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B

The deeper we look into nature, the more we recognise that it is
full of life, and the more profoundly we know that all life is a secret
and that we are united with qZZ life that is in nature. Man can no longer
live his life for himself alone. We realise that all life <is vaZuabZe and
that we are united to all this Zifé.' From this knowledge comes our

spiritual relationship to the universe.

Albert Schweitzer
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ABSTRACT

An effectively incompressible turbulent wall jet with streamwise
and axisymmetric curvature has been studied as a simplification of the
Coanda flare, in order to develop a calculation procedure for design

purposes.

Measurements of Reynolds stresses show very high turbulence levels
caused by the combined effects of streamline curvature and divergence,
leading to increased entrainment and jet growth/velocity decay rates.
Discrepancies in the data also indicate a significant presence of quasi-
steady longitudinal vortices. In the vicinity of the sudden change from
fiow with streamwise wall curvature to that without, the wh§1e layer
shudders; the separate components of the Reynolds stress tensor, struc-
tural parameters and the mean flow all respond as a démped second order

system.

Both the presence of two extra rates of strain which interact
non-linearly and large history effects at sudden changes in surface
curvature make large demands on any turbulence closure. Second order
correlations do not show any degree of similarity when scaled relative to
one another; A calculation method has been developed incorporating the
calculation of the cross-stream pressure gradient in a plane or axisymmetric
geometry. A simple mixing length model withvempirical corrections for the
large effects of étreamline curvature and divergence has been used to close
the solution.  This is regarded as no more than a first step; the calcula-
tion method is suitable for extension to include a full Reynolds stress

closure.
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CHAPTER 1

INTRODUCTION

Flaring in the energy industry is a necessary consequence of having
to safely dispo§e of tail gases produced in various industrial processes
and also toxié gases which have to be completely burned. Coanda flares
are in widespreéd use by British Petroleum at oil installations and also
on off-shore production platforms in the North Sea, yet the design

procedure is purely empirical,

Thus the motivation for the work reported here was to produce a
computer modél of the jet flow in order to aid the design and use of
these flares. This necessitated an experimental study of the turbulence
structure of:the flow in order to provide data relevant to the further
development of calculation methods for turbulent jet flows which have

streamwise curvature and divergence of the mean flow streamlines.

1.1 THE COANDA FIARE

The basic principles and geometry of the Coanda flare are shown
in Figure 1,1. The basic flare shape was designed at the B,P, Research
Centre, Sunbury—on-Thames. A high pressure gas is forced from an
annular siot at the base of the flare and follows the contour, entrain-
ing air as it goes. The entrainment rate is higher than that of the
traditionai pipe flaré and so the gas burns with a turbulent pre-mixed
flame usually giving completely oxidised combustion products. Thus
pollution and rédiation are reduced, the flame length is shorter, and
in emergencies the flare is able to cope with the combustion of crude
0il, Flame initiation doés not occur until the widest part of the flare,

i.e. tne firsf quadrant of the flow is flame free. Thus a computer

SURRAN UNIVER g

- 5 AUG 1982
8ClENGE | iprany




prediction médel without combustion features could still give a gqod
indication of the jet characteristics in the region of flow where
streamline éurvature and divergence effects are most pfominent. This
region therefore plays the most important part in determining the flow

structure.

It is necessary that the computer prediction model should be able
to dope with a variable geometry and give satisfactory predictions of
jet growth rate and turbulence levels. The main design criterion is
that throughput and entrainment should be maximised using the simplest

possible flare profile. The flare flow is described quantitatively by

. vreference to Figure 1.2, Two-dimensional flow symmetry enforces the

nominal identities:

W =0
W= 0
YW =0

where W is the circumferential component of velocity and the two double

correlation.terms involve the fluctuating component of W,

Wilkins et al (1977) provide a survey of various designs of flare
in use. The co_mmerciany named Indair (Induced-air) flare has the
same shape as fhat of Figure 1.1 but possess the added feature of an
optional low-pressure supply which supplements the high-pressure
supply by ifs introduction into the flame at the top of the flare.
The involute of this shape (generated by a concave line rather than a
convex one) has also been used successfully, mainly by using smaller
individual flares but in a matrix with many othefs (Mardair - Marine-
induced-air). This internal configuration produced lower noise and
radiation levels and was primarily developed for use in the North Sea.
It is not considered further as it has a substantially different flow

structure.



1.2 THE COANDA EFFECT - STREAMLINE CURVATURE INDUCED BY AN

ADJACENT BOUNDARY

The effect whereby a fluid attaches itself to an adjacent surface
was first doqumented by Young (1800) as quoted by Wille and Fernholz
(1956). Newman (1561) provides a reference to Reynolds (1870) who
noted that a ball placed on top of a vertical axisymmetric jet of
water remains in stable equilibrium,., Likewise the flow of gas around
the flare is stably adhered to the flare surface, the necessary centri-
fugal force bveing produced by the low-pressure region immediately
adjacent to the surface. Coanda patented several devices for thrust
augmentation.on aircraft and it was through this work that his name
became associafed with the effect rather than the understanding of it.
Consequently tﬁe term '"Coanda effect' is often applied as a blankét
expression to the phenomenon.of a wall jet on a convex surface, without
distinguishing certain important features. Wille and Fernholz (1956)
distinguish two phenomena, one inviscid, the other a consequence of
viscous interaction between the jet and the surrounding fluid.
Bradshaw (1573) gives a detailed description where the term 'Coanda
effect" covers three phenomena;-

(a) the tendency of a fluid to remain attached to a curved
surface that is‘a simple consequence of the inviscid flow equations
(for a liquid jet, surface tension promotes attachment);

(b) the aéce1eration of the ambient fluid (entrainment) thereby
causing a ioﬁ;pressure region if the jet is adjacent to a wall - the
jet 'sucks' itself onto the wall and this is a viscous phenomenon;

(c) fne effect of streamline curvature on a mixing layer which

in this case causes a marked increase in growth rate of the jet.

Item (c) is the most important single effect of streamline curva-

ture on a wail jet, It is important to distinguish the difference



between stably and unstably curved flows. According to the stébility
cfiterion of Rayieigh (1916), a fluid element in a curved flow whose
angular momentum decreases with increasing distance from the centre of
curvature is unstable, Radial displacement of the fldid element away
from the centre of curvature places it in a region of lower angular
momentum, Therefore, the local radial pressure gradient will be too small
to contain the fluid element and so it will move further away from the
centre of cur?ature. Thus unstably curved flows (3(Ur)/dy negative)
have increased turbulence levels and growth rates compared with the
same uncurved flow.. The converse argument holds for stably curved
flows (a(Urj/ay positive) which show a reduction in turbulence activity,
The convention implied above is that r is positive for convex curvature

and negative for concave curvature,

A paraliel and equal;y important phenomenon is the effect of
divergence.of_the’mean flow streamlines on the turbulence structure.
Divergence nere is meant as a collective term for flows with either
diverging or converging méan flow streamlines. For a diverging flow
(o positive in Figure 1.2), the turbulence is increased, tnus increasing
the jet entrainment rate and making aU/ax more negative, consistent with
the continuity equation. The converse is true for a converging flow.
Bradshaw (1978) attributes increased mixing to the increase in vorticity
along an axisApérpendicular to the plane in which the cross -section of

a fluid element is decreased.

The combined effects of streamline curvature and divergence produced

a hignly turobulent flow for the region of interest g0° 5 o > O.

1.3 BREAKAWAY

Tnis is a pnenomenon wnere tne flow separates from the flare



surface at or just downstream of the slot. It is likely to be a com-
pressinle flow effect, probably separation induced by shock waves, and
therefore occurs under choked conditions. This investigation is con-
cerned with'the incompressible aspects of the flow strﬁcture and primarily
the infiuence of the flare profile on the turbulence structure and the
implications for the calculation method. Breakaway warrants an invest-

igation of its own and is not considered further,

The work reported here falls naturally into two parts: chapters three,
four and fivevdeécribe the experimental work undertaken with a view to
studying the turbulence structure of the jet; chapters six, seven and
eight descriﬁe the development of a calculation method and recommendations
for a suitabie turbulence model. The remaining chapters describe the

comparisons between the experimental results and the computer predictions.
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CHAPTER 2

THEORETICAL BACKGROUND

Turbulent shear layers are only a small section of the enormous
field of turbulgnt flows, They share the distinguishing characteris-~
tic that tnere is a substantial gradient of total pressure across their
width. The study of shear layers is therefore important in order to be
able to predict flows with practically important boundary conditions,
Distorted shedar layers provide a sub-class of flows which require even
greater underétanding of the physical processes involved. Therefore
this chapteriincludes a brief summary of how turbulent flows are deséri-
bed., It also ihcludes a review of previous work concerning wall jefs
and of more récént studies of the effects of streamline curvature and
divergence on shear flow structure. The standard texts of Townsend
(1976), Hinze (1975), Rotta (1962) and Bradshaw (1571, 1976a) provide

a much more thorough treatment of turbulent shear flows,

2,1 INTRODUCTION

A complete mathematical description of turbulenée necessarily
involves statistical theory and is too complicated for engipeering
applications. Qualitative descriptions often use the concept of the
eddy or vortex where random vortex stretching causes interaction between
fluctuations of different sizes and orientation (expressed by the non-
linearity of{the equations of motion), Thus length scales and velocity
or time scales range from typical values for the bulk flow down to the
smallest motions, where this minimum is set by the viscous dissipation
of energy. 'Eﬁergy enters the turbulence by interaction of the larger
eddies with the mean flow fieid, without which the turbulence would
decay. These iarger eddies carry most of the turbulent kinetic energy

and the transmission of this energy to smaller and smaller scales (the



energy cascade) is independent of viscosity except in the final stages.
Transport equations are used to describe the life history of eddies
or vortices, although for the sake of simplicity certain assumptions

have to be made,

2,1.1 The Generalised Equations of Motion

‘All the equations in this chapter refer to constant property
values of density, temperature and viscosity of a Newtonian fluid. The
Navier-Stokes equation (momentum equation) can then be written in tensor
notation as:~

Ui , U 3V _ _, Op L voluy o1

ot oXg . p 0%y %2,

L . .(2‘1)
where fi represents the xi-component of a body force such as gravity.

The continuity equation is:

.9 e . o(2.2)
The "diVergence" form of the left-hand side‘of the Navier-Stokes
equatinn is obfained by adding U; times the continuity equation to the
left-hand side of equation (2.1) and becomes:

3Yy , (U3U,)

T
Pressure fluctuations are always determined by the velocity field and

can be calculated by taking the divergence of the Navier-stokes equation

(2.1) and uSing continuity to rearrange:

1 3% = -aUp U, = - aluily)
p axg axg ¥ axj_axgl

o . 4(2,3)
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Equation (2.3) shows that pressure is not a locally defined quantity,
but is an integral over the whole flow field; it is the Poisson equation
for pressure. With the further reétrictions that the flow is steady and
two-dimensional, equations (2,1) to (2.3) reduce to equations (6.4) to

(6.7). These equations are discussed more fully in Chapter 6.

Another important equation is that for the instantaneous rate of

conversion of kinetic energy per unit volume to heat, viz:

2

E = v faU; + U3

1
2 an axi . . .(2 .4)
which is important obviously in the smaller scalesof motion., Its

Simplification is discussed in § 2.1.3.,

2.,1,2 The Statistical Description of Turbulence
In order to define a turbulent f£low, it is necessary to specify
a mean and fluctuating component for velocity vectors and the pressufe

field, Thus

U; = Uj +u; and p; = pj +p'y

where p'i and u; = O,

The eddy concept is used to describe typical flow patterns which
contain a typical range of Wwavelengths of motion, The statistical
mean most used:to measure the spatial structure of turbulence is the

double velocity correlation function:

Rij (& & 7) = ui(x,t) uj(xrs, thr)
. . L] .(2.5)

where ui(th) is a component of the instantaneous velocity fluctuation
at position x and time t. Underscores denote vector quantities.

Spatial correlations (or covariances) are used when ¢ = O, where Rjj

is then a measure of the strength of eddies whose length in direction &
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is greater than s, Therefore the shape of the correlation function as
S changes size gives some information about the eddy structure of the
flow., Time correlations (autocorrelations) are also used when g = O

and i = j. By definition Ryj = O &s g or 7 approaches infinity.

Taylor's h&pothesis is an important experimental tool and proposes
that if the mean velocity in the x-difection is very much greater than
the turbulent fiuctuations, then the changes in velocity pattern as it
sweeps past a fixed point are negligible and therefore:

uj .(x,y,z,t +q) = u (x - .ﬁT,Y,Z,t)
.. o(2,6)
Thus the longitudinal space correlation and time correlation are

similarly related:

, Rij @ % 00) = vRij @ o . . (2.7
Correlations with separation in the direction of mean velocity are
difficult to measure as an upstream probe will interfere wifh the one
downstream, -Thérefore measurement of time correlations, and the use

‘of Taylor's hypothesis is more accurate if a method of intrusive f£low

measurement is used,

The normalised form of the double correlation function:

ﬁij (3_,5.,13) = Rij (?f.sg’t)
Ry 3 (x,0,0) . . .(2.8)

is used for the measure of integral length and time scales, viz:

Yy @) Rij (gsg,00dy,

£ -

il
8 3

T (&)
: e o o(2c9)

1
8
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The most used of these is the longitudinal integral scale H#L,(x) which
gives an indication of the mean eddy size in the longitudinal direction.
Theroforq it can be used as a typical length scale of the energy-containing

eddies,

For convenience, the covariance uj(x) uj(g+s) is often replaced

by its three~dimensional Fourier transform defined by:-

i,3

u; (%) uj(§+§) = J‘}ij(a) exp (i ng)dn
) . . .(2,10)

where n is the wave number vector and i =J-1 , is then the three-

ij
dimensional'wave number spectrum which has a distribution in "wave

number space". Another form of.i{(g) is:-

B = 1 jj{(n)dA
‘ 2

where 8A is the elemental surface area of a surface bounding the wave

. . (2,11)

number space. BE(n) represents the average density of turbulent energy
in the wave number space at wave number n, However, one-dimensional
spectra are used most as they provide the easiest means of physically

interpreting the flow, Thus:

¢ij(nl) = i_ J.ui(Xi) uj(xl + s1) exp(-i n;s;) dsy
1 , coq 7%
| . a(2012)

|
| is the one-dimensional wave-number spectrum of ujuy for a wave—-number
component in the xl-direction. Frequency spectra can likewise be

defined by the use of the Fourier transform of the autocorrelation,

The double velocity correlation or the wave number spectrum

provide alternative ways of describing a turbulent flow. However,
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this description is only complete if the probability distribution function
for the volocity field is joint-normal, that is for each point in the
flow field the probability of having a fluctuating component of velocity

4 is given by:

P‘(y;) = 1 exp (—éuz/;‘z-)'

Jezma) .. .(2.13)
A single-point distribution is practically of more use and in particular
departures of the actual probability distributioh function from the nofmal
form give indications of the relative importance of higher order velocity

, v
correlations, For example, the skewness of the u-velocity distribution,

-5,5.3/2

ud/(u?) / » or the third central moment, is zero for a normal distri-

bution., Also the corresponding fourth central mdment,'or the flatness
., 5.2

factor u4/(u2) has a 'normal' value of three. A joint-normal distri-

bution implies that the flow is homogeneous.

2.1.3 Homogeneity and Isotropy

A transport equation for the covariance u;(x) uj(x + g) can be
written by adding u; times the transport equation for uj to uj times
that for u; and then averaging. It is given by Bradshaw (1976a p 16)

as:-

UsUy + UjUau; ¢ U ’LE’_U_? =

3t Xy axt

H* * * _9 2. %
-1 (Ujap + Uiap>+ v [U; 3703 + Uy 37Uy

2 *2
%y %,

p

[ [ 0(2014)
where ﬁﬁ is written for Uj (x + §). Substitution of U; as the sum of

J

mean and fludtuafing components yields a very complicated expression,
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However, it can be simplified by assuming that statistical quantities

are independent of position (Batchelor 1953, p. 34) i.e.:-

Ui (?},) = 0
U@ A G 1A @

. ° '(2.15)
which are the necessary conditions for homogeneous turbulence, In this
case then, there is no mean flow and the spatial transport of u; 1s zero.

Most turbulent flows are inhomogeneous but the energy transfer processes

are essentially the same whether the flow is homogeneous or not,

Equation (2.14) together with the averaged Navier-stokes and
continuity equations do not provide a closed sef of equations for a
compiete solution to the spectruh tensor E;ﬁﬁ" If the equations were
not averaged,'fhen solution would be possible; but averaging introduces
higher order correlations,for which it is possiblé to write transport
equations also, However, higher order transport equations only intro-
duce correlétions of even higher order. Therefore it is neccessary at
some stage to introduce approximations to the higher order correlations,
This is known as the problem of "closure". Approximations introduced
into equation (2.14) imply a "spectral closure" of inhomogeneous
turbulence Which is very complicated. Therefore spectral closures are
usually limited to homogeneous turbulence. However most closure work
or 'modelling' refers to approxiﬁations made in the transport equation
for ﬁ;ﬁ}, the single-point second-ordercorrelation, This procedure

gives a realistically soluble set of equétions and is discussed in

Chapter 7.
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Substitution of the mean and fluctuating components of velocity

into Equation (2,4) gives after averaging:

- ' — _, 2
LA (AR
oXj 0%y axj oX4
. . «(2.16)

where E = E + ¢, E is the dissipation of kinetic energy by mean

velocity gradients and ¢ is the turbulent energy dissipation rate:

4 = 32* A\ al.li + auj

axj axi * o 0(2017)
: The energy cascade is an essentially random process and therefore does
not haveamny directional preferences. As a result, the small-scale

dissipating motions are statistically isotropic ( w2 = v2 = w2 ). This

is in fact not quite true as the small-scale motions fluctuate in space

and time according to the large-scale fluctuations, However, with the

simplifications of locally (small-scale) isotropic turbulence which is
i generally valid for high-Reynolds number flows, equation (2.17) reduces
to: |

2
[ = \” aU,i

o%j .. .(2.18)
It is important to note that € is set by the rate of energy transfer
in the energyvcascade and therefore by the larger energy-containing
eddies, The viscosity determines the minimum size of eddy that can

exist, Townsend (1961) showed, by dimensional arguments that:

3 3/
€ = k /2 = Ck 2 k 2

L 4 .. .(2.19)

and the turbulent kinetic energy is proportional to the turbulent

shear stress., Then E is represented by a single length and velocity




- 16 -

scale, viz: L, the eddy dissipation length scale and k the turbulent

kinetic energy.

With the assumption of local isotropy, and that the statistics of
the small-scale motions are determined uniquely by g,‘V and the wave
number magnitude n = Lg\ , Kolmogorov's universal equilibrium assump~
tion uses velocity and length scales defined by:

M1 = (V) and v = (ve)i .. .(2.20)

If the wave-number spectrum is used, then it is spherically

ij
symnetric in the region of local isotropy and
o 2.3
. j[ii @ = v N2 . . .(2.21)
There may also exist a region at lower wave numbers in which the assump-
tion of universal equilibrium is valid but in which the eddy structure

is independent of viscosity. In this inertial subrange,.ﬁ;i becomes ;

o 2/n -
fig @ = ce B3
'62/3 n_5/3

and ﬁ;i (ny) C

.. .(2.22)

where C and C' are constants,
Even though the concepts of local isotropy and universal

equilibrium strictly refer to homogeneous turbulence, they are useful

definitions for inhomogeneous flows also,

2.2 SHEAR IAYERS

Practically important flows such as shear layers are strongly
inhomogeneous, In free turbulent shear flows, e.g. a free jet,
inhomogeneity is caused by the spreading of the flow into the ambient

irrotational fluid (entrainment), In wall shear flows it arises due
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to the effect of the wall, With the consideration of only single-
point correlations, a solution of the equations of motion is realistic.
In this case the double velocity correlations are called Reynolds

stresses,

2,2,1 Reynolds Stresses

The Reynolds stress tensor is - Bﬁzﬁs and is a second order
correlation, It therefore represents a set of nine stresses acting in
the x;-direction on a plane normal to the xj-direction. Alternatively,
the stress tensor represents the transfer of u;-component momentum in
the uj-direcfion by the turbulence., Hence the stress components are
apparent stresses, In Newtonian f£luids the shear stresses (i#j) are
diagonally symmetric, Then the effective number of component stresses
is only six. In many shear flows, at least one of the shear stresses

is zero by flow symmetry. One half of the sum of the normal stresses

(i = j) is the turbulent kinetic energy, viz:

k = %qz = %u?_ ¢« o -(2'23)

2.,2,2 Transport Equations

Following the procedure outlined in §2.1.3, the transport

equation for ujus, the single-point correlation, can be written as

follows:

D(uiuj) =_(fju2 BUi + uyu, BUj

(a) production

Dt dx, 0xy

+p' [duy * 3 (b) redistribution

—_— e —

P\ 9%j oxj
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-3 uzugu, = Vdujuy + p' (fjuy + by uy)
BXQ’ . BXQ‘ )
(c) transport
-2V 3ju; Jus .
o J (d) destruction
o%, 0%y

L] ® 0(2.24)
where in the usual form (summed over repeated indices):

D(uin) - U,Q, auin

bt e

represents the rate of transport of u;uy through a unit control volume

by the mean flow, It is assumed that the flow is steady and body foxrces
are neglected, The kronecker delta operates so that 61j =1fori=3j
and = O for i # j. Equation (2.24) is the transport equation for
Reynolds stress which with appropriate approximations,forﬁs a closed
set of equations with the mean momentum and continuity equations, Its
component térms can be related to the physical process involved.

(a) Produqtion

The generation term is a consequence of the interaction between

the turbulent motion and the mean velocity gradient.

(b) Redistribution

This is called the pressure-strain term; it is the product of
pressure fluctuations and the fluctuating rate of strain, It
represents the effects of pressure fluctuations in acting to equalise
the normal stresses and to reduce the shear stresses i.e. the
tendehcy foward isotropy found in homogeneous turbulence, (Townsend
(1976) ).

(c) Transport

The three component terms are transport of G;G& by velocity
fluctuations, viscous stress fluctuations and pressure fluctuations

respectively, Viscous transport is negligible at high Reynoids



- 19 -

numbers (or away from the viscous sublayer-§2.2.4), as then it
will only be significant in the small-scale motions which are
isotropic, i.e. with no preferred direction. Transport by
pressuré fluctuations are thought to be smaller than term (b).

(d) Destruction

The destruction term provides the dissipation of turbulent kinetic
energy by viscous stress fluctuations, Again for high Reynolds
numbers the small-scale motions are isotropic and therefore this

term will be negligably small in the shear stress equation (iZj).

The physical processes outlined above are better described by the
transport equation for turbulent kinetic energy, formed by addition of

the transport equations for each of the three normal stresses:
Dk _ u Uy an

Dt Xy . (a) production
-3 p'u, + o2 g\ - v %k
g;; ‘ ; ; ;;% (c¢) transport
, ,
-V duy
;;; ' (d) destruction
. o .(2,25)

_where X qz/é, The terms in this oguation are classitied jo the same
way as for D (G;E}). The production term is the rate at which mean
velocity grzgients do work against the Reynolds stresses, thereby trans-
ferring energy of the mean flow to the turbulent kinetic energy. The
redistribution?term’of equation (2.24) vanishes by continuity when the
three equations for %-;g.are summed, This is to be expected as they

represent exchange between the three normal stresses. The destruction

term now becomes the dissipation of turbulent kinetic energy (equation
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(2.18) ) by the viscous stress fluctuations and its conversion to heat.
This equation therefore describes the energy cascade. The transport
equations for the Reynolds stresses and turbulent kinetic energy are

shown in Appendix F,

Another practically important transport equation is that for ¢
itself, It is important as it is often used as the length scale
transport equation in turbulence modelling ( § 7.1,3)., Its develop-

ment is complicated and is given by Hanjalic and Launder (1572) as:

De _ ~— 2, Ui [ duy oup + Uy Yy \ - 2 v duy Juy Oug

Dt Xk axg axz fe>.41 OXye duy au2 aul
2 2 N
(v N oa wet m v e (o
0% 9%y, 0%y o i \ 3%y 0%y

. o o(2.,26)

where ¢' is the fluctuating rate of dissipation., The equation is

~exact for high Reynolds numbers,

2.2.3 Local Equilibrium and Self-Preservation

Townsend (1961) distinguished areas in the inner layer of a
turbulent wall‘flow (but outside the viscous sublayer) in which local
rates of energy production and dissipation are much larger than the
transport terms, These areas are therefore described as being in local
equilibrium bécause transport terms are negligible. In slowly-changing
boundary layers, where the length and velocity scales of the turbulence
are proportional to those of the mean flow, local equilibrium is a good
approximatioﬁ for the outer part of the boundary layer as well, In this

region the mean and turbulent transport terms tend to be equal and

opposite.
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Self-preservation is an extension of the éssuhptiOn of local
equilibrium, For a shear layer to be self-preserving, restrictive
boundary conditions are required and the transport terms in thq Reynolds
stress transport equations are nof negligible. The ratio of generation
to the destruction terms is a simple function of y/g; it is only unity
in the inner layer, Self-preserving shear layers must have dynamically
similar profilés; that is not only the mean velocity profiles, but also
profiles of Reynolds stress and other turbulence quantities must be repre-
sentable by_a éingle velocity and length scale. It is not surprising
therefore that truly self-preserving flows are rare. However, certain
shear layeré, with unrestrictive boundary conditions, in which the
Reynolds number is high enough and y/§ is outside the viscous sub-layer, can

attain near-similar profiles of mean velocity when fully developed,
When a flow is considered to be in local equilibrium or self-
preserving, simple empirical relations between Reynolds stress components

and the mean rate of strain can be found,

2.2,4 Turbulent Flow Near a Wall

For regions of turbulent flow sufficiently close to a wail,
velocity fluctuations mare damped and the fraction of shéar stress that
is a direct resu1t of viscosity increases. For this region, distances
perpendicular to the wall are considerably smaller than the flow dimen-~
sions and in particular, derivatives of mean values in the x-direction
are negligﬁble compared with those in the y-direction. Hence the
equations of motion can be simplified and the shear stress can be

considered constant, equal to the value at the wall, Ty. By dimensional

U = u f(u,ry)
Vv

analysis:

o« 0(2.27)
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where U_ = T,,/p+ The universal 'law of the wall' is typically valid
for y « 0,1v0,2 5, In the viscous sub-layer (approximately O < y <
40 v/ uT) viscous effects dominate, However, outside this region, but
still inside the constant stress layer, the turbulent éontribution to
the sheér stress is sufficient for viscosity to be neglected. Equation

(2.27) then has the special semi-logarithmic form:

U o=y

ay Ky

U - l In uy . (o]

u Ky . : .. .(2.28)
T

where K is suppdsedly a universal constant, experimentally determined
to be approximately 0,41, and C ¥ 5,2 for a smooth wall. This region
of flow, the inner layer, is the local equilibrium region in which

turbulent transport terms areinegligible. The outer layer is dominated

by the larger eddies and is intermittent for y > 0.4 §. Vorticity is

transmitted to the irrotational ambient fluid by viscous stresses;
hence the term "viscous superlayer", the thickness of which is governed

by the wavelength of the smallest eddies,

2,3 CIASSIFICATION OF BSHEAR IAYERS

Equation (2,1) is the instantaneous momentum equation, The
equation for mean momentum can be obtained by substituting U; =.ﬁi + uy
and averaging:

-— — — ——— 2-—
UQ oU3 _ - dp _ Buiuz . ‘v U,

0%y Xy 0%y, ax?

*. » 0(2029)
Body forces are neglected and the flow is considered to be steady. Only

two-dimensional shear layers are considered, hence the dummy index {-
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is repeated ohly twice. Shear layer axes are used for the equations
of motion, The x-direction coincides approximately with the mean flow
streamlines and is parallel to a wall or axis of symmetry. The y~direction

is everywhere perpendicular to it,

Undistorted shear layers are simply classified because streamwise
Reynolds stress gradients are'often insignificant., However, for
perturbedshear layers this is no longer the case and a more rigorous
classification is necessary. Following Bradshaw (1973, 1975, 1976 b
and 1978) am "cdmplex shear layer" is defined as one in which extra
rates of strajin have a significant affect on the turbulence structure
on top of that of the simple shear (usually gg). An "extra rate of
strain" is an additional térm_appearing in the pfoduction term of the
Reynolds stress transport equations whose size is explicitly changed
by the flow conditions, Bradshaw (1975) considers the extra strain
rate effects caused by streamline curvature, divergence and rotation
amongst others., Inspection of equation (F.7) for example, reveals that
the production term is explicitly changed by the curvature term U/rh,
A general extra rate of strain e can be used for order of magnitude

comparisons,

2.3.1 Boundary Layer/Thin Shear lLayer

The turbulence structure of a simple shear layer is unaffected
by the magnitude of the extra strain rate, e. In a thin shear layer
(3ﬁ/ay > e), e does affect the turbulence, but not the mean flow.
Therefore, 8 <§ x, and the static pressure difference across the layer
and the norﬁal—stress gradients are negligible. Equation (2.29) there-

fore reduces to:-—
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TaU,Val _ _1 dp 2 ( ~Uv + v U )
O% oy P ;; oy g;
where
-1 dp _U_dU_
o ax  ax .. .(2.30)

The assumptions above are the same as Prandtl's boundary layer assumptions
and equations (2,30) are the boundary layer form of the momentum equation,

The transport edquation for turbulent kinetic energy becomes:-

Dk _ - W 30 _ (u? - v2) 30

Dt Y -ax
-3 <vq2+;'—v_>—vazk
dy 2 p Byz

.+ «(2.31)
An important simplification exists for the case of a local equilibrium
flow where the transport terms in equation (2.3,1) are negligéble.
Then retaining only the major production term:
~uv U = -

oy . . «(2.32)

which, with use of equation (2.19) becomes:

L UL )2 = -
o /oy . . .(2.33)

This is Prandtl's mixing length ﬁypothesis which is-strictly.only
valid for the equilibrium region of a simple shear layer because

extra strain rates are ignored in the approximation of equation (2.31).
For the reasons stated in § 2.2,3, however, {, is a useful length

scale for the calculation of a simple shear layer, See § 7.1.1.
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A consequence of equation (2.33) in the log-law region of a wall

shear layer is given by:-

polt

oUu = u, = - uv
v Ky 2o
whgre U, = - uv
t, =Ky - .. .(2.34)

The last equation describes the variation of the mixing length

in the log-law region.

2.3.2 Fairly Thin Shear Layer

For cases ﬁhere ol > 10 e, the turbulence structure of the shear
layer is greatly affected by the extra rate of strain, e.‘ Therefore
the Reynolds stress gradiepts are significant in spite of the presence
of possibly large pressure gradients. 0 is considered as only one
order of magnitﬁde less than x, The flow studied in this project
falls into this category and the approximations to the equations of
motion are set out in Chapter 6. Previous work concerning the changes

in turbulence structure is reviewed in § 2,5 and 2.6,

2.4 PREVIOUS WORK ON WALL JETS

This section reviews previous studies Qf wall jets on flat surfaces
which are quite well documented. Earlier, less detailed work concern-
ing wall jets on curved surfaces and cones is also reviewed. All the
work reported below refers to two-dimensional cases although there is
some detailed published work on three-dimensional wall-jets on both
flat and curved surfaces by Catalano et al (1977). Three-dimensional
wall jets are not strictly relevant to this investigation and are not
considered further., There are also several review articles on turbulent
jeté in genéral.by Newman (1961, and 1956S) which serve as useful intro-

ductions to wall jets.
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2.4.,1 Turbulent Wall Jets On Flat Surfaces

Early theories concerned with wall jets were based on the near-
similar solution obtained by Glauert (1956) for the turbulent case.
For the purpose of analysis, the mean velocity profile can be con-
sidered as a typical half-jet up fo the velocity maximum (the "outer
layer"), ineide which is a typical wall layer, (the "inner layer" -
not directly associated with the law of the wall, § 2.2,4), Glauert
assumed that the shear stress in the inner layer varied as U6 (Blasius's
pipe-flow formula) and that therefore the velocity varies as y1/7. The

outer layer was assumed to have a constant eddy viscosity. A solution

was sOught}in‘which the mean velocity profile varied according to:

. a b
Um o8 X nsy oo X (2.35)

although such a similarity solution can only be approximate because of
viscous effects in the inner layer. A corollary of the above assump-

tions is that the shear stress is zero at the velocity maximum,

The values of a and b were found by Glauvert to be dependent on
the matching.procedure used for the inner and outer layer solutions,
but are approximately - 0.5 and 1,0 respectively. Schwarz and Cosart
(1960) expermentally determined a = -0.555 and showed that the assump-
tion of self-preservation implies b = 1,0, Myers et al (1963)
reported a‘veiue of a = -0.490. Bradshaw and Gee (1962), however,
noted two diserepancies in Glauvert's theory, Firstly, the Blasius
pipe-flow surface friction formula underestimated the surface friction
by 25% and the experimental inner law was found not to be semi-logarithmic
in form for the wall jet in still air., For the corresponding jet under a
free stream; the inner law was found to be accurately semi-logarithmic.
This therefore easts some doubt over the defect law everlap assumption

in which it is expected that the law of the wall and the defect law
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overlap in the log-law region. The second discrepancy was that the
shear stress was not zero at the velocity maximum, therefore invalidat-
ing the separafion of the mean velocity profile into an inner and outer
layer. In spite of these two discrepancies, the similarity solution
gives accurate prediction for the mean velocity of a turbulent wall
jet. Bradshaw and Gee (1962) also found that the wall shear stress

is well represented by:-

. - ~0,182
w__ = 0,0315 [Ty,
;T2
m \ « o +(2.36)

in the range 3 xvlo4 < ?ézﬂ <15 x 102 for a wall jet in still air,
v ,

Kacker and Whitelaw (1968, 1971) present a comprehensive set of
experimental'data for wall jets in a moving stréém. Provided the ratio
of maximum jet vélocity to free stream velocity (Um/Ue) exceeds unity,
then the essentiai characteristics of a jet are maintained, although
Irwin (1973) showed that the necessary condition for a jet to be

self-preserving in a moving stream is:-

- m
Ug * (%o + %) .(2.37)

where x_ is the distance between the hypothetical origin of the jet

o
and the slot. m is a function of Um/Ue that equals -0.5 for U, = O
and Tw = 0, 'Kaéker and Whitelaw (1968) found that, in the region of
twenty slot.widths downstream, the law of the wall was in fairly good
agreemént with the experimental data for K = 0.42 and C = 5.45.
Also the point of zero shear stress was again found to be closer to
the wall than the velocity maximum, an observation corroborated by
Wilson and doldstein (1976) and Irwin (1973). This was explained by

the latter author to be the result of the difference between the

diffusion rates of uv towards the velocity maximum, where local
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production of uv is at a minimum, The diffusion of positive uv from
the outer layer exceeds that of negative uv from the wall region,

thereby increasing the shear stress at the velocity maximum,

In the case of Irwin (1973), a wall jet in a free stream was

studied, but with the additional constraint that the ratio of Um/Ue

‘was constant thereby inducing a fairly severe positive pressure gradient.

The law of the”wall was again found to be a good fit to data in the
mgmofy<m%vaWWtMSMemm%ofK and C were used

as those used by Kacker and Whitelaw (1968). Both the mean velocity,
shear stress and turbulence intensity profiles were found to be closely
self~preserving for distances sufficiently downstream, except where the
position of zero shear stress became closer to the wall as x increased.
Gé showed a miﬁimum at the point of zero shear stress, and was also

the largest of the three turbulence intensities. An energy balance

was also carried out. It revealed that the rates of production and
dissipation of turbulent kinetic energy were nearly equal for the
whole jet width except near the velocity maximum (0.05 <y/ym/2 < 0.6).
This was attributable t0 the mean-flow transport and diffusion terms
cancelling eéch other in the outer regions of the jet and their small-

ness near the wall, Also the production term did not become negative,

not even when 3U/3y—=O.

2.4.2 Turbulent Wall Jets With Streamline Curvature

Newman (1961) and Bradshaw and Gee (1962) first noted the increased
growth rate of specifically a jet on a curved surface and the qualita-
tive explanation of centrifugal instability described in Chapter 1 was
used to explain it. Since then most work has been concentrated on the

study of mean-velocity profiles of jets on circular cylinders.
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Guitton (1967) showed that for a curved turbulent wall jet fo be
self-preserving, the ratio of jetvthickness to wall radius of curvature
should be constant. For this to be so, the wall radius is directly pro-
portional to thebdistance x along the wall, and forms a logarithmic
spiral surface. Giles et al (1966) measured mean-velqcity and turbulence
intensity profiles on such a surface and they were found to be similar.
Owing to a lack of self-preservation of curved wall jets in general,
where a 1og¥spira1 surface curvature is a too restrictive requirement,
early curved wall jet predictions relied on empirical growth rates. Newman

(1961) used:

"m/2 = 0.11 (1 + 1.5 yy/2)

X r . . .(2.38)

whilst Guitton (1964), correlating the data of Fekete (1963) obtained:

: 2
Ym/2 = 0.067 [ 1+ 4.48(y,,p\- 1.34 Y 2
X +'xo r r
.(2.39)
Wilson and Goldstein (1976) used:
: 2

Ym/2 = 0.0787 <x + 6.03 1 + 2.956 ym/2 - 0.1599 Ym/2

t t r r
= \2 1.05
HE - 0.0359 ‘f + 6.0 1 + 3.354 ym/2
Un t r

.(2.40)
and also demonstrated the non-selfpreserving nature of the flow by
#eferehce to profiles of'V/ﬁ; whiéh were not gimilar for the curved
case, but were for a wall jet on a flat plate. Profiles of ﬁ/ﬁm were

too insensitive to show the degree of similarity.

A review of work on the turbulence structure of wall jets with

streamline curiature is deferred until § 2.6.



- 30 -

2.4.3 Axisymmetric Turbulent Wall Jets

Radial, conical and cylindrical wall jets are treated collectively
here as they_all have basically the same axisymmetric geometry. The
radial and cylindrical cases can be considered as limits to a general

conical wall jet where 0 < o < 90°.

Bakke (1957) made pitot-tube measurements in a radial wall jet,
the results of which were used to obtain best agreement with Glauert's
theory by adjustment of a single constant. The similarity consténts a
and b were found to be - 1.12 and 0.94 respectively, i.e. the jet growth

Tuwlea

rate is approximately the same and the velocity decay rate is about &edsf
that of a corresponding plane wall jet. Poreh et al (1967), using hot
wire probes, also found the mean velocities to be similar and in good
agreement with Glawert's theory at sufficientlyllarge distances downstream.
The turbulencé'intensity profi les showed a limited degree of similarity.
The data showéd a slightly smaller jet growfh rate than that of Bakke
and using K = 0.4 and C = 5.5 in the law of the wall, a shift in the
inner layer'veiocity'profile was noted. Starr and Sparrow (1967) also
noted, for a cylindrical wall jet, the same shift from the law of the
wall line calculated using K = 0.4 and C = 5.1. The values used by
Irwin (1973) and Kacker and Whitelaw (1968) for the flat-plate wall jet
are not signifiéantly different from those stated above, therefore the
shift may bé attributed to the axisymmetry and consequently the modified
turbulence structure of the radial and cylindrical wall jets. Starr and
Sparrow (1967) also developed empirical Coles-type wake functions in order
to correct the wall jet inner.layer velocity profiles for transverse
curvature effects. Both they and Poreh et al (1967) noted that the
position of zero shear stress did not consistently coincide with fhe
velocity maximum. Not surprisingly therefore, neither authors found the

shear stress to be proportional to the mean velocity gradient in the
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region outside the velocity maximum. Sharma (1981) used pitot tube
measurements for a comparison of the law of the wall constants for
radial, conical and cylindrical wall jets. All the inner layers of the
velocity profiles were sufficiently well correlated by the law of the
wall when }< = 0.55 and C = 7.6 for y U;/v < 200. However the accuracy
of the data appears to be rather uncertain, as there is no record of
corrections for turbulence to the pitot readings and the ratio of pitot

outside diametér to jet width was large.

2.5 THE EFFECTS OF EXTRA RATES OF STRAIN ON  TURBULENT FLOW
Bradshaw (1973) provides a very thorough discussion of how extra
strain rates.affect turbulence. The discussion is primarily concerned
with streamline curvature, being the single most important extra rate
of strain, buf also includes a study of the effects of divergence,
dilatation gnd longitudinal acceleration. The most important fact,
pertinent to all turbulent flows subjected to an extra rate of strain,
is that the effect on the turbulence structure is an order of magnitude
greater than thaf predicted by the extra terms in the Reynolds stress
transport equations. The reason is that on top of these explicit
changes to the productipn and transport terms (sée Appendix f), higher
order correlations are also changéd, thereby implicitly changing the
sizes of gll'the terms. This has important implications for calculation
methods (see § 7.4) and these implicit changes are generally more
important than the explicit changes. Bfadshaw (1973) uses the local
equilibrium approximation to_develop a first order correction for the

effects of small extra strain rates on thin shear layers. Defining

f = 1l +a e

al/dy .. .(2.41)
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to account fqr the explicit changes in the production terms, where.a

is 0(1), then:-

TV .2 = (-2

oy Le,o0 . .(2.42)

where Le Ozislthe dissipation length scale for a simple shear layer.
?

However, the observed changes are of order F where F is 0(10£). There-

fore adjustment of the length scale is required by use of:

Le = F . Le,O
f
implying
F =1+ aq e
3U/dy .. .(2.43)

where o is 0(10). This approach is expected to be valid only for small e,
and does not take into account 'history' effects, i.e. modification of the
larger, and.therefore non-local, eddy structure. The value of o is not
expected to be universal either, and equation (2.43), although derived by
ﬁserf the lqcal equilibrium assumption, could be used in flows not far
from local equilibrium. o would then inevitably contain a factor to

account for the inaccuracy of the local equilibrium assumption.

2.6 THE EFFECTS OF STREAMLINE CURVATURE ON TURBULENT FLOWS

The qualitative concepts of stabilising and destabilising curvature
were introducedvin Chapter 1. The differentiation between stably and
unstably curved.flows provides a useful sub-class of curved flow. There-
fore boundary iayers with concave curvature and wall jets with convex
curvature age_discussed together, although the implied connection between
the two is tenuous due to the lack of detailed experimental data for

the latter. However some thorough measurements héve been made in
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stably and unstably curved boundary layers notably by Smits et al
(1979a) and So and Mellor (1972), and these studies provide a useful

comparison between the effects of the two types of curvature.

According to the F-factor analysis of Bradshaw (1973), a linear

correction formula for streamline curvature is:

F = 1-q U/rh

aU/dy .. (2.49)
where the extra rate of strain is - U/rh in shear lgyer coordinates
appropriate to Figure 1.2. Bradshaw aléo gives a thorough review of
previous research on turbulent flows with streamline curvature, starting
with Prandfl's buoyancycurvature analogy and including curved duct and
rotating cylinder flows. These flows'exhibit curvature effects of
order F. The more pertinent studies relate to mixing layers and boundary

layers on curved surfaces.

2.6.1 Longitudinal Vortices

One of the most striking features of an unstably curved flow is the
appearance of longitudinal vortices, a basically inviscid phenomenon.
The displaced-element arguments used in Chapter 1 to explain the increased
growth rate of a mixing layer with a negative gradient of angular momentum
can be extended to predict the occurrence of streamwise vortices.
(Bradshaw and Cebeci (1977 p. 304) ). Their diameter (half a
spanwise wavelength) is roughly the same as the shear layer thickness and
the streamwise wavelength is effectively infinite (a typical streamwise
wavelength of longitudinal vorticity of a large eddy would be only of
the order of a few boundary layer thicknesses). The strength of the
vortex increases with distance downstream assuming the curvature con-

tinues. The occurrence of these vortices was first noticed by Tani (1962)
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in a boundary layer although Taylor and GYrtler had previously predicted
their appearance in laminar flows. They are therefore called Taylor-

GBrtler vortices also.

Tani (1962) found spanwise variations in mean velocity of a boundary
layer on a concave surface. The variations were of a definite wavenumber
for both laminar and turbulent cases. Accordingly he adapted the G8rtler

stability parameter, used for laminar flows,

_ 3
G = U, (]
v r | . . .(2.45)
by replacinng,With thefeffective viécosity Veff in order to predict the
appearance of_vortices in a turbulent flow. However, as Bradshaw (1973)
suggests, # critical G8rtler number at which the turbulenée becomes
dominated by longitudinal vortices is somewhat arbitrary although it
provides a qﬁantitative comparison of the likelihood of their occurrence.
Patel (19695)valso found spanwise variations in mean velocity and skin
friction céefficient, where the surface shear stress is low beneath
vortex motibn away from the wall (trough) and high beneath vortex
motion towards the wall (crest). Hence a pair of quasi-steady of

steady contra~rotating vortices would give rise to the observed span-

wise variations.

Bradshawv(1973) draws attention to the need for distinguishing
between steady and "steady" vortices (using his quotation marks). Steady
vortices aré réferred to as such because they contribute to the mean
flqw spanwise variations. "Steady" voitices refer to those which,
although they have a time scale much larger than the rest of the turbu-
lent motion, are not constrained well enough to contribute to any

mean spanwise periodicity. Thus steady vortices can produce three-

dimensionality in a nominally two-dimensional flow, whilst "steady"
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vortices, sufiiciently unsteady not to contribute to the mean periodicity,

contribute to the Reynolds stresses only and the mean flow is legitimately

two-dimensional but with the shear stresses uw and Vw non-zero. Bradshaw
also discusses two means of constrainton longitudinal vortices. One

is the influence of wall boundries where the distance between them must

be an integer number of vortex diameters. The other is the influence of
upstream distyrbances (e.g. vorticity induced by wind tunnel damping
séreens) which could h#ve some effect on themean spanwise positions of

vortices which can be locked to the initial disturbances when the flow

is unstably curved.

The pracfiéal necessity of an integral number of vortices makes
calculation Qf wavelengths difficult. Also for a rapidly growing shear
layer, the number of vortices must increase if their wavelength is not
to become an over-small fraction of the shear layer width. Brad shaw
(1973) suggests that the appearance of "steady" vortices in an unstable
Jjet flow is_unlikely, simply because of the large-growth rate which would
require the frequent re-adjustment of the spanwise wavelength in order

to maintain the preferred ratio of wavelength to shear layer thickness..

2.6.2 Unstably-Curved Wall Shear Layers

The earliest authoritativestudy of the turbulence structure of a
wall jet with destabilising curvature is that of Guitton (1970 and sub-
sequently Guifton and Newman (1977). Their work can be regarded as a
sequel to that of Giles et al (1966) who made Reynolds stress measure-
ments in a wall jet on both concave and convex log-spirals. Guitton
used corrections of up to fourth-order correlations for the second order
correlations énd linearized the hot-wire signal. He measured the

o ——

Reynolds stress components, the third order correlations uv? and uw” and

the intermiftency and flatness factors for spirals with x/r = 0, 2/3 and 1.
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He also compares his results to those of Giles et al (1966) for the

case x/r = 1. One of the major problems was the establishment of
two-dimensional flow. Two methods were used to check for two-
dimensionality: firstly, the comparison of the measured shear stress

distribution with that calculated from the two-dimensional integral

momentum equation using the mean velocity data, and secondly, the
{ spanwise measurements of total pressure. The non-two-dimensionality

of the flow can be attributed to two effects. The secondary flows

(i.e. "skew-induced" after the definition of Bradshaw and Cebeci (1977

p. 320)), ocquning in the corners with the end walls could have

significant effect on the displacement thickness of the end wall boundary
'~ layers thereby caﬁsing some divergence or convergence of the flow at

centre-span.kvAlso, it has been found by Guitton and Newman (1977)

and Fekete-(1963) that the flow is extremely sensitive to initial

disturbanceé, i.e. non-uniformity in the initial flow or slot geometry.

These two éffects were corrected for as far as possible and then the

flow showed no signs of any spanwise periodicity.

After attention to the initial conditions, the flow was found to
be self-preserving in most cases, although some of the-zﬁ/ﬁm — ¥/Ym/2
profiles weré not similar near the wall. It appeared that the outer
layer exerted a higher influence on the near-wall regions as the curva-
ture increased. For the x/r = 2/3 case, the position of zero shear
stress was at y/y, = 0.3 whilst for the x/r = 1 case, it was at
¥/¥m = 0.1.. Also the law of the wall with K = 0.42 and C = 5.45
applied for yuT/ v < 150 but only in the x/r = 2/3 case, the implica-
tion being th#t the curvature effected the near-wali region in the
x/r = 1 case. However, Bradshaw (1973 p 56) argues that curvature

effects on the law of the wall are negligible.
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Apart from the increase in turbulence energy over the flat-plate
geometry, the most interesting results were those relating to the non-

dimensional turbulence parameters vz/u2 , ﬁquz (a measure of the

efficiency of the turbulence in producing shear stress) and the profiles

of uv2. The ratio vz/u2 was found to increase with increasing curva-

ture, i.e. the radial motion is increased with increasing instability.
However, profiles of ﬁ\—//;§ appeared to be insensitive to curvature main-
taining théir flat-plate wall jet values. Therefore the turbulence
shows ‘a much higher degree of self-preservation when the turbulence
parameters are scaled relative to one another as suggested by Bradshaw

et al (1967). The third order product uvz, and to a lesser extent

uwz, were both significantly affected by the curvature. 1In the x/r =0

case, uv? has a negative value near to the wall, which almost disappears

when x/r = 1. Thus turbulent transport of negative Uv away from the wall
is much reduced, implying a smaller effeqt of the wall on the outer jet.
This reduction therefore agrees with the observation that the position of

zero shear stress moves towards the wall as the curvature increases.

The intermittency measurements showed that the value of ¥/¥ms2 at
which the intérmittency was constant moved towards the wall for increas-
ing curvature. 'Bradshaw,(1973) offers an explanation by way of the
existence of unsteady large-eddy vortices. Bradshaw and Gee (1962)
used the Rzz(o,o,s) correlation to trace the existence of unsteady
longitudinal vortices which would show up as a larger negative région
in the correlation at say y = yp/2. However, no such effect was observed‘
in the data when compared with the same correlation in a flat-plate
wall jet. Théfefore either these vortices do not exist at y = Ym/2

or are of quite a different lehgth scale to the large eddies, i.e. s.
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Wilson and Goldstein (1976), make no mention of either the problems
concerning the two-dimensionality of the flow, nor the possible exist-
ence of longitudinal vortices. The ratio of jet width to slot height
was about 85 whereas in Guitton's case it was about 200. Therefore
some end-wall effects are to be expected. The hot-wire signal was
effectively linearized during the analysis. The effect of curvature
on self-preservation was discussed in § 2.4.2 and apart from this, the

turbulence data showed similar curvature effects to those of Guitton

(1970).  The ratio of vz/u2 was increased, whilst uv/q2 was unaffected

by the curvature.

Experimental studies of boundary layers on concave walls offer a
further source of information on unstably curved shear layers. Meroney
and Bradshaw (1975), So and Mellor (1972, 1975) and Smits et al (1979a)
are among thesg and they all did parallel studies of stabilising curva-
ture. For a curvature of only §/r = 1/100, Meroney and Bradshaw
observed sfeady longitudinal vortices that could be consistently repro-
duced and showed a wavelength of about one half the boundary layer height.
The surface pressure exhibited a spanwise periodicity and the non-
dimensional plots of‘;§ showed a significant variation across the width
of a longitudihal vortex. However, it was assumed that the lateral veloci-
ties associéted with the vortex system did not affect the hot-wire
analysis. The remaining Reynolds stress profiles showed the expected

increase in turbulent kinetié energy and a larger region of higher shear

stress near the maximum of the profile,

So and Meilor (1972, 1975) also established the presence of long-
itudinal vortices for &§/r = 1/12. The curvature of the convex wall
was adjusted so that the pressure distribution along the concave test

wall remained constant. Air jets were used to acceleréte the end-wall
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boundary layers in order to reduce the effects of secondary flows. The
spanwise variations in mean velocity were smaller than those found by
Patel (1969b) who used approximately the same value of §/r, although, oddly
enough, the variations in wall shear stress were negligable. The turbu-
lence intensities changed in the expected sense and in particular the
components Uw and VW were found to be non-zero; uw was positive at a
trough and negative at a crest of the mean spanwise variations whilst

vw changed in the opposite sense. The ratio EV/EE had a value in the
region of 0.15, its flat-plate value, whilst ;2767.showed the expected
increase in the radial component pf turbulence intensity. The turbulence
data are presented without distinguishing between crest and trough spanwise
locations which'makes interpretation difficult. However most of the

data seem to fall broadly into two groups on most of the plots.

Smits et al (1979a) examined the boundary layers downstream of a 20°
and 30° arc of 'imml.se' curvature (S§/r = 1/12, concave; §/r = 1/16,
convex). A true.curvature impulse would require an infinite extra strain
rate so that fhe turbulence structure changed instantaneously. In prac-
tice one cannot be applied.  Steady longitudinal vortices were found on
the concavé wall which persisted indefinitely downstream. - Thus measure-
ments were made at the crest and trough spanwise positions in the flat
section downstream and all the data in these two cases were treated
separately. The pressure gradient downstream of the bend was small,
therefore allowing a quantitative assessment of 3-D effecté using the
momentum integral equation. A hypothetical origin of the divergence
could be calculated using values of Cf and 6. The data showed lateral
divergence at crests and convergence at the troughs, which indicates a
pair of contra-rotating vortices by reference to the continuity equa-
tion. The spanWise variations in Cf, V and U varied in phase with one
another with a wavelength approximately one half of the boundary layer

thickness at entry to the curved section. The bulk of the data
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concerns the Reynolds stresses, third order correlations and the
applicability of the law of the wall. These are discussed in greaf

detail and only the more important items are noted here.

The turbﬁience structure recovers from the curvature only very
slowly. At exit from the curved region, there are largé values of
3(~uv)/dy which reduces 3U/dy in the outer edges of the boundary layer.
Thus production of shear stress and turbulent kinetic energy fallé
below those ?alues at entry to the curved section. Therefore the
return of the turbulence to its pre~curvature éelf—préserving values
is not monotonic. Bradshaw (1973) and Smits et al discuss the use
of ordinaryfdifferential equations to account»for 'history' effecfs
(i.e. the-effect of mean transport on Reynolds stress) in perturbed
shear layersl These eugations could be used in calculation methods to
allow for a finite response time of a shear layer to an extra rate of

strain and also for recovery after one is removed.

Both trough and crest data show non-monotonic reduction to self-

preserving values. The ratio

a' = uv

~ uv
3/2655 +v2) | u? o+ v2 4 w2

was used as a dimensionless parameter for the data as.;E_was not
measured. For the crest position, a uniform value of 0.13 over most

of the boundér& layer width before the curved section rose to about
0.20 afterwards. Thereafter a' showed the same non-monotonic decrease,
falling below 0.13 before increasing. This shows that the efficiency
of maintainiﬁg the shear stress falls during the recovery section.;E/GE

rises at the end of the curved section, high values persisting at crests
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and low values at troughs. It is little affected by curvature near

the wall.  The triple products uv2 and qzv, the turbulent transport

velocities of uv and q2 respectively are significantly affected. They

increase by factors of between two and three for the 30° case.

2.6.3 Stably-Curved Wall Shear Layers

These are less relevant to the present investigation and are
mentioned very briefly. Wyngaard et al (1968), a sequal to Rapp and
Margolis (1967) and Margolis and Lumley (1965), studied both stable and
unstable mixing layers in a éurved duct. After correcfion to the diss-
ipation measurements, .an energy balance showed that the production and
transport of kinetic energy was inhibited in the stable case and augmented
in the unstable case. Castro and Bradshaw (1975) also studied the effects
of stabilising curvature on a mixing layer. They found the same non-
monotonic return of the turbulence to its uncurved self-preserving
values as reported by Smits et al (1979a). The Reynolds stresses were .
found to decrease in the region of maximum curvature although supress-
ion of the triple products associated with turbulent transport allowed
an increase in turbulence intensity above the self-preserving values in
the middle of the layer where production is at its highest. Smits
et al (1979a) found that in the convex case, recovery to self-presefvation
was very much quicker than in the concave case. The stabilising effects
were so large that the turbulence collapsed so that newly created
turbulence experienced hardly any curvature effects. So and Mellor

(1973) noted that ;—2/1_1§ was reduced by stabilising curvature.

2.7 THE EFFECTS OF STREAMLINE DIVERGENCE ON TURBULENT FLOWS

2.7.1 Relevance to the Present Work
The extra rate of strain associated with streamline divergence is,

for a cartesian coordinate systen, BW/BZ (Bradshaw (1973) ). For the
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present flow where shear layer axes are used and where the circumferen-

tial diredtiQn is designated by z, it is:

e = Ugin o + Veos o

R . . .(2.46)
For a diverging flow (o positive), oW/9z is positive as shown by
equation (2.46); it is negative for a converging flow (o negative).

The F-factor correction equation of Bradshaw (1973) then becomes:

F = 1+ a(ﬁsina+Vc08a)

R 3U/3y .(2.47)
It is worth'nofing that this extra fﬁté of straih only appears in the
production term of the transport equation for - ﬁ?} equation (F.7).
(With refe#;nce to the continuity equation, for a positive value of

W/ 0z, 3U/9x becomes more negative implying an increased velocity

decay rate), But the additional production terms actg in the opposite
sense to the m#in term dU/dy, thereby reducing the production of -uv.
The observed increase in turbulence intensity is therefore attributable
to the implicit changes in the other terms of equation (F.7) for positive

3U/3Y and uv.

2.7.2 Previous Work

The literﬁture concerning the effect of this extra strain rate on
turbulent flows is much less complete than that for streamline curva-
ture; more correctly, studies involving divergence have, by nature of
the experimenfs, often included the effects df other extra rates of
strain. For example, Patel et al (1974) studied a boundary layer near
the tail of a body of révolution. This converging flow therefore showed
the effects of convex streamline curvature and also transverse curvature
where §/R waé large. The only work to date which has studied pure

divergence effects is that of Smits et al (1979b). A detailed study
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was made of a boundary layer on a cylinder-flare body where a fully
developed boundary layer was subjected to lateral divergence on a cone.
Transverse curvature effects were not apparent; §/R = 1/4 at the beginn-
ing of fhe flared section and decreased further downstream. In order to
avoid three-dimensional effects at the cylinder-flare junction, a 20°
curved section was used for smooth transition and the effects of the
concave curvature appeared to die out fairly rapidly. A comparison

with the data of the comparison work, Smits et al (1979a), allowed a
qualitative aésessment of the effect of only divergence on the flow struc-

ture.

The same measurements were made in thislstudy as by Smits et al (1979a).
The first trgverse position was upstream of the transition section, the
next immediatély downstream of it and the remainder were on the flare.

After attention to the effects of pressure gradient in the transition

‘section, circumferential measurements were made with a Preston tube.

These showed small variations which decreased downstream. No periodicity
of wavelength 2§ was found an@ therefore it was concluded that no steady
longitudinal vortices existed. None of the Reynolds stress profiles
showed the collapse of turbulence after the removal of curvature
exhibited in fhe case of destabilising curvature as found by Smits et

al (1979a). Measurements far downstream of the curved transition sec-
tion show that divergence effects are highly significant - of the same
order as thos2 of streamline curvature. For instance the shear stress
data show the expected increase over the transition section, but they
maintain their above-self-preserving values for the whole of the test
region, falliné gradually as the extra rate of strain éwyaz does.

The position of the peak in these profiles moves steadily outwards as

the downstream distance increases. Consequently aﬁyay does not fall
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and shear stress generation remains high. Hence the turbulence does not

éollapse downstream of the curved section.

The diméhsionless structural parameter a = —ﬁVqu is close to
0.15 at the first traverse station. It increases through the curved
section and thereafter maintains a value above 0.15 except near the wall.
This is ascribed to 'inactive' motion (Townsend (1976 p 123) ) near the
ne 2 ; ; ) =
wall where u“ and w“ are preferentially increased over v¢ and GV . Plots

s

of -ﬁV/;E and ;5/55 support this conclusion and show an increase in v2 in
the outer régions of the boundary layer. Non—dimenéional plots of mixing
length show little relation, if any, between mixing length and boundary
layer width and suggest o , in equation (2.47) to be about ten. The

triple products are magnifiéd by a factor of five or more. The large but

. slow increase in these turbulent transport terms indicates modification

of the large eddies in the outer part of the boundary layer and illustrates
their long response time. An energy balance reveals very large increases
in turbulent diffusion as expected from the above statements concerning

the triple products. Plots of the dissipation length scale shows a

general trend of an outward going maximum similar to that of the shear

stress profiles.

2.8 SUMMARg

All measurements made in boundary layers on convex surfaces show
the same increase in turbulence activity, specifically large increases
in second and third order correlations, resulting in an increased shear
layer growth rgte. Experimental evidenée also suggests the presence of
steady or quaSi—steady longitudinal vortices giving rise to crest and
trough span&iéé locations of wall shear stress. Values of second and

third order correlations appear to be higher at the trough locations.
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In the case of an impulse of curvature, the effects appear to be
dependent on the total turning angle rather than §/r, and the return to
self-preserving values of turbulence quantities is not monotonic, indica-

ting modification of the large eddy structure.

In the case of wall jets on convex surfaces, a similar increase in
turbulence activity is found, although there is no evidence to prove the
existence of longitudinal vortices. For all cases of unstably curved
wall shear layers, the establishment of as near two-dimensional condi-
tions as possible in the initial flow is of prime importance, and is
made difficult by the three-dimensional effects of wind tunnel screens
and secondary flows in duct corners. Stably curved wall shear layers

show an opposite trend of turbulence suppression.

The less documented effects of streamline divergence on turbulent -
shear layers are of the same order as those of streamline curvature.
A diverging shear layer appears to be destablised leading to an increase

in turbulence activity.
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CHAPTER 3

APPARATUS AND EXPERIMENTAL PRCCEDURE

The major part of the experimental work was carried out at
Durham, This involved the design, construction and use of a model
flare. Detailed flow measurements were taken using both hot-wire
anemometers énd a sbecially designed three~hole probe. Experimental
work was also undertaken at B.P, Sunbury during the period of October
to December 1979 on a full scale Indair flare, This work is described

later on in this chapter and is referred to as 'large scale' tests.

3.1 MODEL FIARE TESTS

3.1.1 Flare and Plenum Chamber

The model fiare was an exact 3/5 model of the flare used at
Sunbury in the large scale tests - an eight inch Indair flare (IS-H-VS).
In order to maximise use of the available air supply and also to facili-
tafe probe mounting, a half-axisymmetric model was used, the flare and
plenum chambér being mounted on a‘horizontal base~plate as shown in
Figure 3,1, It was assumed that the presence of the base-plate would
not have any effect on the flow (e.g. secondary flows) along the centre-—
line which was used for all the principal traverses. The surface
pressure tappings detailed in Figure 3.2 were staggered either side of

the centre-line to avoid possible interference with the flow..

In spite of the manufacturing difficulties,the flare was machined
out of a solid b1ock of mild steel. Machining was not only necessary
on the outside to produce the flare contour, but also on the inside to
allow mounting of a screw—thread assembly and an exit for the surface
pressure tappings. The scréw-thread assembly was fixed to the base-

plate and thefefore allowed a fine degree of adjustment to the slot
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width measured by a micrometer screw-gauge. The motion of the flare
was controlled by four feet which could slide in grooves milled into

the base-plate., After adjustment the flare was clamped in position,

The plenum chamber was also cut from mild steel, in two pieces to
allow a contraction of 4.84:1 so that the radius of the chamber at the
throat was of the correct dimensions, The lip of the slot was machined
to a radius (see Figure 3.1) and then given a flat so that the slot
was plane, As the rig was being assembled, the accuracy of the slot
was assessed. ‘Slip gauges were used to check the uniformity of thé
slot both at nominally zero and nominally 5,0 mm slot widths., The
variat;on was no more than 0,07 mm which for a nominal slot width of
5 mm represents 1,4% accuracy. The accuracy of the flare centre-iine
position relative to that of the base-plate centre-line was the best
that could be achieved by use of the vertical milling machine to cut

the feet on the flare and their grooves in the bhase-plate,

3.1.2 Air Supply

A 60 x 30.inch diameterIWelded air receiver was maintained at a
pressure between 50 and 90 p,s.i.g. by two Broom and Wade BW1lL com-
pressors, each capable of producing 65 ¢.f,m, after cooling. The
upper limit to the f£flow could be extended by using the air receiver as
a blow-down facility., The maximum throughput recorded could be main-
tained at 180 s.c.f.m, (0.1 Kg/sec) for an interval of two to three
minutes, |

The pipe work connecting the air receiver to the rig was of 1%"
diameter B.S.P. (see Figure 3.3). The air was filtered and regulated

by a Norgren filter (30 CG 10, 25 micron element) and regulator



- 48 -

(11-908-910). 1In order to improve fhe regulatibn characteristics, a
feedback pilot fegulator (11-204~-004) was also used., This was supposed
to give a constant downstream pressure irrespective of any changes in
upstream pressure., Howevér,in.spite of the pilot regulator, the down-
stream pressure did fluctuate according to the supply pressure of the
air receivér; Consequently the flowrate did tend to drift. This could
be compensated for by using a bleed control valve to maintain a constant
pressure in the plenum chémber during the course of a traverse. The
pressure in the plenum chamber was mgasured by either a mercury or
water manomefer. In cases where the supply pressure of the plenum
chamber was high; a pressure gauge was used which had been previously

‘calibrated against a Budenburg gauge tester,

The air mass flowrate was measured by an orifice plate with D and
D/2 tappings, designed according to B.S. 1042, The size of the orifice
plate could be changed to suit the operating conditions and therefore
minimise any errors in flowrate measurement, Downstream of the orifice
plate a T junction controlled by globe valves direcfed the air flow to
the flare orito fhe calibration nozzle, Before any measurements were
made, the supply pipe-work downstream of the regulator and the rig itself
were tested for any leaks, During the course of a traverse, the tempera-
ture of the supply air increased due to the.heating effect of the com-
pressors, This was always monitored and was never more than 20 C
above ambient at the rig. Therefore temperature changes during the

course of any one traverse were ignored.

The carry-bver of oil from the compressors was always a problem and
had to be constantly monitored, Even a fine o0il mist in the supply

tended to break the delicate hot-wire probes or cause some inaccuracy

in their calibration,
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3.1.3 Traverse Gear

A dove-faii slide was mounted parallel with the base-plate
centre~line, On it was mounted a rack and pinion, the axis of which
was perpendicglar to the axis of the dove-tail slide. Together they
formed a compound slide for positioning of probes in the horizontal
plane, See Figure 3.4. On this was mounted a vertical pillar with a
guide rail on which travelled a vertical slide, The slide served as
a mounting for a rotary ﬂead calibrated in degrees and accurate to
five minutes of arc, A DISA 55HO1 traversing mechanism was mounted on
the rotary head and by use of a gear, permitted either a 10 mm or 10 cm
maximum traverse length., The traversing mechanism housed a ten-turn
potentiometer allowing electrical measurement of the probe position
once a traverse was set up, The combined motion of the two horizontal
slides, the vertical slide and the rotary head gave the required three

degrees of translation and one of rotation,

3.1.4 Probes

(a) Three~Hole Probes

These probes were especially made in the Engineering Department
at Durham as'nﬁne are commercially available, Two were made of differ-
ent sizes, each consisting of three total pressure tubes soldered
together (seé Figure 3.,4a). The two outer tubes were bevelled at
angles between 40° and 45° for maximum sensitivity to the inclination
of the mean flow direction relative to the flare surface. Thus it is
assumed that fhe centre tube measures the full dynamic head and the
outer two measure proportions of it, depending on the mean flow angle.
The size of the tubing was selected to give a compromise between the
response time for the probe and the size of the probe. The response
time is inversely proportional to the fourth power of the tube diameterw

Therefore a larger tube size substantially reduces the response time
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whilst increasing the size of the probe and interference of the flow.
The smaller probe was used in the model flare traverses and required

about 30 secs for a steady state reading,

The fuli calibration of these probes is given in Appendix A together
with the corrections used for the effects of turbulence, transverse
velocity gradients and Mach number, From the three items of data
available at each traverse point, the two mean velocities U and V are
calculated as well as the inclination of the total velocity vector
relative to the local flare surface, O. AThis data was used to verify

and supplement the hot-wire data,

(b) Hot-Wire Probes

These probes were used to obtain turbulence data and more accurate
data of the mean flow, A full description of their use and the neces-
sary data analysis is given in chapter four, A brief description of

the probe design and geometries is given here,

Four wire orientations were required to provide enough information
from which the flow variables wanted could be obtained. Therefore, from
the currently available configurations of hot-wire probes from DISA,
the types 55P14, 55P53 and 55P54 were selected. These are shown in
Figure 3.4b.1_A11 the probes consist of two or four prongs moulded into
a ceramic body. .The wires are all of 5 pm diameter and made of platinum-
coated tungsteh. Both metals have similar temperature coefficients of
resistivity (dgg x» «36% / Oc); the platinum coating makes welding to
the prongs easié& whilst the tungsten provides strength., The single
wire probe (55P14) has an active length of 1,25 mm, The cross wire

probes have prbngs placed 3 mm apart, The wires between them are
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gold-plated at the ends, reducing the active length of the wire to
1.25 mm, This is done to minimise prong interference of the flow
around the active portion of the wire, and also reduces cooling of the
wire by the prongs. These probes are fragile and easily broken by
mis-habdling or by dirt particles. Broken probes were sent to DISA
for repair. The consistency of the probe geometry for probes of the
same type was not always what might have been desired, particularly

after repair,

All the wires were operated with an overheat ratio of 0,8, i.e.

TW - Tamp = 222.2 OC, and the upper limit to their frequency response

was about 400 kHz, for use in air,

3.1.5  Calibration Nozzle

As shown in Figure 3.3, a caiibration nozzle was mounted adjacent
to the flare. The nozzle was 16 mm in diameter and was machined so as
to give a smooth contraction from the 1% inch diameter pipe down to the
nozzle exit,. There was a 0.6 m upstream length of pipe free of any
bend or obstruction., Consequently, within the potential core of the
“emerging jet, the turbulence intensity was measured as no more than
0.64%,.and any probe to be calibrated was placed in the potential core
with a small pitot-stétic tube to measure the dynamic head, Both

the three-hole and hot-wire probes were calibrated in this fashion,

3.1.6 Instrumentation

(a) Calibration Manometer

All probés:Were calibrated against a reference dynamic head
measured by an electromanaometer (type M8, Mercury electronics), This
provides a one volt d.c., output for a maximum input of either 1000 or

3000 mm water, depending on the pressure cell used.
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(p) Threé-Holé Probe Pres#ure Transducers

In ordgr to reduce the time required for a three—hole probe traverse,
three separéte pressure transducers were used, therefore reducing the
time spent waiting for the probe response time approximately by two-
thirds. The transducers were of the strain gauge type (Schaevitz EM
type P722, vented gauge) with a full scale output of 25 mV for 1.5 bar
maximum input., They were required to be robust as these transducers
were also used for the full scale outdoor tests. A high gain stable
d.c. amplifier was also required for amplification of the transducer
outputs as their wide range was only used in the full scale tests., The
amplifier had a gain of 1000 and was constantly checked for drift by

having a reference input voltage built into the circuitry.

(c) Hot-Wire Equipment

The choice of hot-wire analysis dictates what equipment is necessary,
A maximum of two anemometer channels was required, Therefore, two DISA -
anemometers (55M10, 55DO1) and two linearizers (55D15) were required.
Where possible, the newer 55M10 anemometer with the standard bridge
was used in preference to the 55D01 unit., With use of the standard
bridge, the 55M10 unit has an upper limit to its frequency response of
200 kHz, whilst for the 55DO1 unit it is about 150 kHz for the same flow
conditions, However, the upper limit to the frequency response is set
usually by fhe linearizer and is 70 ~ 100 kHz for a typical voltage
output of é - 2 volts, The linearized signals were passed to a DISA
‘turbulence processor (55B25) which is able to produce various functions
of up to two‘input signals and integrate the combined signal, using a
preselected,fimé constant, The time constant used was one second
requiring an'integration time of about ten seconds, and its use gave

a steady state value of the integrated signal, The two input channels
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of the turbulence processor have separate variable gains and can be

either a.c, or d.c, coupled to the input signals, A R,M.S. voltmeter
(55D35) was a}so required for estimation of turbulence intensities in
the calibration nozzle., A schematic diagram of the instrumentation is

given in Figure 3.3.

(d) Data Acquisition

All data‘récorded was either initially a d.c. value or the integrated
value of an a.c. signal, Therefore the rate at which data was to be
sampled was nof a problem, A data transfer unit (Solartron 3230)
provided up to twenty channels that could be sampled either automatically
over a preset‘ range or individually. The channel sample data rate was
determined by digital instrument settling, the word length and record-
ing rate of the output recorder, Two output driver units were linked to
an Addmaster serial entry printer and to a Facit high speed paper tape
punch which provided data coded in ASCII/ISO 8 level code, = The tape
provided an easy means of data transfer to a Varian '73 computer or

later to an IBM 370/168 for analysis and plotting.

- A box of preset‘ potentiometers with matched resistances provided
a means of entering data for which there was no analogue signal (e.g.
ambient temperature) and also for entering integer data which, for

example, could be the number of traverse or calibration points.

3.1.7 Plotting Routines

By use of standard 'GHOST' plotting routines available on the
IBM 370/168 computer, a series of seven plots could be generated for
each hot-wire probe traverse and three plots for each three-hole probe

traverse, The plotting routines used provided drawing and annotation

of axes, suitable for A4 size paper, point plotting and the drawing of
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a least-squares best fit line through the data points. The curve fitting
was done interactively so that a best fit could be chosen before obtain-

ing a hard copy.

3.1.8 Traverses

A traverse was set up by measuring the height of the axis of the
rotary head above the base-plate and using simple trigonometry to find
the required pdéition of the dove-tail slide for a selected traverse
angle, The slides all had verniers and therefore positional accuracy
could be read to 0,1 mm, The probe-could be lined up ﬁith the centre-
line scribed on the plenum chamber near the throat to ensure that it
was on the ceﬁtre—line of the flare. All traverses were done along a
norﬁal to the surface for a specified angle of inclination to the hori-
zontal. In the prlane perpendicular to the traverse direction, the
positional accuracy was probably no better than 0.5 mm, However; the
accuracy in fhe direction of the traverse was much better because the
tréverse potentiometer could read to an accuracy of 0.01 mm, bBeforé
every traverse, the probe had to be zeroed at the flare surface., In
the case of the three~hole probe, an addition to the traverse distance
was required to allow for the diameter of the tubing, If carefully
manipulated, the hot-wire probes could be placed very accurately c;ose
to the surface without actually touching it, by noting any increase in

bridge voltage of the anemometer caused by cooling of the probe.

For the hot-wire traverses, it was necessary to adopt a multi-
probe techniqué rather than a multi-position technique in order to
obtain the required number of wire positions. The mean flow velocities
and Reynolds shear stresses, that were wanted from the analysis, required

inclination of the wires in both the XZ and XY planes, Together with the
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geometry of the.flare, this dictates that at least two different probe
geometries are required where further wire orientations can be obtained

by rotation of the probe, The probes used gave four wire positions from
three different probe types. Therefore for each traverse position three
traverses weré done, This not only placed a lot of trust in the positional
accuracy of the probe, but also assumed stationary turbulence. In order
to minimise positional errors, all the traverses were completed at one
position before moving onto the next traverse. This meant that the

anemometers and linearizers had to be reset for every traverse,

In all but one of the sets ofbtraverses, the maximum flow was limited
to below M = 0,3 to avoid éompressibility effects and temperature fluctua-
tions, Other limits were also set by some of the instrumentation, A
large slot width was used for the detailed hot-wire traverses as the 55P53
probe could not go closer to the wall than 1,06 mm, With a large slot
width a larger proportion of the jet was available, Most of the traverses

0 o o o o

’ 0
were done at 20 , 30°, 45, 60°, 75°, 90°, 100° and thereafter at 10 mm

intervals on the flat portion of the flare surface., The detailed hot-

wire work was done at

P = =
O/Patm = 1,020, t = 5 mm Reg, = 2.17 14

Further three-~hole traverses were done at

P
o/
Patm

and at Po/Patm

1.0602, t=2mm Re = 1.37 ;4

1.974, t = 0.7 mm, Reg = 1.95,4

3.2 1ARGE SCALE TESTS

3.2,1 Flare and Air Supply

The eight inch Indair flare (dimensions are available in Figure 3.1

by multiplying those shown by 5/3) was mounted vertically and connected
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by four inch diameter hose to an ArtovsteRolls-Royce gas turbine with a
modified compressor for use as an air supply. The maximum flowrate was
about 1500 s,c.f.m, and the maximum supply pressure 30 p.s.i.g. The air
temperature in the plenum chamber varied between 120° and 180° C, No

'facility was available either for surface pressure tappings on the flare,

or for flowrate measurements,

3.2.2 Travérses

Using the same equipment as that for the three-hole probe traverses
on the model flare, traverses were carried out to provide extra data from
a larger flare., The larger of the two three—~hole probes was used. The
traversing mechanism described in §3.1.3 was mounted on a vertical
gantry with fixed locations which :corresponded to a particular angle of
traverse on the flare, Traverses were done at t = 2,51 mm, Po/Paem = 1.34
and Po/Payy = 2+43 (Rg = 2.34 10 and 4,59 14 respectively ) and
t = 3.99 mm, Po/Patm = 1,34 and PO/Patm = 2,44 (Res‘—"-— 3.72 154 and

6,67 104 resﬁectively.)
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-
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FIG. 3.4: Probe Geometries
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to probe axis
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CHAPTER 4

HOT-WIRE ANALYSIS

4.1 INTRODUCTION

The factors which determine the heat loss from a hot-wire are
complex, Thus the first requirement for any analysis is to be able to
propose a sufficiently accurate relationship between the voltége across
the wire and the effective cooling velocity incident on the wire. A
full treatment is given in the standard texts of Hinze (1975) and

Bradshaw (1971).

In the majority of cases, the heat lost from the wire to the
surrounding fluid depends on:-

(a) the effective cooling velocity

(b) the.temperature difference between the wire and the fluid

(¢) the physical properties of the fluid

(d) the geometry and physical properties of the wire.

Radiative héat loss can be ignored except very close to other heat
conducting solids and buoyant convection caused by local heating of the
fluid is neéligible except at veryblow wire Reynolds numbers,

Re_, (typically 1 - 5 m/s in air for a wire with 1/d = 250). If the
hot-wire probe forms éne arm of a wheatstone bridge circuit, it can be
operated so that either the current through it is kept constant (C.C.A.)
or so that its temperature remains constant (C.T.A.), see Figure 4.1,
For constant current operation, the resistance of the wire fluctuates.
At high frequencies, the thermal inertia of the wire attenuates its
amplitude response and therefore an amplifier is necessary to compen-
sate the frequency response., The C.C.,A, is now rarely used except for

very low currents when the probe is used to measure temperature. With
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the aid of faét developing electronics the'C.T.A. has noﬁ become more
or.less univérsal. For constant temperature operation, the’curreﬁt in
the wire fluctuates and heat loss isvcompensated for by additional
current. (Figure 4.1)., A higher gain on the servo-amplifier gives a
quicker response for compensating the cooled wire and the error voltage
is reduced more quigkly. But with a high loop gain, the anemometer
system can become unstable, Thus the bridge must be balanced before
operation, Thé setting up procedures for the anemometers are given in

detail in the relevant DISA manuals,

If the overheat ratio of a‘hot—wire used in one arm of a C,T.A, is
kept constant for both calibration and use, then item (b) above is
accouﬁted for by calibratioﬁ, assuming the temperature of the fluid is
constant, The remaining items are accounted for in a series of semi-
empirical célibration laws that have been proposed, the firét of which
was by King (i914):~

' 0.5 '
Nu, = A + B Re, » . o o(4.1)
La;ér workers produced equations similar to King's laﬁ but incorporatihg
the Prandtl Number. Collis and Williams (1959) produced a modified fﬁrm
of King's law for the range 0.0l < Rey < 140:
_ -0.17 n
Nu,, EE = A+ B Rew
Tp | .. (4.2)
The exponent n was found to vary between 0.45 and 0.51. These workers
were the first t§ identify a marked dependence of thé constants A, B

and n on Re,. For a constant property fluid (item C) King's law reduces

to

: 0.5
Eg = A+ B Uy . . .(4.3)
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with modified constants, Siddall and Davies (1972) modified this

version to:-

2
B =A+BUO'5+ cCUuU
B e

of f .(4.4)

idi °
in order to account for any dependence that the constants in equation

'(4.3) may have on Rey, and a significantly better representation of

calibration data was obtained.

The remaining question is whether a universal calibration of the
form of equations (4.3) or (4.4) can be trusted or whether a significant
variation in the constants can be expected from probe to probe, It was
mentioned in § é.l.4(b) that there was often a noticeable difference in
the geometry of probes of the same type, particularly after repair.

Thus a universal calibration would fail to take account of item @) in the.
list of factors governing the wire heat loss, Therefore, it was
necessary to calibrate probes individually using the semi-empirical
calibrations Aboye as no. more than a guideline to the form of calibration
required. 1In this case then, equation (4.3) is written more generally

as:

2 n
Eg = A+ B Uops .« (4.5)

4.2 LINEARIZATION

All of the accepted hot-wire calibrations are significantly non-
linear, This presents a major difficulty when turbulent quantities are
to be measured, as these are related to the fluctuating voltage by the
gradient of the calibration dEp/dUgps which changes according to ﬁéff.
If the turbﬁlent fluctuation is small then acceptable results can be
obtained by using the gradient at ﬁéff. But for larger intensities, the

calibration has to be linearized, or a better approximation found to

the gradient at Ueff‘
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4,2,1 Analogue Linearization

An analogue linearizer can be used to compensate the curvature of

the wires response, The DISA 55D15 linearizer has a transfer function:-~

Assuming the wire calibration of equation (4.5) where}

2
EINQ} = A and EIN = EB
then
EL o Ueff

Because buoyant convection is prominent at Ueff = 0, the equation is

more usually written:

4.2,2 Effective Linearization - Taylor Expansion Method

With eduation (4.5) rewritten as:~

{2 _ 1/n
Ueff = EB A
B . . (4.8)

Ueff is a continuous function of Eg only, with finite derivatives for
positive Ugps. Therefore Uops = ﬁéff + Ugpp CAND be rewritten as a
Taylor expansion of Ej about the point ﬁé (EB = Es + eB), giving an

estimate for Ueff'

4,2,3 Comparison of Linearization Techniques

The typé of flow studied in this investigation is characterised
by large mean velocity gradients and high turbulence intensities (>30%).
Therefore large.variations in ﬁéff and Ueff are té be expected, Brunn
(1971) assesses the effects of turbulent velocities on the accuracy of

the use of linearized and unlinearized calibrations, Calibrations of
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the form of equations (4.5) and (4.7) were compared and significantly
better accuracy was obtained with a linearized calibration. For
example, at é velocity of 30 m/s, the turbulence intensity had to be

< 18% for no more than a 1% uncertainty in the velocity estimate when
a linearizer was not used, Several linearization fransfer functions of
the form of equation (4,6) were compared and the inversion (i.e.

U = f(EB) ) of the calibration of Siddall and Davies (1972) was

eff
found to give the best agreement with data for the whole range

0 - 150 m/s, ther literature of the subject of 1inearizafion; Klatt
(1973) and Parthasarathy and Tritton (1963) is less helpful as the
non-linear relafionship (4.5) is confused with the non-linear form

of Ueff when composed of three mutually perpendicular velocity com~-

ponents, See §4.3.

However, the DISA 55D15 linearizer assumes that the constants in
equation (4.5) are non-variant with velocity., Therefore errors could
be expected for large ranges of Ueff‘ In this study, the velocity
range of interest is approximately 15 m/s < Ueff < 70 m/s, For this
range, the linearity of the linearized anemometer output was checked,
With n = 0,33, equation (4.7) fitted the calibration data well for
both the miniature and gold-plated wire probes,in spite of the slight
variation of calibration constants with Ueff‘ See Figures 4.2, Newer
versions of DISA linearizer allow for variation of the exponent n in the
calibration (4,.5) (55D10 and 55M25) and therefore use of these linear-

izers would allow a greater velocity range to be studied.

However, against the use of an analogue linearizer it may be said
that it provides an extra source of error to the hot-wire signal, Drift,

to which the linearizer is especially prone, noise and limitations to



- 67 -

frequency response all effect the signal. The way in which the hot-
wire signal is linearized also influences the choice of analysis of
Ugpge 4An analogue linearizer with Ej o Ugpr greatly simplifies the
analysis whereas approximation of the calibration by ﬁsing a Taylor
series complicafes the analysis, In both cases thevnumber of wire
positions required equals the number of mean velocities and velocity
correlations available from the analysis. With the confirmation that
a linearized anemometer output of the form of eguation (4.7) agreed
well with calibration over the required velocity range, the 55D15

analogue linearizer was used,

4.3 RESOLUTION OF EFFECTIVE COOLING VELOCITY

The preceeding sections show how a satisfactory relationship cén
be proposed between the instantaneous effective cooling velocity and the
instantaneous oufput Qoltage from a linearized or unlinearized C.T.A.
With certain restrictions, a linear relationship between E; and Uors
can be used. The remaining task involves the resolution of Uggg into
velocity components relative to the hot-wire, and how these can be
manipulated fo give velocities relative to the co-ordinate system

defined for the flow field.

Defining U, UB and UT as instantaneous velocity components

relative to the wire, (Figure 4.3) U pe CaD be written as:

2 2 92 2
2 . = +
Ugpr = UntRe Uty o7 .. .(4.9)

c.f. Jdrgensen (1971) and Rodi (1975a) amongst others. k1 and k, are
sensitivity coefficients; k1 is a yaw factor and kz a pitch factor,
Both are dependent on 1/d and prong spacing. k2 is dependent on the prong

length, For an infinitely long wire, kj = O and ko = 1.0; their actual
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values are slightly larger so that k, accounts for heat conduction to

1
the prongs and kz for cooling effects on the prongs., Using both minia-
ture and gold-plated wire probes; J@rgensen (1971) calibrated for both
kl and ko, usihg a constant reference velocity U whilst varying the

yaw (o) and pitch (©) angles separately. Both coefficients were found
to be not only:angle dependent but also velocity dependent, Because of
the trigonometric relationships between U, UT and ¢, and UN’ UB and 6,
it is inherently impossible to calculate values of k1 and kz that are
independent'ovaN, Ug, Up and therefore Uopge Even if it were possible,

use of ky and kz as functions of angle and velocity would require prior

knowledge of the flow field. Therefore average values have to be used.

TABLE I : SENSITIVITY COEFFICIENTS

PROBE k1 k2
55P14 0.4 1.1
55P53 0.23 1,03
55P54 0.23 1.03

The values of ky and ko in Table I were selected for the analysis
from Jgrgensen's data with regard to the likely values of U, © and &
to be encountéred in the flare flow, and assumed to be constant for all
probes of the same type. Individual calibration of the wires for kl
and kz was ﬁot done as it requires very accurate measurements and is
therefore a considerable amount of work for a small improvement in
accuracy of k. and kz. In any case, their use in the analysis is

1

approximate, The values were compared with values used by other workers
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viz:; Champagne et al (1967), Durdo and Whitelaw (1974) and Brunn

(1969). See Table II .

TABLE II; PUBLISHED VALUES

FOR SENSITIVITY COEFFICIENTS

Author k1 k2 Comments
Durao and 0.13 1.05 DISA gold-plated sensor probe
Whitelaw (1974)
Rodi (1975a) 0.0 0.96 DISA 55F13 probe
ky velocity dependent U < 7.5 m/s
Champagne et al § 0.2 , - 1/d = 200
(1567) . g

4.4 REMAINING SOURCES OF ERROR

4.4.1 Shear Effect on Wires

The wires of the 55P53 probe have a large mean velogity gradient

along their 1ength causing a skew temperature distribution along the wire.
' Gessner and Molier (1971) measured temperature distributions of wires

for various~l/d:in flows with a defined mean velocity gradient, and used
the data to dévelop correction curves from which the averaged anemometer
output voltage cpuld be corrected. But this involves prior knowledge

of the mean velocity gradient, therefore requiring an iterative correc-
tioﬁ sequence; The presence of a mean velocity gradient causes an
underestimation in both the mean and R.M.S. anemometer.voltage output.

The effect is reduced for wires at low l/d.

No -correction was applied to the voltage output of wires exposed

to a large mean velocity gradient, not only because of the difficulties
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stated above, but also because the wires were all of dimensions where
1/d = 250, Therefore, the error in voltage output was estimated at

- no more than 7% for the values of mean velocity gradient expected.

4.4,2 Wall Proximity

Oka and Kostié (1972) measured the effect of a cold wall near a
hot-wire with 1/d = 200, No effect was observable for yUr/v > 4 which
is equivalent td y = .13 mm for Uy = 0,5, a minimum value expected for
Ur. Accurate traverse data was not available for y > 1.06 mm as this
was the minimum distance between the wall and the centre of the 55P53
probes which were inclined in the plane perpendicular to the wall,

Therefore the effect of wall cooling was never apparent in the data,

Bradshaw (1971) lists several other causes of error associated with

hot-wires and their instrumentation,

4.5 ANALOGUE/DIGITAL DATA ANALYSIS

With the advent of small and fast electronic instrumentation, the
digital acquisition of hot-wire data is now established. The hot-wire
signal can be recorded on magnetic tape prior to being digitised for
storage or data can be transferred direct:to an.on-line computer for
analysis., A digital canalysis obviously requires more worklto set up,
butonée done gives versatility to the analysis, changeable by software
rather than by instrumentation. It does have the disadvantage that no
immediate visual display of the analysed data is possible but does remove
inaccuracies associated with the analogue instrumentation. Analogue

analysis was used in this study, thus only averaged data was recorded.
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4,6 REVIEW . OF SIGNAL ANALYSES

Three methods of analysing hot-wire data were investigated before
the method used was selected. These are described below together with

reasons why they were not used.

4,6,1 Conventional Method

Appendix B contains four equations ( (B.2), (B.4) and (B.§) ), for

the effective cooling velocity for a hot-wire with the four orientations

& = (E - B)* =

shown in Figure 4.4. In this method the signals E and
E - E are measured., A solution becomes available by taking the
square root of both sides and expanding the right-hand side of the

equation under the square root. Thus equation(B.Z\becomes, after

averaging:-

—. = o [ =
U (9)xz =U |1+ k_a i

= = P23 2
2V uv * V u + k1
— =2 -2 =2
U.U U2 U 2 U2
L ] . .(4‘10)
where third order terms and higher are neglected (—‘;:ﬁ). t_f',e'ff =

~2
(ﬁieff -U ef;)can be obtained from e* directly, assuming a linearizer

is used, so that Gheff o 32.

— -2 =2
.- = Uu 1~V + 2
Then: ueff ( v

1-12

_— 2
uv k2

ail <l

[ . 0(4.11)
where third order terms and higher are neglected also, With the same
approximations uv is available from the Uots (45%Yand Ueip (—45)xy

response equations:

— 2
uv = uz u

2 (-45)
eff (45)xy eff Xy

2(1 - %) . . o(4.12)
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With further simplifying assumptions (V = 0, ;2 = 0) U and 32 are

available from equations (4.10) and (4,11) respectively. Alternatively
with more wire orientations, more response equations are available to

give a fuller solution,

It is imporfant to note the approximations made, [i] is obtained
from equation (4,10) by assuming second order terms and higher are
negligible with respect to U, u? is obtained fromequation (4.11) by
neglecting terms of third order and above., In the highly turbulent
flow of a jet this assumption is too restrictive. Guitton and'Newman
(1877) found'it necessary to use terms up to fourth order, This
increases the number of unknowns as approximations to higher order
correlations.are required. There is thus an equivalent increase
in the number of wire orientations required for solution and the

procedure is likely to have significant cumulative measurement errors.

4,6,2 Statistical Methods

A method was proposed by Zarié (1969) and evaluated by Durst and
Whitelaw (1970) for application to highly turbulent flows, It relies
on the assumption that the probability density distribufions of the
velocity components'are normal (Gaussian), i.e, that they have zero skew-
ness and the flatness factor equals three. These functions are likely
to be far from normal in the outer regions of a turbulent jet. Also,
skewness of the distributions is connected.with the convection of
turbulent energy by the turbulence itself. In a strongly cﬁrved flow
with destabilising curvature, turbulent transport terms are significantly
increased, Thérefore in a strongly perturbed jet, a Gaussianlprobabiility

density distribution is a restrictive assumption,
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A similar method was proposed by Dworak and Syred (1972) in which
second order correlations are expressed as variances and covariances of
the anemometer output signals, The resulting functions required a
Taylor series expansion of the calibration to remove thesquare root and
only terms up to second order were retained, Therefore third order
terms and higher are neglected implying normal skewness and flatness,
Fair agreemént was found with experimental data from an axisymmetric

free Jjet.

To conclude, Durst and Whitelaw (1570) found that the method could
be used in limited flow regions where Gaussian assumptions were valid,

but that the analysis was not a very practical approach,

4.6.3 Method of Acrivlellis (1977a, b and 1978 a, b)

The convehtional'method described above is approximate because in
order to obfain a solution, the square root of a function has to be
~expanded binomially, Therefore Acrivlellis suggested analysis of the
squared signal with the use of a linearizer, Unfortunately, he made
a fundamentally false assumption (Bartenwerfer (1979) ). He assumed

that, for example, the equation

“_‘2ff =¥ + Ky %+ V) + k:zl W e . (4.13)

could be written as an a.c. signal edquivalent to the equation (B.3) where

usz o 2 was obtained by a.c. coupling to a R,M,S, meter, By a.c. coup-
e

ling, the a.c, signal is separated from the d.c. signal before squaring

and averaging, whilst ugff is obtained in the analysis after squaring
and averaging. Thus the method is only mathematically correct for

u = v = w2 = 0 and leads to large inaccuracies for a turbulence

intensity -~ 10%.
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4.7 SELECTED ANALYSIS
The methods described above are unsuited to a jet flow because of

restrictive assumptions concerning the turbulence intensity and the
shapes of the probability density distributions of the velocity fluctua-
tions, This method uses the squared signal from a linearized anemometer
and up to a point makes no assumptions concerning the nature of the flow.
Some approximations are however necessary. These are discussed in

§ 4,8, The method was suggested by Durst (1971) and Durst and Rodi
(1972); it was later used for analysis of data from measurements made

in a round jet by Rodi (1975) and Durdo and Whitelaw (1973 and 1974).

4,7,1 Recorded Data

For each of the four wire positions shown in Figure 4.4, the
o _ .
signals E and E were recorded. Therefore a maximum of eight variables

are available from eight response equations,

4,7.2 Reduction of Effective Cooling Velocities to Total Velocity Components

The four equations for Usps are first used to obtain the total

-2 -2
velocity components U  + 52, vV + ;2, w2

and UV +uv by matrix
inversion, This is done'in appendix C, No assumptions about the flow

structure have been made up to this point except two-dimensionality.

4,7.3 Separation of Mean and R,M,S, Components
Equation (C.2) is obtained by binomial expansion for Ueff(o,)xy
retaining terms up to second order only, but assuming'V!z u. Regroup-
ing terms so that values of total velocity components can be substituted,
— -— +
provides two non-linear fourth order polynomials in U and V for ¢ = _ 450

(Equation (C.3) ). The coefficients are functions of the total velocity

components and the wire constants, These two equations were solved by
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a Newton-Raphson technique for solutions to U and V. Therefore, the

individual components uz, vz, wz andln}are also obtainable,

4,7,4 Solution for y < 1,06 mm

In this case the 55P53 probe was unable to give data sufficiently

close to the wall, Therefore only four sets of data were available viz:

Uspe (Oyyr Uoss (Oyzy Ulp, (45),, and U pp(45),,. For regions close

to the wall, the assumption V=0 is not unjustified. With this simpli-

2 2
fication, a solution for U, u, v and wz is obtainable, This is done

~in appendix D,

4.8 ASSESSMENT OF THE ~ANALYSIS

The total velocity components are derived without any assumptions
and the accuracy of the analysis relies solely on the constants of each
wire. Howevér,'in order to separate the mean and R.M.S, components,
some simplifying assumptions have to be made., These are that the
cofrelations of third order and above are negligible with respect to
the mean where as the conventional method assumes second order correla-
tions are negligﬁble also., The neglect of third order terms and above
implies the same approximation as for a statistical method in which a

normal probability distribution of the velocity fluctuations was

‘assumed. However in the method of Dvorak and Syred (1972), this

approximation was made for all wire response equations (i.e. in the
calibration) rather than just for two of them as in this case, 1In
this analysis it was assumed V=T rather than V < U, Therefore terms

such as v uz,were taken as second rather than third order,
T

There is some redundancy of data for traverse points where use of

all four wire positions is possible, This is because only six flow
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variables were obtained from eight items of data, However, the values
of 5eff(45)xz and ﬁéff(O)xz were not used for the full analysis because
the use of the corresponding binomial expansions to separate the mean
and R.M,S, components of velocity often failed to give converged

solutions,

The reasons for this are discussed in Chapter 9. It would be
possible to extend the present analysis to include two exira flow
variables by their inclusion in the expansion equation (C.2). This
was not done, however. It should be noted, also, that without the use

of a linearizer, this analysis would be too cumbersome to use,
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 ESTABLISHMENT OF QUASI-TWO-DIMENSIONAL CONDITIONS

Preliminéry radial traverses using a three-hole probe showed
significant fhfee—dimensionality of the mean flow. As mentioned in
Chapter 3, the slot lip wasbhoned to attain a slot width accuracy of
0.07 mm and the position of the flare relative to the slot lip was
carefully checked in order to reduce these effects. A gauze was
also inserted into the plenum chamber (figure 3.1) to minimise any
jet effect caused by the supply pipe. Thus upstream non-uniformities
likely to cause three-dimensional effects in the jet were minimised.
Another cause of three-dimensionality, jet divergence or convergence
caused by the skew—inducéd secondary flows at the base-plate was also
considered. Thé jet thickness was noted_to be much larger adjacent to
the base-plate because of secondary flows, a phenomenon also noted by
Guitton (1970;. Usual checks for two-dimensional flow include investi-
gation of the upstream flow before the beginning of curvature in order
to compare with established experimental data. However, this was not
practically feasible in this case, nor would it give any indication of
the degree of three-dimensionality caused by secondary flows. Approxi—
mate measureménts of Eﬁeff(i45)xz and Eéff(i45)xz however, showed some
*discrepancy between ﬁeff(+45)xz and ﬁéff('45)xz and betweéen Eﬁeff<+45)xz

and Egeff('45)xz' This indicates that the assumptions of W =0 and

aw = 0, used. in the hot-wire analysis were not valid and that three-

dimensional effects in the flow were not completely erradicated.

5.2 DISCHARGE COEFFICIENT DATA

Mass flowrates were measured by an orifice plate and readings

corrected according to B.S. 1042 for the effects of Reynolds number



- 81 -

and Mach number. They were also corrected for a 'zero flow' reading
by extrapolation of a mass flowfate versus slot area plot to zero flow-
acrea
rate. Thus a nominally zeroLyas infact equal to 9.67 mm2., Theoretical
values of mass flowrate were corrected iteratively for any total head
loss in the plenum chamber caused by a finite velocity at the pressure
tapping. In practice the losses were never greater than 0.01%. Plots
of discharge coefficient versus pressure ratio are shown in figures 5.1.
The values of CD at the critical pressure ratio are all 1.0 + .045. In‘
order to remove any errors due to slot width measurement or leaks in
the air suppiy, the data are also presented normalised with respect to
the value of Cp at the critical pressure ratio for each slot width.
The plotS'show a clear trend, at below choking pressures, of an
increase in.fhe value of normalised CD (CDN) as the slot width increases.
This is because of the assumptions of uniform flow across the slot which
become more inaccurate at smaller slot widths. This trend is expected.
However, the increase in normalised CD above unity for small slot
widths and above choking pressures is less readily explained. The
effect of distortion of the rig whilst under pressure, although not
likely, would ekplain an increase in values of discharge coefficient
and would be more prevalent at smaller slot widths. Another possible
reason is that at small slot widths, values of normalised CD are more
sensitive to leaks in the air supply downstream of the orifice plate.
However, all the values of CD are significantly higher than the corres-
ponding case of a flat wall downstream of a plane slot because the
sub-ambient pressure distribution induced by the convex curvature.
Gregory—Smith.and Robinson (1982) investigate the effect of convex

curvature on discharge coefficient using different slot geometries.
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5.3 STATIC 'PﬁESSURE MEASUREMENTS

Surface pressure measurements are shown in figure 5.3. The dbtted
line shows the data of Newman (1961) who uses the definition offRep for
a circular cylinder, and it maintains a roughly constant value of
Pstand = 1.4. The plots are as expected except for the 30% increase
in pressure between the 60° and 70° positions. This jump appeared
consistently in all surface pressure plots, even when the slot was
choked. At their face value, these plots appear to indicate a region
of separation, feverse flow and subsequent reattachment. This was
checked by smoke tests which showed no such region. The fact that
the noted rise in pressure was independent of supply pressure corrob-
orates this. This rise is due to a slight surfacevimperfection and
also errors ih position and angle of the pressure tappings. The
positioning and drilling of these was in fact an awkward process and

difficult to do accurately because of the geometry of the flare.

For thé case of Po/Patm = 1.02 (hereafter referred to as 'Case Af;
the PO/Patm = 1.0602 data is referred to as 'Case B'.), there is a
region of positive pressure immediately downstream of the slot. 1In
thié case, however, the region of negative pressure gradient disappears
with higher slot exit velocities. This phenomenon could therefore be
attributable to a small region of separation caused by attachment of
the flow to the slot lip. It was also noted by Newman (1961) who
attributed the cause to curvature of the rapidly entrained flow near
the slot. In the former case, it is an effect induced by the geometry
of the slot lip whilst in the latter case it is caused by the geometry
Qf the flare itself. But the presence of a negative wall pressure
gradient here does cast doubt on the validity of profiles immediately

downstream of the slot.



- 83 -~

Complete static pressure profiles for case A are shown in figure
5.4. These data are unremarkable and merely demonstrate the change in
static pressure. They also show how the effect of the transition from
the curved to flat section is passed upstream by the pressure which

starts increasing (P d decreasing) at 6 = 10 - 20°, Extrapolation

stan
to £ = 0 gives values of Pgiang in reasonable agreement with the

values measured by the surface pressure tappings. The data of figure
5.4 werecalculated by subtraction of the hot-wire éata from the corres-

ponding values of total pressure, rather than from the three-hole probe

calibration for static pressure.

The agreement between these profiles and the wall static pressure
measurements ought to be better, particularly for the 20° and 30° pro-
files. However, as stated above, the profile data for these two pro-
files is likely to be unsatisfactory, énd fherefore the calculation of
static pressure also. Another likely source of error concerns the
resolution 6f the turbulence intensities by thg total-pressure probe
itself. It was assumed that the probe is equally sensitive to all

three components.

5.4 MEAN VELOCITY PROFILE DATA

FigureA5,5‘shows the U profiles from the hot-wire data for case A.
The next two sets of plots are from three-hole probe data and show
Jﬁz +V2 , although the difference between this total velocity and
U is negligible. Figures 5.5 and 5.6 are therefore a direct comparison,
although the hot-wire profiles contain extra points near the wall,
(y < 1.06 min) produced from the approximate analysis (Appendix D).
The agreement is satisfactory except in the case of © = 40° and 90°
where the discrepancy is caused by drifting of the supply despite being

monitored during a traverse. The hot-wire probe is obviously more
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sensitive in the outer regions of the jet as indicated by the fuller
profiles obtained. The data of figure 5.7 were not corrected for the

averaging of turbulence by the three-hole probe.

All these profiles were fitted with least square curve fits which

were interpolated for values of Ym» Yp/2 and ﬁm. Growth and velocity

n/
decay rates for the two cases are shown in figures 5.8 and 5.9. The
growth rate data are compared with an experimental best f£it line for

a wall jet on a éircular cylinder. A flat‘plate wall jet and a radial
wall jet grdw at approximately the same rate, therefore with the addi-
tion of streamline curvature to both flows, the growth rates can be
expected to be still appr&ximately the same. The lack of agreement for
case A illﬁstrates thé effect of a larger slot width increasing the

size of the potential core of the jet and therefore also its develop-
<ment‘1ength fo a fully developed jet to which the growth law applies.
Also, the effect of axisymmetry on the mean flow is apparent where
ym/z/t actually decreases in the early stages of the jet development.
This is shown by both hot-wire and three-hole probe data which generally
show good agreement, except for case A where 6 > 750, For'then, percent-

age errors in mean velocities are large enough to make accurate deter-

mination of ym/z'difficult.

Figures 5.10 - 5.13 show the non-dimensional mean velocity data
for the two cases compared with Glauert's profile for a self-preserving
flat plate wall jet. Figure 5.10 shows the ﬁ/ﬁh profiles for O < 75O
only, for which the data collapse fairly well to a single line giving
a mistaken impression of similar mean velocity profiles. Figure 5.14
however, shows this not to be the case, where profiles of V/U  are

distinctly non-similar. Profiles of ﬁ?ﬁm must therefore be non-similar
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also for satisféction of the continuity equation. The centrifugal body
forces are therefore strong enough to affect the mean flow as well as
the turbulence structure - a ’féirly thin' shear layer. Figure 5.11
shows the same data as that of the previous figure with the additional
data from the rgmaining traverses i.e. © > 90°. This additional data
shows a marked deviation from Glauert's profile in the region

0.3 < £ < 1.0. This is shown also in figures 5.12 and 5.13 although
profiles on the curved part of the flare are not distinguished from
those in the transition and recovery regions. These non-dimensional
profiles are thicker resulting in larger values of 3U/dy on both sides
of the.velocity maximum. The mean flow is therefore strongly perturbed

in this region, as also shown by the profiles of V/ﬁm.

5.5 CONVENTIONAL SECOND ORDER CORRELATIONS

Profiles;of the turbulent intensities and shear stress are presented
in figures 5.15 - 5.18. The intensities are all very high, as expected,
in the region of 25 - 55%. None of the data show any degree of similarity.
The u? intensity.profiles show the most amount of scatter since the ratio
52/(52 + GE) is the smallest of all the ratios of Reynold's stress to
total squared Qelocity. The w2 intensities are the least scattered
data, a consedquence of the solution method for the hot-wire response
equations where W is nominally zero. ‘;E is directly obtainable there-
fore, without‘recourse to expansions for ﬁ;ff which use the approximation
of negligdble third order correlations. ,The ;E and;-2 intensity profiles
at the 20° and»30° positions show negative values nearer the wall
(plotted as zeroes). This is a consequence of the slot lip effects
mentioned in § 5.3 and the inapplicability of the hot-wire technique
used here in regions of recirculating flow. Inevitably, the data is

somewhat incomplete for £ > 1.4 due to errors associated with the

intermittency of the flow.
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These results are first discussed for 0° < @ < 90° without refe%?ce
to the data in the transition and recovery regions, i.e. where dr/dx =
at @ = 1000 and the subsequent response to a sudden change in surface
curvature. At © = 90°, the geometry changes from diverging to converg-
ing, but this is not a sudden change as in the case of‘streamwise
curvature; dR/dx merely changes sign, after passing through zero and
maintains a constant value. The results are interpreted in terms of
the effectvof'streamwise curvature and divergence on the turbulence
structure despite the presence of large cross-stream and stfeamwise mean
pressure grédients. These do not appear explicitly'in the Reynolds
stress transport equations (equations (F.4) -~ (F.7) ) and only affect
the turbulence.structure via the mean momentum equafions. These gradients

therefore do not affect the furbulence structure directly.

The Gi_iﬁtensity profiles show pronounced peaks at & = 0.6,
coinciding with the position of large negative values of 3U/dy. The
main production term of Gﬁ is therefore af a ﬁaximum. Subsequently
this peak diminishes as both U and 3U/dy decrease in magnitude. Also
triple products are likely to increase with distance downstream and

therefore tufbulent transport increases u? in the outer edges of the
jet. At © = 75° and 90°, the values of uZ reach a maximum for the :
flow and are more or less constant across the jet width. At @ = 75°
the jet has”become wide enough for the data to show a peak on the

wall side of the ﬁ—profile maximum. The minimum in u? coincides with
the position of zero 3U/dy. Also since the shear stress is still
positive in this region, production of u? is actually suppressed.

However, further in towards the wall, production increases owing to

negative values of shear stress and large values of positive 3U/0y.
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The 2':‘L'ntensity profiles do not show the peakiness of their w2
counterparts. For large curvature, the dominant production term is
2 4v U/r - a curvature rather than a shear term. Hence production is
not likely to be locally large in any region of the profile, although
at © = 90°, the profile is wide enough for the data to show a decrease
near the wall where U is small and TV has become negative) thereby
suppressing production.

The transport equation for;-2 intensity contains no major production
terms and exists primarily by redistribution of -energy from the other
two intensities. Characteristically, the w2 profiles are all rather
flat and show a consistent increase downstream up to 90°. The stream-
wise variation is quite large compared with the ;é and v2 components,
and bearing in mind that the advection teim of the transport equation
(equal to the sﬁm of the remaining component terms) is small, the small
cross-stream véiiation in-;z-2 is explained. Of the three intensities,

v2 increases initially most rapidly, being the largest at © = 45°. But

at @ = 609, ;2 is more or less equal to the corresponding profile of

;é, and at 90°;“2 is the largest intensity.

The shear stress profiles all lie very close together and are
rather hard to‘distinguish for © >45°. It should be noted here that
the productio; term for uv is the only one of the Reynolds stresses to
contain a divergence term, viz: huv (ﬁ sin o + V coso)/R. This helps
‘to explain why the fully developed profiles up to © = 90° are much the
same; the additional divergence term is most 'productive' for small O,
Aecreasing‘as U decreases and R increases. Thus this term contributes
to the productién of Gv (the major terms in the transport equation)

only in the early stages of the jet development. The curvature produc-

tion term depends on the anisotropy of vZ and 52 which is greatest for
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small ©, and acts to reduce production since v2 >uZ. Thus the major
shear production term - h Cﬁaﬁyay is not significantly increased by

the combined effects of curvature and divergence.

The profiles of UV at stations sufficiently far downstream to permit
complete data to be recorded on the wall side of the velocity maximun,
show negative values of UV, a consequence of the production of positive
uv very near the wall being negative. The position of zero shear stress
is consistently closer to the wall than the cdrresponding velocity maxima

and gets closer to the wall as x/t increases.

The remaining profiles for © = 90° and beyond show shome very
interesting effects. Both t:he;-2 and ;E intensity profiles show a marked
decrease at © = 1000 and thereafter reach minima at © = 100° + 10 mm.

In the case of the Eﬁ intensity, this minimum at- £ = 0.5 is less than
the correspondiﬁg value on the 200 and 300 profiles. Thereafter it
recovers to reach values at © = 100° + 20 mm not far below those of the
900 profile. Thus the response to the removal of curvature is not
monotonic. With the continued application of the extra rate of strain
induced by a conétant rate of convergence, it is expected that the

value of u2 will not be maintained and will decrease once again although
gradually. The:behaviour of the w2 profiles is the same, although the
values of ;E at 8 = 100° + 20 mm are significantly less than those

at 6 = 90°.

The —E_intensity profiles appear to be more sensitive to the sudden
change in curvature. The removal of curvature is first apparent at 6 = 900

where ;E decreases sharply for £ < 0.7. It continues to decrease at

the next station, but increases slightly in the region of £ = 0.7 at
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—

© = 100° + 10 mm. At the next station the values of v2 decrease
once again due to the effect of convergence. All three intensities
therefore show the same non-monotonic response to the removal of

——

curvature, although the v2 component appears to react sooner. The
recovery is slow in comparison with the jet growth rate, although the
subsequent effects of convergence are apparent at the last traverse

position, rather than those of the non-monotonic response to the

removal of curvature.

5.6 STRUCTURAL PARAMETERS

In order to characterise structural changes indicated by the plots
of shear stress and turbulence intensities, dimensionless ratios are
required. These correspond to the empirical input to calculation methods
as they reflect the larger implicit changes in the Reynolds stress
transport equafions as opposed to the explicit extra terms. Accordingly,
the dimensionless quantities a; = GV/;Z, Rgy = Uv/ (GEZJE) and ;E/GE

are now considered.

The ratios a; and Rﬁv are little affected by the streamline curvature
itself. Both maintain fairly constant values of 0.12 and 0.4 respect-
ively up to & < 90°. Then both parameters show a marked non-monotonic
response to the removal of cuivature. They decrease at 6 = 90° and
subsequently increase, a; rising to 0.2 and Rﬁv to 0.55 at © = 100°+10 mm.
At the next station however, they have begun to decrease once again.

Both parameters show a marked decrease at the last two stations for
g < 0.5.
The:ratiq of;—z-/;§ illustrates the preferential increase of the ;5

intensity by the effect of streamline curvature. Over nearly all the
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jet width, except close to the wall where the ;E intensity is suppressed,
;§/£§ increases dramatically above values for a corresponding fiat-
plate wall jet. The data at © = 30° (not shown in figure 5.21) corres-
pond to those of a wall jet with streamline curvature only, typically
;§/£§.= 1.0, but at 8 = 45° a maximum of 4.5 exists at £ = 0.45. There-
after, the ratio decreases and at © = 90°, falling below 1.0. It sub-
sequently increases to 2.0 in the outer part of the jet,but af e = 100°
+ 20 mm decreases once again to values close to 0.5 over nearly thg whole

jet width. Very large values of v2/u2 at © = 459 and 60° are caused by

small values of u2 in the region of £ = 0.5 rather than large values

of vz.

5.7 RESULTS FROM LARGE SCALE TESTS

The remaining three figures are the results of three-hole probe
measurements made on a large flare at a higher supply pressure. Figures
5.22 - 5.24 are supplementary data principally of use for studying the
effects of scaling on the model data. This data is therefore of use
as test data for the calculation method. The data of figures 5.23 and
5.24 show the same effects of curvature on the mean flow as described
above. The noﬂ—dimensional mean velocity profiles are distorted, and
the jet growth/velocity decay rate show the same trend as those of

figures 5.8 and 5.9.
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FIG. 5.6: Case A: U v y (3-hole probe)
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CHAPTER 6

CAICUIATION METHOD

A qualitative outline of the structure of the flow around the
Coanda flare was given in Chapter 1. Even though the mean flow is two
dimensional (the turbulence is of course three dimensional) and simpli-
fied to exclude the effects of combustion, heat transfer, compressibility
and a porous wall, the choice of calculation method for a complex flow
of this type is an important decision, This chapter is concerned with
the numerical procedure used to solve the equations of motion as distinct

from the turbulence model used to effect closure.

6.1 REVIEW OF AVAILABLE METHODS

Nearly allicalculation methods for turbulent boundary layers can
be divided into two groups. The first are so called integral methods
where ordinary differéntial equatibns are obtained as weightgd integrals
of the Navier-Stokes x-component equation, Alternatively the Navier-
Stokes equations can be solved directly using a sditable numerical
technique, These are differential methods. Kline et al (1969) pro-
vided a comprehensive comparison of calculation methods of both types
up to 1968, Later methods have concentrated on the solution of the
approximated Navier-Stokes equations because of the advent of fast
computers which have made differential methods practicable. Bradshaw

(1972) reviews methods of both types also,

6.1.1 Integral Methods

Integratioﬁ of equation (2,30) for 0 < y < § when multiplied
by 1, ﬁ'and.y yields the momentum, energy and moment of momentum
integral eqﬁations respectively. (Rotta (1962) ). These equations

are exact but require empirical input. The momentum integral
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equation can be written as follows:

48, 0 (2 +H) dly, _ Cp

o U oz e (61
The shape faétor H, which contains information about the mean velocity
profile, and the skin-friction coefficient Ce» which contains informa-
tion about the Reynolds shear stress, both have to be defined empirically,
to a greater or lesser extent, One of the more successful integral
methods by Head (1960) assumes that H is a function of a dimensionless
entrainment_velocity and uses the Ludwieg and Tillman skin-friction'

formula, For a review of integral methods, the reader is feferred to

Cebeci and Smith (1974) and Bradshaw (1976a).

For simple f£low cases such as a turbulent boundary layer on a
smooth flat'plafe, integral methods can give accurate soiutions even -
when calculated by hand, However, they cannot give solutions for eéch'
point in the flow field because an ordinary differential equation for
integral quéﬁtities is solved, Differerit ways of describing the mean
velocity profiles, skin-friction and shear stress profiles are required
if extra effedts such as surface roughpess are to be included. Apart
from the difficulties involved with the retention of the significant
higher order terms in themselves, large curvature effects would cause
even greater difficulties because of variation in these turbulence
terms across the shear layer width, It is also important to note that
Patel (1969a)found it necessary to redefine the usual integral para-
meters &% and-é, and that the flat-surface momentum integral equation
broke down when used in calculations for flows with large cross-stream
static pressure variations, i.e, with significant streamline curvature.
Therefore, Patel incorporated extra terms in the ﬁomentum integral

equation to account for the effects of cross-stream pressure gradient.
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So (1975a) however, pointed out that both H and Ce have also to be

modified in order to fully account for the effects of curvature.

An integral calculation method specifically developed for the
Coanda flare (Titcombe (1980) ) was tested with experimental data from
the model f;are tests, The momentum integral equation (6,1) is solved
and a Coles-type velocity profile is assumed. The exact form of the
velocity préfile used is given in Spalding (1965). The skin friction
formula used is consistent with the law of the wall and the entrainment
rate is given by an empirical law derived by Escudier and Nicoll (1966)
using data for a wéll jet on a f£lat plate. The cross-stream static
pressure gradient is assumed to be linear and the only other adjustment
to the empiricél input in order to account for the effects of stream-
line curvature and divergence was that to the entrainment rate. The
empirical expression developed by Kind (1967) is used to providé a
correction to the entrainment rate., Some time was spent investigating
this calculation procedure, but it failed to give good agreement for jet

growth rate data, Integral methods were not considered further.

6,1,2 Differenfial Methods
The Navier-Stokes equations are in general secohd-order non-linear

partial diffefential equations of the form:

a 320 , b3% , c?d% .

—

ox2 axdy ay? . . .(6.2)
A characteristic is a line in the flow field along which the second oxrder
derivatives of U are indeterminate. Equation (6.2) therefore reduces
to an ordinary differential equation and the gradients of the character-

istic are given by a solution of (Chow (1979) ):-

2
a(dy) _bdy _ . _o

dx dx . L] L] .(6.3)
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There are three possible results:

dy
p2 - dac > O there exist two real values for dx - hyperbolic type;
b2 - 4ac « O solutions for %% are imaginary and characteristic

lines do not exist - elliptic type;

0o there is only one value of gﬁ - parabolic type.

b2 - dac
I The above solutions are used to classify partial differential
equations of the form of equation (6.2) and each type places certain

restrictions on the type of f£low to which they are applicabie.

Disturbanges in a compressible fluid are propogated at the speed
of sound, If the flow is supersonic the disturbances cannot be passed
upstream, Thus the region of infludnce in a supersonic flow is only
downstream of the two characteristic lines (the Mach lines), and the
corresponding equations of motion are hyperbolic, However, for subsonic
compressible f£low or for steady inviscid incompressible flow (in which
the speed of sound is effectively infinite), the region of influence
of the flow is unbounded, i.e. there are no characteristic lines and
the Navier-Stokes equations are elliptic. However, for steady viscous

incompressible flow, the equafions of motion are (Potter (1977) ):

R 2. 2
PR LI O
dx dy p X 3x? a2 . o (6.4)
' 2 2
I N
a% ?y T A G- o SR O

negiecting body forces and together with the equation of continuity

the flow is fully described,

dx dy . . .(6,6)
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The Poissbn eduation for pressure can be obtained by differentiating
equations (6.4) and (6,5) with respect to x and y and using continuity

" to rearrange:

+

— e —— o— —— e

2
P ax? - By ox 3y dx dy

| 2
1 (3%, %\ _ . ([ov 2 30 3V, [V

o o 0(607)
The terms of equations (6,4) and (6,5) can be grouped thus:

(a) convecticn terms (e.g. U 3U ) where fluid is transported downstream

ox
along streamlines

(b) diffusion terms (e.g. V azU ) where fluid is diffused by molecular

ax?
viscosity in all directions
(c) generation terms (e.g. Op ) where a change in static pressure in

ox
the fluid exerts influences in all directions,

The system of equations (6.4) to (6,7) is doubly elliptic in the
sense that bpth‘the pressure field and viscous diffusion transmit
disturbances in all directions, With the conditions that there is no
recirculatibn énd that the longitudinal diffusion of momentum
(v 3%0)

o
is negligiblé, £he system is still elliptic because the Poisson equation
is elliptic, Only when gs = O with the pressure as a known function
of x does the system become parabolic., The region of influence is then
downstream of the characteristic line through the point of solution and
the equations of motion can be solved directly by a marching procedure
downstream fhrouéh the flowfield,

The siﬁplifications that there be no region of recirculating flow

and that
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2

S

ox2

P -0, @ = £

3y — .. (6.8)

are sufficient conditions for the Navier-Stokes equations to be parabolic,
and they are the usual boundary layer assumptions, The incorporation
of %? #0 invfhe calculation prbcedure is described in § 6.4,

Three calculation methods of finite difference form were studied for
possible use. Bradshaw et al (1967) solved the differential equation for
the shear stress simultaneously with the equations of mean motion, The
form of the turbulence model makes the equations hyperbolic with the
aoss—-stream pressure variation assumed negligable. The method relies on
the definition of three non-dimensional empirical relations which would
not in general be valid for wall jets., But the method has been extended
to include the calculation of a cross-stream pressure gradient by Mahgoub
and Bradshaw (1979), and even in its extended form the hyperbolic set of
equations are solved by the method of characteristics, The Cebeci and
Smith (1974) method was developed with particular reference to boundary
layer flows. The equations of motion for plane or axisymmetric flow are
transformed and a rectangular grid is used to obtain tle finite difference
equations. These are solved by Keller's box method. The scheme is

unconditionally stable as the equations are highly implicit,

A popular and available calculation procedure is that of Patankar
and Spalding (1970) (PS method). See also Spalding (1977) and Patankar
and Spalding (1967). This method was selected as the basis of the present
calculation procedure as it has been the subject of many years development

and has been used successfully in widely differing flows by many workers
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other than its authors, viz: Irwin and Smith (1975), Launder et al (1975),
Rastogi and Whitelaw (1971), Ljuboja and Rodi (1980), Launder and Morse

(1977) amongst others,

6.1.3 Outline of PS Method

This procedure possesses several numerical features which make it
superior to the other two briefly described above. In its two-dimensional
parabolic form the equation of motion is expressed in finite difference
form by use of four nodes where the resulting equations are impiicit.
Therefore a method of solution such as Gauss elimination is required.
Central differences are used in the cross-stream direction, whilst
upwind differences are used in the streamwise direction, The important

features of the method are listed below,

(a) The Transformation to X u co-ordinate system; for computational

efficiency, the non-dimensional stream function (), is used as the

cross-streamvindependent variable. There is another important advantage.
For an upwindvdifference scheme, (the most stable scheme at high Reynolds
numbers) the use of a non-dimensional streamline co-ordinate axis réduces
the truncation érrors associated with the difference approximations used

for the terms ﬁ‘aﬁ and V 35 in the x-component mean momentum equation (E.7).
o* 3y

This is even more important for highly_curved shear layers where the

truncation erfors may be of the same order as the dominant Reynolds

stress gradients when referred to shear layer axes, With the use of

% ~  co-ordinates however, the V %g term disappears., For a fuller

discussion see Bradshaw (1975, 1973) and Roache (1972).

(b) The process of marching integration; the flow field is divided into

control volumes bounded by the upstream and downstream stations and the
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half-way positions between nodes in the streamline co-ordinate system,

See figure 6Q2a. A solution is accomplished by a single sweep through the
flow field whére the finite difference equations are prodnced by integra-
tion of the x-component equation of motion in the cross-stream directidn.
This proces$ ensures that continuity is satisfied in tne finite difference
equations, _Also the non—~linear terms in the equation of motion are
linearised by using values of U and V prevailing at the upstream station.
This allows tne use of an efficient recurrence relation for solving the
finite difference_equations ~ the tri-diagonal matrix algorithm. See

Spalding (1977) for further details,

(¢) The allowance for high lateral convection; in some regions of flow,

the lateral convection term can be larger than the lateral diffusion term
e.g. in regions of high entrainment. Under these circumstances, mean
cross—stream:gradients are reduced and profiles tend to flaften out. The
values of a general dependent variable @ at the cell boundaries tend to
their 'upwind' value, e.g. for high entrainment thefe is high negative
lateral convectinn and ¢i+£'“’¢i+l' This could lead to non-convergence or
numerical instability if this phenomenon is not allowed for in the numerical
procedure, Therefore if, in the cross-stream direction, the convective
terms are less than the diffusive terms, central differences are used;

but if the convective terms are larger than thé diffusive terms, then

the diffusivg tefms are neglected and the convective terms are expressed
in upwind difference form, This conbined schene for simultaneous convec-
tive and diffusive processes was proposed by Spalding (1972) and examined

by Runchal (1972),

The PS method was preferred for the reasons expressed above, For its

use in the présént calculation method, it was made more particular to
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the case of a jet emerging from a plane or annular slot. Thus effects such
as heat transfer, chemical reaction-+.and surface porosity could be omitted.
Also the geometry was made more specific. This considerably reduced the

programming involved.

6.2 EQUATIONS OF MOTION

Some definition of terms is helpful, The flow is referred to as
'plane' where the axisymmetric radius of curvature R, tends to infinity;
no statement concerning the streamline radius of curvature is intended,

For a finite value of R, the flow is described as'axisymmetric:

6.2.1 Grid and Control Volume

The equations of motion are expressed using shear layer axes; the
x-direction follows the I boundary (see figure 1.2) and therefore coincides
approximately with the direction of flow, Thevy-direction is always
orthogonel to the x-direction, For plane flow, the grid is obviously curved
and rectangular and the control volume for flow/unit width is simply
defined (Figure 6,la), For the axisymmetric case, the control volume
possesses bothrstreamline and axisymmetric curvature. Therefore the
control volume is as drawn in Figure 6.1b, from which the continuity

equation (E.6) can be derived,

6.2.2 Momentum Equations

These are derived in appendix E,., Equations (E,7) and (E,9) represent
the rate of change of mean momentum through, and the force applied in, the
control volume of figure 6.1lb in the x- and y-directions respectively.
They contain the same type of terms as the more general equations (6.2)
and (6,3) as weil as the streamline curvature terms denoted by r. The
additional axisymmetric terms are produced if products of velocity and R
are fully differentiated using the expressions for the rate of change of

R shown in Figure 6.la,
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6.,2,3 Order of Magnitude Analysis of Terms

This is necéssary because for the parabolic procedure outlined above,
not all the terms of equations (E.7) é.nd (E.9) need be used, Also for the
case of a highly curved shear layer where x -~ r, the usual boundary layer
approximatiohs no longer apply. See § 2.3. Therefore, it is'important
to assess the relative sizes of terms in these equations so that consistent

approximations cos be made,

It is ascumed that r/xw 1, Vw U x g/x and that all the Reynolds
stresses are of the same order, In general it may be supposed that
gradients in the x - and y—directiéns will be of the same order of magn;’.—
tude as the dependent variable divided by x and § respectively. Also
h =1+ y/r can be approximated to unity, Thus the individual terms

of equation (E,7) are of the following order of magnitude:

Ea—=0(l—12

% x

WV = 0fFs.T\= oft
. x 5 x

UV = O 1'12.6

N x x

1 3 (huvR) = Ofuv

R 3y b

du = 0fu . &

o 5 o=

uv = O fuv. §
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The same procedure is adopted for the y-component equation (E,S).
However, in order to obtain consistent approximations for both equations,
it is necessary to multiply orders of magnitudes of terms in the
y-component equation by 8/x., Then the pressure gradients in both
equations are #pproximated by % 82 Yhere 8y/8x = §/x as above. The

6%
orders of magnitude for the y-component equation (E.S9) terms are:

- 2 2
U3V = 0 | U . &
3x x x

S

M l c%o

r \ X x
V) = 0l uv . 6
Y ) x

- — 2
d (uv). = 0/ uv 8
X 5 X

. 2

w2 = 0| uv .[6
r 6 X

A typical ratio of Reynolds stress to mean maximum velocity in the
jet flow is given by GG)EZm = 0,05 - 0,15, Therefore uv can be con-
sidered to bevof the same order as ﬁ. Assuming that § is one order of
magnitude less than x and retaining terms up to order §/x only, a
consistent set of equations is:-

x-component equation

Uy + hVav + uv = 1 dp -1

ox oy r p Ox R
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32 R) + 3 (huwR) + uvR + v 3 [rnaU
d% dy r R 9y oy
. . .(6.9)

y-component equation

- - -2
- U2 = = h op -1 3 <(vR)
r p Oy R 3y .« «(6,10)
continuity
3(UR) + 3(VRh)
= 0

3
X ay L] L] ’(6.11)

The plane flow form of these equations is recommended by Bradshaw

(1973) in calculations of shear layers with significant streamline curva-

ture. HoweVer, they can be further simplified in the case where %? is

assumed negligible in order to render the system of equations parabolic,

allowing use of the PS marching integration procedure for a parabolic

o)
flow. Consistent with 3% = 0 is the approximation r —w o0 . Under these

conditions, equation (6,10) is unnecessary and terms of order §/x can also

be neglected in equation (6.9)., This then reduces to:

hV

al
+

U3

= -1 d'ﬁ—l(a(hER)

|
% |0/
< <
|

p dx R ay

+ V3 (R h aﬁ')

R dy dy . . .(6.12)

where g§ is defined in an unconfined flow by the free stream pressure

s . e 1),
gradient and V is available from the continuity equation (6,11) A

convenient manipulative form of equation (6,12) is obtained by use of

an effective viscosity, Vgpp, to represent the shear stress - uv,
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(See § 7.1). Then the x~component equation becomes:

U + hVal =_1 dp + 13 (ﬁ-h Vepp OU >
ox oy o dx R dy éy
. . .(6,13)

This equation is used as the equation of motion in the PS method.

6.3 SOLUTION OF THE PARABOLIC EQUATIONS

The procedures described in § 6.1.3 are now stated mafiematically.
For a fuller treatment see Spalding (1977) and Patankar and Spalding

(1870,

6.3.1 Definition of Stream Function and Mass Flow Rates

From figure 6,1la it can be seen thatthe mass flow rate across a
line of constant x is:

mx = 2 k) p ﬁ R 6y ‘ . o 0(6014)

and that the mass flow rate across a line of constant y is:

my= -Zﬂp.‘-’Rh6x 000(6015)

Therefore a suitable definition of stream function is given by:

dy Ox . . .(6.16)
where k is a convenient index to distinguish plane and axisymmetric
flow when k = O and 1 respectively, In addition, & non-dimensional

stream function can be defined by:

w= ‘lf" ¢I
L .. (6D
where subscripts denote values of stream function at the I and E

boundaries. These are naturally functions of x only. From the



- 128 -

definition of stream function and ;,, the mass flow rate across a line of

constant x for axisymmetric flow may be rewritten:

e = 2m8¥=2m G- ¥ & . . +(6.18)
The mass flow rate across a line of constant  may also be written:

I?lw = m h 8 x
2/ = 4" 2m7R
@ w "
=2n((mﬁ ot w((Rﬁl)E-(Rm )I)>
o o .(6019)
where (R )y = ~ afg and (RR g = - 4y
dx dx .« . .(6.20)
For a = - dwl)kl and b = - d(wE - ¢I)
| —/ G - ¥ _ i
ax ' e (4 = ¥7)
dx
. . .(6,21)
m u, = 21 - Y+ by) . . .(6,22)

For plane flow 2n(vE - ¢I) is replaced by (Vg - ¢I).

6.3.2 Transformation to (X,y,) Co-Ordinates

For a general variable @, the transformation of @(x,y) to B(x,y)

is achieved by these equations:

o\ (2] 4[2) [

;;, y ) 3 |y Ow [, |\ o% y

B . 0P ow

;; i ;-» « \9 [x . . .(6.23)

Therefore the stream function definitions yield:
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w. 1 d
il [ ] R TR
dx y (wE - ¢I) dx dx dx
ow - pBR
% [x Vg ~ Vg
. . «(6.24)

Then equation (6,13) transforms to:

W, (a+dw)al _ 3 (cu) g
= — +

ax au) aU.) aw . . 0(6.25)

where a and b are given by equation (6.21) and

c = bﬁh?h Mofs
G~ ¥p) .+ +(6.26)
d = -1 dp
~;§ ;; . . «(6.27)

The definition of d is non-linear but is approximated by using the

corresponding known upstream value for u.

6.,3.3 The Finite Difference Grid and Equations

Figure 6.2a shows how the control volumes are defined for the
region between the upstream and downstream steps. Therefore, four

nodes are used in the finite difference approximation of equation (6.25);

Difi,xpl = Aifji1,xp1 * Bifi-1,xp1 * C4
L L] .(6.28)

where C; represents the sum of constant terms and the known upstream
term ¢i x+ The coefficients are derived by integration of equation

H
(6.25) for wi-} — Wit} for which interval ¢i is considered constant,
The form of the coefficients is given by Spalding (1977). Values of ¢i

and ¢N are known and form the boundary conditions for the tri-diagonal

matrix algorithm.
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No mention has been made here of how the grid is calculated, how
the entrainmeht_is controlled, nor the procedure adopted in wall regions.

These items have been treated as by Spalding (1977).

6.4 EXTENSION OF METHOD TO FLOWS WITH SIGNIFICANT CROSS-STREAM

PRESSURE GRADIENT - 'PARTIAL-PARABOLIC' PROCEDURE

A class of f1ow exists for which a full elliptic iterative solution
of the Navier-Stokes equations is unnecessary whilst the assumption of
a negligéble cross-stream pressure gradient is too restrictive. Theée
are flows where the assumptions of no recirculation and neglig&ble
streamwise diffnsion of momentum is acceptable but where a significant
degree of streamline curvature introduces a pressure field which affects
the upstream flow as well as the downstream, The system of equations is
not then, strictly speaking, parabolic. This type of flow has been
called 'partially-parabolic' by Spalding (1976) who gives a useful

summary of the flow types.

The quesiion now arises if the system of equations can be solved
directly as in a parabolic solution or whether an iterative technique

is required as in an elliptic solution., A possible procedure could be

to approximate %5 in equation (6.9) by

- - y ~
dp _[op + 103 pU

. dy

where 9P AX 1ast is taken as the local pressure difference between
dx . as

two successive calculation stations in order to calculate the velocity

distribution for the one following. Provided small enough forward

steps are taken, a fairly accurate solution can be obtained in one

iteration., However, the step size has to be small in order to prevent

instability caused by attempting to march a system of equations that are
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elliptic. Also the approximation of equation (6.29) isvinconsistent
with the order of magnitude analysis of § 6.2.3 although this would not
be too important where the pressure gradient gg dominates the stress
gradient in equation (6.10)., This type of procedure was adopted.by
Rastogi and Whitelaw_(197l) and Gibson and Rodi (1981). The former used
step sizes 6f 0.1% 8 for the first fifty steps and thereafter gradually
increased them to a maximum of 1% §. The latter required 700 forward

s teps for grid independent solutions to a flow length of approximately

1300 mm,

Alternatively, an iterative procedure allows a much larger step
length and can give more accurate results when a converged solution is
obtained; The number of calculation stations actually calculated is
also likely to be less and computing time therefore,feduded. However,
aﬁ initial guess to the pressure field E(x,y) has first to be made and
thé calculation is repeated until, say, the wall pressures are found to
bevwithin‘the_reQuired accuracy for convergence. In the method of
Mahgoub and Bradshawl(1979), the pressure is calculated by integration
of the y-component mean momentum equation across‘the shear layer ﬁidth.
§§ is evaluated using central differences in x of the preséure field

that was calcuiated during the previous iteration, The method of

calculating all the pressures of one sweep before using them in the next
corresponds to a Gauss—-Jacobi iteration which is stable. Use of the
newly calculated‘pressures however, corresponds to a Gauss-Seidel itera-
tion where the.method would then suffer from the same problems of

instability as the single-sweep methods outlined above and for the same

‘reason,

The algorithm used by Patankar and Spalding (1972) is completely

different in detail and relies on the uncoupling of the x.and y-. momentum
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equations so that an elliptic system of equations can still be solved by
an essentiaily parabolic method. The uncoupling of equations (6.4) and
(6.5) is achieved by specifying %ﬁ as the gradient of a bulk pressure
~which, for an unconfined shear layer, is defined by the free stream
pressure. In éffect then, the x-component momentum equation is solved
by assuming g? = 0, whilst the y-component equation is solved using the
local values of pressure, At the end of the algorithm, when U, V and
the Reynolds stresses are known, the pressure p(x,y) is adjusted by
corrections obtained from the solution of the Poisson equation (6.7).
The equation is rendered parabolic by treating azp/axz as known, In
any elliptic procedure which uses upwind differences, mean flow trans-
port and pressure field effects are transmitted upstream at the rate of
one step per sweep. Consistent with this procedure, the pressure
corrections are applied at one grid location upstream from that f£rom
which they were obtained and so only the pressure influences upstream
flow. This method has been successfully used for both two;démensional

(Singhal and Spalding (1976) ) and three-dimensional flows, (Pratap

and Spalding (1976), Patankar et al (1975) ).

6.4.1 Equations to be Solved

Consistent equations for terms up to order §/x are given by
equations (6,9) (6.,10) and (6.11). It should be noted that equation
(6.10) does not actually contain v (it is obtainable from the continuity
equation) and therefore the full algorithm of Patankar and Spalding (1972)
is not necéésary. Aiso the equation (6,9) contains the additional terms

of order §/x which have yet to be put in finite difference form.

6.,4.2 Algorithm Sequence’
The sequence is:

(a) The pressure field p(x,y) is first guessed. This is done
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assuming gg = 0, that ambient pressure is acting across the slot exit
and that thereafter the pressure is determined by the free stream pressure

gradient.

(b) The solution for U and y is available f£rom the previous step.

For the first step, U is calculated from inviscid nozzle theory.

(c) The Reynolds Shear stress is calculated via the turbulence
model. See §(?7.3. Normal stresses are represented by empirical

relations with the shear stress,

(d) Equation (6,10) is integrated inwards from the free stream
boundary to the I boundary to give the cross-stream pressure distribu-

tion, BSee figure 6.3,

(e) Substitution of the continuity equation in equation (6.9)
via Bg yields an ordinary differential equation in V. This can be solved

by use of the tri-diagonal matrix algorithm,

(f) The pressures at one grid location upstream from the present
are adjusted by the difference between the newly calculated pressures

and those from the previous iteration,

(g) The x-component momentum equation (6.9) is solved as described
in § 6.3 but incorporating the additional terms., The step to the next

downstream station is therefore completed.

Steps (b) to (g) are repeated until the flow domain has been covered.
A convergence criterion is then applied; if further iterations are.

necessary, the sweep is repeated. The additional parts of the algorithm
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necessary for the partially-parabolic procedure can be incorporated in
a single subroutine intq the program, This makes it eaSy to‘use the
program for both parabolic and partially-parabolic flows., It is impor-
tant to note that the streamwise preésure gradient used in (g) is

that defined by the free stream conditions, whereas the solution for

v in.(e) uses the local pressure gradient. The equations (6,9) and

(6.10) are therefore uncoupled,

6.4,3 1Initial Conditions

Values for U and ) for the first step of the first iteration are

available using inviscid nozzle theory for unchoked floW:

2 Y-l
Uy - 7 Ra Tsup {1 = [Patmos| ¥
2 Y- 1 Pgup
1/ 4
Py Psup Patmos
RaTsup \ Psup . « (6.30)

where the supply and ambient conditions are input data to the program.
v is an effective value of the ratio of specific heats for the fluid
mixture. For subsequent iterations, the drop in pressure at the slot

exit produces an increased velocity and mass flow defined by:

2 Y¥-1
Ei - 4 Ralgyp 1-[Py ¥
2 Y- 1 Psup
i=N-1 v
. i=2 . ) o o 0(6.31)
If %atmos is less than the critical pressure ratio, the procedure
sup .

is stopped at the end of the first iteration as the velocity at the nozzle

exit will be sonic. For choked flow conditions, the mass flowrate and
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density are_éalculated accordingly, 1If giﬁp is less than the critical
pressure ratio at any time, a warning is printed. The density of the
jet at any point is calculated so that it is consistent with the press=
ure calculated, viz:

L= Fipie * QT8 pampient? [P i
Pambient

. . «(6.32)

where Fi is the proportion of original to total mass of fluid,

6.4.4 Pressure Calculation

Integration of equation (6,10) gives:

bl 2 S S —, (i1
6Pj1 = P (U - v°) \-Sy] - pi+%[ v ]
i . rh i+% 1 i
- i+1
- oV [6Y]
— i
Bl g . . .(6.33)

The control volume for the integration is shown in Figure 6.,3. The
free stream static pressure defines EE’ thus the complete cross-stream

pressure distribution is obtained,

6.4.5 Solution for V

Removing the g% term in the equations (6,9) and (6.10) gives the

ordinary differential equation for V in which ﬁ, §£ and the Reynolds

stresses are all known:



R 1 E_ (Rh\)eff EE)

1
R % r R \ 2y oy

. . (6.34)

This is solved by a second-order Runge - Kutta approximation. Thus
for solution by the tri-diagonal matrix algorithm, A; in equation (6.28)
is zero, and V = 0at the I boundary. The remaining 'constant' terms
are all easily represented by their values at the ith node. =x-direction

gradients of @ are represented by

6,4.6 Extra Terms in the x-Component Mean Momentum Equation’

Transformation of the complete x~component mean momentum equation

(6.9) to (x,y) co—ordinates gives:

U (@ +by) 30 _  d+3 (C3U)

X W ow ow

uv |, UV . u?h sin o auz auz (a + bw) - pVRh
b o

cll

R % b " ¥

. . .(6.35)
The last term of the right hand side represents those terms still
to be put in finite difference form, With reference to figure 6.3, and
following tﬁe procedure adopted fbr those terms already in finite différ-

ence form, integration across the x-component control volume gives:

— — 2 2 2
- ] - u
i EZ + EX + u h sin o + u i,x% i,xml
E r r R

i:X i,x i,X_ i:x A Xlé‘st.
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2 f }, ¥ N |
+u i:’f . (‘BE qII)xpl (¢E \]fI)x (U.)i+% wi-%)
A X (wE_— wI)x.
2 AN
T Wk T Y g
v, |

i,x 2 (VE - ¢I)x

| . e _2, |
- SVRh|, . -
P Ii,x- (.“ i+, x O i-é,x)

g —'WI)X o . . .(6.36)

Linéarization'of the terms is achieved by using values at i,x for

the control Volume. Therefore the sum of these terms is added onto Ci
. . ' du2 ¥ 9
in equation (6.28). Also terms such as S;_ are treated as u i,x " U i,xml

, MXyast
so that they have known values,

‘6.4.7 Convergence Criterion and Stability

The solufisn is converged if, on successive iterations, all the
corresponding wall pressures change by less than 0.2%. An alternative
-form of conﬁergence-criterion could be a neg;igiblé“change in mass
_flow at the slot exit. An upper limit of ten iterations was set; above
which the procedure is unlikely to converge if it has not already done
so, Use of an‘implicit finite difference formulation for the solution
6I a forward step makes the procedure unconditionally stable, The
uﬁcoupling of stréamwise'and cross-stream pressure gradients in the
two mean momentum equations ensures that an elliptic system of equations
can be 'marched', provided that the condition 32U/y2 = O is satisfied.

This is expected for nearly all shear layers,
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6.5 ADDITIONAL FEATURES

6.5.1 Geometry and Boundary Conditions

The E boundary is always free whilst the I boundary can be specified
either as a wall or an axis of symmetry but not both, This is true
for both plane and axisymmetric flows, When the I boundary is an axis
of symmetry no curvature can be induced without body forces which are
not included injthelnomentum equations, For these cases then, » —» 00O .
[ For the case of a wall at the I boundary and axisymmetric flow, two
geometries are available; ¢ = 50° at x = O and r is finite, or @ has
a constant value and r—» oo . These two geometries allow a complete

description of the flare profile as the former is allowed to change to the

latter at a pre-determined angle.

The boundary conditions used are:

(a) wall at I boundary, U(1) = o, V(1) = 0;

(b) axis of symmetry at I boundary, U(1) = U(2), V(1) = O;
} (¢) at the E boundary (free), U(N) = O, V(N) = ﬁ"E/p
I For the solution to ﬁ, two boundary conditions are required, For the

V solution only one is required, V(1) = O,

6.5.2 Modified Law of the Wall

The near-wall grid and wall shear stress are calculated by use of
the law of the wall in a modified form (Townsend (1961) ) to include
the effects of an adverse streamwise pressure gradient %5 + ve). It is

necessary in:the present calculation method because of the large

negative wallstatic pressure near the slot which inhgcreases to ambient

further downstream,
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For
_ w/ee ok
U, = _U/(Twp)
1
— 3
Y+ = Y(Twp) /u
and = hdp / (+3p% (6.37)
p+ Me el T(_D p e o o .
. dx
it can be stated as follows:
1
_ 2 4 EY
u, =1 [2 ((1+p+Y+) —1)+1n( + .
- . 2
K 2+ p Y + 2(1+p+Y+)
* . .(6038)

where E is thé constant from the unmodified law of the wall, Integration
of equation (6.38) between the wall and the adjacent node, which is
positioned in the fully turbulent region of the flow, gives the value of
a dimensionless stream function coefficient used for grid calculations,
The log-law relation is therefore assumed to be valid for the whole of
the inner layer. Bradshaw (1973) concludes that the use of the law of

the wall in curved wall jets is satisfactory.

6.5.3 Determinétion of Ug and .y /2

An additional subroutine was used to interpolate values of ﬁh and
Ym/2 Newton's divided difference interpolating polynomial was used

for the three nearest nodes to ymy2 and ﬁﬁ.

6,6 SUMMARY

The calculation method described above is suitable for predictions
of shear-layer flows with significant cross-stream pressure gradients
where r / xw 1.. All the significant Reynolds stress gradients are
included in the mean momentum equations and the effects of variable pre-
ssure in the flow field are allowed for, The procedure can be extended

to include the effects of combustion and scalar transport. It can also
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be adapted for use with different types of turbulence model and is
- capable of use with a Reynolds stress closure in which transport
equations forjthe Reynolds stresses are solved simultaneously with those

fdr the mean flow.
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FIG. 6.1. (a) Grid and (b) Control Volume
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CHAPTER 7

TURBULENCE MODELLING

The ﬁroblem of closure was introduced in Chapter 2. The subject
of this chépter is the selection of an appropriate method of estimating
the Reynolds étresses appearing in the equations of motion in such a
way as to account for the effects of curvature and divergence. It is

apparent from the order of maghitude analysis in § 6.2.3 that the pre-

9 (uv)

Sy This is to be expected, for in

dominant stress gradient is
order for é stress to affect the mean flow, it must change appreciably
over a shprt distance. Examination of equation (F.7); the transport
equation for ﬁ?, shows that the shear stress isunlikely to change
rapidly in the mean flow direction. Then the predominant stress grad-
ient will be more or less perpendicular to the mean streamlines. The

shear stress uv therefore, is the most important stress in two-dimensional

shear layers and is the major concern of turbulence modelling.

The ordef‘of closure reflects the degree of sophistication and
complexity that is acceptable in the calculation procedure. Equation

(6.13) assumed the use of Boussinesq's eddy viscosity defined by:-

3U/dy .. . (7.1)
where veff'=vi + v and in which it was tacitly assumed that the
closure to be used is of first order. However, thé calculation method
could solve ali or some of the Reynolds stress transport equations
(Appendix F):and additional turbulence quantities simultaneously with
the mean moﬁentum equations. Veff would then not be required and

closure would be of second order.
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7.1 REVIEW OF AVAILABLE TURBULENCE MODELS

Table Il summarizes models up to the second order that are currently
available. Third order closures have not yet been developed, not only
because of the complexity of using them in a calculation procedure, but
also because pf the difficulty of obtaining the required empirical inform-
1 ation to a'sgtisfactory accuracy. For a review of turbulence models
see Launder and Spalding (1972), Mellor and Herring (1973) and Reynolds

(1976).

The dimensions of Vg are velocity x length. First order models can
be sub-divided into groups where the velocity and length scale of Vp are
expressed either algebraically or by using a differential equation. 1In
either case,bfﬁe concept of an eddy viscosity is erroﬁeous as it is
based on physically unrealistic arguments. By analogy with molecular
viscosity, it éssumes that the mean free path between eddies‘is small

compared with the flow dimensions and that eddies transfer momentum by

a series of discrete collisions. This in no way represents the vortex
interactions that occur nor the énergy cascade which is completely

described b§ the turbulent energy transport equation (2.25). Bradshaw
(1972) discussés the validity of the use of eddy viscosity formulae in

more detaii.

- T e ™ e et e e ettt et

7.1.1 Algebraic Specifications of Eddy Viscosity

The concept of mixing length is analogous to that of the eddy
viscosity. The mixing length theorem was proposed by Prandtl and in
it the mean free path between collisions is designated as the mixing
length. Thefefore the relation between eddy viscosity and mixing length

can be written:

= 2 =
vp = 20 al

dy C .. (7.2)
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Lumley (1978):

Turbulent diffusion approximated by a gradient diffusion
model
Rational closure scheme by method of invariant modelling

Use of Eddy Algebraic Definition of ugp No. of
Viscosity ‘ _ 1. _ L p.d.e.’'s
U = p 22 |30 | Prandtl (1925); & o |3U 320 v_ = pU y £(y/8)
T 0 | o |__ T 0”0
J— CalD 0
T = —puv » oy dy Jy
= Up Y] 2 related to flow dimensions Von Karman (1930)
P j 0 ) ) . . . .
Prandtl/ One-Equation Models
Kolmogorov
vT = up/o Differential equation for tubulent kinetic energy k. 1
Eddy Viscosity Length scale £, prescribed algebraically.
Formula
= velocity
scale 3 Two~-Equation Models
o Cupk . Differential equation for k and £; 2 prescribed by any
x length . . . . n
scale turbulence quantity with a dimension of ™.
e.g. Rodi & Spalding (1970): 2 from D(k{) 2
Dt
Harlow & Nakayama (1968): & from De
» Dt
Reynolds Stress Transport Equations
Daly & Harlow (1970): Qipiuj), De Mean strain rate not in pressure-strain term
Dt Dt Turbulent diffusion approximated by a gradient diffusion
model.
Launder et al (1975):ﬂESPiuj)’.2§. Mean strain rate in pressure-strain term 24

Table L

Classification of Turbulence Models

- 99T -
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The mixing length is an easier concept to use and Prandtl related it to
»the dimensions of the flow considered. Von Karman attempted to genera-
lise the formulation of the mixing length by use of the similarity
hypothesis:

2 - a | dU 32y

0 _— _
dy dy? .. .(7.3)

Direct algebraic specifications of the eddy viscosity also exisf where
a typical_Qelocity and length scale of the flow are treated as func-

tions of y/§.

7.1.2 ‘Specification of Eddy Viscosity by Differential Equations

Later, Prandtl suggested that the velocity scale for vT'be

replaced by the square root of the turbulent kinetic energy:

by = c dkis NS

where k and/or % could be specified by a transport equation. £ repre~
sents a length scale proportional to that of energy-containing eddies.
Kolgmogorov also used the turbulent kinetic energy for the velocity
scale, but for the length scale used % = k%/f where £ is the typical
frequency of the energy containing motions. Nee and Kovasznay (1969)

proposed a differential equation for ve = Vp + v directly without

£ff
use of equation (7.4). However most one and two~equation models use

the Prandtl/Kbimogorov formula for up above and these are now briefly

described.

(a) One-Equation Models

The individual terms of the transport equation for kinetic energy,
equation (2.25), have to be expressed in terms of known quantities, i.e.

mean flow variables and constants, and the kinetic energy, before a
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solution can be obtained. A possible model for a boundary layer is
given by Launder and Spalding (1972) derived, for high Reynolds number
flows, along the lines suggested by Prandtl and Kolmogorev. Two con-

stants are required in the equation:

2
U 9k + V 3k _ 3 Y ok AV ou - €
— — = _ (X _\ + tf__
9x oy 9y \C ; 3 3y
.(7.5)
where
3/
2
'3 .. .(7.6)

A solution of this model equation together with a simple relation
between 2 and the flow dimensions gives a solution for uT. One equation
models offer few advantages over the ﬁixing length hypothesis because 2
is still specified algebraically. Therefore more use has been made of

two equation models.

(b) Two-Equation Models

The drawbacks of the one-equation models are overcome by the use

of a transport equation to represent 2. This can be done in a number

of ways leading to several different models of this type. The problem
lies in the choice of length scale and it is likely that ﬁore than one
would be required particularly for complex flows (Bradshaw (1972) ).
Another difficulty is that transport equations for length scales tend
to be more complicafed than that for the turbulent kinetic energy.
Rotta (1951) suggested use of exact equations for turbulence length
scales related to the integral scales whilst later workers (Daly and
Harlow (1970), Hanjalic and Launder (1972) ) implied a length scale by

use of a trahsport equation for the dissipation rate ¢, equation (2.26).
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This is a popular definition of a length scale as ¢ appears explicitly
in the k transport equation (2.25). At high Reynolds numbers, the
modelled transport equatioﬁ for € ¢an be written in boundary layer form

as:

Uoe +Vde = C 3 v, 3 \+ C Vo € aﬁ'%_ Ce,2 g2

9x | .oy dy oy , k \ oy ‘k

. W (7.7)

where C_, Ce;l and Ce,z are empirical constants. Solution of this
equation with equation (7.5) is known as the k & € model, Other length
scales thaf have been proposed are those associated with the product
of k and 2 (Rodi and Spalding (1970) ) and the mean square of the
freduency of the energy-containing eddies. Launder and Spalding (1974)
review these last three models and prefer the use of the k n € model which
is tested with experimental data from several different types of flow,
including those with recirculation. The use of a differential equation
to specify the length scale in addition to thé velocity scale in a
turbulence model significantly improves the range of use and accuracy
of a calculation procedure. However, the limitations imposed by the
use of an éddy viscosity are only removed by direct modelling of the

terms in transport_equations for the Reynolds stresses.

7.1.3 Reynolds Stress Models

The term by term approximation of the Reynolds stress transport
equations waé first suggested by Chou (1945) and Rotta (1951). This
brief review is_intended only to highlight the major points of what is
now an extensive subject. Two of the most important Reynolds stress
closures are those of Launder et al (1975) (LRR) and Daly and Harlow
(1970) (DH); both draw substantially on the work done previously by

Chou and Rotta.
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As in the two-equation models above, a length scale transport
equation is also necessary. Both the DH and LRR models provide closure
approximations for ﬁ;ﬁj and use the ¢ transport equation (2.26) as the
length scale equation. They are therefore suitable for comparison.

Equatioﬁb(2.24) is the transport equation for the Reynolds stress
E;ﬁj in which only the convection term and the production tern, Pi‘ are
explicitly defined in terms of known quantities, i.e. second order

correlations or mean velocities. The remaining terms are approximated.

For high Reynolds number flows LRR uses the following approximations.

(a) Diffusion by Velocity Fluctuations

By simplification of the exact transport equation for third order

correlatibns:
- uiujuk = B E. uju, aujuk + ujuz dupuy + uup 3uiuj
€ Bx2 sz Bxg
. . .(7.8)
DH, however uses:
A T P o
. —_ k 2
£ Bxg .. . (7.9)

where B and f# are constants.

(b) Diffusion by Pressure Fluctuations

LRR ignores these terms whilst DH uses a gradient diffusion model
where p'u; is proportional to k Buiuz

€ sz

(c) Dissipation
For a high turbulent Reynolds number, the small scale motions may

be consideréd isotropic. Then following Rotta (1951):
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2 v Bui auj = E-s Gij
Bxk axk 3 . . . (7.10)

Both models use this approximation.

(d) Pressure¢-Strain/Redistribution

Chou (1945) showed that away from a wall, the term %l-%ii could
be expressed in terms of the interaction of fluctuating velocities and the
interaction of the mean and fluctuating flow. LRR label these two
contributions as (@jj,1 + ¢ji,1) and (gij,z + ¢ji,2) respectively. Rotta

(1951) proposed:

13
k 3 . . o (7.11)

(B15,1.+ 931,10 =-%e (uuy =-26, . k)

where o is a constant. The right hand side of equation (7.l1) represents
the degree of anisotropy of the turbulence and shows a linear "return to
isotropy". Since in an homogeneous flbw, whére the mean rate of strain
is negligible{ the statistically more probable state is one of isotropy,
Rotta proposedlthat pressure fluctuations would act to equalise the
normal stresses and to diminish the shear stresses. Naot et al (1970)
proposed the model for the mean velocity gradient contribution to the

redistribution term as:

= -q' (Pij -2 61j

3 e W (7.12)

CHPIP P)
where P = produétion of turbulence energy. The model is exact for
isotropic and'homogeneous turbulence. This contribufion fo the re-
distribution term is proportional to the anisotropy of the production

of turbulence. The DH model recognises the contribution of the mean rate
of strain to the redistributioﬁ term but assumes that it is negligible.

The LRR model uses a 'complete' and ' simplified’ approximation for the
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mean rate of strain contribution, where the simplified version is of
the form of equation (7.12). It also uses a modified form of the

complete pressure-strain model for near-wall turbulence.

LRR model the ¢ transport equation (2.26) as originally shown by

Hanjalic and Launder (1972). The modelled equation is:

De = Ce,1 e uzm 33 - C_ e2 +C. 3 k uu, d¢

Dt k axk k Bxk € s

.(7.13)
which, after summation of indices, use of equations (7.1), (7.4) and
(7.6) and application of boundary layer assumptions, reduces to equation

(7.7), used in the k v € model.

Bradshaw (1972) compares the LRR and DH models along with other
similar Reynolds stress cloéures. Launder and Spalding (1972) compare
predictions using the DH model with experimental data of a plane free
jet. The w2 and ;5 stresses are not predicted very well, which they
ascribe to the modelling of the redistribution terms since k is predicted
fairly well. However, this is a criticism of just one of the many assump-~
tions required in a Reynolds stress closure. In order that a model may
have the intended degree of universality, it has to be tested in a

wide variety of flows. Only then can one model be said to be superior

to another.

7.1.4 Additional Models

There are some models which do not fit into any of the categories
of table IIL , and yet are important. The first of these is that of

Bradshaw et al (1967) which is a one-equation model, but which does not
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use the eddy viscosity concept. See § 6.1.2. The turbulent kinetic
energy equation is converted into a differential equation for the
turbulent shear stress by assuming T o p k which holds for many types
of boundary layers. The dissipation term in the kinetic energy equation
is modelled by equation (7.6) wheré % is prescribed algebraically. The
model does héve the advantage that the shear stress is not tied to the
mean velocity gradient, but the model has no use in regions of negative

shear stress where k is necessarily positive.

Another model which is not easily categorised is that of Rodi (1976) -
an algebraic Reynolds stress model. The modelled stress transport

equation is reduced to an algebraic form by the assumption:

ujuy x transport (k)

transport (uiuj)

= u.,u (P -2¢)

Thus the convection and diffusion terms are approximated. In practice
the model reduces to a k v £ model, where the constant of the Prandtl-
Kolmogorov eddy viscosity equation (7.4) becomes a function of P, k and
€. This model was used by Ljuboja and Rodi (1981) in predictions of

flat plate wall jet data.

7.2 ASSESSMENT OF MODELS

All of the models described above, with the exception of that of
Bradshaw et al (1967), can, in principle be usedvin thelcalculation method
described in Chapter 6. However, the simpler eddy viscosity/mixing
length formﬁlae lack the detail of prediction and universality of a full
Reynolds stress closure, yet offer surprisingly good predictions when

constants are adjusted for each flow type.



- 154 -

In general, the limitations of a model can be seen by inspection of
the relevant transport equation at an order higher than that of the closure.
Thus the limitations of the mixing length hypothesis are seen by inspection
of the transport equation for turbulent kinetic energy when transport terms
are neglected ( § 2.3.1). Irwin (1973) and Bradshaw and Gee (1962) ﬁoth
found that the position of zero shear stress in a flat plate wall jet
was consistently closer to the wall than the velocity maximum. ( g 2.4.1)
This phenomenon can be predicted by a Reynolds stress closure,but not by
an eddy viscosity model which would predict uv = O at the velocity

maximum.

In complex shear layers: where several gradients of components of the
stress tensor G;ﬁ& may be significant in the mean momentum equation, the
use of a scalar eddy viscosity, as in the Prandtl-Kolmogorov formula
equation (7.4), may no longer be valid. Vp isilikely to be strongly
sensitive to direction. Also, neglect of the modelled convection and
diffusion terms in the uv transport equation leads to retention of only
the redistribution terms - there is no dissipation term. After retaining
only the main ?edistribution terms and assuming.;E/k is constant the Prandtl-
Kolmogorov formula is produced. Therefore this eddy viscosity formula
inadequately represents convective and diffusive processes and implies that
- where a mean‘velocity gradient changes rapidly, that the Reynolds stress

will respond immediately. Rodi (1975 b) assesses the constancy of Cu in

the Prandtl-Kolmogorov formula.

A Reynolds stress closure of the form of LRR, in which all the
terms in the transport equation are separately modelled, is likely to be
the only model, presently available, capable of giving satisfactory

predictions of _uiu:j for a complex shear layer., At least one fransport
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equation for a length scale would also be pecessary as %gfis large for
many complex shear layers. But the application of a Reynolds stress model
to strongly curved flows is only just being developed (Gibson and Rodi
(1981) ). Foxr purposes of the present work, a mixing length formula,
modified to account for the effects of stregmline curvature and diVerg-
ence, is likely to give satisfactory predictions of the mean flow, rela-
tively cheaply in terms of combuter time and will serve as a good first
approximatioh in a calculation method required to give predictions for
only one fldw type. The calculation method described in Chapter 6 is

such that it could be extended to incorporate a full Reynolds stress closure

at a_future date.

7.3 REPRESENTATION OF MIXING LENGTH IN CALCULATION METHOD

For the two cases where the I boundary is either an axis of symmetry
or a wall, the jet profile is divided into 'mixing regions', to the
widths of which the mixing length is proportional. This is the procedure

followed in the PS method.

Figure 7.1.a shows the positions of these 'mixing regions' for a

wall jet in which the following mixing length representations are used:

o1z = Ay - ¥y

20,34 = A(yg - ¥3)

j‘o',s‘s = Myg - V5

Y023 - 0,12 * %0,34

%.,45 = #Uo,34 * %o,56 C . (7.14)
Values of 26 near the wall are subject to the law of the wall:

L7 Ky . . .(7.15)

where K = 0.41. The correction developed by van Driest (1956) for the
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effect of damping of turbulent motion near a wall, viz:

JLO = K v (1 - exp (y Tw%p%) )

Ay . .(7116)

was not used (A = 26.0) as it was not considered necessary.

For the parts of the profile in which 1Y is small, 20 is specified

oy
as the average of those values in the two adjacent 'mixing regions'. The
possibility of 20 -+ 0 as %g -+ 0 is therefore avoided. This procedure is

consistent with the physical processes involved because in regions where
the value of %g-is small, production of uv is small and transport tefms
dominate. Since the mixing length hypothesis neglects transport processes,
it is meaningless in these regions. Accordingly, the value of

zolaﬁ/ayl was not allowed to fall below a certain minimum proportional

to the local value of U.

The representation of 20 in a jet with an axis of symmetry at the
I boundary ie shown in Figure 7.1 b, where the treatment is the same.
The positions of y; > yg are shown also for the intitial top-hat pro-
files. These were defined so that consistency with the zo representation

for the downstream profiles was achieved.

The relative merits of different values of A and K are discussed
by Launder and Spalding (1972). ‘They found that agreement between
experimental data for wall jets and the PS calculation method could be
optimised for different flow parameters by using different ratios of

K/A. The values of K and A used in the present celculation method

are given in the table N velow.
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JET TYPE k A

Plane flat plate wall

: 0.41 0.09
jet ' :
‘Piane jet with axis 0.41 0.115
of symmetry

Axisymmetric jet with 0.41 0.075

axis of symmetry

TABLE IV : Values of K and A in Jet flows without

streamline curvature or divergence

7.4 MODELLING OF. STREAMLINE CURVATURE  EFFECTS

The effécts of streamline curvature on a turbulent shear layer
were reviewed in § 2.5. Curvature is likely to affect the higher order
structural parameters of the turbulence, therefore implicitly changing
the siies of the terms in the Reynolds stress transport equations on
top of the explicit changes in the production and transport terms. See
Appendix F. Therefore, all of the turbulence models described in § 7.1

require empirical adjustment to account for the effects of streamline

curvature. i
7.4.1 Mixing Length Corrections For The Effects Of Streamline

Curvature
The laminar shear stress term of equation (E.l1) becomes after

retention of only the significant terms (see § 6.2.3 for assumptions):

3y rh .. (717
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Sawyer (1963), using.Prandtl's 1929 mixing length arguments derived an

expression for the turbulent shear stress:

-W o= vy f —‘Cj
oy rh
= 2 oU oU cTU
0 — _ —
dy dy rh

. «(7.18)
where C is an empirical constant and!l,0 is the mixing length in the
equivalent flow without curvature. Equation (7.18) corresponds to>the
F-factor correction‘of Bradshaw (1973) applied to 20. See § 2.5.
Sawyer foundithat in equation (7.18) C = 5 for a curved free jet for all
ratios of jet thickness to radius of curvature of the jet centre-
line. Gilés.et al (1969) used the same correction for the calculation

of a turbulent wall jet on the logarithmic spiral. For the self-preserving

jet, C =3 gave a best fit to the measured profile shape.

The fact that C # 1 in equation (7.18) illustrates the fact that
the turbulent shear stress has no direct analogy with its laminar counter-
part. Also the expected variation of C in order to optimise agreement of
predictions Qith different curved flow types highlights the approximafions
involved when ﬁsing a mixing length modification. The variation of C
accounts for not only the relative degree to which the production and
dissipation terms in the turbulent kinetic energy equation (F.7) are
affected, but also accounts for the failure of the local-equilibrium
approximation where transport terms are significant to a different

degree.

Using the analogy between the effect of buoyancy on a turbulent

flow and that of curvature, Bradshaw (1969) made use of the original
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idea of Prandtl.In buoyant flows the gradient Richardson number is

defined as:

Ri = buoyancy forces

inertia forces

Bradshaw defines:

RiB = 2Sp where SB = U/r

1+8; - - .(7.19) U0y . . .(7.20)

Sp is equivalent to the flux Richardson number defined as the ratio of
turbulent energy production by buoyancy forces to production by shearing
forces, as shown by retention of only the main production terms in
equation (F.7).
In unstably curved or buoyant flows, Rig is negative and in stable conditions
it is positive. Bradshaw also proposed ‘the use of a Monin-Oboukhov type
formula, which was originally derived for modification of mixing length

by small buoyéncy effects, in order to compensate the mixing length in

a curved flow.. It is:

Re/t, = 1-8 Ri

c .(7.21)

B
where £, dendfés the corrected mixing length. For large r, Sg is small
and equation (7.21) reduces to the curvature correction used in equation
(7.18) for C = 28. Equation (7.21) is therefore equivalent to the F-
factor analysis used by Bradshaw (1973), who tests its use in the cal-
culation method of Bradshaw et al (1967). The calculation method uses
the thin-shear-~layer approximation and the cross-stream pressure gradient
is neglected. Meroney and Bradshaw (1975) report the comparison between
predictions and experimental data for a stably and unstably curved
boundary layer where ¥ §/r ~ 0.01 - 0.02. Values of B =7 and 4 were

used for the ccnvex and concave cases respectively, although for the

latter, the presence of longitudinal vortices made the agreement less
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good. Bradshaw (1973) also reports calculations made for curved wall
jets using values of B = 7 and 4 in stabilised and destabilised regions
respectively. No experimental data was available for comparison.
However, the jet growth rate data of Giles et al (1966), suggested thaf
optimum valueé for B were 4 in stabilised regions and 3 in destabilised
regions, i.e. C = 8 and 6 respectively. The boundary layer data of So
and Mellor (1972) was also used, but agreement was not so good. In this
case, §/r = 0.08 on a convex surface and 0.13 on a concave surface. The
linear correqtion of equation (7.21) is not expected‘to be adequate for

large curvature effects.

7.4.2 Anaiysis For Mixing Length Correction Applicable To Flows With

Large Curvature

The basis of the method is the approximation of each of the
transport equations for the components of the Reynolds stress tensor
ﬁ;ﬁj, modelling.the remaining terms as outlined in § 7.1.3 and manip-
ulating the remaining equations that are algebraic in ﬁ;ﬁﬁ. This more
rigorous approach gives a mixing length correction which is applicable

to flows with large curvature.

Irwin and Smith (1975) assume that terms ujuj are of order(iﬁﬁ 52

R 2 _
and that the terms uiujuk are of order (ifv 7s. They also assume that

the redistribution terms are of the same order as the main production
terms. Following these assumptions, equations (F.4) to (F.7) reduce to

their local equilibrium form, i.e. transport and convection terms are

neglected. The approximate u2, vz, wz, q2/2 and -uv transport equations

are respectively:
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~-hwodl- Uaw + P @ - 1€ = 0
oy o) ax’ 3
. . (7.22)
2U4GF +hp' v - 1 € = 0
r P oy 3
. o o(7.23)
hp' aw - 1 ¢ = 0
p oz 3
. .(7.24)
-huvadl+ Uwv - e = 0
Jy r
o o (7.28)
hv2dl-(2u2-v2) T-niv(Usina + V cos a)
ay. r R
- p' ( dv + h du )= 0
p ox Jy
: e+ (7.26)

Rearrangement of the approximated turbulent kinetic energy equation
alone gives equation (7.18), viz:

-av =22 n?

v |f o\ a-xK?
0 —
9y I\ 3 . . . (7.27)
where
K = U/rh
9U/3y . . .(7.28)
The Richardson number is defined as:
Ri = 2K (1 + K)
5 ,
(1 - K) .. . (7.29)
which for small éurvature reduces to Ri

B The only terms that require
modelling in equations (7.22) to (7.26) are the pressure-strain terms



- 162 -~

which are done so as in the LRR model, vviz equations (7.11) and (7.12).

The modelled equations are therefore, in the same order:

hav ol + Uav + Cie fu? -1\ + Cy[-2h v ol -4 aw D)
oy r q2 3 3 9y 3 r
+ = 0
3
.(7.30)
2ﬁﬁ+cle(v2-l>+ c, 1huv3U+5qu>
— = - _ —
r q 3 3 Jy 3 r
+ = 0
3
. .(7.31)
c e w2 -1 * C, 1lhav o0 - 1 U Gv
qz 3 3 oy 3 r
+ = 0
. 3
. .(7.32)
hivaol - GvU + €= 0
3y r
. . .(7.33)
hv2 ol - (2-v®)T+c e+, (-hvzav+<zu2-v2)fr>
dy r k dy r
—h'u?(?fsi’noc+v_cosoc> = 0
R

. . (7.34)
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LRR recomend C1 = 1.5 and C2 = 0.4. With the neglect of the divergence

term in equation (7.34) (see § 7.5 and § 7.7) and the substitution for

the dissipation rate using equation (7.6), expressions for uv and the

rafio uz/v2 can be obtained:

-% = 22 (1 -oay Ri-oay RiHY2 =102 [a0)
oy
. (7.35)
w147 KK
v2 1 - YK/ (1-K) . . .(7.38)

These expressions were derived by So (1976) following the analysis
of Irwin and Smith (1975). The constants are not universal as proposed
however, for the reasons given in § 7.4.1. A similar procedure is

adopted by So (1975) who obtained:

92 2

o

oy

-av =122 - §_Ri)3/2 (1 - K)
2
. . (7.37)
This expression was used by So (1978) for boundary layer predictions
for the data of So and Mellor (1972, 1973 and 1975). Good agreement
was found with the predictions of shear stress in cases of large

curvature, &6/r v 0.01.

Finally, it is worth noting that for small curvature, Ri +RiB

and equation (7.35) reduces to equation (7.21) with B = 3a1/4. Also
in the outer regions of a wall jet with streamline curvature, where
there is destabilising curvature and Ri is negative, the mixing length

is increased as expected in equatidn (7.35) for o. and az positive.

1
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The converse would be true for stabilising curvature. Equation (7.36)
shows the reduction of the stress ratio for negative KOVi and'yb are
also positive) and incidentally for no curvature the ratio predicted is

2.0. Townsend (1976 p. 107) quotes uz/v2 as 1.37 and 1.45 for the

outer layer of a boundary layer and a flat plate wall jet respectively.

7.5 MODELLING STREAMLINE DIVERGENCE EFFECTS

It was shown in § 2.7.1 that the effect of the extra rate of
strain induced by lateral divergence can be represented by a simple

formula, bearing in mind the restrictions mentioned in g 2.5.

‘Thus the mixing length in a flow with divergence of the mean flow

streamlines can be represented by:

0

Ip = % l-w(ﬁSina+Vcosd)

R 3U/3y .. .(7.38)

where v is an empirical constant of order ten. Now differentiation of

equation (6.14) with respect to x gives:

dn'y = oo Oy UdR + R U

— e —

dax "R dx ox

. . .(7.39)

where dR/dx 0 and 1 for the plane and axisymmetric (o = 90°) cases

respectively. For say, the case of a radial wall jet where R = x,
assuming the value of x is sufficiently far downstream and that
aﬁ?ex = ﬁ/x, then the ratio of radial to plane wall jet entrainment
rates reduces to two and therefore the ratio of shear stresses also.
aﬁyay is negative in the larger outer region of a wall jet, hence ‘
equation (7.38) gives thevexpected increase in hixing length for the

axisymmetric case with divergence. It may be noted from equation (7.38)
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that for a cylindrical wall jet where o = 0, only divergence of the
streamlines in the x-y plane with respect to cartesian coordinates occurs,

whereas for o # 0, divergence is three-dimensional, occuring in the

x-z plane also.

For the present case §/R = 1/6 is a maximum estimate for transverse
curvature. This value is less than the value at which Smits et al
(1979 b) concluded that transverse curvature effects were negligable.

No empirical correction is therefore made for transverse curvature.

7.6 ALLOWANCE FOR "HISTORY" EFFECTS

The only terms in the Reynolds stress transport equations that can
change immediately the mean rate of strain changes are the production
terms and those terms involving p'. The latter can change immediately
because the mean strain rate appears in the Poisson equation for p'.
Therefore the effect of a sudden application of an extra rate of strain
is not immediately apparent on the shear stress. Castro and Bradshaw
(1976) demonstrate this with data from a strongly curved mixing layer.
The maximum principal stress has a lagged response to the extra rate of
strain, i.e. fhe effect of mean>transport on the Réynqlds stress is

apparent.

For the response 0f a shear layer subjected to a sudden extra rate
of strain, e, Bradshaw (1973) proposed that an effective rate of strain

could be calculated from the ordinary differential equation:

Xd (oce)eff = aoe - (oze)eff

dx . . .(7.40)

X is a 'time constant' representing the memory of the stress-containing

eddies which, using local equilibrium arguments, is approximately 1068
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fox-aboundaryllayer and 28 for a jet or free mixing layer. Equation
(7.40) therefore shows an expoﬂential growth response to an applied
extra rate of strain e. The time constant for the present study was
considered not likely to be very long, and therefore the above

equation was not used.

HoWever; problems were encountered in the initial calculations of
shear stress. These originated not only from the above considerations,
which are eQen more pertinent when transport terms are neglected as in‘
the mixing length hypofhesis, but also from the idealized velocity pro-
file at the slot exit in which 3U/dy = 0 except at either wall where
very large gradients occurred. Therefore it was necessary'to control
the rate at.which the shear stress UV could grow, being crudely related
to the mean velocity gradient. This was done by controlling the rate
at which Y3 in Figure 7.1 o was allowed to move inwards to its position
on the fully de?eloped profile. 1In accordanc;i:;tablished ratgs of
development of'shear layers, the mixing length was initially allowed to
increase at a rate proportional to the distance downstream from the
slot exit where the constant of probortionality was-0,12. Reynolds
(1974 p. 329) suggesté a ratio of nominal shear layer width to develop-
ment length of about 0.1. The constant of 6.12 was used here because
the mixing length was determined from the narrower mixing'regions as
defined by equations (7.14). This process of controlling the growth of

shear stress and mixing length linearly was used instead of

equation (7.40).

Smits et al (1979 a) derive a second order ordinary differential
equation iﬁ the perturbation of 3U/3y from its pre-curvature value in

order to assess the recovery of a shear layer from the removal of the
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extra rate of strain. The equation represents a damped simple harmonic
response, i.e. the variation of 5U/3y and Uv is oscillatory #s indicated
by the experimental data. 1In the present work, no procedure was incorp-
orated into the shear stress c#lculation to simulate this oscillatory
response to fhe removal of curvature, nor indeed the response to the
sudden change from laterally diverging to converging flow, as occurring

at a = 0 on an axisymmetric profile with streamline curvature.

7.7 MODELLING OF COMBINED STREAMLINE CURVATURE AND DIVERGENCE

EFFECTS

A simp;e algebraic solution for uv is not immediately available
from equations (7.30) to (7.34) with the inclusion of the extra produc-
tion term due to streamline divergence in equation (7.33). The curva-
ture and diveﬁgence tgrms are thereforet;eated separately as above and
it is assumed that their effects on the shear stress are additive, which
is unlikely td be realistic excepf in cases of small extra rates of
strain. In any case, with the use of a mixing length model, further
sophistiéation is probably not jusfified. Thus any interaction between
the effects of the two extra rates of strain present are not taken into

account in the present shear stress model.

A discussion of the present turbulence model appears in Chapter
9 together withpossible improvements to the modelling of streamline

curvature and'divergence effects.
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CHAPTER 8

COMPUTER PROGRAM RESULTS

The calculation method outlined in Chapter 6, with the approach
for modelling the Reynolds shear stress described in the previous chapter
was tested against established experimental data for five independent
cases, all of differing geometries and constants, the program was then
used to predict. the data for the three sets of conditions used in the
experimental work reported in Chapter 5. Thus eight separate flow

cases Were calculated and these are summarized in Table V below.

CASE FLOW t mm | Ug m/sec N | NIT

I Flat-plate wall jet:

Wilson & Goldstein (1976) - 6.09 34.34 20 1
II Wall jet on a circular cylinder:

Wilson & Goldstein (1976) 6.15 36102 30 4

r/t = 16.5

III | Radial wall jet:

Baker (1267) A 2.00 117.84 30 1
v Round free jet:

Rodi (1975a) 6.45 100.13 20 1
\' Conicallwall jet:

Sharma (1981) 2.06 46.32 30 1
VI Case A of experimental results: .

r/t = 6.0 5.00 67 .01 30 4
VII Case B of experimental results:

r/t = 15.0 2,00 | 105.68 30 5

VIII Case C bf experimental results:
r/t = 19.9 2.51 229.15 30 10

Table V: Test Cases for Calculation Method
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Allvthe néses in the table refer to an air jet in air, although
the program does allow the physical properties of the primary fluid and
entrained fluiq to be changed. However, mixture properties are only
obtained by mass average. The values of mixing length constants used
are given in Table IV. The first pair of values are those used in all
cases which specify a wall at the I boundary. Case IV is the only one
in which the i boundary is an axis of symmetry. The values of slot
exit velocity given in the table are, in the case of the iterative
procedure, those calculated at the wall node for the:converged solution.
In all cases exCpet the last, ﬁ; is below M = 0.34. With the exception
of the node adjacent to the wall, the nodes were distributed according to
a power law of 1.5 so that the nodes were closer together at the maximum
of the mean velocity profile. This was necessary in order to reduce
errors in aﬁ/éy near the maximum. The node (i = 2) next to the wall
was kept at a fixed dimensionless distance from the wall to ensure that
it was always in the fully turbulent region. Where the number of itera-
tions (NIT) ié stated as one, the non-iterative procedure:was used.
Iterative procedures all used the wall-pressure convergence criterion of
§6.4.6 and a relaxation factor of 0.3 for the adjustment of upstream
static preséures. Step lengths were controlled so as to be no larger
than eithe? é-preset multiple of the slot width, or a fixed angle incre-

ment, whichever was the smaller.

8.1 CASES I ~ V

The experimental data of case I was used to fix the entrainment
constants using the two established values of mixing length constants
specified in Téble 1V. Subsequently, the values of these entrainment
constants were not changed. Predictions of growth/velocity decay rate,
wall shear stress, mean velocity and shear stress profiles are presented

in Figures 8.1 -~ 8.16.



- 171 -~

For case I, the predictions of wall shear stress, figure 8.2,
are slightly below, but on the same gradient as the wall shear stress
measurements of Bradshaw and Gee (1962). The mean vélocity profile
ﬁ/ﬁm shows a.fypically thin velocity maximum and V/ﬁm is quife badly
underestimated; most of the other mean velocity profiles in the other
cases show similar defects. The shear stress profiles show good agree-
ment except for 0.8 < £ < 1.4. This is due to the mis-placement of
Y4 (figure %.1) which controls the mixing length in this regioﬂ. This
fault can be traced to the relative scarcity of nodes in the outer parts
of the profileland the consequential inaccuracies of 3U/dy which was
used.as the criterion for positioning y4. Not surprisingly therefore,
the values oﬁ GV in this region show no degree of similarity as shown
by the experimental data. Naturally, the position of zero shear stress
coincides with the maximum in U; no diffusion of UV can be accounted
for with use of a mixing length model to give the expected reduction in

the value of £ at iv = 0 as the jet develops.

The same predictions for the case of a wall jet with streamline
curvature are given in figures 8.5 - 8.8. .The values of oy and o,
used in equation (7.35) for the correction to mixing length to account
for tﬁe effects of curvature are 3.26 and.3.09 respectivély. These
values were suggested by So (1976) whose values of v, = 1.942 and

Vv, = 3.865 in equation (7.36) were also used for predictions of uz/vz;

2

Subsequently, the values of these constants were not changed for any

of the other cases.

The prediction of jet growth rate agrees well with the experimental
data, but the velocity decay rate is under-predicted. This is peculiar

since one would assume that both ought to agree for conservation of
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angular momentum to be enforced. faulty interpolation for ym/z or ﬁh
appears not to be the reason. Predictions of wall shear. stress appear to
oscillate from step to step but show at least qualitetively, the trend of
the data of Alcaraz et al (1977). The mean velocity profiles do not
remain similar. ﬁ?ﬁh profiles show an over-sharp peak and therefore a
slightly thicker profile for £ > 1.0. V/ﬁ; is underestimated by as much
as 50%. The shear stress profiles show quite good agreement, exeept for
e = 90° whichﬂis over—-estimated for £ > 0.4 and underestimated otherwise.
Problems of over-~large shear stress in the outer parts of the profiles

apparent in the previous case are not so here, although the predictions

show no steady increase as indicated by the experimental data.

The limit of the general axisymmetric geometry (o = 90°) with a
flat wall produces a radial wall jet, figures 8.9 -~ 8.12.. The value of
a = 9.0 was used in equation (7.35) for the estimation of the effects of
streamline divergence on the shear stress uv. Despite the lack of experi-
mental data fpr cemparison, the shear stresses in figure 8.12 are
approximately twice those of figure 8.4 as expected. The wall shear
stress appears to be slightly overestimated at large values of x/t (small
values of (Re) 5 and underestimated at low values of x/t. Thée mean

‘max

velocity profiles show similar defects to those of the previous cases.

Values of the mixing length constants used in Case 1V, figures
8.13 - 8.14,_are shown in Table IV. The value of « is of course
irrelevant. It appears that a larger value of A should have been used
to optimise agreement with the experimental data - the shear stresses are
underestimated by nearly 50%. However, the mean veloeity profile is well

predicted and does not show the defects common to all the previous cases.
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Case V is a further test of the axisymmetric geometry where o = 54°.
The profiles of U/U, are similar to those for the preceeding wall-bounded
cases. There are no experimental data for comparison with the velocityb
decay rate and shear stress predictions, but the growth rate-predicfion
is satisfactory. The local maximum on the shear stress profile at
x/t = 42, £ = 0.45 is caused by a slight point of inflexion in the mean

velocity profile.

8.2 CASES VI - VIII

Figures 8.17, 8.22 and 8.24 show the jet growth/velocity decay rates
for the threé sets of'experimental data presented in.Chapter 5. All
three cases sth underestimation of the velocity decay rate. The jét
growth rates are predicted quite well, although at large x/t, where
velocity maxima are not always well defined and where velocity gradients
in the outer part of the jet are small, the experimental values of Ym/2
are subject tq iarge errors. Therefore no specific comments can be
made concerning the expected reduction in growth rate after the removal
of streamwise curvature and the prediction of it. However for smaller
values of x/t the agreement is least good for case VI. This is not sur-
prising since the ratio r/t = 6 whereas it is 15 for case VII. With a
larger slot width, the potential core of the jet extends further down-
strean, theréfore making the simple assumptions concerning the shear
stress modelling in the initial regions of the jet'( § 7.6) more critical.
In fact, the poéitioning of the mixing region edge y3,'is not determined
by the usual criterion of 3U/3y until © = 700 in case VI, whereas for
case VII tﬁis is done so by 6 = 309, This leads to an underestimation
of shear stress in the initial regions of the jet for case VI but not

for case VII as shown by comparison of figures 8.21 and 8.23.
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Figure 8.18 shows the wall shear stress predictions for case VI.
There are twq'distinct gradients for the wall jet with and without
gstreamline cdrvature, bélow and above the experimental laws respectively.
The value of (Re)max is least at © = 90°. No adjustmgnts were made to
thelvalues of the constants in the laﬁ of the wall either for the effects
of streamline curvature, or ;he changes in surface curvature. The increase
in wall shear stress up to © 90° and the subsequent decrease is reflected

in the profiles of figure 8.21.

The mean velocity profiles for case VI are shown in figures 8.19
and 8.20. Allowing for the profile at © = 50° which shows signs of not
being fully developed, none of the ﬁ/ﬁm profiles show'ﬁny distortion
caused by thé sudden change in surface curvature at © = 1009, apparent
in the experimeﬁtal data (figures 5.10 and 5.;1);_ The mean velocity
profiles at @ = 100° + 50 mm overestimate both /T and V/U,. This
is not 1ikeiy to be caused by the sudden change in surface curvature at
© = 100°. The profiles of V/Um collectively do not behave as expected

from the experimental data.

The shear stress predictions of figure 8.21 (c.f. figure 5.18)
show a steady increase up to © = 90° and a subsequent decrease, more
sudden after © = 100°. The non-monotonic response evident in the
experimental data is naturally not apparent in the predictions since
no programming was incorporated to model it. However, the maximum in
shear stress at 6 = 80° rather than @ = 90° or 100° can be interpreted
as the effeét'of pressure-on'the upstream flow. Thus the mean flow and
therefore the shear stresses can also anticipate the removal of curva-
ture at © = 100°. However, this is only because the shear stress is

directly related to dU/dy. The large values of GV in the last profile
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at © = 100° + 50 mm are due to errors in 0U/dy which are caused by the

lack of nodes in the outer profile and the large jet width.

Figure 5.25 shows predictions for the entrainment rates plotted
(a) for cases with streamline curvature and, (b) those cases without
streamline cﬁrvature. Direct comparison of individual cases is not
possible as each case has a different slot exit momentum. Cases I and
II however, dd have similar initial momenta and the effect of stream-
wise curvature is apparent. Also of interest is the comparison of
entrainment rates for the flare geometries (cases VI and VII) and that
of case IV, the round free jet. Even though the exit momentﬁm for the
latter is tﬁfee times those of the former, the enfrainment rates for the

flare cases are larger than that of case IV,

8.3 DISCUSSION OF CALCULATION METHOD

The foregoing results indicate certain shortcomings in the calculation
method which could be improved and are not directly related to the

turbulence modelling used.

8.3.1 Node Distribution

The distribution of nodes according to a power law of 1.5 on w
combined with the approximations used to calculate YN~ Yumr combine
to give rather a sparse grid for £ > 1.0. Consequently, the important
positioning of yz and Yy is not always sufficiently accurate, leading to
bad estimates of UV in this region. This could be remedied by increas-
1y the ramb.es % nodes and Ahesefo. Wereag — .
ing the running time. A reduction in the power law exponent would

displace nodes away from the velocity maximum outwards, thus causing

the same probleﬁ for yo and y3-
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8.3.2 Mean Velocity Profiles

With the exception of case IV, all the mean veloéity profiles
underestimate U/U; near the velocity maximum, thereby giving a peak
that is too sharp. Velocities for £ > 1.0 are consequentiy over-
estimated. Consistent with this, the velocity decay rate is under-
estimated in all cases save case IV. (In this case, the growth rate
is underestiﬁated and as indicated above, correctibn of this would
give a more accurate prediction of velocity decay rate than in any of
the other cases). This trend in thekprofiles of U/U, is naturally
linked to fhose of V]ﬁ&. Since 3U/3x is underestimated, negative
dV/3y is also; hence VYE& is consistently predicted lower than the
experimental data. This problem is not directly linked to the model-
ling of the shear stresses and therefore neither the mixing length
calculation as the shear stress profiles are well predicted particularly

in the region of the mean velocity maxima.

§€L1.3 fefers to a high lateral convection modification in the
calculation procedure, made necessary for reasons of stability under such
circumstancés, e.g. high entrainment. It depends on the relative sizes
of the component terms (viz: diffusion and convection) of the A; and By
constants in the finite difference approximation to the x-momentum
equation (6.285. For computational efficiency, the modification is
approximated, in which case Ai and B; are low estimates of their 'true’
values, and generally the diffusion part of these constants is neglected.
.For strongly sheared flows such as a jet, neglect of this diffusion
component causes a significant underestimation in-velocity decay rate
which wou1d btherwise be greater due to the increased y-component
momentum. Neglect of the diffusion component is particularly inaccurate
near the wall where aﬁyay is large and the node spacing small; case IV

which has no wall, therefore fares better. Spalding (1977 p. 73) also
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suggests another approximation for the high lateral convection modification
which does not neglect the diffusion component but overestimates the

'true' values of Ai and Bi presumably with effects opposite to those
described abqve. The 'true' values of A; and B; are exponential func-
tions of the diffusion and convection rates. The end result therefore

is a compromise between computation time and quality of prediction.
However, the inaccuracies caused by the neglect of y-direction diffusion

are bad enough for the 'true' values of A; and Bj to be used.

8.3.3 The Pressure Calculation and Stability

Both the stability and convergence of the calculation method
depend on fhe succeésful calculation of the static pressure. Figure
8.26 shows_predictions of wall static pressure. Agregmenf with the
experimental data, figure 5.3; is satisfactory except near the slot where
predictioﬂs are rather high. These predicfions of wall static pressure
are indicative of the rest of the pressure field. For case VIII, the
prediction oscillates from stép to step and at @ = 20° and 309, these
oscillations aré too large to fit onto the plot. This calculation
required ten iterations to converge and despite the use of upwind
differenceé in the streamwise direction (unconditionally stable), nearly
failed to converge within the required limits. The effects of pressure
are allowed to propagate upstream at the rate of one step per sweep as
in a fully elliptic procedure. Therefore it is not expected that
instability is caused by inconsistencies in the solution algorithm.
However, the y;-component momentum equation (6.10) used in the calculation
contains a normal stress term which under the conditions of these
test cases.is significant. But the normal stresses are only modelled
by proportiohality to the shear stresses, which do not always show a

consistent trend. Thus the potential instability observed in case VIII
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appears to be caused by the imprecise.nature of the modelling of the

normal stresses.

At the time of writing, the three major inadequacies of the
calculation method had not been corrected. However, with more work, it
can provide the basic numerical procedure required for advanced turbu-

lence modelling in strongly distorted shear layers.
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CHAPTER 9

DISCUSSION

9.1 COMMENTS ON THE ACCURACY OF THE EXPERIMENTAL DATA

The conflicting design requirements for the test rig for both high
and low pressure inevitably introduce an element of compromise into the
design. The wish to measure discharge coefficients for the slot‘meant
that the size of the rig was limited by the available air supply. There-
fore, the low speed‘work suffered from three-dimensional effects which
could have been reduced by use of a larger model. Construction of two

separate rigs was not feasible.

‘On top of the usual restriction of incompressibie flow, the
maximum velocity was further restricted by the available linearizers
whose range was.iimited to ensure that their response was sufficiently
linear. This is of course a severe restriction for a strongly sheared
flow. The use of a linearizer is in itself a potential souice of
inaccuracy at low velocities which predominate at the outer edges of
the jet, particularly if the low-speed design requirements of the air

'supply are compromised by the need for higher supply pressures. This

is illustrated in the linearization checks of figures 4.2. Without the
velocity range restriction required wifh the use of a linearizer, a
higher exit velocity could have been used, thereby removing the recircu-
lation region shown in the data of case A (fig. 5.3). However, further
surface preésure distributions (hot preéented in Chapter 5) for constant
Rep and varying r/t show that the recirculation region is neither a
function of slot Reynolds number only, nor of the ratio r/t only. Indeed
it seems likely that both the geometry of the slot lip and the slot

Reynolds number affect the recirculation region.



- 206 -

The analogue signal analysis described in Chapter 4 is inherently
inaccurate for two reasons. Firstly the third and fourth order correla-
tions are not negligible and their necessary neglect to obtain an analysis
of manageable pfoportions is dubious. This is discussed more fully below.
Secondly, even if the retention of only up to second order correlations
is reasonable, so many wire positions are required to give a solution
that cummulative errors in the data are apparent. This is the cause of

the scatter in the data of figures 5.15 - 5.18.

Convenfional signal averaging at the intermittent jet/ambient fluid
interfaqe does not have any relevance to the physicél situation. More-
over, the neglect of third order correlations in the analysis has already
been shown to be questionable, since it implies a normal distribution
of the probébilify density of.the velocit& fluctuations (see § 4.6.2).
With‘such high intensities, flow reversal, which cannot be distinguished
by the wire, is likely. This has the effect of 'folding' the probability
density distribution about the point of zero velocity, causing an even

larger departure from the assumption of zero skewness.

More specific comments on the reliability of the experimental data
concern the hot-wire analysis andhow it is affected by three-dimensionality.
At an early»stage in the work, binomial eXpansioné of the equations of
the effective coolingyelocities in the xz-plane were used to provide the
two extra solutién equations required. This solution often failed to
converge becaﬁse of the original assumptions of two-dimensionality used,
viz: W = Ow =.O. Without these, a factor of (k? -1) (OW + Gw)sin 20)
would be added to equation (B.5). However, convergénce was obtained by
expanding equafions for wires in the xy-plane for which, without the

. 2
assumptions of two-~dimensionality, a term of k2W2 would be added to
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equation (B.7). Noting that k_ ¥ 0.0 and kg = 1.0, this would imply

1
that whilst fhree-dimensionality of the mean flow had been effectively
removed, the shear stress tw in the principal traverses carried out at

the flare centre-line was,significéntly non-zero.- A logical extension

of these arguments leads to the supposition that quasi-steady (i.e. "steady"
as defined by Bradshaw (1973 p. 40) - see § 2.6.1) longitudihal vortices
are present, generated by non-uniformity of the slot or of the flow in

the plenum chaﬁber, augnentéted by the unstable curvature and constrained
sufficiently by the base-plate to give a periodic variation of ﬁinn

the circumferential direction. Ho&ever, the wavelehgth of such a vortex
system would be réther ill-defined since it would have to be an integer
multiple of the layer thickness which varies rapidl& with streamwise

extent. Therefore it would seem likely that the longitudinal vortices

are not steady enough to contribute to the mean motion, and therefore not

detectable by any spanwise variations in wall pressure (figure 5.3).

9.2 STREAMWISE CURVATURE AND DIVERGENCE - EFFECTS

Discussion of these effects is somewhat restricted by the avéilable
experimental data, limited to mean flow and Reynolds stress measuremenfs
outside the log~law region o£ the wall layer. The data, so far, has
therefore been discussed by reference to the production terms of the
Reynolds stres; transport equationé. Further inferences concerning the
flow structdre ére possible and comparison with data of a wall jet on a
circular cylinder are particularly useful. jHowever, any conclusions
attributing observed effects to either of the extra rates of strain
present, or'fo the changes in extra rates of strain caﬁ be ‘tentativei
only- sinte-their effects are certainly not additive. Furthermore, when
the wall jet ctructure is regarded as the limit of the interaction between

a mixing layer and boundary layer of similar thickness, the picture
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becomes even more complicated. Comparison of the energy balances for a
flat~plate wall jet and that of a cylindrically-curved wall jet (viz; Irwin
(1973) and Alcaraz et al (1977)) show that the production term is more

or less the same. But the dissipation is reduced for the curved case in
mid-layer and the difference offset by an increase in turbulent diffusion.
Thus transport and dissipation rates are also required to fully explain

the present data.

Up to 759, the normal and shear stresses are generally greater than
those of a wall jet on a circular cylinder, c.f. Wilson and Goldstein
(1976). This can be attributed to the effect of divergence on top of that
of streamline curvature, and the higher order structural parameters are
almost certainly affected too. A likely effect of divergence'(Smits et

C {rc,\uv\ (U‘Q{\t\:&.L
al (1979b)) is to increase the fluctuating madial component of vorticity.
Q&bww@mdﬂuk

The fluctuating rate of strain in the radiad direction would therefore

increase also, causing an increase in all three turbulence intensities

“without preference. The shear stress data of Smits et al revealed an

outward going peak in the profiles as the downstream distance increased.

However, the profiles of figure 5.18 are rather flat and no firm conclu-

‘sions can be drawn. In fact, the large values of iV are maintained right

out to £ = 1.5 and one may speculate as to whether this is a real effect
or merely inaccuracies associated with the data analysis. Evidence

for the interéction of an 'outer' and 'inner' layer is given by the

‘position of zero shear stress which moves in towards the wall with

increasing distance downstream. This also emphasises the unrealistic

use of eddy viscosity models in complex flows of this nature.

The best comparison of the present data with other experimental
data comes via the structural parameters in figures 5.19 - 5.21., Guitton

(1970) and Wilson and Goldstein reported more or less constant values of
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Ry = 0.55 with streamwise distance, decreasing near the wall. Alcaraz
et al reported values of 0.45. In the present case, values of Rﬁv before
the change in surface curvature are all about 0.45 also. Similarly ay

in the present case is constant for much of the jetvwidth at 0.13 in
agreement with the data of Wilson and Goldstein. Therefore, since
divergence affects these parameters very little, it does not preferentially
change any one component of the stress tensor. This is true of the data
for £ >1.0 also, even though the individual stress components are all
increased in this region significantly more than the data in the region

£ < 1.0. The reason appears to be a valid.effect of divergence which
increases thg velocity decay rate but not the jet growth rate. The maxi-
mum on the ﬁ—pfofile is therefore wider in relation to the jet width

producing a large region of small 3U/3y and a relatively small regidh of

large aﬁ/sy in the outer region of the jet. Thus production of the shear

stress and the u? intensity is large here whilst it is smaller further in.

This reasoning also explains the high values of -\;E/;E at © = 4509 and 60°
produced not so much by the preferential effect of streamline curvafure

on ;ﬁ, but by.the divergence effect of reducing the production of ;2.

This effect is most noticeable at © = 45° and 60° since the jet has

become wide enough for the reduced aﬁyay to become apparent before increases
in turbulenttransport (third order products). ;2/;2 péaks at 4.5 and

3.5 in the 45° and 60° positions in comparison to Guitton (1970) who

recorded values of 0.37 and 0.7 at y = ym/2 for the uncurved and curved

cases respectively.

In the fegion where dr/dx = » at 6 = 100°, not only the individual
stress components recover non-monotonically but also all of the structural
parameters. This is in contrast to the data of.Castro and Bradshaw (1976)
and Smits et al (1979a) where a; returned monotonically to its equilib-

rium value. The recoveryis slow in terms of the jet growth rate. Inspection
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of figures 5.4, 5.10, 5.11 and 5.14 show that not only the turbulence
structure, but the mean flow also is distorted by the sudden change in
surface curvature. The mean velocity and static ﬁressure profiles
oscillate quite significantly in this region; this is best portrayed by
the profiles.éf V/U,. Thus the mean rates of strain 3TU/dy and 3V/dx
must oscillate also, directly affecting both the production and redis-
tribution terms of the Reynolds stress transport equations. The fact
that the streamwise variation of structural parameters is oscillatory
also, and that they anticipate the removal of streamline curvature
indicates very strong history effects on the shear layer, which die out

very slowly relative to the shear layer growth rate.

"The above comments have been made without any significant allowance
for the effects of longitudinal vorticity om the flow in this case. The
data are. therefore subject to being interpreted in a qualitative rather

than a quantitative fashion.

9.3 ASSESSMENT OF THE TURBULENCE MODELLING PROCEDURE

The mbdeliing of the shear stress can be regarded as satisfactory,
especially when bearing in mind the crudity of the initial assumptions
and the comﬁlexity of the flow. The constants for the‘streamline curva-
ture and divergence corrections have been tuned individually and the
simple addition of their effects on the shear stress has proven to be
an adequate firét order approximation, although inaccuracies are masked
by fhe simplicity of the model. Two factors have permitted a better
agreement between prediction and experiment than might have been thought
possible. Firsfly, since a universal model was not required, the con-
staﬁts could be tuned to optimise agreement. Secondly, in cases where

§/r is large and pressure gradient effects are perhaps only an order of
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magnitude less than extra rate of strain effects on the turbulence, the

crudity of the closure assumptions is less critical.

The direct proportionality of_;2 to U¥ used to model v2 in the
predictions of chapter eight, is clearly unsatisfactory. No correction

has been applied for the preferential effect of the streamline curvature

on the 2

intensity. This has repercussions on the stability of the
calculation method as described in § 8.3.3. This inadequacy can not

be improved upon without the introduction of more empiricism or the use

of a higher grade model.

Thé values of the constants used in the correction for streamline
curvature are those as suggested by So (1976) although with the simplicity
of the assumptions it seems likely that a more suitable pair of constants
could be found or another pair giving equally accurate predictions. The
constant used for fhe divergence correction was the value suggested by
Smits et al (1979b) and surprisingly, the simple addition of the two

corrections to the mixing length gives adequate predictions.

9.4 SUGGESTIONS FOR FURTHER WORK

The unanswered questions concerning the analysis and interpretation
of the experimental data give ﬁlenty of impetus to further low-speed
experimental work. A much larger flare model wouid be required to
reduce three-dimensional effects caused by any irregularities in the
upstream turbulenéz;&ntensities and the means of signal analysis is
obviously important - the preseht one is of limited scope. A digital
data acquisition system would give the requifed versatility and also

circumvent the necessity of approximating series expansions in analogue

signal analyses.

§

¥
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Recommendations for the improvement of the modelling procedure can
be made, altkough the validity of doing this in a flow that is‘likeiy to
be subject to longitudinal vorticity is questionable. At the very least, -
a stress trahsport equation model isrequired. Some success has been
obtained in the prediction of highly curved shear layers and wall jets
(viz: Gibson and Rodi (1981), and Ljuboja and Rodi (1980)) using an
algebraic stress model. Since these models will still predict coincidence
of the point of zero shear stress and the mean velocity maximum, their
use for particularly wall jets with streamline curvature may not be too
Successfula_ Tufbulent transport of both shear stress and energy are
particularly important in shear layers with destabilising curvature
and is not likely to be simply related to second order products, nor
the produc%ion and dissipation of turbulent energy. Thus a full Reynolds
stress closure is required perhaps even using transport equations for

triple products as suggested by Smits et al (1979a).

The iﬁcbrporation of differential eqﬁations for the simulation of
history effects on the extra rates of strain is probably not justifiable
with the present model. However, such corrections could ﬁe included in
the length scale calculation in a full Reynolds stress closure, and is
likely to be necessary with such a model where the extra strain rates are .

large.

9.5 CONCLUSIONS

The wall jet with extra ratés of strain induced by streamwise and
axisymmetric'curvature is a strongly perturbed shear layer in which the
turbulence intensitieé are all very high and growth/velocity decay rates

exceed those of a flat-plate wall jet.
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The major effect of streamwise surface curvature is the preferential
increase of the;2 intensity. The additional effect of divergence increases

the three intensities without preference although for £ < 1.0, the param-

eter ;E/u2

is very large at © = 45° and 60°, due to small values of u2
as well asjlarge values of-;é. The former are caused by a relatiQely |

larger region of small 3U/dy and hence relatively small production of ;é.
The other structural parameters a; and Ryy are unchanged over the region
of constant'streamwise curvature and their values do not show any prefer-

ential effect of divergence.

The whole layer shudders in the region of © = 100°, caused by the
sudden change in streamwise r#dius of cugvature. Not only the individual
components of the Reynolds stress tensof, but also the strhctural param-
eters ggg_thé mean flow oscillate after the removal of curvature; the

oscillations are those of a damped second order system.

Discreépancies in the hot-wire data are caused by longitudinal
vortices. Three-dimensional effects of the mean flow appear to have
been removed indicating the longitudinal vortex system was sufficiehtly

f'unsteady to contribute only to;thé Reynolds stresses.

The meaﬁ flow characteristics and predominant shear stress gradient
have been adéqﬁately modelled using a partial-parabolic calculation method
with a simple ﬁixing length turbulence closure. ‘The latter has been
modified empirically to account for the effects of streamline curvature
and divergence. To a first order, the straight-forward addition of these
effects is satisfactory. Within the limits of the assumptions of this
turbulence model, empirical corrections for any non-linear interactioﬁ

between the two extra rates of strainor forthe lag of length scale
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variation with change in extra rate of strain are probably not justifiable.
However, for a higher order turbulence closure, these modifications would
be necessary. Since turbulent transport is greatly affected by both
streamwise curvature and divergence, a full Reynolds stress closure at

the very least is required. Even then, no account would have been made

for spanwise periodicity induced by longitudinal vortices.

Both the experimental data and the predictions‘of the calculation
method are, strictly speaking, only relevant to the idealised case of
a Coanda flare stated in Chapter One. The experimental data, however,
form the preliﬁinary part of an investigation of a strongly distorted
éhear layer and provide useful data for turbulence modelling. The
idealisation of the flow was necessary to make measurements possible and
interpretable. Computer predictionsvare available for subsonic flow
without combustion although additional.programming could be incorporated
to permit compressible flow effects at the slot. The program can be used
for design purposes in the flame-free region of flow, mainly in order to
optimise the design of Coanda flares for a maximum entrainment rate

using the simplest possible geometry.
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APPENDIX A

THREE~-HOLE PROBE CALIBRATION AND CORRECTIONS

The following assumptions were made in the calibration of the

three-hole probes shown in Figure 3.4a:

(a) Py measures the total pressure for the range of mean-flow
angles encountered in the flare flow,
(b) (P1 + P3)/2 is a function of mean velocity only.

(¢) (Py — P3) is a function of mean velocity and pitch angle ©

(a) was checked and a negligible deviation from total pressure was

observed for © < + 70. Therefore the calibration used was:

(1) B, - (Pp +Pg)/2 = 2 (§p 02 . 0) e LALD)
Py - (Py + P3)/2 C e (A.2)

With the use of assumption (a) above, the static pressure in the jet

could be obtained. The velocity calibration was performed at © 0°;

60 m/s.

the pitch calibration, for the smaller probe, was done at Upeas
These calibrations are shown in Figure 3.5. Temperature variation between

calibration and measurement was assumed negligable.

A.1 Correction for Mach Number Effects

The effect of compressibility on the pitot tube used to calibrate
the three-hole probes can be allowed for by the formula (Massey (1975

p.353) ):

= %pﬁzmeas
(1 + M2/4 + M4/40 . . ) . . (A.3)
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assuming v = 1,4 and M < 1, This correction was particularly important
for the larger probe whose calibration went up to M = 0,62, This probe

was used in the large scale tests described in '§ 3.2,

A.,2 Correction for Transverse Velocity Gradient

Young and Maas (1937) obtained the empirical relationship:

8y. _ 0.131 + 0,082 d

d D | .. o(AD)
for the displacement §y, of the effective centre of a total pressure
tube in a traqsverse velocity gradient. d and D are the inner and outer
diameters of the tube which had a square—cut nose, -However, the validity
of equation (A.4) was only tested for a range of positive dynamic head
gradients. Kinghorn (1970) investigated several transverse velocity
gradient correctibn formulaé but none were suitable to the present
geometry. Thé use of equation (A.4) was considered but it was felt that
it would hot give an improvement in_accuracy. 8y was estimated at 0,045 mm

for the smaller probe, but this correction was not applied,

A.3 Correqtion for Turbulence

Velocity data from the above calibration were corrected on analysis

by the following formula:

- 3,32
total = F ve + wo)

P static * 2P @+ P+
.« (A.5)

in order to allow for the effecté of averaging by the three-hole probe,

The values of ;é, ;E and:v2 were available from the hot-wire data,

This formula was originally proposed by Goldstein (1936) and examined by

Kinghorn (1970) and Bradshaw and Goodman (1968),
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-APPENDIX B

HOT-WIRE ANALYSIS - FOUR PROBE ORIENTATIONS

The effective cooling velocity for each wire position (Figure 4.3)

can be described by:-

B.l Single Wire Probe 55P14

2
Ueff(o)xz

e 2 -
(U + u)2 + ko (V + v)2 + k? wz . e

on averaging:-

2 =2 D 2 .= -3
Vg (0, = (U + u?) + ko (7 4 ;2) + k% w?

¢ o

B.2 Cross Wire Probe 55P54

. — 2 —
v2_ (0),, = ( (T + u) cos ¢ - w sin )% + K1( (T +

‘ 2 2 2 2 o
vl = Uy + k2 U + k1 UZ .

.(B.1)

.(B.2)

.(B.3)

. 2
u)sin ¢ + w cos )

efi
2 2 '
+A kz (V + V) . . .(B.4)
on expanding and averaging:-
3 ‘ 2 -3 ° 2 .2 . .2 52,3
= 74 +
Ueff (a)xz ( (U + u®)(cos® o+ k3l sin® ¢) + k; ( v4)
| 2
+f;2 (sin2 o + ki cos? o) e » +(B.5)
where o = + 45°
B.3 Cross Wire Probe 55P53
— 2 2
2 - . 2
= + os o+t (V + v) sin ) + ko W
Usgs (@)xy ((U+u)c (V + 2
+ ki ( (T + u) sin ¢ - (V + v) cos a)z . . +(B.8)
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on exparnding and averaging:-

2 (o) = (02 + u2) (cos? o + k? sin? o) + (Vz + vz)(k% coszawsinza)
eff Xy
272 —_— . 2 -
+ ko W+ (UV + W) sin 2 o (1 - k) . . (B.7)

for o = + 45°.



APPENDIX

C

FULL SOLUTION OF SIX HOT-WIRE RESPONSE EQUATIONS

Rearrangement of equations (B.3), (B.5), and (B.7) in matrix form gives:

M

2
o
Ueff ( )xz

-2
Ueff (a)xy

2 (o)

eff Xy

|

-

- cos” o + ky sin” «

2

1l k2

cos2 o + k% sin2 o kg
2 2 2 2 2 2

kjl cos o + sin” o

2

2 2 .2 2 2
cos o + ky sin ky cos® g + sin” gy

2 :
Ky 0
sin2 o + ki cosz o 0
'kg (1—k§) sin 2 «
K2 (1-k2) sin 2 o
(C.i)

Where values of L ko and o are

dependent on the wire.

- vgz -
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For ﬁ;ff(q)xy, expansion of equation (B.6) yields after

averaging: -
- = 9 2 .2 % < @2 B g2 2
Ueff(o,)Xy = U(cos“a + ki s8in g) 1+ 6y X + 8y Xf + z_ + Y_ E_
T 2 © ?
T o= 2 o2 2 w2 2
FOh Y Wl LTV ST W
T o2 7 7 7 72 72
3 o T3 2
O TV %Y W %Y W
G 7 T o 7 02 .. .(c.2)
where 8y = u/2
2
8, = v/2 - /8
2
8y = -V + 3,
e4= k%
2 2 2
2(cos” ¢ + ki sin” y)
2
% =V (2 v+ owm )
4 8
96= k% (—l\)+§__p,2)
2 2 .2 4 16
cos o + k1l sin g
: . 2 3
67="§\)Sln20(.(1-k1)+_3__p;
4 16
1 2
(2] ="__k2p,
8 4
6 =sin(za(1-k%)).(3v-3u2)
9 — —_—
2 8
- 2 2 o o
and o= sin 2 o (1 - Kp) v = kj cos® o+ sin® g
2
cos2 a+k% sin2 o cosz o + ki siﬁ? o

Substitution for 9 + ;2, 72 + ;E, UV + GV and w2 in equation (C.2)

vields two equations for o = + 45° of form:

- =2 - =2-2 ~3= - - =
ay U0+ ag T + ag0¥ + ag0°7" + a0V + ag U + 2,02 + agl-

. . .(C|3)
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APPENDIX D

SIMPLIFIED HOT-WIRE ANALYSIS FOR NEAR-WALL REGION

Equations (B.3) and (B.5) are used together with binomial
expansions of equations (B.2) and (B.4) up to second order terms and

assuming V = O,

~Hence:-
szf(o_)xz =02 + u? + kg v o+ k% we . . J(D.1)
5 — -3 2 —5 — 2
Uiff(a)xz = (T2 + uz)(cosza + k? siny) + k, v + w2(sinZy + k? cos @)
L . '(D.z)
ey - T 2 22
Uoge (O =T (1 + 1 ¥+ 12 w2)
27 27T .. (D.3)
— — 9 2 : 2 -3
Ugpp(@dxz = U (1 + k] tan® @) cos ¢ + Ky v
2 2 cosa U

2 ; —
+ ky (1 + 2 tan2 o + tan4 o) cos o, wl

— ——

v - L) L] D.4
2 v 0.
By successive substitution these equations reduce to a‘quadratic:

a ﬁz + b‘ﬁ + C = 0 o o O(Dos)
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APPENDIX E

EQUATIONS OF MOTION

Rather tﬁan deriving the full Navier- Stokes equations for incom-
pressible flow with streamline and axisymmetric curvature from first
principles, the following approach is adopted. Goldstein (1965) gives
the x- and y—cqmponent Navier-Stokes equations for flow with streamline

curvature as:-

3U + 1UQQU + VU + UV =~1 3p +
ot h oy rh ph 3x
2 2 i '
VI 1l 37U + 33U =-ya3(l/r) dU + 1 U - U +
- 5 — - _
h2 axz : oy h3 X ox rh Jy rzhz
1 3(/)V+ 2 v
nd  ax v rh? 3x o . . «(E.1)

3V + UV + Vav - U= -1 3 +

dt h 3% dy rh p oy
.2. N | ) ]
vl 3V + 3V -~ y 3(lr) v + 1 Vv \'
h2 axz ayz h3 X ox rh QJy r2h?
1 y(/r) U - 2 oU
n o oax % 3x o o «(E.2)

Similarly the continuity equation is written as:-

1 30U + oV + V = O

h ax dy rh ' e o o (E.3)
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E.1 Simplification of the Viscous Terms

For a turbulent jet flow, the ratio of turbulent to laminar shear
stress is likely to be of order 10_5. Therefore the viscous terms can
be greatly simplified without compromising accuracy except in the viscous
sub—layer where the laminar shear stress predominates. Applying the
order of magnitude assumptions of § 6.2.3 and retaining terms 0(U/g)

only, the viscous term of equation (E.1l) reduces to:-

2
v 9

(o]

|

N

dY

and the viscous term of equation (E.2) can be neglected.

E.2 Development of Equations in Axisymmetric Form

Following Bradshaw (1973), the axisymmetric equivalent of
equations (E.1l), (E.2) and (E.3) can ve obtained by placing them in
their‘divergence form and multiplying all velocity products and préssure
gradients by the axisymmetric radius of curvature R to the point. Thus
addition of equation (E.3) x U to (E.l) yields the divergence form of

the latter, viz:-

3(U2) + 3(UVh) + UV = -13p + vy azU
.2

FoRs oy r p oX oy .« . (E.4)
and the axisymmétric equivalent becomes:-

3(UZR) + 3(UVRh) + UVR =_R 3p + R v 3“U

3% . Jy r p X oy
L] . '(E.s)

The corresponding equation of continuity is:-

3(UR) + J(VRh) = O

o oy . . (E.6)
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putting U = U + u
V = V+v
and p = P+ p'

in equation (E.5) yields, after averaging, subtracting U x equation

(E.6) and rearranging:-

T 30 + hVau + TV = -13p-

X dy r p ox
1 [ 3u2R) + 3 (hER) + TR\ + v 3 (R h 56)
R ox dy r R 2y oy

. . W(ET

Note that the viscous term has been rearranged slightly to include

h cos oy U
R Y
and turbulent shear stress terms are of the same form,

. 1
the higher order terms (; + . This ensures that the laminar

In the same way, an equation of instantaneous momentum in the y
direction can be derived:
S(UVR) + a(hv?R) - U®R = - hR 3p
% : dY r p Y . . .(E.8)

and the equation for mean momentum:

TGOV + WVavV - U = h 3p -
% oy r p oY
1 /3 (GWR) + 3 (v2Rh) - &R

R \ 3% dy r .« o (B9

The equation of continuity for the mean flow is:-

d3(UR) + 3(VRh) . O

dx dy . . .(E.10)
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Equations (E.5), (E.7), (E.8) and (E.9) are all exact except for

the viscous terms which are approximate,
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APPENDIX F

REYNOLDS STRESS TRANSPORT EQUATIONS

——

The trahspprt equations for the four Reynolds stresses uv, u2, ;E,
;é and the equation of turbulent kinetic energy are derived for two-
dimensional axisymmetric flow with streamline curvature. The starting
point is the instantaneous equation of momentum, viz:

x-component

Ul + hV U + UV = -13p

X dy r p OX .. W (FD
y—component

UV + hvay - U2 =-h3dp

ox dy r p oY . . W (F2)
z-component

Uaw + hVyw = -hypyp

X oy p 3% . . (F.3)

The transport equation for the stress Uin is obtained by
addition of the products of the i-component equation and Uj, and the
j-component equation and Ui’ After substitution of Ui = ﬁi + uj and

'averaging the following equations are obtained:

D(} w2) = -;-éaﬁ—hu—x/aﬁ4(u2\_l+1’1—ﬁ)
Dt 3% 3y r PRODUCTION
+ p' au
o % REDISTRIBUTION



- 242 -~

- 13(u) -3uWv - 1 [3(3R) + h 3(u2wR)

0 3% ' 2 r 2R X dy TRANSPORT

“le

3 i DESTRUCTION
. L] .(F.4)
D(3v?) = - T 3V - h v° 3V + 20 Gv
Dt 3% dy r PRODUCTION
+ h p' v
0 3y REDISTRIBUTION
_— —_— 3 — —
-h 3(p'v) +udv-v -1 3(uv?R) + h a(VSR)
p DY r 2r 2R X oy
TRANSPORT
- 1 6
3 : DESTRUCTION
.« o(F.5)
D(4w?) = hDow
Dt 0 oz REDISTRIBUTION
- w2 - 1 [3(uw?R) + h 3(WR)
2r 2R \| 3% dy TRANSPORT
-1 e
3 DESTRUCTION
L] * .(F.G)

Addition of the three noymal stress transport equations yields the

transport equation for turbulent kinetic energy.
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D(3q%) = -uz(aﬁ+7)-h73V -W(haﬁ+8"7-ﬁ>
Dt ox r oy dy dx r
PRODUCTION ’ e
=1 3 {p'u) -1 3 (az—dR)
p X 2R »x
‘ TRANSPORT
-h 3 ('V) - 1 3 (ha? vR)
2R
Py oy . JFT)
-€ ’ DESTRUCTION
The equation for the shear stress is:
D(-uv) = uz('a?\-/’—ﬁ)+ hvzaﬁ-ﬁ(;E-—w;i)—h'ﬁv_('ﬁsina+'\7cosa)
Dt ox r Ay r A R
PRODUCTION
- p' 3v + h du
p \ 3x dy REDISTRIBUTION
3

+ 3 (ST;) + 10 (;EQR) + hy (STE) + hy (uv'R)

0xX p R 3x dY R Oy

+ 2(:‘/—2 - ud)
T ’ TRANSPORf
.o AF.D)

These equations are very nearly exact for two-dimensional flows
where there is no mean transport in the z-direction, The only assump-
tion made is that the Reynolds number is high enough for the small
scale motioné fo be isotropic and transport by viscosity to be negligibly
small, This is true for all regions of flow except in the viscous sub-
layer where viscous transport wouid be significant. With these assump-
tions howevei, the turbulent energy dissipation rate € is equally

distributed in the three component directions and there are no viscous
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D(-uv)
Dt

(F.2) and (F.3) are not required for development of the stress

equation. Hence viscous terms in equations (F.l),

terms in the

transport equations.
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APPENDIX G

COANDA TFLARE

PROGRAM-USERS GUIDE

by
J. F. MORRISON

SUMMARY

This is a brief description of the use of a FORTRAN program written for |

the prediction of jet flow around the Coanda Flare. This guide refers to the
program version of 26th June, 1981.
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INTRODUCTION

The program comprises a main routine and nine subroutines not all of
which are called by the main routine. It can predict the mean flow
parameters‘(two components of velocity and static pressure) and shear stress .
in a two-dimensional isothermaT jet. The geometry is variable, but orien-
tated towards that of the Coanda flare. It is nominally axisymmetr?c
therefore, but'in the limit handles plane flow geometry also. The term
'plane’ refers here to a non-axisymmetric geometry. The exterior (E)
boundary is free whilst the interior (I) boundary is a wall or also free
and therefore an axis of symmetry. The program is iterative in nature,
a necessary feature in order to handle flows with a sjgnificant -cross-
stream pressure gradient. For flows with negligible streamwise curvature,
however, only a single sweep of the flow field is required. For further
details and in particular the sequence of the main algorithm see chapter
six of reference (1). The finite difference procedure used is that of

reference (2).

SUBROUTINE DESCRIPTION

BDATA
Block data entry. Non-variable data entry including physical
properties of jet and ambient fluid, entrainment rate constants, free
stream pressure gradient control constants,and streamline curvature/
divergence constants.
MAIN
Main routine. Contains all READ statements and all programming
pertinent tb the parabolic calculation method. It calculates:
initial velocity profile
entrainment rate

step length (first iteration only)



- 247 -

and sets up arrays for solution of the x-component momentum equation.
It also coqtrd]s the step 1ength according to the geometry requriements.
START

Two entries:
ENTRY INIT - initialises variables at beginning of program run
ENTRY RESET - initialises main flow variable for each iteration and
calculates a consistent set 'of initial conditions; assigns boundary
conditions according to flow type and tests for supersonic flow at
slot exit in which case calculation method is invalid and procedure
sfops.
MIXLEN

Two entries:
MODELT - calculates effective viscosity and shear stress, according to
mixing length hypothesis and use of'mixing regions'.
MODEL2 - facility for use of different turbulence model. This is not

used at present.

MODIFY
Multiple entry:
- ENTRY CURVSL(CURV) - adjusts mixing Tengths for streamline curvature.
Called from MODELT.
ENTRY CURVDV - adjusts mixing lengths for streamline divergence/convergence.
Called from MODEL1.
CURVSL and CURVDV can be used simultaneously for geometries containing
both stkeamwise and axisymmetric surface curvature.
ENTRY KIND4(DX,XDCHNG,ICALL) - changes main control switches for a
geometry change from a curved to a flat wall. Called from MAIN three times

for each iteration.
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WALL (I1,0UT1,0UT2)

Calculates wall shear stress (0UT2) and wall function (OUT1)
accourding to modified law of the wall.

SOLVE (N, ISW,PHI)

Solves a system of N-2 Tinear simultaneous equations of a general
variable PHI by use of the tri-diagonal matrix algorithm. See ref.é.
It is used for a so]utfon to the two components of mean velocity.
GRID

Three entries:
ENTRY OMCALC calculates (first iteration only) functions of w, the
non-dimensional stream function used as the cross-stream independent
variable.
ENTRY YCALC calculates the y-coordinate of the grid and equivalent
values of R and h,
ENTRY INTERP fnterpo]ates for Uﬁand Y2 using Newton's quadratic
divided difference interpolating polynomial.
CMPUTE

Three entries; contains all extra computation relevant to the
partially- parabolic procedure. See Chapter 6, reference 1.
ENTRY VCOMPT - calculates static pressure variation across layer. It
then calculates the component of velocity perpendicular to the I- boundary

sacond—owis Runge kuttol

using a ene=step—fulter approximation and the appropriate boundary cond1t1onsn
Finally, it updates the static pressure at the previous calculation station
using a fraction of the difference between the pressure just ca1cu1ated
at the preseﬁt.station and the equivalent pressure from the previous
iteration.
ENTRY UCOMPT.- calculates extra terms in x-component mean momentum
equation madé‘non-negligéble by large streamwise curvature.
ENTRY TEST - tests for convergence. The criterion is that the percentage

change in wall pressure for all calculation stations from one iteration
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to the next should change by no more than 0.2%. Maximum number of
iterations equa1$ ten.
OUTPUT

Two entries which contain gll_NRITE statements for ISW = ff. OUTE
called from main for writing out of geometry and initial flow conditions.
OUT called frdm‘MAIN when convergence criterion is safisfied, or if

number of iterations exceeds ten.

POSSIBLE GEOMETRIES

Plane Cases: wall jet (KIND = 1) procedure parabolic or partially-
parabolic depending on degree of streamwise wall curvature. Figure 1
free jet (KIND = ¢) parabolic procedure Figure 2.

 Axisymmetric Cases: Cylindrical/radial wall jet (KIND = 3) parabolic

procedure. Figure 3 Coanda flare jet (KIND = 4) parabolic procedure or
partially-parabolic procedure depending on degree of streamline curvature.

Figure 4 free jet (KIND = 2) parabolic procedure Figure 5.

INPUT _DATA

Three input devices are used and numbered 5, 7 and 8. Data attached
to unit 5 is used for all runs. Data attached to units 7 and 8 are
adjusted for}the requirements of each geometry, unit 7 being used for
plane cases and 8 for axisymmetric cases. Integer variables are in

FORMAT (I10) whilst real variables are in FORMAT (F1¢.5).

Unit 5 Data

Variables Function

KMODEL = 1, MODEL1. called. =2, MODEL2 called.

KPARAB = 1, parabolic. = 2, partial-parabolic (iterative) procedure
KRAD = 1, plane geometry, = 2, axisymmetric geometry.

KIN =1 , wall at I boundary, = 3, axis of symmetry at I boundary



LASTEP
N
XDLAST
DCOEFF
PATMOS
TATMOS
PSUP
TSUP
AK
ALMG
ISW
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max. no. of steps.
no. of cross-stream nodes
‘max. distance downstream for solution.
Coefficient of discharge
Atmospheric pressure
o temp.
Supply pressure
" temp.
Mixing length constant K : Lo Ky
s gy =y - )
= 1, additional output to that of OUTPUT
= f, no additional output. '

Data for units 7 and 8 (See figures for definition of variables)

KIN=1

SLOT

7(KRAD=1) ~ 8(KRAD=2)
KIN=3 _ KﬁN=1 KIN=3
SLOT ’/’/”EEL W
K]L0w=1 KFLOW=2
RRIN SLOT
RRCC
RRS RRS
ALPHAg SL0T
SLOT
: ALPHAT

OUTPUT _DATA Units 6 and 11

Unit 6
ISW = g: Labelled output data Tayed out for each step of last

iteration. See 1ist of main flow variables for meanings. Note that

. pressure data refers to previous step owing to nature of program.
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ISW = T: not advisable unless substantial debugging required!
Additional output labelled only by subroutine. One has to be careful to
distinguish which data refers to which step or iteration. Also some of
the data is repeated, but this additional output can be useful as it
follows sequence of control in program whereas output generated by
OUTPUT does not.
unit 11

Useful output for monitoring progress of calculation when iterative.
Prints number of iteration, wall pressures of present and previous
iteration and their difference. Recommended assignment to'brinter in

batch use and V.D.U. in terminal use.

GENERAL NOTES AND HINTS

(a) Regrettably some of the program contains non-standard FORTRAN
statements which will have to be changed for use on machines other than
the NUMAC cdmputer. These are largely statements involving declaration
of double-precision variables or double-precision library functions.

(b) For use with the NUMAC computer, all input units must be assigned

in the RUN command even if they are not actually used.

(c) For cases involving significant streamwise curvature, it is advisable,
if not necessary, to use 30 (maximum)number of cross-stream modes. This
makes calculation of cross-stream mean-velocity gradients more accurate
and eliminates a potential source of instability.

(d) Typical run time is about 1 sec c.p.u. time per iteration for a 14-
step 30-node calculation. Naturally, the input/output commands take the
Tongest to execute and therefore use of ISW = 1 will greatly Tengthen the
execution time required.

(e) Maximum.size of arrays permitted is 30 for cross~stream variable.
.Press (30,50) is the only two-dimensional array where the maximum number

of calculation stations is 50, i.e. 49 steps.



1.
2.
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(fF) A major source of potential instability is the crude re]ationsﬁip

Tinking the shear stress to the mean velocity gradient aU/ay. Therefore

 if the procedure fails to converge, adjustfng the constants affecting

the curvature and divergence corrections may be tried. Nearly all the
problems that will be encountered will have a root source in MIXLEN

and the calculation of the mixing 1engths and shear stresses.

(g) Some predictions of static pressure are unsatisfactory. This"is
because of the normal stress term in the y-component momentum equation
which is 1inkéd'to the shear stress merely by a constant of proportionaiity.

See Ref. (1) for further details.
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Listing and *FTNTIDY Tisting of source program. Latter is very useful

for locating main flow variables.

List of Main Flow Vériables

CON (30) - ml, ALPHA o curvature
DIFU (30) _Tw BETA 8 } correction
DuDY (30) aU/ay BPE Vg ‘
EL (30) to BPI v
EMU(30) Heff CUVMN G2/qv or v2/UV
FLOW(30) m'x DPDX dp/dx

H(30) h PEI Ye = ¥p

0M(30) o REM (RE")E

RHO(30) o TAU g

RR(30) R TAUI Ty

u(30) u_ SIGMA o divergence
UVMN(30) uv correction
v(30) v

Y(30) y

PRESS(30,50)| P
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