
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9,3 Generation of Interrupts 

To provide thorough testing, it is desirable to inject faults in as 

many p laces as possible. Interrupts are only recognised at the completion 

of execution of an instruction. Therefore to inject the greatest number of 

faults, by this method, it is n e c e s s a r y to c a u s e an interrupt during the 

execution of e a c h instruction. 

In order to generate interrupts at s u c c e s s i v e locations in a program, 

the expansion 8155 (Memory- I /O-Timer) i.e. on the SDK board is used. The 

timer section is designed to give an output after a certain number of 

pulses have been applied to its input. The number of pulses needed before 

triggering is programmable, and can be set by the system software. In 

order to be able to c a u s e an interrupt during s u c c e s s i v e locations in the 

program it is n e c e s s a r y to generate one pulse for e a c h instruction. This 

is achieved by detecting an operation code fetch which can be determined by 

the condition of the status lines SO, S I and IO/M". For an o p - c o d e fetch 

they are 1.1.0 respectively. Combining these together with logic is 

insufficient for the input to the timer, as this conditon remains steady 

throughout certain single byte instructions. For example, a string of no 

operations (NOPs) will produce a single pulse. By including the status of 

the read (RD) line, which is low for only a short period of the o p - c o d e 

fetch, it is possible to generate a single pulse for e a c h individual 

instruction. 

The logic requires that the output is high when SO and S I are high 

together with 1 0 / ^ and RD being low. In boolean a lgebra: -

F = A . B . C . D Eqn . 9.1 

= A . B + C . D Eqn. 9.2 

= A . B + C + D Eqn. 9.3 
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Where: - F is the output. 

A. B. C and D are the inputs. 

The circuit shown in figure 9.1 satisfies the logic given by equation 

9.3 by using OR. NOR and NAND gates. However, to reduce the number of 

devices n e c e s s a r y , only NOR and NAND gates were used. Figure 9.2 shows the 

final layout that is wired onto the SDK board. SO, S I . IO/M and RD* signals 

are all taken from the expansion bus. and the TIMER IN signal is connected 

to the input of the 8155. Output from the Timer (TIMER OUT) is connected 

to the interrupt 7.5 (RST 7.5) pin on the 8085. This pin is also used for 

the Vector Interrupt (VECT INTR) key on the SDK keypad which incorporates 

an R C network to prevent multiple interrupts. Therefore, to ensure a quick 

sharp response to the timer out s ignal , the RC network has to be 

d isconnected. 

9.4 Memory Boundary on Test Programs 

The test facility descr ibed so far is capable of providing useful 

results for faults involving the data of a test routine. However, if 

faults are injected into the program itself, causing corruption of the 

program counter, then control could be passed to the SDK monitor. To 

prevent this from occurr ing, additional hardware was designed to restrict 

the test routine to a section of memory away from the monitor. However, 

during execution of the control program, and during the interrupt routines, 

it is n e c e s s a r y to allow the processor to have a c c e s s to all locations. 

Due to the layout of the system It was not possible to restrict the 

test routine to half of the memory map, as this would prevent the control 

program from using the expansion memory board. It was therefore decided to 

allocate the top quarter (16K) of the map for use by the test routine, and 

this requires that the top two address lines (A14. A15) are held high 

149 



during execution of the routine. To satisfy the buffers and address 

decoders , it is n e c e s s a r y to control the two address lines before they 

reach the SDK board. 

The solution adopted was to construct a small circuit ra ised above the 

SDK board. A 40 pin wire-wrap socket , plugged into the normal p rocessor 

location, provides the electr ical connect ions, and the mechanica l support, 

for the extra circuit board. All of the lines make direct contact between 

the 8085 and the SDK board, except the pins associa ted with A14 and AT5 

which are diverted through the extra logic to enable some memory a c c e s s e s 

to be restricted. 

Careful consideration was needed between the timing of the control 

software and the masking of the address lines to ensure the correct 

transition between the control and test programs. This is achieved by 

writing to certain ports, which the extra logic circuitry detects and 

latches. However, the masking is not altered until the processor has read 

the following jump instruction. 

Four transitions to and from the test routine occur for e a c h run. 

Three of these, (from the control program to test routine, fault routine to 

test routine, and test routine back to the control program) are e a c h 

catered for by the above solution. The fourth transition, c a u s e d by the 

fault injecting interrupt, is treated in a slightly different manner. The 

logic detects the Interrupt acknowledge on the status l ines, and waits 

until after the return address has been pushed onto the stack, before 

releasing the address l ines. 

Figure 9.3 shows the circuit diagram for the address masking logic. 

In addition to the details shown. 1 Kilo-ohm pull up resistors have been 

connected to all the data and control s ignals taken from the micro -
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processor , and 0.1 uF capaci tors have been connected a c r o s s the power 

supplies to most of the devices. 

The circuit operates in the following manner. Writing any value to 

one of the ports F C . FD. F E and F F . will c a u s e a short low level pulse at 

the output of i.e. 3. and presetting of flip-flop 4a will occur , forcing 

the Q" output low. The SO status line remains high until the end of the op ­

code fetch for the jump instruction, and then remains low until both 

address bytes have been read. During this time the output from the OR gate 

(5a) will have changed from a high level to a low level. The rising level 

of the SO line will produce a similar rise on the output of 5a. and 

triggering of both flip-flops 4a and 6b will occur , c learing 4a. Fl ip-f lop 

6b has its inverted output fed back into its input, so that the output is 

toggled e a c h time the device is triggered. The Q output is connected to 

two OR gates, 5c and 5d, these form the link between the p rocessor and the 

SDK board for the two address lines A14 and A15. When the Q output from 6b 

is high, A14 and A15 on the SDK board remain fixed high, whereas with a low 

output they follow the normal outputs from the processor . 

For the transition c a u s e d by the interrupt, the bottom half of the 

circuit is activated. After the interrupt has occur red , the status l ines 

indicate that it has been acknowleged. A short low level pulse is 

generated at the output of 2a which presets the flip-flop 4b. The S I 

status line goes low during the writing of the return address onto the 

stack. At the end of this operation a rising edge occurs at the output of 

5b. triggering the flip-flop 6a and setting its "0* output low. This c lears 

6b allowing normal address ing , and also c lears both flip-flops 4b and 6a. 

Provided that the logic is triggered in the correct s e q u e n c e of. an 

output to port, an Interrupt, and two more outputs to port, then the 
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desired masking will occur . To ensure the correct initialisation of the 

logic, the reset line is connected to flip-flop 4a and. through the NAND 

gates 7a and 7b. to flip-flop 6b. Therefore when a reset is activated on 

the SDK board. 4a and 6b are c leared which in turn c lear both 4b and 6a. 

9.5 Software Design 

When designing the control software three main criteria were 

cons idered , speed of operation, e a s e of reprogramming and flexibility. The 

time taken to complete each individual test is of great importance, as 

injecting faults during the execution of e a c h instruction can lead to a 

very large number of runs. Therefore the control software needs to be 

short and efficient. However, to enable quick changeover to injecting a 

different fault, or testing another routine, it was desirable to make 

reprogramming as simple as possible. T h e s e two criteria have conflicting 

requirements, so a compromise solution was adopted. In addition to this 

the overall flexibility of the system had to be considered. The aim was to 

avoid the necessi ty of rewriting most of the basic control software when 

new test routines or fault types are developed. 

Figure 9.4 shows the final structure of the program, and fully 

commented listings appear in Appendix 6. Basical ly , the test routine is 

executed a number of t imes, injecting a fault in s u c c e s s i v e points of the 

program, until e a c h location has been tested. It is reloaded into the test 

a rea before e a c h run so that corruption of the code does not affect later 

tests. However, this is only representative of systems which execute 

programs stored in RAM. For high reliability applications the software 

must not be held in volatile storage to ensure that the program cannot be 

corrupted during erroneous execution or other disturbances. To simulate 

both arrangements of volatile and non-volatile program memory, an EPROM 

152 



emulator can be mapped into the test a rea and the write line can be 

connected , or not. accordingly. 

In more detail, the program performs the following operations. It 

starts by storing the initial value of the timer trigger into memory for 

future use. An opening m e s s a g e is displayed on the terminal requesting the 

end address of the test routine, and the routine is then copied into the 

test a rea . The 8155 Timer i.e. is set so that it will generate the 

interrupt at the correct moment, and the initialisation subroutine is 

cal led to set initial values in the system. The timer is started, and the 

masking hardware, descr ibed above, is enabled to restrict execution to the 

upper 16K memory block. Control is passed to the test routine and 

continues until the interrupt is generated, releasing the masking 

circuitry. The interrupt routine sets the upper two address bits on the 

stack pointer, before retrieving the return a d d r e s s , to ensure that it is 

read from wtihin the upper memory area . The address is then saved a s part 

of a jump instruction at the end of the interrupt routine. The software 

has been arranged so that the last two bytes are mapped into RAM. to enable 

the return address to be written into them, whereas the rest of the program 

is in EPROM. 

All the internal registers are then saved , so that the fault injection 

routine does not affect the internal status of the processor unless this is 

intended. The 'fault' is then injected by call ing a subroutine which 

c h a n g e s the required data. The stack pointer and internal registers are 

reloaded with their original or modified values, the address mask is set. 

and execution returns to the test program at the point at which the 

interrupt occurred. 

At the end of the test routine the address mask is reset and a jump is 
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made back into the control program. A check is made to ensure that the 

interrupt has occur red , and indicates whether there are still more 

locations to be tested. If all locations have been tried, then a closing 

m e s s a g e is sent to the terminal and execution returns to the SDK monitor. 

Otherwise, a subroutine is cal led to check the results. For a correct 

solution an ' S ' is sent to the terminal to indicate s u c c e s s , alternatively, 

in the c a s e of a failure, the value of the timer trigger is printed. The 

program continues by jumping to the start, where the trigger is incremented 

and the whole p rocess is repeated. 

9.6 Initial Results 

Initial testing was carr ied out by simulating data corruptions only. 

The effects of these are reasonably straight forward to predict, and 

therefore the results from the test facility were easily verified. For 

example, a non-fault tolerant 8 bit addition routine was investigated. It 

read two numbers, from separate locations, into the internal registers, 

added them together and stored the answer back in the memory. As expected, 

corruptions to the input data in memory only c a u s e d errors If they occurred 

before reading the information into the registers. Conversely, corruption 

of the output location in memory only c a u s e d errors after the result had 

been stored. 

This trivial c a s e shows that the susceptibility of systems to 

transient memory faults c a n be reduced by holding critical data within the 

processor for as long as possible. But clearly, this will i nc rease the 

susceptibility to register faults. This demonstrates the necessi ty to know 

which fault types are most common. The practical tests descr ibed in 

chapter 2 indicated that the memory was less resistant to interference than 

the processor , and therefore the registers provide a safer storage area . 
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Obviously, all the data cannot be stored in the registers, and 

consequently, an alternative approach is necessary . Hardware methods s u c h 

as protective coding has been d i s c u s s e d , but these can fail due to multiple 

bit faults or transients affecting the correction mechan isms . To overcome 

these problems, or in the c a s e where no memory protection is available, 

individual data can be stored in several locations. Clearly, this requires 

a large amount of extra memory s p a c e , and can only be justified for 

critical data. 

A simple 8 bit addition routine incorporating triple storage was 

investigated. Even such a bas ic operation can be organised in several 

different ways. For example, the data could be compared as it is read in. 

and a single set chosen for manipulation by a majority vote or select ion of 

a mid-value. The result would then be stored in memory, either in a single 

location or in three separate locations. Alternatively, calculat ions could 

be carr ied out on all three se ts , and a selection made before storage. 

Taken one stage further, separation could be maintained throughout, and 

compar isons made after a number of other operations. 

When consider ing corruptions of single locations, multiple storage of 

data gives large improvements in reliability. However, this must not be 

considered in isolation. It is possible for a large number of locations to 

become corrupted. This can occur as a result of an extensive memory 

disturbance, or by erroneous execution overwriting data. In the latter 

c a s e an erroneous loop containing a ca l l , without a return, will overwrite 

all volatile memory with the same 16 bit word. it is therefore suggested 

that if multiple copies are used, then they should not all be stored in an 

identical way. For example, one or more copies could be complemented. 

This will i nc rease the complexity of the checking routines, but will be 
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more effective against extensive errors. 

So far only data corruptions have been considered. Disruption to the 

flow of execution is possible, and this can also be tested on this system. 

However, a few problems are envisaged with this type of error, and 

suggestions for modifications are given in the following sect ion. 

9.7 Possible Developments 

For data corruptions alone, execution will follow a logical s e q u e n c e 

of instructions, provided that the software does not contain any errors. 

However, with the disruption in the s e q u e n c e of execution, an arbitrary 

combination of instructions will be interpreted and as a result the test 

facility can fail in two ways. Firstly, the erroneous execution of an 

output to one of the ports F C , FD. F E and F F will c a u s e the premature 

activation of the masking circuit, and an unpredictable response will 

follow. Secondly, the formation of a continuous loop within the test 

routine will prevent the return to the control program, and thus s u s p e n d 

any further runs. 

The former c a s e occurs infrequently as the probability of picking s u c h 

an instruction at random is approximately 1 in 16,000. But if a large 

number of runs are attempted the failure rate may be unacceptable. It can 

be improved by tightening the conditions required to activate the masking 

circuit and could be achieved by testing for a particular value at the 

port. The formation of loops is more likely, however the resulting 

problems can be reduced by adding another hardware timer. This would be 

set at the beginning of e a c h run, and if it 'timed out' before execution 

re -entered the control software a failure would be indicated and the next 

run initiated. Alternatively, the s a m e timer as that used for fault 

injection could be reset before leaving the fault routine, so as to allow a 
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maximum time for further execution. 

Finally, to obtain meaningful results, it is n e c e s s a r y to perform a 

very large number of runs. In order to simplify the analys is , it is 

suggested that the output, from the test facility, is captured by an 

intelligent device which can perform data reduction operations. This would 

enable the rapid evaluation of both the number and type of the failed runs. 

9.8 Summary 

This chapter has presented some ideas on how testing can be performed 

on fault tolerant software, and a particular facility has been descr ibed in 

detail. in this type of software, execution will pass through different 

segments depending on the number and type of errors in the system. Under 

normal operating conditions errors will be rare, and testing of all 

segments is not possible without fault injection. The test facility 

therefore provides an aid to the full functional testing of fault tolerant 

routines. 

157 



C H A P T E R 10 

Conclus ions 

10.1 Introduction 

It is generally accepted that transient and intermittent faults are 

far more common, in digital c ircuits, than permanent faults. It has been 

suggested that they are as much as 50 times more likely. Therefore, in 

order to obtain high reliability, the greatest improvements will be 

achieved by designing in mechan isms to counteract the effects of 

transients. However, recovery cannot be initiated until errors have been 

detected and therefore the detection mechan isms play a very important role 

in the recovery p r o c e s s . 

Investigations have been carr ied out into detection m e c h a n i s m s with 

particular emphasis on software techniques. However, they cannot be 

evaluated until the modes of failure are understood. For this reason 

practical tests were performed to study actual failure modes. T h e s e 

attempted to reproduce the type of transient d isturbances which are 

expected in industrial control applications. 

10.2 Pract ical Tests to Determine Fai lure Mechanisms 

The results of the tests showed that two broad types of failures can 

occur ; corruption to the data within the system, and disruption to the 

correct flow of program execution. Both of these groups of failures 

occurred under different types of interference to e a c h of the main elements 

of the system. The fact that similar failures occur under different 

operating conditions indicates that they will appear in real systems. This 

is true even if the types of interference, used during testing, were not 

representative of those which do occur in industrial controllers. 

Data errors c a n be detected and corrected either by external hardware. 
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or internally by the software. Hardware m e c h a n i s m s have been investigated 

thoroughly in the past and the majority of current systems are designed to 

detect and correct single bit errors. The tests did show that single bit 

errors do occur , but are restricted to a narrow band of interference level. 

In the majority of c a s e s multiple bit errors occurred and therefore single 

bit correction m e c h a n i s m s would not be effective. 

Errors in the flow of program execution are more ser ious, as these 

result in the interpretation of an unspecif ied s e q u e n c e of instructions. 

While in this state the processor cannot perform any useful tasks, and the 

data error correction mechan isms cannot work. Therefore it is of paramount 

importance to be able to detect this type of failure so that it is possible 

to re -es tab l ish useful execution. 

In order to be able to develop suitable detection m e c h a n i s m s , it is 

n e c e s s a r y to determine the s e q u e n c e of events following corruption of 

execution. The tests indicated that a fault can c a u s e an erroneous jump to 

any location in the memory map and that, subsequently, the values read 

would be interpreted as instructions. This revealed the importance of 

knowing the exact function of every possible operation code in a m i c r o ­

processor . 

10.3 Undeclared Operations in Microprocessors 

Investigations were carr ied out to discover the effects of executing 

the codes which are undeclared by the manufacturers. In most c a s e s useful 

operations were revealed, which leads to the question of why these 

instructions are not declared. The manufacturers were not willing to 

reveal information on this subject, but it is believed that some of the 

codes are left undeclared to retain compatibility between different 

dev ices , whereas others are not d isc losed b e c a u s e original design errors 
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mean that they do not function correctly under all operating conditions. 

Some of the codes are particularly undesirable from a reliability 

point of view. T h e s e are the ones which c a u s e the processor to cyc le 

continually through memory reading s u c c e s s i v e locations indefinitely. The 

only means of recovery from this state is a full reset which has to be 

generated by some external hardware. This has revealed that not only is it 

n e c e s s a r y to have external hardware to enable recovery from some errors, 

but also the way in which it is designed is important. For example, 

watchdog timers which generate interrupts, or are updated by the a c c e s s to 

a single a d d r e s s , will not be effective. 

Other undeclared operations of microprocessors have also been 

discovered, such as the cycling through memory in the 8085 as a result of 

power supply disturbances. T h e s e operations are particularly important 

b e c a u s e they cannot be forseen readily, unlike the functions of the 

undeclared c o d e s which, clearly, must exist. Without a full knowledge of 

all possible operations in microprocessors it is more difficult to design 

effective error detection and correction mechan isms. This demonstrates the 

need for a much more co-operat ive attitude from the manufacturers in 

revealing full information about their devices. 

10.4 Execution Following an Erroneous Jump 

Having determined the functions of all the operation codes of the 

8085. 6800, 8035/8048 and 68000. ana lyses were performed to establ ish the 

s e q u e n c e of events following an erroneous jump to a random location. The 

execution which follows depends on the particular type of memory into which 

the jump o c c u r s . Four different memory types were cons idered; data a r e a s , 

program a r e a s , unused areas and input a reas . 

Data a r e a s were a s s u m e d to contain random values, and therefore e a c h 
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operation code was equally likely to be read. It was found that execution 

would interpret a number of instructions before encountering a jump. The 

average ranged from between 2 and 10. depending on the processor . 

Program areas contain a logical s e q u e n c e of instructions, but an 

erroneous jump will not necessar i ly pass control directly to a valid 

instruction, as an operand field can be read. However, the analysis 

revealed that there is a high probability that a valid instruction will be 

read immediately, in which c a s e the processor will continue to read valid 

instructions in step with the program. If an operand field is entered 

initially, the probability of reading a valid instruction at the next fetch 

is very high, and it has been shown that resynchronisat ion with the program 

tends to occur very rapidly, usually in less than three or four instruction 

cyc les . 

For unused a r e a s the response depends on the state of the data bus 

when no active devices are connected to it. and this is determined by the 

processor and associa ted hardware. If the bus floats high the value F F 

will be read. Depending on the instruction set. this may be interpreted as 

a jump instruction in which c a s e control will pass e lsewhere , otherwise the 

next location will be a c c e s s e d and the process will repeat until another 

memory block is encountered. For p rocessors with a multiplexed address and 

data bus the address can remain valid during the subsequent read cyc le . 

This results in the execution of a predefined s e q u e n c e of instructions 

dependent on the instruction set and the location of the first read. For 

the 8085 this type of execution terminates with a halt for about one half 

of the initial starting points. 

The data from input ports can be read as instructions if the ports are 

memory mapped. For a number of ports which are fully decoded into adjacent 
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locations they will appear to have the s a m e properties as data a r e a s , and 

can be treated in the s a m e way. However, it is common practice to use only 

partial decoding, and therefore the s a m e value will appear in adjacent 

locations, sometimes in as many as 4 K. With rapidly changing data on the 

ports a s e q u e n c e of different instructions will be read, but in the 

analysis presented it was a s s u m e d that data remains stable for several 

mil l iseconds. In this c a s e a jump instruction will be interpreted 

immediately, or the same instruction will be executed repeatedly until the 

end of the block is reached . 

10.5 Recovery from Erroneous Execution 

Having establ ished the possible s e q u e n c e s of execution following an 

erroneous jump for a non-fault tolerant system, methods were considered 

which would allow recovery from erroneous execution. Clearly, the aim is 

to force the processor to execute a recovery routine and this c a n be 

achieved by encouraging the execution of a restart instruction. 

For the data a rea the code for a restart can be placed at regular 

intervals so that they may be read as instructions if execution enters the 

area . However, if multibyte instructions appear before them, they are less 

likely to be executed. This can be overcome by grouping the restart codes 

together. Investigations were carr ied out to determine both the optimum 

spacing and optimum grouping to give the greatest benefits. It was 

establ ished that around a 20% content of restart codes provides the best 

solution, but that the optimum grouping depends on the particular 

instruction set. In c a s e s where there are a large number of multibyte 

instructions the restart codes should be grouped together in two's or 

three's . Although there is an increase in the probability of recovery, 

from erroneous execution in this a rea , by using this method it is not 
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considered worthwhile. This is due to the large amount of extra hardware 

that is required, which will itself be prone to failure. A hardware 

mechanism to detect operation code fetches from data a r e a s has been 

presented. It provides immediate detection using only a few simple logic 

gates and will therefore be much more effective. 

The contents of the program a r e a s can be influenced by the positioning 

of various memory blocks. For example, the a d d r e s s e s in a heavily a c c e s s e d 

data area will appear in many locations in the program. Therefore by 

certain positioning of blocks particular o p - c o d e s can be made to appear 

more often. This concept was investigated, but revealed that only marginal 

improvements in recovery could be obtained. As before, in most c a s e s 

execution resynchronises with the program. Therefore m e c h a n i s m s 

incorporated in the software are more effective, to detect that execution 

has not followed the correct path. 

The unused a r e a s can be modified very simply and effectively by the 

addition of resistors between the data and power supply l ines. This forces 

a single value into all locations and can be selected to be equivalent to a 

restart Instruction, so that recovery is Initiated immediately. This 

should be incorporated in all systems. 

For the input a r e a s the ports should be removed from the memory map. 

if possible, otherwise a high level of decoding should be used. This is 

particularly important if rapid recovery is required as large blocks of 

input data can lead to very long s e q u e n c e s of erroneous execution. 

10.6 Choice of Recovery Mechanisms 

The choice of a particular combination of mechan isms depends on the 

size of e a c h type of memory. General ly , modification to the unused a r e a s , 

and detection within the program, should be included. The addition of a 
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combination of these techniques ensures that erroneous execution will be 

detected quickly in most c a s e s , but there will be o c c a s i o n s when they will 

fail. It is therefore n e c e s s a r y to provide a higher level of detection in 

the form of a hardware watchdog timer. It has been shown that the design 

of s u c h a timer is important. For example, simple updating methods should 

be avoided as these may be erroneously generated under fault conditions. 

Interrupts must not be used to initiate recovery, as they may not function. 

At least a full reset must be used , and in some c a s e s it may be n e c e s s a r y 

to power-down the system before recovery is possible. 

10.7 Summary 

This thesis has concentrated on error detection m e c h a n i s m s , however 

the recovery process is equally important and requires careful 

considerat ion. It may vary from a simple reset to a thorough c h e c k - o u t of 

the entire system followed by an attempt to reconstruct all critical data 

that was lost. 

The techniques studied provide the greatest improvements to n o n -

redundant systems. They can also be used in redundant systems to enable 

the recovery of a failed unit or to recover from common mode failures. For 

the British G a s application of digital control. a simplex system 

incorporating these techniques and, perhaps, containing some additional 

fa i l -safe m e c h a n i s m s , may be considered to give high enough reliability. 

If higher standards are required it will be n e c e s s a r y to adopt a redundant 

arrangement in the hardware. This can be achieved in a number of ways, 

from a tightly coupled system with voting at e a c h clock cyc le , to a very 

loosely coupled system maintaining separate channe ls from the t ransducers 

to the actuators. 

The latter arrangement is preferred because it essential ly cons is ts of 
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several simplex channe ls , which will all receive the full benefits from the 

techniques descr ibed above. Taken individually, each channel will be easy 

to design and maintain, and will therefore be more readily accepted into an 

industry which has been concerned traditionally with mechanica l 

controllers. The arrangement is highly immune to common mode fai lures, and 

is also very adaptable for other applications requiring different levels ot 

reliability. It is simply a c a s e of adding or removing modules as 

required. 

Finally, for any application requiring high reliability, full testing 

of the system is essent ia l before it undertakes active control. Some 

methods of testing have been presented, but these should be followed by 

comprehensive field trials to establish whether specif ied levels of 

reliability have been reached . 
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A n a l y s i s o f RFI E f f e c t s in I n t e g r a t e d C i r c u i t s ' , I E E E E l e c t r o ­

m a g n e t i c C o m p a t i b i l i t y S y m p o s i u m , J u n e 1 9 7 8 , p p . 6 4 - 7 0 . 

1 1 4 W i l l i a m s o n , I., ' D e s i g n o f S e l f - C h e c k i n g a n d F a u l t - T o l e r a n t M i c r o ­

p r o g r a m m e d C o n t r o l l e r s ' , I E E E C o n f . C o m p u t e r S y s t e m s a n d 

T e c h n o l o g y , 1 9 7 7 , p p . 1 9 3 - 2 0 4 . 

115 W i l l i a m s o n , T. , ' D e s i g n i n g M i c r o c o n t r o l l e r S y s t e m s f o r E l e c t r i c a l l y 

N o i s y E n v i r o n m e n t s ' , I n t e l C o r p o r a t i o n , A p p l i c a t i o n N o t e A P -

1 2 5 , F e b r u a r y 1 9 8 2 . 
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116 W u l f . W.A . . ' R e l i a b l e H a r d w a r e / S o f t w a r e A r c h i t e c t u r e ' . I E E E T r a n s . 

S o f t w a r e E n g i n e e r i n g . V o l S E - 1 , N o . 2 , J u n e 1 9 7 5 . p p . 2 3 3 - 2 4 0 . 

1 1 7 Z i e g l e r . J . F . a n d L a n f o r d . J . F . . ' E f f e c t of C o s m i c R a y s o n C o m p u t e r 

M e m o r i e s ' . S c i e n c e . V o l 2 0 6 . N o v e m b e r 1 9 7 9 . p p . 7 7 6 - 7 8 8 . 

118 . ' T h e 8 0 8 0 A s A r e N o t A l l A l i k e ; Y o u S h o u l d K n o w t h e 

D i f f e r e n c e s ' . E l e c t r o n i c D e s i g n , 1 8 t h J a n u a r y 1 9 7 7 . p p . 4 1 - 4 2 . 

1 1 9 , ' M C S - 8 0 / 8 5 F a m i l y U s e r ' s M a n u a l ' , I n t e l C o r p o r a t i o n , 1 9 7 9 . 

120 , ' 4 8 - S e r i e s M i c r o c o m p u t e r s H a n d b o o k ' , N a t i o n a l S e m i c i n d u c t o r 

C o r p o r a t i o n , 1 9 8 0 . 

121 , ' M I L - H D B K - 2 1 7 D R e l i a b i l i t y P r e d i c t i o n o f E l e c t r o n i c 

E q u i p m e n t ' , U.S. D e p a r t m e n t o f D e f e n s e . J a n u a r y 1 9 8 2 . 

1 2 2 . ' H R D 3 H a n d b o o k o f R e l i a b i l i t y D a t a ' , B r i t i s h T e l e c o m . 

M a t e r i a l s a n d C o m p o n e n t s C e n t r e . B i r m i n g h a m , J a n u a r y 1 9 8 4 . 
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0 1 2 3 4 S 6 7 8 9 A B C D E F 

NOP 

tB. IC 

•MOP" 

IB , IC 

OUTL 
BUS.R 
IB.2C 

RUB 
R , *d 
2B .2C 

jnp 
QXX 

2B .2C 

EM 
1 

t B . t C 

•JNTF" 
add 

2B .2C 

DEC 
R 

IB , 1C 

IMS 
fl.BUS 
tB.2C 

IN 
fl.Pl 
1B.2C 

1M 
fl,P2 
IB.2C 

• 1M« 
R .P2 
1B.2C 

nOUD 
A.P4 
I B . 2 C 

nouo 
R,PS 
1B.2C 

nouD 
fl.PS 
1B.2C 

nouo 
A.P? 
IB . 2 C 

IMC 
9R0 

IB . IC 

IMC 
8RI 

IB, IC 

JBO 
add 

2B .2C 

RDDC 
R.ftd 
2B .2C 

CALL 
OXX 

2B.2C 

D\S 
1 

IB , 1C 

J T F 
add 

2B.2C 

IMC 
fl 

t B . l C 

INC 
RO 

IB. IC 

IMC 
Rt 

tB, tC 

IMC 
R2 

tfl, t c 

IMC 
R3 

IB . tC 

IMC 
R4 

I B , tC 

INC 
RS 

tB, tC 

INC 
R6 

IB , tC 

INC 
R7 

tB. tC 
XCH 

A.8R0 
IB, IC 

XCH 
R,«R1 
I f l.lC 

•MOP" 

t B . l C 

nou 
fl,#d 
2B.2C 

j n p 
t x x 

2B .2C 

EM 
TCMT1 
I B . tC 

JMTO 
add 

2B.2C 

CLR 
fl 

tB, 1C 

XCH 
fl.RO 
IB . 1C 

XCH 
fl.Rt 
I B , 1C 

XCH 
fl,R2 
t B . t C 

XCH 
FI.R3 
t B . l C 

XCH 
fl,R4 
I B , 1C 

XCH 
fl.RS 
IB, tC 

XCH 
fl.RG 
t B . t C 

XCH 
A,R7 
I B . tC 

XCHJJ 
A.iRO 
IB, 1C 

XCHD 
fl,8Rl 
t B . l C 

JB1 
add 

2B.2C 

•MOP' 

tB, 1C 

CALL 
1XX 

2B.2C 

D1S 
TCMTI 
IB , tC 

JTO 
add 

2B.2C 

CPL 
fl 

tB, tC 

•BUS' 
IDLE 
IB.2C 

OUTL 
PI .A 
IB.2C 

OUTL 
P2,fl 

1B.2C 

•OUTL' 
P2,fl 
IB.2C 

MOUD 
P4,fl 
IB.2C 

nouo 
PS,A 
tB,2C 

nOUD 
PS,A 
tB.2C 

MOUD 
P?,A 
IB.2C 

ORL 
fl.iRO 
IB, tC 

ORL 
fl,8Rt 
IB , 1C 

nou 
fl,T 

tB.t C 

ORL 
fl,»d 
2B.2C 

JMP 
2XX 

2B.2C 

STR7 
CM7 

IB.1C 

JNTl 
add 

2B.2C 

SUflP 
fl 

IB, I C 

ORL 
R.RO 
IB, tC 

ORL 
A,R1 
I B . 1C 

ORL 
fl,R2 
IB, I C 

ORL 
R,R3 
IB . tC 

ORL 
A.R4 
I B , tC 

ORL 
fl.RS 
t B . l C 

ORL 
fl,R6 
t B . l C 

ORL 
A.R? 
I B , I C 

HfiL 
fl,«RO 
IB , 1C 

RML 
fl.SRl 
tB, I C 

JB2 
add 

2B.2C 

RML 
R,#d 

2B.2C 

CRLL 
2XX 

2B .2C 

STRT 
T 

IB , tC 

J T l 
add 

2B.2C 

DA 
fl 

IB, tC 

RNL 
R.RO 
t B . l C 

AML 
A,R1 
I B , I C 

RML 
fl,R2 
tB, IC 

RNL 
R.R3 
tB, IC 

flML 
A.R4 
I B . t C 

RNL 
fl.RS 
tB, tC 

flNL 
fl.RS 
IB , IC 

ANL 
A.R7 
I B , tC 

ADD 
R.gRO 
IB , IC 

RUB 
A.8RI 
IB , I C 

n o u 

T,fl 
I B . I C 

• NOP' 

I B . I C 

JttP 
3XX 

2B.2C 

STOP 
TCMT 
I B . I C 

•JMFl" 
add 

2B.2C 

RRC 
fl 

tB, tC 

ADD 
R.RO 
Ifl, 1C 

HDD 
H.Rl 
I B , 1C 

ADD 
fl,R2 
tB, tC 

ADD 
R.R3 
IB, tC 

ADD 
A.R4 
tB. tC 

ADD 
fl.RS 
tB. tC 

ADD 
A,R6 
IB , tC 

ADD 
H.R7 
t B . t C 

RDDC 
A.BRO 
IB , 1C 

RflflC 
R.flRt 
tB, tC 

JB3 
add 

2B.2C 

•MOP» 

t B . l C 

CALL 
3XX 

2B.2C 

EM70 
CLK 

t B . t C 

J F l 
add 

2B.2C 

RR 
R 

tB, tC 

RDDC 
fl.RO 
I B . t C 

ADDC 
A,Rl 
tB, tC 

RDDC 
fl,R2 
I B , 1C 

RDDC 
R.R3 
IB , 1C 

RDDC 
A.R4 
I B , tC 

RDDC 
R .RS 
IB, 1C 

ADDC 
fl.RG 
I B , 1C 

ADDC 
A.R7 
I B . IC 

noux 
R.8R0 
1B.2C 

noux 
R.SRt 
1B.2C 

• MOP» 

1B.1C 

RET 

IB.2C 

JttP 
4XX 

2B.2C 

CLR 
FO 

I B . tC 

JM1 
add 

2B.2C 

• MOP" 

IB , tC 

ORL 
BUS.#d 
2B.2C 

ORL 
Pt , # d 
2B . 2C 

ORL 
P2 ,#d 
2B.2C 

•ORL« 
P2,#d 
2B.2C 

ORLD 
P4.A 
IB . 2 C 

ORLD 
PS.fl 
IB . 2 C 

ORLD 
P6 ,A 
IB.2C 

ORLD 
P7,A 
1B.2C 

noux 
SRO.fl 
IB.2C 

noux 
e R i . f l 
1B.2C 

JB4 
add 

2B.2C 

RETR 

tB,2C 

CRLL 
4XX 

2B .2C 

CPL 
FO 

tB. 1C 

JM2 
add 

2B.2C 

CLR 
C 

I B , 1C 

RNL 
BUS,#d 
2B.2C 

ANL 
P l , # d 
2B.2C 

flNL 
P2 ,#d 
2B.2C 

• flNL' 
P2 ,#d 
2B.2C 

AMLD 
P4.A 
tB,2C 

RMLD 
PS, A 
IB.2C 

AMLD 
PG,A 
1B.2C 

AMLD 
P7.A 
IB .2C 

nou 
8R0.R 
IB. 1C 

nou 
8Rl , A 
tB, IC 

• NOP' 

IB, 1C 

noup 
R.8A 
1B.2C 

JNP 
5XX 

2B.2C 

CLR 
F t 

I B . I C 

•JMFO" 
add 

2B.2C 

CPL 
C 

tB. 1C 

nou 
R0.fi 
I B . I C 

nou 
Rt ,A 
I B , 1C 

nou 
R2 ,A 
IB, IC 

nou 
R3,fl 
tB, tC 

nou 
R4.fl 

tB , I C 

nou 
RS .A 
IB, tC 

nou 
R6 .A 
I B . I C 

nou 
R7,A 
tB, 1C 

nou 
8R0,»d 
2B.2C 

n o u 
8Rt , #d 
2B.2C 

JBS 
add 

2B.2C 

JnPP 
8A 

tB,2C 

CALL 
SXX 

2B.2C 

CPL 
Ft 

t f l.lC 

JFO 
add 

2B.2C 

•NOP' 

1B.1C 

nou 
R0.»d 
2B.2C 

nou 
Rt ,ftd 
2B.2C 

nou 
R2,»d 
2B.2C 

nou 
R3 .»d 
2B.2C 

nou 
R4 ,#d 
2B.2C 

nou 
RS,»d 
2B.2C 

nou 
R6 .#d 
2B.2C 

nou 
R7,#d 
2B.2C 

•NOP' 

IB . 1C 

•MOP' 

IB, 1C 

•MOP' 

tB. tC 

•MOP» 

tB. tC 

JMP 
e x x 

2B .2C 

SEL 
RBO 

IB , tC 

JZ 
add 

2B .2C 

nou 
fl.PSU 
I B . t C 

DEC 
RO 

IB . 1C 

DEC 
Rl 

I B , tC 

DEC 
R2 

tB, IC 

DEC 
R3 

IB , 1C 

DEC 
R4 

I B , tC 

DEC 
RS 

IB, tC 

DEC 
R6 

IB, tC 

DEC 
R7 

tB, tC 
XRL 

R.SRO 
I B . I C 

XRL 
R.8R1 
t B . l C 

JB6 
add 

2B.2C 

XRL 
fl,#d 
2B.2C 

CALL 
e x x 

2B.2C 

SEL 
RBI 

tB, tC 

•JHPP" 
add 

2B.2C 

n o u 
PSU.fl 
tB, I C 

XRL 
R.RO 
1B.IC 

XRL 
fl.Rt 
I B , 1C 

XRL 
R.R2 
tB, tC 

XRL 
R,R3 
IB , 1C 

XRL 
fl,R4 
tB, tC 

XRL 
R.RS 
l f l . t C 

XRL 
A.R6 
1B.1C 

XRL 
A.R7 
I B , 1C 

•NOP* 

tB. tC 

•MOP' 

tB, IC 

•MOP' 

I B . I C 

M0UP3 
fl.8fl 
IB.2C 

j n p 
7XX 

2B.2C 

SEL 
HBO 

I B , tC 

JMC 
add 

2B .2C 

RL 
A 

IB , tC 

OJNZ 
RO.add 
2B.2C 

DJMZ 
Rt . a d d 
2B .2C 

DJN2 
R2 ,adc 
2B.2C 

DJMZ 
R3 ,adc 
2B.2C 

DJMZ 
R4,adc 
2B . 2C 

DJMZ 
RS .adC 
2B .2C 

DJMZ 
R6,add 
2B.2C 

DJN2 
R?,add 
2B.2C 

nou 
R.SRO 
IB, 1C 

nou 
fl.SRt 
t B . l C 

JB7 
add 

2B.2C 

•MOP" 

IB . t C 

CALL 
7XX 

2B.2C 

SEL 
nBt 

tB, tC 

JC 
add 

2B.2C 

RLC 
A 

tB, IC 

nou 
R,R0 
tB. IC 

nou 
fl.Rt 
tB, tC 

nou 
R.R2 
1B.IC 

nou 
R .R3 
tB, tC 

nou 
R .R4 
tB. tC 

nou 
fl.RS 
I B . 1C 

nou 
fl,R6 
IB. 1C 

nou 
A,R7 
tB, 1C 

« - INDIRECT ADDRESSING 
# - innEDlflTE ADDRESS1MG 
B - BYTES 
C - CYCLES 

add - ADDRESS 
d - DATA 
• • - UNDECLARED INSTRUCTION 
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0 1 2 3 4 S S 7 8 S A B C D E F 

MOP 

13, 1C 

•MOP* 

1B.IC 

0U7L 
BUS.fl 
1B.2C 

ROB 
A.#d 
2B.2C 

JOP 
OXX 

2B.2C 

EM 
1 

IB, I C 

•JM7F« 
add 

2B.2C 

DEC 
A 

IB, tC 

IMS 
A. BUS 
1B.2C 

1M 
A.Pt 
1B.2C 

1M 
A.P2 
IB, 2C 

•1M« 
A.P2 
1B.2C 

nouo 
A.P4 
1B.2C 

HOUD 
A. PS 
1B.2C 

nouo 
A, PS 
1B.2C 

nouo 
A.P7 
IB.2C 

IMC 
«R0 
13. IC 

IMC 
«R1 

\B.\C 

J BO 
add 
2B.2C 

AODC 
A ,*d 
2B.2C 

CALL 
OXX 
2B.2C 

BIS 
1 

I B , IC 

J7F 
add 

2B, 2C 

IMC 
A 

1B.IC 

IMC 
RO 

IB. IC 

IMC 
Rl 

IB, 1C 

IMC 
R2 

IB, 1C 

IMC 
R3 

IB, 1C 

IMC 
R4 

IB. IC 

IMC 
R S 

IB.IC 

IMC 
RS 

I B . IC 

IMC 
R7 

IB. 1C 
XCH 

fl.BRO 
\B, 1C 

XCH 
H. i R t 
1B.IC 

•nou« 
A.PC+l 
IB, IC 

nou 
fl,#d 
2B.2C 

j n p 
t x x 

2B.2C 

EM 
7CN71 
IB, IC 

JM70 
add 

2B.2C 

CLR 
A 

1B.1C 

XCH 
fl.RO 
IB.tC 

XCH 
A.RI 
I B , IC 

XCH 
A.R2 
IB , I C 

XCH 
A.R3 
IB. IC 

XCH 
A.R4 
IB. 1C 

XCH 
A.RS 
IB.1C 

XCH 
R.R6 
IB, 1C 

XCH 
A.R7 
IB, I C 

XCHD 
A.8RO 
IB, I C 

XCRD 
H , « R t 
1B.1C 

JB1 
add 
2B.2C 

•MOP« 

IB.1C 

CALL 
t x x 

2B.2C 

OIS 
TCMT1 
I B , 1C 

J70 
add 

2B.2C 

CPL 
A 

1B.1C 

•BUS* 
IDLE 
IB.2C 

0U7L 
Pt.A 
1B.2C 

0U7L 
P2.A 
I B , 2C 

•0U7L* 
P2,A 
IB.2C 

nouB 
P4.A 
1B.2C 

n o u o 
PS, A 
IB.2C 

n o u o 
PS, A 
IS, 2C 

n o u o 
P7.A 
IB, 2C 

ORL 
fl,«R0 
13,1C 

ORL 
A , « R l 
IB, 1C 

nou 
fl,T 

IB, IC 

ORL 
fl,»d 
2B.2C 

j n p 
2XX 
2B.2C 

S7R7 
c m 

IB, 1C 

JM71 
add 

2B.2C 

SUAP 
A 

1B.1C 

ORL 
R.RO 
IB.tC 

ORL 
R . R t 
13. 1C 

ORL 
A.R2 
IB, 1C 

ORL 
A.R3 
IB.1C 

ORL 
R.R4 
1B.1C 

ORL 
R . R S 
1B.1C 

ORL 
R.R6 
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Type of 
Application 

Requirements Reference 

Batch 
Processing 

Recovery time of between 
10 minutes and 2 hours 

m 

Communications Recovery time of 1-15 minutes 111 

Telephone 
Switching 

Less than 2 hours down-t ime in 40 years 
Less than 2 calls lost in 10.000 

25 

Typical 
Industrial 

Recovery within 250 mil l iseconds 87 

Aerospace Recovery within 10 mil l iseconds m 

Space 98% survivability over 5 years 106 

Nuclear Reactor 
Safety System 

—6 
10 - probability of failure on demand 12 

Aircraft 10 - probability of failure during 
a 10 hour flight 

110 

Table 1.1 Reliability Requirements for Different Applications 
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DEVICE 
ERROR TYPE 

DEVICE 
WRITE DATA READ 

R3 3.33 1.13 3.31 

R4 2.99 1.16 3.26 

R5 2.61 1.10 2.61 

R6 2.37 0.91 2.38 

Table 2.1 Voltage Levels at which First Errors Oecurreq 
in 8155 RAM Chips 

ERROR TYPE 

DEVICE WRITE DATA READ 

LOCATION VALUE LOCATION VALUE LOCATION VALUE 

R3 VARIOUS FF VARIOUS 
SINGLE 

BIT 
ERROR 

FF00 FF 

R4 VARIOUS FF VARIOUS 
SINGLE 

BIT 
ERROR 

VARIOUS 
SINGLE 

BIT 
ERROR 

R5 FF00 FF VARIOUS 
SINGLE 

BIT 
ERROR 

FFOO FF 

R6 FF00 FF VARIOUS 
SINGLE 

BIT 
ERROR 

FFOO FF 

Table 2.2 Location and Value of the First Errors Observeo 
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DATA ADDRESS 

HEX 
BINARY 

HEX HEX 
D 7 D 6 D 5 ° 4 o ° 2 0 , 1 ° 0 

HEX 

00 0 0 0 0 0 0 0 0 FFBF 

n 0 0 0 1 0 0 0 1 FFBF 

22 0 0 1 0 0 0 1 0 FFBF 

33 0 0 1 1 0 0 1 1 FFBF 

88 1 0 0 0 1 0 0 0 FFBF 

99 1 0 0 1 1 0 0 1 FFBF 

AA 1 0 1 0 1 0 1 0 FFBF 

BB 1 0 1 1 1 0 1 1 FFBF 

44 0 1 0 0 0 1 0 0 FF3F 

66 0 1 1 0 0 1 1 0 FF3F 

C C 1 1 0 0 1 1 0 0 FF3F 

EE 1 1 1 0 1 1 1 0 FF3F 

55 0 1 0 1 0 1 0 1 FFFA 

DD 1 1 0 1 1 1 0 1 FFFA 

77 0 1 1 1 0 1 1 1 FFEC 

FF 1 
1 

1 1 1 
1 

1 1 FF4B 

0 1 - FIRST BITS CORRUPTED 

Table 2.3 First Data Corruotions in RAM Chio R5 
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DEVICE 
SIZE OF CAPACITOR IN TEST SUPPLY MINIMUM 

VOLTAGE 
REACHED 

DEVICE 
2.200 uF 4.700 uF 10.000 uF 

MINIMUM 
VOLTAGE 
REACHED 

Cycles Cycles Cycles Volts 

RAM 1.50 3.25 7.25 3.8 

EPROM 1.75 3.25 7.75 3.4 

PROCESSOR 2.00 4.25 9.25 2.8 

COMPLETE 
SYSTEM 

1.50 3.50 7.25 3.8 

Table 2.4 Length of Interruptions to the Test Supply (in Cycles) 
Necessary to Cause Corruptions 

DEVICE RAM ROM EPROM 

8035 64x8 NONE 

8039 128x8 NONE 

8040 256x8 NONE 

8048 64x8 !Kx8 

8049 128x8 2Kx8 

8050 256x8 4Kx8 

8748 64x8 1Kx8 

8749 128x8 2Kx8 

Table 3.1 Internal Memory of the 48-Series Microprocessors 
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PROCESSOR 
PROBABILITY 
OF A JUMP 

"7 
AVERAGE NUMBER 
OF INSTRUCTIONS 
EXECUTED ( N I A W ) AV 

AVERAGE NUMBER 
OF BYTES 

EXECUTED (NB ..) 
AV 

8085 0.1035 9.65 12.5 

6800 0.1035 9.65 18.5 

8048 
(INTEL) 

0.1543 6.48 8.3 

8048 
(NEC) 

0.1621 6.16 7.9 

68000 0.3436 2.91 

Table 4.1 Results of Execution in Random Data 
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8085 20 4 20 5.0 1.9 68.4 21.3 8.4 

8085 15 3 20 4.5 1.5 73.8 17.8 6.9 

8085 10 o (_ 20 3.9 1.3 77.9 14.6 6.2 

8085 5 1 20 3.2 0.9 84.1 10.6 4.4 

6800 15 o 20 3.7 6.0 70.7 19.5 3.8 

6800 10 2 20 3.3 4.7 74.1 17.1 4.1 

6800 5 1 20 3.5 5.4 72.1 18.6 3.9 

8048 15 o 20 4.1 0.0 42.7 54.4 2.9 

8048 10 0 20 4.1 0.0 46.3 51.0 2.7 

Table 4.2 Comoarison Between Different Data Structures 
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8085 0.1 1.0 1.4 0.6 96.9 1.2 0.3 

6800 1.6 0.3 5.2 1.3 91.6 1.7 0.7 

8048 0.0 0.0 3.5 0.2 96.3 1.0 0.2 

Table 5.1 Comparison Between Processors for Erroneous Execution 
in Program Areas 
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8085 A 0.0 2.8 2.2 0.9 94.1 1.2 0.7 

8085 B 0.1 1.5 1.8 1.0 95.6 1.2 0.7 

6800 C 0.0 0.6 2.6 2.4 94.4 1.5 0.7 

8048 D 0.0 0.0 4.1 0.3 95.6 1.1 0.3 

3048 E 0.0 0.0 3.7 0.2 96.1 1.1 0.3 

8048 F 0.0 0.0 4.0 0.3 95.7 1.0 0.3 

Table 5.2 Comparison Between Actual Programs 
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8085 A 0.0 4.1 3.2 1.3 91.4 1.8 0.8 

8085 B 0.2 2.4 2.8 1.6 93.0 1.8 0.8 

6800 C 0.0 0.7 3.2 2.8 93.3 1.8 0.8 

8048 D 0.0 0.0 5.5 0.4 94.1 1.4 0.4 

8048 E 0.0 0.0 4.7 0.3 95.0 1.4 0.4 

8048 F 0.0 0.0 5.0 0.4 94.6 1.3 0.3 

68000 G 0.0 26.1 1.5 0.0 72.4 1.5 0.5 

Table 5.3 Results from the Simplified Analysis 
of Erroneous Execution in Program Areas 
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8085 
X 

A 0.0 8.6 2.2 0.9 88.3 1.3 0.6 

3085 
X 

B 0.1 19.1 1.8 1.0 78.0 1.3 0.5 

6800 
X 

C 0.0 5.9 2.4 2.2 89.5 1.4 0.6 

Table 5.4 Detailed Analysis of Modified Programs 
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TYPE 
OF 

TRANSFER 
% PROBABILITY 

AVERAGE NUMBER 
OF INSTRUCTIONS 

EXECUTED 

HALT 47.7 54.6 

RESTART 5.8 1.6 

RANDOM 
JUMP 

3.0 3.75 

RETURN 35.0 33.6 

SPECIFIC 
JUMP 

8.5 2.2 

ALL 100.0 38.2 

Table 6.1 Probability of Different Outcomes after a Random j u m p 
into an Unused Memory Area of an 8085 

TYPE 
OF 

TRANSFER 
% PROBABILITY 

AVERAGE NUMBER 
OF INSTRUCTIONS 

EXECUTED 

HALT 49.7 55.7 

RESTART 7.2 2.3 

RANDOM 
JUMP 

5.0 5.0 

RETURN 38.1 31.3 

ALL 100.0 40.0 

Table 6.2 Outcomes after a Random Jump into an Unused Memory Area 
of an 8085, Assuming Address Range C000 to FFFF is Unused 
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MEMORY 
ARRANGEMENT 

(see fig. 6.1) 

STATE OF MEMORY 
8ANK SELECT 

FLIP-FLOP 
AFTER ERROR 

% PROBABILITY OF TRANSFER 
MEMORY 

ARRANGEMENT 
(see fig. 6.1) 

STATE OF MEMORY 
8ANK SELECT 

FLIP-FLOP 
AFTER ERROR 

JUMP OUT OF 
UNUSED AREA 

RETURN LOOP 

A 0 4-9.8 49.2 1.0 

A 1 0.0 99.0 1.0 

B 0 90.5 9.4 0.1 

B 1 29.2 69.8 1.0 

C 0 90.9 9.0 0.1 

C 1 89.8 9.2 1.0 

D 0 89.8 9.2 1.0 

D 1 90.9 9.0 0.1 

Table 6.3 Transfer from Unpopulated Memory Areas of an 8048 
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8085 0.4 3.3 0.4- 2.0 4-. 3 89.6 

6800 2.0 0.4- 1.2 1.6 1.2 93.6 

63000 0.0 32.5 1.9 0.0 0.0 65.6 

Table 6.4- Transfer from Partially Decoded Memory Mapped Input Ports 
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LOCATION 
OF DATA 

NUMBER OF 
INSTRUCTIONS 
WHICH CAUSE 
CORRUPTION 

PROBABILITY THAT 
A SINGLE 
INSTRUCTION WILL 
NOT CORRUPT DAT 

ACCUMULATOR 84 0.672 

B REGISTER 12 0.953 

C REGISTER 14 0.945 

D REGISTER 16 0.938 

E REGISTER 18 0.930 

H REGISTER 22 0.914 

L REGISTER 24 0.906 

STACK POINTER 30.5 0.881 

MEMORY 34.5 0.865 

ALL FLAGS 105 0.590 

SIGN FLAG 45.5 0.822 

ZERO FLAG 45.5 0.822 

AUXILIARY 
CARRY FLAG 

45.5 0.822 

PARITY FLAG 45.5 0.822 

CARRY FLAG 44.5 0.826 

Table 7.1 Data Corruptions in the 8085 Caused bv Erroneous Execution 
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A 65.2 10.5 24.3 0.0 1045.3 2406.9 

B y 69.2 7.8 23.0 0.0 56.6 130.3 

C y 67.2 7.7 9.9 15.2 1055.6 2430.6 

D y y 0.4 0.4 6.4 93.0 682.2 1570.8 

E y y y 0.3 0.0 6.2 93.5 1.6 3.7 

F y y y y 0.3 0.0 5.1 94.7 1.6 3.7 

G y y y y 0.1 0.0 6.1 93.8 1.3 3.0 

H y y y y y 0.0 0.0 6.0 94.0 1.1 2.5 

l y y y y y y 0.0 0.0 4.9 95.1 1.1 2.5 

Table 8.1 Er roneous Execution Under Different System Arrangements 
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Appendix 1. Software to Test the Effects of Executing Undeclared 

Operation Codes 

This appendix contains full commented listings of the programs used to 

identify the effects of executing the undeclared operation codes of the 

6800 and 8035/8048. Similar techniques, as those illustrated, c a n be 

employed on other microprocessors . However, the software alone is not 

usually sufficient to identify all functions, and it is n e c e s s a r y to use 

additional techniques such as the monitoring of all external s ignals with a 

logic analyser. 

A1.1 Listing of the 6800 Test Program 

NAM M6800 
x x x x x x x x x x x x x x x x * * x x * * x x x * x * x x * x x x * x x x x x * x * x x x x x x x x x * x x * x * x 

X 

« * * * * * M 6 8 0 0 . A S M * * * * * 
X 

K X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

X 

* THIS PROGRAM IS D E S I G N E D TO T E S T THE U N D E C L A R E D 
O P - C O D E S IN T H E MOTOROLA 6800 M I C R O P R O C E S S O R 

X 

* IT ALSO T E S T S IF THE INTERRUPTS A R E DISABLED BY THEM 
X 

X 

X 

E1D1 O U T E E E EQU $E1D1 ROUTINE TO OUTPUT A C H A R A C T E R 
E055 BYTE EQU $E055 R E A D S IN A BYTE O F DATA IN HEX 
E 0 E 3 CONTRO EQU $ E 0 E 3 ENTRY POINT INTO MIKBUG 
E 0 7 E PDATA1 

ft 
EQU $ E 0 7 E ROUTINE TO OUTPUT A STRING 

1FF0 ORG $ 1 F F 0 S E T STACK LOCATIONS 
1FF0 0001 STACK RMB 1 POSITION O F TOP O F STACK 
I F F ! 0001 C T E M P RMB 1 S P A C E FOR CONDITION C O D E S 
1FF2 0001 BTEMP RMB 1 S P A C E FOR ACCUMULATOR B 
1FF3 0001 ATEMP RMB 1 S P A C E FOR ACCUMULATOR A 
1FF4 0001 XTEMPH RMB 1 HIGH BYTE OF X R E G I S T E R 
1FF5 0001 XTEMPL RMB 1 LOW BYTE OF X R E G I S T E R 
1FF6 0002 PTEMP 

X 
RMB 2 S P A C E FOR RETURN A D D R E S S 

A048 ORG •A048 S E T START A D D R E S S FOR MIKBUG G 
A048 0100 GOADD FDB $0100 COMMAND 
A000 ORG $A000 
A000 0200 FDB IRQVEC S E T V E C T O R FOR IRQ 
A006 ORG $A006 
A006 0210 FDB NMIVEC S E T V E C T O R FOR NMI 
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6800 Test Program (cont.) 

ORG $0100 START OF T E S T PROGRAM 

0100 
0103 
0106 
0109 
010C 
010F 
0112 
0115 
0118 
one 
011E 
0121 
0124 
0127 
012A 
012D 
0130 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
013A 
0138 
013D 
013E 
013F 
0140 
0141 

C E 0137 
F F 1FF6 
BD 0142 
BD E055 
B7 1FF1 
BD 014D 
BD E055 
B7 1 F F 2 
BD 014D 
BD E055 
B7 1FF3 
BD 014D 
BD E055 
B7 1 F F 4 
BD E055 
B7 1 F F 5 
8E 1FF0 
3B 
01 
01 
01 
01 
01 
01 
01 
20 F7 
3F 
3F 
3F 
3F 
3F 

START 

R E S U 

T E S T ! 

LDX 
STX 
J S R 
J S R 
STAA 
J S R 
J S R 
STAA 
J S R ' 
J S R 
STAA 
J S R 
J S R 
STAA 
J S R 
STAA 
LDS 
RTI 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
BRA 
SWI 
SWI 
SWI 
SWI 
SWI 

- R E S U 
PTEMP 
C R L F 
B Y T E 
C T E M P 
S P A C E 
BYTE 
BTEMP 
S P A C E 
BYTE 
ATEMP 
S P A C E 
BYTE 
XTEMPH 
BYTE 
XTEMPL 
' S T A C K 

LOAD A D D R E S S TO GO TO A F T E R RTI 
S T O R E VALUE ON STACK 
S E T TERMINAL ON NEW LINE 
READ IN BYTE FOR CONDITION C O D E S 
S T O R E ONTO S T A C K 

READ IN BYTE FOR ACCUMULATOR B 
S T O R E ONTO S T A C K 

READ IN BYTE FOR ACCUMULATOR A 
S T O R E ONTO S T A C K 

READ IN HIGH BYTE OF X R E G I S T E R 
S T O R E ONTO S T A C K 
READ IN LOW BYTE OF X R E G I S T E R 
S T O R E ONTO S T A C K 
LOAD S T A C K TO POINT TO DATA BLOCK 
LOAD R E G S AND JUMP TO T E S T LOC 
NOPS IN LOOP TO WAIT FOR INTERRUPT 

T E S T BYTE CAN B E I N S E R T E D BY HAND 
IN ONE OF T H E S E LOCATIONS 

START LOOP UNTIL INTERRUPT 

STRING OF S O F T W A R E INTERRUPTS TO 
C A P T U R E EXECUTION A F T E R T E S T C O D E 
N E C E S S A R Y FOR S I N G L E . DOUBLE 
OR TRIPLE BYTE INSTRUCTIONS 

S U B R O U T I N E S 

0142 86 0D 
0144 BD E1D1 
0147 86 OA 
0149 BD E1D1 
014C 39 

C R L F LDAA 
J S R 
LDAA 
J S R 
RTS 

"$0D 
O U T E E E 
"$0A 
O U T E E E 

SUBROUTINE TO OUTPUT A C A R R I A G E 
RETURN AND LINE F E E D TO THE 
TERMINAL 

014D 86 20 
014F BD E1D1 
0152 86 20 
0154 BD E1D1 
0157 39 

S P A C E LDAA 
J S R 
LDAA 
J S R 
RTS 

-$20 
O U T E E E 
'$20 
O U T E E E 

SUBROUTINE TO OUTPUT A 
TO THE TERMINAL 

S P A C E 
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6800 Test Program (cont.) 

0200 

0200 C E 0217 
0203 BD E 0 7 E 
0206 3B 

0210 C E 021F 
0213 BD E 0 7 E 
0216 3B 

0217 20 
0218 20 
0219 49 
021A 52 
021B 51 
021C 20 
021D 20 
021E 04 
021F 20 
0220 20 
0221 4 E 
0222 4D 
0223 49 
0224 20 
0225 20 
0226 04 

INTERRUPT S E R V I C E ROUTINES 

ORG $0200 

IRQVEC LDX 
J S R 
RTI 

" IRQSTR LOAD S T A R T A D D R E S S OF STRING 
PDATA1 PRINT STRING TO INDICATE IRQ 

ORG $0210 

NMIVEC LDX 
J S R 
RTI 

* NMISTR LOAD START A D D R E S S OF STRING 
PDATA1 PRINT STRING TO INDICATE NMI 

IRQSTR F C C / IRQ / STRING PRINTED BY IRQ 

F C B $04 DELIMITER 
NMISTR F C C / NMI / STRING PRINTED BY NMI 

F C B $04 DELIMITER 

END 
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A1.2 Listing of the 8035/8048 Test Program 

O l > l l I < l l * * t « > < « I > > < > > < « l t < « I l l * > < I l t X * l > l t X l l I l t > I I I I « < X l t < « « ) ! < l t « < X l l > > ( « I > l t > < l t 

; PROGRAM TO T E S T THE U N D E C L A R E D O P C O D E S OF THE 8035/8048 

ALL UNUSED LOCATIONS A R E S E T TO 04. THIS F O R C E S A JUMP TO 
A D D R E S S 004 IF PROGRAM EXECUTION IS A T T E M P T E D OUTSIDE T H E 
NORMAL PROGRAM A R E A 

000 64 JMP 0300 JUMP TO INITIALISATION BLOCK 
001 00 
002 04 UNUSED LOCATIONS S E T TO 04 
003 04 
004 39 OUTL P I , A OUTPUT C O N T E N T S OF ACCUMULATOR TO PORT 
005 83 R E T R E T U R N TO MAIN LOOP 
006 04 
007 04 U N U S E D LOCATIONS S E T TO 04. C A U S E S JUMP 
008 04 TO A D D R E S S 004 IF E X E C U T E D 

MAIN PROGRAM LOOP 

100 75 ENT0 CLK S E T TO AS A C L O C K OUTPUT FOR LOGIC ANALYSER 
101 17 INC A INCREMENT T E S T BYTE IN ACCUMULATOR 
102 54 CALL 0200 CALL ROUTINE TO E X E C U T E U N D E C L A R E D C O D E 
103 00 
104 24 JMP 0101 JUMP BACK TO BEGINNING OF LOOP 
105 01 
106 04 
107 04 UNUSED LOCATIONS 

SUBROUTINE TO E X E C U T E U N D E C L A R E D C O D E 

200 39 OUTL P I . A OUTPUT C O N T E N T S OF ACCUMULATOR TO PORT 
201 XX S P A C E FOR U N D E C L A R E D C O D E 
202 04 S E Q U E N C E OF LOCATIONS S E T TO 04, THIS E N S U R E S 
203 04 THAT EXECUTION WILL T R A N S F E R TO LOCATION 004 
204 04 R E G A R D L E S S OF WHETHER THE U N D E C L A R E D C O D E IS 
205 04 A S I N G L E . DOUBLE OR TRIPLE BYTE INSTRUCTION 

C O D E FOR INITIALISATION OF P R O C E S S O R ON R E S E T 

300 23 MOV A,0AAH S E T S ACCUMULATOR TO THE VALUE AA 
301 AA 
302 00 NOP S P A C E FOR SETT ING OTHER R E G I S T E R S OR F L A G S 
303 00 NOP 
304 24 JMP 0100 JUMP TO BEGINNING OF MAIN LOOP 
305 00 
306 04 UNUSED LOCATIONS S E T TO 04 
307 04 

END 
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Appendix 2. The Effects of Executing the Undeclared Operation C o d e s of the 

8035/8048 

Appendix 2 contains a detailed description of the operations performed 

by all the instruction codes which are not declared for the 8035/8048. 

They appear in numerical order and are referenced by their hexadecimal 

value. In c a s e s where the code performs a different function for different 

manufacturers, this is clearly marked and both operations are descr ibed. 

Symbols Used 

The symbols used and the layout of the definitions is very similar to 

that used in the National Semiconductor 4 8 - S e r i e s Microcomputers Handbook 

(120). Reference should be made to the handbook for descriptions of the 

standard instruction set. 

Symbols Description 

A The Accumulator 
The Auxiliary Carry Flag 
Program Memory Address 
Bit Designator (b = 0-7) 
The Bank Switch 
The Bus Port 
Carry Flag 
Clock Signal 
Event Counter 
Nibble Designator (4 bits) 
Number or Expression (8 bits) 
Memory Bank F l ip -F lop 
F lags 0,1 
Interrupt 
" In-Page" Operation Designator 
Port Designator (p = 1,2 or 4 -7) 
Program Status Word 
Register Designator (r = 0,1 or 0-7) 
Stack Pointer 
Timer 
Timer Flag 
Testable Inputs 0,1 
External RAM 
Prefix for Immediate data 
Prefix for Indirect Address 
Contents of Accumulator 
Contents of Location Addressed by A 
Replaced By 

AC 
addr 
Bb 
B S 
BUS 
C 
CLK 
CNT 
D 
data 
DBF 
F0.F1 

P 
Pp 
PSW 
Rr 
S P 
T 
TF 
T0,T1 
X 

e 
(A) 
((A)) 
< 

226 



Operation Code: 

Mnemonic: 

Operation: 

Description: 

Note: 

Spec ia l 
Conditions: 

01 01 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction 

S a m e operation as the defined instruction (code 00). 

Cyc les : 1 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Spec ia l 
Conditions: 

06 06 

J N T F addr 

Jump to specif ied address if timer flag is c lear . 

(PC 0-7) < addr if TF=0 
(PC) < (PC) + 2 if TF=1 

If the internal t imer/counter flag is set to a logic 
zero, the contents of the program counter are replaced 
by the address bits from byte 2. If the t imer/counter 
flag is a logic one, the next sequential instruction is 
executed. 

This instruction is the logical inverse of the J T F 
instruction, except that the t imer/counter flag is not 
affected. 

Cyc les : 
Bytes: 

2 
2 

Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Spec ia l 

Conditions: 

0B 0B 

IN A.P2 

Input data to accumulator from port 2 

(A) < (P2) 

Data present at port 2 is input into the accumulator. 

S a m e operation as the defined instruction (code OA). 

Cyc les : 2 
Bytes: 1 
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Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Spec ia l 
Conditions: 

22 

MOV A.PC+1 

* * N E C 8048 ONLY*" 22 

Move contents of the 
accumulator and increment. 

(A) < (PC) + 1 

program counter into the 

The contents of the program counter are moved to the 
accumulator and then the accumulator is incremented by 
one. After executing this instruction the accumulator 
contains the address of the next sequential instruction. 

This function is only performed by the processor 
manufactured by N E C . 

C y c l e s : 1 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Description: 

Note: 

Specia l 
Conditions: 

22 " I N T E L 8048 ONLY*« 22 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction 

This code performs a no operation (code 00) on the 8048 
manufactured by Intel. It performs a different function 
on the p rocessor made by N E C . 

Cyc les : 1 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Description: 

Note: 

Specia l 

Conditions: 

33 33 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction. 

S a m e operation as the defined instruction (code 00). 

C y c l e s : 1 
Bytes: 1 
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Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Spec ia l 
Conditions: 

38 38 

BUS IDLE 

No specif ic operation on the Bus 

(BUS) < 00 

The value 00 appears on the Bus during T4 of the second 
cycle of the instruction, but no read or write signal is 
generated. Therefore a valid Bus operation is not 
performed. 

This code does not appear to perform any useful 
function. 

Cyc les : 2 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Spec ia l 
Conditions: 

3B 3B 

OUTL P2.A 

Output contents of accumulator to port 2. 

(P2) < (A) 

The contents of the accumulator are p laced, and latched, 
at the output port 2. 

S a m e operation as the defined instruction (code 3A). 

Cyc les : 2 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Description: 

Note: 

Specia l 

Conditions: 

63 63 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction. 

Same operation as the defined instruction (code 00). 

Cyc les : 1 
Bytes: 1 
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Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Specia l 
Conditions: 

66 66 

JNF1 addr 

Jump to specified address if flag 1 is c lear . 

(PC 0-7) < addr. if F1=0 
(PC) < (PC) + 2. if F l = l 

If flag 1 is at a logic zero, the contents of the 
program counter are replaced by the address bits from 
byte 2. If flag 1 is a logic one. the next sequential 
instruction is executed. 

This instruction is the logical inverse of the JF1 
instruction. 

C y c l e s : 2 
Bytes: 2 

Operation Codes : 

Mnemonic: 

Operation: 

Description: 

Note: 

Specia l 
Conditions: 

73,82 73,82 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction 

S a m e operation as the defined instruction (code 00). 

C y c l e s : 1 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Specia l 
Conditions: 

87 " N E C 8048 ONLY** 87 

C L R A 4 - 7 

C lear accumulator high nibble. 

(A4-7) < 0 

Accumulator bits 4 through 7 are c leared to zero. 

This function is only performed by the processor 
manufactured by N E C . 

Cyc les : 
Bytes: 
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Operation Code: 

Mnemonic: 

Operation: 

Description: 

Note: 

Specia l 
Conditions: 

87 " I N T E L 8048 ONLY* * 87 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction 

This code performs a no operation (code 00) on the 8048 
manufactured by Intel. It performs a different function 
on the processor made by N E C . 

C y c l e s : 1 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Specia l 
Conditions: 

8B 

ORL p2 .#data 

8B 

Logica l -OR- immedia te specif ied data with contents of 
port 2. 

(P2) < (P2) OR data 

The data contained In byte 2 is logically ORed with the 
data on port 2. and the results are sent back to the 
port. 

S a m e operation as the defined instruction (code 8A). 

Cyc les : 
Bytes: 

2 
2 

Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Specia l 

Conditions: 

9B 9B 

ANL P2 .#da ta 

Logica l -AND- immediate specif ied data with port 2. 

(P2) < (P2) AND data 

The data contained in byte 2 are logically ANDed 
immediately with the data on port 2, and the results are 
sent back to the port. 

S a m e operation as the defined instruction (code 9A). 

C y c l e s : 
Bytes: 

2 
2 
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Operation Code: 

Mnemonic: 

Operation: 

Description: 

Note: 

Spec ia l 
Conditions: 

A2 A2 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction 

S a m e operation as the defined instruction (code 00). 

Cyc les : 1 
Bytes: 1 

Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

A6 

JNFO addr 

A6 

Jump to specif ied address if flag 0 is c lear . 

(PC 0-7) < addr. if F0=0 
(PC) < (PC) + 2. if F0=1 

If flag 0 is at a logic zero, the contents of the 
program counter are replaced by the address bits from 
byte 2. If flag 0 is at a logic one. the next 
sequential instruction is executed. 

This instruction is the 
instruction. 

logical inverse of the JFO 

Spec ia l 
Conditions: 

C y c l e s : 
Bytes: 

2 
2 

Operation Code: 

Mnemonic: 

Operation: 

Description: 

Note: 

Spec ia l 

Conditions: 

B7 B7 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction 

S a m e operation as the defined instruction (code 00). 

Cyc les : 1 
Bytes: 1 
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Operation Codes: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Spec ia l 
Conditions: 

C0.C1 * * N E C 8048 ONLY** 

D E C § Rr 

Decrement- indi rect contents of RAM by one. 

CO.Cl 

((Rr)) < ((Rr)) + 1, where r = 0 or 1 

The contents of the internal RAM location as addressed 
by bits 0 through 5 of register 'r ' , are decremented by 
one. 

This function is only performed by the processor 
manufactured by NEC. 

Cyc les : 
Bytes: 

Operation Codes : 

Mnemonic: 

Operation: 

Description: 

Note: 

Specia l 
Conditions: 

C0.C1 " I N T E L 8048 ONLY* * C0.C1 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction. 

T h e s e codes perform a no operation (code 00) on the 8048 
manufactured by Intel. They perform a different 
function on the processor made by N E C . 

Cyc les : 
Bytes: 

1 

Operation Codes: 

Mnemonic: 

Operation: 

Description: 

Note: 

Spec ia l 

Conditions: 

C 2 . C 3 C 2 . C 3 

NOP 

No operation performed. 

No operation is performed: execution continues with the 
next sequential instruction 

S a m e operation as the defined instruction (code 00). 

Cyc les : 1 
Bytes: 1 
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Operation Code: 

Mnemonic: 

Operation: 

Symbolic 
Representation: 

Description: 

Note: 

Specia l 
Conditions: 

D6 D6 

JMPP addr 

Jump to specif ied address within address page. 

(PC 0-7) < addr 

The contents of the program counter are replaced by the 
address bits from byte 2. 

Performs an unconditional jump within the current 
address page. This operation is not provided in the 
standard instruction set. 

Cyc les : 2 
Bytes: 2 

Operation Codes: 

Mnemonic: 

Operation: 

E0 .E1 

DJNZ § Rr addr 

' N E C 8048 ONLY* * E0 .E1 

Decrement- indi rect contents of RAM. test contents, jump 
if not zero. 

Symbolic 
Representation: 

((Rr)) < ((Rr)) - 1: 
(PC 0-7) < addr. 
(PC) < (PC) + 2. 

where r = 0 or 
if ((Rr)) = 0 
if ((Rr)) = 0 

1 

Description: 

Note: 

Spec ia l 
Conditions: 

The contents of the internal RAM location, as addressed 
by bits 0 through 5 of register r. are decremented by 
one. and then tested to s e e if the contents equal zero. 
If the contents of the location equal zero, the next 
sequential instruction is executed. If the location is 
not zero, control p a s s e s to the instruction at the 
address designated in byte 2. 

This function is only performed by the p rocessor 
manufactured by N E C . and provides an operation which is 
not available from the standard instruction set. 

Cyc les : 
Bytes: 

2 
2 
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Operation Codes: 

Mnemonic: 

Operation: 

Description: 

Note: 

E0 .E1 " I N T E L 8048 ONLY** E0 ,E1 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction 

These c o d e s perform a no operation (code 00) on the 8048 
manufactured by Intel. They perform a different 
function on the processor made by NEC. 

Specia l 
Conditions: 

C y c l e s : 1 
Bytes: 1 

Operation Codes: 

Mnemonic: 

Operation: 

Description: 

Note: 

Spec ia l 
Conditions: 

E 2 . F 3 E 2 . F 3 

NOP 

No operation performed. 

No operation is performed; execution continues with the 
next sequential instruction. 

S a m e operation as the defined instruction (code 00). 

C y c l e s : 1 
Bytes: 1 
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Appendix 3. Instruction Set Parameters 

This appendix contains details of the instruction set parameters for 

the 8085. 6800. 8048 and 68000 microprocessors . 

A3.1 Instruction Set Parameters for the 8085 

The 8085 contains the following instruction types: -

Single Byte Instructions Declared Undeclared Total 

Non-Jumping 183 5 188 
Conditional Jump 8 1 9 
Jump 11 0 11 

Total 202 6 208 

Double Byte Instructions Declared Undeclared Total 

Non-Jumping 18 2 20 
Conditional Jump 0 0 0 
Jump 0 0 0 

Total 18 2 20 

Triple Byte Instructions Declared Undeclared Total 

Non-Jumping 8 0 8 
Conditional Jump 16 2 18 
Jump 2 0 2 

Total 26 2 28 

All Instructions Declared Undeclared Total 

Non-Jumping 209 7 216 
Conditional Jump 24 3 27 
Jump 13 0 13 

Total 246 10 256 

The effective number of jump instructions is 26.5. 
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Jump Instruction Types for the 8085 

Unconditional Jumps Conditional Jumps 

Code Mnemonic Length Type Code Mnemonic Length Type 

C3 JMP 3 JMP C2 JNZ 3 JMP 
CD CALL 3 JMP CA JZ 3 JMP 
C9 RET 1 RET D2 JNC 3 JMP 
C7 RST 0 1 RST DA JC 3 JMP 
CF RST 1 1 RST E2 JPO 3 JMP 
D7 RST 2 1 RST EA JPE 3 JMP 
DF RST 3 1 RST F2 JP 3 JMP 
E7 RST 4 1 RST FA JM 3 JMP 
EF RST 5 1 RST C4 CNZ 3 JMP 
F7 RST 6 1 RST CC CZ 3 JMP 
FF RST 7 1 RST D4 CNC 3 JMP 
E9 PCHL 1 JMP DC CC 3 JMP 
76 HLT 1 HLT E4 CPO 3 JMP 

EC CPE 3 JMP 
F4 CP 3 JMP 
FC CM 3 JMP 
CO RNZ 1 RET 
C8 RZ 1 RET 
DO RNC 1 RET 
D8 RC 1 RET 
E0 RPO 1 RET 
E8 RPE 1 RET 
FO RP 1 RET 
F8 RM 1 RET 
DD >«• 3 JMP 
FD X X X 3 JMP 
CB 1 RST 

HLT — Halt Instructions. 
JMP — Jump Instructions. 
RST — Restart instructions. 
RET — Return Instructions. 

x x x — undefined Instructions. 
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A3.2 Instruction Set Parameters for the 6800 

The 6800 contains the following instruction types:-

Single Byte Instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

Double Byte Instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

Triple Byte Instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

Four Byte Instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

All Instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

Declared 

47 
0 
4 

51 

Declared 

85 
14 
4 

103 

Declared 

41 
0 
2 

43 

Declared 

0 
0 
0 

Declared 

173 
14 
10 

197 

Undeclared 

25 
0 
4 

29 

Undeclared 

12 
1 
4 

17 

Undeclared 

10 
0 
1 

11 

Undeclared 

2 
0 
0 

Undeclared 

49 
1 
9 

59 

Total 

72 
0 
8 

80 

Total 

97 
15 
8 

120 

Total 

51 
0 
3 

54 

Total 

2 
0 
0 

2 

Total 

222 
15 
19 

256 

The effective number of jump instructions is 26.5. 
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Jump Instruction Types for the 6800 

Unconditional Jumps Conditional Jumps 

Code Mnemonic Length Type Code Mnemonic Length Type 

20 BRA 2 JMP 22 BHl 2 JMP 
6E JMP(I) 2 JMP 23 BLS 2 JMP 
7E JMP(E) 3 JMP 24 BCC 2 JMP 
8D BSFt 2 JMP 25 BCS 2 JMP 
AD JSR(I) 2 JMP 26 BNE 2 JMP 
BD JSR(E) 3 JMP 27 BEQ 2 JMP 
39 RTS 1 RET 28 BVC 2 JMP 
3B RTI 1 RET 29 BVS 2 JMP 
3E WAI 1 HLT 2A BPL 2 JMP 
3F SWI 1 RST 2B BMI 2 JMP 
38 * * « 1 RET 2C BGE 2 JMP 
3A * * « 1 RET 2D BLT 2 JMP 
3C « » 1 HLT 2E BGT 2 JMP 
3D X X X 1 HLT 2F BLE 2 JMP 
9D X X X 2 HLT 21 X X X 2 JMP 
CD X X X 2 JMP 
DD X X X 2 HLT 
ED X X X 2 JMP 
FD X X X 3 JMP 

HLT — Halt Instructions. 
JMP — Jump Instructions. 
RET — Return Instructions. 
RST — Restart Instructions. 

x x x — undefined Instructions. 

(I) — Indexed Addressing. 
(E) — Extended Addressing. 

239 



A3.3 Instruction Set Parameters for the 8048 

The 8048 instruction set is dependent on the manufacturer of the 

device. The main figures given are for processors made by Intel. Figures 

in brackets show the variations for processors made by NEC. 

Single Byte instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

Double Byte Instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

All Instructions 

Non-Jumping 
Conditional Jump 
Jump 

Total 

Declared 

161 
0 
3 

164 

Declared 

22 
20 
24 

66 

Declared 

183 
20 
27 

230 

Undeclared 

20(18) 
0 
0 

20(18) 

Undeclared 

2 
3 
1(3) 

6(8) 

Undeclared 

22(20) 
3 

1(3) 

26 

Total 

181(179) 
0 
3 

184(182) 

Total 

24 
23 

25(27) 

72(74) 

Total 
205(203) 

23 

28(30) 

256 
The effective number of jump instructions is 39.5 (41.5). 
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Jump Instruction Types for the 8048 

Unconditional Jumps Conditional Jumps 

Code Mnemonic Length Type Code Mnemonic Length Type 

04 JMP OXX 2 JMP 12 JBO 2 JMP 
24 JMP 1XX 2 JMP 32 JB1 2 JMP 
44 JMP 2XX 2 JMP 52 JB2 2 JMP 
64 JMP 3XX 2 JMP 72 JB3 2 JMP 
84 JMP 4XX 2 JMP 92 JB4 2 JMP 
A4 JMP 5XX 2 JMP B2 JB5 2 JMP 
C4 JMP 6XX 2 JMP D2 JB6 2 JMP 
E4 JMP 7XX 2 JMP F2 JB7 2 JMP 
14 CALL OXX 2 JMP 06 x x x 2 JMP 
34 CALL 1XX 2 JMP 16 JTF 2 JMP 
54 CALL 2XX 2 JMP 26 JNTO 2 JMP 
74 CALL 3XX 2 JMP 36 JTO 2 JMP 
94 CALL 4XX 2 JMP 46 JNT1 2 JMP 
B4 CALL 5XX 2 JMP 56 JT1 2 JMP 
D4 CALL 6XX 2 JMP 66 X X X 2 JMP 
F4 CALL 7XX 2 JMP 76 JF1 2 JMP 
B3 JMP 9A 1 JMP 86 JNI 2 JMP 
D6 X X X 2 JMP 96 JNZ 2 JMP 
E8 DJNZ RO 2 JMP A6 X X X 2 JMP 
E9 DJNZ m 2 JMP B6 JFO 2 JMP 
EA DJNZ R2 2 JMP C6 JZ 2 JMP 
EB DJNZ R3 2 JMP E6 JNC 2 JMP 
EC DJNZ R4 2 JMP F6 JC 2 JMP 
ED DJNZ R5 2 JMP 
EE DJNZ R6 2 JMP 
EF DJNZ R7 2 JMP 
83 RET 1 RET 
93 RETR 1 RET 

NEC 8048 ONLY 

EO DJNZ §R0 2 JMP 
El DJNZ 8R1 2 JMP 

HLT — Halt Instructions. 
JMP — Jump Instructions. 
RET — Return Instructions. 
RST — Restart Instructions. 

x x x — undefined Instructions. 

XX — Low-order Byte of Jump Address. 
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A3.4 Instruction Set Parameters for the 68000 

The 68000 contains the following instruction types:-

All Instructions Declared Undeclared Total 

Non-Jumping 
Conditional Jump 
Jump 

41021 
4210 

20305 

0 
0 
0 

41021 
4210 

20305 

Total 65536 0 65536 

Jump Instruction Types for the 68000 

For the 68000 it is not acceptable to assume that conditional jump 

instructions will cause transfer of execution on 50% of the occasions that 

they are executed. The list on the following page shows how the different 

instructions have been divided into the effective number of codes which 

fall into particular groups. Further details of the divisions are given in 

section 4.2.1. 
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Jump Instruction Types for the 68000 (cont.) 

Instruction No. Codes Non-Jump Exception(RST) Jump (Type) 

Bcc 
BRA 
BSR 
CHK 
DBcc 
JMP 
JSR 
RTR 
RTS 
TRAP 
TRAPV 

3584 
256 
256 
424 
128 
28 
28 

1 
1 

16 
1 

1792 
0 
0 

106 
64 

0 

Privilege instructions 

STOP 1 
RESET 1 
RTE 1 
MOVE to SR 53 
ANDI to SR 1 
EORI to SR 1 
ORI to SR 1 
MOVE USP 16 

0 
0 
0 
0 
0.5 

0 
0.5 
0 

26.5 
0.5 
0.5 
0.5 
8 

896 
128 
128 
318 

32 
14 
14 
0.5 
0.5 

16 
0.5 

0.5 
0.5 
0.5 

26.5 
0.5 
0.5 
0.5 
8 

896 
128 
128 

0 
32 
14 
14 

(JMP) 
(JMP) 
(JMP) 

Totals 4798 1999 1585 

In addition to those mentioned above, there are 

unassigned op-codes which generate an exception if they are 

Overall Instruction Grouping 

(JMP) 
(JMP) 
(JMP) 

0.5 (RET) 
0.5 (RET) 
0 
0 

0.5 (HLT) 
0 
0.5 (RET) 
0 
0 
0 
0 
0 

1214 

19.717 illegal or 

executed. 

HLT — Halt Instuctions. 

JMP — Random Jump Instructions. 

RET — Return Instructions. 

RST — Restart Instructions. 

Non-Jumping Instructions. 

Total 

Effective Number 

0.5 

1212.0 

1.5 

21302.0 

43020.0 

65536.0 
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Appendix 4, Equations for Transfers within a Program Area 

This appendix contains the detailed derivation of the probability 

equations governing the transfers between states, during erroneous 

execution in program areas. The following derivations are valid for 

processors having single, double and triple byte instructions only. 

in order to calculate the probabilities of reaching a particular 

state, it is necessary to determine the possible ways of transferring form 

one state to another. All the possible transfers from the three different 

operand fields are shown below. In all cases the first byte read is the 

fourth in the sequence. 

Transfer from State QX. 

Transfer to Jump 

Transfer to Resume 

D J 

Transfer to DX 

Transfer to TXX 

Transfer to TXX 

D S V . . . . 
D D S V . . . 
D T S S V . . 
D T D X y . . 

D D D X . . . 
D T S D X . . 

D D T X X . . 
D T S T X X . 

D T T X X . . 

Transfer from State TXX 

Transfer to Jump 

Transfer to Resume 

T X J 

Transfer to DX 

Transfer to TXX 

T X S y . . . . 
T X D S V , . . 
T X T S S V . . 
T X T D X V . . 

T X D D X . . . 
T X T S D X , . 

T X D T X X . . 
T X T S T X X . 

Transfer to TXX T X T T X X . 
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Transfer from State TXX 

Transfer to Jump . . T J X . 

Transfer to Resume . . T D X y . . . 
. . T T X S V . . 

Transfer to DX . . T T X D X . 

Transfer to TXX . . T T X T X X . 

Transfer to TXX . . T S X . 

The symbols used are as fol lows:-

Byte interpreted as an instruction. 

V Any valid instruction bytes. 
X Operand byte of any value. 

S Single byte instruction op-code in the program. 
D Double byte instruction op-code in the program. 
T Triple byte instruction op-code in the program. 

S Operand byte interpreted as a single byte non-jumping instruction. 
D Operand byte interpreted as a double byte non-Jumping instruction. 
T Operand byte interpreted as a triple byte non-jumping instruction. 

J Operand byte interpreted as a jump instruction type. 

X Operand byte interpreted as an instruction. 

The probability that a particular transfer occurs is evaluated by 

multiplying together the probabilities that each specific byte appears in 

that sequence. For example, the transfer from the operand field of a 

double byte instruction to resuming valid instruction fetches can be 

achieved in four different ways. The probability of each sequence is given 

by:-

PD2<R1 
Eqn. A4.1 

P D£R2 • p s Eqn. A4.2 

PD.£R3 P D T • p s • p s Eqn. A4.3 

PD2<R4 P D I P D Eqn. A4.4 

Where:- R is the state of resuming valid instruction fetches. 
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DXR represents the transfer from DX to R. 

For all the other quantities the same nomenclature has been used as above, 

so that the probability of interpreting an operand byte of a double byte 

instruction, as a single byte non-jumping instruction, is represented by 

p 
DS ' 

As the transfer can occur in any one of these ways, the overall 

probability of the transfer, P Q X R . is given by:-
P = P + P + P + P Fnn A4 5 DXT-I DXR1 DXR2 DXR3 DXR4 c q n ' * ° 

Similar expressions can be obtained for all the other transfers. 

The probability of a specific byte appearing at a given location is 

obtained from the ratio of that byte type to the total number of locations. 

For example P n c is given by:-

N D S 
P D S = Eqn. A4.6 

Where:- is the number of single byte non-jumping instructions which 

appear in the operand field of double byte instructions. 

N D ) is the number of double byte instructions. 

Pg is given by:-

N S I 
P s = - j jS - Eqn. A4.7 

Where:- Ng ( is the number of single byte instructions in the program 

area. 

IMj is the total number of instructions. 

Values of these probabilities can either be obtained by assuming equal 

use of each instruction and random data in the operand fields, or by 

analysing actual programs. 

From the above expressions it is possible to derive equations for the 

246 



probability of being at a particular state. I instruction cycles after the 

erroneous jump. They are of the following form:-

V" = V M ) • PDXDX + P T X X ( M ) ' PTXXDX + P T X X ( M ) ' PT^XDX 

Eqn. A4.8 

Where:- DXDX represents the transfer from DX to DX. 

TXXDX represents the transfer from TXX to DX. 

TXXDX represents the transfer from TXX to DX. 

Similar expressions can be obtained for P T X X ( I > and P T X X ( I ) . 

For the probabilities of a jump to another part of the memory map or 

of resuming valid instruction fetches, the values are cumulative because it 

is assumed that once in these states, execution cannot transfer elsewhere. 

Therefore the following expressions apply:-

P R ( I ) = P R ( M ) + P D X ( . - D . P D X R + P ^ ( M > . P T X 2 i R 

+ P T * X ( M ) • P T X X R Eqn. A4.9 

The analysis of section 5.2 treats the jump instruction types as four 

separate groups. For clarity, the derivations so far have only considered 

a single jump type. However the expressions for the individual groups are 

the same as for the overall group, except that the probabilities of a 

particular jump type appearing in the operand field are reduced 

proportionally. 

Section 5.2 also shows that the probabilit ies, when I equals zero, can 

be found. Therefore the probabilities for all other positive integer 

values of l can be evaluated from the above equations. 
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Appendix 5. Results of Execution in Unpopulated Memory Areas 

This appendix gives detailed results of the execution following an 

erroneous jump into unpopulated memory areas of the 8048 and 8085. For 

both processsors instruction fetches read back the lower order byte of the 

address and therefore a 256 byte sequence appears in these areas. The 

results below show the effective number of starting points within the 

sequence which give a particular transfer, and from this the probability of 

each outcome has been calculated. 

A5.1 Unpopulated Area Execution for the 8048 

Final Instruction Effective Number of % Probability 
Executed Start Addresses of Transfer 

JUMP 005/805 1.0 0.4 
CALL 015/815 15.0 5.9 
JUMP 125/925 1.0 0.4 
CALL 135/935 46.0 18.0 
JUMP 245/A45 1.0 0.4 
CALL 255/A55 15.5 6.1 
JUMP 365/B65 31.5 12.3 
CALL 375/B75 16.0 6.3 
JUMP 485/C85 1.0 0.4 
CALL 495/C95 8.0 3.1 
JUMP 5A5/DA5 16.0 6.3 
CALL 5B5/DB5 7.5 2.9 
JUMP 6C5/EC5 16.0 6.3 
CALL 6D5/ED5 8.0 3.1 
JUMP 7E5/FE5 24.0 9.4 
CALL 7F5/FF5 15.0 5.9 

CALL 815 0.5 0.2 
CALL 935 0.5 0.2 
CALL 7F5 1.0 0.4 

JUMP §A 8.5 3.3 

RET 15.0 5.9 
RETR 8.0 3.1 

Where two addresses have been given the transfer is dependent on the 

state of the memory bank select f l ip-f lop, and the corresponding address 

will be used. 
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A5.2 Unpopulated Area Execution for the 8085 

Address or Instruction Effective Number 
Reached 

HALT 
RETURN 

Address in HL Register 
DFDE 
FFFE 
RESTART 4 
RESTART 5 
RESTART 6 
RESTART 7 
F4F3 

Address in DE Register 
RESTART 1 

Address in BC Register 
RESTART 0 
CFCE 
RESTART 2 
RESTART 3 
C4C3 
C5C4 
D4D3 
DCDB 
E4E3 
E6E5 
EEED 
F6F5 
FCFB 
FEFD 
CECD 

Address in PSW 
C6C5 
CCCB 
RESTART 8 
DEDD 
ECEB 
D6D5 

of Start Addresses 

122.2 
89.6 

3.5 
3.0 
2.2 
2.0 
2.0 
2.0 
2.0 
1.9 
1.9 
1.8 
1.5 
1.5 
1.5 
1.5 
1.5 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
0.8 
0.8 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

% Probability 
of Transfer 

47.7 
35.0 

1.4 
1.2 
0.9 
0.8 
0.8 
0.8 
0.8 
0.7 
0.7 
0.7 
0.6 
0.6 
0.6 
0.6 
0.6 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.3 
0.3 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

Transfer 
Type 

HLT 
RET 
JMP 
SPC 
SPC 
RST 
RST 
RST 
RST 
SPC 
JMP 
RST 
JMP 
RST 
SPC 
RST 
RST 
SPC 
SPC 
SPC 
SPC 
SPC 
SPC 
SPC 
SPC 
SPC 
SPC 
SPC 
JMP 
SPC 
SPC 
RST 
SPC 
SPC 
SPC 

Transfer types:- HLT Hall. 
RST Restart. 
JMP Random Jump. 
RET Return. 
SPC Specific Jump. 
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Appendix 6. Software for the Fault Simulation Test Facility 

This appendix contains full commented listings of the software written 

modules. CONTROL is the control program which organises the sequence of 

runs and calls the other modules. PREFAULT is the main core of the 

interrupt service routine. It retrieves the return address from the stack 

and saves all the registers before call ing the fault injection routine. 

Both of these modules provide the basis for all testing and do not require 

alteration. 

The remaining modules are test dependent and have to be rewritten for 

different faults or test programs. For these modules, the listings show a 

specific example. INIT initialises the state of the test system before 

each run. FAULT simulates the desired fault during the interrupt routine. 

CHECK gives an indication of the correctness of the result after execution. 

TEST Is the program to be tested. 

A6.1 CONTROL - Main Control Program 

CONTROL PROGRAM FOR TESTING FAULT TOLERANT ROUTINES 
IT INJECTS A FAULT AT SUCCESSIVE LOCATIONS IN THE TEST PROGRAM 

THE TESTING FACILITY USES THE TIMER SECTION OF THE 8155 ON THE SDK BOARD 
TO GENERATE INTERRUPTS AT DIFFERENT POINTS IN THE PROGRAM. 

THE INTERRUPT ROUTINE CAN THEN BE USED TO INJECT 'FAULTS' INTO THE SYSTEM 

for the fault simulation test facility. It is split into a number of 

BY CORRUPTING REGISTERS OR MEMORY LOCATIONS. 

BLKEND EQU 
BLKST EQU 
CHECK EQU 
CIN EQU 
COUT EQU 
ENDTC EQU 
GETAD EQU 
INIT EQU 
MASK EQU 

020B6H 
07FFFH 
08700H 
00820H 
00850H 
02008H 
00626H 
08500H 
02007H 

STORE FOR END OF PROG ADDRESS 
START OF PROGRAM ADDRESS 
LOCATION OF CHECKING ROUTINE 
READS IN SERIAL BYTE INTO A AND C REGS 
OUTPUTS SERIAL CHARACTER IN C REG 
STORES FINAL VALUE OF TIMER COUNT 
READS ADDRESS INTO BC REGS 
LOCATION OF ROUTINE TO INITIALISE REGS 
TEMPORARY STORE FOR INTERRUPT MASK 
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CONTROL (cont.) 

MONIT EQU 00408H :RETURN ADDRESS INTO SDK BOARD MONITOR 
NUMFLG EQU 02005H .FLAG FOR SINGLE FAULT INJECTION 
PROG EQU 0C000H .START OF TEST PROGRAM 
RUNNUM EQU 02003H .HOLDS THE VALUE OF THE CURRENT RUN NO. 
STACK EQU 020B0H .STACK POINTER 
TCOUNT EQU 020C0H .LOCATION FOR TIMER COUNT 
TIMFLG EQU 02006H .FLAG FOR SINGLE LOCATION FAULT INJECTION 
UPDAD EQU 00362H ;DISPLAYS CONTENTS OF HL ON SDK BOARD 

ASEG 
ORG 09800H .LOCATE PROGRAM 

LXI SP.STACK .SETS STACK FOR CONTROL PROG USE 
Dl .DISABLES INTERRUPTS WHILE SETTING TIMER 
LXI H.06H .SET TIMER COUNT FOR FIRST RUN 
SHLD TCOUNT .'SAVES VALUE 
MVI A.000H .SET FLAGS 
STA TIMFLG 
STA NUMFLG 
LXI H.00000H .SET RUN NUMBER 
SHLD RUNNUM 
LXI H.MESS1 ;LOADS START ADDRESS OF MESSAGE 
CALL STRING .AND OUTPUTS STRING 
CALL GETAD ;READS IN END OF PROGRAM BLOCK 
MOV H.B .TRANSFER BLOCK END AND SAVE 
MOV L.C 
SHLD BLKEND 
LXI H.MESS2 .READY MESSAGE AND SEND 
CALL STRING 
CALL CIN .READ IN SINGLE BYTE 
ANI 07FH .REMOVE EXTRA BIT 
CPI 'S ' ;CHECK IF SINGLE LOCATION REQUIRED 
JNZ SKIP1 .IF ALL LOCATIONS SKIP RESETTING FLAGS 
LXI H.MESS3 
MVI A.OFFH .SET SINGLE LOCATION FLAG 
STA TIMFLG 
CALL STRING .REQUEST COUNT FOR SINGLE LOCATION 
CALL GETAD .READ IN TIMER COUNT 
MOV H.B .TRANSFER TO HL 
MOV L C 
SHLD TCOUNT .STORE NEW VALUE OF TIMER COUNT 

SKIP!: LXI H.MESS4 .READY MESSAGE AND SEND 
CALL STRING 
CALL CIN ;READ IN SINGLE BYTE 
ANI 07FH ;REMOVE EXTRA BIT 
CPI 'S ' ;CHECK FOR SINGLE FAULT INJECTION 
JNZ START ;IF FULL RUN START EXECUTION 
MVI A.OFFH .SET RUN NUMBER FLAG 
STA NUMFLG 
LXI H.MESS5 ;READY MESSAGE AND SEND 
CALL STRING 
CALL GETAD ;READ IN RUN NUMBER 
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CONTROL (cont.) 

START: 

MOVE: 

MOV H.B 
MOV L C 
SHLD RUNNUM 
JMP START 
LHLD TCOUNT 
INX H 
SHLD TCOUNT 
LXI SP.STACK 
LHLD TCOUNT 
SHLD ENDTC 
CALL UP DAD 
LXI B.BLKST 
LXI D.PROG-1 
LHLD BLKEND 
INX B 
INX D 
LDAX B 
STAX D 
MOV A.L 
CMP E 
JNZ MOVE 
MOV A.H 
CMP D 
JNZ MOVE 
LHLD TCOUNT 
MVI A.040H 
OUT 028H 
MOV A.L 
OUT 02CH 
MOV A.H 
OUT 02DH 
CALL INIT 
MVI A.OCOH 
OUT 028H 
MVI A.01BH 
SIM 
POP PSW 
LXI SP.0C800H 
El 
OUT OFFH 
JMP PROG 

:MOVE VALUE INTO HL 

STORE VALUE IN MEMORY 
SKIP INCREMENT OF COUNTER 
RESET COUNTER FOR NEXT RUN 

SET STACK FOR CONTROL PROGRAM USE 
LOAD TIMER COUNT INTO HL REGS 
SAVES VALUE FOR DISPLAY ON COMPLETION 
DISPLAY VALUE ON SDK BOARD 
LOAD BLOCK START ADDRESS IN ROM 
LOAD BLOCK START ADDRESS IN RAM 
LOAD BLOCK END ADDRESS IN RAM 
INCREMENT POINTERS 

;READ IN BYTE FROM INSTANT ROM 
.STORE BYTE IN RAM 
.CHECK FOR END OF BLOCK 

.LOAD COUNT FOR PROGRAMMING TIMER 
;STOP TIMER IF RUNNING 

.LOADS LOW ORDER BYTE OF COUNT 

.LOADS HIGH ORDER BYTE OF COUNT 

.'INITIALISES REGISTERS BEFORE TEST 

.START COUNT 

;SET INTERRUPT TO ENABLE RST 7.5 

;RESETS PSW BEFORE TEST 
.SET STACK BEFORE JUMP 

.TRIGGERS HARDWARE TO MASK OFF A14.A15 

.•JUMPS INTO PROGRAM TO BE TESTED 

FOR THE FIRST RUN AN INTERRUPT WILL OCCUR DURING THE JUMP INSTRUCTION. 
IT IS THEREFORE POSSIBLE TO INJECT A 'FAULT' BEFORE EXECUTION OF THE 
FIRST INSTRUCTION IN THE TEST PROGRAM. 

AFTER A COMPLETE RUN OF THE TEST PROGRAM. FOLLOWING CODE WILL BE 
EXECUTED TO DETERMINE SUCCESS OR FAILURE. THEN OUTPUT THE RESULT. 

ORG 

RETURN: LXI 

09900H .FIX RETURN ADDRESS 

SP.STACK ;RESET STACK AFTER TEST 
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CONTROL (cont.) 

FAIL: 
T E S T ! : 

T E S T 2 : 

PREND: 

RIM 
STA MASK 
MVI A.010H 
SIM 
CALL C H E C K 
J N C FAIL 
MVI C . ' S ' 
C A L L COUT 
JMP T E S T ! 
C A L L OUTTC 
LDA TIMFLG 
INR A 
JZ T E S T 2 
LDA MASK 
ANI 040H 
JZ ISTART 
LXI H.0006H 
SHLD TCOUNT 
LDA NUMFLG 
INR A 
J Z PREND 
MVI C.ODH 
CALL COUT 
MVI C O AH 
C A L L COUT 
LHLD RUNNUM 
INX H 
SHLD RUNNUM 
C A L L OUTNUM 
MVI C . ' " ' 
C A L L C O U T 
JMP S T A R T 

MVI A.010H 
SIM 
LXI H.MESS6 
C A L L STRING 
LHLD E N D T C 
CALL OUTNUM 
LXI H.MESS7 
CALL STRING 
LHLD RUNNUM 
C A L L OUTNUM 
MVI C.01AH 
C A L L COUT 
JMP MONIT 

READ IN S T A T E O F I N T E R R U P T S 
S T O R E IN TEMP LOCATION 
R E S E T I N T E R R U P T O F F 

SUBROUTINE TO C H E C K IF C O R R E C T R E S U L T S 
CARRY NOT S E T IF U N S U C C E S S F U L 
OUTPUTS ' S ' TO INDICATE S U C C E S S 

R E T U R N S A F T E R SENDING ' S ' 
OUTPUTS TIMER COUNT 
T E S T FOR S I NGLE LOCATION FAULT 

S IN GL E RUN JUMP TO S E C O N D T E S T 
RELOAD S T A T E OF I N T E R R U P T S 
T E S T S TO S E E IF MORE RUNS R E Q U I R E D 
G O E S BACK FOR NEXT RUN 
R E S E T TIMER COUNT FOR NEXT S E T OF RUNS 
SAVE VALUE FOR LATER U S E 
LOAD T E S T FLAG INTO A C C 

JUMP IF S I NGLE RUN OR END 
S E N D C R . L F TO P L A C E RUN NUMBER IN 
L E F T HAND COLUMN OF LINE 

LOAD RUN NUMBER 
INCREMENT READY FOR NEXT RUN 
SAVE FOR LATER U S E 
O U T P U T S VALUE TO S C R E E N 
OUTPUT ' * ' TO MARK RUN NUMBER 

;JUMP BACK FOR NEXT RUN 

; R E S E T RST7.5 FLIP FLOP TO O F F 

;OUTPUTS TERMINATING M E S S A G E 

.OUTPUT VALUE O F TIMER COUNT 

;OUTPUT VALUE OF RUN NUMBER 

;SEND END OF F I L E MARKER 

:JUMP BACK TO SDK MONITOR 

M E S S ! : 

M E S S 2 : 

M E S S 3 : 

DB 
DB 
DB 
DB 
DB 

ODH.OAH.'FAULT TOLERANT TEST ING FACILITY' .0DH.0AH.0AH 
' T E S T PROGRAM LOCATED FROM C000 TO $' 
ODH.OAH.OAH.'TYPE " S " FOR FAULT INJECTION AT A S I N G L E ' 
' LOCATION $' 
ODH.OAH.OAH.'ENTER TIMER COUNT FOR R E Q U I R E D LOCATION $' 
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CONTROL (cont.) 

MESS4: DB ODH.OAH.OAH.'TYPE " S " FOR S INGLE RUN ON E A C H ' 
DB 'LOCATION $' 

M E S S 5 : DB ODH.OAH.OAH.'ENTER RUN NUMBER FOR R E Q U I R E D RUN $' 
MESS6: DB 0DH.0AH.07H /EXECUTION TERMINATED AT TIMER COUNT $' 
MESS7: DB '. AND RUN NUMBER $' 

SUBROUTINE — STRING C A L L S : - COUT 

ROUTINE TO OUTPUT A STRING OF C H A R A C T E R S DELIMITED BY A '$ ' 
START A D D R E S S O F STRING MUST B E IN T H E HL R E G PAIR 

MOV C M .'GET BYTE FROM MEMORY 
MOV A . C ; C H E C K FOR DELIMITER 
CPI ' $ ' 
RZ .RETURN IF END OF M E S S A G E 
P U S H H .SAVE MEMORY A D D R E S S 
CALL C O U T .OUTPUT C H A R A C T E R 
POP H 
INX H . INCREMENT A D D R E S S POINTER 
JMP STRING .GO BACK FOR NEXT C H A R A C T E R 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

SUBROUTINE - - OUTTC/COUTNUM) C A L L S — AOUT, CONV. COUT 

C O N V E R T S 16 BIT A D D R E S S S T O R E D IN 'TCOUNT' . (OR IN HL R E G I S T E R PAIR). 
INTO 4 ASCII C O D E S AND OUTPUTS THEM TO THE SERIAL PORT 

X X X X X X X X X R X X R X X X * X X * X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X * X * X X * * « X 

OUTTC: LHLD TCOUNT 
OUTNUM: MOV A.H 

CALL AOUT 
MOV A.L 
CALL AOUT 
R E T 

LOAD IN NUMBER FOR OUTPUT 

OUTPUTS HIGH BYTE 

OUTPUTS LOW BYTE 

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

SUROUTINE — AOUT C A L L S — CONV. COUT 

C O N V E R T S S I N G L E BYTE IN ACCUMULATOR INTO TWO ASCII C O D E S AND O U T P U T S 
THEM TO THE S E R I A L LINE 

x x x x x x * « * x x x x x x x x x x x x * x x * x x x x x x x x * x x x x x x x x x x x x x x x x x x x x x x x * x x x x x x x x x x x x x x x 

AOUT: MOV B.A 
RAR 

. S A V E S BYTE IN B R E G 

.SHIFTS U P P E R BITS 
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CONTROL (cont.) 

RAR 
RAR 
RAR 
ANI OFH MASK O F F U P P E R 4 BITS 
CALL CONV C O N V E R T S TO ASCII AND 
MOV A.B R E S T O R E VALUE 
ANI OFH MASKS O F F BITS 
CALL CONV C O N V E R T S AND S E N D S 
R E T 

SUBROUTINE — CONV C A L L S — COUT 

C O N V E R T S HEX DIGIT IN ACCUMULATOR TO ASCII AND O U T P U T S TO S E R I A L PORT 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

CONV: 

SKIPC: 

ADI 030H ;CONVERT TO ASCII 
CPI 03AH . C H E C K IF 0 -9 
JM SKIPC 
ADI 07H R E A D J U S T S FOR A - F 
MOV C.A .MOVE C O D E TO C R E G 
CALL COUT ;OUTPUTS ASCII C O D E 
R E T 

END 

A6.2 P R E F A U L T - Main Core of Interrupt Serv ice Routine 

• x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

THIS IS THE FAULT INJECTING ROUTINE 

IT IS E X E C U T E D A F T E R A RST 7.5 INTERRUPT. IT S A V E S T H E C U R R E N T STACK 
POINTER AND ALL THE R E G I S T E R S . IT R E T R I E V E S T H E RETURN A D D R E S S FROM 
MEMORY AND S T O R E S IT AS PART OF THE JUMP INSTRUCTION AT THE END OF 
THIS ROUTINE. A SUBROUTINE IS THEN C A L L E D TO ACTUALLY INJECT THE FAULT 
B E F O R E REINSTATING ALL T H E R E G I S T E R S AND T H E ORIGINAL STACK POINTER. 

C A L L S :- FAULT 

X X X X X X X X X X X X X X X X X X X X X X X X R X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

CYTEMP EQU 020B2H 
DUMMY EQU 00000H 
HLTEMP EQU 020B0H 
FAULT EQU 08600H 
S P T E M P EQU 020B4H 
STACK EQU 020B0H 

TEMP S T O R E FOR CARRY FLAG 
DUMMY A D D R E S S C H A N G E D LATER 
TEMP S T O R E FOR HL R E G I S T E R S 
LOCATON OF FAULT INJECTING ROUTINE 
TEMP S T O R E FOR S T A C K POINTER 
TEMP STACK POINTER FOR THIS ROUTINE 
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P R E F A U L T (cont.) 

A S E G 
ORG 0 9 F C 2 H 

SKIP: 

SHLD HLTEMP 
MVI H.OOOH 
J N C SKIP 
MVI H.OFFH 
SHLD C Y T E M P 
LXI H,00000H 
DAD S P 
LXI S P . S T A C K 
PUSH D 
PUSH B 
PUSH PSW 
MOV E . L 
MOV D.H 
INX H 
INX H 
SHLD S P T E M P 
XCHG 
MOV A.H 
ORI OCOH 
MOV H.A 
MOV E.M 
INX H 
MOV D.M 
XCHG 
SHLD RETURN+1 

CALL FAULT 

POP PSW 
POP B 
POP D 
LHLD C Y T E M P 
DAD H 
LHLD S P T E M P 
S P H L 
LHLD HLTEMP 
OUT OFFH 
JMP DUMMY 

END 

. S E T A D D R E S S SO LAST TWO B Y T E S IN RAM 

.SAVE HL R E G I S T E R S 

. P R E P A R E TO S E T TEMPORARY CARRY FLAG 
; T E S T C U R R E N T CARRY FLAG 
; R E S E T TO INDICATE CARRY WAS S E T 
.SAVE TEMPORARY CARRY FLAG 
;CLEAR HL R E G S 
. G E T C U R R E N T S T A C K POINTER INTO HL R E G S 
,'LOAD TEMPORARY STACK POINTER 
.SAVE ALL R E G I S T E R S 

; S T O R E COPY OF ORIGINAL SP IN DE R E G S 

.ADJUST OLD S P FOR REMOVAL OF RETURN 
; A D D R E S S 
.SAVE VALUE IN TEMP S T O R E 
.RETURN OLD S P INTO HL R E G S 
; S E T U P P E R TWO BITS SO THAT S T A C K POINTS 
; TO MASKED A R E A 
.'RETURN HIGH B Y T E TO H R E G 
. G E T LOW BYTE OF R E T U R N A D D R E S S 

; G E T HIGH BYTE 
. T R A N S F E R TO HL R E G S 
; S T O R E AS PART O F JUMP INSTRUCTION 

.CALL ROUTINE TO INJECT FAULT 

. R E S T O R E ALL R E G I S T E R S 

R E T R I E V E TEMPORARY CARRY F L A G 
R E S E T CARRY F L A G 
G E T OLD STACK POINTER 
R E S E T STACK FOR T E S T PROGRAM U S E 
R E S T O R E HL R E G S 
S E T UP MASKING CIRCUITRY 
DUMMY C H A N G E D DURING EXECUTION 
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A6.3 FAULT - Simulates Desired Fault 

THIS IS A FAULT INJECTING ROUTINE WHICH C O R R U P T S DATA IN MEMORY LOCATIONS 
C100 AND C101. 

FLAG S E T TO OFFH ON LAST RUN 
S T O R A G E LOCATION FOR THE RUN NUMBER 
LOCATION OF INPUTS INTO T E S T ROUTINE 

LOADS IN RUN NUMBER 
LOAD A D D R E S S OF INPUTS INTO DE R E G S 
SWAP HL FOR DE 
C L E A R B R E G READY FOR LAST RUN FLAG 
T R A N S F E R HIGH BYTE OF RUNNUM INTO A C C 
T E S T LOW O R D E R BIT 
NO CORRUPTION IF BIT NOT S E T 
C O R R U P T MEMORY BYTE 
S E T HALF OF LAST RUN FLAG 
RELOAD HIGH BYTE OF RUN NUMBER 
T E S T S E C O N D BIT 
NO CORRUPTION IF BIT NOT S E T 
S E T A D D R E S S IN HL R E G TO HIGH B Y T E 
C O R R U P T HIGH BYTE IN MEMORY 
S E T S E C O N D HALF OF LAST RUN FLAG 
ADD BOTH HALVES OF FLAG T O G E T H E R 
MOVE FLAG TO B R E G 
LOAD LOW BYTE OF RUN NUMBER INTO A C C 
T E S T FOR LAST RUN 
RETURN IF NOT LAST RUN 
MOVE F L A G INTO A C C 
S T O R E FLAG IN MEMORY 

NUMFLG E Q U 02005H 
RUNNUM E Q U 02003H 
VAL E Q U 0C100H 

FAULT: LHLD RUNNUM 
LXI D.VAL 
XCHG 
MVI B.OOH 
MOV A.D 
ANI 01H 
JZ S K I P ! 
MOV M.E 
MVI B.OFH 

S K I P ! : MOV A.D 
ANI 02 H 
J Z SKIP2 
INX H 
MOV M.E 
MVI A.OFOH 
ADD B 
MOV B.A 

SKIP2: MOV A . E 
INR A 
RNZ 
MOV A.B 
STA NUMFLG 
R E T 
END 
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A6.4 INIT - Initialisation Routine 

«««««««»«««««««««««««««««««««««««««««««««««»««««««««««*«*«»««««««««««««»» 

THIS ROUTINE S E T S UP INITIAL S T A T U S OF THE P R O C E S S O R 

H A A K A A A A A A A f t A A A A A A A A A A A A A A A A A A K S A A A A A X A A A A A A A A A A A A A A A A n A j X A A A A X A A A A A t t A A A A A 

E R R F L G EQU 0 C 7 F F H .LOCATION OF E R R O R F L A G 

LXI H.00O0OH 
XTHL 
PUSH H 
LXI B.00O0OH 
LXI D.OOOOOH 
LXI H.00000H 
MVI A.OFFH 
STA E R R F L G 
R E T 
END 

S E T WHAT WILL B E C O M E THE PSW 
P U S H E S HL ONTO S T A C K . R E M O V E S R E T ADD 
R E P L A C E S RETURN A D D R E S S ONTO STACK 
S E T INITIAL VALUE FOR BC R E G S 
S E T INITIAL VALUE FOR DE R E G S 
S E T INITIAL VALUE FOR HL R E G S 
S E T S A R E G TO F F 
S E T S E R R O R FLAG 

A6.5 C H E C K - C h e c k s Result after Execution 

R S R R * X R R R R R R R f i R R R R R R R R R R R R R H R R R R R * * * R « R R « R X * * R R R R * R R * * * R R R » R n a R R R K n R R R * R « 

C H E C K I N G ROUTINE TO T E S T FOR S U C C E S S OR FAILURE OF T H E T E S T PROGRAM 

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 

VAL3 EQU O C n O H 

C H E C K : LDA VAL3 
CPI 055H 
JNZ C L E A R 
S T C 
R E T 

C L E A R : XRA A 
R E T 
END 

A6.6 T E S T - Program to be Tested 

L O C A T I O N OF ANSWER FROM T E S T PROGRAM 

LOAD IN ANSWER FROM T E S T PROGRAM 
C H E C K HIGH BYTE 
C L E A R CARRY AND R E T U R N 
S E T CARRY TO INDICATE S U C C E S S 

. C L E A R CARRY 

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

THIS PROGRAM ADDS TWO 8 -B IT NUMBERS T O G E T H E R AND S T O R E S THE R E S U L T 

INCLUDES E R R O R DETECTION AND C O R R E C T I O N S O F T W A R E 

E R R F L G EQU 0 C 7 F F H 
RETURN EQU 09900H 
START EQU 0C000H 

S T O R E FOR E R R O R FLAG 
RETURN A D D R E S S TO CONTROL PROGRAM 
START A D D R E S S OF PROGRAM 
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T E S T (cont.) 

A S E G 
ORG S T A R T 

LXI SP.STACK+1C 
LDA VAL11 
MOV B.A 
LDA VAL12 
S U B B 
JZ READ2 
XRA A 
STA E R R F L G 
LDA VAL13 
MOV C.A 
S U B B 
JZ READ2 

MOV B.C 
READ2: LDA VAL21 

MOV C.A 
LDA VAL22 
S U B C 
JZ C A L C 
XRA A 
STA E R R F L G 
LDA VAL23 
MOV D.A 
S U B C 
JZ C A L C 
MOV C D 

C A L C : MOV A.B 
ADD C 
STA VAL3 
Dl 
OUT OFFH 
JMP RETURN 

ORG START+100H 

VAL11 DB 012H 
VAL13 DB 012H 
VAL12 DB 012H 
VAL21 DB 043H 
VAL22 DB 043H 
VAL23 DB 043H 

ORG START+110H 
VAL3: DB 000H 

.LOAD STACK POINTER 

.'LOAD IN F IRST VARIABLE 

LOAD IN S E C O N D COPY 
S U B T R A C T VALUES 
IF BOTH EQUAL. U S E VALUE IN B R E G 
C L E A R ACCUMULATOR 
Z E R O FLAG TO INDICATE E R R O R 
READ IN THIRD COPY 
TEMP S T O R E IN C R E G 
T E S T IF EQUAL 
U S E VALUE IN B R E G 
IF ONLY ONE ERROR. MUST B E IN VAL11 
T R A N S F E R THIRD COPY TO B R E G AND U S E 
R E P E A T FOR OTHER INPUT USING C R E G 

; C L E A R ACCUMULATOR 
; C L E A R FLAG TO INDICATE E R R O R 

T R A N S F E R F IRST INPUT TO A C C 
ADD TO S E C O N D INPUT 
S T O R E THE R E S U L T 
P R E V E N T ANY F U R T H E R INTERRUPTS 
C L E A R S M A S K F O R R E T U R N T O C O N T R O L PROG 
JUMP BACK TO CONTROL PROGRAM 

STACK: .BOTTOM OF STACK 
END 
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