W Durham
University

AR

Durham E-Theses

Fault tolerance in digital controllers using software
techniques

Halse, Robert G.

How to cite:

Halse, Robert G. (1984) Fault tolerance in digital controllers using software techniques, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7474/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses

e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7474/
 http://etheses.dur.ac.uk/7474/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

FAULT TOLERANCE IN DIGITAL CONTROLLERS USING

SOFTWARE TECHNIQUES

by

Robert G. Halse

FAULT TOLERANCE IN DIGITAL CONTROLLERS USING SOFTWARE TECHNIQUES
Robert G. Halse
ABSTRACT

Microprocessor based systems for controlling gas supplies require very
high levels of reliability for safety reasons. Non-redundant systems are
considered to be inadequate. and an alternative approach is necessary. In
digital systems, transient faults are as much as fifty times more common
than permanent faults. Therefore mechanisms which allow for recovery from
transients will provide large improvements in reliability. However, to
enable effective design of recovery mechanisms it is necessary to
understand failure modes.

The results from practical interference tests. designed to simulate
transient faults, are presented. They show that corruption to the correct
flow of program execution is a common failure, and that subsequent
instruction fetches can be performed from any of the memory locations.
Under these conditions any value of operation code can be interpreted as an
Instruction, including those undeclared by the manufacturers. Four
commoniy used microprocessors are investigated to establish the functions
of the undeclared codes. and other undeclared operations are revealed.

Analyses on the sequence of events following a random jump into the
four main memory types of data. program. unused and input areas. are
presented. Recovery from this type of execution can be achieved by the
addition of restart codes into the areas. so that execution can transfer to
a recovery routine. The effect of this mechanism on the recovery process
is investigated.

Finally, some methods of testing systems, to check the levels of

reliability improvement obtained by these techniques. are considered.

ACKNOWLEDGEMENTS

! would like to express my gratitude to the people and organisations
that have contributed to the work presented in this thesis. In paricular,
to the Science and Engineering Research Council. and the British Gas
Corporation’s Engineering Research Station at Killingworth, for providing
financial support. To my supervisor Dr. Clive Preece tor his
encouragement, guidance and general advice throughout the research. To Dr.
Ken Jenkins of the British Gas Corporation for providing much useful
information and equipment. To Dr. Mansour Sahardi for his interest and
discussion on the project. To Mandy for translation and typing work. To
the electrical technicians (Jack, Trevor, Michael, Colin, Steve, lan and
tan) for their co-operation and assistance while | have Dbeen at the
university. Finally. | would like to thank the Fleetham family for
allowing me to practice my building skills on their house during my spare

time.

FAULT TOLERANCE IN DIGITAL CONTROLLERS USING

SOFTWARE TECHNIQUES

by

Robert G. Halse

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Thesis Submitted for the Degree of
Doctor of Philosophy

in the Faculty of Science
University of Durham

November 1984

List of Contents

Section
List of Figures
List of Tables
List of Symbols and Abbreviations
CHAPTER 1

Introduction and Review of System Reliability

1.1 The Need for a Reliable Controller
1.1 Present Mechanicai Control
1.1.2 Future Micro-Electronic Control
1.2 Source of Failures
1.3 Methods of Increasing Reliability
1.3.1 Reducing Failures due to Design Errors
1.3.2 Reducing Failures due to Component Malfunctions
1.3.3 Reducing Failures due to Environmental Effects
1.4 Reliability tmprovements Obtained
1.5 Importance of Error Detection

1.6 Possible Dangers of Adding Redundancy

1.7 Requirements for Different Applications
1.8 Contents of the Thesis
CHAPTER 2

Practical Tests to Determine Transient Failure Mechanisms

2.1 {ntroduction
2.2 Test System
2.2.1 Processor Board

222 Decoding Circuitry

223 Power Supply Unit

Page No.

viii

X

10
12
15
19
21
24
26

28

31
32
32
33

34 -

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

2.2.4 Software

2.2.4.1 SYSTEST

2242 RAMTEST
Practical Tests Performed
Test Results
2.4 Interterence to the RAM
2.4.2 Interference to the EPROM
2.4.3 Interterence to the Processor
2.4.4 Interference to the Complete System
Significance of the Results
Observations of Permanent Failures
2.6.1 Processor Failures
2.6.2 RAM Failure
2.6.3 Crystal Failure
Summary

CHAPTER 3

Undeclared Operations of Microprocessors

{ntroduction
Undeclared Operation Codes
Operations of the 8085

Operations of the 6800

3.4.1 Determination of the Undeclared |nstructions

342 Functions of the Undeclared Codes
3.43 Cycling Through Memory

3.44 Comparison with Published Data
Operations of the 48-series Microprocessors

3.5.1 Undeclared Memory in the 8035

34

34

35

36

38

39

41

43

44

46

46

47

49

49

50

52

52

54

56

56

58

59

61

62

63

3.6

3.7

3.8

3.9

4

4.2

4.3

4.4

4.5

3.5.2 Determining the Undeclared Instructions
3.53 The Effects of Executing the Undeciared Codes
3.56.3.1 Intel 8035/8048
3.5.3.2 NEC 8035/8048
3.54 Other Devices in the Series
Operations of the 68000
Operations of the 6809 and Z80
Implications of the Undeclared Operations on Reliability
3.8.1 Significance for Watchdog Design
3.8.2 Powering down to Enable Recovery
3.8.3 Use of Non—Maskable Interrupts
3.8.4 The Most important Undeclared Operations
Summary
CHAPTER 4

Erroneous Execution in Data Areas

Introduction

411 Random Jump Within the Memory Map
Analysis of Execution

421 Response of Different Processors
422 Resuits from the Analysis
Transfer from the Data Area

4.3 Halt Instructions

432 Restart instructions

4.3.3 Return instructions

4.3.4 Unspecified Jumps

Modification to the Analysis

Impraovements in Recovery

64

65

65

66

67

67

69

70

70

71

72

72

72

74

75

75

77

79

79

79

80

81

81

82

83

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

5.5

5.6

5.7

6.1

6.2

Simulation of Execution in Data Areas
Optimum Seeding of Data
4.7.1 Data Structures for the 8085
472 Data Structures for the 6800
4.7.3 Data Structures for the 8048
4.7.4 Data Structures for the 68000
The Effect of Data Block Size on Recovery
Summary

CHAPTER §

Erroneous Execution in Program Areas

Introduction

Detailed Analysis

5.2.1 Comparison Between Instruction Sets
522 Comparison Between Actual Programs
Simplified Analysis

Comparison Between the Detalied and Simplified Analyses
Verification of Results

improvements in Recovery

5.6.1 Low Level Detection

5.6.2 High Level Detection

Summary

CHAPTER 6

Erroneous Execution in Unused and Input/Qutput Areas

introduction
Execution in Unused Areas
6.2.1 Unpopulated Memory Areas

6.2.2 Unpopulated Areas of the 8085

83

84

84

85

85

87

B7

88

89

89

92

93

94

96

87

g7

98

99

100

101

101

102

103

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

6.2.3 Unpopulated Areas of the 8048
6.2.4 Unpopulated Areas of the 6800 and 68000
Execution in Memory Mapped 170
6.3.1 Execution of Input Data by the 8048
Summary

CHAPTER 7

Flow of Execution Between Different Memory Areas

introduction

Method of Analysis

Initial Error

Transfer from Different Memory Areas

Execution of an Infinite Loop

7.5.1 Loops in Data Areas

7.5.2 Loops in Unused Areas

7.5.3 Loops in tnput Areas

The Expected Number of Instructions Executed

The Effects of Memory Map Usage on Erroneous Execution

7.7 Memory Maps of the 8085

7.7.1.1 Fault Tolerant Program Area
7.7.1.2 Fault Tolerant Data Area
7.7.1.3 Fault Tolerant Unused Areas

7.7.2 Memory Maps of the 6800

7.7.3 Memory Maps of the 68000

7.7.4 Memory Maps of the 8048

Number of Erroneous instructions Executed
Probability of Data Corruption

Summary

105

108

108

110

111

1ne

112

113

113

116

115

116

117

118

119

120

121

122

123

123

125

126

127

128

128

8.1

8.2

8.3

8.4

8.5

8.6

8.7

9.1

9.2

9.3

9.4

9.5

CHAPTER 8

Selection of Error Detection Mechanisms

Introduction
Specific System Considered
The Effects of Adding Error Detection Mechanisms
8.3.1 The Non-Fault Tolerant System
8.3.2 Removal of Input Areas from the Memory Map
8.3.3 Addition of a Recovery Routine
8.3.4 Forcing Restart Instructions into the Unused Areas
8.3.5 Modifying the Program and Data Areas
8.3.6 Detection Within the Software
Watchdog Timers
Other Hardware Implemented Detection Mechanisms
8.5.1 Wait State Recognition
8.5.2 lllegal instruction Fetches
8.5.3 Detection of a Write Outside RAM Areas
8.5.4 Detection of Undeclared or Unused Instructions
8.5.5 Voltage Level Detection
Choice of Mechanisms for General Systems
Summary
CHAPTER 9

Devetopment of a Facility 10 Test Redundant Systems

introduction

Fault Injection

Generation of Interrupts

Memory Boundary on Test Pragram

Software Design

vi

131

131

132

132

133

134

135

135

136

137

139

139

139

140

141

141

143

144

145

146

148

149

162

9.6 Initial Results

9.7 Possible Developments
9.8 Summary
CHAPTER 10
Conclusions
10.1 introduction

10.2 Practical Tests to Determine Fallure Mechanisms
10.3 Undecilared Operations in Microprocessors
10.4 Execution Following an Erroneous Jump
10.5 Recovery from Erroneous Execution
10.6 Choice of Recovery Mechanisms
10.7 Summary
References
Figures
Tables
APPENDICES

Al Software to Test the Effects of Executing Undeclared
Operation Codes

A2 The Effects of Executing the Undeclared Operation Codes of
the 8035/8048

A3 Instruction Set Parameters
A4 Equations for Transfers within a Program Area
A5 Results of Execution in Unpopulated Memory Areas

Ab Software for the Fault Simulation Test Facility

vii

154

156

157

158

158

159

160

162

163

164

166

179

211

222

226

236

244

248

250

Figure
1.
1.2
2.1
2.2
2.3
2.4
3.
3.2
3.3
4.1
4.2
4.3

4.4

5.1
5.2
5.3
5.4
5.5
6.1
7.1

7.2

7.3

7.4

List of Figures

Typical Diaphragm Operated Regulator

Simple Microprocessor Control Arrangement

Block Diagram of the B085 Test System

Layout of the Components

Logic Diagram of the Memory Decoding Circuitry

Circuit Diagram of the Test Power Supply Unit

Block Diagram of the 8035/8048 Test System

Full Instruction Set for the 8048 Manufactured by Intel
Full Instruction Set for the 8048 Manufactured by NEC
Erroneous Execution in Data Areas for Various Processors
Flow of Execution in Random Data

Recovery Improvements Qbtained by Seeding Data Areas

Average Number of Instructions Executed with Seeded Data
Areas

Erroneous Jump into a Program Area

Flow of Erronegus Execution in Program Areas

Erroneous Execution in Program Areas for Various Processors
Simplified Flow of Execution in Program Areas

Erroneous Execution in Program Areas of the 68000

Common Memory Arrangements for the 8048

Flow of Execution Between Different Memory Areas

The Effects of Adding Fauit Tolerance to the Program Areas
of the 8085

The Effects of Adding Fault Tolerance to the Data Areas
of the 8085

The Effects of Adding Fault Tolerance to the Unused Memary
Areas of the 8085

viti

Page No.
179

180
181
182
183
184
185
186
187
188
190
197

181

192
192
193
194
195
195
196

197

198

199

7.5

7.6

7.7

7.8

7.9

8.1

8.2

8.3

8.4

8.5

9.1

9.2

9.3

9.4

The Effects on the Average Number of Instructions Executed
by Adding Fault Tolerance to the 8085

The Effects of Adding Fault Tolerance to the Program Areas
of the 6800

The Effects of Adding Fault Tolerance to the Data Areas
of the 6800

The Effects of Adding Fault Tolerance to the Unused Memory
Areas of the 6800

Probabitity of Data Corruptions in the 8085
Memory Map of the Specific System Studied

Walit State Recognition Circuit

Circuit to Detect an lliegal Instruction Fetch
Circuit to Detect a Write into ROM

Circuit to Detect a Write Outside RAM Areas

Logic Required to Detect an Operation Code Fetch
imptementation of Logic on Test System

Circuit to Restrict Execution 10 16 K of Memory

Software Flow Diagram for the Fault Injecting Test Facility

200

201

202

203

204

205

206

206

207

207

208

208

209

210

List of Tables

Table Page No.
1.1 Reliability Requirements for Different Applications 21
2.1 Volitage Level at which Errors Occurred in 8155 RAM Chips 212
2.2 Location and Value of the First Errors Observed 212
2.3 First Data Corruptions in RAM chip RS 213
2.4 Length of interruptions to the Test Supply. in Cycles, 214
Necessary to Cause Corruptions
3.1 internal Memory of the 48-Series Microprocessars 214
4. Results of Execution in Random Data 215
4.2 Comparison Between Different Data Structures 215
5.1 Comparison Between Processors for Erroneous Execution in 216

Program Areas
5.2 Comparison Between Actual Programs 216

5.3 Results from the Simplified Analysis of Erroneous Execution 217
in Program Areas

5.4 Detailed Analysis of Modified Programs 217

6.1 Probability of Different OQutcomes After a Random Jump into 218
an Unused Memory Area of an 8085

6.2 Outcomes After a Random Jump into an Unused Memory Area of 218
an 8085, Assuming Address Range C000 to FFFF is Unused

6.3 Transfer from Unpopulated Areas of an 8048 219

6.4 Transfer from Partially Decoded Memory Mapped Input Ports 219

7.1 Data Corruptions in the 8085 Caused by Erroneous Execution 220

8.1 Erroneous Execution Under Different System Arrangements 221
X

A/C
ACM
AFIPS
AlAA
CCDh
CE
CMOS
D/C

DAG

EA
EMI
EMP

ENSIMAG

EPROM
FMEA
FTCS
HLT

I

i.c.

170

IEE
IEEE

in. w.g.

IRQ

List of Symbols and Abbreviations

Alternating Current

Association of Computing Machinery

American Federation of Information Processing Societies
American Institute of Aeronautics and Astronautics
Charge-Coupled Device

Chip Enable

Complementary Metal Oxide Semiconductor

Direct Current

Demand Activated Governing

Op-Code Fetch from the Second Byte of a Double Byte Instruction
The Exponential Function

External Access

Electromagnetic interference

Electromagnetic Puise

Ecole Nationale Superieure D’Informatique et de Mathematiques
Appiiquees Grenoble

Erasable Programmable Read Onily Memory
Fault Mode Effect Analysis

Fault Tolerant Computing Symposium

Halt Instruction

Number of Instruction Cycles or Transfers
integrated Circuit

input/Output

Institution of Electrical Engineers

institute of Electrical and Electronic Engineers
Inches Water Gauge

Interrupt Request

Xi

J Joules

JMP Jump Instruction to a Non—-Specific Location
K Number of Instructions Executed
K Kilo—Bytes
kV Kito—Volits
L Length of Instructions in Bytes
In Natural Logarithm
LSI Large Scale Integration
LSTTL Low Power Schottky Transistor Transistor Logic
mA Milli-Amperes
mbar Mili-bars
mJ Milli-Joules
ms Milli-seconds
MHz Mega-Heriz
mm Millimetres
mV Milti-volts
_' MTBF Mean Time Between Failures
N Number of Instructions Executed
NB Total Number of Bytes in the Program Area
NBE Expected Number of Data Bytes Read
NCJ Number of Conditional Jump Instructions in the Instruction Set
NDA Actual Number of Data Bytes in the Memory Map
NDI Number of Double Byte Instructions in the Program Area
N, Totat Number of Instructions in the Program Area
N\J Number of Bytes Interpreted as Jumping Instructions
NK Number of Execution Sequences of K iInstructions

NLJ Number of Bytes Interpreted as Jumping Instructions of Length L

xii

NLNJ Number of Bytes interpreted as Non-Jumping Instructions of

Length L

NNJ Number of Bytes Interpreted as Non—-Jumping instructions

NPB Number of Program Bytes which Appear in the Memory Map

NRST Effective Number of Restart Instructions

NS Total Number of Execution Sequences

NT Total Number of Possible Op-Codes

NTB Total Number of Bytes in the Memory Map

NTI Number of Triple Byte instructions in the Program Area

NASA Nationai Aeronautics and Space Administration

NATO North Atlantic Treaty Organisation

NBAV Average or Expected Number of Bytes Read Before a Jump

NEC Nippon Electric Company

N'AV Average or Expected Number of Instruction Executed Before a Jump

NIE Expected Total Number of Instructions Executed

NIL Upper Limit on the Number of Instructions Executed

NM| Non-Maskable Interrupt

NMOS N-Channel Metal Oxide Semiconductor

NMR N-Modular Redundancy

NOP No Operation

NRAV Average Number of Instructions Executed Before Resuming Valid
Instruction Fetches

ns Nano-Second

op~code Operation Code

PCJ Probabitity that a Conditional Instruction will cause a Jump

PD Probability of Entering a Data Area

PDX Probability of Entering the Operand Field of a Double Byte
- Instruction

P A Proportion of the Total Errors

xiii

XiU
Pyixi

PXRST
pF

PROM

Probability of
Probability of
Probability of
Probability of
Probability of
Probability of

Probability of

Entering an Area of Input Data

Entering the Input Area Twice

a Loop after Entering the Input Area Twice
Interpreting a Jump Instruction

Forming a Loop in the Data Area

Forming a Loop in the Input Area

Forming a Loop in the Unused Area

Probability that Particular Data is Not Corrupted

Probability of
Probability of
Probability of
Prabability of
Probabitity of

Probability of
Instruction

Probability of
Instruction

Probability of
Probability of
Probability of
Probability of
Probability of
Probability of
Probability of
Probability of
Probability of

Pico—-Farads

Executing a Given Number of Instructions or More
interpreting a Non-Jumping Instruction

Entering a Program Area

Resuming Valid Instruction Fetches

interpreting a Restart instruction

Entering the Second Byte of a Triple Byte

Entering the Third Byte of a Triple Byte

Entering an Unused Memory Area

Entering the Unused Area Twice

a Loop after Entering the Unused Area Twice

a Transfer from an Unused Area to Memory Area Xi
Entering an Operand Field in the Program Area
Reaching a Partlcular Final State

Transfering from Memory Area Xi to an Unused Area
Transfering from Memory Area Xj to Memory Area Xi

interpreting a Restart in an Operand Field

Programmabile Read Only Memory

Xiv

RAM Random Access Memory

RC Resistor and Capacitor

RET Return Instruction

RFI Radio Frequency Interference
ROM Read Only Memory

RST Restart instruction

SDK System Design Kit

SEC/DED Single Error Correction/Double Error Detection

SERC Science and Engineering Research Council

SPC Jump Instruction to a Specific Location

SSi Small Scale Integration

TMR Triple Modular Redundancy

TXX Op-Code Fetch from the Second Byte of a Triple Byte instruction
TXX Op~Code Fetch from the Third Byte of a Triple Byte Instruction
uF Micro-Farad

UPS Uninterruptible Power Supply

us Micro-Second

us United States

v Volts

Xt Represents a Particular Final State

Xi Represents a Particular Memory Area

Xj Represents Each of the Four Different Memory Areas

xv

No material contained In this thesis has previously been submitted

for a degree in this or any other university.

The copyright of this thesis rests with the author. No quotation
from it should Dbe published without his prior written consent and

information derived from it should be acknowledged.

CHAPTER 1

Introduction and Review of System Reliability

1.1 The Need for a Reliable Controlier

With the conversion from town gas to natural gas. the supply to the
consumer has changed from a large number of isolated networks to one fully
integrated distribution system. This system is connected to the supplies
of natural gas in the North and Iirish seas. and transports It around the
country in large diameter pipes (up to 1050mm). at high pressures (up to 70
bar). The pressure is reduced in stages into smaller diameter pipes until
it is at a safe level to supply to the consumer.

An analogy can be drawn with the National Grid for electricity supply.
where voltage corresponds to pressure, and current corresponds to flow
rate. However, unlike the electricity system, gas can and must be stored
within the network. This is necessary because the supply is obtained at a
constant rate from the gas flelds, whereas the demand by the consumer
varies both throughout the day and throughout the year. Als0 any peak
demand within a particular area must be supplied locally due to the time
delay in transporting gas through the system. Therefore the network
presents a complex arrangement requiring sophisticated control.

At the high pressure end of the system large volumes of gas are being
handled. and smail increases Iin efficiency result in significant financial
savings. Also failure at this level is likely to affect a large number of
consumers, and this justifies high expenditure on control and safety
equipment. As the pressures reduce, the quantities and hence the value of
gas being handled becomes less, and high expenditure on controi equipment
is not justified. A low cost controller is therefore required and this is

the aim of the current research.

At the low pressure end of the system. accurate pressure controi is
required for several reasons. Much of this part of the network is
constructed from short sections of cast iron pipes laid many years ago. and
it is estimated that there are almost 60 million joints. Small leaks can
occur but rarely create a safety problem. However, taken collectively they
represent a substantial loss of revenue. Therefore methods which reduce
this leakage can have both financial and safety benefits. An extensive
programme to replace old sections of the network has Dbeen in progress for
several years and has cost hundreds of millions of pounds. Meanwhiie a
reduction of pressure within the system provides significant benefits by
reducing leakage., and also repair and maintenance costs. it can also
postpone eventual reinforcement of the network necessary to cater for
increased demand. thus saving revenue equivalent to borrowed capital
interest.

Obviously the pressure cannot be reduced below a certain level or the
gas would not reach the consumer. This would lead to the possibility of
air entering the pipework producing a potentially hazardous condition. Low
pressures can also affect the efficiency of some appliances. For these
reasons a statutory minimum pressure has been set. This is 5§ in. w.g.
(inches water gauge) which is equivalent to the height of a column of water
that the pressure can support, and Is approximately 123 mbar. Clearly the
aim is to supply the consumer with the minimum acceptable pressure
throughout the daily load cycle.

1.1.1 Present Mechanical Control

Traditionally, an entirely mechanical approach has been adopted for
the control of the low pressure distribution system. The use of diaphragm

operated gas reguiators., as shown in figure 1.1. is widespread, with

approximately 17.000 installed throughout the country. They aim to reduce
the pressure to a steady value independent of the flow rate. This is
achieved by feeding back the down-stream pressure into a chamber under the
diaphragm. The force on the diaphragm is balanced by a spring or a series
of weights. Any imbalance causes the valve to open or close and has the
effect of increasing or reducing the down-stream pressure. By adjusting
the loading. different output pressures can be maintained. However, this
arrangement does not give perfect pressure control. The pressure tends to
fall as the flow rate increases., and this is known as the ‘droop’
characteristic of the regulator.

So far only the pressure at the outlet of the regulator has been
considered. However, the consumer may be over a mile away from the outiet
and therefore. by simple fluid mechanics theory, a pressure drop will exist
along the pipework and will be proportional to the square of the flow rate.
Consequently, with the simple regulator described above, it is necessary to
set the output pressure at a higher level to guarantee that the consumer
will be supplied with at least the minimum statutory pressure, at times of
peak demand. Clearly this will result in a pressure well above the
statutory minimum at other times. This is refered to as the ’over
pressure’ of the system., and has a maximum value of the sum of the
regulator droop. the pipework losses and a safety margin. as the flow rate
reduces. The safety margin is included to allow back-up equipment to
intervene if an abnormally low pressure is detected. Obviously the aim s
to reduce the ‘over pressure’ to a minimum.

The above example considers only one regulator and one consumer. in
reality the situation is in fact far more complicated. Low pressure

networks can be fed by more than one regulator and supply several thousands

of consumers. Due to varying demands from the system, the low pressure
point may not always be at the same physical location. This makes
effective control even more difficuit.

in the past. methods have been devised to provide automatic changes in
the set point of a regulator to try and follow the pattern of demand.
However, these do not operate directly on the district pressure. Dbut on
other parameters which are associated with demand. such as the time of day
or the ambient temperature. Both of these parameters are not strongly
linked with demand but control based on them has provided some savings. A
third approach has used the flow through the regulator to adjust the set
point, and has proved most successful. This is commonly know as demand
activated governing (DAG).

Spearman (98) has reported a number of DAG schemes which have all
shown significant savings in repair and maintenance costs. They have
provided DAG by mechanical means but have several disadvantages. At least
three additional valves and a substantial amount of extra pipework is
required. A compiex setting up and commissioning procedure is necessary to
ensure optimum performance. and this has to be repeated periodically to
allow for changes in the network or demand. Therefore there is scope for
further improvements.

1.1.2 Future Micro—-Electronic Control

To overcome the problems with mechanically implemented DAG mentioned
above, and to allow for other developments, it has been proposed that
micro-electronic techniques could be applied to the control of gas
pressure. A simple arrangement for such a system is shown in figure 1.2
It contains a microprocessor which reads the remote (ow pressure point from

a transducer, and activates the valve t0o maintain a steady supply. To

ensure overall system safety and availability, all three parts must be Dboth
reliable and must be faii-safe.

The valve could be operated by a simple solenoid providing only open
and closed positions. The pressure would then be controlied by pulse width
modulation on the supply to the solenoid. Although this is a simple
solution, it tends to be very unreliable due to the large number of
operations needed to maintain a steady pressure. Another disadvantage is
that failures in either of the normal operating pasitions produce dangerous
conditions.

A Dbetter solution would be to use a motorised valve. This will be
more reliable as actuations are only required when the pressure changes.
resulting in less mechanical wear. However, the response under fault
conditions will be paor.

The arrangement which has been wused in initial trials with digital
control utilises an indirect approach. The main pressure reduction
regulator is retained in the traditional configuration, but with the set
point controlled by the microprocessor. This provides a much better
solution as failure of the microprocessor system causes control to revert
to mechanical pressure regulation.

To adjust the set point a method of increasing and decreasing the
spring loading within the regulator is required. Two prototype
arrangements have been buiit. The first uses a stepper motor to adjust the
length of the spring and hence the loading. The second uses two soienoid
valves to feed up-stream or down-stream pressure under a second diaphragm
which acts on the spring to adjust the loading. The solenold system is
preferred as it can be arranged to ‘fall safe’ on power failure, Dy setting

the regulator to its maximum set point. Burrow (20) states that generally

the ‘fail safe’ approach has been neglected. it is much cheaper to
implement than ‘fail operational’ designs. and is clearly acceptable in
this application as failure will only result in a reversion to a high
pressure setting within the network. The ‘fail safe’ approach still
ensures that no area drops Dbelow the statutory minimum pressure. The
stepper motor. however, will stay at its current position during a power
failure. As mentioned above, this reverts to mechanical control, but, if
demand increases. the Ilow pressure point will fall below the statutory
minimum.

Initial trials have been carried out with both arrangements, As
mentioned previously., the ideal solution is t0 monitor the remote low
pressure point and relay the Information back to the controller, and this
requires some sort of telemetry link. The use of hard-wired links s
expensive, and therefore other methods of transmitting the data are being
investigated. However. a system operating in the United States. described
by Reese (84), uses telemetry and has shown that the cost of the equipment
can be recovered within the first year, due to the reduction in lgst gas
alone.

These initial trials have shown that micro-electronic control of the
gas network is both feasible and economic. Another area to which it could
be applied is the control of storage facilities. As indicated previously.
it is necessary to store gas within the network and a number of
arrangements have been developed such as gas holders. liquefaction plants
and underground caverns. Recent interest has been directed towards the use
of the medium pressure part of the network as a means of storage, and can
be achieved by increasing the pressure and thus compressing the gas. This

is known as ‘line-pack’ and is possible in this particuiar part of the

network because the pipework is relatively new and does not suffer from
leakage.

Due to the very stringent safety requirements, it was feit that
further work should be carried out to investigate methods of increasing the
refiabitity of these control systems. British Gas has had long term
experience with mechanical regulators, and. as a resuit. has in-depth
knowledge and expertise on their operation. This has led to the
development of very reliable equipment. With regard to the controi of the
low pressure network, micro-electronics has only recently been used by the
Corporation. Therefore. this work is aimed at investigating methods of
increasing the reliability of the micro—electronic parts of the systems.

1.2 Source of Failures

All equipment can fail. and usually does so in a variety of different
ways. In a complex electronic system the cause of failure can be due to
design errors, component failures or to environmental effects. In micro-
processor based systems, design errors can occur in both the hardware and
software, and can be Introduced at the specification, implementation or
construction phases of a project. Shooman (92) gives an example of a data
acquisition system where, over a nine month period. nearly half the
failures were due to software errors. At the specification stage errors
can be made due to an insufficient knowledge of the system 10 be
controtled, or by an incomplete description of the required response under
all operating conditions. The importance of these errors is emphasised Dy
Soi and Gopal (97) who suggest that nearly 60% occur at this stage in the
software. At the implementation stage. the choice of the wrong type of
components in hardware, or the wrong algorithm in software. can lead to

failure. Finally. errors can be made during the construction of hardware

or the coding of software.

Components can fail due to a number of different failure mechanisms,
and generally they follow the familiar ’‘bath-tub’ curve. it shows a high
failure rate at the beginning of their life due 1o manufacturing defects.
This is followed by a period of constant failure rate, due to random
effects. which is normally considered to be the wuseful Ilife of the
component. After this period the failure rate increases again due to wear
out. A description of the types of failures observed in electronic
components is given by Doyle (31), and a study of microprocessor devices is
presented by Hnatek (47) who describes a number of physical failure
mechanisms and how they can be detected.

The correct operation of electrical and electronic systems can be
disturbed by environmental conditions. in analogue devices it can result
in noisy signals. but in digital equipment severe disruption of the
processing sequence can OcCcur. Sources of disruption inciude radio
frequency interference (RFD. electromagnetic interference (EMI). radiation
effects, static discharges and power supply variations.

Whallen et al (113) have shown that RFlI can disrupt digital circuits
by changing their state. Sources of EMI in high voltage substations are
listed by Pellegrini et al (79). and most are due to various forms of
switching. The effects of lightning are also considered. May and Woods
(64) highlight the probiem of alpha particle interaction originating from
packaging material. This has become a problem with the development of
higher density chips. and affects most devices. General radiation effects
on semiconductors have been investigated by Sexton et al (90), and they
have shown that device parameters drift with dosage.

Faults can be either permanent or temporary. Permanent faults occur

as a result of catastrophic failure of a component or subsystem, and aliso
from inherent design errors. Some sources of temporary faults are
described by Ng and Avizienis (70) and inciude component drifts around the
limits of their specifications, and environmental factors. However, the
errors produced by permanent faults may appear temporary. For example. a
single node stuck at zero can only produce an error when it should be set
at one. and this is illustrated by Gunther and Carter (39). Also a part of
the circuit which is infrequently used may not cause any errors untll it is
exercised. Goldberg (37) indicates that some design faults. such as timing
problems. can appear to be induced environmentally, and may be difficuit to
distinguish. For these reasons faults can remain undetected for a
considerable length of time.

McConnel et al (61) draw a distinction between intermittent errors and
transient errors. Intermittents occur as a resuit of an underlying
permanent fault and will periodically reappear, whereas a particular
transient will occur only once. Ball and Hardle (5 indicate from
practical experience that 90% of field failures are intermittent and are
particutarly difficuit to isolate.

Most reliability waork in the past has considered oniy stuck at faults.
More recently bridging faults have been considered where electrical contact
is made between adjacent tracks. and these are described by Kodandapani and
Pradham (52). Toschi and Watanbe (103) state that soft fails in memories
can also be due to data patterns. timing and read/write sequencing. All
these produce intermittent errors and are particularly difficuit to
identify.

1.3 Methods of Increasing Reliability

There are two complimentary approaches available to increase

reliability and these are described by Avizienis (4). The first attempts
to eliminate all sources of failure and is known as the fault intolerance
approach. The second recognises that fallures will occur, and attempts to
mask their effects by the use of redundancy. this is known as fault
tolerance. To achieve very high reliability a combination of both these
approaches is necessary, and can be applied to each of the three sources of
failure described above.

1.3.1 Reducing Failures due to Design Errors

Errors in hardware design have been reduced to a very low level by the
implementation of rigorous procedures at all stages. Complex computer
programs are used to analyse and simulate the hardware to check for a
number of faults. Hazard and race conditions in logic circuits can be
detected. interconnections can Dbe checked for the correct routing. and
loading on each node can be analysed to ensure, for example, that maximum
fan-out is not exceeded. Once the hardware is constructed. thorough
testing is carried out to verify correct operation.

Fault free design is more easily achieved due to recently developed
integrated circuits which have themseives Dbeen designed for simple
interconnection. This reduces the amount of work necessary by the system
designer, but increases the effort required Dby the chip designer. Design
errors within large scale integrated circuits (LSD) are more likely to
occur due to the increased complexity of these devices. This problem s
highlighted by Sequin (89).

An advantage with microprogcessor based hardware is that the basic
circuit can be used for many applications. This reduces the possibility of
introducing errors into new projects. Software, however. has been treated

in a different manner in the past. and remains a serious source of failure.

10

This is due mainly to the unlimited way in which software can be arranged
and that. in almost all cases, new code is written for each application.

Recently much more emphasis has been placed on software reliability.
This is due to the increased proportional cost of the software within
systems. which resuits from increased complexity and reduced hardware
costs. Greenspan and McGowan (38) state that 70% of US Air Force computing
expenditure was for software in 1872, and this is expected to rise to 90%
by 198S5. Both fault intolerant and fault tolerant approaches have been
investigated to alleviate this problem. The advantages of structured
programming are widely recognised, making programs easier to read and
understand. and thus simplifying the process of identifying errors. it
tends to force the programmer to divide the problem into a series of
modules. Nelson (66) reports on analyses which have shown that the error
rate increases with the routine size. This is because smaller modules are
far more easy to understand and test. and therefore methods which enforce
the use of smaller modules will increase reliability.

As well as the language Iitself, the environment under which programs
are developed is also important in enabling efflcient testing and isoiation
of errors. For these reasons the United States Department of Defense has
sponsored an extensive project to design a new language (Ada), and |its
associated development environment. Programming in Ada Is more difficult
than other languages due to tight restrictions on syntax and variable
types. But it facilitates the early detection of errors at both compile
and run time. reducing the overall development time. It also makes the
code easier to understand and modify. This is particularly important as
Dunn and Ultman (32) have shown. in badly written packages more errors can

be introduced than are removed at the debugging stage. making the whole

11

system less reliable.

The fault tolerant approach recognises that bugs will remain in the
software, and two methods of counteracting their effects have been
proposed. Randell (83) suggests the use of recovery blocks. In this
method an acceptance test is executed after each program module, and, if
the resuits fail the test. an aiternate aigorithm is used. This process
can be repeated until an acceptable set of resuilts is obtained. or untii
alt the alternate algorithms have been tried. in the latter case a
different form of recovery must then be used. A practical exampie of
recovery blocks In action is given by Anderson and Kerr (1).

The other approach is called N-version programming as described by
Chudleigh (23). Ih this case all versions of a particular program module
are executed and a majority vote is taken on all the results.

Both methods have their own advantages and disadvantages. For
example, the recovery block procedure operates much faster in the absence
of errors, but. to enable accurate error detection, complex acceptance
tests are sometimes necessary. These can themseives be a source of error,
as can the voting software in N-version programming. However, in the
latter case the critical software is much smaller and wili be Iless
susceptible to errors. A comparison between the two techniques is given by
Wei (109). He concludes that N-version programming is better than the use
of recovery blocks because of problems with acceptance tests.

1.3.2 Reducing Failures due to Component Malfunctions

Unlike design errors which can., theoretically. be eliminated from a
system, component failures are always possible. In the past both fault
tolerant and fault intolerant approaches have been favoured at different

-times. in the early days of digital computers thousands of vaives were

12

used in each machine. and reliability was poor due to the high failure
rates of the components. Redundancy was necessary to improve performance.
With the advent of the transistor and the subsequent development of the
integrated circuit. less emphasis has been placed on redundancy due to the
vast increase in the reliability of the components. Examples of fault
tolerance in early computers is given by Carter and Bouricius (21).

In more recent years some computer applications have required even
higher levels of reliability. These Include cases where human life is
involved or large financial losses are incurred on failure, such as manned
and unmanned space flight, hospital life support equipment and aircraft
control. Attempts have been made to increase still further the reliability
of components used in these applications. Significant improvements can be
achieved by screening out weak devices, and Pappu et al (75 describe
methods of detecting them. Burn-in is a popular technique whereby
equipment is operated at elevated temperatures before actual use. Even
with these improvements it has again been necessary to use the fault
tolerant approach.

A popular arrangement has been the use of tripie modular redundancy
(TMR) which was first proposed by Von Neumann in 1956 (105). TMR consists
of three identicai moduies. each performing the same function., which are
connected to a majority voting circuit. ¥ one module fails. the voting
circuit masks any errors by outputting the values from the other two.
Clearly this requires at least three times as much hardware as a simplex
system.

In many cases the extra cost couid not be justified. and. in these
cases, dual systems have been used. They can be configured in a number of

ways. In a cold standby arrangement, a second module is maintained in an

13

inactive state and requires initialisation Dbefore use. Lonn et al (58)
describe a hot standby system where the second moduie continually monitors
the process, ready to take immediate control. In many control applications
the switch over to the standby system is performed manually after the
activation of an alarm. In a duplex arrangement both modules perform
identical operations and comparisons are made between their outputs. This
provides simple error detection but does not readily indicate which module
s in error.

As the cost of hardware has falien and the requirements of reliability
have increased. more complex arrangements have been developed. N-modular
redundancy (NMR), where N represents the number of modules. has been
proposed In cases where the reliability of TMR is considered Iinsufficient.
Examples using four channels have been constructed for the F-8 fighter
aircraft described by Bumby (19). and for NASA’s space shuttle described by
Gelderloos and Wiison (36). In both cases the requirement is for safe
operation in the presence of two failures.

An important property of these systems s that reliability s
drasticaily reduced after each failure. For example, TN;H is at least twice
as unreliable as a simplex system after a single failure, and therefore it
is important to repair failed modules quickly. [n closed systems. such as
unmanned spacecraft, manual repair is not possible. NMR can be used to
survive several failures by increasing the number of modules.
Aiternatively a number of standby spares can be provided so that the system
can reconfigure itself in order to substitute a failed component or
subsystem for a good one. This effectively provides automatic repair.

Wensley (110) proposes the use of a number of loosely connected units,

with the fault tolerance Iimplemented by software. in this way critical

14

tasks can be executed on several units with voting carried out in the
program. This arrangement allows dynamic reconfiguration to eliminate
faulty units after they have been identified. This sort of arrangement is
commonly used in telephone switching equipment, and has also been proposed
for aircraft applications by Hamill and Phillips (40).

Hybrid systems utilising a combination of the above architectures to
exploit their individual advantages are becoming more popular. For
example, Hopkins (48) describes a processing concept for space vehicles
which uses dupiex. TMR and standby sparing.

1.3.3 Reducing Failures due to Environmental Effects

Significant improvements in reliability can be obtained by reducing
the effects of environmental phenomena. The fauit intolerant approach does
this by providing a stable local environment for the equipment. Basu (9
and Williamson (115) give comprehensive details of possible steps for
reducing the effects of noise, and indicate that the design of the system
enclosure is of great importance. in the United States the level of EMI
emitted from digital equipment Is restricted. To meet these requirements
good shielding is necessary. which not only reduces emissions. but also
reduces the susceptibitity of the equipment from external EMI.

Boothman (14) describes methods of designing cabinets for optimum
shielding. and suggests the use of metals, metalised coatings on plastics
or conductive plastics. Ideally a continuous unbroken metal enclosure
forming a Faraday cage is preferred in order to eliminate most electricai
interference. However. all systems need to communicate with the outside
world and most require an external power supply. Therefore apertures in
the enclosure are inevitable and Boothman shows the importance of both

their size and location relative to the internal components. Rostek (86)

suggests a ‘Rule of Thumb’ of restricting maximum openings to 25mm for each
nanosecond rise time of the digital circuits.

He also emphasises the importance of conducted interference on power
supply and signal lines and suggests the use of comprehensive filtering.
Routing of power and signal cables and the quality of their sheilding is
also important, and is discussed by Dick (30). With the development of
fibre optics, data transmission can be made far more secure. Dyer (33)
recommends their use. especially in mititary equipment, for immunity of
both EMI and the more damaging EMP generated by nuclear explosions.

As well as EMI superimposed on the power supply. brown—outs and black-
outs can occur. where the voitage is reduced or lost completely over a
period of time. In these cases filtering alone is not sufficient. These
problems occur frequentlty and have led to the development of
uninterruptible power supplies (UPS). A number of arrangements have been
developed for large Installations, with the standby power source provided
by batteries or diesel generators. These are described by Sulway (99), and
in these cases an A/C supply is maintained.

in smaller systems batteries alone can directly provide the necessary
D/C levels. This has led to the development of higher capacity minature
batteries, such as the zinc/air type described Dby Pytches (82).
Rechargeable batteries can be trickle charged when the external source Iis
available, ensuring that they are in good condition when required. This
sort of arrangement has been used in the NATO IlI communication satellites
described by McKinney and Briggs (62). Solar cells provide the external
source to charge several sets of Dbatteries. and are required for peak
demand and to ensure continuous operation during solar eclipses.

Other environmental factors such as mechanical shock and vibration

16

must aiso be taken into account. and can usually be suppressed by suitable
damping. Thermal effects are also important. It is widely recognised that
high component temperature leads to an increased failure rate. It can also
cause a general drift in component properties, therefore, methods which
restrict temperature such as cooling fins or convective fans will produce
benefits. However. the use of fans drawing air in from outside the cabinet
can have detrimental effects, since openings are required to allow for the
passage of air, and these introduce the possibllity of increasing the
susceptibﬂity to EMI as described above. it also allows moisture. solid
particles and corrosive substances to enter the enciosure. Filtering can
be used to reduce the possibility of contamination, but in certain cases a
totatly sealed unit is preferred.

Shielding is effective in many cases but does not prevent all external
interaction. Ziegler and Lanford (117) have shown that even half a metre
of concrete has little effect on reducing interference to charge~coupled
devices (CCD) from certain types of cosmic rays. However, they do suggest
that the orientation of the devices can be used to reduce the problem.
Shielding is also ineffective against internally generated interference and
alpha particle interaction originating from package material.

In these cases the components themselves can be designed to be less
susceptible to certain disturbances. Brodsky (16) suggests methods of
improving RAM’s against alpha particle attack. and Kim et al (51) describe
methods of hardening devices against general forms of radiation. Certain
device technologies are inherently less susceptible- to radiation than
others. Barton et al (8) show that bipolar devibes are superior to
complementary metal oxide semiconductors (CMOS). which in turn are better

than N-channel devices (NMOS).

17

As described above, fault intolerance can be wused to reduce the
influence of environmentai phenomena. |In general. great improvements can
be obtained for a small cost if careful consideration is taken at the
design stage. Additional improvements can be made but usually involve ever
increasing cCosts. in such cases the fault tolerant approach is worth
while.

Environmental disturbances can either cause permanent or temporary
damage to systems. With the precautions taken above. damage will Dbe
reduced and transient effects will predominate. The redundancy techniques
mentioned in the previous section will be effective provided that
simultaneous faults in different channels do not occur. Much work has been
aimed at developing techniques to detect and correct errors in memory
systems. Most techniques reily on error detection and correction codes,
such as those proposed by Hamming (41). Extra bits of information are
added to each of the data words and these can indicate which particular bit
is in error if a fault occurs. Levine and Meyers (57) indicate the number
of check bits required for single error correction and double error
detection (SEC/DED). However. if more than two bits fail they may not be
detected or an erroneous correction may be made. In these cases Walker et
al (108) describe a memory system which is capable of masking off failed
bits to survive multiple faults.

Time redundancy is a useful means of counteracting transient faults.
This method uses the re—execution of a program segment at a later time, in
the anticipation that transient disturbances will have subsided. A number
of different stategies can be adopted. For example. a particular segment
could be executed repeatedly until two or three consecutive results are the

same. Alternatively the segment could be executed a fixed number of times

18

and a majority vote taken. This is similar to N-version programming with
all versions identical.

Roliback technigques are another effective defence against transient
faults. In this case the program periodically saves information about its
current state. This is known as a checkpoint. When an error is detected.
execution can then be restarted at one of these points. O’'Brien (72)
studies several checkpointing stategies. and he recognises that in control
applications the speed of recovery s usually critical. requiring the
frequent insertion of rollback points. He shows that a large overhead s
necessary with regard to both execution time and memory space. To limit
overheads, a checkpoint should be saved when the critical data is at a
minimum, and this will normally occur at the end of a calculation. it is
recommended that a checkpoint should be saved at least once during each
control loop.

A disadvantage of this technique is that added complexity in the
software is both costly and prone to error. Barigazzi and Strigini (6)
suggest that the setting of recovery points should be transparent to the
programmer to overcome these problems. This has been implemented on the
me computer by Siewiorek (93). Checkpointing and rollbaék are similar to
the use of recovery blocks. where instead of using alternate algorithms the
same segment is repeated until an acceptible set of results is obtained.
Lee et al (56) have proposed a method of reducing the programming
requirement in the use of recovery blocks by using a recovery cache. This
automaticaily saves critical data as the program executes and could be used
in simple rollback recovery.

1.4 Reliability Improvements Obtained

To determine the improvements obtained by adding one of the features

19

described above. it is necessary 1o determine the failure rate of the
system with and without the modification. Modern microprocessor Dbased
systems have high reliability with a mean time between failures (MTBF) of
several thousand hours. Therefore practical testing under normal operating
congditions is both time consuming and costly. For individual component
failure rates a number of data bases exist. such as MIL-HDBK-217D (121)
compiled by the US Military, and HRD3 (122) compiled by British Telecom.
HRD3 is based mainly on field data. whereas MIL-217D is based both on field
data and accelerated life testing. A comparison between various failure
rate data bases is given by Siewiorek et al (94).

Accelerated life tests have become very popular. They aim to speed up
the faillure process by subjecting the device to a more severe environment
than normal, such as increased humidity. vibration or temperature.
However, great care must be taken with the results. Siewiorek et al (94)
show how the Arrhenius equation can be used to translate accelerated test
data to ambient conditions and indicate that a factor of 62 difference in
predicted failure rate can be obtained by the choice of activation energy.
Another probiem with accelerated tests is that if the conditions are varied
too much, then fallures due to other mechanisms can occur which will not be
present under normal conditions, and this Is illustrated by Hart et al
(42).

However, these tests do provide useful results if care is taken, but,
unfortunately. are normally carried out only at the component level. Full
system testing can be achieved but requires bulky equipment and is time
consuming. For these reasons a great deal of research has been aimed at
modelling systems and predicting overall failure rates from the components.

To assist in the calculations several computer programs have been written,

20

such as ARIES., described by Ng and Avizienis (71). and PREDICTION.
described by Bell et al (10).

Improvements obtained Dby techniques to counteract software design
errors are difficult to quantify. They are dependent on the knowledge of
the failure rate before and after implementation. and this information is
not readily avallable. Musa (65) states that assembly language programs
have an average of between 3-8 errors per 1000 lines before testing. He
proposes that the number remaining in a system is proportional to the time
between error detectlon during testing, and suggests that this can be used
to predict the failure rate of the final version. Hecht (44) proposes a
model for the reliability of software systems using recovery blocks., and
evaluates their effectiveness by trying ‘what if’ numbers in the model. He
concludes that for a given level of reliability, the goal can be reached
more cheaply by using the fault tolerant approach.

An aiternative approach to determine improvements is to simuiate the
hardware on another computer. A variety of faults can then be injected
into the simulator and the response of the system observed. This method
was adopted for the Saturn V launch vehicle digital computer, and is
described by Ball and Hardie (5).

1.5 Importance of Error Detection

From the types of investigations mentioned above. a large number of
predictions have been made for the improvements obtained by each of the
redundancy techniques. In many cases a large variation in the results
exist, and this Is due mainly to the assq’f‘ptions made about failure
mechanisms and recovery response. For most arrangements, error detection
and fault location is of prime importance, for both recovery and

maintenance. Triplex systems provide simple identification of single

21

failed units. whereas with duplex systems fault location is more difficult.
Significant Dbenefits can be obtained with the addition of fault detection
mechanisms especially in systems relying on software implemented recovery.

A number of techniques have been developed and generally they fail
into two main catagories of continuous monitoring and periodic checking.
Continuous monitoring can be provided by self checking circuits or
arithmetic codes. Self checking circuits are designed to fail in a secure
manner, and are described Dby Williamson (114). One approach is 10
duplicate all signals using complementary logic., and this is described by
Sedmak and Liebergot (88). In this way all single point faults and most
multiple faults are easily detected. Arithmetic codes are discussed Dby
Avizienis (3), they are an extension of error correcting codes in memaories,
but their properties are maintained during arithmetic and some logical
operations. They can therefore be used to detect errors in memory. on the
bus and in the processor. but require special processing units.

Periodic checks can be initiated by software to exercise all eiements
of the system. in order to test for correct operation. Barraclough et ai
(7) state that it is impossible to test for all faults, and therefore
partial testing ot each functional block is recommended. This approach is
adopted in an aircraft application. using dupliex redundancy, described by
Johnson and Shaw (60), and is used in conjunction with other technigues
such as roliback and reconfiguration.

Processor testability is discussed by Robach et al (85), who suggest
that a systematic approach should be adopted where blocks are tested by
elements which have already been verified. Clearly, some blocks must be
assumed fault free initially, and the aim is to reduce this hard core to a

minimum. Smith (96) investigates four different methods of testing

processors and concludes that the systematic approach is the best. Exampile
programs for functional testing of the 8080 are given by Peckett (78) and
Nichols (69). The 6805 has an in-built test program which is described by
Boney (13). Unfortunately it requires a specific external configuration
and therefore cannot be used as a built in test feature.

Random access memory (RAM) tests have been studied extensively. It is
recognised that exhaustive testing for ail possible pattern sensitive
faults is not realistic. This has led to the development of a number of
selective tests which are designed to reveal certain expected faults.
Thatte and Abraham (102) describe a number of failure mechanisms and the
tests necessary to detect them. Read only memory (ROM) can be tested Dy
the evaiuation of a checksum, and this method is explained by Jack et al
(49). Input and output lines can be cross connected for testing, or in a
ciosed toop control situation, the response to a small disturbance by the
controller can be monitored to reveal faults in ail the interfacing
circuits. This latter procedure is suggested by Kurzhals and Deloach (55)
for an aircraft application.

These checking routines can be executed in a background mode similar
to that proposed by Preece and Stewart (80). In all cases the aim is to
detect errors quickly so that they cannot propogate and prevent recovery.
Using these methods it Is possible to detect some faults before they have
disrupted program execution, and is due to the error latency of digital
circuits. This Iis the time taken for a fault to generate an error on the
output of the device. Shedletsky and McClusky (91) show that even in a
simple four state sequential circuit the error latency can be several tens
of cycles, and will be far more in complex circuits.

These types of self checking procedures are particularly useful in

23

duplex arrangements and those using stand-by spares. to locate failed units
during operation. Another important use is in applications having short
mission times. For these. the importance of a fault free system prior to
use is illustrated by Tasar (100) in connection with aircraft control. He
suggests that 90% of faults can be detected in this way, with only a basic
knowledge of the hardware.

Error detection is an important aspect of fault tolerance, but without
error correction Kopetz (53) has shown that availability is reduced.

1.6 _Possible Dangers of Adding Redundancy

Careful consideration must be taken when adding redundancy to a
system, as increased complexity can lead to design errors. Even correct
designs can Dbe less reliable than non-redundant systems. For example, if a
single voting arrangement is adopted in a TMR system. then the voters must
be more reliable than a single channel to achieve an overall improvement,
and this is shown by Wakerly (107). In equipment containing standby
spares, Losq (59) has shown that a system with a large number of spares is
less reliable than the corresponding simplex arrangement, due to the
complexity of the switch. Eikland and Siewiorek (34) show that memory
error detection and correction systems can also be less reliable. due to
failure of the additionali memory and correction circuits.

Another important factor is the concept of coverage which was first
introduced by Bouricius et al (15). it is the probability that a system
will recover from a fauit without any loss of essential information.
Clearly the aim is for a high level of coverage. and Arnold (2) has shown
that even a small percentage of uncovered faults has a severe effect on the
reliability of redundant systems. These faults are called common mode

failures, and can be the major source of system unreliability. Westermeier

24

(112) shows that adding redundancy with (ow coverage actually reduces
overall reliability.

Most of the techniques mentioned so far are designed to counteract
particular classes of faults. If these fault types are not common in the
finai system then the methods will be ineffective and may even reduce
overall reliability. For example, most fault tolerant memory systems are
designed to detect and correct single bit failures, where multiple Dbit
failures may be more common due to simultaneous disturbances in several
chips. Exhaustive memory tests to detect faults are not possible due to
restrictions of time. For this reason tests have been developed for
certain types of fault such as interactions between adjacent cells.
However, Heftman (45) describes modern devices with extra rows of cells
which can be substituted for faulty ones. This severely reduces the
eftectiveness of the tests.

Wuif (116) states that increasing the reliability of individual
components has little effect on the mission time., but increasing the
coverage of the most probable fault produces significant improvements. It
is therefore of great importance to know what type of failures will occur
in the real system, so that only methods suitable to counteract those
particular fauits are adopted.

Previous sections have indicated that a particuiar error detection and
carrection mechanism is not effective against ali faults. it is therefore
necessary to use a number of techniques. Pearson et al (77) describe a
hierarchical approach with different levels of fault recovery. At a low
ievel modular redundancy and memory protection are transparent to the
program, and are independent of the apptication. At higher levels the

mechanisms become more application dependent. with the use of software

25

techniques. The highest level must cover all other undetected fauits, and
is usually provided by a watchdog timer. This device Is periodically
updated by the control program, and is normally configured to generate a
master reset if it fails to receive correct signals. The benefits obtained
by watchdogs are recognised, but the following chapters show that careful
consideration for their design is necessary.

1.7 Requirements for Different Applications

Different applications have varying operating requirements, and in
each case a particular technique is sometimes necessary. A number of
applications and their specifications are given in table 1.1. For systems
such as aircraft control very short program loops are necessary to maintain
stability. Therefore detection and correction of errors must occur very
rapidly, and requires the use of TMR or NMR. This usually prevents any
interruption of program execution.

In telephone switching systems, short interruptions are permissible,
but repair must be quick and effective. Emphasis is placed more on the
detection and isolation of faulty modules, and this is achieved by a large
number of processing units each adopting a dupiex arrangement. in this way
faults within a particular unit are easily identified, while recovery s
performed by reallocation of processing tasks.

In many industrial control situations, such as coal fired power
stations described by Bland et al (11)., it is only necessary to detect an
error and to switch safely to mechanical or manual control. In these
cases, processing power can be lost for several seconds or minutes without
severe damage to the plant.

For the British Gas application of micro—-electronic implementation of

DAG. the latter case is acceptable for most networks. This is because only

26

the set point of the reguiator requires adjustment with local mechanical
control of the pressure. if the set point is changed too often then
instability between the two control mechanisms can occur. Spearman (98)
suggests a time interval between adjustments in the range of 5 to 120
seconds. Therefore a loss in processing time of a similar duration wiil
not be detrimental, provided that the regulator is not driven to its lowest
setting during failure. However. in networks containing large industrial
loads., rapid changes in demand can occur and this requires a faster
response with a correspondingly shorter control loop.

An architecture for a small qigital controller suitable for this
application has been proposed by Pearson (76). It consists of a
triplicated processor arrangement with voting, connected to a single biock
of RAM which contains single bit error correction and double bit error
detection. The control program is stored in two different EPROM’s so that
it one fails the other one can be used. This architecture does have a high
coverage for a number of fault conditions, but is susceptible to several
possible common mode failures. which can remain undetected by the hardware.
In these cases detection and correction methods within the software are
required.

An alternative approach. which could be used. is described by Obac-
Roda and Davies (73). They suggest using three independent microprocessor
systems connected in a ring structure. Each system operates in loose
sychronism with the other two. and voting on results is achieved in
software. A similar arrangement couid be used but with ail the channels
working in complete isolation. The outputs couid then be brought together
at the actuators, and even these could be isolated by using seperate ones

for each channel. With such isolation, Dellacorna et al (29) have

27

indicated that it would not be necessary to use the same processor in each
unit, and therefore each one could be designed and programmed by a
different development group 10 eliminate the possibility of nearly all
common mode failures.

By reducing the interaction between modules. a great deal of physical
and electrical isolation can be achieved, especially with the use of fibre
optics. Emfinger and Flannigan (35) describpe how physical isolation is
used to improve the survivability of a fighter aircraft from attack. The
use of these methods in the British Gas application could reduce the risks
from rare events such a direct lightning strikes and vehicle impacts, which
have occurred in the past.

1.8 Contents of the Thesis

The aim of the work described in this thesis is to investigate methods
of increasing system reliability with particular attention given to
software technigues. It has been indicated in the foregoing discussion
that both transient and intermittent failures are common, and therefore
improvements in this aréa are most likely to give significant benefits. To
prevent failure., both error detection and error correction must be
effective. and detection mechanisms receive particular attention.

It has been shown that the actual failure mechanisms are important in
the development of redundancy techniques. Most researchers have adopted a
policy of considering only single point failures. This is a legacy from
early reliability studies on systems containing descrete components “and
smalli scale integration (SSh. With the development of large scale
integration (LSD, it is an increasingly more complex process to analyse
systems at the transistor and gate leveis. Also, faults are less likely to

be limited to single nodes due to their physical size and very close

28

proximity to each other. Despite this there is very little information
available about failure mechanisms observed at the subsystem level.

Chapter 2 contains a description of a number of practical test which
were carried out on a small microprocessor based system. These were
primarily concerned with electrical interference on the power supply rails.
Errors observed at the chip level are presented. The tests revealed that a
number of mechanisms exist which cause the corruption of the program
counter. resulting in the possible resumption of execution at any location
in the memory map. This demonstrates the importance of the undeclared
operation codes in microprocessors which may be read under these
conditions. Chapter 3 investigates the undeclared codes of several
processors and reveals other undeciared properties.

Chapters 4, 5 and 6 look at the response of different processors to
erroneous execution in specific parts of the memory maps. Analysis is
performed by a series of mathematical models derived from Markov diagrams.
In some cases they have been verified by computer simulations. Chapter 7
studies the fiow of erroneous execution between different memory areas. and
represents the response to a random jump within the memory map. A
comparison between processors and different memory arrangements are made,
and the effects of adding error detection is presented.

Chapter 8 shows how the reliability of specific systems can be
improved by the addition of the techniques developed in the previous
sections, and also suggests some hardware detection mechanisms. Chapter 9
describes a testing facility which has been constructed to physically check
error detection and correcﬂon mechanisms. it allows the injection of a
large variety of faults, and permits rapid testing.

Finally, the conclusions drawn from the research and the suggestions

29

for future development are presented in chapter 10.

30

CHAPTER 2

Practical Tests to Determine Transient Failure Mechanisms

2.1 Introduction

It has been shown in the previous chapter that methods of increasing
the reliability of a system are Qenerally designed o counteract a
particular fault type, and are only effective if these faults are common.

Ball and Hardie (5) have indicated that over 90% of field failures are due

10 intermittent or transient faults. Therefore techniques which enable
recovery from the errors resulting from these faults will have a
significant effect on reliability. The cause of these events have been

discussed, but details of their etfects, especially at the time of failure,
are not fully understood. This is due to the random nature of their
occurrence. which means that analysis of failure is usually possible only
after the event when little data is available. The only indication that a
transient has occurred may be that the system has crashed or an erroneous
output has been made.

To enable the development of effective detection and recovery
techniques, it is necessary to have a more detailed understanding of the
mechanisms of faiiure. There are three methods available for
investigation. and these are theoretical evaivation, computer simuiation
and practical tests. Theoretical evaluation relies on the assumption of
certain fault conditions, such as single nodes stuck at 0 or 1. and the
evaluation of their effects on the rest of the system. This is known as
fault mode effect analysis (FMEA), and provides information about possible
failure mechanisms. However. without a knowledge of the occurrence rate of
the assumed faults, it is not possible to determine the most common

failures.

31

With computer simulation. a model of the system at the transistor or
gate level is produced. and this was the approach adopted for the Saturn V
guidance computer described by Ball and Hardie (5). Faults can then be
simulated and the effects observed. but this suffers from the same
disadvantages as FMEA. Practical tests are the only way of determining
which faults will occur in real systems. Once these have been established.
FMEA and simulation can then be used more effectively.

Little information is availabie on practical testing of systems under
transient disturbances. Those which are reported have focused their
attention on methods of eliminating disruption by shielding or filtering.
For example, Teets (101) states that short interruptions., of a few milli-
seconds, can cause corruption to the contents of memory and also non-
programmed jumps. He suggests that these problems can be overcome by the
use of uninterruptible power supplies. Although vast improvements can be
made in this way. It Is not 100% effective in ail cases, especially for
unanticipated phenomena. For these cases it is necessary to adopt the
fault tolerant approach.

This chapter describes work carried out to identify possible failure
mechanisms. in small digital controllers. by the use of practical tests.

2.2 Test System

The test system which has been constructed for the purpose of
identifying fault modes and their frequencies, is described in detail in
the foliowing sections. The hardware consists of a single processing board
powered by a purpose built power supply unit.

2.2.1 Processor Board

The processor board is based on the design of a small single Dboard

computer given in the 8085 User's Manual ((119). However, a few

32

modifications have been made for this application. A block diagram of the
system is shown in figure 2.1, and the layout of the components is given in
figure 2.2. Two main modifications have been added. Extra circuitry has
been included to fully decode the on board memory., and an RS232 interface
provides serial communications with a terminal.

The main components of the system are:-

8085 8 bit microprocessor
8155 256 byte RAM + 22 parallel I/0 lines + timer
8755 2 K byte EPROM + 16 parailel 1/0 lines

6.144 MHz Crystal

The power supplies to the three main integrated circuits, to the
decoding circuits and to the RS232 interface are not permanently connected
together, but are |oined by removeable links. This allows the connection
of an alternative supply to different parts of the board. so that the
effects of Interference on individual components can be observed. It
should then be possibie to identify levels of interference that effect
different components before trying to analyse the whole system.

Resistors are connected to the data lines so that they can be pulled
high or low.

2.2.2 Decoding Circuitry

The decoding circuitry consists of three LSTTL integrated circuits.
and a logic dlagram is given in figure 2.3. The inputs are taken from
address bits 8-15 on the system bus and the outputs are connected to the
chip select pins on the memory devices. The 8755 EPROM chip is mapped to
the address range 0000 to O7FF (hexadecimal), and the 8155 RAM chip is
mapped to the range FF00 to FFFF.

By fuily decoding the memory and applying a suitable combination of

33

pull up and pull down resistors to the Dbus., a fixed data byte is forced
onto the data lines when an attempt is made t0 access a non-populated
memory address. By setting the data byte equal to a restart instruction, a
software interrupt is generated when an instruction is fetched from a non-
existant memory location. This can be used to detect some transient
errors.

The chip selects are connected via wire—wrap or soldered links so that
the behaviour of the system with full or partial decoding can be observed.

2.2.3 Power Supply Unit

For a computer to function correctly it is essential for the
integrated circuits to be supplled with a good steady voltage. If the
power supply can fiiter out mains borne transients then fewer errors will
occur. The power supply therefore plays an important role in the overall
system reliability. A circuit diagram of the test supply unit is shown in
figure 2.4 The unit contains two transformers (one laminar and one
toroidal). and three smoothing capacitors of different values. Two
switches allow the selction of any combination of transformer and smoothing
capacitor. This allows testing of the processor board to determine levels
of interference that cause errors for different arrangements of the power
supply.

2.2.4 Software

Two software packages have been written tg run on the test equipment.
One is designed to test the whole system and to display messages if an
error is detected. The other is for identifying data errors in the RAM
chip.

2.2.4.1 SYSTEST

SYSTEST is a software package designed to test the whole system. The

34

main part of the program writes a data byte into memory and then reads it
back again. it then compares the value with a reference byte stored in
memory and with another stored in the C register. if either values
disagree an error code is sent to the terminal. This process continues by
using the same byte in successive memory locations until the whole memory
block FF10 to FFFF has been tested. The data byte is incremented and the
process repeats until all values have been tried. If no errors are
detected. a character is sent to the terminal to indicate that the system
is functioning correctly. and the program restarts at the beginning.

Recovery software is included at the Ilow order addresses of the
memory, so that if a hardware interrupt., a software interrupt or a total
reset is erroneously executed, then an error code is sent to the terminal
and testing is restarted. This will occur if the program jumps into any of
the unpopulated memory. provided that full decoding is used and the data
lines are pulled high to force the execution of a Restart 7 instruction.

A number of different codes are Included to indicate different errors
so that the type of fallure can be easily recognised. The test system has
no monitor program, so0 the software package includes a subroutine to
generate the software controlled serial output. To output a character the
ascii code is passed to the routine in the C register, which then generates
the serial data together with start and stop bits.

2.2.4.2 RAMTEST

RAMTEST is a software package designed to test for data errors in the
RAM chip. The program requests a byte of data to be used in the test. It
then writes that value into all the RAM locations FF00 to FFFF. When
complete, a prompt is sent to the terminal and the program waits for an

input before continuing. The data is then read back and displayed at the

35

terminal before starting again with a new Dbyte of data. By including the
wait between writing and reading, interference can be applied to the memory
device during writing. during reading. between writing and reading. or
during any combination of these.

This software is designed to test for corruption of the memory, and
therefore the program cannot use the RAM for its own operation. The
software includes a number of subroutines which deal with the serial
communications. Subroutine calls are not used in the normal way. as the
tests would corrupt the system stack. Instead. the return address., at
which execution must resume, is loaded into the HL register pair. The
routine is then entered by a normal jump instruction. At completion the
PCHL instruction is used to load the program counter with the address
stored in the HL register pair. and execution continues at that address.
In this way all information for the correct operation of the program s
stored in the Internal registers of the processor rather than in memory.

2.3 Practical Tests Performed

Faults in digital circuits occur very infrequently, for example, a
system similar to that described above has been operating continuously for
over 4 months. Occasional interruptions to the power supply have caused
full resets, but apart from these, no other errors have been detected. In
order t0 observe the effects of faults, as they happen. it is necessary to
induce failure.

in the British Gas application, the digital controliers will be
situated in remote areas and will generally receive their electrical power
from street lighting circuits. These are not particularly clean supplies.
due to noise picked up from a number of sources. Bull (18) suggests that

interference on the supply from devices such as thyristors. motors and gas

36

dgischarge lamps can cause disruption, or even permanent damage., to digital
circuits. Therefore conducted interference on the power supply is expected
t0 be a possible source of failure, and the tests have been aimed at this
area.

initial tests involved variations in the 5 volt supply rail The
levels at which errors occurred were recorded during manual reductions of a
variable output supply. Other disturbances were created on the A/C mains
input to the experimental power supply unit. using a Schaffner interference
simuiator. This consists of a main frame into which a number of plug-in
units can be fitted. Three such units were available, and these cause
short interruptions to the supply. or superimpose high or low energy spikes
onto the mains.

The equipment generates interruptions of between 1.5ms and 500ms to
simulate the change over of generators or Dbreaks In the line. The low
energy pulses of 2mJ have a rise time of 5ns or 10ns and an amplitude from
50 to 2.500 volts, to simulate interference from electromechanical switches
and retays in close proximity. The high energy pulses of 2J have a rise
time of approximately 0.3us and an amplitude of up to 5.000 voits to
simulate the effects of thyristors, atmospheric discharges. high voitage
current breakers and electrical machinery.

All tests with the high energy pulses showed no observable disruption
to normal program execution. Using a digital storage scope. the effects of
the spikes on the 5 volt rail were examined. With symmetric interference
applied between live and neutral, no fluctuations were seen on the rail
However, with asymmetric interference Dbetween the two supply lines and
ground. a 0.2 MHz osciilation of 0.6v amplitude, damped out after four

cycies, was observed. This produced a minimum of 4.4 volts on the supply.

37

which is shown later to be insufficient to cause corruption. Nog variation
in the response occurred with different vaiues of smoothing capacitors.

To observe the effects of the other forms of interference. a Doich
iogic analyser with a personality pod for the 8085 was used. This not only
provides an indication of the states of each of the pins on the processor.
during each clock cycle, but aiso provides a disassembly of the
instructions executed. Unfortunately, with fast spikes the interference is
sufficiently harsh 1o affect the operation of both the system under test
and the logic analyser. and did not provide much useful data. Information
about program execution during voltage reductions and short interruptions
was readily obtained. However., during some testing. incorrect dis-
assemblies were generated. This appeared to be due to the generation of
additional clock puises within the pod. causing the analyser to take extra
erroneous samples. But by reverting to the display of binary states. it
was possible to evaluate the actual processor response.

2.4 Test Results

As mentioned above, the test system was designed so that separate
power supplies could be connected to each major device. Therefore inter-
ference tests were carried out on the individual chips, before being
repeated on the whole board. This approach was adopted to try and identify
the most likely sources of failure in a compiete system. The results of
these tests are glven in the following sections.

Investigations on the eftects of adding pull-up or pull-down resistors
to the data lines, revealed only minor variations in susceptibitity 1o
interference. In all subsequent tests pull-up resistors were connected at

all times.

38

2.4.1 Interference to _the RAM

A random access memory (RAM) device has three main functions. These
are to accept data from another device, to store the information. and to
pass it back when required. Errors can occur during each of these states,
and are termed write. data and read errors respectively. Voitage ievel
tests were carried out, using the RAMTEST software. to determine the
sensitivity of each of these operations.

The voitage levels at which the first errors occurred for different
devices, are given in table 2.1. it shows that the read and write
operations are the most susceptible to this sort of disturbance, while the
data remains valid internally until at least another 1.4 voit drop in the
supply. There is also a significant variation between devices. R3 and R4
were manufactured by Intel and are corrupted more easily than R5 and R6
which were manufactured by NEC. Slight variations in the tevel of first
corruptions were observed for different data values, but these were all
iess than 80 mV.

An interesting observation was the variation in the location and value
of the first error for different data bytes. These are summarised in table
2.2. Al initial write errors gave a value of FF when read back. this was
the wvalue 1to which all tocations were Initialised before disruption.
However, this was observed at various locations with the Intel devices,
whereas the NEC devices always showed the first failure at location FFQO.
Similar observations were made with read errors, except one Intel device
showed single Dbit errors at various locations, while the other consistently
failed to FF at address FFOQO. For Qata errors the first events observed
were single bit changes. and these occurred at various locations. However,

a further reduction of only 50 mV resulted in multiple bit changes.

39

Although errors occurred at various locations for different data
bytes. the results were always consistent for a particular device. For
example. the first data errors for RAM chip R5 are given in table 2.3.
This shows that bit changes in the device are more likely in certain bit
positions. The table shows that. for device R5, bit 2 at address FFBF will
always be the first to change if it is set to zero. Similar results were
obtained for the other chips. but the errors occurred at different
locations. This information could be used to test for general corruptions
of data. The most susceptible Dbit could be checked periodically, and if
correct would indicate that other corruptions were unlikely. However, this
would create major problems in construction and maintenance, as each chip
would have to be tested and the software modified accordingly.

For short interruption testing. a variable resistor was connected in
paraliel 10 the device under test. and adjusted to maintain a constant load
of 500 mA on the power supply unit. This arrangement was adopted to allow
comparisons to be made between different parts of the circuit. Table 2.4
shows the length of the interruption, in cycles., which caused the first
errors for each part. As expected. a larger smoothing capacitor needed a
longer interruption before errors occurred,.

During this testing, RAM chip R4 suffered a permanent failure, and
this is discussed further in section 2.6.2. Table 2.4 shows the results
for device R3. and in each case the 5 voit rail dropped to a minimum of
about 3.8 volts. Dbefore the first errors occurred. This is over 1 volit
higher than expected from the previous results. However. in this case the
software package SYSTEST was being used. indicating that the susceptibility
to errors Is dependent on the program being executed. This was confirmed

by repeating the voltage reduction test while running SYSTEST, and showed

40

initial errors at around 3.8 volts.

Detailead investigations into the effects of applying low energy fast
spikes to individuai devices were not carried out. This was because no
useful information could be obtained. from the logic anaiyser. due to

corruptions caused by the interference. Limited results for full board

testing under this type of interference are given in section 2.4.4.

Tests on early 4K RAMs have been carried out by Hnatek et al (46).
The device studied required three different voltage levels of +5v. -5v and
12v. Supply reductions to the 5v rail showed initial data errors at around
1.2v. which is similar to those observed for the 8155. He also discovered
devices which lost bits of data after 3 seconds if they were not accessed.
Investigations showed that leakage ~currents, as a result of faulty
manufacture. caused the bits to change state. This failure mechanism is
particularly serious as in-circuit tests are designed to operate in the
shortest possible time and would not detect them. A preventive solution is
to refresh the memory as often as possible. The importance of this type of
refreshing In counteracting the effects of soft errors due t0 alpha
particle hits has been shown by Smith (95). However, in this case
refreshing does not need to be carried out as often. An attempt to
reproduce delayed errors on modern devices was unsuccessful. Two 8155s and
sixteen 2114s were left unaccessed for ten days while filled with the value
AA. This was repeated with complementary data. but in both cases no errors
occurred.

2.4.2 |Interference 10 the EPROM

Testing the erasable programmable read only memory (EPROM) was a much
simpler process. as voitage variations can only cause read errors.

Initially the supply was gradually reduced until the program started

41

sending error codes to the terminal. Repeating the test with the tlogic
analyser connected showed no alteration in the voitage level at which first
errors occurred. Indicating that it did not affect the results.

Single Dbit errors were observed at a level of 3.43 voits. These were
all changes from 0 to 1 in bit location 5. and occurred at a number of
addresses. This resulted in the misinterpretation of instructions or the
incorrect reading of operands. Further reductions in the supply caused
more Dits to change from 0 to 1. untii FF was read during each instruction
fetch at a level of 3.25 volits. In this condition the restart 7
instruction is executed repeatedly. pushing a return address onto the stack
each time. This results in the stack extending through the entire memory
map. destroying all volatile data.

Only one device was tested in this way. However, in previous tests on
2716 EPROMs, in a different system, similar results were observed. A
common failure for one device was the misreading of a jump address.
resulting in execution passing to an unpopulated area of memory. Another
was the misreading of the operand in a compare instruction. In both cases
the same bit showed a transition from 0 to 1. A similar device programmed
with identical data aiso showed these types of transitions but in different
bit locations. A similar response is therefore expected with other 8755s.

The lengths of interruptions necessary to cause corruptions are given
in table 2.4. The minimum supply level reached for each capacitor was
about 3.4 volts, which agrees with the previous results. One failure mode
encountered during interruptions was the repetitive execution of interrupt
routines. This was only observed with the logic analyser connected. and
was due to oscillations on the interrupt lines. The problem was cured by

removing the analyser. or Dby tying the lines low. Other failures were

42

similar to those for gradual reductions of the supply. Bit 5 showed the
initial fallures with other bits corrupted during longer interruptions.

2.4.3 Interference to the Processor

Voltage reductions on the processor revealed initial errors at a level
of 2.74 volts, these consisted of bit 1 incorrectly read as 1 instead of O,
at several addresses. At a level of 2.72 volts the program counter showed
signs of incorrect operation. This resulted in execution skipping over
single and multipie bytes in the program. For example, the third and
fourth Dbytes following a jump instruction were read as the jump address.
This sort of execution was observed in several parts of the program.

Continuous servicing of interrupts, in the same way as in the previous
section. was also observed. Again this was eliminated by grounding the
interrupt lines. Another failure mode encountered. was the cyclic reading
of data through memory. In this case the processor would read successive
locations to the end of the memory map. and then repeat from the beginning.
This mode was always entered if the supply was reduced to below 2.45 volts
and then raised slowly. The processor wouid not leave this state with the
application of a TRAP. which is supposed to be a non—-maskable interrupt. A
full reset is necessary to exit from this mode. A similar sequence of
operation is encountered when certain op—-codes are executed on the 6800.
The fact that no further useful processing Iis performed under these
conditons is particularly important from a reliability point of view, and
this is discussed further in section 3.4.3.

The length of interruptions required to cause errors in the processor
are given in tabie 2.4 First errors occurred when the supply reached a
minimum of about 2.8 volts. Incorrect read and write operations were

observed under these conditions. Slightly longer interruptions, causing a

43

dip down to 2.5 voits, revealed program counter maifunctions. as described
above. Further reductions caused the processor to execute a sequence of
restart 7 instructions (FF), but as the supply recovered the cyclic read
mode was entered. This occurred for all interruptions which resuited in
the supply raill falling to a value between 2.5 and 0.3 volts. If the
supply dropped below this range., the power-on reset circuit would generate
a correct reset.

2.4.4 Interterence to the Complete System

Raising the power supply slowly from 0 to § volits, for the whole
board. caused the processor to enter the cyclic read mode. This indicates
that care must be exercised in starting up a system, and is to be expected
as the power-on reset circuit will not operate correctly unless the supply
is restored quickly.

Reductions in the power supply revealed initial memory read errors at
3.73 volts. This is a similar level to that observed with a reduction to
the RAM supply. At 3.66 volts, memory read errors occurred at the stack
locations, resulting in the incorrect execution of return instructions. At
3.46 volts, the system could not send error codes to the terminal. This
was due to the incorrect reading of the EPROM. and prevented normal
execution.

Interruption testing revealed comparable failures. The lengths of
interruptions required to cause initial failures are given in table 2.4.
As expected. they are similar to those for the RAM, which is the most
susceptible part of the system to this sort of disturbance.

Low energy fast spikes were applied to the whole system. but even with
2.5 kV puises having a 5 ns rise time. no observed failures were produced,

provided that correct earthing and shielding of the equipment was used.

44

Without such an arrangement, errors could be induced. As mentioned above.
the logic analyser could not be used effectively, to observe the point of
failure., as it suffered from the interference. However. it could be used
after the event to identify the final outcome of the fault.

Without grounding the chassis of the interference simulator,
corruption of the stack pointer so that it pointed to an address in the
EPROM. was observed. On returning from a subroutine, an arbitrary address
was retrieved, and execution continued from that point. Subsequent calls
attempted to overwrite the current stack position without success, and the
following returns passed execution back to the same location as before.
Corruption of the stack pointer was also observed during interruption
testing on another system. This shows the importance of checking the stack
pointer, or the return address, before leaving a subroutine.

The cyclic read mode could also be entered as a result of this type of
interference. On another occasion the wailt state was entered, and by
applying a TRAP and observing the location to which execution returned. it
was possible to establish the last byte executed before the wait. The
processor had in fact read the operand of a conditional jump. which was
equivalent to the code for a HALT instruction. Again, the repetitive
servicing of interrupts was also observed. when the interrupt lines were
allowed to float.

Finaily, a few investigations were carried out with the analyser
connected. Although the output was corrupted. a few conditions couid be
Interpreted. These revealed occasions where the processor misread
instructions. For example. a triple Dbyte instruction was interpreted as

three single byte instructions.

45

2.5 Significance of the Results

The test programme described above, relied on the assumption that the
errors produced, under the various forms of interference, were
representative of those which do occur in real systems. As with
accelerated life testing, describped in chapter 1., the experiments may
reveal mechanisms which do not occur under normal operating conditions.
However, the types of Interference used were chosen to be similar to that
expected in the particular British Gas application being considered. The
aim was to simulate naturally occurring events, rather than to induce
failure by altering the environmental conditions.

Another factor which suggests that the failure mechanisms observed
will occur under normal operating conditions, is that in many cases a
particular mechanism was observed as a result of different disturbances.
This happened not only with similar interference on different parts of the
circuit, but also with different types of interference. The results for
the low energy fast spikes and the short interruptions are particularly
important. Gradual reductions are less significant because they appear the
same as short interruptions at the instruction level. Aithough sharp dips
seem to occur as a result of an interruption, the minimum voitage is
maintained for over a millisecond. During this time approximately one
thousand instructions will be executed, and therefore individual
instructions will see the interference as a steady low voltage level.

2.6 Observations of Permanent Failures

Although this work is aimed mainly at transient events, the detection
and recovery processes should not be developed without consideration for
permanent failures. Over the past three years several permanent component

failtures have been observed., and these are described in the following

46

sections.

2.6.1 Processor Failures

Two processor chips have experienced permanent failure, but despite
this they have not failed completely. Certain parts of the integrated
circuits still function correctly. Both failures occurred while the
processors were operating on an intel 8085 system design kit (SDK) board.
The first processor appeared to fail for no particular reason and may have
been a random failure. When connected to a system it seems to successively
read through every memory location from 0000 to FFFF and then repeats
continuously, in the same way as the cyclic read mode encountered during
interference testing. All the control signals are correct for a successful
read and the logic analyser confirms that the correct data for each address
goes onto the data bus in the normal way.

This failure mechanism is particularly important when designing a
watchdog timer for a system. It would not seem unreasonable to retrigger
the timer on a certain address in the control program. Then if the system
crashed and execution no longer continued around that address., the watchdog
would reset the system and control would be restored. This arrangement is
proposed by Oppenheimer (74) to recover from transient disturbances to the
power supply. However, if the cyclic read mode Is entered., the trigger
" address still appears at regular intervals and no reset or alarm wouid be
set off, if the timing of the watchdog is not critical. This state could
continue unnoticed for a considerable time. A compiete memory cycle lasts
for approximately 65 ms. with a 6.144 MHz crystai, and therefore the watch-
dog must be set to a shorter time interval if address triggering is used.
Oppenheimer also suggests that the watchdog could be designed to generate a

non—maskable interrupt. it has been established from the tests that such

47

an interrupt is not recognised during the cyclic read mode and therefore
cannot enable recovery from this state.

The second processor was damaged when the power supply failed during
interference testing. Interruptions which result in restoration of the
supply during a peak in the mains cycle cause a sharp spike in the current
drawn. For the power supply used, the spike had a peak amplitude of up to
16 Amps. compared with a8 normat demand of approximately 300 mA. and was
often sufficient to blow the input fuse. The power supply failed during
interruption testing and was probably due to these surge currents. At the
same time an LSTTL dual D flip-flop (74LS74) failed. Ali functions of the
chip were lost and it took a current of approximately 1 Amp when attached
to a 5 volt supply.

The only damage that appeared t0 occur to the processor was that one
of the multipilexed address and data lines (ADS) stuck at ‘1’. This meant
that for each instruction fetched, that particular bit would be read as a
1. Therefore only half of the instructions could be read successfully,
but it seemed that for the instruction that the processor had read. the
correct execution followed. The program counter incremented internally in
the normal way, with only the single bit corrupted externaily on the
address bus.

Again this failure is important when considering watchdog designs.
One method of resetting the timer is to connect it to a port. and to use
the OUT command. If a single bit stuck at '1’ fauit occurred which did not
affect the OUT instruction or the port address. then it Is possible for
execution to continue in such a way that the watchdog would not generate a
reset or alarm. This processor ailso entered the cyclic read mode

occasionally but with the failed bit stuck at '1".

48

2.6.2 RAM Failure

During interruption testing a permanent failure in an 8155 RAM chip
occurred. Subsequent reading of the device gave a value of 3F at all
locattons. The chip was removed from the circuit and later replaced. at
which time all locations appeared to be stuck at 00. At this stage the
device drew a current of over 0.5 amps. compared with a normai consumption
of about 40 mA.

The execution of the processor was affected. it operated with bit 7
stuck at 0, and read the value 3F from unpopulated memory. In the
resulfting execution a HALT instruction was Incorrectly interpreted, causing
the processor to enter the WAIT state. During subsequent tests, the
processor would not respond in any way with the failed device in the
circuit.

2.6.3 Crystal Fallure

During initlal trials of the single board test system regular problems
were encountered in initiating correct operation of the processor. This
problem was particularly evident when the 5 volit supply was instantaneously
applied to the board. By slowing down the rise time of the $ voit rail the
problem ceased. However. the timing constraints for power on reset were
satisfied in the original state.

Further Investigations revealed that the problem was caused by the
crystal. Under certain conditions it would oscillate at 18 MHz. three
times its rated frequency of 6.144 MHz. Once it had started at that
frequency it was necessary to apply a capacitance to the crystal to force
it into its correct operation. A hardware reset had no effect. so a
watchdog timer connected to the reset line on the processor would not

restore correct operation from this failed state.

49

This problem has been cured by permanently connecting a 20 pF
capacitor from the crystai to ground. The 8085 User's Manuval (119
suggests that this should be done for crystal frequencies below 4 MHz
Their design for a single board computer does not include the capacitor,
therefore they must consider it unnecessary at 6 MHz. This suggests that
the crystal may have been faulty. However. this fault did not appear when
four other processors were tested. Three of these were manufactured by
NEC. whereas the other one. and the original. were manufactured by intel.
This seems to indicate an isolated fault in the internal oscillator circuit
of the suspect device. All other functions of the chip operated normally.

2.7 Summary

The aim of the tests described in this chapter, was to identify
failure mechanisms which are likely to occur in digital controllers. The
mechanisms observed fit into two main catagories of corruption of data and
disruption in the sequence of program execution. They both occurred under
gifferent types of interference applied to various parts of the circuit
and suggests that they will occur in real systems.

Corruption of data results from interference t0 each of the main
elements of a digital system. Disturbances to the RAM ailows data to be
destroyed within the device, or during read and write transfers. In the
case of the EPROM and processor., incorrect interpretation of instructions
can result in the wrong data being accessed or the wrong operations being
performed.

Disruption of the sequence of program execution can also originate
from all three devices. Corruption of the stack data in the RAM results in
incorrect returns from subroutines. Misinterpretation of instructions, due

to interference in the EPROM or processor. can result in the execution of

50

erroneous jump. halt or stack operations. Disruption can aiso result from
the direct corruption of the stack pointer and the program counter within
the processor. Finally, the cyclic read mode and repetitive servicing of
interrupts. both prevent any further meaningful execution.

Both these groups of failure are of great importance in control
systems. The effects of data corruptions have been studied by a number of
researchers, and methods have been developed to detect and correct them.
These consist of the wuse of recovery blocks, N-version programming.
roliback, time redundancy and reasonableness checks. and are discussed in
chapter 1.)

However, the sequence of events folloWlng disruption in the flow of
program execution, has received less attention, and is studied further in
chapters 4, 5, 6 and 7. It Is of particular significance as without a
resumption of valid execution, the data correction methods mentioned above.
cannot function.

The results of the tests have shown that any value of op-code can be
executed by the processor, either as a resuit of misreading instructions,
or by accessing erroneous addresses. It is therefore necessary to know the
effects of every op—code. This is discussed further in the following
chapter.

it has been Iindicated that some failure mechanisms can have serious
implications for the effective operation of watchdog timers. Further

design considerations for these devices are also presented in the following

chapter.

51

CHAPTER 3

Undeclared Operations of Microprocessors

3.1 Introduction

From a reliability point of view it is extremely important to know all
the possible operations of a microprocessor. Without a full knowledge of
their operation it may not be possible to design effective methods to
counteract the results of transient or permanent faults. The manufacturers
provide information about their devices. but this is not comprehensive. An
obvious area of omission is in the declaration of the effects of all
possible operation codes. This is important because the execution of a
program can depart from its normal route, either due to a programming error
or to some external interference. This has been demonstrated in the
practical tests, described in the previous chapter.

Other undeclared operations are difficult to reveal. For example,
the memory cycling mode on the 8085 was found by testing. and could not
otherwise have been forseen.

Three manufacturers (Intel, NEC and Motorola) were contacted to see
if they would release any further information other than that which s
readlly available, but they were not prepared to do so. Therefore the
information required was only available from independent sources, or had tQ
be established by experimentation.

3.2 Undeclared Operation Codes

The full instruction map for most 8-bit microprocessors has a total of
256 possible instruction codes. These take the values 00 to FF in
hexadecimal. For a particular device a certain number of these codes will
be defined by the manufacturer to perform specific tasks. but usually this

does not cover the entire instruction map. The remaining codes remain

52

undeclared but inherently must operate in some way. An initial reaction
might be to assume that they perform in the same manner as the instruction
called a ‘no—operation’ (NOP). This is a slightly misieading name because
although no data is altered. the program counter is Iincremented by one.
Therefore even a NOP causes a change in the overall state of the processor.
Alternatively if these undeclared codes cause a halt in the execution of
instructions, this aiso is a change in the overall state.

As the codes are undeclared by the manufacturers there is a
possibility that they may not perform in a logical fashion, or may not be
repeatable even under similar conditions. Also. there is no guarantee that
a particular response on one processor will be observed on another. This
is particularly important where a specific processor is manufactured by
several different companies. In this case it is possible that the chips
may be fabricated using different masks and it will be highly probable that
the undeclared codes will function differently. For example, it has been
suggested in (118) that Intel and National Semiconductor use the same masks
for the 8080, whereas NEC and AMD have developed independent designs. This
has been established from the operation of the auxiliary carry flag. which
does not always function correctly on the first two manufacturers devices.

However, it is believed with the 8085 that Intel have specified, to
other manufacturers. exactly what each code should do., and the codes which
they say are undefined are in fact only undeclared to the final user of the
device. Similar cases may also exist with other processors, but should be
treated with extreme caution as new modifications may depart from previous
arrangements. This has been demonstrated by Nemmour (67) who reports on
differences between 6800 microprocessors manufactured before and after 1977
by the same companies. He suggests that some of the changes were to

N

~

53

correct design errors in the original masks.
The undeclared op-codes of various microprocessors are discussed in
the following sections, along with some other undisciosed functions.

3.3 Operations of the 8085

The 8085 is a typical 8 bit microprocessor with a 16 bit address bus.
it interprets all operation types from a single byte. and therefore 256
different op—-codes exist. Intel only define 246 of these codes leaving 10
undeclared. The functions performed by the undeclared codes have been
investigated by Dehnhardt and Sorensen (28). Not only do they perform in a
logical way. but they also provide some very useful operations, such as 16
bit additions, subtractions and rotations. The same results can be
achieved using sequences of other Instructions, but this involves extra
execution time and memory space.

Also revealed in (28) is that two of the bits in the condition code
register, which are supposedly undefined, also perform in a logical
fashion. They state that Dbit 1 indicates a two’'s complement overfiow,
whereas bit 5 indicates an unsigned overflow for data changes between 0000
and FFFF, when executing 16 bit Increment and decrement instructions.
These flags are used by some of the undeclared instructions.

This leads to the question of why the codes and flags are not declared
by the manufacturers. The 8085 has close links with both the 8080 and the
Z80, with most of the op-codes performing in the same way. Therefore the
extra codes may have been left undeclared to maintain a high level of
software compatability between the devices. When asked about the codes,
the manufacturers stated that they could not be guaranteed to work under
all conditions, suggesting that pattern sensitive faults, introduced at the

design or manufacturing stages, may be present,

54

Dehnhardt and Sorensen (28) suggest that the op-codes and flags can be
used to enhance praogramming. and it is known that they have been used in
some applications. Clearly this is a dangerous situation if pattern
sensitive faults do exist. Investigations on an Intel 8085 by Buchholz (7)
revealed pattern sensitivity in the over-flow flag. During addition and
subtraction. 25 particular operations resulted in the incorrect setting of
the flag. Similar errors were observed with the compare instruction.

As indicated above, processors from different manufacturers. or
different Dbatches, may vary in their response, and for this reason modern
devices were tested to compare with the published results. The undeclared
op-codes were executed on an Intel SDK board. The monitor program,
provided with the kit, allowed the setting of registers and flags prior to
the test, and also the interrogation of their values afterwards. A Doalch
logic analyser, with an 8085 personality pod, was connected to the
processor to enable all external pins to be monitored. Most of the
instructions can be checked without the analyser, especially with a prior
knowledge of their operation. However, it does provide verification of
data transfers, and is particularly useful in monitoring the fiow of
execution after conditional jump instructions. These operations are
difficult to monitor with software alone.

Full testing of all the instructions for every possibie combination of
data values would take a considerable length of time. For this reason,
tests were carried out, both with random data, and data selected t0 check
specific responses. All ten undeclared codes were executed on an NEC 8085
and responded in the same way as that described by Dehnhardt and Sorensen.
NEC have developed independent designs for the 8080 (118) and the 8035/8048

(see section 3.5), which suggests that Intel may have specified to other

55

manufacturers how all codes of the 8085 must perform. A nuciear hardened
version of the 8085, described by Kim et al (§1), was developed from
information provided by Intel and has all the op-codes defined. This
suggests that all 8085s should operate in the same way.

However, tests were carried out to attempt to reproduce the apparent
maifunctions observed by Buchholz (17). Both NEC and Intel 8085s were
subjected to the same operations which were reported to have incorrectly
set the proposed two's complement overflow flag. At all times during
testing the flag was set correctly. This indicates that the errors were
observed on an isolated faulty component, or that a fault existed in the
masks of a particular batch which has been corrected on other devices.

Another undeclared operation, which was discovered during interference
testing, is the continuous cyclic reading of memory. This is described
further in chapter 2., angd its implications for reliabllity are discussed in
section 3.8.1. Due to the complex structure of a microprocessor, other
modes of operation. which have not been discovered. may exist.

3.4 Operations of the 6800

The 6800 is also an 8 bit microprocessor with a 16 bit address bus.
Again there are 256 different possible operation codes. but only 197 are
defined, leaving 59 undeclared. The functions performed by all the codes
have been studied by Nemmour (67). However, practical tests were carried
out to determine the operation of the undeclared codes. without a prior
knowledge of the published resuits. The methods used are described in
detail as they can be used in the study of other processors.

3.4.1 Determination of the Undeclared Instructions

Studying the positions of the undeclared codes. in relation to the

defined instructions in the Instruction map, provides a useful starting

56

point. A number of the undeclared codes are situated in adjacent
locations, suggesting that they may have similar operations but use
different addressing modes. By considering the defined codes, alongside
the one under investigation. it is possible to suggest the likely
addressing mode. These suggestions proved correct in the majority of cases
and assisted greatly in the determination of many of the operations.

To check the expected operations provided by the codes, they were
executed on a small 6800 based system. A short assembly program was
written to assist in the investigations., and a full tisting is given in
appendix 1. It effectively uses the MIKBUG routines to read in values from
the terminal and to set the registers accordingty. before the execution of
the required op-code. The data read in is stored in successive locations
in memory and then the stack pointer is set to the location above the
biock. A return from interrupt Instruction is then executed to load the
correct values into the corresponding registers. This ensures that all the
registers and the condition codes can be set to any value. A series of
software interrupt instructions are placed after the op-code t0 use the
MIKBUG routine to print out the contents of the registers and condition
codes.

This provides a clear indication of any changes that have occurred
within the processor due to the specific op-code. However. it does not
give any indication of external events such as reading and writing to
memory, and is of little use in cases where a jump or branch is generated.
in these cases a logic analyser was used 10 monitor the states of the
address and data buses, and the read/write and valid memory address lines.
This enabled alli external data transfers to be monitored. and clearly

indicated the flow of execution after jump instructions. Without

57

monitoring the external pins of the processor. it would not have been
possible to establish all the operations performed.

3.4.2 Functions of the Undeciared Codes

The functions performed by the undeclared codes fit into two main
groups. those which perform totally new operations., and those which perform
identical or similar operations to the instructions already defined. Most
of the codes are similar to the ones specifically defined by Motorola.
They perform roughly the same operation but will manipulate the flags
differently or not change the contents of a register. For example there is
an add accumuiators instruction indentical to the defined instruction
except that the haif carry flag is not affected.

Some of the codes are indentical to defined ones and appear to be due
to the instruction map not being fully decoded In some places. Examples of
this are the four addressl'ng modes for the compare X register instructions.
These are normally codes 8C, 9C, AC and BC, but also appear at CC., DC, EC
and FC. This suggests that bit 6 is ignored when the instructions are
decoded.

Some of the codes are substantially diffterent and appear to perform
useful tasks. however these functions can also be performed by two or more
of the defined Instructions. For exampie there is an add accumulator to
the complement of memory instruction. It works for both accumulators. and
for all four addressing modes. All the flags except for the half carry and
the interrupt mask are affected by the result of the operation. Another
useful instruction performs a logical AND on the two accumulators and puts
the result in the A register. three of the flags are affected. A similar
instruction affects the flags but does not change the contents of the

accumulators.

58

Store immediate operations exist for the A, B and X registers and for
the stack pointer. To be consistent with the load immediate instructions
they should store the data in the memory locations immediately following
the instruction, but this does not occur. instead. the first byte is
skipped and the data is written to the following locations. However. the
program counter Is adjusted accordingly so that the next instruction is
read from the location immediately after the one into which the last data
byte is written. This effectively makes the store A and B registers into
triple byte instructions. and the store X register and stack pointer into
instructions with four bytes. But in all cases only one byte Is read.

3.4.3 Cycling Through Memory

Four of the undeclared op-codes cause the processor to cycle through
memory indefinitely. This state is of particular importance when
considering reliability. It means that if one of these op-codes is
inadvertently executed. either due to an error in programming or to some
external interference. then the processor wiit ‘lock-up’ and will not
execute any further instructions untii some external intervention s
initiated.

Operation codes 90 and DD cause the processor to read through memory
starting at the direct address following the code. Once in this state it
will not respond to either a non-maskable interrupt (NMD or an interrupt
request (IRQ). even if the interrupt mask is cleared beforehand. The only
way of leaving this state is 10 exert a full reset on the processor. The
contents of the A, B and X registers are not altered from the state that
they were in Dbefore the op-code was executed. This was determined by
generating an interrupt immediately after the reset. Unfortunately the

interrupt will not occur until after the first instruction has Dbeen

59

executed. in the system wused the first instruction Ioads the stack
pointer, and therefore its contents at the time of the reset could not be
determined.

Those condition codes which were not affected by the first instruction
or the reset. remained in the same state that they were in originally.
This suggests that no change occurs in any of the internal registers whiie
the processor is cycling through memory. Therefore the only data lost are
the contents of the program counter and the state of the interrupt mask,
which are both set by the reset sequence. The contents of the registers
will not be of great use after the reset, as some unforseen sequence of
instructions will have been executed before the undeclared op-code was
reached. However they may give some sort of indication of how that
particular state was entered.

The result of executing operation codes 3C and 3D is similar to that
obtained by the codes 9D and DD. In that the processor ends up cycling
through memory reading successive locations. After executing the code. it
giffers by saving the address of the next byte onto the stack, before
reading the next location on the stack. it rereads the previous location
and then starts cycling through memory from the top of the stack.

While in this state the processor will not respond to NMI or IRQ. as
before. Again the only means of leaving this state is by a reset. Nemmour
(67) suggests that this is due to the way in which interrupts function.
They do not respond until the completion of an instruction. and therefore,
because these operations never finish, no interrupts can be initiated.

However. the B and X registers are not changed from the state that
they were in before the undeclared op-code was executed. but the A register

is changed. Bits 1-7 are cleared whiie bit 0 remains unaffected. Again.

60

it was not possible to determine the value of the stack pointer after the
reset. If it remains unaltered then the address at the top of the stack
will point to the byte immediately after the illegal op-code that was
executed. This is a very important point when attempting to diagnose the
original fault, and could prove very useful.

The reason for these modes of operation is unclear., but it s
believed that they may be for testing purposes. Hayes and McCluskey (43)
propose a test sequence for the 8080 which starts by executing NOPs
repeatedly. This is designed to reveal faults on the address Dbus.
However, the cyclic read mode is not only suitable for revealing address
bus faults. but can also indicate data bus and memory failures.

3.4.4 Comparison with Published Data

The investigations by Nemmour (67) were carried out in a similar
manner, but in addition he studied the masks to enable cross checking with
practical tests. Devices from different manufacturers (SESCOSEM and
Motorola) were used. however these are constructed from identical masks.
in all cases the instructions operated in the same manner as the
independent Investigations described above. This shows consistency between
devices from the same manufacturer. Dbut variations may be obDtained if
different masks have been developed. Again, it is wunclear why these
operations are not disclosed. Design or manufacturing difficulties could
have caused problems., and these may have been corrected subsequently.

Nemmour reveals several changes that were made to the masks in 1977,
some of these were to correct Initial errors. For example, on original
devices, the application of a non-maskable interrupt. during certain cycles
of the execution of a software interrupt. caused the servicing of the

maskable interrupt routine. This sort of fault is particularly difficult

61

to locate, and others of a similar nature may exist.

3.5 Operations of the 48—series Microprocessors

The 48-series microprocessors are aiso 8 bit devices but have a very
different architecture from the 8085 and 6800. They consist of a central
processing unit. 27 1/0 lines. a single interrupt and an internal timer/
counter. In addition to this a quantity of internal read only and random
access memory is provided. the size of which depends on the particular
device. and is given in table 3.1. The processors are designed for small
scale control applications where the final program would reside in one of
the ROM based chips. The other devices are primarily for use in the
development and debugging stages.

The address bus is 12 bits wide allowing a maximum possibie address
range of 4K bytes. The program counter is however onfy 11 bits long. and
effectively splits the memory map into two separate blocks. Access t0 each
area is controlled by software which can aiter the most significant bit of
the address bus. The internal RAM is not accessed by the main bus. and its
contents can only be treated as data. no instruction fetches can be made
from it. Therefore the normal arrangement is to locate the program within
the 4K address range, and to use the internal RAM for data storage.
However, fixed data values can be stored in the main memory map, but they
are Iess easily accessed.

External memory devices can be attached to the processors to
supplement the Iinternal memory. Alternatively, devices can be mapped to
the same locations as the internal ROM. and the processor forced to access
them instead. This can be used in the development stage. or to provide an
alternative program, such as for testing purposes.

The processors interpret the instruction type from 8 Dits. and

62

therefore 256 possible op-codes exist. Only 230 are defined. leaving 26
undeclared. No published work on the undeclared operations of these
devices has been found. and therefore investigations were carried out to
determine the effects of executing the undeclared codes, and to discover
other undisclosed functions. Full details of these studies are given in
the following sections.

3.5.1 Undeclared Memory in the 8035

In all published literature. the major manufacturers state that the
8035, 8039 and 8040 have no internal ROM. However. it was suspected that
this might not be the case. and attempts were made to read internal memory
of 8035s as if they were 8048s. For nine devices from three different
manufacturers (Intel, NEC and National Semiconductor) a logical program of
up to 1K was revealed. The Intel 8035 contained a games program which read
9 bits of parallel data from port 1 and test input T1, and used bit 7 of
port 2 and test input TO for transmitting and receiving serial data. It is
therefore clear that the 8035 is In fact an 8048 but sold under a different
name. When approached on this matter, Intel did admit that they are the
same device, and that 8048s which do not operate at the required speed, or
have fauits in the ROM. are sold as 8035s.

This fact ralses two important points. Firstly, any details of the
undeclared codes of the 8035 will relate directly to the 8048. Secondly,
the existence of an internal program might have serious consequences with
respect to reliability. The internal program is disabled by holding the
external access (EA) pin high, but an internal chip failure could cause the
pin to be disablied resulting in bus conftict or the correct execution of
the internal program. This could result in a dangerous sequence of signais

appearing at the ports and could mislead any external hardware monitoring

63

the state of the system.

The external access pin does not operate in the same way for all
8035s. It allowed to float, the Intel chip accesses the external memory.
whereas the NEC chip accesses the internal memory. For the National Semi-
conductor device access to both memories appears to occur. Normally the
pin would be tied high or low. but an internal wire bond failure, due to
thermal stress or vibration, could cause it to float. For this type of
failure a particular device will continue without error. depending on which
memory contains the main control program.

3.5.2 Determining the Undeclared Instructions

in order to determine the operation of the undeclared codes. a small
8035 based system was constructed. A block diagram of the system is shown
in figure 3.1. It consists of the processor. an 8-bit latch and a 2K
EPROM. The latch is necessary in order to demultiplex the address and data
bus. An EPROM emulator was used to enable quick and easy modifications to
the program being run.

The software used to investigate each code is given in appendix 1.
The program outputs the contents of the accumulator onto port 1, executes
the undecliared op-code and then re~outputs the accumulator to port 1,
before (ncrementing the accumulator and restarting. All unused memory is
set to 04, this causes a jump to address 004 if an attempt is made to
execute outside the program. This method is also used to recover execution
after the undeclared code. A subroutine call during each cycle is included
to monitor the state of the stack.

A logic analyser was used to monitor the state of the ports and bus.
The clock output on the TO pin was used as the clock input to the logic

analyser, causing one sample to be taken during each T state. This is

64

equivalent to five samples during each program cycle. In this way it was
possible to determine the number of bytes associated with each code and the
number of cycles it took to execute. Any effects on the ports, bus or
accumulator could also be seen.

As the processor is designed to be used as a single chip controlier,
many of the instructions result in only internal actions, and cannot be
observed externally. in order to establish internal operations, further
investigations were carried out using a Prompt 48 microcomputer design aid.
This allows programs to be executed from RAM and enables access to all of
the Internal registers and flags. Using this system it was possible to
reveal any internal effects of the undeclared codes.

3.5.3 The Effects of Executing the Undeclared Codes

A detalled list of the effects of executing each of the undeclared op-
codes is given in appendix 2. Unlike the 8085 and 6800, in this case,
processors from Jdifferent manufacturers give different results. Devices
from the three manufacturers of Intel. NEC and National Semiconductor, were
studied. The results from the National Semiconductor 8035/8048 were
identical to those from Intel, and therefore have not been included in the
detailed descriptions in the appendix. It seems to be the case that
National Semiconductor do not produce independent designs for their
devices, and this is supported in (118).

The full instruction maps. inciuding the undeclared codes., for both
the Intel and NEC devices are given in figures 3.2 and 3.3. Descriptions
of each of the operations of the undeclared codes are given below.

3.5.3.1 Intel 8035/8048

Figure 3.2 shows that, for the Intel chip. out of 26 undeclared codes.

17 perform a No-Operation, 4 cause a jump in execution and the remaining §

65

affect the input/output lines. Three of the jump instructions are Iogical
extensions to the standard instruction set. They are conditional on a
particular flag being clear and. in the instruction map. they are adjacent
to their corresponding jump. conditional on the flag being set. The fourth
additional jump instruction is unconditional and branches to an address
within the current page. This is not provided for directly in the standard
instruction set. and enables program modules to be relocated on a different
page without modification.

Four of the additional I/O instructions are identical to codes in the
standard instruction set. They are copies of the four operations involving
port 2, and each one Iis adjacent to its copy in the instruction map.
suggesting that bit 0 is not used in decoding these instructions. The
fith code invoiving the /O lines has the value 38. By considering the
adjacent locations in the map. an OUTL BUS,A instruction woulid be expected,
which outputs the contents of the accumulator to the Bus. This undeclared
code does take two machine cycles to execute, which is necessary for an 1/0
function, but no read or write signal is generated to perform a correct bus
operation. The value 00 does appear on the Bus during T4 of the second
machine cycle. but this does not seem to perform a useful task. No other
part of the processor appears to be affected.

3.5.3.2 NEC 8035/8048

Most of the undeclared codes for the NEC device are the same as those
already described above. All the jump and I/O operations are the same, but
six of the No-Operations have been replaced by useful instructions. Four
of these fit logically into the instruction map and perform functions not
previously provided. They fill the gaps for the indirect addressing modes

of the decrement. and the decrement and jump if not zero Instructions.

66

which are omitted from the standard instruction set. There does not seem
to be any logical reason why these instructions should be omitted. Errors
during initial development of the processor may have caused problems which
have now been corrected by NEC.

Two of the instructions perform functions totaily unrelated to those
already defined. One has the effect of clearing the upper nibble of the
accumulator (bits 4-7). The other loads the accumulator with the lower 8
address bits of the next sequential instruction to be executed. The first
instruction is useful when manipulating nibbles. whereas the second could
be useful when debugging a program. In the latter case this code could be
placed in several locations in a program followed by an output to a port.
Then by monitoring the port it would be possible to trace execution past
these points.

3.5.4 Other Devices in the Series

All investigations were carried out on the 8035/8048. The only
deciared difference. with the ather devices in the series, is the size of
the internal memory. These chips are therefore likely to have similar
properties. For example, the undeclared op-codes are expected to function
in the same way as those in the 8035/8048. and the devices which are
defined as having no internal ROM are expected to have internal program
memory.

3.6 Operations of the 68000

The discussion up to now has been directed towards 8 bit micro-
processors, but it is now worth mentioning the Motorola 68000. which has a
16 bit internal architecture, and a 24 bit address bus. The type of
operation performed is determined from a fuil 16 bit data word, and

therefore the total number of possible op-codes is much greater than for an

67

8 Dbit machine, and is in fact 65.536. Obviously with such a large number
of possible codes. there will be a substantial quantity which are not
defined. The 68000 has 56 basic functions. but with ail the addressing
modes and register references approximately 45,800 op-codes perform defined
operations leaving over 19,700 unused. However, the processor has been
designed to signal an exception if it detects the illegal execution of any
of these codes. This effectively means that each one of them acts as if it
were a software interrupt.

A study of the full instruction map reveals that the unused codes
appear In isoiated locations as well as large groups. some up to 4K. The
manufacturers state that codes in the large groups may be wused in later
designs. For this reason they cause the execution of a different
exception handling routine from the other codes. if an attempt is made to
execute them. This allows the emulation of new instructions on the
ariginal devices. It was felt that if any of the unused codes were going
to perform undeclared operations., then the isolated ones would be the most
likely to do so. For this reason. a number of the codes were executed on a
small 68000 based single board computer. In all the cases that were tried.
a correct response from the exception handling iogic was observed. No
unusual operations were revealed.

As well as the detection of unused op-codes. internal logic is
provided to detect other erroneous states, such as an attempt to perform an
instruction fetch from an odd address. The processor is ailso specifically
designed to have external logic to detect unsuccessful memory transfers.
All these checking modes are important from a reliability point of view.
They reduce the probability of executing a large number of erroneous

instructions before detection.

68

Although this is an advantage in the detection of errors due to
transient faults, the permanent failure rate will be higher than that for 8
bit processors due to the increased complexity of the chip. This may also
increase the susceptibility to transients.

3.7 Operations of the 6809 and Z80

The 6809 and Z80 are both 8 bit microprocessors. but they differ from
those described above. in some cases the instruction type is not
established from 8 bits alone. This allows the possibility of undeclared
op-codes at different levels. The 6809 is a modified version of the 6800,
and has a similar instruction set with the majority of the instructions. at
the first level, still having the same operation codes. This is
particuiarly evident in the ranges 20-2F and 40-FF where nearly all the
codes are the same.

An interesting point is that two of the previously undeclared codes
are replaced with instructions which would logically be expected from
looking at the memory map. Code 21 has been programmed to execute a branch
never instruction, which is the logical opposite of code 20, the branch
always instruction. Code 9D executes a jump to subroutine using direct
addressing. This was a previously omitted form of addressing in calling
subroutines, and fits in between the other addressing modes. Nemmour (68)
has identified 498 undeclared op-codes. at different levels, in the 6809,
four of these cause the cyclic reading of memory in the same way as those
described for the 6800 and 8085.

No further studies were carried out on the 6809 and Z80. They have
been mentioned here to indicate possibie problem areas for other processor

architectures.

69

3.8 Implications of the Undeclared Qperations on Reliability

Undeclared operations of microprocessors can be divided into two broad
catagories, those which occur as a result of executing an undeclared op-
code. and those produced by other mechanisms. Most of the undeclared codes
in microprocessors operate in a similar way to the declared instructions,
and therefore their importance does not differ significantly from the
erroneous execution ot defined instructions. However, there are some codes
which operate very differently, and are of great significance. These
result in the processor cycling through memory and prevent the execution of
further instructions until a reset. Therefore some sort of watchdog timer
must be included in a system to recover from these states.

3.8.1 Significance for Watchdog Design

When considering the design of a watchdog timer the fqallowing two
points should be noted. Firstly, the highest level of fault recovery must
initlate at least a full reset, and secondly the address lines alone should
not be wused to trigger the timer. The second point is particularly
important In the 6800, which uses the address lines for caicuiating branch
and indexed addresses. The triggering must incorporate the write signal
which is never present uniess a valid write operation is being performed.

The existence of memory cycling can be considered as an advantage or a
disadvantage depending on the application. |If the accuracy of a system is
more Important than Iits timing. then this mode of operation would be an
advantage as it has the effect of suspending execution, preventing any
further output. On the other hand if timing is more important, the
considerable amount of time which could elapse between the occurrence of
the fault and the detection of the error by the watchdog. would be a

disadvantage. Further time could be Iost resetting the system and

70

reinitialising variables.

However. even in the first case. the major drawback is that recovery
has to be initiated by some hardware. If the timer fails the whole system
fails. A Dbetter solution would be to attempt to detect and correct errors
under program control and only rely on external hardware when this approach
fails. This cannot be achieved with these particular codes. therefore the
only method of providing a back-up procedure in the case of a watchdog
failure is to include further hardware to monitor its operation.

The existence of internal memory in the 8035, when being used for
control purposes, is also important for watchdog design. A chip failure,
such as a wire bond fracture or an internal short. can result in the
execution of the internal program. It may then operate in such a way that
the errors go undetected. This Is possible. as the devices are used in /O
intensive situations and therefore the ports, to which a watchdog would be
connected, will probably be highly active. If a simple triggering sequence
is used with non-criticai timing the Internal program could generate
signals which would satisfy the timer, However., a complex triggering
sequence will reduce the likellhood of non-detection of this type of
failure.

3.8.2 Powering down tc Enable Recovery

It has been shown by the crystal failure that it may be necessary to
provide a levei of recovery which goes further than a reset and actually
powers down the system before powering up in a controlled manner. This is
because with the cfystal oscillating at three tlmés its natural frequency
the appliication of the reset has no effect and the power has to be removed
before correct operation will resume. This situation has been cured by the

addition of a small capacitor. but does at least demonstrate that it is not

71

atways sufficient just to apply a reset.

3.8.3 Use of Non-Maskable Interrupts

The memory cycling mode has shown that non-maskable interrupts should
not be used to initiate recovery. However. if they are used for other
purposes, great care must be exercised in their handling. A noisy signal
on the input can cause muitiple interrupts and resuit in a large quantity
of data being stored on the stack, which may result in overflow and the
overwriting of critical data areas. It is therefore advisable to reset the
stack at the beginning of the routine, if the return address is not
required, or to at least check that the stack pointer is within certain
limits.

3.8.4 The Most Important Undeclared Operations

The failure modes which present the major threat to the integrity of a
system are those which have not been discovered and cannot be forseen. Any
amount of time can Dbe spent designing against the effects of known or
expected failure modes, but Inevitably it is the unknown modes which cannot
be designed against fully. it is hoped that high Ilevel detection
mechanisms, such as watchdogs. will aliow recovery from these types of
taiiure.

3.9 Summary

This chapter has shown that microprocessors perform a number of
operations which are not deciared by the manufacturers. Some of these can
have serious consequences in the design of error detection and correction
techniques. and therefore a knowiedge of these modes of operation is
necessary in order to achieve high reliability.

A common failure mode observed during the interference testing.

described In chapter 2. was a transfer of program execution to a non-

72

specific memory location. This can result in instruction fetches from data
areas or operand fields. and any value of op~code can be read. The
functions performed by executing each op-code have been determined for the
8085. 6800, 8048 and 68000, either from published data or from practical
tests. With a knowledge of all the op-codes it is possible to predict the
flow of execution in different memory areas, after an erroneous jump. and
this is discussed in detail in chapters 4. 5. 6 and 7. From these studies
it is possible to design more effective error detection and recovery
processes.

It has been established that the undeclared operations do not ailways
function in the same way in devices from different manufacturers. and
changes can occur between different revisions of the masks. Therefore the
results may not always De consistent between any two devices. It has been
suggested by Nemmour (67), and by Dehnhardt and Sorensen (28), that the
undeclared codes can be used to enhance programming. but this would seem to

be a very dangerous practice.

73

CHAPTER 4

Erroneous Execution in Data Areas

4.1 Introduction

During the practical tests on the small single board system. described
in chapter 2. it was shown that corruption to the normal flow of execution
could be generated Dby applying different types of interference 1o
particular parts of the circuit The three main elements on the board.
consisting of the processor., EPROM and RAM. could each cause such a
failure. Although the particular failure mechanism is different in each
case, they can be divided into the two main catagories of the
misinterpretation of instructions, and the incorrect return from
subroutines.

The misinterpretation of instructions occurs either due to the
incorrect transmission of data from the EPROM. or to the corruption of the
program counter within the processor resulting in the wrong bytes being
read. Incorrect returns from subroutines occur by the corruption of
either, the stack pointer within the processor, or the stack data stored in
the RAM.

The tests therefore show that this class of failure is likely to occur
in real systems under certain types of Interference. it is particularly
important because without knowledge of the behaviour of a system after such
a fallure, it is not possible to effectively design hardware or software
methods t0 detect and correct system operation. For example, a common
solution to this problem is to attach a hardware watchdog timer but. as
will be shown later, without careful consideration !0 the design. certain

failures will not be detected by the circuit.

74

4.1.1 Random Jump Within the Memory Map

When program execution departs from its predefined sequence it must
continue at some other location. For the purpose of the following analysis
it is assumed that the location is random within the full memory map.
Therefore the failure mode being investigated is equivalent to the
erroneous execution of a jump instruction to a random address. For a
typical 8-bit microprocessor with a 16-bit address bus this gives a
possible 65,536 different locations at which execution could resume after
the fault.

However, certain parts of the memory map have different properties
dependent on the type and sequence of values which are read when various
locations are accessed. In the following sections three main categories
are studied, these are program areas. data areas and unused areas. The
effects of memory mapped input and output is also considered. This chapter
studies the flow of execution after a random jump into a data area.

4.2 Analysis of Execution

If as a result of an error execution resumes in a data area, the
processor will interpret the data as Instructions and perform the
corresponding operations. Obviously the type of data and its arrangement
in a particutar block will depend very much on the application and method
of programming. and in the case of random access memory, will change during
execution of the program. Therefore to analyse this type of execution for
the general case it is necessary to assume that the sequence of bytes is
totally random.

From this it follows that when a data byte is interpreted as an
instruction one of two posslble.outcomes will be performed. Either, a jump

will be generated causing control to pass to another part of the memory

75

map. or a non-jumping instruction will be interpreted passing control to

the next logical byte. For the latter case the whole process repeats
again. If P‘J . the probability of interpreting a jump instruction, is zero
then execution wouid continue to the end of the data block. However,

assuming random data, PJ will be dependent on the particular instruction

set of the processor. and is given by:-

PJ = _:_J_ Eqn. 4.1
T
Where:~ NJ is the number of bytes which cause a jump or branch.
NT is the total number of possible op—-codes (256 for a normal 8-

bit processor).

Clearly, P the probability of interpreting a non-jumping instruction is

NJ
given by:-

PNJ = 1 - P‘J Egn. 4.2

it foliows that, PJ(K), the probability that K instructions will be

executed before control passes to another part of the memory map. can be
obtained from:-
K-
PJ(K) = PNJ . PJ Eqgn. 4.3
An important quantity, which will be wused later in chapter 8. is the
average or expected number of Instructions which will be executed before

the jump, NIA and is given by:-

E

o0
NI - 2 K.P.W Eqn. 4.4
AV K=1 J

It is useful for determining both the time taken to initiate recovery, and

the probability of corruption of specific data. The average number of
bytes read. NBAV . will be greater than N'Av because each instruction
interpreted can consist of one or more bytes, therefore NBAV will be given

76

by:-

> LN 2 L.N
NB,, = NI, -1, = — NS L Eqn. 4.5
AV AV N N
L=1 NJ L=1 J
Where:- N and N, are the numbers of bytes interpreted as non-jumping

LNJ LJ
and jumping instructions of length L.
NNJ and NJ are the total number of bytes interpreted as non-
jumping and jumping instructions.

To assist in the calculation of both N'Av and NBAV . a short FORTRAN
program was written. It requests a number of details about the particular
instruction set and then calculates the values using equations 4.4 and 4.5.

NBAV is used later in chapter 7 when considering the flow of execution
as it passes between different parts of the memory map. The following
section looks at a few microprocessors and goes through the necessary steps

to calculate the above quantities.

4.2.1 Response of Different Processors

To determine the expected response for a particular processor it is
necessary to make a detalled study of the instruction set. For execution
in the data area the important instructions are those which cause a jump or
transfer of program execution. Appendix 3 lists a number of parameters for
the 8085, 6800, 8048 and 68000 microprocessors. it includes the effects of
the undeclared codes. The importance of chapter 3 in determining the
undeciared op-codes is now clear. as without the knowledge of them
inaccurate results would be obtained.

The instructions are divided into two groups., those which always cause
a jump and those which are conditional on some internal state of
the processor. To include the properties of the conditional jump

instructions. equation 4.1 is modified to:—

77

CJ
i N, o+ _Z Poy® EQn. 4.6
P = i=1
J
NT
Where:- P _ () is the probability that the ith op-code of N conditional

cJ

instructions causes a jump.

CJ

For ease of calculation it is assumed that there is a 50% chance that
a jump will occur. Although this is not strictly true in individual cases.
overall the assumption is valid. This is because in most cases the
instructions have a logical pair which tests the inverse state of a
particular condition., and therefore any variations in the probabilities
will be cancetled out. In this case equation 4.6 simplifies to:-

N + 05 . N
p = J G Egn. 4.7
J Ny

However in a few cases a different approach was adopted. For the 8048
decrement and jump if not zero instructions, it is assumed that they always
cause a jump. Provided that the contents of the particular register
concerned is random, then there Is only a 1 in 256 chance that the jump
will not occur. They are therefore grouped together with the other jump
instructions.

Special treatment has been given to the 68000 instruction set. This
is due to the fact that most of the instructions which can cause a transfer
of controi have several possible outcomes. For example, the Dbranch on
condition code instruction first makes a test and if not true, no branch .
occurs. This Is assumed to have a probability of 0.5 for the same reasons
as above. If a jump does occur it is assumed to be random. in which case
there is a 50% chance that the address will be odd. The processor can only

read instructions from even addresses and generates an exception if an

78

attempt is made to access an 0dd address. Therefore if a branch on
condition code instruction is executed. the probability of no jump is 0.5,
the probability of generating an exception is 0.25 and that of a successful
jump is also 0.25. To simplify the calculations the op~codes for this
instruction are split in the same proportions to give an effective number
of op-codes for each outcome. A similar treatment has been adopted with
the other instructions and the proportions in which they are divided are
given in appendix 3.

4.2.2 Results from the Analysis

Using the data in appendix 3. together with the FORTRAN program
mentioned in section 4.2, values of P\J . N'Av and NBAV have been evaluated
for the 8085, 6800, 8048 and 68000 processors. The values of these
guantities are given in table 4.1. The upper curve on each of the graphs
in figures 4.1 (a)~(e) show the probability that a certain number of
instructions. or less, will be executed before a jump. The other curves

will be explained in the following section.

4.3 Transfer from the Data Area

The analysis so far has only considered the number of instructions or
bytes read before a jump. It would also be useful to know where execution
will continue so that methods can be developed to generate an ordered
recovery ta the correct program. Consideration of the jump instructions
reveals four distinct types of halts, restarts, returns and unspecified
jumps. These are shown in figure 4.2 and are described in detail below.

4.3.1 Halt Instructions

Halt instructions are those which prevent further execution of any
instructions untii an interrupt is applied to the processor. If no

provision is made 10 exit from this state. then no recovery is possibie.

79

4.3,2 Restart Instructions

Restart instructions cause the processor to jump t0 a specified
location in the memory map. The particular address varies between
processors and can either be generated internally or is read from another
location. In the case of the 8085. restarts jump to the low end of memory
and continue to execute from that point. f no consideration for erroneous
restarts have been made then values read from those locations will be
interpreted as instructions.

Turner (104), In an example of a program for a security system, states
that it is all right to place the code over the restart vectors if they are
not being used. This would be acceptable as long as the system functions
without errors and is not susceptible to external interference, however
this is difficult to guarantee. if restarts do occur then execution will
resume at some location within the program. but will not necessarily pick
up correct instructions immediately, as shown in chapter 5.

The program in the example is short enough to finish before the end of
the restart table. (n particular, it does not occupy the restart 7
iocation. This is of special importance because the op-code for the
restart instruction is FF, and it Is usually the case that unused Ilocations
of ROM or EPROM are also left at FF. Therefore if such a code is
erroneously executed the processor will jump to the restart location.
immediately read another restart instruction and continue to 100p
indefinitely. This condition is similar to the execution of a halt in that
no other instructions will be executed, except that a restart saves the
return address on the stack. If muitiple restarts occur. the stack will
grow through the entire memory map destroying ali the data.

On the 6800 a restart is generated by the software interrupt

80

instruction. it differs from the 8085 in that the address at which
execution resumes is read from the top end of memory. Therefore if those
particular locations have been used for some other purpose an unspecified
address will be read.

The restart instructions are of great importance in returning program
control to a recovery routine. in the following analysis it will be
assumed that the restart vectors have been set. and that full recovery is
achieved if any of the restart instructions are executed.

4.3.3 Return Instructions

If a return instruction Is read. then execution will resume at the
address obtained from the top of the stack. This will resuit in control
passing back to the program provided that two conditions are met. Firstly.
the last information pushed onto the stack before the fault must have been
a valid program address. and secondly, both the stack pointer and the stack
data must not have been corrupted by the fault or subsequent processing.

in the following sections it wil be assumed that a valid program
address is not read from the stack. and therefore execution continues at
some undefined location, which is considered to be random in nature. This
is a reasonable approach if the programming technique has been adopted
where data Is stored on the stack immediately after entering a subroutine.
In this case the return address from the subroutine only occupies the last
position on the stack for a very short time.

4.3.4 Unspecified Jumps

The last of the instructions are those which jump to a location
dependent either on the contents of the bytes following the instruction or
the contents of a register. In this case it is assumed that a random jump

occurs.

81

4.4 Modification to the Analysis

Having dlivided the jump Iinstructions into the four groups mentioned
above, it is now possible to spiit the probability function, of equation
4.3, into its constituent parts corresponding to each group. The new

functions will be proportional to the original probability and will depend

on the relative number of each instruction type. For instance the
probability of a restart PRST(K) is given by:-
N
- RST
PRST(K) = NJ . PJ(K) Egn. 4.8
Where:- N is the effective number of restart instructions.

RST
Similar equations can be obtained for the other three groups.

Figuu_'es 4.1 (a)-(e) show graphs for the probability function for each
of the processors under investigation. Two graphs (¢) and (d) are given
for the 8048, one for each of the manufacturers. This is due to the
dissimilar instruction sets. However, no noticeable variation can be seen
in the results despite the differences.

The graphs show that the proportions of the different types of jump
vary enormously between processors. Assuming that recovery is only
obtained from restarts, as mentioned in section 4.3.2, the 68000 has the
best response by recovering on 95% of the occasions of a random jump into a
data area. This is due to the large number of undeclared op-codes which
effectively generate restarts by initiating exception handling. The 8085 s
the next best at 32%. followed by the 6800 at 4%. The 8048 has no restart
instructions and therefore cannot recover in this manner. These figures
represent the waorst case, as recovery can be initiated after jumps to other

parts of the memory map,. and these will be considered later in chapter 7.

82

4.5 improvements in Recovery

In order 1o increase the chances of successfully completing recovery
it is necessary to initiate the recovery process as quickly as possible, so
that the corruption of data is kept to a minimum. The easiest method of
initiating the process is via the restarts, therefore the aim is to
increase the number of jumps caused by restarts and to reduce the number of
instructions executed prior to the jump.

The obvious solution is to seed the area with restart instructions,
additional to those found randomly within the data. The problem is to
establish the optimum number and position of the extra codes. An initial
reaction could be to split the data into separate blocks so that execution
can not transfer from one to another. This requires a string of adjacent
single Dbyte restart instructions equal to the Ilength of the longest
instruction. It will be shown later that this solution does not represent
the best use of resources in most cases.

4.6 Simulation of Execution in Data Areas

When considering the execution in non-random data, the derivation of
accurate equations to represent the response of the processor becomes very
compiex. An alternative approach. which was adopted, is to simulate the
process on a computer. The program developed generates a block of random
data which can then be modified to Include certain types of instructions,
such as restarts. Then, starting at a particular tocation, it translates
the data into a sequence of instruction types, and calculates both the
number of instructions and the number of bytes encountered before a jump.

The data structures considered have consisted of a certain number of
random bytes separated by a given number of a particular instruction type.

Execution begins randomly between the start of the first block and the

83

start of the second block. In each complete run the response is evaluated

for a number of sequences. each one starting with a new set of data.

For a paricular sequence, the probability, P’J(K), that K instructions
are executed from NS sequences, is given by:-
NK
P (K S em— Eqn. 4.9
J N
S
Where:~ N is the number of sequences where K instructions are executed.

K

This will give a representative result provided that N is large.

S

Initial runs were carried out with totally random data to provide a
means of determining a reasonable number of sequences for each run. The
value chosen was 5000, which consistently gave resuits within 2% of the
resuits obtained from the original analysis. proving that both methods are

consistent.

4.7 Optimum Seeding of Data

The optimum seeding of data was established by completing a number of
runs on the simulator with different data structures. A selection of the
results are shown in table 4.2. The percentage overhead signifies the
additional memory requirement, for a particuiar arrangement. However, for
a given overhead there are a number of ways in which the data can be
seeded.

4.7.1 Data Structures for the 8085

With the 8085 and a 20% overhead the following structures were
considered; 20 bytes of random data followed by 4 adjacent single byte
restarts, 15 followed by 3. 10 followed by 2 and finally, 5 foliowed by 1.
Assuming that execution of a restart generates a successful recovery, table
4.2 shows that the original suggestion of totally separating the data

blocks does not give the best chance of recovery. It also shows that no

84

advantage is achieved by separating the blocks by more than the length of
the longest instruction.

The best solution for the 8085 Is to spread the seeded data, such as
the Restart 7 instruction (op-code FF)., evenly throughout the data area.
Not only does this provide the greatest chance of recovery. but it aiso
gives the lowest average for the number of instructions executed before a
jump. One disadvantage of this arrangement is that execution is not
restrained within a block. it can skip over the restart instructions and
therefore there is no limit to the number of instructions which could be
read.

However, the probability of execution continuing for a long time s
small. and in this case a higher level of fault detection, such as a
hardware watchdog timer, should provide the necessary coverage.

4.7.2 Data Structures for the 6800

The 6800 gives a totally different set of results. The optimum
solution is to spread the restarts (sofware interrupt instruction code 3F)
within the data area. but rather than placing them individually. they
should be positioned in groups of two. The reason for this is the high
number of double and triple byte instructions in the instruction set. which
increases the probability of skipping over individual bytes.

4.7.3 Data Structures for the 8048

A different approach is necessary for the 8048, Dbecause the
instruction set does not contain any restart type instructions. To
initlate recovery it is necessary to jump to a given location which
contains a recovery routine. This can be achieved using straight forward
jump instructions, but requires a greater overhead., as more than one Dbyte

is needed for a given jump. The problem is to ensure that the instruction

85

is executed correctly, so that the address is not interpreted as an
instruction.

One possible solution is to make the address equal to the op-code of
the instruction. For example, the op-code 04 causes a jump to page O of
the address map. with the low order address being read from the second
byte. Therefore if execution enters a string of 04’s at any point, control
will always transfer tov address 004, Similar effects can be obtained with
the other jump instructions. An aiternative method is to place one or more
no-operation (NOP) instructions before the jump.

However, in both cases it is important to consider the last byte in
the string. {f just two bytes., such as 04, are used to separate the data
blocks then the second byte can be interpreted as an instruction. This
happens If either, a double byte Instruction is read immediately before it,
or if a direct jump to that byte occurs. This would result in a jump to an
unspecified location dependent on the first byte of the next data block.

By replacing the last byte with a NOP (00), execution in this case
will continue in the next data block and gives the opportunity of recovery
if it reaches the end of the block. Test results have shown that this does
in fact improve the probability of recovery.

The seeded data used for the results shown for the 8048 in table 4.2,
where 04, 04, 00 for the ftriple Dbyte strings. and 04, 00 for the double
byte strings. In the first case control can pass to address 004 or 000,
and in the latter case only to 000. For a single recovery address the
first sequence could be changed to 00, 04, 00. Different recovery
addresses can be obtained using different jump instruction codes.

Table 4.2 shows that the optimum response is obtained with the double

byte strings. This is due to the. large proportion of single Dbyte non-

86

jumping Instructions in the instruction set. Separate runs for 8048°'s from
different manufacurers were not carried out due to the close agreement
obtained from previous analyses. Instead, the data used contained the
average number of particular instruction types.

4.7.4 Data Structures for the 68000

For the 68000 the level of recovery from execution in the data area is
95% without any modification to the system, apart from the addition of a
recovery routine. It is wunlikely that any appreciable improvement will be
obtained by altering the structure of the data area. Therefore no further
analysis was carried out on this processor.

4.8 The Effect of Data Block Size on Recovery

Having obtained the optimum recovery string length for each of the
processors, a number of further simulations were carried out. These were
designed to determine the effects on recovery, of altering the data block
size, Obviously. a reduction in Dblock size results in a greater
requirement for memory, to store the extra recovery strings. and therefore
has a greater overhead.

The results from these runs are given in figure 4.3. The graph shows
that a large improvement In recovery is obtained with only a small increase
in the data area. Further increases continue to make an improvement. but
with a reduced effect.

For all three processors the greatest benefits are obtained with an
increase in data area of around 20%. However, in most systems it is rare
that the whole data area is used. in which case the data should be seeded
with sufficient restarts to fili all the unused locations. This provides
an immediate improvement without the need for any aiterations to the

hardware. if further improvements are required. additional memory s

87

necessary.

Figure 4.4 shows how the average number of instructions executed.
reduces as the amount of seeded data increases. The effects on the 8048
are less than that for the other two processors because the originai
average is lower and the seeded data generates proportionaily fewer
recoveries.

4.9 Summary

This chapter has shown how erroneous execution in data areas can be
detected and can then lead to recovery. All that is required is to force
the processor to jump to a specific location where a recovery routine is
initiated.

The 68000 microprocessor is particularly good in this respect, due to
the large number of illegal and unassigned instructions which invoke
exception handling. For the 8085, 6800 and 8048 it is necessary to seed
the data area with certain vaiues to improve the probability of recovery.
The particular values required for each processor have been discussed.
together with their optimum grouping and positioning.

The results from this analysis are used in chapter 7 where the flow of

erroneous execution between different memory areas is considered.

88

CHAPTER 5

Erroneous Execution in Program Areas

5.1 Introduction

This chapter looks at the sequence of events following a random jump
into a program area, and derives equations for the probabilities of
different outcomes. Unlike the data area. the program area contains a
logical sequence of instructions and therefore a different approach is
necessary. Again the sequence of Dbytes will be dependent on the
apptication and the method of programming. In order to analyse the general
case, bytes in the program area are divided into different instruction
types. and then the probabilities of different sequences of these types are
studied.

The first analysis adopts a more detailed approach than the second by
allowing a greater number of byte types. It therefore gives better results
but has only been developed to cater for processors having single. double
or triple byte instructions. However, it could be extended to include four
byte instructions. such as those found on the 2Z80. The second analysis is
less accurate but can be applied to any processor regardless of instruction
length.

5.2 Detailed Analysis

When execution jumps randomly into a program area the first byte read
can either be a valid op-code from the program. or it can be an operand
from a multi~byte instruction. in both cases the processor will interpret
the byte as an instruction and perform the corresponding operation.

Figure 5.1 shows the type of byte which can be read. Clearly. the
probability of reaching each of the particular states is dependent on the
lype of instructions in the program. P_(0} , the probability of resuming

R

89

valid instructions at the first cycle after the erroneous jump, is given

by:-
NI
PRCO) = N— Eqn. 5.1
B
Where:- N' is the total number of instructions in the program.
NB is the total number of bytes in the program area.
PDz,(O)’ PT_)S_X(O) and PTXL(O)’ the probabilities of entering the operand

fields of double and triple Dbyte instructions immediately after the

erroneous jump. are given by:-

Noy
PDL(O) = W Egn. 5.2
N1y
PTLX(O) = PT)Q(_(O) = KB— Eqn. 5.3
Where:- NDI is the number of double byte instructions.
NTI is the number of triple byte instructions.

It is now necessary to consider the flow of execution after each of
the above states has been reached. For the case where a valid instruction
has been read. the processor will continue to fetch and execute valid
instructions, as It will have resynchronised instruction fetches with the
program. However, this situation may not continue indefinitely if certain
instructions are encountered. For example a return from subroutine
instruction will cause an undefined jump If the stack pointer has been
corrupted, or if the last information pushed onto the stack was data rather
than a return address.

Where an operand byte is read. it could be interpreted in such a way
that control is passed to another part of the memory map. If the operand

byte is interpreted as a non-jumping instruction, then another byte would

90

be read. which again could either be a valid instruction or another operand
byte. As with the analysis of execution in data areas. it is useful to
know where execution continues if a jump occurs. Therefore the same
approach has been adopted where the jump instructions are divided into four
separate groups of halts, restarts, random jumps and returns.

The possible sequence of events after the Iinitial jump is shown in
figure 5.2. Provided that the probability of entering the operand field is
less than one. execution will eventually perform a jump to another part of
the memory map or resynchronise instruction fetches with the program. In
order to calculate the likelinood of each of these two outcomes it is
necessary to determine all the possible ways of transferring from one state
to another.

This Is achieved by considering all the possible sequences of Dytes
which allow transfer between the states. The probability that a particular
sequence will occur is obtained by multiplying together the probabilities
that certain types of Dbytes will appear Iin specified locations in the
sequence. The overall probability of a particular transfer, from one state
to another. is then obtained by adding together the probabilities that each
sequence for that transfer will occur.

A list of all the possible sequences for each of the transters,
together with the derivation of the probability equations. is given in
appendix 4. it shows that each value can Dbe determined provided that the
probability of certain bytes appearing in given locations is known. These
can be evaluated by assuming equal use of each instruction for a particular
processor and random data in the operand fields., or Dby anaiysing the
occurrence of certain types of bytes in programs under investigation.

it is then possible to find expressions for the probabilities that the

91

processor will have resumed execution of the program or will have
transferred to another part of the memory map at. |, instruction cycles
after the initial erroneous jump. These expressions are also given in
appendix 4. The final outcome of resuming or transferring is therefore
given Dby the probability equations when | is equal to infinity. tin most
cases the probability that operand bytes are still being read after about
five cycies is small. and therefore it is only necessary to consider the
first ten cycles.

Again it is Important to calculate the average number of instructions

executed, but In this case it is necessary to calculate a value for both of

the possible outcomes. NRAV. the average number of instructions executed
before resuming. is given by:~
= ®_h - P - 10
= R R
NR,, = % » = Eqn. 5.4

Similar expressions can be obtained for the average number of instructions
executed before the other outcomes.

Clearly the type of Instructions in a particular instruction set. and
the way in which the instructions are wused. will affect the overall
results. A comparison of different instruction sets and programs is given
In the foliowing section.

5.2.1 Comparison Between Instruction Sets

The response of execution in program areas will obviously be dependent
on the arrangement and frequency of use of different instruction types.
The analysis in the previous section requires a total of 24 different
parameters to enable a soiution. These can be obtained directly from the
instruction set by assuming that each op-code is used the same number of

times. and that the data in the operand fieid is random.

92

Table 5.1 contains results obtained. using the previous assumptions.
for the 8085, 6800 and 8048 microprocessors. For ail three processors it
shows that if execution enters a program area. then there is over a 90%
probability that instruction fetches will resynchronise with the program.
It also ingicates that the number of instructions executed before reaching
one of the final states is small. The average value in all cases is less
than two. implying that very few erronecdus instructions will be executed
and consequently little corruption of data will occur.

Only one figure has been given for the average number of instructions
executed before a transfer to another part of the memory map. because each
individual transfer gave almost identical results. Similarly, for the
8048. one set of results is shown. as only slight variations were observed
between processors from different manufacturers.

Figures 5.3 (@), (b) and (c) show graphs of the relationship between
the probability of reaching a particular outcome and the number of
instructions executed, for each of the processors. They indicate the short
transition period between the initial erroneous jump into the program area
and the transfer to the next state. In all cases the probability of still
reading an operand byte after five instruction cycles is less than 0.5%.

5.2.2 Comparison Between Actual Programs

The results from the previous section give an indication of the
inherent properties of a particular instruction set. However, there are
many instructions, such as the logical operators which are rarely used. and
others such as the jump instructions., which are frequently used. Therefore
the previous results are uniikely to be representative of actual programs
using a particular instruction set.

in order to evaluate the effects of different instruction code usage.

93

a number of actual programs were analysed. Results from these analyses are
given in table 5.2. Programs A and C are monitor programs for small scale
8085 and 6800 based systems respectively. They were chosen to give a
comparison between software designed to perform similar operations but
using a different instruction set. The table shows that the probability of
resuming valid instructions., and the average number of Instructions
executed Dbefore reaching the final outcomes., are almost identical. There
is a slight variation in the probabilities where control transfers to
another part of the memory map, but these values are small anyway.

Programs B, D, E and F are taken from industrial control and data
transmission systems. Again, close agreement is obtained for the
probability of resuming valid instructions and for the average number of
instructions executed. These values are also similar to those given by the
monitor programs.

Therefore it seems that for erroneous execution in program areas. the
probability of resychronising instruction fetches with the program s
approximately 95%, regardless of the processor. This suggests that,
despite differences in the instruction sets, particular instruction types
tend to be used in the same proportions.

5.3 Simplified Analysis

The previous analysis is suitable for processors having single. double
and triple byte instructions, and could be extended t0 inciude four Dbyte
instructions. However, to enable comparisons t0 be made with the 68000,
which has instructions up to five words long. a more simplified approach is
necessary. This is achieved by considering fewer execution states and less
complex transfers. Figure 5.4 shows the different states for this analysis

and the transfers between them. It shows that attempting an instruction

94

fetch from any of the operand fields is represented by the same state.

The probability of resuming valid instructions immediately after the
erroneous jump, PR(O), remains unchanged. and clearly the probability of
entering the operand field. PX(O)' is given by:-

P @ = 1 - PO Eqn. 5.5

Again. if a valid instruction is read, the processor will continue in
step with the program. However, an instruction fetch from the operand
field will either pass control to another part of the memory map or the
next logical Dbyte will be read. The probability of interpreting a jump
instruction is dependent on the proportion of bytes in the operand field
which will cause a jump. [f the data within the field is considered to be
random, then the probabiilties of executing different jump instruction
types can Dbe obtained from the proportion of each particular type within
the instruction set. Alternatively they can be evaluated from the analysis
of particular programs under investigation.

if the next togical byte is read. this analysis assumes that the
probability of reading a valid Iinstruction Iis dependent on the ratio of the
number of instructions in the program to the total number of bytes in the
program area, which is equal to PR(O). This is effectively equivalent 1o
random fetches within the program area untll either a valid instruction is

read or a jump is generated.

it follows that the probabilities that the processor has resumed or

jumped at the end of |. instruction cycles after the erroneous jump, are
given by:-
PR(D = PH(I -+ PR(O) (- PJ) . Px(l - D Egn. 5.6
PRST(D = PRST“ -+ PXRST . Px(l—h Egn. 5.7
Where:~ PJ is the probability of reading any jump instruction type.

95

PRST(I) is the probability of reaching the restart state within |
instruction cycles of the erroneous jump.
PXRST is the probability of reading a restart type instruction in
the operand field.
Similar expressions can be obtained for the other jump instruction types.
The probabilities of the final outcomes of resuming or transferring, is
given Dby the above equations when | is equal to infinity. In practice only
the first ten cycles are important.
A comparison Dbetween the results from this analysis and the previous
more detailed analysis is given in the following section. It shows that
despite the different approach the results are in fairly close agreement.

5.4 Comparison Between the Detailed and Simpiitied Analyses

The simplified analysis described above was carried out on each of the
programs studied in section 5.2.2. and the results from these programs are
shown in table §5.3. By making a comparison with the previous values in
table 5.2 it can be seen that both approaches give similar results.
Theretore the simplified analysis is an acceptable approximation to
erroneous execution in program areas.

The main reason for developing this approach was to enable a
comparison to be made between the 8-bit processors and the 68000. which has
a 16-bit architecture. To obtain a set of results for the 68000, a monitor
program for a small single board system was investigated. Values for PX(O)
and PR(O) were obtained by counting instructions within the software. The
other parameters were estimated Dby assuming that the operand fieids
contained random data. This was necessary due to the large instruction map
of 65,636 codes. which makes the determination of the effect of particular

values extremely difficult.

96

The results obtained for the 68000 are given in table 5.3. It shows
that the probability of resuming valid instruction fetches is around 20%
lower than for the 8-bit processors. This difference is made up‘ by the
increase in the number of restarts, in the form of exception handling. As
will be shown in section 5.6, this results in a better chance of detecting
errors quickly, and improves the prospects of recovery.

The relationship between the probability of reaching a particular
outcome. and the number of instructions executed, is given in figure §.5.
The graph shows that the 68000 reaches the final outcome, of execution in
the program area, in approximately the same time as the other processors.
This |Is turther supported by the average number of instructions executed,
which also shows close agreement,

5.5 Veritication of Results

In order 10 check the accuracy of the results, tests were carried out
on the monitor program for the 8085. From a set of random numbers, 200
addresses were selected which fell within the program area. Then starting
at each of these addresses. the bytes were translatedv into instructions and
the fiow of execution, which the processor would follow, was determined.
Only two possible outcomes were considered, that of resuming valid
instructions and that of a transfer to another part of the memory map. The
probability of resuming came to 94.1%, and that of a jump to 5.9%.
Comparison between these values and those in table 5.2, obtained from the
detailed analysis, show direct agreement proving that the process gives
accurate results.

5.6 Improvements in Recovery

To improve the chances of recovery the processor must be able to

detect that an error has occurred. This can be achieved by software in one

97

of two ways. Firstly, at a low level by increasing the probability that a
restart will be generated. or secondly at a higher level. by encouraging
execution 10 resynchronise with correct instructions and to detect the
error from within the program. The first solution will give the quickest
recovery, but as will be shown in the following sections. it is not easy to
attain.

5.6.1 Low Level Detection

This can be achieved. in the same way as in the data area, by
increasing the probability that a restart instruction will be interpreted.
it is therefore necessary to force the restart op-codes into the operand
fields within the program. The most commonly used operands are those which
contain program or data addresses. These can be forced to contain
particular vatues by the suitable positioning of memory blocks.

For example. many 8085 based systems contain RAM starting at address
2000 hexadecimal. and as a result a significant proportion of the third
bytes in triple byte instructions contain the value 20. By moving the data
area to the address range FFO00 to FFFF these values are replaced by FF, the
restart 7 instruction. A similar arrangement is possible for the 6800 by
moving the data area to the address range 3F00 to 3FFF, so that more bytes
of the value 3F (op-code for a software interrupt) appear in the operand
fields.

This type of procedure could also be employed with the 68000. For
this processor. address ranges A000 to AFFF and F000 to FFFF can be used.
These are all values of unassigned op-codes which initiate exception
handling if an attempt is made to execute them. This provides a much
larger data area of up to 8192 bytes if both blocks are used. This method

cannot be used for the 8048 because it does not have any restart type

98

instructions in the instruction set.

Table 5.4 shows the effect of increasing the number of restart type
instructions in the operand fieilds of the 8085 and 6800. it contains
results given by the detailed analysis for three programs, Ax, Bx and C”.
where the moditications have been made. These correspond to the original
programs A, B and C in table 5.2. By comparing the values it can be seen
that the number of restarts are increased quite substantially, but still do
not form the major outcome from execution in this area.

A further means of increasing the number of restarts would be to move
the program area as well. However in most small systems containing oniy
one program area., this is not possible because the memory block must be
positioned to coincide with the reset. restart and interrupt vectors.
Also, in the case of the 6800. because it only has one restart type
instruction, both the data area and the program area could not be moved to
utitise this effect.

For both processors this is only suitable for data blocks up to 256
bytes long. Any larger areas would increase the number of op-codes,
adjacent to the restarts, within the operand field. For both the 8085 and
the 6800 this would reduce the chances of recovery Dby introducing more
undesirable jump instruction types. Therefore. uniless the data blocks can
be split up into 256 byte iengths., this does not provide a means of
increasing error detection which would improve the chances of recovery.

5.6.2 High Level Detection

Another way of detecting that an error has occurred is t0o encourage
execution to resume valid instruction fetches from the program. It is then
possible to test certain conditions from within the software. This would

.seem to be the better solution in the case of the 8085, 6800 and 8048

99

because there is aiready such a high probability that execution will
resychronise with the program.

This can be further increased by the same methods described in the
previous section. However. the positions to which the blocks of memory
should be moved, are to those which increase the number of non-jumping
instruction types within the operand fields. ldeally. single nan-jumping
instructions should appear in the second byte of double byte instructions
and also in the third byte of triple byte instructions. Double non-jumping
types should appear in the second location of triple instructions.

it would be possibie to write programs such that the above conditions
were met at all times., but this would Impose tight restrictions on the
software. by eliminating the use of certain addresses and data.

5.7 Summary

This chapter has shown that after an erroneous jump into a program
area for the 8085, 6800 and B048. execution has the probability of about
95% that it will resychronise instruction fetches with the program. Slight
variations in this figure can be obtained by suitable hardware design and
programming. but the most efficient method of detecting errors is from
within the software. A number of these software mechanisms are described in
chapter 8.

For the 68000 processor the probability of resychronisation is much
lower at 72%, and the probability of a restart or exception is around 26%.
Therefore it is necessary to have a recovery routine at the restart
addresses and to have fault detection within the software.

The resuits from these analyses. together with those from the previous
chapter, are wused in chapter 7 where the flow of execution between

different memory areas is considered.

100

CHAPTER 6

Erroneous Execution in Unused and Input/Output Areas

6.1 Introduction

This chapter looks at the response of different processors to an
erroneous jump into unused areas of the memory map. and those parts which
are used for input and output devices. It then goes on to consider ways in
which recovery can be initiated from these types of execution,

6.2 Execution in Unused Areas

There are two distinct types of unused locations. Those parts of the
memory map which are not popuilated by memory devices. and those which do
reference particular devices but the locations within them are not used.
in the latter case it has already been demonstrated. in chapter 4. that
with data areas any spare locations should be used to seed the information
with restart instructions. However. with program areas, no improvement in
recovery is obtained by dispersing the wunused locations within the
software. Therefore they appear as a single block at the end of the
program area, or as smaller groups separating program modules.

In most control systems the software is written into read only memory
in the form of PROM or EPROM. and consequently any unused locations are
left unprogrammed. usually taking the value FF in hexadecimal. In the case
of the 8085 and 68000, instruction fetches from these locations generate
restarts. For the 8085 the restart 7 instruction is interpreted, and for
the 68000 an wunassigned instruction is encountered which initiates
exception handling. Therefore recovery can be performed by a suitable
error handling routine.

For the 6800 and 8048, the op-code FF is interpreted as a non-—jumping

instruction and therefore successive locations will be accessed until

another memory area is reached. This can be prevented by using the
locations to pass control to a recovery routine, and can be achieved by
adding restart or jump instructions. For the 6800 ail the spare locations
should be set to 3F, the code for a software interrupt. Whereas. for the
8048 the value 04 can be used to generate a jump to location 004, in the
same way as that described in section 4.7.3. However the success of this
method for the 8048 depends on the amount of the memory map which is used.
and the state of the memory bank select flip-flop after the error. This is
discussed further in section 6.2.3.

6.2.1 Unpopulated Memory Areas

Erroneous execution in unpopulated areas of the memory map s
dependent on both the processor being used and the hardware attached to it
In particular it is determined by the state of the data bus when no memory
devices are driving it high or low. When this state is known it s
possible to establish the instructions interpreted and how execution will
proceed.

This normally forces the processor to jump immediately to another
location or 10 repeatedly read a fixed value and to continue executing the
same instruction until a used block of memory is encountered. However, in
the case of some processors which have a muitipiexed address and data bus,
the address at which an instruction fetch is attempted remains on the bus
during the read cycle if there are no other external influences. This
results in a series of consecutive numbers Dbeing interpreted as
instructions, with appropriate adjustments made where multibyte functions
are encountered. For this case It is possible to trace through the
sequence of instructions which will be executed. for a particular

instruction set, starting at each possible address.

102

It is very simple to influence the response of a processor when
reading unused memory locations. In this state the data lines will tend to
float. and by attaching resistors between them and the power supply rails,
any value can be forced onto the bus. This can be used to generate a jump
to a specific location and then to execute a recovery routine.

The following sections discuss the response of each of the processors
being studied, and proposes methods of improving the chances of recovery in
each case.

6.2.2 Unpopulated Areas of the 8085

The 8085 has a multiplexed address and data bus. and as a result,
values read from unpopulated memory areas are dependent on the capacitance
and loading of the bus. Under normal conditions of the bus being connected
directly to buffers, the capacitance and loading is such that the low order
byte of the address always remains valid during the subsequent read if it is
not driven to any specific value.

As mentioned in the previous section, this results in consecutive
values being interpreted as instructions. These values can fall anywhere
in the range 00 to FF, and therefore there are 256 different positions
within the sequence where execution can commence. The outome from entering
at each of these locations has been determined by tracing through the
sequence of Instructions which the processor wouid interpret. For
sequences where conditional jump instructions are encountered, it was
assumed that the probability of a jump would be 50%. Such sequences were
divided proportionally into the different outcomes which could Dbe
generated. Then the effective number of locations within the 256 byte page
which cause each of the possible outcomes was calculated. These results

are given in appendix 5, together with the probability of each of the

103

transfers.

As in the previous chapters, divisions into halts. restarts, random
jumps and returns can be made. but in this case a number of specific jumps
are also possible. The probabilities of each of these groups. and the
average number of instructions executed before them, are given in table
6.1.

However, the specific jumps occur to locations in the range C000 to
FFFF. and in most small scale control applications it is unlikely that many
of these locations will be populated with memory. In this case execution
will continue as before until another transfer is reached. and the effects
of this arrangement are shown in table 6.2.

The results indicate that on half of the occasions, of a random jump
into unpopulated areas of the 8085. a halt will be executed. if no
mechanism is built into the system to recover from this situation then
total failure will occur. The other outcome which has a high probability
is that a return instruction will be executed. As mentioned in section
4.3.3, the address to which control passes in this case depends on the
contents of the stack., and can either be a valid program address or a
random location.

The results also show that it is highly probable that a large number
of erroneous instructions will be executed before leaving the area. with
the average for all transfers at around 40.

This type of execution can be totally eliminated by suitable loading
of the bus., as indicated in section 6.2.1. By applying pull-up resistors
Detween the data lines and the power supply rail the value FF will always
be read when unpopulated memory areas are accessed. This will resuit in

the interpretation of the restart 7 instruction. and recovery can then be

104

performed by a suitable routine.

6.2.3 Unpopulated Areas of the 8048

The 8048 uses a multiplexed address and data bus when accessing
external memory. and consequently a similar response to the 8085 s
observed when unpopulated areas of the memory map are accessed. Again the
low-order byte of the address remains on the bus during the read cycle
under normal buffering arrangements.

The effect of a jump into each of the 256 different possible locations
in the observed sequence has been studied. and the results are given in
appendix 5. They show that on 88% of the occasions. of a random jump into
unpopulated areas. a transfer to specific locations occur. On 9% of the
occasions., a return instruction will be executed passing control to the
address stored at the top of the stack. The remaining 3% will cause a
relative jump, dependent on the contents of the accumulator. to a location
within the 256 Dbyte page being accessed. This passes control back into the
unpopulated area where execution will continue until another transfer is
reached. When considering all transfers, the average number of
instructions executed is approximately 14.

For the 8048 the response of the processor after a transfer from
unpopulated memory is very dependent on the particular hardware
arrangements. This is due to its architecture which Is very different from
normal B-bit processors, and is described in more detail in section 3.5.

Instruction fetches are limited to a 4K address space and are
referenced by a 12-bit bus. However, only 11 bits of the program counter
operate in the normal way. The 12th bit is set by the state of the memory
bank select flip—flop when a call to a subroutine or an absolute jump

occurs, or is loaded from the stack when a return is executed. The state

105

of the flip~flop is only affected by the two instructions: select memory
bank 0 and select memory bank 1.

This effectively splits the address range into two separate 2K blocks.
Therefore the execution following a transfer from an unpopulated area is
dependent on the state of the memory bank select flip—flop and the amount
of memory which is used. Figure 6.1 shows four common memory arrangements
for the 8048 which ieave part of the memory map unused. In each of these
arrangements a transfer out of the unpopulated area can result in execution
reentering the same area. Due to the layout of the instruction map. this
can occur a number of times, and in some cases results in the possibility
of executing several hundred instructions before reaching the final state.
The final states reached after a random jump into the unpopulated area for
each of the four arrangements, and for Dboth conditions of the memory bank
select flip~-flop. are given in tabie 6.3.

it shows that, under certain conditions, there is a high probability
that a return instruction will be reached. in which case the address at the
top of the stack, after the error., determines the location at which
execution will continue. If the address is within the unpopulated area.
then the process will repeat. and execution of another return instruction
will probably occur. In this way the processor tends to search through the
stack looking for a valid program address. However. during the erroneous
execution, a number of stack locations are corrupted. and if a valid
address is not found within the first few positions on the stack then an
infinite loop will be formed. If a valid program address is found then
execution will return to the program, but the memory bank select flip—flop
may be left in the wrong state. In this case, if it is not reset before a

call or an absolute jump is executed. then control will pass to the wrong

106

memory block.

Execution in the unpopulated areas can be controlled in some cases by
suitable t{oading of the bus. The effect of jumping into a string of 04's
has been discussed in previous sections, and this method can be empioyed
here by forcing the value onto the bus with suitable resistors connected to
the power supply raiis. Unfortunately. this is only effective all of the
time for memory arrangements C and D. For the other two conditions
execution will loop continuously within the upper 2K block if the memory
bank select flip—flop is set to one.

An alternative solution is available for memory arrangement B, by
loading bits 1 to 7 on the bus with the values 1110010. This forces the
values E4 and ES5 alternately into the unpopulated area. The corresponding
instructions interpreted by the processor are jump to address in page 7 and
select memory bank zero. In this way control will always transfer to
location 7ES regardiess of the position of the erroneous jump into the
unpopulated area.

For memory arrangement A, there is no simple method of ensuring that
control passes back to the program area. |If the memory block is external
to the processor. then partial decoding can be used to create another image
of the program in the upper memory bank. and the solution for memory
arrangements C and D will then work. Otherwise, it is necessary to ensure
that a program address is always left on the stack and that the memory bank
select flip-flop is reset before each cail or absolute jump instruction in
the program. This will ensure that on most occasions control will pass
back to the program., provided that the stack and stack pointer are not
corrupted by the fault. For the occasions when an infinite loop is formed

it is necessary to rely on a higher levei of recovery provided by externai

107

hardware.

6.2.4 Unpopulated Areas of the 6800 and 68000

Both the 6800 and 68000 microprocessors have separate address and data
buses. When accessing unpopulated areas the data bus floats high and
therefore the value FF is read. For the 68000 this is interpreted as an
unassigned instruction and causes the immediate initiation of exception
hangling, and provides a good method of recovery without any alteration to
the hardware.

in the case of the 6800, the value FF is interpreted as a triple byte
instruction to store the X register using extended addressing. This means
that instruction fetches will occur at every third successive Dbyte until
another memory block is encountered. One method of recovery from this
situation is to trap execution when it reaches the next block. However
this could resuit in a substantial delay if a large unpopulated area
exists. as the average number of instructions interpreted will be
proportional to the size of the block. Aiso the contents of the location
FFFF will be destroyed.

A better solution is to load the data bus so that the value 3F appears
in all the unpopulated areas. This will immediately generate a software
interrupt and enable rapid recovery without any further corruption of data.

6.3 Execution in Memory Mapped /0

When input and output devices are mapped into the normal memory area,.
it is possibie that an erroneous jump may occur into these locations. in
the case of output lines the response will be the same as that for unused
locations., as they wiil have no active effect on the bus. Therefore the
same approach can be adopted as for the unpoputated areas. in the form of

bus loading to force certain values to be read.

108

For input lines the external data will be interpreted as an
instruction and the corresponding function will be performed. If a number
of different ports appear in consecutive locations they wiill appear to have
the same effect as a data area. However, it is common practice to
partially decode port addresses so that the same data will appear in a
number of consecutive locations. sometimes as much as 4K. As in the case
of unused locations., this will result in an immediate jump or the
repetitive execution of the same instruction. in the latter case. the
average number of instructions executed will depend on the length of the
instruction interpreted and the size of the input area. The particular
response will change according to the state of the input lines.

It has been assumed that the state of the lines is random in nature,
and from this the probabilities for the different outcomes have Dbeen
calculated for particular instruction sets. The resuits for the 8085, 6800
and 68000 are given in table 6.4.

For the 8085, execution will on most occasions exit from the block of
input data, but may take a substantial amount of time to do so if large
blocks exist. Alternatively, a number of specific jumps are possible. In
the previous analyses for execution in program and data areas, these codes
produced random jumps because the operand fields were not dependent on the
particular code. In this case the operand bytes are the same as the code.
and therefore jumps to specific addresses are generated. Due to the layout
of the Iinstruction map. these cause control to transfer o particular
locations in the range C000 to FFFF.

For the 6800, again the majority of cases will result in execution
leaving the area. However some of these are due to relative branches

backwards out of the beginning of the Dblock. Iif the preceding area is

109

unused and the data lines have been left floating. then execution will pass
back to the input area and form a continuous {oop until the data on the
port changes.

Execution for the 68000 will tend to continue through to the end of
the area or will generate a restart.

This type of execution can be eliminated in all three processors by
fully decoding the ports so that the input data only appears at single
locations. In the case of the 8085 there is no need to use memory mapped
input, unless more than 2048 lines are required. and therefaore should be
avaided if possibte.

6.3.1 Execution of input Data by the 8048

if no externai memory is connected to an 8048 the bus can be used as a
port, and could be used for input gata. In this case the data will appear
at aill memory locations which were previously left unpopulated in memory
arrangement A shown in figure 6.1. An erroneous jump into this area with
the memory bank select flip—flop set at one. will provide no means of
escape as execution will be restricted within the upper 2K memory block.
With the flip-flop set at zero. the probability of forming an infinite loop
will depend on which half of the memory map the erroneous jump occurs. For
the upper haif the value is 96.7%, whereas for the lower half it is only
12.0%.

The formation of infinite loops should be prevented if at all possible
sO that it is not necessary to rely on external hardware to initiate
recovery. This can be achieved by avoiding the use of the bus as a port
However, if it is required it should be used for output and the same

precautions taken as those discussed for unpopulated areas.

110

L

6.4 Summary

This chapter has shown that an erroneous jump into both unused and
input/output areas can result in a complex sequence of execution., which can
last several hundred instruction cycles or even form infinite loops. In
the latter case. recovery can only be initiated by the intervention of some
additional hardware.

Methods of controlliing execution within these areas have Dbeen
discussed., and a simpie solution for most processors, of loading the data
bus. has been described.

The results obtained are used in the following chapter where the flow

of execution between different memory areas is considered.

1

CHAPTER 7

Flow of Execution Between Different Memory Areas

7.1 Introduction

The previous analyses have produced methods of determining the fiow of
execution within certain types of memory areas. This chapter considers the
transfer of execution between these areas. to evaluate the overall response
of a processor after an erroneous jump to any location within the memory
map. Figure 7.1 shows the various states and transitions which will be
studied. Areas of memory mapped output are included with the unused areas.
as they have the same effect. Four final states are present in the model,
these indicate that the processor is expected to halt operation, to enter
an infinite 100p. to resume executing valid instructions or to recover from
the error.

7.2 Method of Analysis

This analysis uses a similar approach to that used for the erroneous
execution in program areas and the equations derived are of the same form.
For example, the probability of execution being in a particular memory area
after a given number of transfers. between the different areas. is given
by:-

4
Py ® = FZ] PXi(I—l) - Pyixi Eqn. 7.1
Where:- Xi represents a particular memory area.
X| represents each of the four different areas.
PXjXI is the probability of the transfer from Xj to Xi.
| is the number of transfers after the initial error.

The probability equations for reaching each of the final states are

given by:-

112

Pxf(l) = Pxf(l—h + §j=1 ij(l-l) . PXij Eqn.7.2

Where:~ Xf represents a particular finai state.

Solutions to these equations can be found for ali positive integer
values of |, provided that the initial conditions and the probabilities for
each of the transfers is known. The methods of evaluating these quantities
are given in the following three sections.

7.3 Initial Error

By assuming that the initial error causes a jump to a random location
within the memory map. it follows that the probability of entering each of
the different areas Is proportional to the reiative size of the Diock. In
this case the size of the block includes all areas where that particular
memory type appears. If certain memory devices are not fully decoded then
multiple copies of the data will appear in the map and therefore it will be
more likely that execution will enter that area.

The probability of entering the program area immediately after the

erroneous jump, PP(D, is given by:-

PP(D = -:P—B Eqn. 7.3
B
Where:- NPB is the total number of program bytes which appear in the
memory map.
N is the total number of bytes in the memory map.

B

PD(I),PU(D and PI(D, the probabilities of entering the data areas. the

unused areas and the input areas, are found in the same way.

7.4 Transfer from Different Memory Areas

Erroneous execution in different memory areas has been considered in

the previous three chapters. They have shown that transfer out of each of

113

the areas is generated in up to five particular ways. These are. halts.
restarts. unspecified jumps. returns and specific jumps. Also. in the case
of program areas., execution can resychronise with the program and resume
valid instruction fetches.

These transfers can be easily converted into those given in figure
7.1, Clearly, the execution of halts and resuming valid instruction
fetches correspond directly and need no alteration. The restarts can have
a number of different effects, dependent on the processor and the contents
of particular locations.

In systems such as the 8085, where a restart causes execution to
commence at a given location, it Is normally the case that read only memory
will be mapped to these locations. if no consideration for erroneous
restarts has been inciuded it is not uncommon for part of the program to
reside in this area. Under these conditions a restart will cause a
transfer into a program area and execution will continue in the manner
described in chapter 5.

For other systems such as the 6800, the address at which execution
continues after a restart, is read from a particular location. Again, read
only memory will normally be mapped to this area. but in this case,
regardless of whether program or data appears at these locations. execution
will transfer t0 some arbitrary location within the memory map. if the
particutar location is considered to be random., then a transfer similar to
the initial jump will occur. This is acceptable when analysing a single
restart for the general case. However, any number of a particular restart
in a specific system will always give the same result. This is considered
further in section 7.5,

For an erroneous restart in both types of system., recovery from the

114

error can be achieved by the addition of a suitable recovery routine which
is always executed when the restart occurs.

The unspecified jumps cause execution to transfer to arbitrary
locations within the memory map. similar to the condition described above.
These transfers are considered to be random in nature and therefore wiil
have the same effect as the initial jump.

The returns cause transfers dependent on the contents of the top of
the stack. In the foliowing analysis it is assumed to be random and the
corresponding transfers are the same as the initial jump. This is a
reasonable assumption if the stack is used to store data as well as return
addresses, or if it is corrupted by the fauit.

Finally, the specific jumps always cause a fixed transfer to a
particular memory area.

7.5 Execution of an Infinite Loop

The type of execution which has not been determined in the previous
sections is the formation of an infinite loop. in this case the processor
continually executes a fixed sequence of instructions, and no recovery is
possible without some external intervention. The formation of loops in
three different areas have been considered. In all cases the analysis
estimates the probability of executing the same bytes twice, and if this
happens it is assumed that a loop has formed. In real systems this
situation will not necessarily result in a loop. because data may change in
such a way that returns and conditional jump instructions will act in a
different way the second time that they are executed. Therefore the
analysis will tend to make an over estimate of the true value.

7.5.1 Loops in Data Areas

The first area in which a loop has been considered is the data area.

115

For this case. at the end of each transfer after the initial error. a
calculation is made to determine the expected number of data bytes which

will have been read. This is obtained from the foilowing equation:-

|
Ngg® = 5 Po® . NB,, Eqn. 7.4
Where:~ NBE(I) is the expected number of dJdata bytes read after |
transfers.
NBAV is the average number of bytes read during erroneous

execution in data areas.
Assuming that transfers into the data area are random, the probability of

entering a loop in the data area. PLD(I), Is given by~

_ N__(D
BE
P M = P~ . Eqn. 7.5
LD D NDA
N is the actual number of data bytes in the memory map, it does not

DA
include the extra bytes which appear if partial decoding is used. This s

important because without full decoding identical strings appear in more
than one location, and therefore it is more likely that a loop will form
with a particular string.

7.5.2 Loops in Unused Areas

Execution in unused areas follows a number of fixed sequences for a
given processor and hardware arrangement. If a particular sequence is
executed twice it is assumed that a loop has formed. Again this will tend
to give an over estimate, for the same reasons as before. For this
analysis it is necessary to evaluate the probability that execution has

been in the unused area. For each state the following expression is used.-

P _U-1) . P Eqn. 7.6

A
= UX| XjXi

UXi :
! j

116

Where: - PUXi(D is the probability of execution in a given area after
execution in an unused area.
Xj correspaonds to each of the memory areas.
XjXi represents the transfer from area Xj to Xi.

From this it follows that the probability of entering the unused area

twice, PUU(I), is given by:-

4
PUU = Ziﬂ PUXi“) . PXIU Eqn. 7.7

Where:- PXIU is the probability of a transfer from memory area Xi to the
unused area.
However. not all double entries into the unused areas will cause a loop.

because in some cases a number of different sequences appear in the area.

Therefore P, , (), the probability of forming a loop in the unused area. is

Ly
given by:-
PLU(I) = PUUL 4 PUU(I) Eqn. 7.8
PUUL is the probability of forming a loop after entering the unused area
twice. in the following examples it is given a value equal to the
proportion of sequences which cause specific transfers. This will also

give an over estimate for the probability of forming a loop. as the second
transfer may not be the same as the first. However the figures from the
overall analysis in the following sections. using the previous assumptions,
indicate that the probability of forming a loop is small Therefore the
inaccuracies in the model cannot have much of an effect on the final
results.

7.5.3 Loops in Input Areas

The formation of loops in the input areas is treated in the same way

as those for the unused areas, and simiiar expressions to equations 7.6 and

17

7.7 are obtained. Therefore the probability of forming a loop in the input

area. PLI(I)' is given by:-
Pu(l) = PIIL . P”(I) Egn. 7.9
Where:- P” is the probability of entering the input area twice.
P is the probability of forming a loop after entering the

1L

input area twice.
PIIL is evaluated by considering individual arrangements of the memory map.
For a single block it will take the value of 1. For multiple blocks which
are separated by other memory types, a value equal to the reciprocal of the
number of different blocks will give accurate results for the first reentry
to the area. but will be less accurate on subsequent entries. For adjacent
blocks execution can pass between them and the formation of a loop is more
likely. If the probability that execution passes through the area is high,
which is true for most processors. it will tend to reach the end of the
last block regardless of the starting point. In this case the probability
P, tends to the value of 1.

e
7.6 The Expected Number of Instructions Executed

in the previous chapters the average number of instructions
interpreted during erroneous execution in each of the memory areas. has
been established. Now Dby combining these values with the probabilities of
passing through the different areas. It is possible to estimate. the
expected number of instructions executed, NIE . between the original error

and reaching the final outcome. in the following examples it has been

obtained from:-

[~

4
N = 2 S P, . NI, Eqn. 7.10
E ; Xi AVi
=1 i=1
Where:- P_ () Is the probability that execution is in the ’'i'th memory

Xi

118

area at | states after the error.
N'AVi is the average number of instructions executed for the
corresponding memory area,

A more accurate result could be obtained by considering the average
number of instructions executed before each of the possible transfers.
These could then be combined with the probabilities of the corresponding
transfers. and would give individua! values for each of the outcomes.
However, in most cases the averages do not vary significantly. and
therefore the overall value will be a reasonable approximation. The cases
where a large variation does exist are for input and unused areas where no
fault tolerance has been considered.

Once the expected number of instructions has been established for a
particular system. the average length of time of erroneous execution can be
determined from the clock frequency. This is a very important quantity
when considering watchdog designs. and is discussed further in section 7.8.
it Is also useful in determining the probable damage. to the data within
the system, that will be caused by the execution of erroneous instructions,

this is studied in section 7.9.

7.7 _The Effects of Memory Map Usage on Erroneous Execution

The previous sections have built up a model for the flow of execution
following an erroneous jump to a random location in the memory map. From
this modet a series of investigations have been carried out to study the
effects of varying the amounts of different memory types. The improvements:
achieved by adding the fauit tolerant features, described In the previous
chapters, have also been studied. Clearly the results vary between

processors, and they are discussed individually in the following sections.

119

7.7.1 _Memory Maps of the 8085

The values used to obtain results for this section are taken from the
analyses in the previous chapters. For each of the memory areas both fauit
tolerant and non-fault tolerant structures are considered. For the data
area the fault tolerant case consists of single restarts separating 5 byte
biocks. which is the optimum seeding with a 20% overhead. For the program
area the results from the standard and modified versions of program B are
used. Both the unicaded and loaded conditions of the bus are studied for
the unused areas. To simpiify the results, no areas of input data are
considered in this section.

From this Information the effects of varying the amounts of each
memory area, and the addition of the fauit tolerant features, have been
established. When varying the size of one memory type it is inevitable
that at least one other must aiter in size. To overcome this problem, the
size of each particular memory type was varied between 2 and 62 K bytes.
while the other two fllled the remainder of the space in equal proportions.
The effects of adding the fault tolerant features can then be seen by
comparing the resuits between the unmodified and the modified arrangements.
These are shown in graphical form in figures 7.2, 7.3, 7.4 and 7.5.

in each case the results for the non-fault tolerant memory area
include a recovery routine, so that the execution of any restart generates
an ordered recovery from the error. Without the routine. the restarts in
the 8085 cause execution to transfer to the low order addresses. In most
cases without any fauit tolerance, the program will reside in this area.
Previous results have shown that around 95% of these transfers will cause a
resumption of program execution. Therefore the removal of the recovery

routine forces nearly ail of the outcomes, which previously generated

120

recovery, to resume program execution. A series of tests were carried out
to check this arrangement, and they showed almost identical results for the
formation of loops and the execution of haits.

7.7.1.1 Fault Tolerant Program Area

Figure 7.2 shows the effects of adding fauit tolerance to the program
area, by forcing restart instructions into the operand fields. it shows
that the probabitity of recovery Increases with the program size, but even
with a large program most of the errors will result in a resumption of
program execution. Therefore it indicates that the most significant
improvements can be obtained by detecting the error after execution has
reentered the program.

However. this does not mean that no consideration should be given to
the positioning of memory types. In most systems memory map decoding is
arbitrary. and a number of different arrangements can be obtained with the
same hardware, and only minor modifications to the interconnections between
decoders and memory devices. Therefore, if this concept is considered at
the design phase., no added cost in hardware or software design will be
incurred. Also the hardware reliability will not be reduced., as there are
no additional components.

The added advantage of detecting the error by the erroneous execution
of a restart, is the speed of recovery, which will be initiated within a
few instruction cycles. if detection is carried out within the program, a
long delay is possible before reaching the checking routines., and even then
‘they may fail to detect the error. It would then remain uncorrected until
detected at a higher level, and would resuit in a further delay. This is
particularly important in critical high speed applications where errors

must be detected and corrected quickly.

121

7.7.1.2 Fauit Tolerant Data Area

The effects of seeding the data area are shown in figure 7.3. As
expected the improvements obtained increase with the size of the data area.
but in all cases it is only moderate. This has to be offset against the
increase In the amount of hardware necessary. In the example 20% extra
memory is required which will produce a corresponding decrease in the
hardware reliability of the system.

This gives a clear demonstration that adding fauit tolerance for a
certain class of fault can reduce the reliability in connection with
another fault type, and therefore can result in an overall degredation of
the full system performance. It has been suggested by Castillo et al (22)
that transient failures are up to 50 times more frequent than permanent
failures. This figure was obtained for medium sized computers which would
normally be subjected to stable electrical and environmental conditions.
For industrial controi conditions it is expected that the transient error
rate is much higher, and therefore the seeding of the data area may produce
an overall improvement. However, other methods of recovery can be employed
which are more likely to give a greater improvement. These are described in
chapter 8, and require little extra hardware.

A disadvantage with these methods is the delay between the fauit and
the detection of the subsequent errors., as mentioned in the previous
section. This is further ilustrated in figure 7.5 (a). where the effect
on the average number of Instructions executed before reaching the final
outcome. is shown for data areas with and without fault tolerance. The
seeding of the data area results in fewer instructions being executed. and
will give a more rapid recovery. It is therefore wuseful in time critical

systems, particutarly with large data areas.

122

in systems which have extra capacity within the data area. an
improvement will always be made by using the spare locations to seed the
area with restarts, as no additional hardware is required.

7.7.1.3 Fault Tolerant Unused Areas

The effects of Iloading the bus. so that restart instructions are
interpreted when execution enters an unused area, are shown in figure 7.4.
Once again the improvements achieved increase with the size of the area,
but in this case they are quite substantial even for a small area. The
only extra hardware that is required are 8 pull up resistors. These
components are highly reliable when compared with integrated circuits, and
will have a negligible effect on the overail hardware reliability. Aiso
failure to open circuit by itseif will not cause total system failure, it
will only result in the response 1o an error reverting to the non-fault
tolerant condition.

An additional advantage of this arrangement Iis the reduction in the
number of erroneous instructions executed following a fault. This is shown
in figure 7.5 (b). Not onily does it reduce the time taken to initiate
recovery., but it also reduces the probability of destroying data within the
system. The advantages of adding fault tolerance to the unused areas are
very significant, and therefore should be incorporated in all 8085 systems.

7.7.2 Memory Maps of the 6800

The effects of adding fault toierant features to the 6800 are shown in
figures 7.6, 7.7 and 7.8. As with the 8085, the non-fault tolerant memory
areas are shown with a recovery routine. The restart on the 6800 reads the
address. at which execution resumes, from the high order memory area. |If
the wvector has not been set an arbitrary jump will occur, which is assumed

to be random. The memory map is considered to be arranged with the data

123

area at the low order addresses. and the program area at the high order
addresses. This is the normal arrangement so that non-volatile memory is
resident at the restart and Interrupt vectors. and so that direct
addressing can be used for frequently accessed data in the zero page. With
this situation a jump into the non-fault tolerant unused area resuits in a
transfer back into the program area. Therefore maost restarts. without the
vector set, will cause a resumption of program execution.

Figure 7.6 shows the effects of adding fault tolerance to the program
area. A similar result is obtained to the 8085 and the same conclusions
can be drawn.

For the data area. fault tolerance is added in the form of two restart
bytes separating 10 byte Dblocks of data. representing the optimum
arrangement for a 20% overhead. A very different set of results are
obtained. and these are shown in figure 7.7. This is due to the ratio
between the number of halt and restart instructions in the 6800 instruction
map. in this case the seeding of the area with restarts does have a
significant effect. especially for systems with large data areas.
Therefore it is more likely to produce an overall improvement in system
performance despite the additional hardware required. in any case. spare
bytes should be used in pairs to separate blocks of data.

For the unused area. the results are shown in figure 7.8. Again a
very different response is obtained from that given Dby the B8085. Because
of the memory layout. erroneous execution in the non-fault tolerant unused
area, leads to a resumption of program execution. Therefore it might be
suggested that fault detection could Dbe carried out within the program.
But as execution continues sequentially through the unused area, a very

long delay could be generated. For exampie. the average number of

124

instructions executed in a 6K Dblock will be 1024, because triple byte nan-
jumping instructions are interpreted. Therefore fault tolerance in the
form of bus loading should be included in all 6800 systems to enable rapid
recovery from erroneous execution in unused areas. As with the 8085, this
has a negligible effect on the hardware reliability.

7.7.3 Memory Maps of the 68000

For the 68000 significant improvements cannot be obtained by forcing
restart instructions into the operand fields, as very few erroneous
instructions are interpreted during execution in program areas. As with
the other processors. on most occasions it is necessary to detect erroneous
execution in the program area from within the software. Very little effect
is possible on the execution in data areas as very few instructions will be
executed. Also, approximately 95% of the transfers out of this area will
be restarts in the form of exception handling.

For the unused area it was shown, in section 6.2.4, that instruction
fetches will generate restarts by reading the code for an unassigned
operation. This occurs without any maodifications. However in later
versions of the device, the code may be assigned a function. Therefore in
view of future developments, a better solution would be to force a valid
restart instruction onto the bus.

The necessity of setting the restart vectors and providing a recovery
routine are obvious from the discussions for the other processors. For the
68000 it is even more important because of the generation of restarts at
each unused location. In the same way as the 6800 an arbitrary jump will
occur if the vector is not set If the address to which execution
transfers is also wunused another restart will be generated. This will

repeat in an infinite loop with no means of escape., except from external

125

intervention from hardware. Due to the large addressing range of 16 M
bytes. it is likely that only a small proportion wil be used. especially
for industrial control. and therefore the setting of the vectors is even
more critical.

7.7.4 Memory Maps of the 8048

Memory map variations for the 8048 are fairly limited. With 12
address lines, instruction fetches are restricted to only 4 K of memory.
Random access memory is mapped to separate locations and cannot be executed
as instructions. However fixed data can appear in the 4 K map and may
therefore be read as instructions under fault conditions.

Due to these tight constraints, very littlte can be done to the program
area to improve error detection. Again It is necessary to carry out the
checking process from within the program. Seeding of the data area was
investigated in section 4.7.3, and showed that Improvements were very
slight due to the absence of a restart instruction in the processor.
However, as the data is always known before execution. it is possible to
check for any sequences which would result in undesirabie execution. such
as an infinite loop. if such sequences are found, the data could be
rearranged to eliminate them.

The type of execution expected for different unused Dblocks was
discussed in section 6.2.8. Bus loading was shown to be particularly
important, as without it there is a high probability of forming an infinite
loop for certain arrangements.

Because there is less scope for the detection and correction of errors
by the processor. it is necessary to rely more heavily on an external
hardware monitor, such as a watchdog timer. However, this can result in

long delays before correct execution is restored, due to the time—out

126

period of such devices.

7.8 Number of Erroneous Instructions Executed

in the previous sections the analyses have led to a figure for the
expected number of erroneous instructions executed Dbetween the initial
error and reaching the final state. This gives an indication of the
probable length of erroneous execution, but does not produce limits for the
most likely events.

These can be achieved by assuming that the distribution of the

probability, P, (N), that N instructions or more will be executed. follows

NI
an exponentlial curve. PNI(N) is then given by:~
PN = AN Eqn. 7.11
NI
Where:- A is a constant.

It can be shown that the expected value for this function is equal to

the reciprocal of A, From this information it is possible to determine

NIL, the limit of the number of instructions executed for a given
proportion, PE . of the errors. These quantities are related by:-

NIL = - NIE . n PE Eqn. 7.12
Where:~ NI_ is the expected number of instructions executed., determined

E

from the previous sections.

For example from equation 7.12, NIL takes the value 22.2 when NI is equal

E

to 9.65 and P_ is equal to 0.1. This means that where the expected number

E
of instructions executed is 9.65, 90% of the errors will result in less
than 23 instructions being executed before reaching the final states. This
gives close agreement with figure 4.1 (a) for execution in the data area of
the 8085, which has an average number of instructions executed of 9.65. It

therefore suggests that this is likely to be a reasonable approximation for

the overall execution.

127

These limits are useful in estimating the proportion of errors which
will be detected by a watchdog for various time out periods. Another use
for these values is In estimating the damage toc data within the system.
This is discussed further in the following section.

7.9 Probability of Data Corruption

Having established a method of estimating the number of erroneous
instructions executed. it is possible to determine the probable effects
that this will have on the data within the system. Every instruction has
the effect of changing at least one quantity, as they all aiter the
contents of the program counter. For the 8085, the effective number of
instructions which change other quantities is shown in table 7.1, and the
probability that a single instruction will not cause a corruption is also
given. This assumes that the instructions interpreted are totally random

in nature. For N instructions the probabiilty, P that no corruption

NC(N),
occurs, is given by:-
N

PNC(N) = PNC(U Eqn. 7.183

Figure 7.9 shows how the probability, that no corruption will occur to
the accumulator and the B register. decreases as more instructions are
executed.

From vaiues obtained using the previous section, this leads to the
estimation of the lower bounds on the probability that no corruption to a
particular data element wili occur. Using the previous example, of less
than 23 erroneous instructions Dbeing executed., the probability of no
corruption occurring to the B register in an 8085 is 33.0%. Whereas the

probability of no corruption to the Accumulator is oniy 0.01%.

7.10 Summary

This chapter has used the information derived from the previous three

128

chapters, to determine the flow of erroneous execution following a jump to
a random location in the memory map. The effects of varying the amounts of
different memory types have been studied for a variety of processors., and
the relative merits of the different methods of introducing fauit toterance
to each of the areas have been established.

It has been shown for all processors that bus loading, to cause
restarts in unused locations, is a very effective way of initiating rapid
recovery. For exampie, with the 8085 the proportion of errors resuiting in
recovery can be increased from around 20% to over 90%. This level of
improvement is obtained when only a small proportion of the memory map is
used. which is the case in most small scale industrial contrallers.

The positioning of memory areas, to introduce particuiar values into
the operand fields of programs, proviges improvements of less than 10% and
also increases the speed of recovery. Aithough the benefits are small the
method should be considered when designing systems, as these improvements
are obtained without involving any additional costs.

Seeding data areas with restart instructions requires a substantial
increase in hardware If spare capacity is not available. Not only does
this increase costs but it also reduces the overall hardware reliability.
Only the 6800 showed the capability of a significant improvement in
recovery, and therefore it is the only processor for which it is worth
considering the wuse of this method. However. In order to provide an
overall improvement the increase In reliability due to the recovery from
transient faults must be greater than the reduction in reliability due to
permanent hardware failures. Therefore significant improvements can only
be obtained. by this method. in systems which suffer from a high proportion

of transient failures.

129

Finally, methods of determining the limits of the number of erroneous
instructions executed, have been presented. These are wused in the
following chapter. where exampies of adding fauit tolerance to a specific

system will be studied.

130

CHAPTER 8

Selection of Error Detection Mechanisms

8.1 Introduction

In the previous chapters it has been shown that corruption to the flow
of program execution can occur in a@ number of ways. For this reason.
methods have Dbeen proposed for the detection of erroneous execution so as
to enable the early initiation of recovery processes. So far the

\
individual methods have been considered in isolation when applied to
general systems. This chapter looks at a specific system and investigates
the effects of adding each of the mechanisms, to establish which ones
shouid be adopted. in addition, some hardware mechanisms to detect

erroneous execution are also discussed.

8.2 Specific System Considered

The specific system considered is a general purpose single board
computer based on the 8085 microprocessor. It has been used for a number
of applications within the British Gas Corporation. The system contains 4K
EPROM, 2K RAM, four 8 bit input ports and four 8 bit output ports. The
memory locations at which these devices can be accessed are shown in figure
8.1. The EPROM, RAM and each Input port are selected as 4K biocks,
therefore the RAM is mapped into two adjacent 2K blocks and each individual
port can be accessed from 4096 different locations. All the output ports
appear within a 4K block and are individually selected by the states of
four address lines. Therefore if all four lines are active, within the 4K
block, all the output ports will be selected together. This means that
individual output ports can be selected from 2048 different addresses which
appear in blocks of 256 locations. Pull-up resistors are connected to aill

the data lines so that the value FF is read from all unused locations.

131

8.3 The Effects of Adding Error Detection Mechanisms

A number of analyses., on the effects of adding error detection
mechanisms., have been carried out based on the layout of the system
described above. Results from these investigations are given in table 8.1.
Some fault tolerance was considered in the design of the system and has
already been incorporated. Therefore, to show the advantages of including
those features, additional studies have been performed on the corresponding
design without the features.

8.3.1 The Non-Fault Tolerant System

The results for the entirely non-fault tolerant arrangement are
labelled ‘A’ in table 8.1 They show that a large number of jumps into
random locations within the memory map terminate with the entering of the
wait state, by the execution of a hait instruction. This is due to the
property of the unused locations which tend to lead execution towards the
halt instructions. Another observation made is the large number of
erroneous Instructions executed before reaching one of the final states,
and this is due to the large portion of the memory which is mapped to very
loosely decoded input ports. In most cases execution passes straight
through these areas repeatedly executing the same instruction several
hundred times.

From this set of basic results, the aim is to select error detection
mechanisms to improve the response of the system under fault conditions.
It has been shown previously that some methods can produce an overall
degredation, despite an improvement with regard t0o an individual fault
type. This is wusually as a result of increased complexity which s
inevitable when adding extra features. Therefore, it is clear that any

additions must be both simple and effective against the considered fault.

132

For the error detection mechanisms studied in the previous chapters it
has been shown that their effectiveness is related to the size of the
particutar memory block. Therefore the greatest improvements are obtained
by implementing the features associated with the largest Dbiocks. For the
system considered. these consist of unused areas and input ports,

8.3.2 Removal of Input Areas from the Memory Map

The input ports take up one quarter of the memory map, and therefore
will have a significant effect on the respose to a random jump.
Arrangement ‘B’ considers the effect of removing the input ports from the
memory map. Table 8.1 shows that little change occurs in the probability
of reaching each of the final "outcomes. However, a vast decrease, of
nearly 95%. in the average number of erroneous instructions executed. is
produced.

A similar response is observed in section 8.3.4 when the ports are

removed while other features are present. A reduction in erroneous

execution Is important to limit the amount of damage which might be done

during that time. it also enables rapid recovery, which is required in
control situations where time is critical. it has been indicated so far
that the aim is to initiate a recovery process. However, the recovery

process may not be successful if too much damage is done to the data within
the system. A discussion of the effects of delays in initiating a recovery
routine. on the success of recovery. is presented by Preece et al (81).

Therefore the improvements obtained by removing the ports are highly
desirable, and can be easily implemented in this case. The 8085 allows for
separately mapped /O by the use of the I0/M line from the processor. This
can be connected directly to the enable pins on the input buffers, and does

not require any other logic. Therefore, no detrimental effects to the

133

response to other fault types is expected, and clearly this modification
should be inciuded.

8.3.3 Addition of a Recovery Routine

In the previous arrangements discussed. no specific recovery is
possible, as no provision has been made for it to occur. On approximately
one quarter of the occasions, execution does resume with the interpretation
of wvalid instructions. in a control application where ail data is read in
at the beginning of each cycle, the resumption of program execution will
give full recovery at the start of the next cycle. However., it Is normally
the case that information is passed from previous calculations, and
therefore a resumption of program execution will not provide acceptable
recovery. This mechanism is also unsuitable in cases where a single wrong
output can be harmful to the system.

in these <cases it Is necessary to include recovery software to
generate an ordered return to correct execution. This is written most
effectively as a restart routine, to enable easy access and to
automatically initiate recovery when a restart instruction is erroneousiy
executed. The effect of adding a recovery routine. which is entered by any
restart instruction, is given by arrangement °‘C’ in table 8.1. it shows
that over 15% of the final outcomes transfer from a resumption of program
execution to a compiete recovery. However, the full benefits are not
realised until efforts are made to force erroneous execution to interpret
more restarts.

The addition of a recovery routine does add to the complexity of the
system. If spare capacity is not available extra memory will be required
which will result in a reduction in overall hardware reliability. However,

provided that the routine is small, failures resulting from its

134

impiementation will be negligible in relation to the benefits obtained. and
therefore it should be included.

8.3.4 Forcing Restart Instructions into the Unused Areas

The majority of the memory map is unused. and it was shown in chapter
6 that these locations could easily be made to appear as restart 7
instructions Dby the addition of pull-up resistors to the data lines. This
modification is given in ‘D', and represents the system as it was designed.
It demonstrates the vast improvements which can be obtained by this method.
lifting the proportion of errors ieading to recovery to well over 90%.
However, the number of instructions executed before recovery can still be
very high, and this is due to the input areas in the memory map.

Arrangement ‘E' shows the effect of removing the input ports from the
map while retaining the other features. As Dbefore, very little change
occurs in the proportion of the final outcomes. because, as indicated
previously, most execution passes straight through and reaches the unused
areas following these Dblocks. However, the number of erroneous
instructions executed is reduced to single figures. in 90% of the cases
less than 4 will be executed.

As indicated above, Implementation of this feature is straight forward
and has a negligible effect on hardware reliability, and should therefore
be included in the system.

8.3.5 Modifying the Program and Data Areas

It was shown, in chapters 4 and 5. that modification to the data and
program areas does not produce large improvements In the error detection
process. Both these areas are relatively small, in the system being
studied. and therefore little improvement is to be expected. The effects

of adding methods of encouraging recovery during erroneous execution in.the

135

program and data areas are shown in arrangements F, G. H and |. For the
program area, this consists of organising the software so that more restart
instructions appear in the operand fields. For the data areas., restart
instructions are interspersed within the memory to limit erroneous
execution. Both methods do provide further improvements. but only of the
order of 1%.

The impiementation of these techniques is complex with the placing of
tight restrictions on the software, or with the addition of extra hardware.
These both require significant development resources. and can themselves
lead to design errors. The costs involved in implementationb are not
justified for the level of improvements that can be obtained. and therefore
these techniques should not be inciuded.

8.3.6 Detection Within the Software

The previous sections have shown that the preferred arrangement, for
the specific system considered. is labelled ‘E’ in table 8.1. In this case
recovery from erroneous execution is expected on 93% of the occasions.
However, 6% of the time execution will resume with the valid interpretation
of instructions. Some of these can be detected by a watchdog timer, and
this is discussed below. For the other cases it is necessary to detect the
errors from within the software.

If these errors are not detected. software fault tolerance against
other failures., such as memory errors, may operate incorrectly. For
example, the errors could cause a jump into a reasonableness test without
the preceeding code being executed. f the test failed the processor would
retry that particular block of code and reapply the test it couid then
interpret the error as a transient and continue execution assuming that

full recovery had been achieved, when in fact a higher level of recovery

136

was required.

The flow of execution can be monitored in a number of ways.
Chudleigh (23) suggests the use of a ‘relay-runner’ in which a ’baton’ or
password is carried along with execution. This can be implemented with a
single register which is incremented periodically during execution. Then
at various points In the control loop the contents of the register is
checked against the expected value. A discrepancy indicates that execution
has not followed the correct path. This technique does not require a
substantial amount of extra code. All that is required are single byte
increment instructions dispersed throughout the program and a few
comparisons to check the register contents.

Alternatively, the flow of execution can be monitored by checking the
return addresses before leaving subroutines. or Dby periodically checking
the current stack level. However. the use of the stack has been shown to
be a possible source of errors, and can be eliminated completely while
still retaining subroutines. The return address can be loaded into the HL
register pair and then the PCHL Instruction causes the required transier of
control. An advantage of this arrangement is that the address can be
stored in multiple locations and comparisons made between the values before
a transfer of controi occurs.

By using the techniques proposed above. together with those from the
previous sections. erroneous execution will result in the initiation of the
recovery process on around 99% of the occasions.

8.4 Watchdog Timers

Watchdog timers can be used to detect a proportion of the errors
resulting from erroneous execution. Some of the factors which must Dbe

considered when designing them have been indicated in previous chapters.

137

Their importance can now be seen from the resuits obtained for the system
described above. Control systems are usually configured so that the timer
is updated periogically. typically once during each controi loop. However,
tight constraints are not normailly used. For example., Debelle et al (26)
describe a controt system for a power station boiler where the watchdog is
updated once every second. If a fault occurs immediately after an update
then a full second of erroneous execution could follow., and this
corresponds to the execution of approximately one million instructions.
Clearly a great deal of damage could occur in that time. More seriously.
if a simple updating mechanism is used. such as an access to a single
address. then this could occur erroneously allowing further incorrect
execution.

However, the previous results have shown that, for a non-fault
tolerant system. erroneous execution will only last for a few thousand
instructions before a final state is reached. A watchdog will detect most
cases where a loop is formed or where a wait state is entered, as the
trigger is unlikely to occur at the "correct interval. A watchdog is less
likely to detect an error when execution resumes the Iinterpretation of
valid instructions as the trigger sequence will reappear.

With the addition of the error detection mechanisms, the watchdog is
less effective as halts and loops are virtually eliminated. if the time-
out period is longer than twice the time interval between updates then no
errors, which resume program execution, will be detected. This is because
the worst case is where a fault causes execution to jump from a point
immediately before an update. to a point immediately after. By reducing
the time-out period to the same length as the update time, half the errors

will be detected. For the other half execution effectively jumps forward

138

and generates an update before the normal time. This situation can be
detected by setting a minimum time. Taken further. the watchdog could be
arranged to detect the update at a specific clock cycle. and could then
detect any sequence of erroneous execution.

This places tight restrictions on both the hardware and the software.
and would probably lead to more failures due to other failure mechanisms.
Therefore the use of watchdogs for the detection of erroneous execution is
ineffective if other mechanisms have been incorporated. However, it is
recognised that they must be built into systems requiring high reliability
to provide a tevel of recovery to cater for unanticipated fauits.

8.5 Other Hardware Implemented Detection Mechanisms

A number of other hardware mechanisms to detect erroneous states can
be used. and a selection of these, applicable to the 8085. are described
below.

8.5.1 Wait State Recognition

The wait state can be detected. from the status lines. by the simple
circuit shown in figure 8.2. A rising edge appears on the output as the
walt state is entered. This can be connected directly to the TRAP pin on
the processor. so that the interrupt routine is initiated immediately after
the halt Instruction has been executed. Recovery from this state would
also occur with a watchdog timer, but a iong delay could resuit.

8.5.2 lllegal Instruction Fetches

The status lines also indicate when an operation code fetch is Dbeing
performed. Therefore, the circuit shown in figure 8.3 can be used to
detect illegal instruction fetches outside the program area. The chip
enable (CB) signals, from all devices containing instructions. are ANDed

together at gate 1, which produces a high output when none of the devices

139

are selected. This signal, together with the status lines, produces a
positive going puise on the output of gate 2 if an instruction fetch is
attempted from an invalid area. This could also be connected directly to
the TRAP pin on the processor.

illegai instruction fetches from the operand fields within the program
areas could be detected by the addition of an extra Dbit associated with
each location. The bit corresponding to a valid Iinstruction could be
programmed to O while operands or data would Dbe Ilabeiled with a 1.
Detection of an ililegal instruction fetch within the program area could
then be achieved by replacing the output from gate 1 in figure 8.3 with the
extra data line. By adding a pull-up resistor to the line, ail illegal
instruction fetches from any memory location would be detected.

This arrangement requires a substantial amount of extra hardware and
would not be worthwhile in the system being studied. The hardware could De
reduced by thedevelopment of 9 Dbit wide read only memories. as this would
limit the extra logic to only a few gates.

8.5.3 Detection of a Write Qutside RAM Areas

A simpie development from the circuit shown in figure 8.3. allows the
detection of a write into a program area., and a suitable circuit is shown
in figure 8.4. It is strongly recommended that programs shouid be stored
in read only memory for control applications., and-in these cases the above
circuit will be applicable. However, if it is necessary for the program 10
be altered during normal operation, the circuit must be modified to disable
the output during loading of the program. At other times. while enabled.
it will provide some protection against corruption of the code.

This concept can be extended to the detection of any writes to

 locations outside random access memory areas. A suitable circuit is shown

140

in figure 8.5. where the chip enables (CE) are from all the RAM devices.

8.5.4 Detection of Undeclared or Unused Instructions

Another illegal state which can be detected is the execution of an
undeclared operation code. This has been investigated by Marchal and
Courtois (63) in connection with permanent stuck-at failures on the data
lines. They suggest that after failure the average detection time is 11
instruction cycles for both the 6800 an 68000. This is a useful mechanism
in the 68000 because it is already built into the device. However, with
other processors a suﬁstantial amount of extra hardware is required. and
therefore is not worthwhite. The effectiveness of this mechanism, in
detecting erroneous execution after a transient fault. will be very low for
the specific system studied with the fault tolerant features added. This
is because very few erroneous instructions are executed.

The detection process is dependent on the number of undeclared
instructions Iin a processor. Clearly. it will be more effective for the
6800, which has 59 undeclared codes. than for the 8085 which has only 10.
However, this concept could be extended further to detect all unused
operation codes within a particular program. but would require changes in
the hardware when different instructions are used. Investigations into
instruction usage by Lunde (60) revealed that only 75% of the codes were
used., and that hailf of these accounted for 99% of the execution time.
Therefore programming with a reduced instruction set would not be severely
restrictive, and could be imposed for all programs. But even with this
arrangement detection of erroneous execution will still be limited.

8.5.5 Voitage Level Detection

The hardware mechanisms described above have all been designed to

detect errors after they have been produced. The voltage level detection

141

mechanism attempts to prevent errors occuring by suspending execution while
the output from the power supply is insufficient to drive the system. This
mechanism can be implemented with a single 8 pin integrated circuit. The
Texas 7705 monitors the power supply rail and hoids the reset line. to the
processor, low while the voltage is less than 4.75 voits. When the supply
rises above this value the reset is held low for an additional time
interval, which is set by an RC network. This allows the internal state of
the processor o stabilise before correct execution can commence,

Interruption testing. similar to that described in chapter 2, was
repeated with the voltage level detection circuit added. For short
interruptions, which did not cause the supply to drop below 4.66 volts. no
errors were detected. For all other interruptions a full reset occurred
when the supply was restored.

A disadvantage of this arrangement is that the delay in restoring
execution can be relatively long. For example. a delay of 10 ms is
recommended for the 8085 (119), and 50 ms Iis recommended for the 8035/8048
(120). Tests on the processor, described in chapter 2. showed that it
could recover from an interruption which caused the supply to drop to as
low as 2.5 volts. However. disruption to program execution will occur
while the supply is between 2.5 and 3.8 volts. but once it has been
restored, the recovery mechanisms described above can initiate the recovery
process within micro-seconds. In cases where rapid recovery is required. a
voltage level detection circuit should be set to activate at around 2.5
voits, and the other mechanisms can be used to recover from smaller dips in
the supply. Alternatively. a second level detection circuit could be set
at a higher level to initiate an interrupt routine as soon as the supply

reaches the level above which no errors will occur.

142

8.6 Choice of Mechanisms for General Systems

The previous sections have shown that hardware mechanisms to detect
erroneous execution, are not effective for the system described in section
B.2. with fault tolerance added. This is because it has a good response to
erroneous execution, which Is due to the large proportion of the memory map
which is unused. In systems where more ot the map is populated the
response will be different. However, the unused areas and input areas
should be looked at first before considering other parts of the map.

For systems containing a large data area. the hardware mechanism to
detect instruction fetches outside the program area will be effective. For
large program areas the mechanism to detect instruction fetches from the
operand and data fields should be consideredt.)::hey can only produce small
improvements. This is because most erroneous jumps into program areas
result in an immediate resumption of the interpretation of valid
instructions. Therefore detection within the software will give greater
improvements than the hardware method.

This type of procedure to select detection mechanisms can generally be
followed for other systems. However., the ease of implementation of some
mechanisms will depend on the particular processor. For example. the
detection of an IHlegal instruction is built into the 68000. and in order
to generate recovery a suitable routine is all that is required.
Conversely, the indication of an operation code fetch in the 6800 is not
readily available. and therefore instruction fetches from illegal locations
are difficuit to detect. For single chip processors, such as the
8035/8048, there is less scope for the implementation of detection
mechanisms as few signals are available externally. For these reasons

mechanisms must be chosen with consideration for both the memory map usage

143

and the ease of implementation.

8.7 Summary

This chapter has investigated the implementation, on a specific
system., of the detection mechanisms for erroneous execution. which were
studied earlier. It has shown that a very high level of detection can be
achieved by minor hardware changes. and with the addition of some extra
saoftware.

Other detection mechanisms have Dbeen studied. and their effectiveness
for different systems has been indicated. It has been established that the
choice of mechanisms, to achieve the greatest improvements in reliavility.

depends on both the memory map usage and the processor within the system.

144

CHAPTER 9

Development of a Facility t0 Test Redundant Systems

9.1 Introduction

This chapter presents the development of a facility to test the
response of digital control systems which are subjected to a variety of
transient disturbances. Testing is necessary to check the correct
functioning of the error detection and recovery mechanisms. With redundant
software parts of the code will not be executed under normal operating
conditions, The test facility aims to simulate faults to enable all paths
in the program to be executed.

Several other methods of testing were considered. For example, field
trials provide accurate results but. due to the infrequent raie of failures
in digital systems, they require a considerable length of time before any
improvements can be established. Another important factor is that failure
of the system in the fleld could have serious consequences. although this
can be avoided by testing the system in a monitoring mode without any
direct control.

To reduce the period of testing. methods can be used 10 increase the
failure rate Dby subjecting the system to a hostile environment. This
approach was adopted for the tests, described in chapter 2, to investigale
failure mechanisms. During those tests it was established that different
hardware did not always react in exactly the same way. Therefore. to
obtain a representative set of results for all hardware it is necessary to
test a large number of components.

A solution. which speeds up the whole procedure, is to use simulation.
This approach was adopted for the Saturn V guidance computer, and is

described by Ball and Hardie (5). In this case all internal functions of

145

the computer were simulated at the gate level. and the effects of single
node stuck at 0 or 1 faults were investigated. A less detailed approach
was adopted by Courtois (24) for a 6800 system. Instead of considering the
gate level of the processor. a functional simulation was developed.
Clearly. this reduces the amount of work required in the development of the
model.

An alternative solution is to simulate faults on an actual processor.
This eliminates the need for a detailed knowledge of the internal workings
of the device. and prevents the introduction of errors into the simulation
at this stage. A small 8085 based system was developed using this
approach, and it is described in detail in the following sections. It was
designed around an Intel 8085 system design kit (SDK) board. which has an
additional memory card containing up to 6K RAM and 8K EPROM. Hardware
maodifications to the printed circuit boards were kept to a minimum to aliow
the system to be used for other purposes.

9.2 Fault Injection

To enable full testing it is necessary to simulate faults so that the
recovery process can be observed. A number of methods of fault injection
were considered. A simple sofution would be to corrupt the data. address
and control buses by deliberately hoiding individual lines high or low. A
more sophisticated version could involve some logic circuitry to monitor
the lines and inject faults when a certain pattern appears. or at defined
time intervais.

This sort of approach has been adopted by Decouty et al (27). Their
system intercepts signals Dbefore reaching individual chips in a similar way
to the memory masking circuit described below. However, they are careful

not to generate any short cicuits which clearly can occur in real systems.

146

Therefore. only a limited number of different faults are allowed., and these
consist of stuck—-at-0 and stuck-at-1 conditions.

An alternative arrangement is to use a second microprocessor which
shares part of the memory with the main processor. It would then be able
to monitor the execution of the test routines and. when predefined
conditions occur, inject faults into the system. These could involve
corruption of the system buses., or data stored in the shared memory. A
wide range of fauits could be simulated in this way., with the exception of
corruption of the internal registers of the microprocessor. For these 10
be changed to specific values it is necessary for the processor to execute
valid load instructions, and therefore cannot be achieved externalily.

The dual processor approach has been used by Kuczynski and Price (54),
but was limited to Investigating the speclific fault condition of single bit
corruptions in the program code. To achieve this, the second processor
copies the corrupted program into a shared memory block which emulates the
EPROM of the system under test. The test system is then started and the
following execution observed. Although this has given some useful results
for that particular fault condition. it cannot be used to simulate other
faults.

The solution which was finally adopted is much more fiexible and only
uses a single microprocessor. External logic circuitry generates an
interrupt during execution of the test program. The interrupt routine can
be written to simulate a large number of faults. and corruption of the test
program, stored data and internal registers can be implemented. The timing
of the interrupt is set by the control software. so both the type of fault

and the position in the program, that it occurs. can be easily altered.

147

9.3 Generation of Interrupts

To provide thorough testing. it is desirable to inject faults in as
many places as possible. Interrupts are only recognised at the completion
of execution of an instruction. Therefore 10 inject the greatest number of
faults, by this method. it is necessary to cause an interrupt during the
execution of each instruction.

in order to generate interrupts at successive locations in a program,
the expansion 8155 (Memory-1/0-Timer) i.c. on the SDK board is used. The
timer section is designed to give an output after a certain number of
pulses have been applied to its input. The number of pulses needed before
triggering Is programmable, and can be set Dby the system software. In
order to be able to cause an interrupt during successive locations in the
program it is necessary to generate one pulse for each instruction. This
is achieved by detecting an operation code fetch which can be determined by
the condition of the status tines SO. S! and 10/M. For an op-—code fetch
they are 1,1,0 respectively. Combining these together with logic s
insufficient for the input to the timer, as this conditon remains steady
throughout certain single Dbyte instructions. For example, a string of no
operations (NOPs) will produce a single pulse. By including the status of
the read (RD) line. which is low for only a short period of the op-code
fetch, it is possible to generate a single pulse for each individual
instruction.

The logic requires that the output is high when SO0 and S1 are high

together with 10/M and RD being low. In boolean algebra:-

F=A.B.C.D Egn. 9.1
=A.B+C.D Eqn. 9.2
=A.B+C+D Eqn. 9.3

148

Where:— F is the output.
A. B. C and D are the inputs.

The circuit shown in figure 9.1 satisfies the logic given by equation
9.3 by using OR. NOR and NAND gates. However. t0 reduce the number of
devices necessary. only NOR and NAND gates were used. Figure 9.2 shows the
final layout that is wired onto the SDK board. S0. S1. I0O/M and RD signals
are all taken from the expansion bus, and the TIMER IN signal is connected
to the input of the 8155. Output from the Timer (TIMER OUT) is connected
to the interrupt 7.5 (RST 7.5 pin on the 8085. This pin is aiso used for
the Vector Interrupt (VECT INTR) key on the SDK keypad which incorporates
an RC network to prevent multiple interrupts. Therefore, to ensure a quick
sharp response to the timer out signal. the RC network has to bDe
disconnected.

9.4 Memory Boundary on Test Programs

The test facility described so far is capable of providing useful
results for faults involving the data of a test routine. However, it
faults are injected into the program itself, causing corruption of the
program counter, then control could be passed to the SDK monitor. To
prevent this from occurring. additional hardware was designed to restrict
the test routine to a section of memory away from the monitor. However,
during execution of the control program, and during the interrupt routines.
it is necessary to allow the processor to have access to all locations.

Due to the layout of the system it was not possible to restrict the
test routine to half of the memory map. as this would prevent the control
program from using the expansion memory board. [t was therefore decided to
allocate the top quarter (16K) of the map for use by the test routine. and

this requires that the top two address lines (Al4, A15) are held high

149

during execution of the routine. To satisfy the buffers and address
decoders, it is necessary to control the two address lines before they
reach the SDK board.

The solution adopted was to construct a small circuit raised above the
SDK board. A 40 pin wire-wrap socket. plugged into the normal processor
location, provides the electrical connections., and the mechanical support,
for the extra circuit board. Ail of the lines make direct contact between
the 8085 and the SDK board. except the pins associated with Al4 and A1l5
which are diverted through the extra (ogic t0 enable some memory accesses
to be restricted.

Careful consideration was needed between the timing of the control
software and the masking of the address lines to ensure the correct
transition between the control and test programs. This is achieved by
writing to certain ports, which the extra logic circuitry detects and
tatches. However. the masking is not altered until the processor has read
the following jump instruction.

Four transitions to and from the test routine occur for each run.
Three of these., (from the control program to test routine., fault routine to
test routine. and test routine back to the control program) are each
catered for by the above solution. The fourth transition. caused by the
fault injecting interrupt. is treated in a slightly different manner. The
logic detects the interrupt acknowledge on the status lines, and waits
untit after the return address has been pushed onto the stack., before
releasing the address lines.

Figure 9.3 shows the circuit diagram for the address masking logic.
in addition to the details shown. 1Kilo-ohm pull up resistors have been

connected to all the data and control signals taken from the micro-

150

processor. and 0.1 uF capacitors have been connected across the power
supplies to most of the devices.

The circuit operates in the following manner, Writing any value to
one of the ports FC. FD. FE and FF, will cause a short low level pulse at
the output of i.c. 3. and presetting of flip—flop 4a will occur. forcing
the Q output low. The SO status line remains high until the end of the op-
code fetch for the jump instruction, and then remains Ilow until both
address bytes have been read. During this time the output from the OR gate
(5a) will have changed from a high level to a low level. The rising level
of the SO line will produce a similar rise on the output of 5a. and
triggering of both flip~flops 4a and 6b will occur. clearing 4a. Flip—flop
6b has Iits inverted output fed back Into its input. so that the output is
toggled each time the device is triggered. The Q output is connected to
two OR gates. 5c and 5d. these form the link between the processor and the
SDK board for the two address lines Al14 and A15. When the Q output from 6b
Is high, A14 and A15 on the SDK board remain fixed high, whereas with a low
output they follow the normal outputs from the processor.

For the transition caused Dby the interrupt, the Dbottom half of the
circuit is activated. After the Iinterrupt has occurred, the status lines
indic.;ate that it has been acknowleged. A short low level pulse s
generated at the output of 2a which presets the flip—flop 4b. The 81
status line goes low during the writing of the return address onto the
stack. At the end of this operation a rising edge occurs at the output of
5b, triggering the flip~flop 6a and setting its Q output low. This clears
6b allowing normai addressing. and also clears both flip-flops 4b and 6a.

Provided that the logic is triggered in the correct sequence of. an

output to port, an interrupt, and two more outputs to port. then the

151

desired masking will occur. To ensure the correct initialisation of the
logic. the reset line is connected to flip—flop 4a and. through the NAND
gates 7a and 7b, to flip~flop 6b. Therefore when a reset is activated on
the SOK board. 4a and 6b are cleared which in turn clear both 4b and 6a.

9.5 Software Design

When designing the control software three main criteria were
considered. speed of operation. ease of reprogramming and flexibility. The
time taken to complete each individual test is of great importance. as
injecting fauits during the execution of each instruction can lead to a
very large number of runs. Therefore the control software needs 10 be
short and efficient. However., to enable quick changeover to injecting a
different fault, or testing another routine, it was desirable to make
reprogramming as simple as possible. These two criteria have conflicting
requirements, so a compromise solution was adopted. In addition to this
the overall fiexibility of the system had to be considered. The aim was to
avoid the necessity of rewriting most of the basic control software when
new test routines or fauit types are developed.

Figure 9.4 shows the final structure of the program, and fully
commented listings appear in Appendix 6. Basically. the test routine is
executed a number of times. injecting a fault in successive points of the
program, untii each location has been tested. It is reloaded into the test
area before each run so that corruption of the code does not affect later
tests. However, this is only representative of systems which execute
provgrams stored in RAM. For high reliability applications the software
must not be held in volatile storage to ensure that the program cannot be
corrupted during erroneous execution or other disturbances. To simulate

both arrangements of volatile and non-volatile program memory. an EPROM

152

emulator can be mapped into the test area and the write line can be
connected. or not. accordingty.

in more detail, the program performs the foilowing operations. It
starts Dy storing the initial value of the timer trigger into memory for
future use. An opening message is displayed on the terminal requesting the
end address of the test routine, and the routine is then copied into the
test area. The 8155 Timer ic. is set so that it will generate the
interrupt at the correct moment, and the initialisation subroutine s
called to set initial values in the system. The timer is started. and the
masking hardware, described above, is enabled to restrict execution to the
upper 16K memory biock. Control is passed to the test routine and
continues untit the interrupt is generated. releasing the masking
circuitry. The interrupt routine sets the upper two address bits on the
stack pointer. before retrieving the return address. to ensure that it is
read from wtihin the upper memory area. The address is then saved as part
of a jump instruction at the end of the interrupt routine. The software
has been arranged so that the last two bytes are mapped into RAM. to enable
the return address to be written into them, whereas the rest of the program
is in EPROM.

All the internal registers are then saved. so that the fault injection
routine does not affect the internal status of the processor unless this is
intended. The ‘fauit’ is then injected by calling a subroutine which
changes the required data. The stack pointer and internal registers are
reloaded with their original or modified values., the address mask is set,
and execution returns to the test program at the point at which the
interrupt occurred.

At the end of the test routine the address mask is reset and a jump is

153

made back into the control program. A check is made 1o ensure that the
interrupt has occurred, and indicates whether there are stili more
locations to be tested. If all locations have been tried. then a closing
message is sent to the terminal and execution returns to the SDK monitor,
Otherwise. a subroutine is called to check the results. For a correct
solution an ‘S’ is sent to the terminal to indicate success. alternatively.
in the case of a failure, the value of the timer trigger is printed. The
program continues by jumping to the start. where the trigger is incremented
and the whoie process is repeated.

9.6 Initial Results

Initial testing was carried out by simulating data corruptions only.
The effects of these are reasonably straight forward to predict, and
therefore the results from the test facility were easily verified. For
example. a non-fault tolerant 8 bit addition routine was investigated. it
read two numbers., from separate locations. into the internal registers,
added them together and stored the answer back in the memory. As expected.
corruptions to the input data in memory only caused errors if they occurred
before reading the information into the registers. Conversely. corruption
of the output location in memory only caused errors after the resuit had
been stored.

This trivial case shows that the susceptibility of systems to
transient memory faults can be reduced by holding critical data within the
processor for as long as possible. But clearly. this will increase the
susceptibility to register faults. This demonstrates the necessity to know
which fauit types are most common. The practical tests described in
chapter 2 indicated that the memory was less resistant to interference than

the processor. and therefore the registers provide a safer storage area.

154

Obviously, all the data cannot Dbe stored in the registers. and
consequently. an alternative approach is necessary. Hardware methods such
as protective coding has been discussed. but these can fail due to muitiple
bit faults or transients affecting the correction mechanisms. To overcome
these problems, or in the case where no memory protection is available,
individual data can be stored in several locations. Clearly, this requires
a large amount of extra memory space. and can only be justified for
critical data.

A simple 8 Dbit addition routine incorporating triple storage was
investigated. Even such a basic operation can be organised in several
different ways. For example., the data could be compared as it is read in,
and a single set chosen for manipulation by a majority vote or seiection of
a mid-value. The result would then be stored in memory. either in a single
iocation or in three separate locations. Aiternatively, calculations could
be carried out on all three sets, and a selection made before storage.
Taken one stage further, separation could be maintained throughout, and
comparisons made after a number of other operations.

When considering corruptions of single locations, muitiple storage of
data gives large improvements in reliability. However, this must not Dbe
considered in lIsolation. It is possible for a large number of locations to
become corrupted. This can occur as a result of an extensive memory
disturbance. or by erroneous execution overwriting data. in the latter
case an erroneous loop containing a call. without a return. will overwrite
all volatite memory with the same 16 bit word. it is therefore suggested
that if muitiple copies are used, then they shouid not all be stored in an
identical way. For example, one or more copies could be compiemented.

This will increase the complexity of the checking routines., but will be

155

more effective against extensive errors.

So far only data corruptions have been considered. Disruption o the
flow of execution is possible, and this can also be tested on this system.
However. a few problems are envisaged with this type of error. and
suggestions for modifications are given in the following section.

9.7 Possible Developments

For data corruptions alone, execution will follow a logical sequence
of instructions, provided that the software does not contain any errors.
However. with the disruption in the sequence of execution, an arbitrary
combination of instructions will be interpreted and as a result the test
facility can fail in two ways. Firstly, the erroneous execution of an
output 1o one of the ports FC, FD, FE and FF will cause the premature
activation of the masking circuit. and an unpredictable response will
follow. Secondly. the formation of a continuous 100p within the test
routine will prevent the return to the control program. and thus suspend
any further runs.

The former case occurs infrequently as the probability of picking such
an instruction at random is approximately 1 in 16,000. But if a large
number of runs are attempted the failure rate may be unacceptable. It can
be improved by tightening the conditions required to activate the masking
circuit and could be achieved Dby testing for a particular value at the
port. The formation of loops is more likely, however the resulting
problems can be reduced by adding another hardware timer. This would be
set at the beginning of each run. and if it ‘timed out’ Dbefore execution
re-—entered the control software a failure would be indicated and the next
run initiated. Alternatively, the same timer as that used for fault

injection could be reset Dbefore leaving the fault routine, so as to aliow a

156

maximum time for further execution.

Finally, to obtain meaningful results. it is necessary to perform a
very large number of runs. In order to simplify the analysis, it |is
suggested that the output, from the test facility, is captured by an
intelligent device which can perform data reduction operations. This would
enable the rapid evaluation of both the number and type of the failed runs.

9.8 Summary

This chapter has presented some ideas on how testing can be performed
on fault tolerant software., and a particular facility has been described in
detail. In this type of software, execution will pass through Jdifferent
segments depending on the number and type of errors in the system. Under
normal operating conditions errors will be rare. and testing of all
segments Is not possible without fauit injection. The test facility
therefore provides an aid to the full functional testing of fauit tolerant

routines.

157

CHAPTER 10
conclusions

10.1 Introduction

It is generally accepted that transient and intermittent faults are
far more common, in digital circuits. than permanent faults. It has been
suggested that they are as much as 50 times more likely. Therefore, in
order to obtain high reliabllity, the greatest improvements will be
achieved by designing in mechanisms to counteract the effects of
transients. However, recovery cannot be initiated until errors have been
detected and therefore the detection mechanisms play a very important role
in the recovery process.

Investigations have been carried out Into detection mechanisms with

particular emphasis on software techniques. However, they cannot be
evaluated until the modes of failure are understood. For this reason
practical tests were performed to study actual failure modes. These

attempted to reproduce the type of transient disturbances which are
expected in Industrial control applications.

10.2 Practical Tests to Determine Failure Mechanisms

The results of the tests showed that two broad types of fallures can
occur; corruption to the data within the system, and disruption to the
correct flow of program execution. Both of these groups of failures
occurred under different types of interference to each of the main eiements
of the system. The fact that similar faillures occur under different
operating conditions indicates that they will appear in real systems. This
is true even if the types of interference, used during tesling. were not
representative of those which do occur in industrial controilers.

Data errors can be detected and corrected either by external hardware,

158

or internally by the software. Hardware mechanisms have been investigated
thoroughly in the past and the majority of current systems are designed to
detect and correct single bit errors. The tests did show that single bit
errors do occur. but are restricted to a narrow band of interference level.
In the majority of cases multiple Dbit errors occurred and therefore single
bit correction mechanisms would not be effective.

Errors in the flow of program execution are more serious. as these
result in the interpretation of an unspecified sequence of instructions.
While in this state the processor cannot perform any useful tasks. and the
data error correction mechanisms cannot work. Therefore it is of paramount
importance to be able to detect this type of failure so that it is possible
to re—establish useful execution.

In order to be able to develop suitable detection mechanisms, it is
necessary to determine the sequence of events following corruption of
execution. The tesls indicated that a fault can cause an erroneous jump to
any location in the memory map and that, subsequently, the valﬁes read
would be interpreted as instructions. This revealed the importance of
knowing the exact function of every possible operation code in a micro—
processor.

10.3 Undeclared Operations in Microprocessors

Investigations were carried out to discover the effects of executing
the codes which are undeclared by the manufacturers. In most cases useful
operations were revealed., which leads to the question of why these
instructions are not declared. The manutfacturers were not willing to
reveal information on this subject. but it is Dbelieved that some of the
codes are left undeclared to retain compatibility between difterent

devices, whereas others are not disclosed because original design errors

159

mean that they do not function correctly under all operating conditions.

Some of the codes are particularly t:mdesirable from a reliability
point of view. These are the ones which cause the processor 10 cycle
continually through memory reading successive locations indefinitely. The
only means of recovery from this state is a full reset which has to be
generated by some external hardware. This has revealed that not only is it
necessary to have external hardware to enable recovery from some errors,
but also the way in which it is designed is important. For example,
watchdog timers which generate interrupts, or are updated by the access to
a single address. will not be effective.

Other undeclared operations of microprocessors have also been
discovered, such as the cycling through memory in the 8085 as a result of
power supply disturbances. These operations' are particularly important
because they cannot be forseen readily, unlike the functions of the
undeclared codes which, clearly, must exist Without a full knowiedge of
all possible operations in microprocessors it is more difficult to design
effective error detection and correction mechanisms. This demonstrates the
need for a much more co-operative attitude from the manufacturers in
revealing full information about their devices.

10.4 Execution Following an Erroneous Jump

Having determined the functions of all the operation codes of the
8085. 6800, 8035/8048 and 68000. analyses were pertormed to establish the
sequence of events following an erroneous jump to a random location. The
execution which follows depends on the particular type of memory into which
the jump occurs. Four different memory types were considered. data areas.
program areas. unused areas and input areas.

Data areas were assumed to contain random values., and theretore each

160

operation code was equally likely to be read. It was found that execution
would interpret a number of instructions before encountering a jump. The
average ranged from between 2 and 10. depending on the processor.

Program areas contain a logical sequence of instructions. but an
erroneous jump will not necessarily pass control directly to a valid
instruction. as an operand field can be read. However, the analysis
revealed that there is a high probabitity that a valid Instruction will be
read immedlately. In which case the processor will continue to read valid
instructions in step with the program. if an operand field is entered
initially, the probability of reading a valid instruction at the next fetch
is very high, and it has been shown that resynchronisation with the program
tends to occur very rapidly, usually in less than three or four instruction
cycles.

For unused areas the response depends on the state of the data Dbus
when no active devices are connected to Iit. and this is determined by the
processor and associated hardware. It the bus floats high the value FF
witl be read. Depending on the instruction set. this may be interpreted as
a jump instruction in which case control will pass eisewhere, otherwise the
next location will be accessed and the process will repeat until another
memory block is encountered. For processors with a multiplexed address and
data bus the address can remain valid during the subsequent read cycle.
This results in the execution of a predefined sequence of instructions
dependent on the instruction set and the location of the first read. For
the 8085 this type of execution terminates with a halt for about one haif
of the initial starting points.

The data from input ports can be read as instructions if the ports are

memory mapped. For a number of ports which are fully decoded into adjacent

161

jocations they will appear 10 have the same properties as data areas. and
can be treated in the same way. However, it is common practice to use only
partial decoding. and therefore the same value will appear in adjacent
locations, sometimes in as many as 4 K. With rapidly changing data on the
ports a sequence of different instructions will be read. but in the
analysis presented it was assumed that data remains stable for several
mifiiseconds. in this case a jump instruction will be interpreted
immediately, or the same instruction will be executed repeatedly until the
end of the block is reached.

10.5 Recovery from Erroneous Execution

Having established the possible sequences of execution following an
erroneous jump for a non-fault toierant system, methods were considered
which would aliow recovery from erroneous execution. Clearly. the aim is
to force the processor to execute a recovery routine and this can be
achieved by encouraging the execution of a restart instruction.

For the data area the code for a restart can be placed at regular
intervals so that they may Dbe read as instructions if execution enters the
area. However, if multibyte instructions appear before them, they are less
likely to be executed. This can be overcome by grouping the restart codes
together. Investigations were carried out to determine both the optimum
spacing and optimum grouping to give the greatest Dbenefits. it was
established that around a 20% content of restart codes provides the best
solution, Dbut that the optimum grouping depends on the particular
instruction set. In cases where there are a large numbper of muitibyte
instructions the restart codes should be grouped together in two's or
three’'s. Although there is an increase in the probability of recovery.

from erroneous execution in this area. by using this method it is not

162

considered worthwhile. This is due to the large amount of extra hardware
that is required, which will itselif be prone to failure. A hardware
mechanism to detect operation code fetches from data areas has been
presented. It provides immediate detection using only a few simple logic
gates and will therefore be much maore effective.

The contents of the program areas can be influenced by the pasitioning
of various memory blocks. For example, the addresses in a heavily accessed
data area will appear in many locations in the program. Therefore by
certain positioning of Dblocks particular op-codes can be made to appear
more often. This concept was investigated., but revealed that only marginal
improvements in recovery couid be obtained. As before, in most cases
execution resynchronises with the program. Therefore mechanisms
incorporated in the software are more effective. to detect that execution
has not followed the correct path.

The unused areas can be modified very simply and effectively by the
addition of resistors between the data and power supply lines. This forces
a single value into all locations and can be selected to be equivalent to a
restart instruction, so that recovery is Iinitiated immediately. This
should be incorporated in all systems.

For the input areas the ports should be removed from the memory map.
if possible., otherwise a high level of decoding should be used. This is
particularly important if rapid recovery is required as large Dblocks of
input data can lead to very long sequences of erroneous execution.

10.6 Choice of Recovery Mechanisms

The choice of a particular combination of mechanisms depends on the
size of each type of memory. Generally, modification to the unused areas,

and detection within the program, should be included. The addition of a

163

combination of these techniques ensures that erroneous execution will be
detected quickly in most cases. but there will be occasions when they will
fail. it is therefore necessary to provide a higher level of detection in
the form of a hardware watchdog timer. It has been shown that the design
of such a timer is important. For example, simple updating methods should
be avoided as these may be erroneously generated under fault conditions.
Interrupts must not be used to initiate recovery, as they may not function.
At least a full reset must be used. and in some cases it may be necessary
to power-down the system before recovery is possibie.

10.7 Summary

This thesis has concentrated on error detection mechanisms, however
the recovery process is equally important and requires caretul
consideration. It may vary from a simple reset to a thorough check-out of
the entire system followed by an attempt to reconstruct all criticali data
that was lost.

The techniques studied provide the greatest improvements to non-
redundant systems. They can also be used in redundant systems to enable
the recovery of a failed unit or to recover from common mode failures. For
the British Gas application of digital control, a simplex system
incorporating these techniques and. perhaps. containing some additional
fail-safe mechanisms, may Dbe considered to give high enough reliability.
If higher standards are required it will be necessary to adopt a redundant
arrangement in the hardware. This can be achieved in a number of ways.
from a tightly coupled system with voting at each clock cycle, 1o a very
loosely coupled system maintaining separate channels irom the transducers
10 the actuators.

The latter arrangement is preferred because it essentially consists of

164

several simplex channels, which will all receive the full benefits trom the
techniques described above. Taken individually. each cﬁannel will be easy
to design and maintain, and will therefore be more readily accepted into an
industry which has been concerned traditionally with mechanical
controllers. The arrangement is highly immune to common mode failures, and
is also very adaptable for other appllications requiring different levels ot
retiabitity. it is simply a case of adding or removing modules as
required.

Finally, for any application requiring high reliability., full testing
of the system is essential before it undertakes active control. Some
methods of testing have Dbeen presented. but these should be followed by

comprehensive field trials to establish whether specified leveis ot

reliability have been reached.

165

10

References

Anderson. T. and Kerr. R.. ‘Recovery Blocks in Action’., University of
Newcastle upon Tyne., Technical Report Series, No. 93. July
1976, pp. 1-11.

Arnold, T.F.. ‘The Concept of Coverage and Its Effect on the
Reliability Model of a Repairable System’, I|EEE Trans.
Computers, Voi C-22. No. 3. March 1973, pp. 251-254.

Avizienis, A.. ‘Arithmetic Algorithms for Error-Coded Operands’, {(EEE
Trans. Computers, Vol C-22, No. 6, June 1973, pp. 567-572.

Avizienis, A., ‘Fauilt-Tolerant Systems’, IEEE Trans. Computers, Vol
C-25. No. 12, December 1976. pp. 1304-1312.

Ball, M. and Hardie, F.. ’‘Effects and Detection of Intermittent
Failures in Digital Systems’. AFIPS Proc. Spring Joint Computer
Conference, 1969, pp. 329-335.

Barigazzi. G.. and Strigini, L.. ‘Application~Transparent Setting of
Recovery Points’, 13th Annual Int. FTCS, June 1983, pp. 48-55.
Barraclough. W.., Chiang. A.C.L. and Sohl. W., ‘Techniques for Testing
the Microcomputer Family, Proc. |IEEE, Vol 64, No. 6. June 1976,

pp. 943-950.

Barton, S.K. et al, ‘Communications Engineering Research Satellite’,
SERC Report. Rutherford Appleton Labs, RAL-84-016, March 1984.

Basu, R.N.. ‘Measurement of Small Signals in a Noisy Environment’.
IEE Conference on Electricai Interference in Instrumentation,
1970, pp. 109-114,

Bell, E.M.. Kwiatkowski. C. and Ross., C.E.J.. ‘Computer Aids for
Reliability Prediction and Spares Provisioning’, Electrical

Communication, Vol 54, No. 2. 1979, pp. 136-142.

166

11

12

13

14

15

16

17

18

19

Bland, G.M.S.. Bradbury. K.J. and Smith T.D.. ‘Distributed Computer
Control of a Large Coal Fired Generating Unitt— A Design
Study’. |EE Conference on Distributed Computer Control.
November 1977, pp. 1-12.

Bologna. 8. et al.. ‘A Computerized Protection System for a Fast
Research Reactor’, IEEE Trans. Nuclear Science. Vol NS-27. No.
1. February 1980. pp. 803-807.

Boney, J.. ‘Let Your Next Microcomputer Check Itself and Cut Down
Your Testing Overhead’. Electronic Design. September 1979, pp.
100-105.

Boothman, G.. ‘Designing Business Machine Cabinets for Optimal EMI
Shielding’. Wescon ‘82 Conference Record. Anaheim, USA.
September 1982, pp. 11-1/1-5.

Bouricius, W.G., Carter, W.C.. Jessep, D.C.. Schneider, P.R. and
Wadia. A.B.. 'Reliability Modelling for Fault Tolerant
Computers’, |IEEE Trans. Computers, Vol C-20, No. 11, November
1971, pp. 1306-1311.

Brodsky. M., ‘Hardening RAMs Against Soft Errors’, Electronics. April
1980, pp. 117-122.

Buchholz. S.. ‘Besitzt der Mikroprozessor intel 8085 ein Overflow-
Flag?’. fernmeide-praxis. Vol 58, June 1981, pp. 428-436.

Buil, J.H.. ’Interference 10 Instumentation due to Transients in the
Supply System’, IEE Conf, Electrical Interference on
Instrumentation. 1970, pp. 94-100.

Bumby. E.A.. ‘Redundancy Management for Fly-by-Wire Systems’. AIAA

Guidance and Control Conference, Paper 72-884, 1972, pp. 1-5.

167

20

21

22

23

24

25

26

27

28

Burrow. L.D.. ‘The Fail Soft Design of Compiex Systems’, IEE Conf. on
Distributed Computer Control, November 1977, pp. 151-156.

Carter, W.C. and Bouricius. W.G.. ‘A Survey of Fault Tolerant
Computer Architecture and its Evaluation’., Computer. Voi 1.
January 1971, pp. 9-16.

Castillo. X.. McConnel. S.R. and Siewiorek. D.P., ‘Derivation and
Callbration of a Transient Error Rellability Model’. IEEE
Trans. Computers, Vol C-31. No. 7, July 1982, pp. 658-671.

Chudleigh. M.. ‘Software Must be Tolerant Too'. Computer Systems,
December 1982, pp. 43-45.

Courtois, B.. ‘Some Results About the Efficiency of Simpie Mechanisms
for the Detection of Microcomputer Maifunctions’, 9th Annual
International FTCS. June 1979, pp. 71-74.

De. B.B. and Krarau, H.B.. ’‘Fauit-Tolerance In a Multiprocessor.
Digital Switching System’, IEEE Trans. Reliability, Vol R-30.
No. 3. August 1981, pp. 246-252.

Debelle, J. et al., °‘First Beigian Application of a Digitat Computer
for the Control of a 280 MW Boiler of the Thermal Power Station
at Genk-Langerlo’. Digital Computer Applications to Process
Control, 1977, pp. 769-788.

Decouty. B.. Michel, G. and Wagner. C.. '‘An Evaluation Tool of Fault
Detection Mechanisms Efficiency’. 10th Annual International
FTCS. October 1980, pp. 225-227.

Dehnhardt, W. and Soarensen, V.M., ‘Unspecified 8085 Op-Codes Enhance

Programming’, Electronics. 18th January 1979, pp. 144~145.

168

29

30

31

32

33

34

35

36

37

38

Deilacorna. L.. Morganti., M. and Novielli, G., ‘A Micro-processor
Based Control Unit for High Availability Applications’., 10th
Annual Int. FTCS, 1980, pp. 357-362.

Dick. 1.J.. 'Low Frequency Electrical interference in Process Control
Computing’. |EE Conference on Electrical Interference in
Instrumentation, 1970, pp. 74~80.

Doyle, E.A. Jr., ‘How Parts Fail’, IEEE Spectrum, Vol 18, No. 10,
October 1981, pp. 36-43.

Dunn, R.H. and Uliman. R.S.. ‘A Workable Software Quality/Reliabitity
Plan’, Proc. Annual Reliability and Maintainability Symposium,
1978, pp. 210-217.

Dyer. G.. ’'Protecting Military Systems and Equipment from EMP’,
Communications International, Aprit 1982.

Elktand. S.A. and Siewiorek, D.P.. ‘Reliability and Performance of
Error-Correcting Memory and Regqister Arrays’. |EEE Trans.
Caomputers. Vol C-29, No. 10. October 1980, pp. 920-927.

Emfinger. J.. and Flannigan. J.. ‘Fly by Wire Technology'. AIAA
Guidance and Control Conference. Paper 72-882, 1972, pp. 1-6.
Gelderioos, H.C. and Wiison D.V., ‘Redundancy Management of Shuttle
Ftight Control Sensors’. Proc. IEEE Conf. on Decision and

Control, 1976, pp. 462-475.

Goldberg. J.. 'New Problems in Fault-Toierant Computing’. 5th Annual
international FTCS, 1975. pp. 29~-34.

Greenspan, S.J. and McGowan., C.L.. ‘Structuring Software Development
for Reliability’. Microelectronics and Reliability, Vol 17.

1978, pp. 75-84.

169

39

40

4

42

43

44

45

46

47

48

49

Gunther, N.L. and Carter, W.C., ’‘Remarks on the Probability of
Detecting Faults’. 10th Annual Int. FTCS, 1980, pp. 213-215.

Hamil, T.G. and Phillips. R.. ‘A Fault Tolerant Reconfigurable
Multiprocessor System’, IEE Conference on Distributed Computer
Control. November 1977. pp. 139-144.

Hamming. R.W., ‘Error Detecting and Error Correcting Codes’, Bell
Systems Technical Journal, Vol 29, 1960, pp. 147-160.

Hart. A., Teng. T. and McKenna. A., ‘Reliability Influences from
Electrical Overstress on LSl Devices’, 18th Annual Proc. of
Reliabitity Physics. April 1980. pp. 190-196.

Hayes. J.P. and McCluskey. E.J., ‘Testability Considerations in
Microprocessor-Based Design’, IEEE Computer, Vol 13, No. 3.
March 1980, pp. 17-26.

Hecht, H., ‘Fault-Tolerant Software for Real-Time Applications’.
Computing Surveys, Vol 8. No. 4, December 1976, pp. 391-407.
Heftman, E.. ‘Growing Concern over Memory Soft Errors Prompts Intense
Alpha-Particle Research’, Electronic Design. April 1979, p. 27.
Hnatek, E.R, Graves. W. and Schmitt, R.G., 'How OStatic is the Static
4K RAM?’, |IEEE Semiconductor Test Symposium, 1976, pp. 3-8.
Hnatek, E.R.. 'Microprocessor Device Reliability’. Microprocessors,

Vol 1. No. 5. June 1977, pp. 299-303.

Hopkins, AL Jr.. ‘A Fauit Tolerant Information Processing Concept
for Space Vehicles’, IEEE Trans. Computers. Vol C-20, November
1971, pp. 1394-1403.

Jack. L.A.. Kinney, LL. and Berg., R.Q.. ’‘Comparison of Alternative
Self Check Techniques in Semiconductor Memories’. 7th Annual

international FTCS, 1977, pp. 170-174.

170

50

51

52

53

54

55

56

57

Johnson, J.N. and Shaw. J.L.. 'System Malfunction Detection &
Correction Studies Software for a Fault Tolerant Computer -
Dual Processor with Monitor’. Boeing Company, Document Number
D180-19249-2, July 1976, pp. 1-21.

Kim, W.S. et al. ‘Radiation—Hard Design Principles Utilised in CMOS
8085 Microprocessor Family’. IEEE Trans. Nuclear Science. Vol
NS-30, No. 6. December 1983, pp. 4229-4234.

Kodandapani. K.L. and Pradhan. D.K.. ‘Undetectability of Bridging
Faults and Validity of Stuck—At Fauit Test Sets’. |[EEE Trans.
Computers. Vol C-29, No. 1, January 1980, pp. 55-59.

Kopetz, H., ‘Software Reliability’. Macmillan Press, 1979.

Kuczynski, M. and Price. B.L.. 'EPROM Evaluation: A Technique for
the Software Evaluation of Microprocessor Based Burner
Controllers’., British Gas Internal Report. July 1982, {British
Gas reports are not normally available to other organisations).

Kurzhals, P.R. and Deloach. R.. ‘integrity in Flight Control
Systems’. Proc. Joint Automatic Control Conference. Vol 1,
1977. pp. 489-497.

Lee, P.E., Ghani, N. and Heron, K., ‘A Recovery Cache for the PDP-
11", IEEE Trans. Computers, Vol C-29, No. 6. June 1980, pp.
546-549.

Levine, L. and Meyers, W.. ’‘Semiconductor Memory Reliability with
Error Detecting and Correcting Codes’, |EEE Computer. Vol 9,

No. 10. October 1976. pp. 43-50.

171

58

59

60

61

62

63

64

65

66

Lonn., W.M.. Moore., G.H. and Speckman. B.M., 'Operating Experience
with Dual DDC Computer System Pittsburg Power Plant Unit
No.7’. Proc. 16th Int. [.5.A. Power Instrumentation Symposium,
Vol 16 A73. 1973, pp. 75-85.

Losqg. J.. ‘Influence of Fault-Detection and Switching Mechanisms on
the Reliability of Stand-by Systems’. 5th Annual International
FTCS. 1975, pp. 81-86.

Lunde. A., '‘Emperical Evaluation of Some Features of Instruction Set
Processor Architectures’. Communications of the ACM. Vol 20.
No. 3, March 1977, pp. 143-153,

McConnel, S.R.. Slewiorek, D.P. and Tsao. M.M., ‘The Measurment and
Analysis of Transient Errors in Digital Computer Systems’. |EEE
Ch1396-1/79/0000-0067$00.75. 1979, pp. 67-70.

McKinney, H.N. and Briggs. D.C.. ’‘Electrical Power Subsystem for the
NATO Il Communications Satallite’, 11th Int. Energy Conversion
Conference, 1976. paper 769242, pp. 1408-1413.

Marchal., P. and Courtois, B., ‘On Detecting the Hardware Failures
Disrupting Programs in Microprocessors’, 12th Annual
international FTCS. 1982, pp. 249-256

May, T.C. and Woods. M.H., ‘A New Physical Mechanism for Soft Errors
in Dynamic Memories’, Proc. Int. Reliability Physics Symposium,
April 1978, pp. 33-40.

Musa, J.D., ’'Measuring and Managing Software Reliability’. IEEE
Proceeding of the 2nd Annual Conference on Computers and
Communications. March 1983, pp. 105-109.

Neison, E.C.. ’‘Software Reliability’. 5th Annual International FTCS.

1975, pp. 24-28.

172

67

68

69

70

71

72

73

74

75

76

Nemmour, M., ‘Etude du Fonctionnement Interne des Microprocesseurs
6800, ENSIMAG. Final Report (NM4), Grenoble, May 1979.

Nemmour. M.. 'Etude du Fonctionnement du Microprocesseur MC 6809’,
ENSIMAG. Contract EDF{251A2739, Grenoble.

Nichols. N., ‘8080/8080A Microcomputer’. Intel Reliability Report,
RR-10. March 1976, pp. 1-10.

Ng. Y.W. and Avizienis. A., ‘A Model for Transient and Permanent
Fauit Recovery in Closed Fault Tolerant Systems’, 6th Annual
internationatl FTCS. 1976, pp. 182-188.

Ng. Y.W. and Avizienis, A., ‘ARIES - An Automated Reliability
Estimation System for Redundant Digital Structures’. Proc. 1977
Annual Reliability and Maintainability Symposium, USA, January
1977. pp. 108-113.

O’'Brien, F.J.. ‘Rollback Point Insertion Strategies’., 6th Annual
international FTCS, 1976. pp. 138-142,

Obac-Roda, V. and Davies. O.J.. ‘Aspects of Fault Tolerant Ring
Structures’, |EE Colloquim. London. Digest No. 1982/67, October
1982, pp. 3/1-9.

Oppenheimer. C.P.. ‘Reliable Designs Begin with the Basics’, Computer
Design. August 1983, pp. 93-99.

Pappu. R.V., Harris, E. and Yates. M., ’‘Screening Methods and
Experience with MOS Memory’. Microelectronics and Reliability,
Vol 17. No. 1. 1978, pp. 193-200.

Pearson. J.C.. ‘Reliability of Small Digital Controliers’, PhD

Thesis. University of Durham, 1983.

173

77

78

79

80

81

82

83

84

85

86

Pearson, J.C.. Halse. R.G. and Preece, C.. 'Reliable Digital
Controller Architecture for Gas Distribution Regulators’,
Reliability Engineering. Vol 8, 1984, pp. 179~-189.

Peckett, D., ‘Fault-Finding with Aid of Seilf-Test Programs’,
Practical Computing. December 1979, pp. 102-107.

Pellegrini,’ G.. Raimo. A. and Reynaud. C.. ‘EMC Problems in H.V. Sub-
Stations’. |EEE iInternational Symposium on Electromagnetic
Compatability, 1976, pp. 106-109.

Preece, C. and Stewart T.R.. ’‘Multilevel Fault Recovery in Real-Time
Digitali Controliers’, |IEE Colloquim, London. May 1979,

Preece. C. Pearson. J.C. and Halse, R.G.. '‘The Introduction of Fault
Tolerance into Digitally Controlled Gas Regulators’, iInt. Gas
Research Conference. London. June 1983,

Pytches., D.. ‘“Zinc-Air Celis: Power Source of the Future’,
Electronics and Power, Voi 29. No. 7/8, July 1983, pp. §77-580.
Randeil. B.. ’'System Structure for Sofware Fault Tolerance’. IEEE
Trans. Software Engineering. Vol SE-1, No. 2, June 1975, pp.

220-232.

Reese. S.E.. ‘Low Point Control System Reduces Gas Losses’, Pipeline
and Gas Journal, July 1975, pp. 42-46.

Rabach, C.. Saucier. G. and Lebrun, J.. ‘Processor Testability and
Design Consequences’. |EEE Trans. Computers., Vol C-25, No.
6. June 1976, pp. 645-652.

Rostek, P.M.. ‘Techniques of Shielding and Filtering Digital
Computers for EMI Susceptibility’, IEEE Electromagnetic
Compatibility Symposium Record. San Antonio, USA, October 1975,

Session 4B, pp. el1-7.

174

87

88

89

90

91

92

93

94

95

Russell. P.J.. ’'Non-Commercial Non-Stop Processing’. Computer
Systems, December 1982, pp. 47-49.

Sedmak. R.M. and Liebergot, H.L.. ‘Fault-Tolerance of a General
Purpose Computer implemented by Very Large Scale Integration’,
8th Annual International FTCS, June 1978, pp. 137-143.

Sequin. C.H.. ‘Instruction in MOS LSI Systems Design’, IEEE Computer,
March 1980, pp. 67-73.

Sexton, F.W. et al, ‘Radiation Testing of the CMOS 8085 Micro-
processor Family’, IEEE Trans. Nuclear Science. Voi NS-30. No.
6. December 1983, pp. 4235~4239.

Shedletsky. J.J. and McClusky, E.J.. ‘The Error Latency of a Fault in
a Sequential Digital Circuit’, IEEE Trans. Computers. Vol C-25,
No. 6. June 1976, pp. 655-659.

Shooman, M.L.. ’'The Spectre of Software HReliability and its
Exorcism’, Proceedings of the Joint Automatic Control
Conference, 1977, pp. 225-231.

Siewiorek, D.P.. ‘Transparency in Distributed. Fauit Tolerant
Computing Systems’, 14th International Computer Soclety
Conference, pp. 276-278.

Siewiorek, D.P.. Kini, V., Joobbani, R. and Bellis, H., 'A Case Study
of C.mmp, Cm*® and C.vmp: Part II - Predicting and Calibrating
Reliability of Multiprocessor Systems’., Proc. of |EEE., Vol 66,
No. 10. October 1978, pp. 1200-1220.

Smith, A.L., ‘Hard and Soft Failures in Dynamic RAM Fault Tolerant
Memories’, IEEE Trans. Reliability, Vol BR-30, No. 1. April

1981, pp. 58-60.

175

96

97

98

99

100

101

102

103

104

105

106

Smith. D.H.. ‘Microprocessor Testing - Method or Madness’, |IEEE Semi-
conductor Test Symposium, 1976, pp. 27-29.

Soi. IM. and Gopal. K., ‘Some Aspects of Reliable Software
Packages’. Microetectronic Reliability, Vol 19, 1979, pp. 379-
386.

Spearman., C.A., ’Improved District Pressure Control’, The Institution
ot Gas Engineers, Bth March. 1977.
Sulway, B.., ‘AC Emergency and Uninterruptiple Power Supplies’,
Communications International. Vol 3. December 1976, pp.62-65.
Tasar, V.. ‘Analysis of Fault Detection Coverage of a Self-Test
Software Program’. 8th Annuai int. FTCS. June 1978, pp. 65-71.
Teets, R.M., 'Protecting Minicomputers from Power Line
Perturbations’., Computer Design. Vol 15, June 1976, pp. 99-104.

Thatte, S.M. and Abraham, J.A.. ‘Testing of Semiconductor Random
Access Memories’, 7th Annual Int. FTCS, 1977, pp. 81-87.

Toschi, E.A. and Watanabe. T., ‘An Aill-Semiconductor Memory with
Fault Detection, Correction, and Logging’. HP Journal. pp. 8-
13.

Turner, R.C.. ‘Reai~Time Programming with Microcomputers’, Lexington
Books. Toronto, 1980.

von Neumann, J.. ‘Probabilistics. Logistics and the Synthesis of
Reliable Organisms from Unreliable Components’, Automata
Studies from Annals of Mathematical Studies No. 34, Princeton
University Press. 1956, pp. 43-99.

Wachter, W.J., ’'System Malfunction Detection and Correction’. 5th

Annual Internationat FTCS, 1975, pp. 196-201.

176

107

108

109

110

IRR

112

113

114

115

Wakerly, J.F.. ‘Microcomputer Reliability Improvement Using Tripie-
Modular Redundancy’., Proc. IEEE. Vol 64, No. 6. June 1976, pp.
889~895.

Walker, W.K.S.. Sundberg. CW. and Black., C.J.. ‘A Reliable
Spaceborne Memory with a Single Error and Erasure Correction
Scheme’, IEEE Trans. Computers. Vol C-28, No. 7, July 1979, pp.
493-500.

Wei, AY.. '‘Real Time Programming with Fault Tolerance’., PhD Thesis,
University of illinois. USA, 1981,

Wensley, J.H., 'SIFT ~ Software Impiemented Fault Tolerance’. AFIPS
Conference Proceedings. Vol 41, Part 1, 1972, pp. 243-253.

Wensley, J.H. and Levitt, K.N., ‘A Comparative Study of Architectures
for Fauit-Tolerance’. 4th Annual International FTCS. June 1974,
pp. 4-(16-21).

Westermeler. T.F., ‘Redundancy Management of Digital Fly-by-Wire
Systems’, Proc. Joint Automatic Control Conference., Vol 1,
1977, pp. 272-277.

Whallen, J.J.. Tront, J., Larson, C.E. and Roe. J.M., ‘Compter-Aided
Analysis of RFI Effects in Integrated Circuits’. IEEE Electro-
magnetic Compatibility Symposium, June 1978, pp. 64-70.

Williamson, 1., ‘Design of Self-Checking and Fauit-Tolerant Micro-
programmed Controllers’. IEEE Conf. Computer Systems and
Technology. 1977, pp. 193-204.

Williamson, T.. ‘Designing Microcontroiler Systems for Electrically
Noisy Environments’, Intel Corporation, Application Note AP-

125, February 1982.

177

116

117

118

119

120

121

122

Wuif, W.A., ‘Reliable Hardware/Software Architecture’, |EEE Trans.
Software Engineering. Vol SE~1, No. 2, June 1875, pp. 233-240.
Ziegler. J.F. and Lanford. J.F., ‘Effect of Cosmic Rays on Computer
Memories’. Science. Vol 206, November 1979, pp. 776-788.

————— . 'The 8080As Are Not All Alike: You Should Know the
Differences’, Electronic Design, 18th January 1977, pp. 41-42.

————— . ‘MCS-80/85 Family User’s Manual’, Intel Corporation, 1879.

————— . '48-Series Microcomputers Handbook’, National Semicinductor
Corporation, 1980,

————— . '‘MIL-HDBK-217D Reliability Prediction of Electronic
Equipment’., U.S. Department of Defense. January 1982.

----- . 'HRD3 Handbook of Reliability Data’., British Telecom,

Materials and Components Centre. Birmingham. January 1984,

178

.

INLET [!
PRESSURE

=\
QUTLET
PRESSURE

INLET

Figure 1.1 Typical Diaphragm Operated Requlator

179

OUTLET

luawsbuelsy 1011U0D 10SS8004d0ID N B1dwiS g @inbig

JATYA TOHLNOD NIVIN

-

L

H3IONASNvYL

L

HOSS300HdOHIINW

180

Vee

1 j MANUAL
RESET
a Qo
a 3 8085 RESET N e
5 X I
N~ © o ﬂ '-"—j1
S & QrQ a) n - 3 GND GND
a YoeSlx Ze3 § © -
< <Ia:39u:5’ EZ2 £ < < ‘x'=:
i 1 l I |
5 74LS04 74L530
jay=Ya)
(25%5 Q A
s |3 5 A 11-15 W A 11-15
8
5
74LS30
o] L5 1115
I %
3 M A 8-10
8
':3) A 8-10 —
' PROG/CE
8755A
vee —-——’_C_E_
Vee —e1 10R
Vee ————tad vdd
CLK
RESET
o/M
- WR
= R0
i ALE
o 8 4AD 0-7
Vee Vee
8l
: 3 =
> 8155
o= RESET
10/
- WR
— RO
o ALE
A
K 8 J> AD 0-7
O
Figure 2.1 Block Diagram of the 8085 Test System

18

1

25 WAY D-CONNECTOR

1uF
=
! Lang
 — RESET
(— 741530
e
1488 74L804
. 3 .
—e| 1489 741530
| —| *
°
8085
6,144
MHz > - -+
|
.
8755A
—_—
1
°
8155

0000000000

Figure 2.2 Layout of the Components

182

AD AD AD AD

14 12 10 8

D, | AD,, | ap,,| Ap,
BAM
SELECT

AD;s AD,, AD;5 AD,, AD,

i \\Iii;_ EPROM
SELECT
Sy $ 1

Figure 2.3 Logic Diagram of the Memory Decoding Circuitry

183

1Hun Alddng Jamod 1S91 auy jo weabe|q 1jndo1|D ¢'g 84nb|4

aND @-
AQ @ 4 L 4 g B 4
~
La d By m ey
€0 22|l
3 ‘ > 0
2y 1 _ o \d
SO
TR 140) & Al
H3i41103Y
AS @ [
1no NI 2ZMS |_A| ol
G082 =[ale]i%]e]
0
g'31 usaun A
J01S1s8y wyo 0¥ cY
101S1S8Y WUO W L't LY ® L1
1010edRD JU OLF GO
1o010eden 4u o222 ¥D LMS
ioyoeded 4n 000°0L €D ¢l
ionoede) Jn goL'v 2O
Joyoede) 40 002’2 LD
Jawgjsueldy Jeuiwe] oL-0/0v¢ ol
l1swiojsues) {epjosol 9-0-9/0v2 L1

184

walsAg 1S9 8¥08/5€08 Oul JO weibeig %00ig ('t 8.nbig

A G %
N3Sd ONO 4n | /
N -
8 8 8 w sns
7 .
¥ L
-0 10
= L-0 8 1353y
(-0 0C
T] 72T
v3
2sa IV A G
Y O0A
€ Jano ¥0 8v08/5c08 A0
g1s
1S9 aw 2 V1X Ilw.— 4d 02
AS z s |
= 0°d L IVLX _ _
£ 2%d son ZHW ¥ 4d oz

185

0 1 2 3 4 5 6 ? 8 9 R B c D £ F
NOP |+NOPe| OUTL | RDD Jnp EN |vJNTFs{ DEC INS 1IN 1IN «IN+ | MOVUD | NOUD | MOUD | noVDd
BUS.A| A, #d | O0XX 1 edd R A,BUus| A,P1 | A, P2 | AR, P2 | A,P4 | R,PS | A,PE | A,FD
18,1C|1B,1c|1B,2C|28,2C|28,2C|18,1C(28,2¢c|18,1C|18,2C|{18,2C|18,2C|1B,2C}18.2C|18,2C|18,2C|18B,2C
INC INC JBO | RDDC | CALL | DIS JTF INC INC INC INC INC INC INC INC INC
eR0 R} add | A, #d | OXX 1 add A RD R1 R2 R3 R4 RS RE R?
18.1Cc|18,1C|28,2C}28,2C|28,2C{1B,1C|28,2C|{1B,1C|1B.1C[1B,1C[18,1C|1B,1C{18,1C[18,1C{18,1C|18.1C
XCH XCH | eNOPe | HOU Jne EN JNT0 | CLR XCH XCH XCH XCH XCH XCH XCH XCH
A, QRO |A,eR1 A,fd | 1XX {TCNT1| edd A A,R0 | A,RL {A,R2 | A,R3 | A,R4 |A,RS | A,RE6 | A,R?
18,1c{18,1c}18,1C|2B,2c|28,2C|{1B,1C|2B.2C|1B,1C|18,1C|1B,1C[18,1C[18.,1C|1B,1C}1B.,1C 1B,1C}18,1C
XCHD | XCHD | JB1 |=NOPe| CALL | D1S JT0 CPL [eBUSe | OUTL | OUTL [*QUTL*{ NOUD | NOUD | NOUD | NOUD
A,Q@RD |A,8R1 | add 1XX |TCNT1| edd A 1DLE | PL,A)P2,A| P2,A | P4,A | PS,A | P&,A | P2,A
18,1C|18,1C|28,2C|1B,1C|28,2Cc|1B,1C|28,2C|1B,1C|1B,2C[18,2C|18,2C|18,2C 1B, 2C|1B,2C|18,2C|18.2C
ORL ORL Hov ORL JnP | STRT | JNT1 | SWAP | ORL ORL ORL ORL ORL ORL ORL ORL
A,@R0 |A,8Rt| AR, T | A, #d | 2XX CNT edd A ARDO | A,RY | A,R2| A,R3 | A,R4 [A,RS | A,RE | A,R?
18,1C|1B,1C|18,1C|2B,2C|2B,2C{18,1C(2B,2C|18,1C 18,1c|18,1¢c|18,1C|18,1C{1B,1C|1B,1C|1B,1C|1B,1C
ANL ANL JB2 ANL | CALL | STRT | JT1 DA ANL ANL ANL ANL ANL ANL ANL ANL
A, QRO JA,@R1 | add | A.#d | 2XX T add] A.RO | A,RY | A,R2 | A,R3 | R,R4 | A,RS | A,RE | R,R7
18,1C|1B,1Cc|2B,2C|28,2C|28.2C|1B8,1C|2B,2C|1B.1C|18,1C[18,1C|18,1C|18,1C}1B,1C|18,1C|1B,1C|18B,1C
ADD ADD NoV | eNOPv | JHP | STOP [vJNFlsf RRC | RDD ADD ADD ADD ADD RDD ADD ADD
A,@R0 [R,@R1 | T.A 3XX | TCNT | edd A A,RO | A,RY | A,R2 |A,R3 | A,R4 {A,RS | A,RE | A,R?
18,1c|1B.,1C|1B,1C|1B,1Cc|28,2C|1B,1C|28,2C|1B,1C}|18,1C[18,1C|18,1C|18,1C|18,1CJ1B,1C|18B,1C1B.1C
ApDC | ADDC | JB3 | *NOPs| CALL | ENTO | JF1 RR ADDC | RDDC | ADDC | RDDC | ADOC | RDDC | ADDC | ADDC
A,8R0 |A,¥R1 | edd IXX CLK add A A,R0 | ARt {AR2 | A,R3 | A,R4 | A,RS | A,RE | A,RY
18.1c{18,1c|2B,2c|1B,1c|2B,2C{1B,1C{2B,2C|18,1C|1B.1C[18,1C{18,1C|1B,1C}1B,1C|1B,1C|1B,1C|1B.1C
MOUX | NOUX | vNOPe | RET Jne CLR JN1 | *NOPv| ORL ORL ORL [*ORLv| ORLD | ORLD { ORLD | ORLD
A, QRO (A, R 4KXX Fo edd kus.nd P1,#d|P2,8d|P2,#d| P4,A | PS,A | P6,A | P7,A
18,2C|1B.2c|1B,1Cj1B,2C|2B,2C|1B,1C|2B,2C{18,1C|28,2C[28,2C|2B,2C|28,2C|1B8,2C11B,2C|18,2C|18.2C
noux | noux | JB4 | RETR | CALL | CPL N2 CLR [BHNL ANL ANL |vANLe | ANLD | ANLD | ANLD | ANLD
QRO ,A|€R1,A| edd 4XX FO add c US, #ci P1,#d [P2,8d|P2,4d| P4,A | PS,A | P6,A | P?.A
18,2c{18,2c|28,2c|18,2c|28,2c|18.1C|{2B,2C|18,1C|28,2C|28,2C |28,2C|28,2C|tB,2C{18,2C|18,2C[18,2C
nov HOU |*NOPs | NMQUP | JnP CLR [=JNFOs| CPL nov nov nov nov nov nov nav nov
2RO ,A |€R1,A AR, @A | 5XX F1 edd c RO,A| RI,A|{R2,A | R3,A| R4,A | RS,A | R6,A | R?,A
18.1c{18,1¢c{1B8,1C|1B,2C|28,2C|18.1C}2B,2C|1B.1C/1B,1C|1B,1C|1B,1C)18,1C/1B,1C[18,1C|18,1C|18,1C
nov nov JBS | JnPP | CALL | CPL JFQ | «NOP+| HOU nov noy | nov nov nov oV nov
@RO, #cleR1, #d edd @A BXX F1 edd RO,¥#d|R1,#d|{R2,8d |R3,Rd|R4,Ad RS, #d [RE, #d |R7, #d
28.2c}28,2¢c|28B,2c|18,2C|28,2C|18,1C{28,2C|18,1C|28,2C|2B,2C|28,2C|28,2C{2B,2C |28,2C |28,2C|28,2C
*NOP+ | *NOP* | sNOP* | sNOP= | JNP SEL J2 nov | DEC pec DeC pec DEC DEC DEC DEC
6KX R8O add |R,PSH| RO R1 R2 R3 R4 RS R6 R?
18,1c}18,1c{18,1c[18,1C{2B.2C|18,1C|28.2C[1B,1C|18,1C[1B,1C{18,1C|1B,1C!{18.1C|1B,1C[18,1C|18B,1C
XRL XRL JBe XRL | CALL | SEL |[*JnPPs{ MOV | XRL KRL XRL XRL XRL XRL XRL XRL
A, QR0 |A,QR1 | 9ad | A,#d | 6XX RB1 edd |PSW,A| A,R0 | A,R1 | A,R2 | AR,R3 | A,RY | A,RS | A,RE | A,R?
1B,1C|1B,1C|28,2C|28,2C|28,2C|t8,1C|2B.2C|18,1Cc|1B,1C|1B,1C|1B,1C|{18,1C}1B,1C|1B,1C|1B,1C|1B.1C
*MOPo | *NOPw | «NOP~ {MOUP3 | JNP SEL JNC RL DINZ | DJNZ | DJNZ | DJNZ | DJNZ | DIN2 | DINZ | DJNZ
A, %A | 2XX MB0 edd A [R0,eddR1, addR2, addR3, addR 4, 9ddRS, addR6, addR?, sdd
18.1¢c|1B,1c|1B,1c|18,2c|28,2¢|1B,1C{28.2C{1B,1C|28,2C[2B,2C [28,2C|2B,2C |28.2C128,2C |28,2C|28,2C
1oV nov JB? |*NOP+| CALL | SEL Jc RLC | nou falelV) nov nov nov nov nov nov
A,QR0 |A,ER1 | edd 7XX nB1 edd A A,R0 | A,RY | A,R2 | A,R3 | A,R4 | A,RS | AR,RE6 | A,R?
18.1¢c|1B.1c}2B8,2c|18,1c|28,2C|18,1€C|28,2C[1B,1C{1B,1C|1B,1C|1B,1C|t58,1C|{1B,1C|1B,1C|1B,1C{18,1C

Owm s o
]

INDIRECT RDDRESSING

1NREDIATE ADDRESSING

- BYTES
CYCLES

add - RDDRESS
d - DATA
v v - UNDECLARED INSTRUCTION

Figure 3.2 Full Instruction Set for the 8048 Manufactured bv Intel

186

http://R0.fi

0 1 2 3 4 1 [V] 8 -] A B o D E F
NOP | «NOPe | QUTL | ADD JHp EN [vJNTFs| DEC INS N N «1Nv | 1MOVD | NOVD | roVD | noVD
BUS,A| A, 8#d | OXX 1 edd A ABUS|A,Pt [A,P2|A,P2 | A, P4 | A,PS|A,PE | R,P?
1B,1Cj1B,1C|18,2C]28,2C|2B,2C|1B,1C|2B,2C|1B,1C|18,2C|18,2C|tB,2C|18,2C!18,2C|1B,2C{1B,2C|1B,2C
INC INC JBo ADDC | CALL D1s JTF INC INC INC INC INC INC INC INC INC
QR0 fR1 edd A,8d | OXX 1 add A RO R1 R2 R3 R4 RS R6 R?
18,1C|1B,1C{28,2C|28,2C|2B,2C{18,1C|28,2C|18,1C|18,1C|18,1C|18,1C|1B,1C|1B,1C|18,1C|1B,1C|18,1C
XCH XCH {enQUe | MOV Jnp EN JNTO CLR XCH XCH XCH XCH XCH XCH XCH XCH
A,@RO [A,ER1 A, PC+1| A, 8#d | 1XX |TCNT1| edd A A,R0 | A,RY | A,R2 | A,R3 | A,R4 | A,RS | A,RE6 | A,R?
18,1C|1B,1C[{1B,1C|2B8,2C{2B,2C|18B,1C|28,2C|{18,1C|1B.1C|{18,1C{1B,1C|1B,1C{1B,1C|1B,1C|18,1C|1B,1C
XCHD | XCHD | JBU (=NOPs | CALL | D1S JT6 CPL ([«8US+ | QUTL { QUTL {*QUTLe+ NMOUD | NOVD | NOUD | NOVD
A,8R0 |AR, R | edd 1XX |TCNT1| edd A 10LE | PA,A|P2,A| P2,A| P4, A| PS,A | PE,A | P?,R
18,1C{18,1C|2B,2C{1B,1C|2B,2C{1B,1C|28,2C|1B.,1C|18,2C|1B,2C}18,2C|1B.2C|1B,2Cl18,2C|18,2C|18,2C
ORL ORL nov ORL JNP | STRT | JNT1 | SHAP | ORL ORL ORL ORL ORL ORL ORL ORL
A,QRO0 |A,@R1| A, T | A, 8d | 2XX CNT edd A A.R0O | A,Rt | A,R2 | A,R3 | AR.R4 | A,RS | A,RE | R,R?
18,1C{18,1C{1B,1C{2B,2C|2B,2C|{1B,1C|28,2C|1B,1C|1B8,1C|tB,1C|1B,1C|18,1C!18,1C{18,1C|{18,1C|1B,1C
ANL ANL JBe ANL CALL | STRT J11 DA RNL ANL ANL ANL ANL RNL RNL ANL
A,@R0 (R,@R1 | add | A,#d | 2XX T edd R A,R0 | A,Rt |A,R2 | A,R3 | A,R4 [A,RS | A,RE6 | A,R?
18,1C|1B,1C|28,2C28,2C|28B,2C|1B.1C|2B,2C}18B,1C|18,1C}1B,1C|18,1C[18,1C118,1Ci1B,1C|1B,1C{18,1C
ROD RDD MOV |eNQPv | JNP | STOP [+JNFle| RRC | RDD ADD ADD ADD ADD ADD RDD ADD
A,eRO (A, ER1 ! T.R 3XX | TCNT | edd R A,R0O |A,Rt |[A,R2 |A,R3 | A.R4 [A,RS | A,RE | R,R?
1B,1C|18,1C{18,1C{1B,1C|2B,2C|1B,1C|28,2C|1B,1C[18,1C{1B,1C|1B,1C|{1B,1C[1B,1Ci18,1C|18B,1C|1B,1C
RADDC | RDDC | JB3 | *NOP+ | CALL | ENTO | JF1 RR RDDC | ADDC | ADDC | ADDC | ADDC | RODC | ADDC | RDDC
R,ER0 (A, QR | edd IXX CLK add R AR0 (ARl (R, R2Z|AR3 (A, R4 | AR5 | A,RE | R,R?
1B,1C|1B,1C{28,2C|18,1C[28B,2C|1B,1C|2B,2C|1B,1C|18,1C|{1B,1C{1B,1C{1B,1C11B,1C!I1B,1C}{18,1C|1B,1C
noux | 1MOUX | *NOPe | RET Jnye CLR JM1 |9CLRe| ORL ORL ORL |*ORL+* | ORLD { ORLD | ORLD | ORLD
A, RO |A, R 4XX FO edd |A4-R7 |BUS,#d P1,8d |P2,#4d|P2,8d| P4,.R | PS,A | PE,A | P7,A
18.,2C|18,2C|18,1C|1B,2C|2B,2C|1B.1C|28B,2C|18,1C|2B,2C|2B,2C|2B,2C|2B,2C!18,2C[1B,2C|18,2C|1B,2C
HOUX | houxX | JB4 | RETR | CALL | CPL JN2 CLR | ANL ANL ANL |vANLe | ANLD | ANLD | ANLD | ANLD
QRO ,A|@RY,A| edd 4XX FO add C |BUS,#d4P1,.8d|P2,8d|P2,8d)| P4,A | PS,A | P6,A | P7,A
18,2C|1B,2C[28,2C|1B,2C|28,2C|1B,1C[28,2C[18,1C[28,2C|2B,2C(2B,2C|{28,2C!18,2C[18,2C|18B,2C|18,2C
nov noy | eNOPe | NOUP | JNP CLR |[*JNFO+« CPL oV nov nov nov ngv nov nov nov
RO ,A {ER1,A A, Q@A | SXX F1 edd c RO,A [R1,A | R2,A{ R3,A| R4,A | RS,A | RE6.A | R?,RA
18,1C|18,1Cc|18,1C{18,2C|28,2C[18,1C|28.2C|{18.1C{1B,1C{1B,1C|18,1C|18,1C[1B,1CI18,1C|{1B,1C[1B,1C
nov nov JBS | JNPP | CALL | CPL JEQ | *NOPe] QU nov nov | nou nov nov nov nov
@RQ , #4@R1 , #d edd R SXX Ft edd RO,8d{R1,#d{R2, 84 [R3,Ad|R4,8d|RS,#d|RE6,8d|R7,8d
28,2C(28,2C|2B,2C|1B,2C|28.2C(t1B,1C|2B,2C{18,1C{28,2C[28,2C|28,2C|2B,2C128,2Ci28,2C|2B,2C|28,2C
«DEC+ |[*DECe | *MOPv | vNQP~ | JNIP SEL J2 nov | peC DEC DEC DEC DEC DEC DEC DEC
R0 eR1 6XX RBO edd (A,PSW| RO R1 R2 R3 R4 RS RE R?
1B, 1C{18,1C{18,1C|1B,1C{2B,2C|1B,1C|28,2C|1B,1C|18,1C|18,1C}|1B,1C|18,1C}1B,1C!1B,1Ci1B,1C|1B,1C
XRL XRL JBe XRL CALL | SEL |«JnPPe| MOV XRL XRL XRL XRL XRL XRL. XRL XRL
A,QR0 |A,ER1 | edd R, 8d | 6XX RB1 edd [PSKH,A{ARD |A,Rt [A,R2{A,R3I|A,R4 | A RS | AR,RE | R, R?
18,1C|1B8,1C|2B,2C|2B,2C|2B,2C|1B,1C{28,2C|1B,1C|18.1C|1B.1C{18,1C{1B,1C|18,1C!18,1C|1B,1C|1B,1C
*DINZ2eieDJIN2 | «NOP~ | NOUP3 : JNP SEL JNC RL DJN2 | DJN2 | DJNZ | DJN2 | DJN2 | DJNZ | DIJN2 | DINZ
@R0 , ad@R1, ad A, @R | 7XX MBO add A 0.9ddR1, 9ddR2, eddR3, addR4, ad S.eddRG.adJR?.add
28,20 |28,2C|1B,1C|1B,2C|28,2C{1B,1C|28,2C|18,1C{258,2C|2B,2C|2B.2C 28.2(:'28.2(:!28.2'2 2B,2C{28,2C
nov MoV JB? |[«NQPe| CALL SEL JC RLC ftov 3]sV nov nov nov mov nou noyv
A,eR0 A, R | vdd XX nB1 edd A ARO | A,RL |A,R2 | A,R3 | A,R4 | A,RS | R,REG | A,R?
1B,1C{18,1C|28,2C|1B,1C|2B,2C|1B,1C|28,2C|1B,1C|18,1C]1B,1C|1B8,1C|1B,1C}|1B,1C|1B,1C|1B,1C}1B,1C
@ - INDIRECT ADIRESSING edd - RODRESS
& - 1'MMEDIARTE ADDRESSING d - DRTAR
B - BYTES e s - UNDECLARED INSTRUCTION
€ - CYCLES

Fiqure 3.3 Full Instruction Set for the 8048 Manufactured by NEC

187

file:///B./C
file:///B.2C
file:///B.2C

& PROBRBILITY DF STRTE

& PROBABILITY OF STAIE

100

30

70 1

60

S0

40

30

20

10

100

S0

720

50

40

30

20

10

RETURN
EXECUTION 1IN

DATA AREA

Jump
RESTRART
e s S S o T NN
s 10 131 20 28 30 3s 40

INSTRUCTIONS EXECUTED ARFTER ERROR

Figure 4.1 (a) Erroneous Execution in Data Areas of the 8085

+ RETURM
EXECUTION IN
T DATA AREA
1
June
+ RESTART
+ HALT
0 S 10 1§ 20 2s 30 3s 40

INSTRUCTIONS EXECUTED RFTER ERROR

Figure 4.1 (b) Erroneous Execution in the Data Areas of the 6800

188

% PROBABILITY OF STATE

X PROBABILITY DF STATE

100

30

20

60

S0

40

30

20

10

100

S0

70

60

SO

40

30

20

10

RETURY
EXECUTION I
T DATA ARER
il
4 Junp
T
-+
o [10 15 20 25 30 35 40
INSTRUCTIONS EXECUTED AFTER ERROR
Figure 4.1 (c) Erroneous Execution in the Data Areas of the NEC 8048
RETURN
EXECUTION I
T DATA AREA
4 Junp
0 3 10 1s 20 2s 30 35 40

INSTRUCTIONS EXECUTED AFTER ERROR

Figure 4.1 (d) Erroneous Execution in the Data Areas of the Intel 8048

189

X PROBABILITY OF STRIE

100

90 +

Junp
EXECUTION 1IN
DATA ARER
RESTART
10 1s 20

INSTRUCTIONS EXECUTED AFTER ERROR

Figure 4.1 (e) Erroneous Execution in the Data Areas of the 68000

(ERRONEOUS JUMP)

RETURN

RESTART

UNSPECIFIED
JUMP

Fiqure 4.2 Filow of Execution in Random Data

190

8 RECOUERY

NUNBER OF 1NSTRUCTIONS

100

S0

70

60

40

30

20

10

808S

6800

8048

0 10 20 30 40 S0 60 70 80 90 100
2 QUERHEARD QF EXTRA NEMORY

-+
9
-+
b

Figure 4.3 Recovery improvements Obtained by Seeding the Data Areas

8048
€800 o
:#
0 10 20 30 40 50 60 20 80 30 100

X OUERHEAD OF EXTRA NENORY

Fiqure 4.4 Averaqe Number of Instructions Executed with Seeded Data Areas

191

ERRONEOUS JUMP

RESUME
VALID
INSTRUCTIONS

Figure 5.1 Erroneous Jump into a Program Area

(ERRONEOUS JUMP

C HALT
(RESTART

RANDOM

RESUME
VALID
INSTRUCTIONS

RETURN

Figure 5.2 Flow of Erroneous Execution in Program Areas

192

£ PROBABILITY OF STATE

Z PROBABILITY OF STATE

100

30

70

60

&80

10

30

20

10

100

0

20

S0

40

30

20

10

— RETURN

OPERAND ~REsTeRT < RANDOn Jun?
{ FlELD
+ RESUNE
0 1 2 3 4 s
INSTRUCTIONS EXECUTED AFTER ERROR
Figure 5.3 (a) Erroneous Execution in Program Areas of the 8085
RETURN
RANDOM Jun?
N RESTART
4 RESUNE
0 1 2 3 4 s

Fiqure 5.3 (b)

INSTRUCTIONS EXECUTED AFTER ERROR

Erroneous Execution in the Program Areas of the 6800

193

% PROBARBILITY OF STRTE

100

90 +

T

60 A

40 1

0 T

20

10

OPERAND
F1ELD

RESUNE

-+

0 1 2 3 4 s
INSTRUCTIONS EXECUTED AFTER ERROR

Fiqure 5.3 (¢) Erroneous Execution in the Program Areas of the 8048

(ERRONEOUS JUMP)

RESUME
VALID
INSTRUCTIONS

RESTART

OPERAND
FIELD

RETURN

Figure 5.4 Simplified Fiow of Execution in Program Areas

194

& PROBRBILITY OF STATE

__RANDOR_JUnP

100

30 T

a0 T+

70 +

60 1

40 1

30 1

20 1

10+

RESTART

RESUNE

e

3 9
INSTRUCTIONS EXECUTED AFTER ERROR

Figure 5.5 Erroneous Execution in Program Areas of the 68000

///] UNPOPULATED AREAS

%

7 / FFF //
// 00 //
7 BFF
// // 800
// 7FF
3FF
000
A B c D
Figure 6.1 Common Memory Arrangements for the 8048

195

ERRONEOUS JUMP

UNUSED _ 7 INPUT
AREAS — " AREAS
; -
= —a\Na
\

PROGRAM

‘ — — AREAS
> X1
X

RECOVER

Q

—
o
O]
D

Figure 7.1 Flow of Execution Between Different Memory Areas

196

8 FROBABILITY OF OUTCONE

X PROBRBILITY OF OUTCONE

100

S0

70

60

50

40

30

20

10

100

30

70

60

40

30

20

10

808S WITH RECOUVERY ROUTINE OnLY

+ RESUNE
] RECQUER
0 8 16 24 32 %0 48 56 64
' S12E OF PROGRAN AREA IN KILOBYTES
8085 WITH FRULT TOLERANT PRAGRAM AREA
-
RESUNE
RECQUER
0 8 16 24 32 40 48 -1 64

S12E OF PROGRAN AREA IN KILOBYTES

Figure 7.2 The Effects of Adding Fauit Tolerance to the

Program Areas of the 8085

197

% PROBABILITY OF OUTCONE

X PROBABILITY OF DUTCONE

100

S0

70

S0

40

30

20

10

100

20

20

&0

S0

40

30

20

10

8085 WITH RECODUERY ROUTINE OmrLY

T =K

LooP
1 HALT
1 RESUNE
+ RECOUVER
0 8 16 24 32 40 48 s6 64

SI12E OF DATA ARER IN KILOBYTES
B0BS UITH FAULT TOLERANT DATA AREA

1 ;
(Loor

HALT
1b
T RESUNE

RECCUER

0 8 16 24 32 40 48 1 64

S12E OF DRTA AREA 1M KILOBYTES

Figure 7.3 The Effects of Adding Fault Tolerance to the
Data Areas of the 8085

198

2 PROPABILITY OF OUTCONE

X PROBARBIL1TY OF ouTCONE

100

-1

20

60

40

30

20

10

100

30

70

60

S0

40

30

20

10

8086 WITH RECOUERY ROUTINE DMLY

== —
it LogP

HALT
1 RESUNE
T RECOUER
0] 16 24 32 40 48 56 64

SIZE OF UNUSED ARER 1N KI1LOBYTES
8085 WITH FAULT TOLERANT UNUSED ARER
1
-+
RECOUVER

0 8 16 24 32 40 48 s6 64

S1ZE OF UNUSED AREA 1N KILOBYTES

Fiaure-7.4 The Effects of Addina Fault Tolerance 10 the
Unused Memaory Areas aof the 8085

199

RUERAGE INSTRUCTIONS EXECUTED

AUERAGE INSTRUCTIONS EXECUTED

(a) Results for Different Sizes of Data Areas

30 -—
NON-FAULT TOLERANT
ZS 4
20 -
1§ |
FAULT TOLERANT
10 -
s -
[} + + + + + + e
o 8 16 24 32 40 48 s6 64
S1ZE OF DATA AREA 1M KILOBYTES
(b) Results for Different Sizes of Unused Areas
70 -
60 T
50 +
40 4
NON-FAULT TOLERANT
30 4
Zﬂ -
‘o -’
b
FAULT TOLERANT
9 + + t + ¢ 4 ' ——t
0 8 16 24 32 40 48 56 64

S12E OF UNUSED AREA IN KILOBYTES

Fiqure 7.5 The Effects on the Average Number of instructions Executed

by Adding Fault Tolerance to the 8085

200

£ PROBABILITY OF OUTCONE

X PROBABILITY OF DUTCONE

100

S0

20

60

50

40

30

20

10

100

20

1

40

30

20

10

6800 WITH RECOUERY ROUTINE ONLY

——_oor
1 HALT
i
RESUNE
i
RECOUER —— - _)
0 8 16 2¢ 32 40 48 6 64
S1ZE OF PROGRAN AREA 1N KILOBYTES
6800 UITH FAULT TOLERANT PROGRAN AREA
- — .
—~Loo?
T MALT
T RESUNE
RECOUER
0 8 16 24 32 40 48 s6 64

S12E OF PROGRAN AREA IN KILOBYTES

Figure 7.6 The Effects of Adding Fault Tolerance to the

Proaram Areas of the 6800

6800 UITH RECOUERY ROUTINE OMLY

100 T ==———e
[LooP

[
b =3
(=]
g sp 4+
[T au -
Q
- HALT
= o0 4
2
c
m 60 +
Q
[+ 3
[
w S0T RESUNE
40 +
35 -
zo -
10 4 /
u L — L] L] : T + + — + e RECOULm s e a2
0 8 16 24 32 40 48 56 (1
S12E OF DATA ARER IN KILOBYTES
LooP €800 WITH FAULT TOLERANT DATA ARERA
T e
w 100 (HALT
g
2 380 ¢
3
“ 80T
>
5 a4
2 RESUME
c
g Go -
o
- .
w SO0 T
40 +
30 + RECOUER
20]
10
0 = + + t t p— + + + + e + e
0 8 16 24 32 40 «8 56 64
S12E OF DATA AREA IN KILOBYTES
Figure 7.7 The Effects of Adding Fault Tolerance to_the

Data Areas of the 6800

202

X PROBABILITY OF OUTCONE

% PROBRBILITY OF OUTCONE

100

30

20

S0

40 1

30

20

10

100

30

70

S0

40

30

20

10

6800 UITH RECOUERY ROUTINE OMLY

LOOP—

+ HALT
] RESURE

RECOUER . N - ~ — . — - S ,

L T o T T s T L4 v s Lg T L a— v L4 ad
0 8 16 24 32 40 48 1 64
SI1ZE OF UMUSED RREA 1N KILOBYTES
6800 WITH FAULT TOLERANT UNUSED ARER
T
+ HALT
1 RESUNE
-
RECQUER

T
T
0 8 16 24 32 40 48 S6 64

S1ZE OF UNUSED AREA 1N KILOBYTES

Fiqure 7.8 The Effects of Adding Fault Tolerance to the

Unused Memory Areas of the 6800

203

& PROBABILITY OF NO CORRUPTION

100

w
o

20

S0

10

30

20

10

-

B REGISTER

ACCUNULATOR

5 10 18 20 es 30
MUNBER OF INSTRUCTIONS EXECUTED

Figure 7.9 Probability of Data Corruptions in the 8085

204

=EEE
L Y

8000

7FFF

7000

6FFF

6000

SFFF

5000

4FFF

4000

3FFF

3000

2FFF

2000

TFFF

1000

OFFF

0000

(32K UNUSED

4K) SINGLE 8 BIT INPUT PORT

(4K) SINGLE 8 BIT INPUT PORT

(4K) SINGLE 8 BIT INPUT PORT

(4K UNUSED

(4K SINGLE 8 BIT INPUT PORT

(4K) FOURSBITOUTPUT PORTS (256 BYTE BLOCKS)
(4K) 2K RAM (APPEARS TWICE)

(4K 4K EPROM

Figure 8.1 Memary Map of the Specific System Studied

205

ALE

S0 INT
S1

Figure 8.2 Wait State Recognition Circuit

@l &l
w

2 INT

1O/M 4

S S0

Figure 8.3 Circuit to Detect an lllegal Instruction Fetch

206

CE o
TE, 1 \ INT

Figure 8.4 Circuit to Detect a Write into ROM

INT

9

Figure 8.5 Circuit to Detect a Write Qutside the RAM Areas

207

D
) o

Figure 9.1 Logic Reaquired to Detect Operation Code Fetches

S —
S1 |

TIMER (N

Figure 9.2 Implementation of Logic on Test System

208

KowaW JO0 Mg O} uonndax3y 1514188y 01 UNdJ|1D €6 84nb|4

7 31V

419
o] 41D

eg9 A as 2
al_ _ ay < pe
Yd IIFYI
LS a 0 LS

H W/Ol

d
el _
, AG B¢

az
-t 13s3y
Nlg1y Es_
v
P g10 , .
tN0g 1y D 419 >
a9 < Bg 2
et <
oc —P° .0 W/Ol 0LV LLY
ad al
N0y 1y 0S Hd A0 ,

gLy €Ly ¢Llv Glv

209

START

SEND MESSAGE.
READ IN LIMIT
OF TEST PROGRAM

y
TRANSFER TEST
PROGRAM FROM INSTANT
ROM INTO RAM

{ '

SET TIMER
TO CAUSE
INTERRUPT

'

INITIALISE REG’S
IN PROCESSOR

y

START TIMER
AND JUMP INTO
TEST PROGRAM

!

| EXECUTE
INJECT FAULT BY
TEST INTERRUPT ROUTINE
PROGRAM

SEND MESSAGE
AND FINAL
VALUE OF TIMER

INTERRUPT
OCCURRED

YES
CHECK '
RESULT - -
! i

OUTPUT 'S’ FOR
SUCCESS. OR TIMER
COUNT FOR FAILURE

T

Figure 9.4 Software Fiow Diagram for the Fault Injecting Test Facility

210

Type of Requirements Reference

Application
Batch Recovery time of between 1
Processing 10 minutes and 2 hours
Communications Recovery time of 1-15 minutes 1M
Telephone Less than 2 hours down-time in 40 years 25
Switching Less than 2 calls lost in 10,000
Typical Recovery within 250 milliseconds 87
Industrial
Aerospace Recovery within 10 milliseconds 11
Space 98% survivability over 5 years 106
Nuclear Reactor | 10~® - probability of failure on demand 12
Safety System
Aircraft 10—8 - probability of failure during 110

a 10 hour flight
Table 1.1 Reliability Requirements for Different Applications

211

ERROR TYPE
DEVICE
WRITE DATA READ
R3 3.38 1.13 3.31
R4 2.99 1.16 3.26
RS 2.61 1.10 2.61
R6 2.37 0.91 2.38

Tabie 2.1 Voltage Levels at which First Errors Occurred

in 8155 RAM Chips

ERROR TYPE
DEVICE WRITE DATA READ
LOCATION | VALUE | LOCATION | VALUE | LOCATION | VALUE

SINGLE

R3 VARIOUS FF VARIOUS BIT FFOO FF
ERROR
SINGLE SINGLE

R4 VARIOUS FF VARIOUS BIT VARIOUS BIT
ERROR ERROR
SINGLE

RS FFOO FF VARIOUS BIT FFOO FF
ERROR
SINGLE

R6 FFOO FF VARIOUS 8IT FFOO FF
ERROR

Table 2.2 Location and Vaiue of the First Errors Observed

212

DATA ADDRESS
BINARY
HEX HEX
D7 DG D5 D4 D3 D D,l)}

00 0 0 0 0 0 0 0 0 FFBF
11 0 0 0 1 0 [¢] 0] FFBF
22 0 0 1 0 0 Q 1 0 FFBF
33 o o | Voo 1| FFBF
88 1 0 0 0 1 0 0 0 FFBF
99 1 0 0 i 1 [} 0 1 FFBF
AA 1 0 1 0 1 Y] 1 G FFBF
BB) 0 i 1 1 0 1 1 FFBF
44 0 1 0 0 Y] 0 Q FF3F
66 0 1 1 0 0 1 1) FF3F
CcC i 1 0 0 1 1 0 4] FF3F
EE 1 1 1 0 1 1 1 0 FF3F
55 0 1 0 1 0 1 4] 1 FFFA
DD] tlo v vy o | FFFA
77 0 1] 1 0 1 1 1 FFEC
FF 1 1 1 1 1 1 1 1 FF4B
0 1 - FIRST BITS CORRUPTED

Table 2.3 First Data Corruptions in RAM Chip RS

213

SIZE OF CAPACITOR IN TEST SUPPLY] MINIMUM
DEVICE VOLTAGE
2.200 uF | 4,700 uF 10.000 uF REACHED
Cycles Cycles Cycles Volts
RAM 1.50 3.25 7.25 3.8
EPRCOM 1.75 3.25 7.75 3.4
PROCESSOR 2.00 4.25 9.25 2.8
COMPLETE 1.50 3.50 7.25 3.8
SYSTEM
Table 2.4 Length of Interruptions to the Test Supply (in_Cycles)

Table 3.1

Necessary to Cause Corruptions

DEVICE RAM | ROM | EPROM
8035 64x8 | NONE | --—-
8039 128x8 NONE -
8040 256x8 NONE ———=
8048 64x8 1Kx8 ——
8049 128x8 2Kx8 ———
8050 256x8 | 4Kx8 ——
8748 64x8 | -——- 1Kx8
8749 128x8 ———= 2Kx8

Internal Memory of the 48-Series Microprocessors

214

PROBABILITY | AVERAGE NUMBER | AVERAGE NUMBER
PROCESSOR| OF A JUMP OF INSTRUCTIONS QOF BYTES
(PJ) EXECUTED (NIAV) EXECUTED (NBAV)
8085 0.1035 9.65 12.5
6800 0.1038% 9.65 18.5
8048 0.1543 6.48 8.3
(INTEDL)
8048 0.1621 6.16 7.9
(NEC)
68000 0.3436 2.91 -
Table 4.1 Results of Execution in Random Data
¢ T % PROBABILITY
w
= a2 OF OUTCOME
=l =8
-
« w w @ 2 3 194 S
3 [N loF|Y|u28 T
%) DZlrtu|Z|oEE Y| = z
w X glt=21 1 99D <5 (@) o
Q 0OQ|l0QI>|c20] + ~ O Qo S
&2 Qu|&m|O|¥e gl 2 me | 231 &
a mo|lac|R|Tgow| T cZ c 3 e
8085 20 4 20 5.0 1.9 68.4 21.8 8.4
8085 15 3 20 4.5 1.5 73.8 17.8 6.9
8085 10 2 20 3.9 1.3 77.9 14.6 6.2
8085 5 1 20 3.2 0.9 84.1 10.6 4.4
6800 15 3 20 3.7 6.0 70.7 19.5 3.8
6800 10 2 20 3.3 4.7 741 17.1 4.1
6800 5] 20 3.5 5.4 72.1 18.6 3.9
8048 15 3 20 4.1 0.0 42.7 54 .4 2.9
8048 10 2 20 4.1 0.0 46.3 51.0 2.7

Table 4.2 Comparison Between Different Data Structures

215

WVHDOUHd DNIWNS3Y
340438 d31nO3X3
SNOILONYLSNI 'ON AV

0.3

0.7

™

HIdSNVYHL ANV
34”0438 d3LNO3X3
SNOILONYHLSN! 'ON ‘AV

1.2

1.7

1.0

JWNNS3H %

86.9

81.6

96.3

NHNL3IY %

0.6

1.3

(oY]

dANT WOANVY %

1.4

5.2

3.5

lHVIS3H %

1.0

0.3

0.0

LIVH %

0.1

1.6

0.0

"HOSS300Hd

8085

6800

8048

Comparison Between Processors tor Erronequs Execution

Table 5.1

WYHDHO0Hd DNIWNS3Y
340438 a3LNd3IxX3
SNOILONHLSNI 'ON AV

0.7

0.7

0.7

H3I4SNVHL ANV
340438 G3LNod3X3
SNOILONYHLSNI 'ON AV

1.2

1.2

1.5

1.1

1.1

1.0

IWNS3H %

94.1

95.6

94.4

95.6

96.1

95.7

NHN13IY %

0.9

1.0

2.4

0.3

0.3

dANF WOANVH %

2.2

1.8

2.6

4.]

4.0

in Program Areas

1Hv1S3yH %

2.8

1.5

0.6

0.0

0.0

0.0

LIVH %

0.0

0.1

0.0

0.0

0.0

0.0

WvHHOHd

A

B

C

D

E

F

HOSS300Hd

8085

8085

6800

8048

3048

8048

Table 5.2 Comparison Between Actual Programs
216

WVYHDO0Hd DNINNS3Y
340438 g3.1N03xX3
SNOILONYLISNI 'ON AV

0.8

0.8

0.8

0.4

0.4

0.3

0.5

H3JdSNVYL ANV
340439 @31N03x3
SNOILONYLSNI ‘ON AV

1.8

1.8

1.8

1.4

1.4

1.3

1.5

INNS3IH %

91.4

93.0

93.3

94.1

395.0

94.6

72.4

NYNL13Y %

1.3

1.6

2.8

0.4

0.3

0.4

0.0

dWNM WOANVH %

3.2

2.8

3.2

5.5

4.7

5.0

1.5

1HVIS3Y %

4.

2.4

0.7

0.0

0.0

0.0

26.1

1IvVH %

0.0

0.2

0.0

0.0

0.0

0.0

0.0

WYHDOYd

A

B

C

0

E

F

G

HOSS3004Hd

8085

8085

6800

8048

8048

8048

68000

Table 5.3 Resuits from the Simplified Analvsis

e

WvyHOO0UYd HNIWNS3Y
340438 g3.LNo3x3
SNOILONYLSNI 'ON AV

0.6

0.5

0.6

H34SNVHL ANV
340438 g31n23x3
SNOILONYLSNI 'ON "AV

1.3

«)

1.4

INNS3IH %

88.3

78.0

89.5

NHN13Y %

0.9

1.0

2.2

dWAr WOANVYY %

8}

1.8

2.4

1HVIS3IH %

8.6

19.1

5.9

of Erroneous Execution in Proaram Areas

1IWWVH %

0.0

0.1

0.0

WYHHOHd

A

8

C

HOSS3004d

8085

8085

6800

Table 5.4 Detailed Analvsis of Modified Programs

217

TYPE AVERAGE NUMBER
OF % PROBABILITY | OF INSTRUCTIONS
TRANSFER EXECUTED
HALT a47.7 54.6
RESTART 5.8 1.6
RANDOM 3.0 3.75
JUMP
RETURN 35.0 33.6
SPECIFIC 8.5 2.2
JUMP
ALL 100.0 38.2
Table 6.1 Probability of Different Qutcomes atter a Random Jumo
into an Unused Memoryv Area of an 8085
TYFPE AVERAGE NUMBER
OF % PROBABILITY OF INSTRUCTIONS
TRANSFER EXECUTED
HALT 49.7 55.7
RESTART 7.2 2.3
RANDOM 5.0 5.0
JUMP
RETURN 38.1 31.3
ALL 100.0 40.0

Table 6.2 Qutcomes atter a Random Jump into an Unused Memory Area

of an 8085, Assuming Address Range C000 to FFFF is Unused

218

STATE OF MEMORY| % PROBABILITY OF TRANSFER
MEMORY BANK SELECT
ARRANGEMENT FLIP-FLOP JUMP QUT OF | RETURN | LOOP
(see fig. 6.1} AFTER ERROR UNUSED AREA
A 0 49.8 49.2 1.0
A 1 0.0 99.0 1.0
B 0 90.5 8.4 0.1
8 1 29.2 69.8 1.0
cC 0 90.9 2.0 0.1
C 1 89.8 9.2 1.0
D 0 89.8 9.2 1.0
D 1 90.9 9.0 0.1

Table 6.3 Transter from Unpopuiated Memory Areas of an 8048

@ — 2
S T 2 z 2 2
%) < T = w x
9p] - b Ca = O a [5)
w P 2] Z= o ws =
O < w < 5 w a5 4 9
o) L he TS s w3 | Wa
i
a 3 * 2 2 | =]
8085 0.4 3.3 0.4 2.0 4.3 89.6
6800 2.0 0.4 1.2 1.6 1.2 93.6
638000 0.0 32.5 1.9 0.0 0.0 65.6

Table 6.4 Transfer from Partially Decoded Memory Mapped input Ports

219

NUMBER OF | PROBABILITY THAT
LOCATION INSTRUCTIONS | A SINGLE
OF DATA WHICH CAUSE | INSTRUCTION WILL
CORRUPTION NOT CORRUPT DATA

ACCUMULATOR B4 0.672
B REGISTER 12 0.953
C REGISTER 14 0.945
D REGISTER 16 0.938
E REGISTER 18 0.930
H REGISTER 22 0.914
L REGISTER 24 0.906
STACK POINTER 30.5 0.881
MEMORY 34.5 0.865
ALL FLAGS 105 0.580
SIGN FLAG 45.5 0.822
ZERO FLAG 45.5 0.822
AUXILIARY 45.5 0.822
CARRY FLAG

PARITY FLAG 45.5 0.822
CARRY FLAG 44.5 0.826

Tabie 7.1 Data Corruptions in the 8085 Caused bv Erroneous Execution

220

a31NO3X3 SNOILDONHLSNI
340 H3gWNN 3HL NO
LIWIT 3ON3AI4ANOD %06

2406.9

130.3

2430.6

1570.8

3.7

3.7

3.0

2.5

2.5

A31LNO3X3 SNOILONYLSNI
SNO3INOHH3
40 HIgWNN a3103dx3

1045.3

56.6

1055.6

682.2

1.6

1.6

1.3

1.1

[

H3aA0O3d %

0.0

0.0

15.2

83.0

93.5

94.7

93.8

94.0

85.1

JANSIH %

24.3

23.0

8.9

6.4

6.2

5.1

6.1

6.0

4.9

4007 %

10.5

7.8

7.7

0.4

0.0

0.0

0.0

0.0

0.0

1IVH %

FINAL OUTCOME REACHED

65.2

69.2

67.2

0.4

0.3

0.3

0.1

0.0

0.0

V34V viva 4a33033S

ONIGOO3a Wvd 1IN4d

v3HVY WvydOO0Hd d3idIaOnW

S3aNIN v1va NO SdNn-1ind

v

ANILNOY AH3IA003Y

v

S1HOd d3ddviN AHOW3IW-NON

v

VAN VAN B/

INIWIONVYHYY WIL1SAS

GV I|V|V

H

Erroneous Execution Under Different System Arrangements

Table 8.1

221

Appendix 1. Software to Test the Effects of Executing Undeclared

Operation Codes

This appendix contains full commented listings of the programs used to
identify the effects of executing the undeclared operation codes of the
6800 and 8035/8048. Similar techniques, as those illustrated. can be
employed on other microprocessors. However, the software alone is not
usually sufficient to identify all functions, and it is necessary to use
additional techniques such as the monitoring of all external signals with a
logic 'analyser.

Al1.1 Listing of the 6800 Test Program

NAM M6800
1332238338333 23223 2322233223333 33333327322 23232233820
x IX!!*MSBOO.ASMIXXIX
EARXAXERXAEXXAAXAAKXXAXXR XXX AXARXXXXRXREX KA RXRKKX K KRR XK KR KK KKK XRRK KRR KRKX
x
* THIS PROGRAM IS DESIGNED TO TEST THE UNDECLARED
* OP-CODES IN THE MOTOROLA 6800 MICROPROCESSOR
* |T ALSO TESTS IF THE INTERRUPTS ARE DISABLED BY THEM
R
x —
=
E1D1 OUTEEE EQU $EID1 ROUTINE TO OUTPUT A CHARACTER
E055 BYTE EQU $E055 READS IN A BYTE OF DATA IN HEX
EOE3 CONTRO EQU $EOE3 ENTRY POINT INTO MIKBUG
EO7E PDATA1 EQU $EO7E ROUTINE TO OUTPUT A STRING
x
1FFO ORG $1FFO SET STACK LOCATIONS
1FFO 0001 STACK RMB 1 POSITION OF TOP OF STACK
1FF1 0001 CTEMP RMB 1 SPACE FOR CONDITION CODES
1FF2 0001 BTEMP RMB 1 SPACE FOR ACCUMULATOR 8
1FF3 000) ATEMP RMB 1 SPACE FOR ACCUMULATOR A
1FF4 000) XTEMPH RMB 1 HIGH BYTE OF X REGISTER
1FF5 0001 XTEMPL AMB 1 LOW BYTE OF X REGISTER
1FF6 0002 PTEMP RMB 2 SPACE FOR RETURN ADDRESS
A048 ORG $A048 SET START ADDRESS FOR MIKBUG GO
A048 0100 GOADD FDB $0106 COMMAND
A00O ORG $A000
A000 0200 FDB IRQVEC SET VECTOR FOR IRQ
A006 ORG $A006
A006 0210 FDB NMIVEC SET VECTOR FOR NM!

222

6800 Test Program (cont.)

ORG $0100 START OF TEST PROGRAM

0100 CE 0137 LDX “RESU LOAD ADDRESS TO GO TO AFTER RTI
0103 FF 1FF6 STX PTEMP STORE VALUE ON STACK

0106 BD 0142 JSR CRLF SET TERMINAL ON NEW LINE

0109 BD EO055 JSR BYTE READ IN BYTE FOR CONDITION CODES
010C B7 1FF1 STAA CTEMP STORE ONTO STACK

010F BD 014D JSR SPACE

0112 BD EO0S5 JSR BYTE READ IN BYTE FOR ACCUMULATOR B
0115 B7 1FF2 STAA BTEMP STORE ONTO STACK

0118 8D 014D JSR SPACE

0118 BD E055 JSR BYTE READ IN BYTE FOR ACCUMULATOR A
011E B7 1FF3 STAA ATEMP STORE ONTO STACK

0121 BD 014D JSR SPACE

0124 BD EO05S JSR BYTE READ IN HIGH BYTE OF X REGISTER
0127 B7 1FF4 STAA XTEMPH STORE ONTO STACK

012A BD EO055 JSR BYTE READ IN LOW BYTE OF X REGISTER
012D B7 1FFS5 STAA XTEMPL STORE ONTO STACK

0130 8E 1FFO LDS “STACK LOAD STACK TO POINT TO DATA BLOCK
0133 3B RTI LOAD REGS AND JUMP TO TEST LOC
0134 0 START NOP NOPS IN LOOP TO WAIT FOR INTERRUPT
0135 01 NOP

0136 N NOP

0137 01 RESU NOP TEST BYTE CAN BE INSERTED BY HAND
0138 01 NOP IN ONE OF THESE LOCATIONS

0139 01 NOP

013A 01 NOP

0138 20 F7 BRA START LOOP UNTIL INTERRUPT

013D 3F TESTI Swi

013E 3F SWI STRING OF SOFTWARE INTERRUPTS TO
013F 3F Swi CAPTUREEXECUTIONAFTERTESTCODE
0140 3F Swi NECESSARY FOR SINGLE, DOUBLE
0141 3F Swi OR TRIPLE BYTE INSTRUCTIONS

SUBROUTINES

¥ X ¥ X »

0142 86 OD CRLF LDAA "$0D SUBROUTINE TO OUTPUT A CARRIAGE

0144 BD E1D1 JSR OUTEEE RETURN AND LINE FEED TO THE
0147 86 0A LDAA "$0A TERMINAL

0149 BD E1D1 JSR OUTEEE

014C 39 RTS

014D 86 20 SPACE LDAA "$20 SUBROUTINE TO OUTPUT A SPACE
014F BD E1D1 JSR OUTEEE TO THE TERMINAL

0152 86 20 LDAA “$20

0154 BD E1D1 JSR OUTEEE

0157 39 RTS

223

6800 Test Program (cont)

0200

0200 CE 0217
0203 BD EO7E
0206 3B

0210 CE 023F
0213 BD EO7E
0216 3B

0217 20
0218 20
0219 49
021A 52
0218 51
021C 20
021D 20
021E 04
021F 20
0220 20
0221 4E
0222 4D
0223 49
0224 20
0225 20
0226 04

®
* INTERRUPT SERVICE ROUTINES

.3

R

IRQVEC

=

NMIVEC

%

IRQSTR

NMISTR

ORG
LDX
JSR
RTI
ORG
LDX
JSR
RTI

FCC

FCB
FCC

FCB

END

$0200

“IRQSTR
PDATAI
$0210
“NMISTR
PDATA]

/ 1RQ /

$04

/ NMI /

$04

224

LOAD START ADDRESS OF STRING
PRINT STRING TO INDICATE IRQ

LOAD START ADDRESS OF STRING
PRINT STRING TO INDICATE NM)

STRING PRINTED BY IRQ

DELIMITER
STRING PRINTED BY NMI

DELIMITER

Al.2 Listing of the 8035/8048 Test Program

CERERXRKEKERXKELERLRL LKA XEAKEEREARXRXRKEXERREEEREARRR AR R R AAKRAKRR AR KX R RRRERXRRR XK

. PROGRAM TO TEST THE UNDECLARED OPCODES OF THE 8035/8048

.
CHATRREAAKAZAIXARAIXIARANIRARRAZAZIZZIRAIAXRRRAARARZAAARRAAARRZARRRRAAZIRZAR R AR X

ALL UNUSED LOCATIONS ARE SET TO 04. THIS FORCES A JUMP TO
. ADDRESS 004 IF PROGRAM EXECUTION IS ATTEMPTED OUTSIDE THE
. NORMAL PROGRAM AREA

(".)00 64 JMP 0300 JUMP TO INITIALISATION BLOCK

001 00

002 04 UNUSED LOCATIONS SET TO 04

003 04

004 39 OUTL P1.A OUTPUT CONTENTS OF ACCUMULATOR TO PORT
005 83 RET RETURN TO MAIN LOOP

006 04

007 04 UNUSED LOCATIONS SET TO 04, CAUSES JUMP

008 04 TO ADDRESS 004 IF EXECUTED
MAIN PROGRAM LOOP

’100 75 ENTO CLK SET 70 AS A CLOCK OUTPUT FOR LOGIC ANALYSER

101 17 INC A INCREMENT TEST BYTE IN ACCUMULATOR

102 54 CALL 0200 CALL ROUTINE TO EXECUTE UNDECLARED CODE
103 00

104 24 JMP 0101 JUMP BACK TO BEGINNING OF LOOP

105 01

106 04

107 04 UNUSED LOCATIONS
SUBROUTINE TO EXECUTE UNDECLARED CODE

200 39 OUTL P1.A OUTPUT CONTENTS OF ACCUMULATOR TO PORT

201 XX SPACE FOR UNDECLARED CODE

202 04 SEQUENCE OF LOCATIONS SET TO 04, THIS ENSURES
203 04 THAT EXECUTION WILL TRANSFER TO LOCATION 004
204 04 REGARDLESS OF WHETHER THE UNDECLARED CODE 1S

205 04 A SINGLE. DOUBLE OR TRIPLE BYTE INSTRUCTION
: CODE FOR INITIALISATION OF PROCESSOR ON RESET

300 23 MOV A,0AAH SETS ACCUMULATOR TO THE VALUE AA
301 AA

302 00 NOP SPACE FOR SETTING OTHER REGISTERS OR FLAGS
303 00 NOP
304 24 JUMP 0700 JUMP TO BEGINNING OF MAIN LOOP
305 00
306 04 UNUSED LOCATIONS SET TO 04
307 04
END

225

Appendix 2. The Effects of Executing the Undeclared Operation Codes of the

8035/8048
Appendix 2 contains a detailed description of the operations performed
by all the instruction codes which are not declared for the 8035/8048.
They appear in numerical order and are referenced Dby their hexadecimal
vatue. In cases where the code performs a different function for different
manufacturers, this is clearly marked and both operations are described.

Symbols Used

The symbols used and the layout of the definitions is very similar to
that used in the National Semiconductor 48-Series Microcomputers Handbook
(120). Reference shouid be made to the handbook for descriptions of the

standard instruction set.

Symbols Description
A The Accumulator
AC The Auxiliary Carry Flag
adar Program Memory Address
8b Bit Designator (b = 0-7)
BS The Bank Switch
BUS The Bus Port
c Carry Flag
CLK Clock Signal
CNT Event Counter
D Nibble Designator (4 bits)
data Number or Expression (8 Dbits)
DBF Memory Bank Flip—Fiop
FO.F1 Flags 0.1
1 Interrupt
P ‘In-Page® Operation Designator
Pp Port Designator (p = 1,2 or 4-7)
PSW Program Status Word
Rr Register Designator (r = 0,1 or 0-7)
SP Stack Pointer
T Timer
TF Timer Flag
T0.T Testabie Inputs 0,1
X External RAM
4 Prefix for Immediate data
e Prefix for indirect Address
A Contents of Accumulator
((A)) Contents of Location Addressed by A
< Replaced By

226

Operation Code:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemonic:
Operation:

Symbotic
Representation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemonic:
Operation:

Symbolic
Representation:

Description:
Note:

- Special
Conditions:

01 01
NOP
No operation performed.

No operation is performed. execution continues with the
next sequential instruction

Same operation as the defined instruction (code 00).

Cycles: 1

Bytes: 1

06 06
JNTF addr

Jump to specified address if timer flag is clear.

if TF=0
if TF=1

(PC 0-7) < addr
(PC) < (PC) + 2

if the internal timer/counter flag is set to a logic
zero, the contents of the program counter are replaced
by the address bits from byte 2. if the timer/counter
flag is a logic one., the next sequential instruction s
executed.

This instruction is the logical inverse of the JTF
instruction, except that the timer/counter flag is not
affected.

Cycles: 2

Bytes: 2

08 08
IN A P2

Input data to accumulator from port 2

(A < (P2)

Data present at port 2 is input into the accumulator.
Same operation as the defined instruction (code 0A).
Cycles: 2

Bytes: 1

227

Operation Code:

Mnemonic:
Operation:
Symbolic
Representation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

22 **NEC 8048 ONLY** 22
MOV A.PC+1

Move contents of the
accumulator and increment.

program counter into the

(A) < (PC) + 1

The contents of the program counter are moved to the
accumulator and then the accumulator is incremented by
one. After executing this instruction the accumulator
contains the address of the next sequential instruction.

This function is only performed by the processor
manufactured by NEC.

Cycles: 1

Bytes: 1

22 **INTEL 8048 ONLY** 22

NOP

No operation performed.

No operation is performed. execution continues with the
next sequential instruction

This code performs a no operation (code 00) on the 8048
manufactured by Intel it performs a different function
on the processor made by NEC.

Cycles: 1

Bytes: 1

33 33
NOP

No operation performed.

No operation is performed. execution continues with the
next sequential instruction.

Same operation as the defined instruction (code 00).
Cycles: 1
Bytes: 1

228

Operation Code:

Mnemonic:
Operation:

Symbolic
Representation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemanic:
Operation:

Symbolic
Representation:

Description:

Note:

Special
Congitions:

Operation Code:

Mnemanic:
Operation:

Description:

Note:

Special
Conditions:

38 38
BUS IDLE

No specific operation on the Bus

(BUS) < 00

The value 00 appears on the Bus during T4 of the second
cycie of the instruction. but no read or write signal is
generated. Therefore a valid Bus operation s not
performed.

This code does not appear to perform any useful
function.

Cycles: 2

Bytes: 1

38 38
QUTL P2.A

Output contents of accumulator to port 2.

(P2 < (A

The contents of the accumulator are placed. and latched.
at the output port 2.

Same operation as the defined instruction (code 3A).

Cycies: 2

Bytes: 1

63 63
NOP

No operation performed.

No operation is performed. execution continues with the
next sequential instruction.

Same operation as the defined instruction (code 00).
Cycles: 1
Bytes: 1

229

Operation Code:
Mnemonic:
Operation:

Symbolic
Representation:

Description:

Note:

Special
Conditions:

Operation Codes:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

Operation Code:
Mnemonic:
Operation:

Symbolic
Representation:

Description:
Note:

Special
Conditions:

66 66
JNF1 addr
Jump to specified address if flag 1 is clear.

(PC 0~-7) < addr,
(PC) < (PC) + 2,

if F1=0
it F1=1

If flag 1 is at a logic zero., the contents of the
program counter are replaced by the address bits from

byte 2. if flag 1 is a logic one, the next sequential
instruction is executed.

This instruction is the logical inverse of the JF1
instruction.

Cycles: 2

Bytes: 2

73,82 73.82

NOP

No operation performed.

No operation is performed; execution continues with the
next sequential instruction

Same operation as the defined instruction (code 00).

Cycles: 1

Bytes: 1

87 **NEC 8048 ONLYx** 87
CLR A4-~7

Clear accumulator high nibble.

(A4-7) <O
Accumulator bits 4 through 7 are cleared to zero.

This function is only
manufactured by NEC.

performed by the processor

Cycles: 1
Bytes: 1

230

Operation Code:

Mnemonic:
Operation:

Description:

Note:

Special
Congitions:

Operation Code:

Mnemonic:
Operation:
Symbolic
Representation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemonic:
Operation:

Symbolic
Representation:

Description:

Note:

Special
Conditions:

87 **INTEL 8048 ONLY** 87
NOP
No operation performed.

No operation is performed. execution continues with the
next sequential instruction

This code performs a no operation (code 00) on the 8048
manufactured by intei. It performs a different function
on the processor made by NEC.

Cycles: 1
Bytes: 1
8B 8B

ORL p2.#0data

Logical-OR-immediate contents of

port 2.

specified data with

(P2) < (P2) OR data

The data contained in byte 2 is logically ORed with the
data on port 2, and the results are sent back to the
port,

Same operation as the defined instruction (code 8A).

Cycles: 2
Bytes: 2
9B 9B

ANL P2 4#data

Logical-AND-immediate specified data with port 2.

(P2) < (P2) AND data

The data contained in byte 2 are logically ANDed
immediately with the data on port 2, and the results are
sent back to the port.

Same operation as the defined instruction (code 9A).

Cycles: 2

Bytes: 2

231

Operation Code:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemonic:
Operation:

Symbolic
Representation:

Description:

Note:

Special
Conditions:

Operation Code:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

A2 A2
NOP
No operation performed.

No operation is performed. execution continues with the
next sequential instruction

Same operation as the defined instruction (code 00).

Cycles: 1

Bytes: 1

A6 AbB
JNFO addr

Jump to specified address if flag 0 is clear.

(PC 0-7) < addr,
(PC) < (PC) + 2,

if FO=0
it FO=1

it flag O is at a logic zero. the contents of the
program counter are replaced by the address bits from
byte 2. if flag 0 is at a logic one, the next
sequential instruction is executed.

This instruction is the logical inverse of the JFO
instruction.

Cycles: 2

Bytes: 2

B7 B7
NOP

No operation performed.

No operation is performed. execution continues with the
next sequential instruction

Same operation as the defined instruction (code 00).

Cycles: 1
Bytes: 1

232

Operation Codes:

Mnemonic:
Operation:

Symbolic
Representation:

Description:

Note:

Special
Conditions:

Operation Codes:

Mnemonic:
Operation:

Description:

Note:

Special
Canditions:

Operation Codes:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

C0.C1 *=*NEC 8048 ONLY** Co0.C1
DEC @ Rr

Decrement-indirect contents of RAM by one,

((Rr)) < ((Rr)) + 1; wherer = 0 or)

The contents of the internal RAM location as addressed
by bits 0 through 5 of register ‘r’, are decremented by

ane.
This function is only performed by the processor
manufactured by NEC.

Cycles: 1

Bytes: 1

C0.C1 **INTEL 8048 ONLY** Co.C1

NOP

No operation performed.

No operation is performed. execution continues with the
next sequential instruction.

These codes perform a no operation (code 00) on the 8048

manufactured by Intel. They perform a different
function on the processor made by NEC.

Cycles: 1

Bytes: 1

C2.C3 Cc2.C3

NOP

No operation performed.

No operation is performed:. execution continues with the
next sequential instruction

Same operation as the defined instruction (code 00).
Cycles: 1
Bytes: 1

233

Operation Code:
Mnemonic:
Operation:

Symbolic
Representation:
Description:

Note:

Special
Conditions:

Operation Codes:
Mnemonic:

Operation:

Symbolic
Representation:

Description:

Note:

Special
Conditions:

D6 D6
JMPP addr

Jump to specified address within address page.

(PC 0-7) < addr

The contents of the program counter are replaced by the
address bits from byte 2.

Performs an unconditional jump within the current
address page. This operation is not provided in the
standard instruction set.

Cycles: 2
Bytes: 2
E0.E1 **NEC 8048 ONLY** EO0.E

DJNZ @ Rr addr

Decrement-indirect contents of RAM. test contents. jump
if not zero.

(RN < (RN - 1; where r = 0 or 1
(PC 0-7) < addr. if (RN =20
(PC) < (PC) + 2, if (R)) =0

The contents of the internal RAM |ocation, as addressed
by bits 0 through 5 of register r. are decremented by
one. and then tested to see if the contents equal zero.
if the contents of the location equal zero, the next
sequential instruction is executed. if the location is
not zero., control passes to the instruction at the
address designated in byte 2.

This function is only performed by the processor
manufactured by NEC. and provides an operation which is
not available from the standard instruction set.

Cycles: 2
Bytes: 2

234

Operation Codes:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

Operation Codes:

Mnemonic:
Operation:

Description:

Note:

Special
Conditions:

EO0.E1 *XINTEL 8048 ONLY** EOQ.E1
NOP
No operation performed.

No operation is performed. execution continues with the
next sequential instruction

These codes perform a no operation (code 00) on the 8048

manufactured by Intel. They perform a different
function on the processor made by NEC.

Cycles: 1

Bytes: 1

E2.F3 E2.F3

NOP

No operation performed.

No operation is performed. execution continues with the
next sequential instruction.

Same operation as the defined instruction (code 00).

Cycles: 1
Bytes: 1

235

Appendix 3. Instruction Set Parameters

This appendix contains details of the instruction set parameters for
the 8085, 6800, 8048 and 68000 microprocessors.

A3.1 Instruction Set Parameters for the 8085

The 8085 contains the following instruction types:—

Single Byte Instructions Dectlared Undeclared Total
Non-Jumping 183 5 188
Conditional Jump 8 1 9
Jump 1 0 11
Total 202 6 208

Double Byte Instructions Declared Undeclared Total
Non-Jumping 18 2 20
Conditional Jump 0 0 0
Jump 0 0 0
Total 18 2 20

Triple Byte Instructions Declared Undeclared Total
Non-Jumping 8 0 8
Congitional Jump 16 2 18
Jump 2 0 2
Total 26 2 28

All instructions Declared Undeclared Total
Non-Jumping 209 7 216
Conditional Jump 24 3 27
Jump 13 0 18
Total 246 10 256

The effective number of jump instructions is 26.5.

236

Jump instruction Types for the 8085

Unconditional Jumps Conditional Jumps
Code Mnemonic Length Type Code Mnemonic Length Type
C3 JMP 3 JMP c2 JINZ 3 JMP
CD CALL 3 JMP CA Jz 3 JMP
c9 RET] RET D2 JNC 3 JMP
c7 RST 0] RST DA JC 3 JMP
CF RST 1 1 RST E2 JPO 3 JMP
D7 RST 2 1 RST EA JPE 3 JMP
DF RST 3] RST F2 JP 3 JMP
E7 RST 4 1 RST FA JM 3 JMP
EF RST 5 1 RST C4 CNZ 3 JMP
F7 RST 6 1 RST CC cz 3 JMP
FF RST 7 1 RST D4 CNC 3 JMP
E9 PCHL 1 JMP DC cC 3 JMP
76 HLT] HLT E4 CPO 3 JMP
EC CPE 3 JMP
Fa CP 3 JMP
FC CM 3 JMP
Cco RNZ 1 RET
cs RZ 1 RET
DO RNC 1 RET
D8 RC 1 RET
EO RPO 1 RET
E8 RPE 1 RET
FO RP 1 RET
F8 RM 1 RET
DD alale 3 JMP
FD alale 3 JMP
cB xr® 1 RST

HLT —-- Halt Instructions.
JMP —— Jump Instructions.
RST -—- Restart instructions.
RET —-- Return Instructions.

**x -— Undefined Instructions.

237

A3.2 Instruction Set Parameters for the 6800

The 6800 contains the following instruction types:-

Single Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

Double Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

Triple Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

Four Byte Instructions

Non-Jumping
Conditional Jump
Jump

Total

All Instructions

Non-Jumping
Congitional Jump
Jump

Total

Declared Undeclared

47 25

0 0

4 4

51 29
Declared Undeclared

85 12

14 1

4 4

103 17
Declared Undeclared

4] 10

0 0

2 I}

43 1

Declared Undeclared

0 2

0 0

0 0

0 0
Dectared Undeclared

173 49

14 1

10
197 59

The effective number of jump instructions Is 26.5.

238

80
Total

97
15

120

Total

o

54

Total

S ON

Total
222
156
19

256

Jump Instruction Types for the 6800

Unconditional Jumps

Mnemonic Length Type

Code

20 BRA 2
6E JMPO) 2
7E JMP(E) 3
8D BSR 2
AD JSRM 2
BD JSR(E) 3
39 RTS 1
aB RTI 1
3E WAI 1
3F SWi 1
38 ARX 'l
SA X® X ‘l
SC xR R ‘I
3D xR X 'l
QD KRR 2
CD xR X 2
DD XA 2
ED X’ X 2
FD xR X 3

HLT —-- Halt instructions.
Jump Instructions.
Return Instructions.
Restart Instructions.

JMP
RET
RST

xxx —— |ndefined instructions.

(> —— Indexed Addressing.
(E) -- Extended Addressing.

JMP
JMP
JMP
JMP
JMP
JMP
RET
RET
HLT
RST
RET
RET
HLT
HLT
HLT
JMP
HLT
JMP
JMP

239

Conditional Jumps

Mnemonic Length Type

Code

22 BHI 2
23 BLS 2
24 8CC 2
25 BCS 2
26 BNE 2
27 BEQ 2
28 BvC 2
29 BvS 2
2A BPL 2
28 BMI 2
2C BGE 2
2D BLT 2
2E BGT 2
2F BLE 2
2] x %X X 2

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

A3.3 Instruction Set Parameters for the 8048

The 8048 instruction set is dependent on the manufacturer of the
device. The main figures given are for processors made by Intel. Figures

in brackets show the variations for processors made by NEC.

Single Byte Instructions Declared Undeclared Total
Non-Jdumping 161 20018) 181(179)
Conditional Jump 0 0 0
Jump 3 0 3
Total 164 20018 184(182)

Double Byte Instructions Declared Undeclared Total
Non-Jumping 22 2 24
Congitional Jump 20 3 23
Jump 24 1(3) 2527
Total 66 6(8) 72(74)

All Instructions Declared Undeclared Total
Non-Jumping 183 22(20) 205(203)
Conditional Jump 20 3 23
Jump 27 1(3) 28(30)
Total 230 26 256

The effective number of jump instructions is 39.5 (41.5).

240

Jump Instruction Types for the 8048

Unconditional Jumps Conditional Jumps

Code Mnemonic Length Type Code Mnemonic Length Type
04 JMP 0XX 2 JMP 12 JBO 2 JMP
24 JMP 1XX 2 JMP 32 JB1 2 JMP
44 JMP 2XX 2 JMP 52 JB2 2 JMP
64 JMP 3XX 2 JMP 72 JB3 2 JMP
84 JMP 4XX 2 JMP 92 JB4 2 JMP
A4 JMP 5XX 2 JMP B2 JBS 2 JMP
C4 JMP 6XX 2 JMP D2 JB6 2 JMP
E4 JMP 7XX 2 JMP F2 Ja7 2 JMP
14 CALL 0XX 2 JMP 06 xEx 2 JMP
34 CALL 1XX 2 JMP 16 JTF 2 JMP
54 CALL 2XX 2 JMP 26 JNTO 2 JMP
74 CALL 3XX 2 JMP 36 JT0 2 JMP
94 CALL 4XX 2 JMP 46 JNTI 2 JMFP
B4 CALL 5XX 2 JMP 56 JT 2 JMP
D4 CALL 6XX 2 JMP 66 XXX 2 JMP
Fa4 CALL 7XX 2 JMP 76 JF1 2 JMP
B3 JMP 8A 1 JMP 86 JNI 2 JMP
D6 xax 2 JMP 96 JINZ 2 JMP
E8 DJNZ RO 2 JMP A6 xxx 2 JMP
E9 DJNZ R1 2 JMP B6 JFO 2 JMP
EA DJNZ R2 2 JMP Cé6 JZ 2 JMP
EB DJNZ R3 2 JMP E6 JNC 2 JMP
EC DJNZ R4 2 JMP Fé JC 2 JMP
ED DJNZ RS 2 JMP

EE DJNZ R6 2 JMP

EF DJNZ R7 2 JMP

83 RET 1 RET

93 RETR 1 RET

NEC 8048 ONLY
€0 DJNZ @RO 2 JMP
El DJNZ 8R1 2 JMP

HLT -- Halt Instructions.

JMP -- Jump Instructions.
RET -- Return Instructions.
RST ——- Restart Instructions.
*xx —-— Undefined Instructions.

XX -- Low—order Byte of Jump Address.

241

A3.4 Instruction Set Parameters for the 68000

The 68000 contains the following instruction types:-

Alt instructions Declared Undeclared Total
Non-Jumping 41021 0 41021
Conditional Jump 4210 0 4210
Jump 20305 0 20305
Total 65536 0 65536

Jump Instruction Types for the 68000

For the 68000 it is not acceptable to assume that conditional jump
instructions willi cause transfer of execution on 50% of the occasions that
they are executed. The list on the following page shows how the different
instructions have been divided into the effective number of codes which
fall into particular groups. Further details of the divisions are given in

section 4.2.1.

242

Jump instruction Types for the 68000 (cont.)

Instruction No. Codes Non-Jump Exception(RST) Jump (Type)
Bce 3584 1792 896 896 (UMP)
BRA 256 0 128 128 WUMP)
BSR 256 0 128 128 (UMP)
CHK 424 106 318 0

DBcc 128 64 32 32 UMP)
JMP 28 0 14 14 (JMP)
JSR 28 0 14 14 (UMP)
RTR 1 0 0.5 0.5 (RET)
RTS 1 0 0.5 0.5 (RET
TRAP 16 0 16 0

TRAPV 1 0.5 0.5 0

Privilege instructions

STOP] 0 0.5 0.5 (HLD
RESET] 0.5 0.5 0
RTE 1 0 0.5 0.5 (RET)
MOVE to SR 53 26.5 26.5 0
ANDI to SR 1 0.5 0.5 0
EORI to SR 1 0.5 0.5 0
ORI to SR 1 0.5 0.5 0
MOVE USP 16 8 8 0
Totals 4798 1999 1585 1214

In addition to those mentioned above. there are 19,717 illegal ot
unassigned op-codes which generate an exception if they are executed.

Overall Instruction Grouping

Effective Number

HLT -- Halt instuctions. 0.5
JMP -~ Random Jump Instructions. 1212.0
RET -~ Return Instructions. 1.5
RST -~ Restart Instructions. 21302.0
Non-Jumping Instructions. 43020.0

Total 65536.0

243

Appendix 4. Equations for Transfers within a Program Area

This appendix contains the detailed derivation of the probability
equations governing the transfers Dbetween states, during erroneous
execution in program areas. The following derivations are valid tor
processors having single. double and triple byte instructions only.

in order to calculate the probabilities of reacﬁing a particular
state, it is necessary to determine the possible ways of transferring form
one state to another. All the possible transfers from the three difterent
operand fields are shown below. In all cases the first byte read is the
fourth in the sequence.

Transfer from State DX

Transtfer to Jump .Dd...
Transfer to Resume .DSV..
.DDSV...
.DTSSV.
.DIDXV.
Transfer to DX .DDDX ..
.DISDX.
Transfer to TXX DODTXX.
DITSTXX
Transfer to TXX DTTXX
Transfer from State TXX
Transfer to Jump STITXd o
Transfer to Resume . TXS8 V..
. TXDS8SV...
.TXTISSYV.
. ITXTITDXV.
Transfer to DX .TXDDX. ..
.TXISDX.
Transfer to TXX ITXDTXX.
CITXTSTXX
Transfer to TXX TXTTXX

244

Transfer from State TXX

Transter to Jump LTI X
Transfer to Resume .TDXV
.TTITXSV
Transfer to DX TIXDX.
Transfer to TXX TIXTXX
Transfer to TXX TS X

The symbols used are as follows:-
Byte interpreted as an instruction.

V¥V Any valid instruction bytes.
X Operand byte of any value.

S Single byte instruction op—code in the program.

D Double byte instruction op—code in the program.

T Triple byte instruction op—-code in the program.

S Operand byte interpreted as a single byte non—jumping instruction.
D Operand byte interpreted as a doubie byte non-jumping instruction.
T Operand byte interpreted as a triple byte non-jumping instruction.

J Operand byte interpreted as a jump instruction type.

X Operand byte interpreted as an instruction.

The probabllity that a particuiar transfer occurs is evaluated by
muitiplying together the probabilities that each specific byte appears in
that sequence. For example, the transfer from the operand field of a
double Dyte instruction to resuming valid instruction fetches can be

achieved in four different ways. The probability of each sequence is given

by:-
PD_)_(_R'I = PD§ Eqgn. A4.1
PDzﬁz = PDQ . Pg Eqn. A4.2
PDARS = PD_‘L . PS . PS Egn. A4.3
PDZ(_B4 = PDJ; . PD Egn. A4.4
Where:- R is the state of resuming valid instruction fetches.

245

DXR represents the transfer from DX to R.
For all the other gquantities the same nomenclature has been used as above.
so that the probability of interpreting an operand byte of a doubie Dbyte
instruction, as a single Dbyte non-jumping instruction, is represented by
PD§'
As the transfer can occur in any one of these ways. the overall

probability of the transfer, PD&R . Is given by:-
Poxr = Poxr1 * Poxrz * Poxps * Poxms Egn. A4.5

Similar expressions can be obtained for all the other transfers.
The probability of a specific byte appearing at a given location is

obtained from the ratio of that byte type to the total number of locations.

For example PD§ is given by:-
N
P = .28 Eqn. Ad.6
DS N
= DI
Where:~ NDS is the number of single byte non-jumping instructions which
appear in the operand field of double byte instructions.
NDI Is the number of double byte instructions.
PS is given by:~
N
_ Sl
PS = N| Eqn. A4.7
Where:- NSI is the number of single byte instructions in the program
area.
N is the total number of instructions.

Values of these probabilities can either be obtained by assuming equal
use of each instruction and random data in the operand fields, or by
analysing actual programs.

From the above expressions it is possible to derive equations for the

246

prabability of being at a particular state. | instruction cycles after the
erroneous jump. They are of the following form:-

PDé(') = PDX(I—D . PDXDX + PTXX(I—D . PTX DX + PTXX(I—'I) .

F,Tg)gXD“x‘
Egn. A4.8

Where:- DXDX represents the transfer from DX to DX.
TXXDX represents the transfer from TXX to DX.
TXXDX represents the transfer from TXX to DX.

Similar expressions can be obtained for PTXX(I) and Pngxm'

=

For the probabilities of a jump to another part of the memory map or
of resuming valid instruction fetches, the values are cumulative because it
is assumed that once in these states, execution cannot transfer elsewhere.
Therefore the following expressions apply:-

PR(D = PR(I-U + PDX(I—U . PDXR + PTXX(I—'I) .

PTXLR
+ PTAX(‘—D . PT_)gXR Eqn. A4.9

The analysis of section 5.2 treats the jump instruction types as tour
separate groups. For clarity, the derivations so far have only considered
a single jump type. However the expressions for the Individual groups are
the same as for the overall group. except that the probabilities of a
particular jump type appearing in the operand field are reduced
proportionally.

Section 5.2 also shows that the probabilities, when | equals zero. can

be found. Therefore the probabilities for all other positive integer

values of | can be evaluated from the above equations.

247

Appendix 5. Results of Execution in Unpopulated Memory Areas

This appendix gives detailed results of the execution following an
erronecus jump into unpopulated memory areas of the 8048 and 8085. For
both processsors instruction fetches read back the lower order byte of the
address and therefore a 256 Dbyte sequence appears in these areas. The
results Dbelow show the effective number of starting points within the
sequence which give a particular transfer. and from this the probability of
each outcome has been calculated.

A5.1 Unpopulated Area Execution for the 8048

Final Instruction Effective Number of % Probability
Executed Start Addresses of Transfer
JUMP 005/805 1.0 0.4
CALL 015/815 15.0 5.9
JUMP 125/925 1.0 0.4
CALL 135/935 46.0 18.0
JUMP 245/A45 1.0 0.4
CALL 255/A5S5 15.5 6.1
JUMP 365/B65 31.5 12.3
CALL 375/B75 16.0 6.3
JUMP 485/C85 1.0 0.4
CALL 495/C95 8.0 3.1
JUMP 5AS5/DAS 16.0 6.3
CALL 5B5/DB5 7.5 2.9
JUMP 6C5/ECS 16.0 6.3
CALL 6D5/EDS 8.0 3.1
JUMP 7E5/FES 24,0 9.4
CALL 7F5/FF5 15.0 5.9
CALL 815 0.5 0.2
CALL 935 0.5 0.2
CALL 7F5 1.0 0.4
JUMP B8A 8.5 3.3
RET 15.0 5.9
RETR 8.0 3.1

Where two addresses have been given the transfer is dependent on the
state of the memory bank select flip—flop. and the corresponding address

will De used.

248

A5.2 Unpopulated Area Execution for the 8085

Address or Instruction Effective Number % Probability Transfer
Reached of Start Addresses of Transfer Type
HALT 122.2 47.7 HLT
RETURN 89.6 35.0 RET
Address in HL Register 3.5 1.4 JMP
DFDE 3.0 1.2 SPC
FFFE 2.2 0.9 SPC
RESTART 4 2.0 0.8 RST
RESTART 5 2.0 0.8 RST
RESTART 6 2.0 0.8 RST
RESTART 7 2.0 0.8 RST
F4F3 1.9 0.7 SPC
Address in DE Register 1.9 0.7 JMP
RESTART 1 1.8 0.7 RST
Address in BC Register 1.5 0.6 JMP
RESTART 0 1.5 0.6 RST
CFCE 1.5 0.6 SPC
RESTART 2 1.5 0.6 RST
RESTART 3 1.5 0.6 RST
C4C3 1.0 0.4 SPC
CsCa 1.0 0.4 SPC
D4D3 1.0 0.4 SPC
DCDB 1.0 0.4 SPC
E4E3 1.0 0.4 SPC
EBES 1.0 0.4 SPC
EEED 1.0 0.4 SPC
F6F5 1.0 0.4 SPC
FCFB 1.0 0.4 SPC
FEFD 1.0 0.4 SPC
CECD 0.8 0.3 SPC
Address in PSW 0.8 0.3 JMP
Cc6C5 0.5 0.2 SPC
CCCB 0.5 0.2 SPC
RESTART 8 0.5 0.2 RST
DEDD 0.5 0.2 SPC
ECEB 0.5 0.2 SPC
D6D5 0.5 0.2 SPC
Transter types:— HLT Halt.

RST Restart.
JMP Random Jump.
RET Return.
SPC Specific Jump.

249

Appendix 6. Software for the Fault Simulation Test Facility

This appendix contains full commented listings of the software written
for the fauit simulation test facility. it is split into a number ot
modules. CONTROL is the control program which organises the sequence ot
runs and calls the other modules. PREFAULT is the main core of the
interrupt service routine. It retrieves the return address from the stack
and saves all the registers before calling the fault injection routine.
Both of these modules provide the basis for all testing and do not require
alteration.

The remaining modules are test dependent and have to be rewritten for
different faults or test programs. For these modules. the listings show a
specific example. INIT Initilalises the state of the test system before
each run. FAULT simulates the desired fault during the interrupt routine.
CHECK gives an indication of the correctness of the result after execution.
TEST Is the program 10 be tested.

A6.1 CONTROL - Main Control Program

TEARXRREERARXREEXEERXAREAXREKAEAALRARARELELRARRRXRE XXX AR AR AKX RRX R R AL RR AR RRRRRR AR R AR R KRR X
.

CONTROL PROGRAM FOR TESTING FAULT TOLERANT ROUTINES
IT INJECTS A FAULT AT SUCCESSIVE LOCATIONS IN THE TEST PROGRAM

THE TESTING FACILITY USES THE TIMER SECTION OF THE 8155 ON THE SDK BOARD
; TO GENERATE INTERRUPTS AT DIFFERENT POINTS IN THE PROGRAM.

THE INTERRUPT ROUTINE CAN THEN BE USED TO INJECT 'FAULTS’ INTO THE SYSTEM
: BY CORRUPTING REGISTERS OR MEMORY LOCATIONS.

TIARREXRRKAXAX AKX EKELA XXX RERERARKLARAL XL XX KRR ELZAAE R AR EEAEARRAARRXRARERR KRR

éLKEND EQU 02086H :STORE FOR END OF PROG ADDRESS

BLKST EQU O7FFFH :START OF PROGRAM ADDRESS

CHECK EQU 08700H :LOCATION OF CHECKING ROUTINE

CIN EQU 00820H .READS IN SERIAL BYTE INTO A AND C REGS
CouT EQU 00850H :OUTPUTS SERIAL CHARACTER IN C REG
ENDTC EQU 02008H :STORES FINAL VALUE OF TIMER COUNT
GETAD EQU 00626H -READS ADDRESS INTO BC REGS

INIT EQU 08500H .LOCATION OF ROUTINE TO INITIALISE REGS
MASK EQU 02007H :TEMPORARY STORE FOR INTERRUPT MASK

250

CONTROQOL (cont.)

MONIT
NUMFLG
PROG
RUNNUM
STACK
TCOUNT
TIMFLG
UPDAD

SKIP1:

EQU
EQU
EQU
EQU
EQU
EQuU
EQU
EQU

ASEG
ORG

LXI
DI
LXI
SHLD
Mvi
STA
STA
LX)
SHLD
Lxi
CALL
CALL
MOV
MOV
SHLD
LXi
CALL
CALL
ANI
CPI
JNZ
LX1
MVI
STA
CALL
CALL
MOV
MOV
SHLD
LXI
CALL
CALL
AN
CPI
JINZ
MV
STA
X1
CALL
CALL

00408H
02005H
0COQ0H
02003H
02080H
020C0H
02006H
00362H

09800H

SP.STACK

H.06H
TCOUNT
A,000H
TIMFLG
NUMFLG
H.00000H
RUNNUM
H.MESS1
STRING
GETAD
H.B

L.C
BLKEND
H.MESS2
STRING
CIN

07FH

g

SKIP1
H.MESS3
A.OFFH
TIMFLG
STRING
GETAD
H.B

L.C
TCOUNT
H.MESS4
STRING
CIN

07FH

g
START
A.OFFH
NUMFLG
H.MESSS
STRING
GETAD

‘RETURN ADDRESS INTO SDK BOARD MONITOR
;FLAG FOR SINGLE FAULT INJECTION
:START OF TEST PROGRAM

;HOLDS THE VALUE OF THE CURRENT RUN NO.
;STACK POINTER

.LOCATION FOR TIMER COUNT
;FLAGFORSINGLELOCATIONFAULTINJECTION
.DISPLAYS CONTENTS OF HL ON SDK BOARD

:LOCATE PROGRAM

:SETS STACK FOR CONTROL PROG USE
.DISABLES INTERRUPTS WHILE SETTING TIMER
;SET TIMER COUNT FOR FIRST RUN

;SAVES VALUE

.SET FLAGS

;SET RUN NUMBER

:LOADS START ADDRESS OF MESSAGE
;AND OUTPUTS STRING

:READS IN END OF PROGRAM BLOCK
:TRANSFER BLOCK END AND SAVE

.READY MESSAGE AND SEND

:READ IN SINGLE BYTE

:REMOVE EXTRA BIT

:CHECK IF SINGLE LOCATION REQUIRED

JIF ALL LOCATIONS SKIP RESETTING FLAGS

:SET SINGLE LOCATION FLAG

-REQUEST COUNT FOR SINGLE LOCATION
:READ IN TIMER COUNT

:TRANSFER TO HL

:STORE NEW VALUE OF TIMER COUNT
;READY MESSAGE AND SEND

:READ IN SINGLE BYTE

:REMOVE EXTRA BIT

:CHECK FOR SINGLE FAULT INJECTION
AF FULL RUN START EXECUTION

:SET RUN NUMBER FLAG

:READY MESSAGE AND SEND

:READ IN RUN NUMBER

251

CONTROL (cont)

MOV
MOV
SHLD
JMP
ISTART: LHLD
INX
SHLD
START: LXI
LHLD
SHLD
CALL
LXI
LXI
LHLD
MOVE: INX
INX
LDAX
STAX
MOV
CMP
JNZ
MOV
CMP
JNZ
LHLD
MVI
ouT
MOV
ouT
MOV
ouT
CALL
Mvi
ouT
MVI
SiM
POP
LXI
El
ouT
JMP

H.B

L.C
RUNNUM
START
TCOUNT
H
TCOUNT
SP.STACK
TCOUNT
ENDTC
UPDAD
B.BLKST
D.PROG-1
BLKEND

MOVE
TCOUNT
A,040H
028H
Al
02CH
A.H
02DH
INIT
A.0COH
028H
A.01BH

PSW
SP.0C800H

OFFH
PROG

:MOVE VALUE INTO HL

;STORE VALUE IN MEMORY
‘SKIP INCREMENT OF COUNTER
:RESET COUNTER FOR NEXT RUN

:SET STACK FOR CONTROL PROGRAM USE
.LOAD TIMER COUNT INTO HL REGS

:SAVES VALUE FOR DISPLAY ON COMPLETION
:DISPLAY VALUE ON SDK BOARD

.LOAD BLOCK START ADDRESS IN ROM
.LOAD BLOCK START ADDRESS IN RAM
.LOAD BLOCK END ADDRESS IN RAM
ANCREMENT POINTERS

:READ IN BYTE FROM INSTANT ROM

:STORE BYTE IN RAM
.CHECK FOR END OF BLOCK

.LOAD COUNT FOR PROGRAMMING TIMER
;STOP TIMER IF RUNNING

:LOADS LOW ORDER BYTE OF COUNT

:LOADS HIGH ORDER BYTE OF COUNT

JINITIALISES REGISTERS BEFORE TEST
:START COUNT

;SET INTERRUPT TO ENABLE RST 7.5

.RESETS PSW BEFORE TEST
:SET STACK BEFORE JUMP

:TRIGGERS HARDWARE TO MASK OFF A14,A15
:JUMPS INTO PROGRAM TO BE TESTED

FOR THE FIRST RUN AN INTERRUPT WILL OCCUR DURING THE JUMP INSTRUCTION.
. IT IS THEREFORE POSSIBLE TO INJECT A 'FAULT’ BEFORE EXECUTION OF THE
. FIRST INSTRUCTION IN THE TEST PROGRAM.

. AFTER A COMPLETE RUN OF THE TEST PROGRAM, FOLLOWING CODE WiLL BE
EXECUTED TO DETERMINE SUCCESS OR FAILURE, THEN OUTPUT THE RESULT.

ORG

RETURN: XI

09900H

SP.STACK

.FIX RETURN ADDRESS

:RESET STACK AFTER TEST

252

CONTROL (cont.)

RiM :READ IN STATE OF INTERRUPTS
STA MASK :STORE IN TEMP LOCATION
Mvi A.010H :RESETINTERRUPTOFF
SiM
CALL CHECK :SUBROUTINE TO CHECKIF CORRECT RESULTS
JNC FAIL .CARRY NOT SET IF UNSUCCESSFUL
MVI C.'s’ :OUTPUTS 'S’ TO INDICATE SUCCESS
CALL couTt
JMP TEST1 :RETURNS AFTER SENDING 'S’

FAIL: CALL OuUTTC :OUTPUTS TIMER COUNT

TEST1: LDA TIMFLG :TEST FOR SINGLE LOCATION FAULT
INR A
JZ TEST2 ;SINGLE RUN JUMP TO SECOND TEST
LDA MASK :RELOAD STATE OF INTERRUPTS
ANI 040H .TESTS TO SEE IF MORE RUNS REQUIRED
JZ ISTART :GOES BACK FOR NEXT RUN
Xl H.0006H .RESET TIMER COUNT FOR NEXT SET OF RUNS
SHLD TCOUNT :SAVE VALUE FOR LATER USE

TEST2: LDA NUMFLG ;LOAD TEST FLAG INTO ACC
INR A
JZ PREND :JUMP IF SINGLE RUN OR END
MVI C.0DH .SEND CR.LF TO PLACE RUN NUMBER IN
CALL CouT :LEFT HAND COLUMN OF LINE
Mvi C.0AH
CALL couT
LHLD RUNNUM :.LOAD RUN NUMBER
INX H JINCREMENT READY FOR NEXT RUN
SHLD RUNNUM .SAVE FOR LATER USE
CALL OUTNUM :OUTPUTS VALUE TO SCREEN
MVI C.'* :OUTPUT "** TO MARK RUN NUMBER
CALL couTt
JMP START :JUMP BACK FOR NEXT RUN

PREND: MVI A.010H ;RESET RST7.5 FLIP FLOP TO OFF
SiM
i H.MESS6 ;OUTPUTS TERMINATING MESSAGE
CALL STRING
LHLD ENDTC :OQUTPUT VALUE OF TIMER COUNT
CALL OUTNUM
L H.MESS7
CALL STRING
LHLD RUNNUM :OUTPUT VALUE OF RUN NUMBER
CALL OUTNUM
mMwvi C.01AH :SEND END OF FILE MARKER
CALL couT
JMP MONIT WJUMP BACK TO SDK MONITOR

MESS1: DB ODH.O0AH,'FAULT TOLERANT TESTING FACILITY'.0DH.0AH.0AH
DB ‘TEST PROGRAM LOCATED FROM C000 TO $°

MESS2: DB ODH.0AH.0AH,'TYPE "'S’* FOR FAULT INJECTION AT A SINGLE’
DB * LOCATION s’

MESS3: DB ODH.0AH.0AH."ENTER TIMER COUNT FOR REQUIRED LOCATION ¢’

253

CONTROL (cont.)

MESS4: DB ODH.0AH.0AH.’TYPE "'S’* FOR SINGLE RUN ON EACH

OB ‘LOCATION $°
MESSS: DB ODH.0AH.0AH."ENTER RUN NUMBER FOR REQUIRED RUN $'
MESS6: DB ODH.0AH.07H.'EXECUTION TERMINATED AT TIMER COUNT $’
MESS7: DB ", AND RUN NUMBER $’

IARNKXARKRXAAXAZXAAXARAARARARKAXARARXRK AKX AL AXRARALXARXR XA XXX XRERAA N ERAXXARRARKRARARXZARR X
SUBROUTINE -~ STRING CALLS:- COuUT

. ROUTINE TO OUTPUT A STRING OF CHARACTERS DELIMITED BY A ¢’
. START ADDRESS OF STRING MUST BE IN THE HL REG PAIR

IERXEEREAXAREAALAREAKREAXXARXRARXRARAARALZX XK ERREAREARRRRIARAE A XK R AR KRR XA KRR KX AKX IRARKXRARR R
¢

STRING: MOV C.M :GET BYTE FROM MEMORY

MOV AC :CHECK FOR DELIMITER

CPi $’

Rz :RETURN IF END OF MESSAGE
PUSH H :SAVE MEMORY ADDRESS

CALL couT ;OUTPUT CHARACTER

POP H

INX H !INCREMENT ADDRESS POINTER
JMP STRING :GO BACK FOR NEXT CHARACTER

IEREXRAXAARREE XA R AR AR RAALRARA R ALK R EKELE AR REA AR AL E R AL XX LRX A RAR X AR XXX X RX XXX
’

; SUBROUTINE -— OUTTC/(OUTNUM) CALLS -- AOUT, CONvV, COUT

. CONVERTS 16 BIT ADDRESS STORED IN ‘'TCOUNT’, (OR IN HL REGISTER PAIR).
. INTO 4 ASCHl CODES AND OUTPUTS THEM TO THE SERIAL PORT

TRRERKAEAXRXAREARARKRAXAXXZAAXEAXARXAAREAZAZAZZAARAAXXXXXAX A XA RARZERKARRRERXRX XXX ARRLRA KRR KRR K X R X

QUTTC: LHLD TCOUNT :LOAD IN NUMBER FOR OUTPUT

OUTNUM: MOV A.H
CALL AQUT ;OUTPUTS HIGH BYTE
MOV Al
CALL AQUT :OUTPUTS LOW BYTE
RET
;xxx:x:xtxz:tt&xxxzxza:xxx:xx:xxxxxzx:xt*xxtxx*xxxzxxxxx*:txxxztxtttxt:xxx
SUROUTINE ~-- AOUT CALLS -~ CONV. COUT

. CONVERTS SINGLE BYTE IN ACCUMULATOR INTO TWO ASCIl CODES AND OUTPUTS
: THEM TO THE SERIAL LINE

.
TARXAXRERARRKRAKXREX XXX LEAR AKX RRAZXALAXXX AKX IRAXIXA XL KA AKX R KA ARRKRE XA RN KR KRR A LA XK KR RAR KX X X

AQUT: MOV B.A :SAVES BYTE IN B REG
RAR ;SHIFTS UPPER BITS

254

http://0DH.0AH.07H/

CONTROL (cont.)

RAR
RAR
RAR
ANI
CALL
MOV
ANI
CALL
RET

OFH
CONvV
A.B
OFH
CONV

:MASK OfFF UPPER 4 BITS
:.CONVERTS TO ASCll AND OUTPUTS
:RESTORE VALUE

:MASKS OFF BITS

.CONVERTS AND SENDS

TAREAZAXKXEKKAAAXEEEAXRRRRRARALRRARRRRKAARRRERARXANRXARIERAZARKR AL ARRIX R A AKX KX R KA LXK KR X X

SUBROUTINE -- CONV

CALLS -- COUT

CONVERTS HEX DIGIT IN ACCUMULATOR TO ASClH AND QUTPUTS TO SERIAL PORT

AR REXEEALRERXXAREEAXREL R KK KXREEAREE XK ERE A XA ERAXEA R LR A X IR AR R R R R AR LXK KA RN RN AR R X
g

CONV: ADI
CPI
JM
ADI

SKIPC: MOV
CALL
RET

END

030H
03AH
SKIPC
07H
C.A
CouT

;:CONVERT TO ASCII
:CHECK IF 0-9

:READJUSTS FOR A-F
:MOVE CODE TO C REG FOR OUTPUT
:OUTPUTS ASCIHl CODE

A6.2 PREFAULT - Main Core of interrupt Service Routine

RESESEREDPELEL SRR S RS ER SRR R RS RRRRRS RS RRRRRESREERE S

THIS IS THE FAULT INJECTING ROUTINE

IT IS EXECUTED AFTER A RST 7.5 INTERRUPT. IT SAVES THE CURRENT STACK

. POINTER AND ALL THE REGISTERS.

IT RETRIEVES THE RETURN ADDRESS FROM

. MEMORY AND STORES IT AS PART OF THE JUMP INSTRUCTION AT THE END OF
. THIS ROUTINE. A SUBROUTINE IS THEN CALLED TO ACTUALLY INJECT THE FAULT
. BEFORE REINSTATING ALL THE REGISTERS AND THE ORIGINAL STACK POINTER.

CALLS -

FAULT

.
TARRKAZXRAZIRXRXAXAXXRAEZRZARRKAXAKRAKX XA KAXXARAAAXAXERXXA AKX AXKARRR AL RAEX AR XX R A XXX XXX R R KR X
'

CYTEMP EQU
DUMMY EQU
HLTEMP EQU
FAULT EQU
SPTEMP EQU
STACK EQuU

020B2H
00000H
02080H
08600H
02084H
020B0H

.TEMP STORE FOR CARRY FLAG

:.DUMMY ADDRESS CHANGED LATER
.TEMP STORE FOR HL REGISTERS
:.LOCATON OF FAULT INJECTING ROUTINE
.TEMP STORE FOR STACK POINTER

:TEMP STACK POINTER FOR THIS ROUTINE

255

PREFAULT (cont)

SKIP:

RETURN:

ASEG
ORG

SHLD
Mvi
JNC
MvVI
SHLD
LXI
DAD
LXxI
PUSH
PUSH
PUSH

MOV

MOV
INX
INX
SHLD
XCHG
MOV
ORI
MOV
MOV
INX
MOV
XCHG
SHLD

CALL

POP
POP
POP
LHLD
DAD
LHLD
SPHL
LHLD
ouT
JMP
END

09FC2H

HLTEMP
H.000H
SKIP
H.0FFH
CYTEMP
H.00000H
SP
SP.STACK
D

B

PSW

E.L

D.H

H

H
SPTEMP

AH
0COH
H.A
E.M
H
D.M

RETURN+1

FAULT

PSW

B

D
CYTEMP
H
SPTEMP

HLTEMP
OFFH
DUMMY

:SET ADDRESS SO LAST TWO BYTES IN RAM

.SAVE HL REGISTERS

:PREPARE TO SET TEMPORARY CARRY FLAG
:TEST CURRENT CARRY FLAG

;RESET TO INDICATE CARRY WAS SET
;SAVE TEMPORARY CARRY FLAG

;CLEAR HL REGS

:GET CURRENT STACK POINTERINTO HL REGS
.LOAD TEMPORARY STACK POINTER

:SAVE ALL REGISTERS

:STORE COPY OF ORIGINAL SP IN DE REGS

:ADJUST OLD SP FOR REMOVAL OF RETURN
; ADDRESS

:SAVE VALUE IN TEMP STORE

:RETURN OLD SP INTO HL REGS

:SET UPPER TWO BITS SO THAT STACK POINTS
: TO MASKED AREA

:RETURN HIGH BYTE TO H REG

:GET LOW BYTE OF RETURN ADDRESS

:GET HIGH BYTE
:TRANSFER TO HL REGS
:STORE AS PART OF JUMP INSTRUCTION

:CALL ROUTINE TO INJECT FAULT

.RESTORE ALL REGISTERS

:RETRIEVE TEMPORARY CARRY FLAG
:RESET CARRY FLAG

:GET OLD STACK POINTER

;RESET STACK FOR TEST PROGRAM USE
:RESTORE HL REGS

:SET UP MASKING CIRCUITRY

:DUMMY CHANGED DURING EXECUTION

256

A6.3 FAULT - Simulates Desired Fauit

AR KXREAARARARRAAAARRARARAARLAERR AR ARXLRLAXA XA RAXAARARXIARRRRARXARAXRARRXIXAAAARARXARAA XA XX AXRX
¢

THISISAFAULT INJECTING ROUTINE WHICH CORRUPTS DATAIN MEMORY LOCATIONS

; C100 AND C101.

0
IRARRZARNAARARAARIARARIAARARLIAARARIIIRAAAARAAXRARALIAIRANIAIAAINIAAARAARIRIRNARAAARRIXAZY
.

NUMFLG EQU
RUNNUM EQU
VAL EQU

FAULT: LHLD
LXI
XCHG
Mwvi
MOV
ANI
JZ
MOV
MvVI

SKIP1: MOV
ANI
Jz
INX
MOV
MVI
ADD
MOV

SKIP2: MOV
INR
RNZ
MoV
STA
RET
END

02005H
02003H
0C100H

RUNNUM
D.VAL

B.00H
A.D
01H
SKIP1
M.E
B.0FH
A.D
02H
SKIP2
H

M.E
A,0FOH
B

B.A
AE

A

A.B
NUMFLG

:FLAG SET TO OFFH ON LAST RUN
:STORAGE LOCATION FOR THE RUN NUMBER
:LOCATION OF INPUTS INTO TEST ROUTINE

:LOADS IN RUN NUMBER

:.LOAD ADDRESS OF INPUTS INTO DE REGS
;SWAP HL FOR DE

:CLEAR B REG READY FOR LAST RUN FLAG
:TRANSFER HIGH BYTE OF RUNNUM INTO ACC
;:TEST LOW ORDER BIT

:NO CORRUPTION IF BIT NOT SET
:CORRUPT MEMORY BYTE

:SET HALF OF LAST RUN FLAG

;RELOAD HIGH BYTE OF RUN NUMBER
.TEST SECOND BIT

:NO CORRUPTION IF BIT NOT SET

:SET ADDRESS IN HL REG TO HIGH BYTE
;CORRUPT HIGH BYTE IN MEMORY

;SET SECOND HALF OF LAST RUN FLAG
:ADD BOTH HALVES OF FLAG TOGETHER
:MOVE FLAG TO B REG

;LOAD LOW BYTE OF RUN NUMBER INTO ACC
:TEST FOR LAST RUN

:RETURN IF NOT LAST RUN

;:MOVE FLAG INTO ACC

;.STORE FLAG IN MEMORY

257

AB.4 INIT - Initialisation Routine

RRRARARZIRAXIRRAAARNAIAXRAZAAAIAIAXAIRAIARLAAXAIIAXAXIA XA ARAXAARARAARARAIAARARAAXAILRAR
.

THIS ROUTINE SETS UP INITIAL STATUS OF THE PROCESSOR

B
TRARARAZIARARAAARAXARARAIARIAAARAIAXIRAZIAIXIRIAIRIRIIRKIRAINAXIIAIANARRAAARIIXIAAARNIIRAA
’

ERRFLG EQU

LXI
XTHL
PUSH
LXI
LXI
LX)
MvI
STA
RET
END

0C7FFH

H.00000H

H
B8.00000H
D.00000H
H.00000H
A.O0FFH
ERRFLG

:LOCATION OF ERROR FLAG

:SET WHAT WILL BECOME THE PSW
;PUSHES HL ONTO STACK. REMOVES RET ADD
:REPLACES RETURN ADDRESS ONTO STACK
:SET INITIAL VALUE FOR BC REGS

;SET INITIAL VALUE FOR DE REGS

;SET INITIAL VALUE FOR HL REGS

.SETS A REG TO FF

:SETS ERROR FLAG

A6.5 CHECK - Checks Result after Execution

AR RAARKXXAKAAXAREAAXAARNIRARNZIXRAAXAARAAARIZIAXRXRARRARKKARAXZKARAXAXAARR AR A AKX NI KK R
.

CHECKING ROUTINE TO TEST FOR SUCCESS OR FAILURE OF THE TEST PROGRAM

.
CEXRERKARARERARXAREAL AR AR A AXR XA R LA AAALIEAARAARAIRAAXAREXARRAARARAA R R RAA RN A RAAARRRA R XX
v

VAL3 EQU

CHECK: LDA
CPI
JNZ
STC
RET

CLEAR: XRA
RET
END

A6.6 TEST - Program to be Tested

0C110H

VAL3
055H
CLEAR

.LOCATION OF ANSWER FROM TEST PROGRAM

.LOAD IN ANSWER FROM TEST PROGRAM
:CHECK HIGH BYTE

:CLEAR CARRY AND RETURN

;SET CARRY TO INDICATE SUCCESS

;CLEAR CARRY

HRAAXRXEAZXXARNRAAARARXXALARALARARRRARAALKAXXAKXZXRXXRXATARXRAXIRAIRXA LR XA AR R IXRAE XX R AR X

. THIS PROGRAM ADDS TWO 8-BIT NUMBERS TOGETHER AND STORES THE RESULT

INCLUDES ERROR DETECTION AND CORRECTION SOFTWARE

.
REERZEARRXRRARARRAREZIXAZARAZALZARAXARARARRAALXAZAXARARARAXRZIARZAXRRRRAAAARXAKXRAAXRRKRIRARXRXIARRKR AR X
.

ERRFLG EQU
RETURN EQU
START EQU

0C7FFH
09900H
0CO00H

:STORE FOR ERROR FLAG
;RETURN ADDRESS TO CONTROL PROGRAM
;START ADDRESS OF PROGRAM

258

TEST (cont.)

READ2:

CALC:

VAL11Y:
VAL13:
VAL12:
VAL21Y:
VAL22:
VAL23:

VALS:
STACK:

ASEG
ORG

LXI
LDA
MOV
LDA
SUB
JZ
XRA
STA
LDA
MOV
SuB
JZ

MOV
LDA
MOV
LDA
suB
JZ
XRA
STA
LDA
MOV
suse
JZ
MOV
MOV
ADD
STA
DI
ouT
JMP

ORG

DB
DB
DB
DB
DB
DB
ORG
DB

END

START

SP.STACK+10H
VAL11
B.A
VAL12

B
READ2
A
ERRFLG
VAL13
C.A

B
READ2

B.C
VAL21
C.A
VAL22
Cc
CALC
A
ERRFLG
VAL23
D.A

]
CALC
C.D
A.B

C
VAL3

OFFH
RETURN

START+100H

012H
012H
012H
043H
043H
043H
START+110H
000H

.LOAD STACK POINTER
.LOAD IN FIRST VARIABLE

.LOAD IN SECOND COPY

;SUBTRACT VALUES

:.IF BOTH EQUAL. USE VALUE IN B REG
:CLEAR ACCUMULATOR

:ZERO FLAG TO INDICATE ERROR

:READ IN THIRD COPY

.:TEMP STORE IN CREG

:TEST IF EQUAL

:USE VALUE IN B REG

:IF ONLY ONE ERROR. MUST BE IN VAL
:TRANSFER THIRD COPY TO B REG AND USE
:REPEAT FOR OTHER INPUT USING C REG

:CLEAR ACCUMULATOR
:CLEAR FLAG TO INDICATE ERROR

:TRANSFER FIRST INPUT TO ACC

:ADD TO SECOND INPUT

:STORE THE RESULT

.PREVENT ANY FURTHER INTERRUPTS
:CLEARSMASKFORRETURNTOCONTROLPROG
JUMP BACK TO CONTROL PROGRAM

:BOTTOM OF STACK

