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The deeper we look into nature~ the more we recognise that it is 

fuZZ of life~ and the more profoundly we know that aZZ life is a secret 

and that we are united with aZZ life that is in nature. Man can no longer 

live his life for himself alone. We realise that aZZ life is valuable and 

that we are united to aZZ this life. From this knowledge comes our 

spiritual relationship to the universe. 

Alhert Schweitzer 
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A B S T R A C T 

An effectively incompressible turbulent wall jet with streamwise 

and axisymmetric curvature has been studied as a simplification of the 

Coanda flare, in order to develop a calculation procedure for design 

purposes. 

Measurements of Reynolds stresses show very high turbulence levels 

caused by the combined effects of streamline curvature and divergence, 

leading to increased entrainment and jet growth/velocity decay rates. 

Discrepancies in the data also indicate a significant presence of quasi­

steady longitudinal vortices. In the vicinity of the sudden change from 

flow with streamwise wall curvature to that without, the whole layer 

shudders; the separate components of the Reynolds stress tensor, struc­

tural parameters and the mean flow all respond as a damped second order 

system. 

Both the presence of two extra rates of strain which interact 

non-linearly and large history effects at sudden changes in surface 

curvature make large demands on any turbulence closure. Second order 

correlations do not show any degree of similarity when scaled relative to 

one another. A calculation method has been developed incorporating the 

calculation of the cross-stream pressure gradient in a plane or axisymmetric 

geometry. A simple mixing length model with empirical corrections for the 

large effects of streamline curvature and divergence has been used to close 

the solution. This is regarded as no more than a first step; the calcula­

tion method is suitable for extension to include a full Reynolds stress 

closure. 
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CHAPTER 1 

INTRODUCTION 

Flaring in the energy industry is a necessary consequence of having 

to safely dispose of tail gases produced in various industrial processes 

and also toxic gases which have to be completely burned. Coanda flares 

are in widespread use by British Petroleum at oil installations and also 

on off-shore production platforms in the North Sea, yet the design 

procedure is purely empirical. 

Thus the motivation for the work reported here was to produce a 

computer model of the jet flow in order to aid the design and use of 

those flares. This necessitated an experimental study of the turbulence 

structure of the flow in order to provide data relevant to the further 

development of calculation methods for turbulent jet flows which have 

streamwise curvature and divergence of the mean flow streamlines. 

1.1 THE COANDA FlARE 

The basic principles and geometry of the Coanda flare are shown 

in Figure 1.1. The basic flare shape was designed at the B.P. Research 

Centre, Sunbury-on-Thames. A high pressure gas is forced from an 

annular slot at the base of the flare and follows the contour, entrain­

ing air as it goes. The entrainment rate is higher than that of the 

traditional pipe flare and so the gas burns with a turbulent pre-mixed 

flame usually giving completely oxidised combustion products. Thus 

pollution and radiation are reduced, the flame length is shorter, and 

in emergencies the flare is able to cope with the combustion of crude 

oil. Flame initiation does not occur until the widest part of theflare, 

i.e. tne first quadrant of the flow is flame free. Thus a computer 
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prediction model without combustion features could still give a good 

indication of the jet characteristics in the region of flow where 

streamline curvature and divergence effects are most prominent. This 

region therefore plays the most important part in determining the flow 

structure. 

It is necessary that the computer prediction model should be able 

to cope with a. variable geometry and give satisfactory predictions of 

jet growth rate and turbulence levels. The main design criterion is 

that throughput and entrainment should be maximised using the simplest 

possible flare profile. The flare flow is described quantitatively by 

reference to Figure 1.2. Two-dimensional flow symmetry enforces the 

nominal identities: 

w = 0 

uw = 0 

vw = 0 

where W is the circumferential component of velocity and the two double 

correlation terms involve the fluctuating component of W. 

Wilkins et al (1977) provide a survey of various designs of flare 

in use. The commercially named Indair (Induced-air) flare has the 

same shape as that of Figure 1.1 but possess the added feature of an 

optional low~pressure supply which supplements the high-pressure 

supply by its introduction into the flame at the top of the flare. 

The involute of this shape (generated by a concave line rather than a 

convex one) has also been. used successfully, mainly by using smaller 

individual flares but in a matrix with many others (Mardair - Marine­

induced-air). This internal configuration produced lower noise and 

radiation levels and was primarily developed for use in the North Sea. 

It is not considered further as it has a substantially different flow 

structure. 
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1.2 THE COANDA EFFECT - STREAMLINE CURVATURE INDUCED BY AN 

ADJACENT BOUNDARY 

The effect whereby a fluid attaches itself to an adjacent surface 

was first documented by Young (1800) as quoted by Wille and Fernholz 

(1956). Newman (1961) provides a reference to Reynolds (1870) who 

noted tnat a ball placed on top of a vertical axisymmetric jet of 

water remains in stable equilibrium. Likewise the flow of gas around 

the flare is stably adhered to the flare surface, the necessary centri­

fugal force being produced by the low-pressure region immediately 

adjacent to the surface. Coanda patented several devices for thrust 

augmentation on aircraft and it was through this work that his name 

became associated with the effect rather than the understanding of it. 

Consequently the term "Coanda effect" is often applied as a blanket 

expression to the phenomenon of a wall jet on a convex surface, without 

distinguishing certain important features. Wille and Fernholz (1956) 

distinguish two phenomena, one inviscid, the other a consequence of 

viscous interaction between the jet and the surrounding fluid. 

Bradshaw (1973) gives a detailed description where the term "Coanda 

effect" covers three phenomena:-

(a) the tendency of a fluid to remain attached to a curved 

surface that is a simple consequence of the inviscid flow equations 

~or a liquid jet, surface tension promotes attachment); 

(b) the acceleration of the ambient fluid (entrainment) thereby 

causing a low-pressure region if the jet is adjacent to a wall - the 

jet 'sucks' itself onto the wall and this is a viscous phenomenon; 

(c) tne effect of streamline curvature on a mixing layer which 

in this case causes a marked increase in growth rate of the jet. 

Item (c) is the most important single effect of streamline curva­

ture on a wall jet. It is important to distinguish the difference 
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between stably and unstably curved flows. According to the stability 

criterion of Rayleigh (1916), a fluid element in a curved flow whose 

angular momentum decreases with increasing distance from the centre of 

curvature is unstable. Radial displacement of the fluid element away 

from the centre of curvature places it in a region of lower angular 

momentum. Therefore, the local radial pressure gradient will be too small 

to contain the fluid element and so it will move further away from the 

centre of curvature. Thus unstably curved flows (o(Ur)/oy negative) 

have increased turbulence levels and growth rates compared with the 

same uncurved flow. The converse argument holds for stably curved 

flows ( 0(Ur)/0y positive) which show a reduction in turbulence activity. 

The convention implied above is that r is positive for convex curvature 

and negative for concave curvature. 

A parallel and equally important phenomenon is the effect of 

divergence of the mean flow streamlines on the turbulence structure. 

Divergence nere is meant as a collective term for flows with either 

diverging or converging mean flow streamlines. For a diverging flow 

(a positive in Figure 1.2), the turbulence is increased, tnus increasing 

the jet entrainn•ent rate and making 0U/ox more negative, consistent with 

the continuity equation. The converse is true for a converging flow. 

Bradshaw (1978) attributes increased mixing to the increase in vorticity 

along an axis perpendicular to the plane in which the cross -section of 

a fluid element is decreased. 

Tne combined effects of streamline curvature and divergence produced 

a highly turbulent flow for the region of interest 90° > a > 0. 

1.3 BREAKAWAY 

This is a pnenomenon wnere tne flow separates from the flare 
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surface at or just downstream of the slot. It is likely to be a com­

pressible flow effect, probably separation induced by shock waves, and 

tnerefore occurs under choked conditions. This investigation is con­

cerned with the incompressible aspects of the flow structure and primarily 

the influence of the flare profile on the turbulence structure and the 

implications for the calculation method. Breakaway warrants an invest­

igation of its own and is not considered further. 

Tne work reported here falls naturally into two parts: chapters three, 

four and five describe the experimental work undertaken with a view to 

studying the turbulence structure of the jet; chapters six, seven and 

eight describe the development of a calculation method and recommendations 

for a suitable turbulence model. The remaining chapters describe the 

comparisons between the experimental results and the computer predictions. 
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CHAPI'ER 2 

THEORETICAL BACKGROUND 

Turbulent shear layers are only a small section of the enormous 

field of turbulent flows. They share the distinguishing characteris­

tic that there is a substantial gradient of total pressure across their 

width. The study of shear layers is therefore important in order to be 

able to predict flows with practically important boundary conditions. 

Distorted shear layers provide a sub-class of flows which require even 

greater understanding of the physical processes involved. Therefore 

this chapter includes a brief summary of how turbulent flows are descri­

bed. It also includes a review of previous work concerning wall jets 

and of more recent studies of the effects of streamline curvature and 

divergence on shear flow structure. The standard texts of Townsend 

(1976), Hinze (1975), Rotta (1962) and Bradshaw (1971, 1976a) provide 

a much more thorough treatment of turbulent shear flows. 

2.1 INTRODUCTION 

A complete mathematical description of turbulence necessarily 

involves statistical theory and is too complicated for engineering 

applications. Qualitative descriptions often use the concept of the 

eddy or vortex where random vortex stretching causes interaction between 

fluctuations of different sizes and orientation (expressed by the non­

linearity of the equations of motion). Thus length scales and velocity 

or time scales range from typical values for the bulk flow down to the 

smallest motions, where this minimum is set by the viscous dissipation 

of energy. Energy enters the turbulence by interaction of the larger 

eddies with the mean flow field, without which the turbulence would 

decay. These larger eddies carry most of the turbulent kinetic energy 

and the transmission of this energy to smaller and smaller scales (the 
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energy cascade) is independent of viscosity except in the final stages. 

Transport equations are used to describe the life history of eddies 

or vortices, although for the sake of simplicity certain assumptions 

have to be made. 

2,1.1 The Generalised Equations of Motion 

All the equations in this chapter refer to constant property 

values of density, temperature and viscosity of a Newtonian fluid. The 

Navier-Stokes equation (momentum equation) can then be written in tensor 

notation as:-

+ 
ap 

+ 
fi 

at 

••• (2.1) 

where fi represents the xi-component of a body force such as gravity. 

The continuity equation is: 

••• (2.2) 

The "divergence" form of the left-hand side of the Navier-Stokes 

equation is obtained by adding Ui times the continuity equation to the 

left-hand side of equation (2.1) and becomes: 

aui + () (UiUR.) 

at ax R, 

Pressure fluctuations are always determined by the velocity field and 

can be calculated by taking the divergence of the Navier-stokes equation 

(2.1) and using continuity to rearrange: 

1 a2P = - aui au R. = - afuiu R.) 

p ax~ 
1 

()XR, ()Xi axioxR. 
••• (2.3) 



- 10 -

Equation (2.3) shows that pressure is not a locally defined quantity, 

but is an integral over the whole flow field; it is the Poisson equation 

for pressure. With the further restrictions that the flow is steady and 

two-dimensional, equations (2.1) to (2.3) reduce to equations (6.4) to 

(6.7). These equations are discussed more fully in Chapter 6. 

Another important equation is that for the instantaneous rate of 

conversion of kinetic energy per unit volume to heat, viz: 

E = 1 

2 • • • (2 .4) 

which is important obviously in the smaller scales of motion. Its 

simplification is discussed in § 2 .1. 3. 

2 .1.2 The Statistical Description of Turbulence 

In order to define a turbulent flow, it is necessary to specify 

a mean and fluctuating component for velocity vectors and the pressure 

field. Thus 

= 

where p'i and ui = o. 

and = P + p'. i 1 

The eddy concept is used to describe typical flow patterns which 

contain a typical range of wavelengths of motion. The statistical 

mean most used to measure the spatial structure of turbulence is the 

double velocity correlation function: 

• • • (2. 5) 

where ui(~,t) is a component of the instantaneous velocity fluctuation 

at position~ and time t. Underscores denote vector quantities. 

Spatial correlations (or covariances) are used when T = O, where Rij 

is then a measure of the strength of eddies whose length in direction ~ 
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is greater 1;han s. Therefore the shape of the correlation function as 

& changes size gives some information about the eddy structure of the 

flow. Time correlations (autocorrelations) are also used when~ = 0 

and i = j. By definition Rij = 0 as~ or~ approaches infinity. 

Taylor's hypothesis is an important experimental tool and proposes 

that if the mean velocity in the x-direction is very much greater than 

the turbulent fluctuations, then the changes in velocity pattern as it 

sweeps past a fixed point are negligible and therefore: 

Ui (x,y,z,t + T) = Ui (X- U~,y,z,t) 
••• (2.6) 

Thus the longitudinal space correlation and time correlation are 

similarly related: 

= 
• • • (2. 7) 

Correlations with separation in the direction of mean velocity are 

difficult to measure as an upstream probe will interfere with the one 

downstream. Therefore measurement of time correlations, and the use 

of Taylor's hypothesis is more accurate if a method of intrusive flow 

measurement is used. 

The normalisedform of the double correlation function: 

••• (2.8) 

is used for the measure of integral length and time scales, viz: 

00 

ijL . (~) = j ftij (t;E, s R. ,o)dr R, 
.( -oo 

ao 
ij (e,) = jRij (c_, o, t )dt T 

-oO . . .(2.9) 
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The most used of these is the longitudinal integral scale ULt([) which 

gives an indication of the mean eddy size in the longitudinal direction. 

Therefore it can be used as a typical length scale of the energy-containing 

eddies. 

For convenience, the covariance ui(~) uj(~+§) is often replaced 

by its three-dimensional Fourier transform ~i,j defined by:-

u1 (If) uj(l£'"!1) = J j 1j<a> exp (i a §.) dn 

••• (2.10) 

where ,a is the wave number vector and i = M ·lij is then the three­

dimensional wave number spectrum which has a distribution in "wave 

number space". Another form of/ <a> is:-

E(n) = 1 

2 ••• (2.11) 

where SA is the elemental surface area of a surface bounding the wave 

number space. E(n) represents the average density of turbulent energy 

in the wave number space at wave number n. However, one-dimensional 

spectra are used most as they provide the easiest means of physically 

interpreting the flow. Thus: 

CIO 

= 1 Sui(":!) uj(x1 + s1) exp( -i n1s 1) ds1 

2rr 
-oo 

. . .(2.12) 

is the one-dimensional wave-number spectrum of uiuj for a wave-number 

component in the x1-direction. Frequency spectra can likewise be 

defined by the use of the Fourier transform of the autocorrelation. 

The double velocity correlation or the wave number spectrum 

provide alternative ways of describing a turbulent flow. However, 
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this description is only complete if the probability distribution function 

for the velocity field is joint-normal, that is for each point in the 

flow field the probability of having a fluctuating component of velocity 

J.J. is given by: 

1 exp 

j(2TTU2) ••• (2.13) 

A single-point distribution is practically of more use and in particular 

departures of the actual probability distribution function from the normal 

form give indications of the relative importance of higher order velocity 
rr· 

correlations. For example, the skewness of the u-velocity distribution, 

--3/2 
u3/(u2 ) , or the third central moment, is zero for a normal distri-

bution. Also the corresponding fourth central moment, or the flatness 
- --2 

factor u4/(u2 ) has a 'normal' value of three. A joint-normal distri-

bution implies that the flow is homogeneous. 

2.1.3 Homogeneity and Isotropy. 

A transport equation for the covariance ui(e) Uj(~ + ~) can be 

written by adding ui times the transport equation for uj to uj times 

that for ui and then averaging. It is given by Bradshaw (1976a p 16) 

as:-

*- * .it(: 2 2*) - 1 (uj OP + ui OP ) \uj a ~i + ui o uj 
-* + 

a:l£2t p (JXi (JX. (JX t 
J 

. . • (2 .14) 

"K-
where uj is written for Uj (~ + 3). Substitution of ui as the sum of 

mean and fluctuating components yields a very complicated expression. 
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However, it can be simplified by assuming that statistical quantities 

are independent of position (Batchelor 1953, p. 34) i.e.:-

ui (2f) oui <~> 

oxj 

= 

= 0 

1 oU~ (x) 
1 ..... = 0 

• • • (2 .15) 

which are the necessary conditions for homogeneous turbulence. In this 

case then, there is no mean flow and the spatial transport of u~ is zero. 

Most turbulent flows are inhomogeneous but the energy transfer processes 

are essentially the same whether the flow is homogeneous or not. 

Equation (2.14) together with the averaged Navier-stokes and 

continuity equations do not provide a closed set of equations for a 

complete solution to the spectrum tensor uiuj. If the equations were 

not averaged, then solution would be possible; but averaging introduces 

higher order correlations, for which it is possible to write transport 

equations also. However, higher order transport equations only intro-

duce correlations of even higher order. Therefore it is neccessary at 

some stage to introduce approximations to the higher order correlations. 

This is known as the problem of "closure". Approximations introduced 

into equation (2.14) imply a "spectral closure" of inhomogeneous 

turbulence which is very complicated. Therefore spectral closures are 

usually limited to homogeneous turbulence. However most closure work 

or 'modelling' refers to approximations made in the transport equation 

for uiuj, the single-point second-ordercorrelation. This procedure 

gives a realistically soluble set of equations and is discussed in 

Chapter 7. 
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Substitution of the mean and fluctuating components of velocity 

into Equation (2.4) gives after averaging: 

••• (2.16) 

where E = E + tt. E is the dissipation of kinetic energy by mean 

velocity gradients and € is the turbulent energy dissipation rate: 

2 
= 

.(2.17) 

The energy cascade is an essentially random process and therefore does 

not haveany directional preferences. As a result, the small-scale 

dissipating motions are statistically isotropic ( u2 = v2 = w2 ). This 

is in fact not quite true as the small-scale motions fluctuate in space 

and time according to the large-scale fluctuations. However, with the 

simplifications of locally (small-scale) isotropic turbulence which is 

generally valid for high-Reynolds number flows, equation (2.17) reduces 

to: 

e = 

• • • (2 .18) 

It is important to note that e is set by the rate of energy transfer 

in the energy cascade and therefore by the larger energy-containing 

eddies. The viscosity determines the minimum size of eddy that can 

exist. Townsend (1961) showed, by dimensional arguments that: 

k3;2 ck 2 
3;2 

E: = = k 
' 

L 
.E 

t • (2 .19) 

and the turbulent kinetic energy is proportional to the turbulent 

shear stress. Then E is represented by a single length and velocity 
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scale, viz: L£, the eddy dissipation length scale and k the turbulent 

kinetic energy. 

With the assumption of local isotropy, and that the statistics of 

the small-scale motions are determined uniquely by £, v and the wave 

number magnitude n = I~\ , Kolmogorov's universal equilibrium assump-

tion uses velocity and length scales defined by: 

and 
~ 

u = (v£)4 
£ 

• • • (2 .20) 

If the wave-number spectrum fij is used, then it is spherically 

symmetric in the region of local isotropy and 

fii <n> = ••• (2.21) 

There may also exist a region at lower wave numbers in which the assump-

tion of universal equilibrium is valid but in which the eddy structure 

is independent of viscosity. In this inertial subrange, jfii becomes: 

= iii (!!,) 

and p'ii (nl) = 
2; -5; 

C' e: 3 n 3 

where C and C' are constants. 

.(2.22) 

Even though the concepts of local isotropy and universal 

equilibrium strictly refer to homogeneous turbulence, they are useful 

definitions for inhomogeneous flows also. 

2 .2 SHEAR lAYERS 

Practically important flows such as shear layers are strongly 

inhomogeneous. In free turbulent shear flows, e.g. a free jet, 

inhomogeneity is caused by the spreading of the flow into the ambient 

irrotational fluid (entrainment). In wall shear flows it arises due 
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to the effect of the wall. With the consideration of only single-

point correlations, a solution of the equations of motion is realistic. 

In this case the double velocity correlations are called Reynolds 

stresses. 

2.2.1 Reynolds Stresses 

The Reynolds stress tensor is - puiuj and is a second order 

correlation. It therefore represents a set of nine stresses acting in 

the xi-direction on a plane normal to the xj-direction. Alternatively, 

the stress tensor represents the transfer of ui-component momentum in 

the uj-direction by the turbulence. Hence the stress components are 

apparent stresses. In Newtonian fluids the shear stresses (i#j) are 

diagonally symmetric. Then the effective number of component stresses 

is only six. In many shear flows, at least one of the shear stresses 

is zero by flow symmetry. One half of the sum of the normal stresses 

(i = j) is the turbulent kinetic energy, viz: 

k = = ••• (2.23) 

2.2.2 Transport Equations 

Following the procedure outlined in §2.1.3, the transport 

equation for uiuj, the single-point correlation, can be written as 

follows: 

D(uiuj) 

Dt 

+ p' 

p 

(a) production 

+ (b) redistribution 
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+ p' 

p 

(c) transport 

- 2 \) 
(d) destruction 

• (2 .24) 

where in the usual form (summed over repeated indices): 

D(uiuj) 

Dt 

= 

represents the rate of transport of uiuj through a unit control volume 

by the mean flow. It is assumed that the flow is steady and body forces 

are neglected. The kronecker delta operates so that 8ij = 1 for i = j 

and = 0 for i .P. j. Equation (2.24) is the transport equation for 

Reynolds stress which with appropriate approximations,forms a closed 

set of equations with the mean momentum and continuity equations. Its 

component terms can be related to the physical process involved. 

(a) Production 

The generation term is a consequence of the interaction between 

the turbulent motion and the mean velocity gradient. 

(b) Redistribution 

This is called the pressure-strain term; it is the product of 

pressure fluctuations and the fluctuating rate of strain. It 

represents the effects of pressure fluctuations in acting to equalise 

the normal stresses and to reduce the shear stresses i.e. the 

tendency toward isotropy found in homogeneous turbulence, (Townsend 

(1976) ). 

(c) Transport 

The three component terms are transport of uiuj by velocity 

fluctuations, viscous stress fluctuations and pressure fluctuations 

respectively. Viscous transport is negligible at high Reynolds 
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numbers (or away from the viscous sublayer - §2.2.4), as then it 

will only be significant in the small-scale motions which are 

isotropic, i.e. with no preferred direction. Transport by 

pressure fluctuations are thought to be smaller than term (b). 

(d) Destruction 

The destruction term provides the dissipation of turbulent kinetic 

energy by viscous stress fluctuations. Again for high Reynolds 

numbers the small-scale motions are isotropic and therefore this 

term will be neglig~bly small in the shear stress equation (i~j). 

The physical processes outlined above are better described by the 

transport equation for turbulent kinetic energy, formed by addition of 

the transport equations for each of the three normal stresses: 

Dt ox9, (a) production 

- 0 

(~' ui + q2 ur \) o2k 

2 2 
oxJI, (JXJI, (c) transport 

2 

-v cui) 
oxJI, (d) destruction 

. . .(2.25) 

way as for Q (uiuj)• The production term is the rate at which mean 
Dt 

velocity gradients do work against the Reynolds stresses, thereby trans-

ferring energy of the mean flow to the turbulent kinetic energy. The 

redistribution term of equation (2.24) vanishes by continuity when the 

three equations for i u~ are summed. This is to be expected as they 

represent exchange between the three normal stresses. The destruction 

term now becomes the dissipation of turbulent kinetic energy (equation 
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(2.18) ) by the viscous stress fluctuations and its conversion to heat. 

This equation therefore describes the energy cascade. The transport 

equations for the Reynolds stresses and turbulent kinetic energy are 

shown in Appendix F. 

Another practically important transport equation is that for e 

itself. It is important as it is often used as the length scale 

transport equation in turbulence modelling ( § 7.1.3). Its develop-

ment is complicated and is given by Hanjalic and Launder (1972) as: 

De - 2 \) <JUi ( oui auk + out OUt) - 2 v (JUi <JUi dUk = ------
Dt . (JXk (JX~ (JXQ. dXi (Jxk (Juk (JuQ. (JUQ. 

02 r 2(" 
d u e' \) a ( ap• ou1) u. k 

(Jxk~xQ. -- -- --
(Jxk p CJXi <JXQ. dXQ. 

• • • (2 .26) 

where e' is the fluctuating rate of dissipation. The equation is 

. exact for high Reynolds numbers. 

2.2.3 Lo~al Equilibrium and Self-Preservation 

Townsend (1961) distinguished areas in the inner layer of a 

turbulent wa11flow (but outside the viscous sublayer) in which local 

rates of energy production and dissipation are much larger than the 

transport terms. These areas are therefore described as being in local 

equilibrium because transport terms are negligible. In slowly-changing 

boundary layers, where the length and velocity scales of the turbulence 

are proportional to those of the mean flow, local equilibrium is a good 

approximation for the outer part of the boundary layer as well. In this 

region the mean and turbulent transport terms tend to be equal and 

opposite. 
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Self-preservation is an extension of the assumption of local 

equilibrium. For a shear layer to be self-preserving, restrictive 

boundary conditions are required and the transport terms in th~ Reynolds 
. 

stress transport equations are not negligable. The ratio of generation 

to the destruction terms is a simple function of y/&; it is only unity 

in the inner layer. Self-preserving shear layers must have dynamically 

similar profiles; that is not only the mean velocity profiles, but also 

profiles of Reynolds stress and other turbulence quantities must be repre-

sentable by a single velocity and length scale. It is not surprising 

therefore that truly self-preserving flows are rare. However, certain 

shear layers, with unrestrictive boundary conditions, in which the 

Reynolds number is high enough and y/& is outside the viscous sub-layer, can 

attain near-similar profiles of mean velocity when fully developed. 

When a flow is considered to be in local equilibrium or self-

preserving, simple empirical relations between Reynolds stress components 

and the mean rate of strain can be found. 

Turbulent Flow Near a Wall 

For regions of turbulent flow sufficiently close to a wall, 

velocity fluctuations aare damped and the fraction of shear stress that 

is a direct result of viscosity increases. For this region, distances 

perpendicular to the wall are considerably smaller than the flow dimen-

sions and in particular, derivatives of mean values in the x-direction 

are negligible compared with those in the y-direction. Hence the 

equations of motion can be simplified and the shear stress can be 

considered constant, equal to the value at the wall, T00 • By dimensional 

analysis: 

u = 
••• (2.27) 
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where u = ~. The universal 'law of the wall' is typically valid 
'f Jlw' f.l 

for y < O.lv-.0.2 0 • In the viscous sub-layer (approximately 0 < y < 

40 v; u ) viscous effects dominate. However, outside this region, but 
'f 

still inside the constant stress layer, the turbulent contribution to 

the shear stress is suffic~nt for viscosity to be neglected. Equation 

(2.27) then has the special semi-logarithmic form: 

au 

aY 

u 

u 
'f 

= 

= 

u'f 

~y 

1 ln ~y + c 

v • • • (2 .28) 

where K is supposedly a universal constant, experimentally determined 

to be approximately 0.41, and C ~ 5.2 for a smooth wall. This region 

of flow, the inner layer, is the local equilibrium region in which 

• 
turbulent transport terms are negligt.ble. The outer layer is dominated 

by the larger eddies and is intermittenoti for y > 0.4 o. Vorticity is 

transmitted to the irrotational ambient fluid by viscous stresses; 

hence the term "viscous super layer", the thickness of which is governed 

by the wavelength of the smallest eddies. 

2.3 CLASSIFICATION OF SHEAR LAYERS 

Equation (2.1) is the instantaneous momentum equation. The 

equation for mean momentum can be obtained by substituting Ui = Ui + ui 

and averaging: 

UJI. aui - o'P ouiuR. v o2u 
= ·+ i --

oxt ()Xi oxt ox2
1 

.(2.29) 

Body forces are neglected and the flow is consid~red to be steady. Only 

two-dimensional shear layers are considered, hence the dummy index {: 

'. 
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is repeated only twice. Shear layer axes are used for the equations 

of motion. The x-direction coincides approximately with the mean flow 

streamlines and is parallel to a wall or axis of symmetry. The y-direction 

is everywhere .perpendicular to it. 

Undistorted shear layers are simply classified because streamwise 

Reynolds stress gradients are often insignificant. However, for 

pe:ttu'.rbedshear layers this is no longer the case and a more rigorous 

classification is necessary. Following Bradshaw (1973, 1975, 1976 b 

and 1978) all! "complex shear layer" is defined as one in which extra 

rates of stra~.n have a significant a:ffect on the turbulence structure 

on top of that of the simple shear (usually ~). An "extra rate of 

strain" is an additional term appearing in the production term of the 

Reynolds stress transport equations whose size is explicitly changed 

by the flow conditions. Bradshaw (1975) considers the extra strain 

rate effects caused by streamline curvature, divergence and rotation 

amongst others. Inspection of equation (F.7) for example, reveals that 

the production term is explicitly changed by the curvature term U/rh. 

A general extra rate of strain e can be used for ~rder of magnitude 

comparisons. 

2.3.1 Boundary Layer/Thin Shear Layer 

The turbulence structure of a simple shear layer is unaffected 

by the magnitude of the extra strain rate, e. In a thin shear layer 

(0U/
0

y )> e), e does affect the turbulence, but not the mean flow. 

Therefore, o ~ x, and the static pressure difference across the layer 
. 

and the normal-stress gradients are neglig~ble. Equation (2.29) there-

fore reduces to:-
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u ;:)lf + vau 1 d- a ( -uv + v aU) = p + 

ax ay dx ay p Cly 

where 

-1 dp 
= 'ijoo dU co 

p dx dx ••• (2.30) 

The assumptions above are the same as Prandtl's boundary layer assumptions 

and equations (2.30) are the boundary layer form of the momentum equation. 

The transport equation for turbulent kinetic energy becomes:-

Dk = - uv au (u2 - v2> au 

Dt aY ax 

- ~ (; q2 + :' v ) - \) a2k 

ay2 ay 2 p 

••• (2~31) 

An important simplification exists for the case of a local equilibrium 

. 
flow where the transport terms in equation (2.3.1) are negli~ble. 

Then retaining only the major production term: 

- uv au = - e 

• • • (2. 32) 

which, with use of equation (2.19) becomes: 

= -Uv 
••• (2.33) 

This is Prandtl 's mixing length hypothesis which is strictly only 

valid for the equilibrium region of a simple shear layer because 

extra strain rates are ignored in the approximation of equation (2.31). 

For the reasons stated in § 2.2.3, however, £0 is a useful length 

scale for the calculation of a simple shear layer. See § 7.1.1. 
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A consequence of equation (2.33) in the log-law region of a wall 

shear layer is given by:-

1 

au 2 
= u,. = c ;:) oY 1\y 

where u,. = - uv 

io = 1\y . • (2 .34) 

The last equation describes the variation of the mixing length 

in the log-law region. 

2.3.2 Fairly Thin Shear Layer 

For cases where QQ > 10 e, the turbulence structure of the shear oY 
layer is greatly affected by the extra rate of strain, e. Therefore 

the Reynolds stress gradients are significant in spite of the presence 

of possibly large pressure gradients. 8 is considered as only one 

order of magnitude less than x. The flow studied in this project 

falls into this category and the approximations to the equations of 

motion are set out in Chapter 6. Previous work concerning the changes 

in turbulence structure is reviewed in § 2.5 and 2.6. 

2.4 PREVIOUS WORK ON WALL JETS 

This section reviews previous studies of wall jets on flat surfaces 

which are quite well documented. Earlier, less detailed work concern-

ing wall jets on curved surfaces and cones is also reviewed. All the 

work reported below refers to two-dimensional cases although there is 

some detailed published work on three-dimensional wall-jets on both 

flat and curved surfaces by Catalano et al (1977). Three-dimensional 

wall jets are not strictly relevant to this investigation and are not 

considered further. There are also several review articles on turbulent 

jets in general by Newman (1961, and 1969) which serve as useful intro-

ductions to wall jets. 
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2.4.1 Turbulent Wall Jets On Flat Surfaces 

Early theories concerned with wall jets were based on the near-

similar solution obtained by Glauert (1956) for the turbulent case. 

For the purpose of analysis, the mean velocity profile can be con-

sidered as a typical half-jet up to the velocity maximum (the "outer 

layer"), inside which is a typical wall layer, (the "inner layer" -

not directly associated with the law of the wall, § 2.2.4). Glauert 

assumed that the shear stress in the inner layer varied as U6 (Blasius's 

1/7 
pipe-flow formula) and that therefore the velocity varies as y • The 

outer layer was assumed to have a constant eddy viscosity. A solution 

was sought .in which the mean velocity profile varied according to: 

a 
X , 

••• (2.35) 

although such a similarity solution can only be approximate because of 

viscous effects in the inner layer. A corollary of the above assump-

tions is that the shear stress is zero at the velocity maximum. 

The values of a and b were found by Glauert to be dependent on 

the matching procedure used for the inner and outer layer solutions, 

but are approximately - 0.5 and 1.0 respectively. Schwarz and Cosart 

(1960) expermentally determined a = -0.555 and showed that the assump-

tion of self-preservation implies b = 1.0. Myers et al (1963) 

reported a value of a = -0.490. Bradshaw and Gee (1962), however, 

noted two discrepancies in Glauert's theory. Firstly, the Blasius 

pipe-flow surface friction formula underestimated the surface friction 

by 25% and the experimental inner law was found not to be semi-logarithmic 

in form for the wall jet in still air. For the corresponding jet under a 

free stream, the inner law was found to be accurately semi-logarithmic. 

This therefore casts some doubt over the defect law overlap assumption 

in which it is expected that the law of the wall and the defect law 
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overlap in the log-law region. The second discrepancy was that the 

shear stress was not zero at the velocity maximum, therefore invalidat-

ing the separation of the mean velocity profile into an inner and outer 

layer. In spite of these two discrepancies, the similarity solution 

gives accurate prediction for the mean velocity of a turbulent wall 

jet. Bradshaw and Gee (1962) also found that the wall shear stress 

is well represented by:-

-2 f p U m 

= o.o315 ( li:Ym) 
-0.182 

• • • (2 .36) 

in the range 3 x 104 < UmYm < 15 x 104 for a wall jet in still air. 
\) 

Kacker and Whitelaw (1968, 1971) present a comprehensive set of 

experimental data for wall jets in a moving stream. Provided the ratio 

of maximum jet velocity to free stream velocity (Um/Ue) exceeds unity, 

then the essential characteristics of a jet are maintained, although 

Irwin (1973) showed that the necessary condition for a jet to be 

self-preserving in a moving stream is:-

••• (2.37) 

where x
0 

is the distance between the hypothetical origin of the jet 

and the slot. m is a function of Um/Ue that equals -0.5 for Ue = 0 

and T = o. Kacker and Whitelaw (1968) found that, in the region of 
w 

twenty slot widths downstream, the law of the wall was in fairly good 

agreement with the experimental data for K = 0.42 and C = 5.45. 

Also the point of zero shear stress was again found to be closer to 

the wall than the velocity maximum, an observation corroborated by 

Wilson and Goldstein (1976) and Irwin (1973). This was explained by 

the latter author to be the result of the difference between the 

diffusion rates of uv towards the velocity maximum, where local 
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production of uv is at a minimum. The diffusion of positive uv from 

the outer layer exceeds that of negative uv from the wall region, 

thereby increasing the shear stress at the velocity maximum. 

In the case of Irwin (1973), a wall jet in a free stream was 

studied, but with the additional constraint that the ratio of urm/ue 

was constant thereby inducing a fairly severe positive pressure gradient. 

The law of the wall was again found to be a good fit to data in the 

region of y < 1000 \!ju when the same values of K' and C were used 
'T 

as those used by Kacker and Whitelaw ( 1968). Both the mean velocity, 

shear stress and turbulence intensity profiles were found to be closely 

self-preserving for distances sufficiently downstream, except where the 

position of zero shear stress became closer to the wall as x increased. 

u2 showed a minimum at the point of zero shear stress, and was also 

the largest of the three turbulence intensities. An energy balance 

was also carried out. It revealed that the rates of production and 

dissipation of turbulent kinetic energy were nearly equal for the 

whole jet width except near the velocity maximum (0.05 <YIYm/2 < 0.6). 

This was attributable to the mean-flow transport and diffusion terms 

cancelling each other in the outer regions of the jet and their small-

ness near the wall. Also the production term did not become negative, 

not even when oU/0y--.-o. 

2.4.2 Turbulent Wall Jets With Streamline Curvature 

Newman (1961) and Bradshaw and Gee (1962) first noted the increased 

growth rate of specifically a jet on a curved surface and the qualita-

tive explanation of centrifugal instability described in Chapter 1 was 

used to explain it. Since then most work has been concentrated on the 

study of mean-velocity profiles of jets on circular cylinders. 
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Guitton (1967) showed that for a curved turbulent wall jet to be 

self-preserving, the ratio of jet thickness to wall radius of curvature 

should be constant. For this to be so, the wall radius is directly pro-

portional to the distance x along the wall, and forms a logarithmic 

spiral surface. Giles et al (1966) measured mean-velocity and turbulence 

intensity profiles on such a surface and they were found to be similar. 

Owing to a lack of self-preservation of curved wall jets in general, 

where a log-spiral surface curvature is a too restrictive requirement, 

early curved wall jet predictions relied on empirical growth rates. Newman 

(1961) used: 

Ym/2 = 0.11 (1 + 1.5 Ym;2) 

X 
r .• (2.38) 

whilst Guitton (1964), correlating the data of Fekete (1963) obtained: 

Ym/2 = 0.067 

Wilson and Goldstein (1976) used: 

Ym/2 

t 

= 

... (2.39) 

0.0359 (~ + 6.0f
05 

(' + 3.354 y:/2 ) 

• . (2. 40) 

and also demonstrated the non-selfpreserving nature of the flow by 

refere~ce to pt•ofiles of V /U which were not similar for the curved 
m 

case, but were for a wall jet on a flat plate. Profiles of U/U were m 

too insensitive to show the degree of similarity. 

A review of work on the turbulence structure of wall jets with 

streamline curvature is deferred until § 2.6. 
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2 .4.3 Axisymmetric Turbulent Wall Jets 

Radial, conical and cylindrical wall jets are treated collectively 

here as they all have basically the same axisymmetric geometry. The 

radial and cylindrical cases can be considered as limits to a general 

conical wall jet where 0 <a< 90°. 

Bakke (1957) made pitot-tube measurements in a radial wall jet, 

the results of which were used to obtain best agreement with Glauert's 

theory by adjustment of a single constant. The similarity constants a 

and b were found to be - 1.12 and 0.94 respectively, i.e. the jet growth 
-r ... ~ .. a.. 

rate is approximately the same and the velocity decay rate is about~ 

that of a corresponding plane wall jet. Po~h et al (1967), using hot 

wire probes, also found the mean velocities to be similar and in good 

agreement with Glauert's theory at sufficiently large distances downstream. 

The turbulence intensity profiles showed a limited degree of similarity. 

The data showed a slightly smaller jet growth rate than that of Bakke 

and using K = 0.4 and C = 5.5 in the law of the wall, a shift in the 

inner layer velocity profile was noted. Starr and Sparrow (1967) also 

noted, for a cylindrical wall jet, the same shift from the law of the 

wall line calculated using K = 0.4 and C = 5.1. The values used by 

Irwin (1973) and Kacker and Whitelaw (1968) for the flat-plate wall jet 

are not significantly different from those stated above, therefore the 

shift may be attributed to the axisymmetry and consequently the modified 

turbulence structure of the radial and cylindrical wall jets. Starr and 

Sparrow (1967) also developed empirical Coles-type wake functions in order 

to correct the wall jet inner layer velocity profiles for transverse 

curvature effects. Both they and Porehet al (1967) noted that the 

position of zero shear stress did not consistently coincide with the 

velocity maximum. Not surprisingly therefore, neither authors found the 

shear stress to be proportional to the mean velocity gradient in the 
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region outside the velocity maximum. Sharma (1981) used pitot tube 

measurements for a comparison of the law of the wall constants for 

radial, conical and cylindrical wall jets. All the-inner layers of the 

velocity profiles were sufficiently well correlated by the law of the 

wall when K = 0.55 and C = 7.6 for y u,;v < 200. However the accuracy 

of the data appears to be rather uncertain, as there is no record of 

corrections for turbulence to the pitot readings and the ratio of pitot 

outside diameter to jet width was large. 

2.5 THE EFFECTS OF EXTRA RATES OF STRAIN ON TURBULENT FLOW 

Bradshaw (1973) provides a very thorough discussion of how extra 

strain rates affect turbulence. The discussion is primarily concerned 

with streamline curvature, being the single most important extra rate 

of strain, but also includes a study of the effects of divergence, 

dilatation and longitudinal acceleration. The most important fact, 

pertinent to all turbulent flows subjected to an extra rate of strain, 

is that the effect on the turbulence structure is an order of magnitude 

gr,eat'(3r than that predicted by the extra terms in the Reynolds stress 

transport equations. The reason is that on top of these explicit 

changes to the production and transport terms (see Appendix F), higher 

order correlations are also changed, thereby implicitly changing the 

sizes of all the terms. This has important implications for calculation 

methods (see § 7.4) and these implicit changes are generally more 

important than the explicit changes. Bradshaw (1973) uses the local 

equilibrium approximation to develop a first order correction for the 

effects of small extra strain rates on thin shear layers. Defining 

f = 1 + a e 

~ au;ay ... (2.41) 
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to account for the explicit changes in the production terms, where,a 

is 0(1), then:-

uv 

.(2.42) 

where L 0 is the dissipation length scale for a simple shear layer. 
€, 

However, the observed changes are of order F where F is O(lOf). There-

fore adjustment of the length scale is required by use of: 

= 

f 

implying 

F = 1 + a e 

au;ay ... (2.43) 

where a is 0(10). This approach is expected to be valid only for small e, 

and does not take into account 'history' effects, i.e. modification of the 

larger, and therefore non-local, eddy structure. The value of a is not 

expected to be universal either, and equation (2.43), although derived by 

use,of the lqcal equilibrium assumption, could be used in flows not far 

from local equilibrium. a would then inevitably contain a factor to 

account for the inaccuracy of the local equilibrium assumption. 

2.6 THE EFFECTS OF STREAMLINE CURVATURE ON TURBULENT FLOWS 

The qualitative concepts of stabilising and destabilising curvature 

were introduced in Chapter 1. The differentiation between stably and 

unstably curved flows provides a useful sub-class of curved flow. There-

fore boundary layers with concave curvature and wall jets with convex 

curvature are discussed together, although the implied connection between 

the two is tenuous due to the lack of detailed experimental data for 

the latter. However some thorough measurements have been made in 
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stably and unstably curved boundary layers notably by Smits et al 

(1979a) and So and Mellor (1972), and these studies provide a useful 

comparison between the effects of the two types of curvature. 

According to the F-factor analysis of Bradshaw (1973), a linear 

correction formula for streamline curvature is: 

F = 1 - a U/rh 

au;ay .(2.44) 

where the extra rate of strain is - U/rh in shear layer coordinates 

appropriate to Figure 1.2. Bradshaw also gives a thorough review of 

previous research on turbulent flows with streamline curvature, starting 

with Prandtl's buoyanc~curvature analogy and including curved duct and 

rotating cylinder flows. These flows exhibit curvature effects of 

order F. The more pertinent studies relate to mixing layers and boundary 

layers on curved surfaces. 

2.6.1 Longitudinal Vortices 

One of the most striking features of an unstably curved flow is the 

appearance of longitudinal vortices, a basically inviscid phenomenon. 

The displaced-element arguments used in Chapter 1 to explain the increased 

growth rate of a mixing layer with a negative gradient of angular momentum 

can be extended to predict the occurrence of streamwise vortices. 

(Bradshaw ~nd Cebeci (1977 p. 304) ). Their diameter (half a 

spanwise wavelength) is roughly the same as the shear layer thickness and 

the streamwise wavelength is effectively infinite (a typical streamwise 

wavelength of longitudinal vorticity of a large eddy would be only of 

the order of a few boundary layer thicknesses). The strength of the 

vortex increases with distance downstream assuming the curvature con­

tinues. The occurrence of these vortices was first noticed by Tani (1962) 
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in a boundary layer although Taylor and G6rtler had previously predicted 

their appearance in laminar flows. They are therefore called Taylor-

G6rtler vortices also. 

Tani (1962) found spanwise variations in mean velocity of a boundary 

layer on a concave surface. The variations were of a definite wavenumber 

for both laminar and turbulent cases. Accordingly he adapted the G6rtler 

stability parameter, used for laminar flows, 

G = u 9 e 

v • . . (2 .45) 

by replacing·'J with the effective viscosity Veff in order to predict the 

appearance of vortices in a turbulent flow. However, as Bradshaw (1973) 

suggests, a critical G6rtler number at which the turbulence becomes 

dominated by longitudinal vortices is somewhat arbitrary although it 

provides a quantitative comparison of the likelihood of their occurrence. 

Patel (1969b) also found spanwise variations in mean velocity and skin 

friction coefficient, where the surface shear stress is low beneath 

vortex motion away from the wall (trough) and high beneath vortex 

motion towards the wall (crest). Hence a pair of quasi-.steady or 

steady contra-rotating vortices would give rise to the observed span-

wise variations. 

Bradshaw (1973) draws attention to the need for distinguishing 

between steady and "steady" vortices (using his quotation marks). Steady 

vortices are referred to as such because they contribute to the mean 

flow spanwise variations. "Steady" vortices refer to those which, 

although they nave a time scale much larger than the rest of the turbu-

lent motion, are not constrained well enough to contribute to any 

mean spanwise periodicity. Thus steady vortices can produce three-

dimensionality in a nominally two-dimensional flow, whilst "steady" 
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vortices, sufficiently unsteady not to contribute to the mean periodicity, 

contribute to the Reynolds stresses only and the mean flow is legitimately 

two-dimensional but with the shear stresses uw and vwnon-zero. Bradshaw 

also discusses two means of constrainton longitudinal vortices. One 

is the influence of wall boundries where the distance between them must 

be an integer number of vortex diameters. The other is the influence of 

upstream disturbances (e.g. vorticity induced by wind tunnel damping 

screens) which could have some effect on themean spanwise positions of 

vortices which can be locked to the initial disturbances when the flow 

is unstably curved. 

The practical necessity of an integral number of vortices makes 

calculation of wavelengths difficult. Also for a rapidly growing shear 

layer, the number of vortices must increase if their wavelength is not 

to become an over-small fraction of the shear layer width. Bradshaw 

(1973) suggests that the appearance of "steady" vortices in an unstable 

jet flow is unlikely, simply because of the large-growth rate which would 

require the frequent re-adjustment of the spanwise wavelength in order 

to maintain the preferred ratio of wavelength to shear layer thickness .. 

2.6.2 Unstably-Curved Wall Shear Layers 

The earliest authoritati·vestudy of the turbulence structure of a 

wall jet with destabilising curvature is that of Gui tton (197 0) and sub·­

sequently Guitton and Newman (1977). Their work can be regarded as a 

sequel to that of Giles et al (1966) who made Reynolds stress measure­

ments in a wall jet on both concave and convex log:-spirals. Guitton 

used corrections of up to fourth-order correlations for the second order 

correlations and linearized the hot-wire signal. He measured the 

Reynolds stress components, the third order correlations uv2 and~ and 

the intermittency and flatness factors for spirals with x/r = 0, 2/3 and 1. 
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He also compares his results to those of Giles et al (1966) for the 

case x/r = 1. One of the major problems was the establishment of 

two-dimensional flow. Two methods were used to check for two-

dimensionality: firstly, the comparison of the measured shear stress 

distribution with that calculated from the two-dimensional integral 

momentum equation using the mean velocity data, and secondly, the 

spanwise measurements of total pressure. The non-two-dimensionality 

of the flow can be attributed to two effects. The secondary flows 

(i.e. "skew-induced" after the definition of Bradshaw and Cebeci (1977 

p. 320)), occu~ng in the corners with the end walls could have 

significant effect on the displacement thickness of the end wall boundary 

layers thereby causing some divergence or convergence of the flow at 

centre-span. Also, it has been found by Guitton and Newman (1977) 

and Fekete (1963) that the flow is extremely sensitive to.initial 

disturbances, i.e. non-uniformity in the initial flow or slot geometry. 

These two effects were corrected for as far as possible and then the 

flow showed no signs of any spanwise periodicity. 

After attention to the initial conditions, the flow was found to 

2-be self-preserving in most cases, although some of the u /Urn """' YIYm/2 

profiles were not similar near the wall. It appeared that the outer 

layer exerted a higher influence on the near-wall regions as the curva-

ture increased. For the x/r = 2/3 case, the position of zero shear 

stress was at YIYm = 0.3 whilst for the x/r = 1 case, it was at 

YIYm = 0.1. Also the law of the wall with ~ = 0.42 and C = 5.45 

applied for y~,l v < 150 but only in the x/r = 2/3 case, the implica-

tion being that the curvature effected the near-wall region in the 

x/r = 1 case. However, Bradshaw (1973 p 56) argues that curvature 

• effects on the law of the wall are negligtble. 
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Apart from the increase in turbulence energy over the flat-plate 

geometry, the most interesting results were those relating to the non­

dimensional turbulence parameters v2;u2 , uv;q2 (a measure of the 

efficiency of the turbulence in producing shear stress) and the profiles 

of uv2 . The ratio v2;u2 was found to increase with increasing curva-

ture, i.e. the radial motion is increased with increasing instability. 

However, profiles of uv/q2 appeared to be insensitive to curvature main-

taining their flat-plate wall jet values. Therefore the turbulence 

shows a much higher degree of self-preservation when the turbulence 

parameters are scaled relative to one another as suggested by Bradshaw 

et al (1967). The third order product uv2, and to a lesser extent 

uw2 , were both significantly affected by the curvature. In the x/r = 0 

case, uv2 has a negative value near to the wall, which almost disappears 

when x/r = 1. Thus turbulent transport of negative uv away from the wall 

is much reduced, implying a smaller effect of the wall on the outer jet. 

This reduction therefore agrees with the observation that the position of 

zero shear stress moves towards the wall as the curvature increases. 

The intermittency measurements showed that the value of YIYm/2 at 

which the intermittency was constant moved towards the wall for increas-

ing curvature. Bradshaw (1973) offers an explanation by way of the 

existence of unsteady large-eddy vortices. Bradshaw and Gee (1962) 

used the R22 (0,0,s) correlation to trace the existence of unsteady 

longitudinal vortices which would show up as a larger negative region 

in the correlation at. say y = Ym/2· However, no such effect was observed 

in the data when compared with the same correlation in a flat-plate 

wall jet. Therefore either these vortices do not exist at y = Ym;2 

or are of quite a different length scale to the large eddies, i.e. s. 
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Wilson and Goldstein (1976), make no mention of either the problems 

concerning the two-dimensionality of the flow, nor the possible exist-

ence of longitudinal vortices. The ratio .of jet width to slot height 

was about 85 whereas in Guitton's case it was about 200. Therefore 

some end-wall effects are to be expected. The hot-wire signal was 

effectively linearized during the analysis. The effect of curvature 

on self-preservation was discussed in § 2.4.2 and apart from this, the 

turbulence data showed similar curvature effects to those of Guitton 

-- -
(1970). The ratio of v2;u2 was increased, whilst uv;q2 was unaffected 

by the curvature. 

Experimental studies of boundary layers on concave walls offer a 

further source of information on unstably curved shear layers. Meroney 

and Bradshaw (1975), So and Mellor (1972, 1975) and Smits et al (1979a) 

are among these and they all did parallel studies of stabilising curva-

ture. For a curvature of only o/r = 1/100, Meroney and Bradshaw 

observed steady longitudinal vortices that could be consistently repro-

duced and showed a wavelength of about one half the boundary layer height. 

The surface pressure exhibited a spanwise periodicity and the non­

dimensional plots of u2 showed a significant variation across the width 

of a longitudinal vortex. However, it was assumed that the lateral veloci-

ties associated with the vortex system did not affect the hot-wire 

analysis. The remaining Reynolds stress profiles showed the expected 

incr~ase in turbulent kinetic energy and a larger region of higher shear 

stress near the maximum of the profile. 

So and Mellor (1972, 1975) also established the presence of long-

itudinal vortices for o/r ~ 1/12. The curvature of the convex wall 

was adjusted so that the pressure distribution along the concave test 

wall remained constant. Air jets were used to accelerate the end-wall 
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boundary layers in order to reduce the effects of secondary flows. The 

spanwise variations in mean velocity were smaller than those found by 

Patel (1969b) who used approximately the same value of o/r, although, oddly 

enough, the variations in wall shear stress were negligible. The turbu­

lence intensities changed in the expected sense and in particular the 

components uw and vw were found to be non-zero; uw was positive at a 

trough and negative at a crest of the mean spanwise variations whilst 

vw changed in the opposite sense. The ratio uv;q2 had a value in the 

region of 0.15, its flat-plate value, whilst ~~~showed the expected 

increase in the radial component of turbulence intensity. The turbulence 

data are presented without distinguishing between crest and trough spanwise 

locations which makes interpretation difficult. However most of the 

data seem to fall broadly into two groups on most of the plots. 

Smits et al· (1979a) examined the boundary layers downstream of a 200 

and 30° arc of 'impul.se' curvature (o/r = 1/12, concave; o/r = 1/16, 

convex). A true curvature impulse would require an infinite extra strain 

rate so that the turbulence structure changed instantaneously. In prac­

tice one cannot be applied. Steady longitudinal vortices were found on 

the concave wall which persisted indefinitely downstream. Thus measure­

ments were made at the crest and trough spanwise positions in the flat 

section downstream and all the data in these two cases were treated 

separately. The pressure gradient downstream of the bend was small, 

therefore allowing a quantitative assessment of 3-D effects using the 

momentum integral equation. A hypothetical origin of the divergence 

could be calculated using values of Cf and 8. The data showed lateral 

divergence at crests and convergence at the troughs, which indicates a 

pair of contra-rotating vortices by reference to the continuity equa­

tion. The spanwise variations in Cf, V and U varied in phase with one 

another with a wavelength approximately one half of the boundary layer 

thickness at entry to the curved section. The bulk of the data 
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concerns the Reynolds stresses, third order correlations and the 

applicability of the law of the wall. These are discussed in great 

detail and only the more important items are noted here. 

The turbulence structure recovers from the curvature only very 

slowly. At exit from the curved region, there are large values of 

a{-uv)jay which reduces au;ay in the outer edges of the boundary layer. 

Thus production of shear stress and turbulent kinetic energy falls 

below those values at entry to the curved section. Therefore the 

return of the turbulence to its pre-curvature self-preserving values 

is not monotonic. Bradshaw {1973) and Smits et al discuss the use 

of ordinary differential equations to account for 'history' effects 

{i.e. the effect of mean transport on Reynolds stress) in perturbed 

shear layers. These euqations could be used in calculation methods to 

allow for a finite response time of a shear layer to an extra rate of 

strain and also for recovery after one is removed. 

Both trough and crest data show non-monotonic reduction to self­

preserving values. The ratio 

a' = uv uv 

was used as a dimensionless parameter for the data as w2 was not 

measured. For the crest position, a uniform value of 0.13 over most 

of the boundary layer width before the curved section rose to about 

0.20 afterwards. Thereafter a' showed the same non-monotonic decrease, 

falling below 0.13 before increasing. This shows that the efficiency 

of maintaining the shear stress falls during the recovery section.v2;u2 

rises at the end of the curved section, high values persisting at crests 
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and low values at troughs. It is little affected by curvature near 

the wall. The triple products uv2 and q2v, the turbulent transport 

velocities of uv and q2 respectively are significantly affected. They 

increase by factors of between two and three for the 300 case. 

2.6.3 Stably-Curved Wall Shear Layers 

These are less relevant to th~ present investigation and are 

mentioned ve~y briefly. Wyngaard et al (1968), a sequai to Rapp and 

Margolis (1967) and Margolis and Lumley (1965), studied both stable and 

unstable mixing layers in a curved duct. After correction to the diss­

ipation measurements, an energy balance showed that the production and 

transport of kinetic energy was inhibited in the stable case and augmented 

in the unstable case. Castro and Bradshaw (1975) also studied the effects 

of stabilising curvature on a mixing layer. They found the same non­

monotonic return of the turbulence to its uncurved self-preserving 

values as reported by Smits et al (1979a). The Reynolds stresses were 

found to decrease in the region of maximum curvature although supress-

ion of the triple products associated with turbulent transport allowed 

an increase in turbulence intensity above the self-preserving values in 

the middle of the layer where production is at its highest. Smits 

et al (1979a) found that in the convex case, recovery to self-preservation 

was very much quicker than in the concave case. The stabilising effects 

were so large that the turbulence collapsed so that newly created 

turbulence experienced hardly any curvature effects. So and Mellor 

(1973) noted that v2;u2 was reduced by stabilising curvature. 

2.7 THE EFFECTS OF STREAMLINE DIVERGENCE ON TURBULENT FLOWS 

2.7.1 Relevance to the Present Work 

The extra rate of strain associated with streamline divergence is, 

for a cartesian coordinate system, 8W/8z (Bradshaw (1973) ). For the 
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present flow where shear layer axes are used and where the circumferen-

tial direction is designated by z, it is: 

e = Usin a + Vcos a 

R .(2.46) 

For a diverging flow (a positive), aw;az is positive as shown by 

equation (2.46); it is negative for a converging flow (a negative). 

The F-factor correction equation of Bradshaw (1973) then becomes: 

F = 1 + a (Usin a + Vcos a> 

a au;ay ... (2.47.) 

It is worth noting that this extra rate of strain only appears in the 

production term of the transport equation for- uv, equation (F.7). 

(With reference to the continuity equation, for a positive value of 

aW; az, au;ax becomes more negative implying an increased velocity 

decay rate). But the additional production terms act• in the opposite 

sense to the main term au;ay, thereby reducing the production of -uv. 

The observed increase in turbulence intensity is therefore attributable 

to the implicit changes in the other terms of equation (F.7) for positive 

au;ay and uv: 

2.7.2 Previous Work 

The literature concerning the effect of this extra strain rate on 

turbulent flows is much less complete than that for streamline curva-

ture; more correctly, studies involving divergence have, by nature of 

the experiments, often included the effects of other extra rates of 

strain. For example, Patel et al (1974) studied a boundary layer near 

the tail of a body of revolution. This converging flow therefore showed 

the effects of convex streamline curvature and also transverse curvature 

where o/R was large. The only work to date which has studied pure 

divergence effects is that of Smits et al (1979b). A detailed study 
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was made of a boundary layer on a cylinder-flare body where a fully 

developed boundary layer was subjected to lateral divergence on a cone. 

Transverse curvature effects were not apparent; o/R = 1/4 at the beginn­

ing of the flared section and decreased further downstream. In order to 

avoid three-dimensional effects at the cylinder-flare junction, a 200 

curved section was used for smooth transition and the effects of the 

concave curvature appeared to die out fairly rapidly. A comparison 

with the data of the comparison work, Smits et al (1979a), allowed a 

qualitative assessment of the effect of only divergence on the flow struc­

ture. 

The same measurements were made in this study as by Smits et al (1979a). 

The first traverse position was upstream of the transition section, the 

next immediately downstream of it and the remainder were on the flare. 

After attention to the effects of pressure gradient in the transition 

section, circumferential measurements were made with a Breston tube. 

These showed small variations which decreased downstream. No periodicity 

of wavelength 26' was found and therefore it was concluded that no steady 

longitudinal vortices existed. None of the Reynolds stress profiles 

showed the collapse of turbulence after the removal of curvature 

exhibited in the case of destabilising curvature as found by Smits et 

al (1979a). Measurements far downstream of the curved transition sec­

tion show that divergence effects are highly significant - of the same 

order as thos~ of streamline curvature. For instance the shear stress 

data show the expected increase over the transition section, but they 

maintain their above-self-preserving values for the whole of the test 

region, falling gradually as the extra rate of strain aw;az does. 

The position of the peak in these profiles moves steadily outwards as 

the downstream distance increases. Consequently 3U/3y does not fall 
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and shear stress generation remains high. Hence the turbulence does not 

collapse downstream of the curved section. 

The dimensionless structural parameter a = -uv/q2 is close to 

0.15 at the first traverse station. It increases through the curved 

section and thereafter maintains a value above 0.15 except near the wall. 

This is ascribed to 'inactive' motion (Townsend (1976 p 123) ) near the 

--.;- -
wall where u~ and w2 are preferentially increased over ~ and uv Plots 

of -uv;v2 and v2;u2 support this conclusion and show an increase in v2 in 

the outer regions of the boundary layer. Non-dimensional plots of mixing 

length show little relation, if any, between mixing length and boundary 

layer width and suggest a , in equation (2.47) to be about ten. The 

triple products are magnified by a factor of five or more. The large but 

slow increase in these turbulent transport terms indicates modification 

of the large eddies in the outer part of the boundary layer and illustrates 

their long response time. An energy balance reveals very large increases 

in turbulent diffusion as expected from the above statements concerning 

the triple products. Plots of the dissipation length scale shows a 

general trend of an outward going maximum similar to that of the shear 

stress profiles. 

2.8 SUMMARY 

All measurements made in boundary layers on convex surfaces show 

the same increase in turbulence activity, specifically large increases 

in second and third order correlations, resulting in an increased shear 

layer growth rate. Experimental evidence also suggests the presence of 

steady or quasi-steady longitudinal vortices giving rise to crest and 

trough spanwise locations of wall shear stress. Values of second and 

third order correlations appear to be higher at the trough locations. 
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In the case of an impulse of curvature, the effects appear to be 

dependent on the total turning angle rather than o;r, and the return to 

self-preserving values of turbulence quantities is not monotonic, indica­

ting modification of the large eddy structure. 

In the case of wall jets on convex surfaces, a similar increase in 

turbulence activity is found, although there is no evidence to prove the 

existence of longitudinal vortices. For all cases of unstably curved 

wall shear layers, the establishment of as near two-dimensional condi­

tions as possible in the initial flow is of prime importance, and is 

made difficult by the three-dimensional effects of wind tunnel screens 

and secondary flows in duct corners. Stably curved wall shear layers 

show an opposite trend of turbulence suppression. 

The less documented effects of streamline divergence on turbulent 

shear layers are of the same order as those of streamline curvature. 

A diverging shear layer appears to be destablised leading to an increase 

in turbulence activity. 
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CHAPI'ER 3 

APPARATUS AND EXPERIMENTAL PROCEDURE 

The major part of the experimental work was carried out at 

Durham. This involved the design, construction and use of a model 

flare. Detailed flow measurements were taken using both hot-wire 

anemometers and a specially designed three-hole probe. Experimental 

work was also undertaken at B.P. Sunbury during the period of October 

to December 1979 on a full scale Indair flare. This work is described 

later on in this chapter and is referred to as 'large scale' tests. 

3 .1 MODEL FlARE TESTS 

3.1.1 Flare and Plenum Chamber 

The model flare was an exact 3/5 model of the flare used at 

Sunbury in the large scale tests - an eight inch Indair flare (I8-H-VS). 

In order to maximise use of the available air supply and also to facili­

tate probe mounting, a half-axisymmetric model was used, the flare and 

plenum chamber being mounted on a horizontal base-plate as shown in 

Figure 3.1. It was assumed that the presence of the base-plate would 

not have any effect on the flow (e.g. secondary flows) along the centre­

line which was used for all the principal traverses. The surface 

pressure tappings detailed in Figure 3.2 were staggered either side of 

the centre-line to avoid possible interference with the flow •. 

In spite of the manufacturing difficulties,the flare was machined 

out of a solid block of mild steel. Machining was not only necessary 

on the outside to produce the flare contour, but also on the inside to 

allow mounting of a screw-thread assembly and an exit for the surface 

pressure tappings. The screw-thread assembly was fixed to the base­

plate and therefore allowed a fine degree of adjustment to the slot 
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width measured by a micrometer screw-gauge. The motion of the flare 

was controlled by four feet which could slide in grooves milled into 

the base-plate. After adjustment the flare was clamped in position. 

The plenum chamber was also cut from mild steel, in two pieces to 

allow a contraction of 4.84:1 so that the radius of the chamber at the 

throat was of the correct dimensions. The lip of the slot was machined 

to a radius (see Figure 3.1) and then given a flat so that the slot 

was plane. As the rig was being assembled, the accuracy of the slot 

was assessed. Slip gauges were used to check the uniformity of the 

slot both at nominally zero and nominally 5.0 mm slot widths. The 

variation was no more than 0.07 mm which for a nominal slot width of 

5 mm represents 1.4% accuracy. The accuracy of the flare centre-line 

position relative to that of the base-plate centre-line was the best 

that could be achieved by use of the vertical milling machine to cut 

the feet on the flare and their grooves in the base-plate. 

3.1.2 Air Supply 

A 60 x 30 inch diameter welded air receiver was maintained at a 

pressure between 50 and 90 p.s.i.g. by two Broom and Wade BWlL com­

pressors, each capable of producing 65 c.f.m. after cooling. The 

upper limit .to the flow could be extended by using the air receiver as 

a blow-down facility. The maximum throughput recorded could be main­

tained at 180 s.c.f.m. (0.1 Kg/sec) for an interval of two to three 

minutes. 

The pipe work connecting the air receiver to the rig was of li" 

diameter B.S.P. (see Figure 3.3). The air was filtered and regulated 

by a Norgren filter (30 CG 10, 25 micron element) and regulator 
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(11-908-910). In order to improve the regulation characteristics, a 

feedback pilot regulator (11-204-004) was also used. This was supposed 

to give a constant downstream pressure irrespective of any changes in 

upstream pressure. However,in .spite of the pilot regulator, the down­

stream pressure did fluctuate according to the supply pressure of the 

air receiver. Consequently the flowrate did tend to drift. This could 

be compensated for by using a bleed control valve to maintain a constant 

pressure in the plenum chamber during the course of a traverse. The 

pressure in the plenum chamber was measured by either a mercury or 

water manometer. In cases where the supply pressure of the plenum 

chamber was high, a pressure gauge was used which had been previously 

calibrated against a Budenburg gauge tester. 

The air mass flowrate was measured by an orifice plate with D and 

D/2 tappings, designed according to B.S. 1042. The size of the orifice 

plate could be changed to suit the operating conditions and therefore 

minimise any errors in flowrate measurement. Downstream of the orifice 

plate a T junction controlled by globe valves directed the air flow to 

the flare or to the calibration nozzle. Before any measurements were 

made, the supply pipe-work downstream of the regulator and the rig itself 

were tested :for any leaks. During the course of a traverse, the tempera­

ture of the supply air increased due to the heating effect of the com­

pressors. This was always monitored and was never more than 20 C 

above ambient at the rig. Therefore temperature changes during the 

course of any one traverse were ignored. 

The carry-over of oil from the compressors was always a problem and 

had to be constantly monitored. Even a fine oil mist in the supply 

tended to break the delicate hot-wire probes or cause some inaccuracy 

in their calibration. 
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3.1.3 Trave~se Gear 

A dove-tail slide was mounted parallel with the base-plate 

centre-line. On it was mounted a rack ~nd pinion, the axis of which 

was perpendicular to the axis of the dove-tail slide. Together they 

formed a compound slide for positioning of probes in the horizontal 

plane. See Figure 3.4. On this was mounted a vertical pillar with a 

guide rail on which travelled a vertical slide. The slide served as 

a mounting for a rotary head calibrated in degrees and accurate to 

five minutes of arc. A DISA 55H01 traversing mechanism was mounted on 

the rotary head and by use of a gear, permitted either a 10 mm or 10 em 

maximum traverse length. The traversing mechanism housed a ten-turn 

potentiometer allowing electrical measurement of the probe position 

once a traverse was set up. The combined motion of the two horizontal 

slides, the vertical slide and the rotary head gave the required three 

degrees of translation and one of rotation. 

3 .1.4 Probes 

(a) Three-Hole Probes 

These probes were especially made in the Engineering Department 

at Durham as none are commercially available. Two were made of differ­

ent sizes, each consisting of three total pressure tubes soldered 

together (see Figure 3.4a). The two outer tubes were bevelled at 

angles between 40o and 45° for maximum sensitivity to the inclination 

of the mean flow direction relative to the flare surface. Thus it is 

assumed that the centre tube measures the full dynamic head and the 

outer two measure proportions of it, depending on the mean flow angle. 

The size of the tubing was selected to give a compromise between the 

response time for the probe and the size of the probe. The response 

time is inversely proportional to the fourth power of the tube diamete~• 

Therefore a larger tube size substantially reduces the response time 
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whilst increasing the size of the probe and interference of the flow. 

The smaller probe was used in the model flare traverses and required 

about 30 sees for a steady state reading. 

The full calibration of these probes is given in Appendix A together 

with the corrections used for the effects of turbulence, transverse 

velocity gradients and Mach number. From the three items of data 

available at each traverse point, the two mean velocities U and V are 

calculated as well as the inclination of the total velocity vector 

relative to the local flare surface, a. This data was used to verify 

and supplement the hot-wire data. 

(b) Hot-Wire Probes 

These probes were used to obtain turbulence data and more accurate 

data of the mean flow. A full description of their use and the neces­

sary data analysis is given in chapter four. A brief description of 

the probe design and geometries is given here. 

Four wire orientations were required to provide enough information 

from which the flow variables wanted could be obtained. Therefore, from 

the currently available configurations of hot-wire probes from DISA, 

the types 55Pl4, 55P53 and 55P54 were selected. These are shown in 

Figure 3.4b. All the probes consist of two or four prongs moulded into 

a ceramic body. The wires are all of 5 ~m diameter and made of platinum­

coated tungsten. Both metals have similar temperature coefficients of 

resistivity (a20 ~ .36% I °C); the platinum coating makes welding to 

the prongs easi~ whilst the tungsten provides strength. The single 

wire probe (55Pl4) has an active length of 1.25 mm. The c~oss wire 

probes have prongs placed 3 mm apart. The wires between them are 
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gold-plated at the ends, reducing the active length of the wire to 

1.25 mm. This is done to minimise prong interference of the flow 

around the active portion of the wire, and also reduces cooling of the 

wire by the prongs. These probes are fragile and easily broken by 

mis-h~ndlingorby dirt particles. Broken probes were sent to DISA 

for repair. Tre consistency of the probe geometry for probes of the 

same type was not always what might have been desired, particularly 

after repair. 

All the wires were operated with an overheat ratio of o.s, i.e. 

Tw - Tamb = 222.2 °C, and the upper limit to their frequency response 

was about 400 kHz, for use in air. 

3.1.5 Calibration Nozzle 

As shown in Figure 3.3, a calibration nozzle was mounted adjacent 

to the flare. The nozzle was 16 rom in diameter and was machined so as 

to give a smooth contraction from the 1! inch diameter pipe down to the 

nozzle exit •. There was a 0.6 m upstream length of pipe free of any 

bend or obstruction. Consequently, within the potential core of the 

emerging jet, the turbulence intensity was measured as no more than 

0.64%, and any probe to be calibrated was placed in the potential core 

with a small pitot-static tube to measure the dynamic head. Both 

the three-hole and hot-wire probes were calibrated in this fashion. 

3.1.6 Instrumentation 

(a) Calibration Manometer 

All probes were calibrated against a reference dynamic head 

measured by an electromanaometer (type M8, Mercury electronics). This 

provides a one volt d.c. output for a maximum input of either 1000 or 

3000 mm water, depending on the pressure cell used. 
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('b) Three-Hole Probe Pressure Transducers 

In order to reduce the time required for a three-hole probe traverse, 

throe separate pressure transducers were used, therefore reducing the 

time spent waiting for the probe response time approximately by two­

thirds. The transducers were of the strain gauge type (Schaevitz EM 

type P722, vented gauge) with a full scale output of 25 mV for 1.5 bar 

maximum input. They were required to be robust as these transducers 

were also used for the full scale outdoor tests. A high gain stable 

d.c. amplifier was also required for amplification of the transducer 

outputs as their wide range was only used in the full scale tests. The 

amplifier had a gain of 1000 and was constantly checked for drift by 

having a reference input voltage built into the circuitry. 

(c) Hot-Wire Equipment 

The choice of hot-wire analysis dictates what equipment is necessary. 

A maximum of two anemometer channels was required. Therefore, two DISA 

anemometers (55Ml0, 55D01) and two linearizers (55Dl5) were required. 

Where possible, the newer 55Ml0 anemometer with the standard bridge 

was used in preference to the 55D01 unit. With use of the standard 

bridge, the 55Ml0 unit has an upper limit to its frequency response of 

200 kHz, whilst for the 55D01 unit it is about 150 kHz for the same flow 

conditions. However, the upper limit to the frequency response is set 

usually by the linearizer and is 70 - 100 kHz for a typical voltage 

output of 3 - 2 volts. The linearized signals were passed to a DISA 

turbulence processor (55B25) which is able to produce various functions 

of up to two input signals and integrate the combined signal, using a 

preselected time constant. The time constant used was one second 

requiring an integration time of about ten seconds, and its use gave 

a steady state value of the integrated signal. The two input channels 
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of the turbulence processor have separate variable gains and can be 

either a.c. or d.c. coupled to the input signals. A R.M.S. voltmeter 

(55D35) was also required for estimation of turbulence intensities in 

the calibration nozzle. A schematic diagram of the instrumentation is 

given in Figure 3.3. 

(d) Data Acquisition 

All data recorded was either initially a d.c. value or the integrated 

value of an a.c. signal. Therefore the rate at which data was to be 

sampled was not a problem. A data transfer unit (Solartron 3230) 

provided up to twenty channels that could be sampled either automatically 

over a preset range or individually. The channel sample data rate was 

determined by digital instrument set~ng, the word length and record-

ing rate of the output recorder. Two output driver units were linked to 

an Addmaster serial entry printer and to a Facit high speed paper tape 

punch which provided data coded in ASCII/ISO 8 level code. The tape 

provided an easy means of data transfer to a varian '73 computer or 

later to an IBM 370/168 for analysis and plotting. 

A box of preset. potentiometers with matched resistances provided 

a means of entering data for which there was no analogue signal (e.g. 

ambient temperature) and also for entering integer data which, for 

example, could be the number of traverse or calibration points. 

3.1.7 Plotting Routines 

By use of standard 'GHOST' plotting routines available on the 

IBM 370/168 computer, a series of seven plots could be generated for 

each hot-wire probe traverse and three plots for each three-hole probe 

traverse. The plotting routines used provided drawing and annotation 

of axes, suitable for A4 size paper, point plotting and the drawing of 
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a least-squares best fit line through the data points. The curve fitting 

was done interactively so that a best fit could be chosen before obtain­

ing a hard copy. 

3.1.8 Traverses 

A traverse was set up by measuring the height of the axis of the 

rotary head above the base-plate and using simple trigonometry to find 

the required position of the dove-tail slide for a selected traverse 

angle. The siides all had verniers and therefore positional accuracy 

could be read to 0.1 mm. The probe could be lined up with the centre­

line scribed on the plenum chamber near the throat to ensure that it 

was on the centre-line of the flare. All traverses were done along a 

normal to the surface for a specified angle of inclination to the hori­

zontal. In the plane perpendicular to the traverse direction, the 

positional accuracy was probably no better than 0.5 mm. However, the 

accuracy in the direction of the traverse.was much better because the 

traverse potentiometer could read to an accuracy of 0.01 mm. Before 

every traverse, the probe had to be zeroed at the flare surface. In 

the case of the three-hole probe, an addition-to the traverse distance 

was required to allow for the diameter of the tubing. If carefully 

manipulated, the hot-wire probes could be placed very accurately close 

to the surface without actually touching it, by noting any increase in 

bridge voltage of the anemometer caused by cooling of the probe. 

For the hot-wire traverses, it was necessary to adopt a multi-

probe technique rather than a multi-position technique in order to 

obtain the required number of wire positions. The mean flow velocities 

and Reynolds shear stresses, that were wanted from the analysis, required 

inclination of the wires in both the XZ and XY planes. Together with the 
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geometry of the flare, this dictates that at least two different probe 

geometries are required where further wire orientations can be obtained 

by rotation of the probe. The probes used gave four wire positions from 

three different probe types. Therefore for each traverse position three 

traverses were done. This not only placed a lot of trust in the positional 

accuracy of the probe, but also assumed stationary turbulence. In order 

to minimise positional ~rrors, all the traverses were completed at one 

position before moving onto the next traverse. This meant that the 

anemometers and linearizers had to be reset for every traverse. 

In all but one of the sets of traverses, the maximum flow was limited 

to below M = 0.3 to avoid compressibility effects and temperature fluctua-

tions. other limits were also set by some of the instrumentation. A 

large slot width was used for the detailed hot-wire traverses as the 55P53 

probe could not go closer to the wall than 1.06 mm. With a large slot 

width a larger proportion of the jet was available. Most of the traverses 

0 0 0 0 7 50 900 0 were done at 20 , 30 , 45 , 60 , , , 100 and thereafter at 10 mm 

intervals on the flat portion of the flare surface. The detailed hot-

wire work was done at 

t = 5 mm Res = 2 .17 104 

Further three-hole traverses were done at 

Po/ -- 1 0602 P • , 
atm 

and at Po/Patm = 1.974, 

3.2 lARGE SCALE TESTS 

3.2.1 Flare and Air Supply 

t = 2 mm Res = 1. 37 lo4 

t = 0.7 mm, Res~ 1.95104 

The eight inch Indair flare (dimensions are available in Figure 3.1 

by multiplying those shown by 5/3) was mounted vertically and connected 
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by four inch diameter hose to an Arto~~Rolls-Royce gas turbine with a 

modified compressor for use as an air supply. The maximum flowrate was 

about 1500 s.c.f.m. and the maximum supply pressure 30 p.s.i.g. The air 

temperature in the plenum chamber varied between 120° and 180° c. No 

facility was available either for surface pressure tappings on the flare, 

or for flowrate measurements. 

3.2.2 Traverses 

Using the same equipment as that for the three-hole probe traverses 

on the model flare, traverses were carried out to provide extra data from 

a larger flare. The larger of the two three-hole probes was used. The 

traversing mechanism described in § 3.1.3 was mounted on -a vertical 

gantry with fixed locations which ·.corresponded to a particular angle of 

traverse on the flare. Traverses were done at t = 2.51 mm, P0 /Patm = 1.34 

and P0 /Patm = 2.43 (Res~ 2.34 1o4 and 4.59 104 respectively) and 

t = 3.99 mm, Po/Patm ~ 1.34 and P0 /Patm = 2.44 (Res~ 3.7~ 104 and 

6.67 104 resPectively.) 
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(a) 3-Hole Probe 
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CHAPTER 4 

HOT-WIRE ANALYSIS 

4.1 INTRODUCTION 

The factors which determine the heat loss from a hot-wire are 

complex. Thus the fir~t requirement for any analysis is to be able to 

propose a sufficiently accurate relationship between the voltage across 

the wire and the effective cooling velocity incident on the wire. A 

full treatment is given in the standard texts of Hinze (1975) and 

Bradshaw (1971). 

In the majority of cases, the heat lost from the wire to the 

surrounding fluid depends on:-

(a) the effective cooling velocity 

(b) the temperature difference between the wire and the fluid 

(c) the physical properties of the fluid 

(d) the geometry and physical properties of the wire. 

Radiative heat loss can be ignored except very close to other heat 

conducting solids and buoyant convection caused by local heating of the 

fluid is neglig.lble except at very low wire Reynolds numbers, 

Re , (typically 1 - 5 m/s in air for a wire with 1/d = 250). If the 
w 

hot-wire probe forms one arm of a wheatstone bridge circuit, it can be 

operated so that either the current through it is kept constant (c.c.A.) 

or so that its temperature remains constant (C.T.A.), see Figure 4.1. 

For constant current operation, the resistance of the wire fluctuates. 

At high frequencies, the thermal inertia of the wire attenuates its 

amplitude response and therefore an amplifier is necessary to compen-

sate the frequency response. The c.c.A. is now rarely used except for 

very low currents when the probe is used to measure temperature. With 
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the aid of fast developing electronics the c.T.A. has now become more 

or less universal. For constant temperature operation, the current in 

the wire fluctuates and heat loss is compensated for by additional 

current. (Figure 4.1). A higher gain on the servo-amplifier gives a 

quicker response for compensating the cooled wire and the error voltage 

is reduced more quiCkly. But with a high loop gain, the anemometer 

system can become unstable. Thus the bridge must be balanced before 

operation. The setting up procedures for the anemometers are given in 

detail in the relevant DISA manuals. 

If the overheat ratio of a hot-wire used in one arm of a C.T.A. is 

kept constant for both calibration and use, then item (b) above is 

accounted for by calibration, assuming the temperature of the fluid is 

constant. The remaining items are accounted for in a series of semi-

empirical calibration laws that have been proposed, the first of which 

was by King (1914):-

0.5 
Nllw = A + B Rew .(4.1) 

Later workers produced equations similar to King's law but incorporating 

the Prandtl Number. Collis and Williams (1959) produced a modified form 

of King's law for the range 0.01 < Raw < 140: 

( ) 

-0.17 
Nllw Tm 

Tf 

n = A + B Re 
w 

• (4 .2) 

The exponent n was found to vary between 0.45 and 0.51. These workers 

were the first to identify a marked dependence of the constants A, B 

and n on Raw• For a constant property fluid (item C) King's law reduces 

to 

••• (4.3) 
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with modified constants. Siddall and Davies (1972) modified this 

version to:-

= A+ B u0 •5 
eff + c ueff • • • ( 4 .4) 

in order to account for any dependence that the constants in equation 

(4.3) may have on Rew, and a significantly better representation of 

calibration data was obtained. 

The remaining question is whether a universal calibration of the 

form of equations (4.3) or (4.4) can be trusted or whether a significant 

variation in the constants can be expected from probe to probe. It was 

mentioned in § 3.1.4(b) that there was often a noticeable difference in 

the geometry of probes of the same type, particularly after repair. 

Thus a universal calibration would fail to take account of item~) in the 

list of factors governing the wire heat loss. Therefore, it was 

necessary to calibrate probes individually using the semi-empirical 

calibrations above as no.more than a guideline to the form of calibration 

required. In this case then, equation. (4.3) is written more generally 

as: 

••• (4.5) 

4.2 LINEARIZATION 

All of the accepted hot-wire calibrations are significantly non-

linear. This presents a major difficulty when turbulent quantities are 

to be measured, as these are related to the fluctuating voltage by the 

gradient of the calibration dEB/dUeff which changes according to Ueff" 

If the turbulent fluctuation is small then acceptable results can be 

obtained by using the gradient at Ueff" But for larger intensities, the 

calibration has to be linearized, or a better approximation found to 

the gradient at ueff" 
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4.2.1 Analogue Linearization 

An analogue linearizer can be used to compensate the curvature of 

the wire~ response. The DISA 55Dl5 linearizer has a transfer function:-

= .(4.6) 

Assuming the wire calibration of equation (4.5) where: 

ErN0 = A and 

then 

Because buoyant convection is prominent at Ueff = O, the equation is 

more usually written: 

+ ••• (4.7) 

4.2.2 Effective Linearization - Taylor Expansion Method 

With equation (4.5) rewritten as:-

1/n 

••• (4.8) 

Ueff is a continuous function of Ea only, with finite derivatives f·or 

positive Ueff• Therefore Ueff = Ueff + ueff can be rewritten as a 

Taylor expansion of EB about the point EB (E = E + e ), giving an 
B B B 

estimate for ueff• 

4.2.3 Comparison of Linearization Techniques 

The type of flow studied in this investigation is characterised 

by large mean velocity gradients and high turbulence intensities (>30%). 

Therefore large variations in Ueff and Ueff are to be expected. Brunn 

(1971) assesses the effects of turbulent velocities on the accuracy of 

the use of linearized and unlinearized calibrations. Calibrations of 
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the form of equations (4.5) and (4.7) were compared and significantly 

better accuracy was obtained with a linearized calibration. For 

example, at a velocity of 30 m/s, the turbulence intensity had to be 

< 18% for no more than a 1% uncertainty in the velocity estimate when 

a linearizer was not used. Several linearization transfer functions of 

the form of equation (4.6) were compared and the inversion (i.e. 

Ueff = f(EB) ) of the calibration of Siddall and Davies (1972) was 

found to give the best agreement with data for the whole range 

0 - 150 m/s. other literature of the subject of linearization, Klatt 

(1973) and Parthasarathy and Tritton (1963) is less helpful as the 

non-linear relationship (4.5) is confused with the non-linear form 

of Ueff when composed of three mutually perpendicular velocity com­

ponents. See § 4.3. 

However, the DISA 55Dl5 linearizer assumes that the constants in 

equation (4.5) are non-variant with velocity. Therefore errors could 

be expected for large ranges of Ueff" In this study, the velocity 

range of interest is approximately 15 m/s < Ueff < 70 m/s. For this 

range, the linearity of the linearized anemometer output was checked. 

With n = 0.33, equation (4.7) fitted the calibration data well for 

both the miniature and gold-plated wire probes,.in spite of the slight 

variation of calibration constants with Ueff" See Figures 4.2. Newer 

versions of DISA linearizer allow for variation of the exponent n in the 

calibration (4.5) (55Dl0 and 55M25) and therefore use of these linear-

izers would allow a greater velocity range to be studied. 

However, against the use of an analogue linearizer it may be said 

that it provides an extra source of error to the hot-wire signal. Drift, 

to which the linearizer is especially prone, noise and limitations to 
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frequency response all effect the signal. The way in which the hot-

wire signal is linearized also influences the choice of analysis of 

Ueff" An analogue linearizer with EL a Ueff greatly simplifies the 

analysis whereas approximation of the calibration by using a Taylor 

series complicates the analysis. In both cases the number of wire 

positions required equals the number of mean velocities and velocity 

correlations available from the analysis. With the confirmation that 

a linearized anemometer output of the form of equation (4.7) agreed 

well with calibration over the required velocity range, the 55Dl5 

analogue linearizer was used. 

4.3 RESOLUTION OF EFFECTIVE COOLING VELOCITY 

The preceeding sections show how a satisfactory relationship can 

be proposed between the instantaneous effective cooling velocity and the 

instantaneous output voltage from a linearized or unlinearized C.T.A. 

With certain restrictions, a linear relationship between EL and Ueff 

can be used. The remaining task involves the resolution of Ueff into 

velocity components relative to the hot-wire, and how these can be 

manipulated to give velocities relative to the co-ordinate system 

defined for the flow field. 

Defining UN' UB and UT as instantaneous velocity components 

relative to the wire, (Figure 4.3) Ueff can be written as: 

u2 
eff = .(4.9) 

c.f. J~rgensen (1971) and Rodi (1975a) amongst others. k1 and k2 are 

sensitivity coefficients; k1 is a yaw factor and k2 a pitch factor. 

Both are dependent on 1/d and prong spacing. k2 is dependent on the prong 

length. For an infinitely long wire, k1 = 0 and k2 = 1.0; their actual 
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values are slightly larger so that k1 accounts for heat conduction to 

the prongs and k2 for cooling effects on the prongs. Using both minia­

ture and gold-plated wire probes, Jprgensen (1971) calibrated for both 

k1 and k2, using a constant reference velocity U whilst varying the 

yaw (a) and pitch (9) angles separately. Both coefficients were found 

to be not only angle dependent but also velocity dependent. Because of 

the trigonometric relationships between UN' UT and a, and UN, UB and e, 

it is inherently impossible to calculate values of k1 and k2 that are 

independent of UN' UB, UT and therefore Ueff• Even if it were possible, 

use of k1 and k2 as functions of angle and velocity would require prior 

knowledge of the flow field. Therefore average values have to be used. 

TABLE I SENSITIVITY COEFFICIENTS 

PROBE kl k2 

55Pl4 0.4 1.1 

55P53 0.23 1.03 

55P54 0.23 1.03 

The values of k1 and k2 in Table I were selected for the analysis 

from Jprgensen's data with regard to the likely values of U, e and a 

to be encountered in the flare flow, and assumed to be constant for all 

probes of the same type. Individual calibration of the wires for k1 

and k2 was not done as it requires very accurate measurements and is 

therefore a considerable amount of work for a small improvement in 

accuracy of k
1 

and k
2

• In any case, their use in the analysis is 

approximate. The values were compared with values used by other workers 
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viz: Champagne et al (1967), Durlo and Whitelaw (1974) and Bl'Unn 

(1969). See Table II • 

TABLE II: PUBLISHED VALUES FOR SENSITIVITY COEFFICIENTS 

Author kl k2 Comments 

Durao and 0.13 1.0~ DISA gold-plated sensor probe 
Whitelaw (1974) 

Rodi (1975a) o.o 0.96 DISA 55Fl3 probe 
k1 velocity dependent U::: 7.5 m/s 

Champagne et al 0.2 - 1/d = 200 
(1967) 

4.4 REMAINING SOURCES OF ERROR 

4.4.1 Shear Effect on Wires 

The wires of the 55P53 probe have a large mean velocity gradient 

along their length causing a skew temperature distribution along the wi~e. 

Gessner and Moller (1971) measured temperature distributions of wires 

for various 1/d in flows with a defined mean velocity gradient, and used 

the data to develop correction curves from which the averaged anemometer 

output voltage could be corrected. But this involves prior knowledge 

of the mean velocity gradient, therefore requiring an iterative correc-

tion sequence. The presence of a mean velocity gradient causes an 

underestimation in both the mean and R.M.S. anemometer voltage output. 

The effect is reduced for wires at low 1/d. 

No ·correction was applied to the voltage output of wires exposed 

to a large mean velocity gradient, not only because of the difficulties 
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stated above, but also because the wires were all of dimensions where 

1/d = 250. Therefore, the error in voltage output was estimated at 

no more than 7% for the values of mean velocity gradient expected. 

4.4.2 Wall Proximity 

Oka and Kosti6 (1972) measured the effect of a cold wall near a 

hot-wire with 1/d = 200. No effect was observable for yU~/v > 4 which 

is equivalent to y = .13 mm for U~ = 0.5, a minimum value expected for 

U~. Accurate traverse data was not available for y > 1.06 mm as this 

was the minimum distance between the wall and the centre of the 55P53 

probes which were inclined in the plane perpendicular to the wall. 

Therefore the effect of wall cooling was never apparent in the data. 

Bradshaw (1971) lists several other causes of error associated with 

hot-wires and their instrumentation. 

4.5 ANALOGUE/DIGITAL DATA ANALYSIS 

With the advent of small and fast electronic instrumentation, the 

digital acquisition of hot-wire data is now established. The hot-wire 

signal can be recorded on magnetic tape prior to being d'igitised for 

storage or data can be transferred direct:to an.on-line computer for 

analysis. A digital canalysis obviously requires more work to set up, 

butonue done gives versatility to the analysis, changeable by software 

rather than by instrumentation. It does have the disadvantage that no 

immediate visual display of the analysed data is possible but does remove 

inaccuracies associated with the analogue instrumentation. Analogue 

analysis was used in this study, thus only averaged data was recorded. 
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4.6 REVIEW OF SIGNAL ANALYSES 

Three methods of analysing hot-wire data were investigated before 

the method used was selected. These are described below together with 

reasons why they were not used. 

4.6.1 Conventional Method 

Appendix B contains four equations ( (B.2), (B.4) and (B.6) ), for 

the effective cooling velocity for a hot-wire with the four orientations 

shown in Figure 4.4. In this method the signals E and;?- = (E - E')a. = 
-2 _2 
E ~ E.· are measured. A solution becomes available by taking the 

square root of both sides and expanding the right-hand side of the 

equation under the square root. Thus equation(B.2)becomes, after 

ave raging: -

ueff <0 >xz = 't+k;(~<: 
2 u2 u 

-2 ""i ) k2 .;;a 

] 2 v uv 
+ 

v u + 1 
==2 -2 -2 

2 u2 u u u u 

••• (4 .10) 

where third order terms and higher are neglected (V ~ U). ~ 
eff = 

(lr-eff - U can -2 J 
eff 

be obtained from Sl directly, assuming a linearizer 

is used, so that ~eff a~. 

Then:-
- 2 

2 v uv k2 

u .(4.11) 

where third order terms and higher are neglected also. With the same 

approximations uv is available from the ueff (45~yand Ue:f:f (-45)X·y 

response equations: 

2 
uv = u 

eff 

2 
(45) - ·uefi-45>xy xy 

2(1 - k~) • • • ( 4.12) 
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-2 - ~ With further simplifying assumptions (V = 0, v = 0) U and u are 

available from equations (4.10) and (4.11) respectively. Alternatively 

with more wire orientations, more response equations are available to 

give a fuller solution. 

It is important to note the approximations made. U is obtained 

from equation (4.10) by assuming second order terms and higher are 

negligible with respect to u. 'ii2 is obtained from equation (4.11) by 

neglecting terms of. third order and above. In the highly turbulent 

flow of a jet this assumption is too restrictive. Guitton and Newman 

(1977) found it necessary to use terms up to fourth order. This 

increases the number of unknowns as approximations to higher order 

correlations are required. There is thus an equivalent increase 

in the number of wire orientations required for solution and the 

procedure is likely to have significant cumulative measurement errors. 

4.6.2 Statistical Methods 

A method was proposed by Zari6 (1969) and evaluated by Durst and 

Whitelaw (1970) for application to highly turbulent flows. It relies 

on the assumption that the probability density distributions of the 

velocity components are normal (Gaussian), i.e. that they have zero skew-

ness and the flatness factor equals three. These functions are likely 

to be far from normal in the outer regions of a turbulent jet. Also, 

skewness of the distributions is connected with the convection of 

turbulent energy by the turbulence itself. In a strongly curved flow 

with destabilising curvature, turbulent transport terms are significantly 

increased. Therefore in a strongly perturbed jet, a Gaussian probabiility 

density distribution is a restrictive assumption. 
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A similar method was proposed by Dvorak and Syred (1972) in whic~ 

second order correlations are expressed as variances and covariances of 

the anemometer output signals. The resulting functions required a 

Taylor series expansion of the calibration to remove thesquare root and 

only terms up to second order were retained. Therefore third order 

terms and higher are neglected implying normal skewness and flatness. 

Fair agreement was found with experimental data from an axisymmetric 

free jet. 

To conclude, Durst and Whitelaw (1970) found that the method could 

be used in limited flow regions where Gaussian assumptions were valid, 

but that the analysis was not a very practical approach. 

4.6.3 Method of Acrivlellis (1977a, b and 1978 a', b) 

The conventional method described above is approximate because in 

order to obtain a solution, the square root of a function has to be 

expanded binomially. Therefore Acrivlellis suggested analysis of the 

squared signal with the use of a linearizer. Unfortunately, he made 

a fundamentally false assumption (Bartenwerfer (1979) ). He assumed 

that, for example, the equation 

2 -2 2 .-4 ---2 -2 
Ueff = u + k2 J11r + v ) + ki w· • • • ( 4.13) 

could be written as an a.c. signal equivalent to the equation (B.3) where 

2 -:-2 1 s ueff a e was obtained by a.c. coup ing to a R.M •• meter. By a.c. coup-

ling, the a.c. signal is separated from the d.c. signal before squaring 

and averaging, whilst u~ff is obtained in the analysis after squaring 

and averaging. Thus the method is only mathematically correct for 

-2 -2 -2 
u = v = w = 0 and leads to large inaccuracies for a turbulence 

intensity> 10%. 



- 74 -

4. 7 SELECTED ANALYSIS 

The methods described above are unsuited to a jet flow because of 

restrictive assumptions concerning the turbulence intensity and the 

shapes of the probability density distributions of the velocity fluctua-

tions. This method uses the squared signal from a linearized anemometer 

and up to a point makes no assumptions concerning the nature of the flow. 

Some approximations are however necessary. These are discussed in 

§ 4.8. The method was suggested by Durst (1971) and Durst and Rodi 

(1972); it was later used for analysis of data from measurements made 

in a round jet by Rodi (1975) and Durao and Whitelaw (1973 and 1974). 

4.7.1 Recorded Data 

For each of the four wire positions shown in Figure 4.4, the 

=2 -
signals E and E were recorded. Therefore a maximum of eight variables 

are available from eight response equations. 

4.7.2 Reduction of Effective Cooling Velocities to Total Velocity Components 

The four equations for U~ff are first used to obtain the total 

velocity components u2 
+ U2, v2 

+ V2, ~and u v + u v by matrix 

inversion. This is done in appendix c. No assumptions about the flow 

structure have been made up to this point except two-dimensionality. 

4.7.3 Separation of Mean and R.M.S. Components 

Equation (C.2) is obtained by binomial expansion for Ueff<a>xy 

retaining terms up to second order only, but assuming V~ u. Regroup-

ing terms so that values of total velocity components can be substituted, 

. f h d 1 . 1 . u and v for rv -- +_ 45° provides two non-11near ourt or er po ynom1a s 1n ~ 

(Equation (C.3) ). The coefficients are functions of the total velocity 

components and the wire constants. These two equations were solved by 
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a Newton-Raphnon technique for solutions to U and v. Therefore, the 

individual components u2 , v2 , w2 and uv are also obtainable. 

4.7.4 Solution for y < 1.06 mm 

In this case the 55P53 probe was unable to give data sufficiently 

close to the wall. Therefore only four sets of data were available viz: 

u;ff (O)xz' Ueff (O)xz, u!ff (45)xz and Ueff(45)xz• For regions close 

to the wall, the assumption V = 0 is not unjustified. With this simpli-
-2 -2 

fication, a solution for U, u , v and w2 is obtainable. This is done 

in appendix D. 

4.8 ASSESSMENT OF THE ANALYSIS 

The total velocity components are derived without any assumptions 

and the accuracy of the analysis relies solely on the constants of each 

wire. However, in order to separate the mean and R.M.S. components, 

some simplifying assumptions have to be made. These are that the 

• correlations of third order and above are neglig~ble with respect to 

the mean where as the conventional method assumes second order correla-

tions are negligible also. The neglect of third order terms and above 

implies the same approximation as for a statistical method in which a 

normal probability distribution of the velocity fluctuations was 

assumed. However in the method of Dvorak and Syred (1972), this 

approximation was made for all wire response equations (i.e. in the 

calibration) rather than just for two of them as in this case. In 

this analysis it was assumed v~u rather than v 4 u. Therefore terms 

v 2 
such as - u were taken as second 

li'~ 
rather than third order. 

There is some redundancy of data for traverse points where use of 

all four wire positions is possible. This is because only six flow 
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variables were obtained from eight items of data. However, the values 

of Ueff(45)xz and Ueff(O)xz were not used for the full analysis because 

the use of the corresponding binomial expansions to separate the mean 

and R.M.S. components of velocity often failed to give converged 

solutions. 

The reasons for this are discussed in Chapter 9. It would be 

possible to extend the present analysis to include two extra flow 

variables by their inclusion in the expansion equation (C.2). This 

was not done, however. It should be noted, also, that without the use 

of a linearizer, this analysis would be too cumbersome to use. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

5.1 ESTABLISHMENT OF QUASI-TWO-DIMENSIONAL CONDITIONS 

Preliminary radial traverses using a three-hole probe showed 

significant three-dimensionality of the mean flow. As mentioned in 

Chapter 3, the slot lip was honed to attain a slot width accuracy of 

0.07 mm and the position of the flare relative to the slot lip was 

carefully checked in order to reduce these effects. A gauze was 

also inserted into the plenum chamber (figure 3 .1) to minimise any 

jet effect caused by the supply pipe. Thus upstream non-uniformities 

likely to cause three-dimensional effects in the jet were minimised. 

Another cause of three-dimensionality, jet divergence or convergence 

caused by the skew-induced secondary flows at the base-plate was also 

considered. The jet thickness was noted to be much larger adjacent to 

the base-plate because of secondary flows, a phenomenon also noted by 

Guitton (1970}. Usual checks for two-dimensional flow include investi-

gation of the upstream flow before the beginning of curvature in order 

to compare with established experimental data. However, this was not 

practically feasible in this case, nor would it give any indication of 

the degree of three-dimensionality caused by secondary flows. Approxi-

mate measurements of u2eff(~45)xz and Ueff(~45)xz however, showed some 

'discrepancy between Ue:ff(+45)xz and Ueff(-45)xz and between U2 eff(+45)xz 

and U2 ( 45) Th1"s 1"ndicates that the assumptions of W= 0 and eff - · · xz· 

uw = 0, used in the hot-wire analysis were not valid and that three-

dimensional effects in the flow were not completely erradicated. 

5.2 DISCHARGE COEFFICIENT DATA 

Mass flowrates were measured by an orifice plate and readings 

corrected according to B.S. 1042 for the effects of Reynolds number 
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and Mach number. They were also corrected for a 'zero flow' reading 

by extrapolation of a mass flowrate versus slot area plot to zero flow­
~~~ 

rate. Thus a nominally zeroLwas infact equal to 9.67 mm2. Theoretical 

values of mass flowrate were corrected iteratively for any total head 

loss in the plenum chamber caused by a finite velocity at the pressure 

tapping. In practice the losses were never greater than 0.01%. Plots 

of discharge coefficient versus pressure ratio are shown in figures 5.1. 

The values of CD at the critical pressure ratio are all 1.0 + .045. In 

order to remove anyerrorsdue to slot width measurement or leaks in 

the air supply, the data are also presented normalised with respect to 

the value of CD at the critical pressure ratio for each slot width. 

The plots show a clear trend, at below choking pressures, of an 

increase in the value of normalised CD (CDN) as the slot width increases. 

This is because of the assumptions of uniform flow across the slot which 

become more inaccurate at smaller slot widths. This trend is expected. 

However, the increase in normalised CD above unity for small slot 

widths and above choking pressures is less readily explained. The 

effect of distortion of the rig whilst under pressure, although not 

likely, would explain an increase in values of discharge coefficient 

and would be more prevalent at smaller slot widths. Another possible 

reason is that at small slot widths, values of normalised CD are more 

sensitive to leaks in the air supply downstream of the orifice plate. 

However, all the values of CD are significantly higher than the corres-

ponding case of a flat wall downstream of a plane slot because the 

sub-ambient pressure distribution induced by the convex curvature. 

Gregory-Smith and Robinson (1982) investigate the effect of convex 

curvature on discharge coefficient using different slot geometries. 
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5.3 STATIC PRESSURE MEASUREMENTS 

Surface pressure measurements are shown in figure 5.3. The dotted 

line shows the data of Newman (1961) who uses the definition of ·Re for 
p 

a circular cylinder, and it maintains a roughly constant value of 

Pstand = 1.4. The plots are as expected except for the 30% increase 

in pressure between the 60° and 70° positions. This jump appeared 

consistently in all surface pressure plots, even when the slot was 

choked. At their face value, these plots appear to indicate a region 

of separation, reverse flow and subsequent reattachment. This was 

checked by smoke tests which showed no such region. The fact that 

the noted rise in pressure was independent of supply pressure corrob-

orates this. This rise is due to a slight surface imperfection and 

also errors in position and angle of the pressure tappi,ngs. The 

positioning and drilling of these was in fact an awkward process and 

difficult to do accurately because of the geometry of the flare. 

For the case of P0 /Patm = 1.02 (hereafter referred to as 'Case A'; 

the P
0
/P = 1.0602 data is referred to as 'Case B'.), there is a 

atm · 

region of positive pressure immediately downstream of the slot. In 

this case, however, the region of negative pressure gradient disappears 

with higher slot exit velocities. This phenomenon could therefore be 

attributable to a small region of separation caused by attachment of 

the flow to the slot lip. It was also noted by Newman (1961) who 

attributed the cause to curvature of the rapidly entrained flow near 

the slot. In the former case, it is an effect induced by the geometry 

of the slot lip whilst in the latter case it is caused by the geometry 

of the flare itself. But the presence of a negative wall pressure 

gradient here does cast doubt on the validity of profiles immediately 

downstream of the slot. 
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Complete static pressure profiles for case A are shown in figure 

5.4. These data are unremarkable and merely demonstrate the change in 

static pressure. They also show how the effect of the transition from 

the curved to flat section is passed upstream by the pressure which 

starts increasing (Pstand decreasing) at 9 = 10- 20°. Extrapolation 

to ~ = 0 gives values of Pstand in reasonable agreement with the 

values measured by the surface pressure tappings. The data of figure 

5.4 werecalculated by subtraction of the hot-wire data from the corres-

ponding values of total pressure, rather than from the three-hole probe 

calibration for static pressure. 

The agreement between these profiles and the wall static pressure 

measurements ought to be better, particularly for the 20° and 30° pro­

files. However, as stated above, the profile data for these two pro-

files is likely to be unsatisfactory, and therefore the calculation of 

static pressure also. Another likely source of error concerns the 

resolution of the turbulence intensities by the total-pressure probe 

itself. It was assumed that the probe is equally sensitive to all 

three components. 

5.4 MEAN VELOCITY PROFILE DATA 

Figure 5.5 shows the U profiles from the hot-wire data for case A. 

The next two sets of plots are from three-hole probe data and show 

)u2 +V2', although the difference between this total velocity and 

u is negligible. Figures 5.5 and 5.6 are therefore a direct comparison, 

although the hot-wire profiles contain extra points near the wall, 

(y < 1.06 min) produced from the approximate analysis (Appendix D). 

The agreement is satisfactory except in the case of 9 = 40° and 90° 

where the discrepancy is caused by drifting of the supply despite being 

monitored during a traverse. The hot-wire probe is obviously more 
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sensitive in the outer regions of the jet as indicated by the fuller 

profiles obtained. The data of figure 5.7 were not corrected for the 

averaging of turbulence by the three-hole probe. 

All these profiles were fitted with least square curve fits which 

were interpolated for values of Ym• Ym/2 and Um Growth and velocity 

decay rates for the two cases are shown in figures 5.8 and 5.9. The 

growth rate data are compared with an experimental best fit line for' 

a wall jet on a circular cylinder. A flat plate wall jet and a radial 

wall jet grow at approximately the same rate, therefore with the addi-

tion of streamline curvature to both flows, the growth rates can be 

expected to be still approximately the same. The lack of agreement for 

case A illustrates the effect of a larger slot width increasing the 

size of the potential core of the jet and therefore also its develop-

ment length to a fully developed jet to which the growth law applies. 

Also, the effect of axisymmetry on the mean flow is apparent where 

Ym;2/t actually decreases in the early stages of the jet development. 

This is shown by both hot-wire and three-hole probe data which generally 

show good agreement, except for case A where 9 > 7 so. For then, percent-

age errors in mean velocities are large enough to make accurate deter-

mination of Ym;2 difficult. 

Figures 5.10 - 5.13 show the non-dimensional mean velocity data 

for the two cases compared with Glauert's profile for a self-preserving 

-- 0 flat plate wall jet. Figure 5.10 shows the U/Um profiles for 9 < 75 

only, for which the data collapse fairly well to a single line giving 

a mistaken impression of similar mean velocity profiles. Figure 5.14 

however, shows this not to be the case, where profiles of V/Um are 

distinctly non-similar. Profiles of U/Um must therefore be non-similar 
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also for satisfaction of the continuity equation. The centrifugal body 

forces are therefore strong enough to affect the mean flow as well as 

the turbulence structure - a 'fairly thin' shear layer. Figure 5.11 

shows the same data as that of the previous figure with the additional 

data from the remaining traverses i.e. 9 > goo. This additional data 

shows a marked deviation from Glauert's profile in the region 

0.3 < ~ < 1.0. This is shown also in figures 5.12 and 5.13 although 

profiles on the curved part of the flare are not distinguished from 

those in the transition and recovery regions. These non-dimensional 

profiles are thicker resulting in larger values of au;ay on both sides 

of the velocity maximum. The mean flow is therefore strongly perturbed 

in this region, as also shown by the profiles of Y/Um. 

5.5 CONVENTIONAL SECOND ORDER CORRELATIONS 

Profiles of the turbulent intensities and shear stress are presented 

in figures 5.15 - 5.18. The intensities are all very high, as expected, 

in the region of 25 - 55%. None of the data show any degree of similarity. 

The u2 intensity profiles show the most amount of scatter since the ratio 

~/(U2 + u2) is the smallest of all the ratios of Reynold's stress to 

total squared velocity. The w2 intensities are the least scattered 

data, a consequence of the solution method for the hot-wire response 

equations where W is nominally zero. w2 is directly obtainable there-

fore, without recourse to expansions for ueff which use the approximation 

of neglig&ble third order correlations. The v2 and w2 intensity profiles 

at the 20o and 300 positions show negative values nearer the wall 

(plotted as zeroes). This is a consequence of the slot lip effects 

mentioned in §5.3 and the inapplicability of the hot-wire technique 

used here in regions of recirculating flow. Inevitably, the data is 

somewhat incomplete for ~ > 1.4 due to errors associated with the 

intermittency of the flow. 



- 86 -

These results are first discussed for oo < 9 < 90° without refe~ce 

to the data in the transition and recovery regions, i.e. where dr/dx = oo 

at 9 = 1000 and the subsequent response to a sudden change in surface 

curvature. At 9 = 90°, the geometry changes from diverging to converg­

ing, but this is not a sudden change as in the case of streamwise 

curvature; dR/dx merely changes sign, after passing through zero and 

maintains a constant value. The results are interpreted in terms of 

the effect of streamwise curvature and divergence on the turbulence 

structure despite the presence of large cross-stream and streamwise mean 

pressure gradients. These do not appear explicitly in the Reynolds 

stress transport equations (equations (F.4) - (F.7) ) and only affect 

the turbulence structure via the mean momentum equations. These gradients 

therefore do not affect the turbulence structure directly. 

The u2 intensity profiles show pronounced peaks at ~ ~ 0.6, 

coinciding with the position of large negative values of aU;ay. The 

main production term of ~ is therefore at a maximum. Subsequently 

this peak diminishes as both U and au;ay decrease in magnitude. Also 

triple products are likely to increase with distance downstream and 

therefore turbulent transport increases u2 in the outer edges of the 

jet. At 9 = 75° and 90°, the values of~ reach a maximum for the 

flow and are more or less constant across the jet width. At 9 = 75° 

the jet has become wide enough for the data to show a peak on the 

wall side of the U-profile maximum. The minimum in u2 coincides with 

the position of zero au;ay. Also since the shear stress is still 

positive in this region, production of u2 is actually suppressed. 

However, further in towards the wall, production increases owing to 

negative vaiues of shear stress and large values of positive au;ay. 
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The v2 intensity profiles do not show the peakiness of their u2 

counterparts. For large curvature, the dominant production term is 

2 uv U/r - a curvature rather than a shear term. Hence production is 

not likely to be locally large in any region of the profile, although 

at 9 =goo, the profile is wide enough for the data to show a decrease 

near the wall where U is small and uv has become negative, thereby 

suppressing production. 

The transport equation for ;2 intensity contains no major production 

terms and exists primarily by redistribution of energy from the other 

two intensities. Characteristically, the~ profiles are all rather 

flat and show a consistent increase downstream up to goo. The stream­

wise variation is quite large compared with the u2 and v2 components, 

and bearing in mind that the advection term of the transport equation 

(equal to the sum of the remaining component terms) is small, the small 

cross-stream variation in~ is explained. Of the three intensities, 

v2 increases initially most rapidly, being the largest at 9 = 45°. But 

at 9 = 60°, ~ is more or less equal to the corresponding profile of 

v2 , and at goo w2 is the largest intensity. 

The shear stress profiles all lie very close together and are 

rather hard to distinguish for 9 >45°. It should be noted here that 

the production term for uv is the only one of the Reynolds stresses to 

contain a divergence term, viz: huv (U sin a + V cosa)/R. This helps 

to explain why the fully developed profiles up to 9 = go0 are much the 

same; the additional divergence term is most 'productive' for small 9, 

decreasing as U decreases and R increases. Thus this term contributes 

to the production of uv (the major terms in the transport equation) 

only in the early stages of the jet development. The curvature produc­

tion term depends on the anisotropy of v2 and ~ which is greatest for 
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small 9, and acts to reduce production since v2 >~. Thus the major 

shear production term - h v2au;ay is not significantly increased by 

the combined effects of curvature and divergence. 

The profiles of uv at stations sufficiently far downstream to permit 

complete data to be recorded on the wall side of the velocity maximum, 

show negative values of uv, a consequence of the production of positive 

uv very near the wall being negative. The position of zero shear stress 

is consistently closer to the wall than the corresponding velocity maxima 

and gets closer to the wall as x/t increases. 

The remaining profiles for 9 = goo and beyond show ~orne very 

interesting effects. Both the~ and w2 intensity profiles show a marked 

decrease at 9 = 1000 and thereafter reach minima at 9 = 1000 + 10 mm. 

In the case of the u2 intensity, this minimum at ~ = 0.5 is less than 

the corresponding value on the 200 and 300 profiles. Thereafter it 

recovers to reach values at 9 = 1000 + 20 mm not far below those of the 

goo profile. Thus the response to the removal of curvature is not 

monotonic. With the continued application of the extra rate of strain 

induced by a constant rate of convergence, it is expected that the 

value of u2 will not be maintained and will decrease once again although 

gradually. The-behaviour of the w2 profiles is the same, although the 

values of w2 at 9 = 1000 + 20 mm are significantly less than those 

at 9 = go0 • 

The v2 intensity profiles appear to be more sensitive to the sudden 

change in curvature. The removal of curvature is first apparent at 9 = goo 

where v2 decreases sharply for ~ < 0.7. It continues to decrease at 

the next station, but increases slightly in the region of ~ = 0.7 at 
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9 = 100° + 10 mm. At the next station the values of v2 decrease 

once again due to the effect of convergence. All three intensities 

therefore show the same non-monotonic response to the removal of 

curvature, although the v2 component appears to react sooner. The 

recovery is .slow in comparison with the jet growth rate, although the 

subsequent effects of convergence are apparent at the last traverse 

position, rather than those of the non-monotonic response to the 

removal of curvature. 

5.6 STRUCTURAL PARAMETERS 

In order to characterise structural changes indicated by the plots 

of shear stress and turbulence intensities, dimensionless ratios are 

required. These correspond to the empirical input to calculation methods 

as they reflect the larger implicit changes in the Reynolds stress 

transport equations as opposed to the explicit extra terms. Accordingly, 

-~ -the dimensionless quantities a1 = uv/q , Ruv = uv/ 

are now considered. 

The ratios a1 and R\lv are little affected by the streamline curvature 

itself. Both maintain fairly constant values of 0.12 and 0.4 respect-

ively up to 9 < 90°. Then both parameters show a marked non-monotonic 

response to the removal of curvature. They decrease at 9 = 90° and 

subsequently increase, a1 rising to 0.2 and Ruv to 0.55 at 9 = 100°+10 mm. 

At the next station however, they have begun to decrease once again. 

Both parameters show a marked decrease at the last two stations for 

I; < 0.5. 

The, ratio of v2;u2 illustrates the preferential increase of the v2 

intensity by the effect of streamline curvature. Over nearly all the 
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jet width, except close to the wall where the v2 intensity is suppressed, 

v2;u2 increases dramatically above values for a corresponding flat-

plate wall jet. The data at 9 = 30° (not shown in figure 5.21) corres-

pond to those of a wall jet with streamline curvature only, typically 

v2;u2 = 1.0, but at 9 = 45° a maximum of 4.5 exists at s = 0.45. There-

after, the ratio decreases and at 9 = 90°, falling below 1.0. It sub-

sequently increases to 2.0 in the outer part of the jet,but at 9 = 100° 

+ 20 mm decreases once again to values close to 0.5 over nearly the whole 

--jet width. Very large values of v2;u2 at 9 = 450 and 600 are caused by 

small values .of u2 in the region of s = 0.5 rather than large values 

5.7 RESULTS FROM LARGE SCALE TESTS 

The remaining three figures are the results of three-hole probe 

measurements made on a large flare at a higher supply pressure. Figures 

5.22 - 5.24 are supplementary data principally of use for studying the 

effects of scaling on the model data. This data is therefore of use 

as test data for the. calculation method. The data of figures 5.23 and 

5.24 show the same effects of curvature on the mean flow as described 

above. The non-dimensional mean velocity profiles are distorted, and 

the jet growth/velocity decay rate show the same trend as those of 

figures 5.8 and 5.9. 
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24 For Key see figure 5.4 
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CHAPI'ER 6 

CALCULATION METHOD 

A qualitative outline of the structure of the flow around the 

Coanda flare was given in Chapter 1. Even though the mean flow is two 

dimensional (the turbulence is of course three dimensional) and simpli-

fied to exclude the effects of combustion, heat transfer, compressibility 

and a porous wall, the choice of calculation method for a complex flow 

of this type is an important decision. This chapter is concerned with 

the numerical procedure used to solve the equations of motion as distinct 

from the turbulence model used to effect closure. 

6.1 REVIEW OF AVAILABLE METHODS 

Nearly all calculation methods for turbulent boundary layers can 

be divided into two groups. The first are so called integral methods 

where ordinary differential equations are obtained as weighted integrals 

of the Navier-Stokes x-component equation. Alternatively the Navier-

Stokes equations can be solved directly using a suitable numerical 

technique. These are differential methods. Kline et al (1969) pro-

vided a comprehensive comparison of calculation methods of both types 

up to 1968. Later methods have concentrated on the solution of the 

approximated Navier-Stokes equations because of the advent of fast 

computers which have.made differential methods practicable. Bradshaw 

(1972) reviews methods of both types also. 

6.1.1 Integral Methods 

Integration of equation (2.30) for 0 < y < 8 when multiplied 

by 1, U and y yields the momentum, energy and moment of momentum 

integral equations respectively. (Rotta (1962) ). These equations 

are exact but require empirical input. The momentum integral 
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equation can be written as follows: 

da +a 

dx U00 

(2 + H) dU ao = cf 

dx 2 ••• (6.1) 

The shape factor H, which contains information about the mean velocity 

profile, and the skin-friction coefficient cf, which contains informa­

tion about the Reynolds shear stress, both have to be defined empirically, 

to a greater or lesser extent. One of the more successful integral 

methods by Head (1960) assumes that H is a function of a dimensionless 

entrainment velocity and uses the Ludwieg and Tillman skin-friction 

formula. For a review of integral methods, the reader is referred to 

Cebeci and Smith (1974) and Bradshaw (1976a). 

For simple flow cases such as a turbulent boundary layer on a 

smooth flat plate, integral methods can give accurate solutions even 

when calculated by hand. However, they cannot give solutions ~or each 

point in the flow field because an ordinary differential equation for 

integral quantities is solved. Different ways of describing the mean 

velocity profiles, skin-friction and shear stress profiles are required 

if extra effects such as surface roughness are to be included. Apart 

from the difficulties involved with the retention of the significant 

higher order terms in themselves, large curvature effects would cause 

even greater difficulties because of variation in these turbulence 

terms across the shear layer width. It is also important to note that 

Patel (1969a)found it necessary to redefine the usual integral para­

meters o* and a, and that the flat-surface momentum integral equation 

broke down when used in calculations for flows with large cross-stream 

static pressure variations, i.e. with significant streamline curvature. 

Therefore, Patel incorporated extra terms in the momentum integral 

equation to account for the effects of cross-stream pressure gradient. 
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So (1975a) however, pointed out that both H and Cf have also to be 

modified in order to fully account for the effects of curvature. 

An integral calculation method specifically developed for the 

Coanda flare (Titcombe (1980) ) was tested with experimental data from 

the model flare tests. The momentum integral equation (6.1) is solved 

and a Coles-type velocity profile is assumed. The exact form of the 

velocity profile used is given in Spalding (1965). The skin friction 

formula used is consistent with the law of the wall and the entrainment 

rate is given by an empirical law derived by Escudier and Nicoll (1966) 

using data for a wall jet on a flat plate. The cross-stream static 

pressure gradient is assumed to be linear and the only other adjustment 

to the empirical input in order to account for the effects of stream-

line curvature and divergence was that to the entrainment rate. The 

empirical expression developed by Kind (1967) is used to provide a 

correction to the entrainment rate. Some time was spent investigating 

this calculation procedure, but it failed to give good agreement for jet 

growth rate data. Integral methods were not considered further. 

6.1.2 Differential Methods 

The Navier-Stokes equations are in general second-order non-linear 

partial differential equations of the form: 

+ = e 

• • • ( 6.2) 

A characteristic is a line in the flow field along which the second order 

derivatives of U are indeterminate. Equation (6.2) therefore reduces 

to an ordinary differential equation and the gradients of the character-

istic are given by a solution of (Chow (1979) ):-

2 

a(:)- b dy + c = 0 

dx ••• (6.3) 
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There are three possible results: 

b2 - 4ac > 0 

b2 - 4ac < 0 

b2 - 4ac = 0 

dy 
there exist two real values for dx - hyperbolic type; 

solutions for =~ are imaginary and characteristic 

lines do not exist - elliptic type; 

there is only one value of dy - parabolic type. 
dx 

The above solutions are used to classify partial differential 

equations of the form of equation (6.2) and each type places certain 

restrictions on the type of flow to which they are applicable. 

Disturbances in a compressible fluid are propagated at the speed 

of sound. If the flow is supersonic the disturbances cannot be passed 

upstream. Thus the region of influsnce in a supersonic flow is only 

downstream of the two characteristic lines (the Mach lines), and the 

corresponding equations of motion are hyperbolic. However, for subsonic 

compressible flow or for steady inviscid incompressible flow (in which 

the speed of sound is effectively infinite), the region of influence 

of the flow is unbounded, i.e. there are no characteristic lines and 

the Navier-Stokes equations are elliptic. However, for steady viscous 

incompressible flow, the equations of motion are (Potter (1977) ): 

u~csu v ~u 1 ()p v(:~ + 
o2u) = + -+ 

ox oY p ()X oy2 ••• (6.4) 

u ov v ov 1 oP + v (o2v + b) + = 
ox oY p oY ()X2 ()y2 

•• (6.5) . 
neglecting body forces and together with the equation of continuity 

the flow is fully described. 

ou + ov = 0 

ox oy ••• (6.6) 
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The Poisson equation for pressure can be obtained by differentiating 

equations (6.4) and (6.5) with respect to x and y and using continuity 

· to rearrange: 

f(1 ou )
2 

+ 2 ou av + (av )
2

) 

\ ox oY ax oy 

0 0 .(6.7), 

The terms of equ~tions (6.4) and (6.5) can be grouped thus: 

(a) convecticn terms (e.g. U oU ) where fluid is transported downstream 

ox 
along streamlines 

(b) diffusion terms (e.g. \) a2u ) where fluid is diffused by molecular 

ox2 

viscosity in all directions 

(c) generation terms (e.g. ()p ) where a change in static pressure in 

ox 
the fluid exerts influences in all directions. 

The system of equations (6.4) to (6.7) is doubly elliptic in the 

sense that both the pressure field and viscous diffusion transmit 

disturbances in all directions. With the conditions that there is no 

recirculation and that the longitudinal diffusion of momentum 

is neglig&ble, the system is still elliptic because the Poisson equation 

is elliptic. Only when ~ = 0 with the pressure as a known function 
· oY ----

of x does the system become parabolic. The region of influence is then 

downstream of the characteristic line through the point of solution and 

the equations of motion can be solved directly by a marching procedure 

downstream through the flowfield •. 

The simplifications that there be no region of recirculating flow 

and that 
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a2u 0 = 
0~ 

oP = o, dp = f(x) 

oY dx . . .(6.8) 

are sufficient conditions for the Navier-Stokes equations to be parabolic, 

and they are the usual boundary layer assumptions. The incorporation 

of ~ # 0 in the calculation procedure is described in § 6.4. 

Three calculation methods of finite difference form were studied for 

possible use. Bradshaw et al (1967) solved the differential equation for 

the shear stress simultaneously with the equations of mean motion. The 

form of the turbulence model makes the equations hyperbolic with the 

~oss-stream pressure variation assumed negligable. The method relies on 

the definition of three non-dimensional empirical relations which would 

not in general be valid for wall jets. But the method has been extended 

to include the calculation of a cross-stream pressure gradient by Mahgoub 

and Bradshaw (1979), and even in its extended form the hyperbolic set of 

equations are solved by the method of characteristics. The Cebeci and 

Smith (1974) method was developed with particular reference to boundary 

layer flows. The equations of motion for plane or axisymmetric flow are 

transformed and a rectangular grid is used to obtain the finite difference 

equations. These are solved by Keller's box method. The scheme is 

unconditionally stable as the equations are highly implicit. 

A popular and available calculation procedure is that of Patankar 

and Spalding (1970) (PS method). See also Spalding (1977) and Patankar 

and Spalding (1967). This method was selected as the basis of the present 

calculation procedure as it has been the subject of many years development 

and has been used successfully in widely differing flows by many workers 
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other than its authors, viz: Irwin and Smith (1975), Launder et al (1975), 

Rastogi and Whitelaw (1971), Ljuboja and Rodi (1980), Launder and Morse 

(1977) amongst others. 

6.1.3 OUtline of PS Method 

This procedure possesses several numerical features which make it 

superior to the other two briefly described above. In its two-dimensional 

parabolic form the equation of motion is expressed in finite difference 

form by use of four nodes where the resulting equations are implicit. 

Therefore a method of solution such as Gauss elimination is required. 

Central differences are used in the cross-stream direction,. whilst 

upwind differences are used in the streamwise direction. The important 

features of the method are listed below. 

(a) The Transformation to x~ w co-ordinate system; for computational 

efficiency, the non-dimensional stream function w. is used as the 

cross-stream independent variable. There is another important advantage. 

For an upwind difference scheme, (the most stable scheme at high Reynolds 

numbers) the use of a non-dimensional streamline co-ordinate axis reduces 

the truncation errors associated with the difference approximations used 

for the terms U ~and V 0U in the x-component mean momentum equation (E.7). 

~ oy 
This is even more important for highly curved shear layers where the 

truncation errors may be of the same order as the dominant Reynolds 

stress gradients when referred to shear layer axes. With the use of 

-~ 
X~ w co-ordinates however, the v oY term disappears. For a fuller 

discussion see Bradshaw (1975, 1973) and Roache (1972). 

(b) The process of marching integration; the flow field is divided into 

control volumes bounded by the upstream and downstream stations and the 
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half-way positions between nodes in the streamline co-ordinate system. 

See figure 6·.2a. A solution is accomplished by a single sweep through the 

flow field where the finite difference equations are produced by integra­

tion of the x-component equation of motion in the cross-stream direction. 

This process ensures that continuity is satisfied in the finite difference 

equations. Also the non-linear terms in the equation of motion are 

linearised by using values of U and V prevailing at the upstream station. 

This allows the use of an efficient recurrence relation for solving the 

finite difference equations - the tri-diagonal matrix algorithm. See 

Spalding (1977) for further details. 

(c) The allowance for high lateral convection; in some regions of flow, 

the lateral convection term can be larger than the lateral diffusion term 

e.g. in regions of high entrainment. Under these circumstances, mean 

cross-stream gradients are reduced and profiles tend to flatten out. The 

values of a general dependent variable ~ at the cell boundaries tend to 

their 'upwind' value, e.g. for high entrainment there is high negative 

lateral convection and ~i+!~~i+l• This could lead to non-convergence or 

numerical instability if this phenomenon is not allowed for in th~ numerical 

procedure. Therefore ·if, in the cross-stream direction, the convective 

terms are less than the diffusive terms, central differences are used; 

but if the convective terms are larger than the diffusive terms, then 

the diffusive terms are neglected and the convective terms are expressed 

in upwind difference form. This combined scheme for simultaneous convec­

tive and diffusive processes was proposed by Spalding (1972) and examined 

by Runchal (1972). 

The PS method was preferred for the reasons expressed above. For its 

use in the present calculation method, it was made more particular to 
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the case of a jet emerging from a plane or annular slot. Thus effects such 

as heat transfer, chemical reaction •.and surface porosity could be omitted. 

Also the geometry was made more specific. This considerably reduced the 

programming involved. 

6.2 EQUATI0NS OF MariON 

Some definition of terms is helpful. The flow is referred to as 

'plane' where the axisymmetric radius of curvature R, tends to infinity; 

no statement concerning the streamline radius of curvature is intended. 

For a finite value of R, the flow is described as'axisymmetric~ 

6.2.1 Grid and Control Volume 

The equations of motion are expressed using shear layer axes; the 

x-direction follows the I boundary (see figure l.:n and therefore coincides 

approximately with the direction of flow. The y-direction is always 

orthogonal to the x-direction. For plane flow, the grid is obviously curved 

and rectangular and the control volume for flow/unit width is simply 

defined (Figure 6.la). For the axisymmetric case, the control volume 

possesses both streamline and axisymmetric curvature. Therefore the 

control volume is as drawn in Figure 6.lb, from which the continuity 

equation (E.6) can be derived. 

6.2.2 Momentum Equations 

These are derived in appendix E. Equations (E.7) and (E.9) represent 

the rate of change of mean momentum through, and the force applied in, the 

control volume of figure 6.lb in the x- and y-directions respectively. 

They contain the same type of terms as the more general equations (6.2) 

and (6.3) as well as the streamline curvature terms denoted by r. The 

additional axisymmetric terms are produced if products of velocity and R 

are fully differentiated using the expressions for the rate of change of 

R shown in Figure 6.la. 
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6.2.3 Order of Magnitude Analysis of Terms 

This is necessary because for the parabolic procedure outlined above, 

not all the t~rms of equations (E.7) and (E.9) need be used. Also for the 

case of a highly curved shear layer where x = r, the usual boundary layer 

approximations no longer apply. See § 2.3. Therefore, it is important 

to assess the relative sizes of terms in these eq~ons so that consistent 

approximations c~ be made. 

It is as~umed that r/x~ 1 1 V ~ U x 5/x and that all the Reynolds 

stresses are of the same order. In general it may be supposed that 

gradients in the x - and y-directions will be of the same order of magni-

tude as the dependent variable divided by x and 5 respectively. Also 

h = 1 + y/r can be approximated to unity. Thus the individual terms 

of equation (E.7) are of the following order of magnitude: 

U 0U = 

h V 0U = 

oY 

uv = 

r 

1 o (h uv R) = 

R (Jy 

= 

ax 

uv = 

r 



I 
) 
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Tho same procedure is adopted for the y-component equation (E.9). 

However, in order to obtain consistent approximations for both equations, 

it is necessary to multiply orders of magnitudes of terms in the 

y-component equation by 8/x. Then the pressure gradients in both 

equations are approximated by ! ~ where Oy/ax = 5/x as above. The 
p ox 

orders of magnitude for the y-component equation (E.9) terms are: 

u av = 0 ( u: . ( ~ )) 
aX 

h v av = o(: ·(:)) 
ay 

2 o(# • ~) u = 

r \X X 

a<hv
2> ·- o(:v. ~) 

aY 

a (uv). 

=O(:v ·( ~ Y) ox 

~ = 0 ( :v ·(: n 
r 

A typical ratio ~ Reynolds stress to mean maximum velocity in the 

jet flow is given by uv/ij2m = 0.05- 0.15. Therefore uv can be con­

sidered to be of the same order as U. Assuming that 8 is one order of 

magnitude less than x and retaining terms up to order 8/X only, a 

consistent set of equations is:-

x-comEonent equation 

u au + h v au + uv = 1 aP ;( ax ay r p ox 



()(~ R) + a (huvR) 

ox oY 

y-component equation 

-2 u = h op 1 

r P oy R 

continuity 

oClffi> + oCVRh) 
= 0 

oy 
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+ uv R) 
r 

+ 

oY 

~2 ) 
(h v R 

\) ~ (Rh au \ 
R oy oy } 

••• (6.9) 

••• (6.10) 

••• (6.11) 

The plane flow form of these equations is recommended by Bradshaw 

(1973) in calculations of shear layers with significant streamline curva­

ture. However, they can be furthar simplified in the case where ~ is 
y 

• assumed negligll.ble in order to render the system of equations parabolic, 

allowing use of the PS marching integration procedure for a parabolic 

flow. Consistent with ~~ = 0 is the approximation r __..oo Under these 

conditions, equation (6.10) is unnecessary and terms of order O/x can also 

be neglected in equation (6.9). This then reduces to: 

u ou + h v ou = - 1 dp 

()X oY p dx 

+ 

R oY oy ••• (6.12) 

where :~ is defined in an unconfined flow by the free stream pressure 

-Vis available from the continuity equation (6.11). A gradient and 

convenient manipulative form of equation (6.12) is obtained by use of 

an effective viscosity, \)eff, to represent the shear stress - uv. 
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(See § 7.1). Then the x-component equation becomes: 

ox oY P 

dp + ~ ~ (R h \leff 

dx R oy 
ou) 
oY 

u au + h V 0U =-1 

••• (6.13) 

This equation is used as the equation of motion in the PS method. 

6.3 SOLUTION OF THE PARABOLIC EQUATIONS 

The procedures described in § 6.1.3 are now stated ma~matically. 

For a ful~ treatment see Spalding (1977) and Patankar and Spalding 

(1970). 

6.3.1 Definition of Stream Function and Mass Flow Rates 

From figure 6.la it can be seen thatthe mass flow rate across a 

line of constant x is: 

= 2 rr p U R 8Y • ( 6.14) 

and that the mass flow rate across a line of constant y is: 

~ = - 2 rr p V R h 8x 
y 

•• (6.15) 

Therefore a suitable definition of stream function is given by: 

- k - p V R h 

oy ••• (6.16) 

where k is a convenient index to distinguish plane and axisymmetric 

flow when k = 0 and 1 respectively. In addition, a non-dimensional 

stream function can be defined by: 

••• (6.17) 

where subscripts denote values of stream function at the I and E 

boundaries. These are naturally functions of x only. From the 
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definition of stream function and ill' the mass flow rate across a line of 

constant x for axisymmetric flow may be rewritten: 

• • • ( 6.18) 

The mass flow rate across a line of constant ;05 may also be written: 

•• 
mill = mw h 6 X 

Ifl I = Ifl II 2 TT R 
ill ill 

= 2 TT 
( 

II 

(RDt ) I + w (<!bit\ - <RID\)) 
• • • ( 6.19) 

II 

where 
II 

. (Rifl ) 
E 

= - d~E and (~ >1 = 

dx . . .(6.20) 

For a = and b = - d(IJIE - wr> / 
- / (~ - ~ ) 
dx E I 

••• (6.21) 

••• (6.22) 

For plane flow 2TT(WE- wr> is replaced by <WE- Wr)· 

6.3.2 Transfi'Jrni.ation to (x,m) Co-Ordinates 

For a general variable ~. the transformation of ~(x,y) to ~(x,ill) 

is achieved by these equations: 

••• (6.23) 

Therefore the stream function definitions yield: 
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1 d~ 
J: 

= pUR 

• • • ( 6. 24) 

Then equation (6.13) transforms to: 

ou (a + bu.>) au 0 (c 0U ) d + = + 
()X ow OW ow ••• (6.25) 

where a and b are given by equation (6.21) and 

c = -2 
pUR h I-Leff 

( ~ -
E ~I) .•• (6.26) 

d = - 1 dp 

pU dx •.• (6.27) 

The definition of d is non-linear but is approximated by using the 

corresponding known upstream value for u. 

6.3.3 The Finite Difference Grid and Equations 

Figure 6.2a shows how the control volumes are defined for the. 

region between the upstream and downstream steps. Therefore, four 

nodes are used in the finite difference approximation of equation (6.25)• 

Di~i,xpl = Ai~i+l,xpl + Bi~i-l,xpl + ci 

••• (6.28) 

where Ci represents the sum of constant terms and the known upstream 

term ~i x· The coefficients are derived by integration of equation 
' 

(6.25) for Wi-i ~ Wi+i for which interval ~i is considered constant. 

The form of the coefficients is given by Spalding (1977). Values of ~i 

and ~N are known and form the boundary conditions for the tri-diagonal 

matrix algorithm. 
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No mention has been made here of how the grid is calculated, how 

the entrainment is controlled, nor the procedure adopted in wall regions. 

These items have been treated as by Spalding (1977). 

6.4 EXTENSION OF METHOD TO FLOWS WITH SIGNIFICANT CROSS-STREAM 

PRESSURE GRADIENT - 'PARTIAL-PARABOLIC' PROCEDURE 

A class of flow exists for which a full elliptic iterative solution 

of the Navier~Stokes equations is unnecessary whilst the assumption of 

a negligible cross-stream pressure gradient is too restrictive. These 

are flows where the assumptions of no recirculation and negligible 

streamwise diffusion of momentum is acceptable but where a significant 

degree of streamline curvature introduces a pressure field which affects 

the upstream flow as well as the downstream. The sYStem of equations is 

not then, strictly speaking, parabolic. This type of flow has been 

called 'partially-parabolic' by Spalding (1976) who gives a useful 

summary of the flow types. 

The question now arises if the system of equations can be solved 

directly as in a parabolic solution or whether an iterative technique 

is required as in an elliptic solution. A possible procedure could be 

to approximate QE in equation (6.9) by ox 

+ 
1 dy 

r ••• (6.29) 

where(~~) y' 6x last is taken as the local pressure difference between 

two successive calculation stations in order to calculate the velocity 

distribution for the one following. Provided small enough forward 

steps are taken, a fairly accurate solution can be obtained in one 

iteration. However, the step size has to be small in order to prevent 

instability c~used by attempting to march a system of equations that are 
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elliptic. Also the approximation of equation (6.29) is inconsistent 

with the order of magnitude analysis of § 6.2.3 although this would not 

be too important where the pressure gradient ~ dominates the stress oY 
gradient in equation (6.10). This type of procedure was adopted by 

Rastogi and Whitelaw (1971) and Gibson and Rodi ( 1981). The former used 

step sizes of 0.1% 8 for the first fifty steps and thereafter gradually 

increased them to a maximum of 1% 8. The latter required 700 forward 

steps for grid independent solutions to a flow length of approximately 

1300 mm. 

Alternatively, an iterative procedure allows a much larger step 

length and can give more accurate results when a converged solution is 

obtained. The number of calculation stations actually calculated is 

also likely to be less and computing time therefore reduced. However, 

an initial guess to the pressure field p(x,y) has first to be made and 

the calculation is repeated until, say, the wall pressures are found to 

be within the required accuracy for convergence. In the method of 

Mahgoub and Bradshaw (1979), the pressure is calculated by integration 

of the y-component mean momentum equation across the shear layer width. 

oP is evaluated using central differences in x of the pressure field ax . 
that was calculated during the previous iteration. The method of 

calculating all the pressures of one sweep before using them in the next 

corresponds to a Gauss-Jacobi iteration which is stable. Use of the 

newly calculated pressures however, corresponds to a Gauss-Seidel itera-

tion where the method would then suffer from the same problems of 

instability as the single-sweep methods outlined above and for the same 

reason. 

The algorithm used by Patankar and Spalding (1972) is completely 

different in detail and relies on the uncoupling of the x-and y_momentum 
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equations so that an elliptic system of equations can still be solved by 

an essentially parabolic method. The uncoupling of equations (6.4) and 

(6.5) is achieved by specifying oP as the gradient of a bulk pressure ax 
which, for an unconfined shear layer, is defined by the free stream 

pressure. In effect then, the x-component momentum equation is solved 

by assuming nE = O, whilst the y-component equation is solved using the oY 
local values of pressure. At the end of the algorithm, when U, V and 

the Reynolds stresses are known, the pressure p(x,y) is adjusted .by 

corrections obtained from the solution of the Poisson equation (6.7). 

The equation is rendered parabolic by treating o2p/ox2 as known. In 

any elliptic procedure which uses upwind differences, mean flow trans-

port and pressure field effects are transmitted upstream at the rate of 

one step per sweep. Consistent with this procedure, the pressure 

corrections are applied at one grid location upstream from that from 

which they were obtained and so only the pressure influences upstream 

flow. This method has been successfully used for both two-d~mtnsional 

(Singhal and Spalding (1976) ) and three-dimensional flows. (Pratap 

and Spalding (1976), Patankar et al (1975) ). 

6.4.1 Equations to be Solved 

Consistent equations for terms up to order o/X are given by 

equations (6.9) (6.10) and (6.11). It should be noted that equation 

(6.10) does not actually contain V (it is obtainable from the continuity 

equation) and therefore the full algorithm of Patankar and Spalding (1972) 

is not necessary. Also the equation (6.9) contains the additional terms 

of order o/x which have yet to be put in finite difference form. 

6.4.2 Algorithm Sequence 

The sequence is.: 

(a) The pressure field p(x,y) is first guessed. This is done 
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assuming Q£ = o, that ambient pressure is acting across the slot exit oY 
and that thereafter the pressure is determined by the free stream pressure 

gradient. 

(b) The solution for U and y is available from the previous step. 

For the first step, U is calculated from inviscid nozzle theory. 

(c) The Reynolds Shear stress is calculated via the turbulence 

model. See § . 7. 3. Normal stresses are represented by empirical 

relations with the shear stress. 

(d) Equation (6.10) is integrated inwards from the free stream 

boundary to the I boundary to give the cross-stream pressure distribu-

tion. See figure 6.3. 

(e) Substitution of the continuity equation in equation (6.9) 

via~ yields an ordinary differential equation in v. This can be solved 
(jX 

by use of the tri-diagonal matrix algorithm. 

(f) The pressures at one grid location upstream from the present 

are adjusted by the difference between the newly calculated pressures 

and those from the previous iteration. 

(g) The x-component momentum equation (6.9) is solved as described 

in § 6.3 but incorporating the additional terms. The step to the next 

downstream station is therefore completed. 

Steps (b) to (g) are repeated until the flow domain has been covered. 

A convergence criterion is then applied; if further iterations are. 

necessary, the sweep is repeated. The additional parts of the algorithm 
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necessary for the partially-parabolic procedure can be incorporated in 

a single subroutine into the program. This makes it easy to use the 

program for both parabolic and partially-parabolic flows. It is impor-

tant to note that the streamwise pressure gradient used in (g) is 

that defined ty the free stream conditions, whereas the solution for 

V in (e) uses the local pressure gradient. The equations (6.9) and 

(6.10) are therefore uncoupled. 

6.4.3 Initial Conditions 

Values for U and p for the first step of the first iteration are 

available using inviscid nozzle theory for unchoked flow: 

2 

= . "( Ra Tsup (1 - ( Patmos )
1 ~l ) 

.'V - 1 Psup 

• • • ( 6.30) 

where the supply and ambient conditions are input data to the program. 

v is an effective value of the ratio of specific heats for the fluid 

mixture. For subsequent iterations, the drop in pressure at the slot 

exit produces an increased velocity and mass flow defined by: 

·2 

( l -(::Up f ~ ) ui = ·"' RaTsup 

2 v- 1 

i=N-1 

(~E ~ ~I) = L Pi Ui Ri 8yi 
i=2 ••• (6.31) 

If Patrons is less than the critical pressure ratio, the procedure 
Psup 

is stopped at the end of the first iteration as the velocity at the nozzle 

exit will be sonic. For choked flow conditions, t~e mass flowrate and 
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density are calculated accordingly. If £i is less than the critical 
Psup 

pressure ratio at any time, a warning is printed. The density of the 

jet at any point is calculated so that it is consistent with the press-

ure calculated, viz: 

p. 
l. + Pambient) (Pi )l/~ 

Pambient 

• (6.32) 

where Fi is the proportion of original to total mass of fluid. 

6.4.4 Pressu~e Calculation 

Integration of equation (6.10) gives: 

i+l _2 

[ 6y r:l iJaiii+l --2 = p (U - v ) 

i+i rh 

[- J i+l 
Pi+! v2 i 

2 [ ] i+l p v f:JY . 
i 

R i+i ••• (6.33) 

The control volume for the integration is shown in Figure 6.3. The 

free stream static pressure defines PE' thus the complete cross-stream 

pressure distribution is obtained. 

6.4.5 Solution for V 

Removing the ~ term in the equations (6.9) and (6.10) gives the 
(lX 

ordinary differential equation for V in which U, ~~ and the Reynolds 

stresses are all known: 

(

h ou 
oY 

u h cos ~) v - u h ov = 
_l 
U h sin a - 1 oP 

R oY R p ox 



- 136 -

+ uv + 1 ( ~ (Rhveff oU)) 

R oY oY 

• • • ( 6.34) 

This is solved by a second-order Runge - Kutta approximation. Thus 

for solution by the tri-diagonal matrix algorithm, Ai in equation (6.28) 

is zero, and V = 0 at the I boundary. The remaining 'constant' terms 

are all easily represented by their values at the ith node. x-direction 

gradients of ~ are represented by 

~i,x - f3i,xml 

6 x last 

6.4.6 Extra Terms in the x-Component Mean Momentum Equation 

Transformation of the complete x-component mean momentum equation 

(6.9) to (x,w) co-ordinates gives: 

au (a + bw) au d + 0 <c 0u) 
+ = 

ox Ow ow ow 

~ ( uv + 
u2h 

. 2 2( .)) uv sin a+ ou au (a + bw) pVRh 
+ + 

U r r R ox ow WE -

.(6.35) 

The last term of the right hand side represents those terms still 

to be put in finite difference form. With reference to figure 6.3, and 

following the procedure adopted for those terms already in finite differ-

ence form, integration across the x-component control volume ·gives: 

-I :
2

/i,xml (- u
2 

h 
2 

1 uv uv sin c:t u -
+ + + i,x 

iji,x ~ i,x r i,x_ R i,x 6 x last· 
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2 
+ u 

i,x ·((~ - w ). - (* - w ) ) E I xpl E I x 

6. x (WE - WI >x 

~t~· ;li+l,x - ~~ :2 11-i,x 
ui,x 2 rr <lirE - wi>x 

- pVRh , ..... 
~,x 

••• (6.36) 

Linearization of the terms is achieved by using values at i,x for 

the control volume. Therefore the sum of these terms is added onto ci 

in equation (6.28). Also terms such as ~are treated as :,i,x - ~2li,xml 
t,x last· 

so that they have known values. 

6.4. 7 Convergen·ce Criterion and Stability 

The solution is converged if, on successive iterations, all the 

corresponding wall pressures change by less than 0.2%. An alternative 
. 

form of convergence criterion could be a negligable change in mass 

flow at the slot exit. An upper limit of ten iterations was set, above 

which the procedure is unlikely to converge if it has not already done 

so. Use of an implicit finite difference formulation for the solution 

of a forward step makes the procedure unconditionally stable. The 

uncoupling of streamwise and cross-stream pressure gradients in the 

two mean momentum equations ensures that an elliptic system of equations 

can be '·marched', provided that the condition 02ujOX2 = 0 is satisfied. 

This is expected for nearly all shear layers. 
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6.5 ADDITIONAL FEATURES 

6.5.1 Geometry and Boundary Conditions 

The E bounda.ry is always free whilst the I boundary can be specified 

either as a wall or an axis of symmetry but not both. This is true 

for both plane and axisymmetric flows. When the I boundary is an axis 

of symmetry no curvature can be induced without body forces which are 

not inc 1 uded in the momentum eq ua ti ons • For these cases then, r --ir oo • 

For the case of a wall at the I boundary and axisymmetric flow, two 

geometries are available; a= 90° at x = 0 and r is finite, or a has 

a constant value and r_.. oo. These two geometries allow a complete 

description of the flare profile as the former is allowed to change to the 

latter at a pre-determined angle. 

The boundary conditions used are: 

(a) wall at I boundary, U(l) = 0, V(l) = 0; 

(b) axis of symmetry at I boundary, U(l) = U(2), V(l) = 0; 

at the E boundary (free), U(N) = o, V(N) = m"E! p (c) 

For the solution to U, two boundary conditions are required. 

V solution only one is required, V(l) = o. 

6.5.2 Modified Law of the Wall 

For the 

The near-wall grid and wall shear stress are calculated by use of 

the law of the wall in a modified form (Townsend (1961) ) to include 

the effects of an adverse streamwise pressure gradient(~~+ ve). It is 

necessary in_the present calculation method because of the large 

negative walls~tie pressure near the slot which ihcreases to ambient 

f-urther downstream. 
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For 

. u+ = Ul(-rUJp)i 

y i = Y('fUJp) Ill> + 

and li dp I 3 ! 
.(6.37) p+ = (-r(JJ p) . . 

dx 
it can be stated as follows: 

-1) +ln( 
2 + 

where E is the constant from the unmodified law of the wall. Integration 

of equation (6.38) between the wall and the adjacent node, which is 

positioned in the fully turbulent region of the flow, gives the value of 

a dimensionless stream function coefficient used for grid calculations. 

The log-law relation is therefore assumed to be valid for the whole of 

the inner layer. Bradshaw (1973) concludes that the use of the law of 

the wall in curved wall jets is satisfactory. 

6.5.3 Determination of Urn and.Ym/2 
I 

An additional subroutine was used to interpolate values of Urn and 

Yml2 • Newton's divided difference interpolating polynomial was used 

for the three nearest nodes to Ym/2 and Urn• 

6.6 SUMMARY 

The calculation method described above is suitable for predictions 

of shear-layer flows with significant cross-stream pressure gradients 

where r I x ~ 1. All the significant Reynolds stress gradients are 

included in the mean momentum equations and the effects of variable pre-

ssure in the flow field are allowed for. The procedure can be extended 

to include the effects of combustion and scalar transport. It can also 
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be adapted for use with different types of turbulence model and is 

capable of use with a Reynolds stress closure in which transport 

equations fo~ the Reynolds stresses are solved simultaneously with those 

for the mean flow. 
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FIG. 6.1 (a) Grid and (b) Control Volume 
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CHAPTER 7 

TURBULENCE MODELLING 

The problem of closure was introduced in Chapter 2. The subject 

of this cha~ter is the selection of an appropriate method of estimating 

the Reynolds stresses appearing in the equations of motion in such a 

way as to account for the effects of curvature and divergence. It is 

apparent from the order of magnitude analysis in § 6.2.3 that the pre-

dominant stress gradient is 
Cl(uv) 

Cly This is to be expected, for in 

order for a stress to affect the mean flow, it must change appreciably 

over a short distance. Examination of equation (F.7), the transport 

equation for uv, shows that the shear stress is unlikely to change 

rapidly in the mean flow direction. Then the predominant stress grad-

ient will be more or less perpendicular to the mean streamlines. The 

shear stress uv therefore, is the most important stress in two-dimensional 

shear layers and is the major concern of turbulence modelling. 

The order of closure reflects the degree of sophistication and 

complexity that is acceptable in the calculation procedure. Equation 

(6.13) assumed the use of Boussinesq's eddy viscosity defined by:-

= - uv 

• (7 .1) 

where veff =vT + v and in which it was tacitly assumed that the 

closure to be used is of first order. However, the calculation method 

could solve all or some of the Reynolds stress transport equations 

(Appendix F) and additional turbulence quantities simultaneously with 

the mean momentum equations. veff would then not be required and 

closure would be of second order. 
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7.1 REVIEW OF AVAILABLE TURBULENCE MODELS 

Table J[ summarizes models up to the second order that are currently 

available. Third order closures have not yet been developed, not only 

because of the complexity of using them in a calculation procedure, but 

also because of the difficulty of obtaining the required empirical inform-

ation to a satisfactory accuracy. For a review of turbulence models 

see Launder and Spalding (1972), Mellor and Herring (1973) and Reynolds 

(1976). 

The dimensions of vT are velocity x length. First order models can 

be sub-divided into groups where the velocity and length scale of vT are 

expressed either algebraically or by using a differential equation. In 

either case, the concept of an eddy viscosity is erroneous as it is 

based on physically unrealistic arguments. By analogy with molecular 

viscosity, it assumes that the mean free path between eddies is small 

compared with the flow dimensions and that eddies transfer momentum by 

a series of discrete collisions. This in no way represents the vortex 

interactions that occur nor the energy cascade which is completely 

described by the turbulent energy transport equation (2.25). Bradshaw 

(1972) discusses the validity of the use of eddy viscosity formulae in 

more detail . 

7.1.1 . Algebraic Specifications of Eddy Viscosity 

The concept of mixing length is analogous to that of the eddy 

viscosity. The mixing length theorem was proposed by Prandtl and in 

it the mean free path between collisions is designated as the mixing 

length. Therefore the relation between eddy viscosity and mixing length 

can be written: 

= ~2 
0 

au 
ay ... (7.2) 



Use of Eddy 
Viscosity 

T = -puv 
= llT au 

ay 

vT = llTIP 

= velocity 
scale 

x length 
scale 

Algebraic Definition of llT 

11T = P t2 
0 

au 
ay 

Prandtl (1925); 2 a 
0 

au~ ;a2u VT = pU
0

y0 f(y/o) 

R, related to flow dimensions 
0 

ay/ · ay2 

Von Karm~n (1930) 

Prandtl/ 
Kolmogorov 

Eddy Viscosity 
Formula 

llT = c pklt 
1l 

One~Equation Models 

Differential equation for tubulent kinetic energy k. 
Length scale £, prescribed algebraically. 

Two-Equation Models 

Differential equation for k and £; 2 prescribed by any 
turbulence quantity with a dimension of R.n. 

e.g. Rodi & Spalding (1970): 2 from D(k£) 
Dt 

Harlow & Nakayama (1968): 2 from DE 
Dt 

Reynolds Stress Transport Equations 

Daly & Harlow (1970): D(uiuj), DE 
Dt Dt 

Launder et al (1975): D(uiuj), DE 
Dt Dt 

Lumley (1978): 

Mean strain rate not in pressure-strain term 
Turbulent diffusion approximated by a gradient diffusion 
model. 
Mean strain rate in pressure-strain term 
Turbulent diffusion approximated by a gradient diffusion 
model 
Rational closure scheme by method of invariant modelling 

Table][ Classification of Turbulence Modets 

No. of 
p.d.e. 's 

0 

1 

2 

2+ 

..... 
ll=oo 
0) 
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The mixing length is an easier concept to use and Prandtl related it to 

the dimens.ions of the flow considered. Von Karman attempted to genera-

lise the formulation of the mixing length by use of the similarity 

hypothesis: 

• . (7 .3) 

Direct algebraic specifications of the eddy viscosity also exist where 

a typical velocity and length scale of the flow are treated as func-

tions of y/o. 

7 .1,2 Specification of Eddy Viscosity by Differential Equations 

Later, Prandtl suggested that the velocity scale for vT be 

replaced by the square root of the turbulent kinetic energy: 

.•• (7 .4) 

where k and/or ~ could be specified by a transport equation. ~ repre-

sents a length scale proportional to that of energy-containing eddies. 

Kolgmogorov also used the turbulent kinetic energy for the velocity 

scale, but for the length scale used ~ = k!/f where f is the typical 

frequency of the energy containing motions. Nee and Kovasznay (1969) 

proposed a differential equation for veff = vT + v directly without 

use of equation (7.4). However most one and two-equation models use 

the Prandtl/Kolmogorov formula for ~T above and these are now briefly 

described. 

(a) One-Equation Models 

The individual terms of the transport equation for kinetic energy, 

equation (2.25), have to be expressed in terms of known quantities, i.e. 

mean flow variables and constants, and the kinetic energy, before a 



- 148 -

solution can be obtained. A possible model for a boundary layer is 

given by Launder and Spalding (1972) derived, for high Reynolds number 

flows, along the lines suggested by Prandtl and Kolmogorevp Two con-

stants are required in the equation: 

u Clk + v Clk 
= - €: 

ax Cly 

. . • (7. 5) 

where 

~ ... (7.6) 

A solution of this model equation together with a simple relation 

between ~ and the flow dimensions gives a solution for ~ . One equation 
T 

models offer few advantages over the mixing length hypothesis because ~ 

is still specified algebraically. Therefore more use has been made of 

two equation models. 

(b) Two-Equation Models 

The drawbacks of the one-equation models are overcome by the use 

of a transport equation to represent ~. This can be done in a number 

of ways leading to several different models of this type. The problem 

lies in the choice of length scale and it is likely that more than one 

would be required particularly for complex flows (Bradshaw (1972) ). 

Another difficulty is that transport equations for length scales tend 

to be more complicated than that for the turbulent kinetic energy. 

Rotta (1951) suggested use of exact equations for .turbulence length 

scales related to the integral scales whilst later workers (Daly and 

Harlow (1970), Hanjalic and Launder(l972) ) implied a length scale by 

use of a transport equation for the dissipation rate E, equation (2.26). 
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This is a popular definition of a length scale as E appears explicitly 

in the k transport equation (2.25). At high Reynolds numbers, the 

modelled transport equation for £ can be written in boundary layer form 

as: 

2 
'(J d£ + V dE = c d ( \)t d£ t CE 1 \IT 

~(::t ce,2 £2 
£ ' 

dX ()y ay ay k 

.•. (7. 7) 

where C£, ce,l and C£, 2 are empirical constants. Solution of this 

equation with equation (7.5) is known as the k ~£model. Other length 

scales that have been proposed are those associated with the product 

of k and Q, (!lodi and Spalding (1970) ) and the mean square of the 

frequency of the energy-containing eddies. Launder and Spalding (1974) 

review these last three models and prefer the use of the k ~ £ model which 

is tested with experimental data from several different types of flow, 

including those with recirculation. The use of a differential equation 

to specify the length scale in addition to the velocity scale in a 

turbulence mudel significantly improves the range of use and accuracy 

of a calculation procedure. However, the limitations imposed by the 

use of an eddy viscosity are only removed by direct modelling of the 

terms in transport equations for the Reynolds stresses. 

7 .1.3 Reynolds Stress Models 

The term by term approximation of the Reynolds stress transport 

equations was first suggested by Chou (1945) and Rotta (1951). This 

brief review is intended only to highlight the major points of what is 

now an extensive subject. Two of the most important Reynolds stress 

closures are those of Launder et al (1975) (LRR) and Daly and Harlow 

(1970) (DH); both draw substantially on the work done previously by 

Chou and Rotta. 
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As in the two-equation models above, a length scale transport 

equation is also necessary. Both the DH and LRR models provide closure 

approximations for uiuj and use the £ transport equation (2.26) as the 

length scale equation. They are therefore suitable for comparison. 

Equation (2.24) is the transport equation for the Reynolds stress 

uiuj in which only the convection term and the production term, Pij are 

explicitly defined in terms of known quantities, i.e. second order 

correlations or mean velocities. The remaining terms are approximated. 

For high Reynolds number flows LRR uses the following approximations. 

(a) Diffusion by Velocity Fluctuations 

By simplification of the exact transport equation for third order 

correlations: 

---
( uiu£ uku~ auiuj) - uiujuk = s k Clujuk + uju.Q. dUkUi + 

£ dXQ, dXQ, dXQ, 

.(7.8) 

DH, however uses: 

= S' k 

. . . (7. 9) 

where S and f3' are constants. 

(b) Diffusion by Pressure Fluctuations 

LRR ignores these terms whilst DH uses a gradient diffusion model 

where p'ui is proportional to k auiUQ, 

(c) Dissipation 

For a high turbulent Reynolds number, the small scale motions may 

be considered isotropic. Then following Rotta (1951): 
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= 2 E: 

3 ... (7.10) 

Both models use this approximation. 

(d) Pressur~-Strain/Redistribution 

p' au. 
Chou (1945) showed that away from a wall, the term --a-1 could 

P xj 

be expressed in terms of the interaction of fluctuating velocities and the 

interaction of the mean and fluctuating flow. LRR label these two 

contributions as (~ij,l + ~ji,l) and (~ij, 2 + ~ji, 2 ) respectively. Rotta 

(1951) proposed: 

<~ · · 1 + ~ · · r> = -a. e: 1J, . J1, - 2 0 .. k) 
- 1J 

k 3 ... (7.11) 

where a. is a constant. The right hand side of equation (7.11) represents 

the degree of anisotropy of the turbulence and shows a linear "return to 

isotropy". Since in an homogeneous flow, where the mean rate of strain 

is neglig-ble, the statistically more probable state is one of isotropy, 

Rotta proposed that pressure fluctuations would act to equalise the 

normal stresses and to diminish the shear stresses. Naot et al (1970) 

proposed the model for the mean velocity gradient contribution to the 

redistribution term as: 

= -a.' (Pij - .: oij P) 

3 ... (7.12) 

where P = production of turbulence energy. The model is exact for 

isotropic and homogeneous turbulence. This contribution to the re-

distribution term is proportional to the anisotropy of the production 

of turbulence. The DH model recognises the contribution of the mean rate 

of strain to the redistribution term but assumes that it is negligAble. 

The LRR model uses a 'complete' and ' simplified' approximation for the 
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mean rate of strain contribution, where the simplified version is of 

the form of equation (7.12). It also uses a modified form of the 

complete pressure-strain model for near-wall turbulence. 

LRR model the £ transport equation (2.26) as originally shown by 

Hanjalic and Launder (1972). The modelled equation is: 

De 

Dt 

= - c e,l £ uiuk aui - c£,2 

k ()xk k a~ 

..• (7 .13) 

which, after summation of indices, use of equations (7.1), (7.4) and 

(7.6)and application of boundary layer assumptions, reduces to equation 

(7. 7), used in the k "' £ model. 

Bradshaw (1972) compares the LRR and DH models along with other 

similar Reynolds stress closures. Launder and Spalding (1972) compare 

predictions using the DH model with experimental data of a plane free 

jet. The u2 and v2 stresses are not predicted very well, which they 

ascribe to the modelling of the redistribution terms since k is predicted 

fairly well~ However, this is a criticism of just one of the many assump-

tions required in a Reynolds stress closure. In order that a model may 

have the intended degree of universality, it has to be tested in a 

wide variety of flows. Only then can one model be said to be superior 

to a not her . · 

7 .1.4 Additional Models 

There are some models which do not fit into any of the categories 

of table }[ , and yet are important. The first of these is that of 

Bradshaw et al (1967) which is a one-equation model, but which does not 
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use the eddy viscosity concept. See § 6.1.2. The turbulent kinetic 

energy equation is converted into a differential equation for the 

turbulent shear stress by assuming T a p k which holds for many types 

of boundary layers. The dissipation term in the kinetic energy equation 

is modelled by equation (7.6) where tis prescribed algebraically. The 

model does have the advantage that the shear stress is not tied to the 

mean velocity gradient, but the model has no use in regions of negative 

shear stress where k is necessarily positive. 

Another model which is not easily categorised is that of Rodi (1976) -

an algebraic Reynolds stress model. The modelled stress transport 

eq~ation is reduced to an algebraic form by the assumption: 

= 

k 

= uiuj 

k 

X transport (k) 

( p - e:) 

Thus the convection and diffusion terms are approximated. In practice 

the model reduces to a k ~ e: model, where the constant of the Prandtl­

Kolmogorov eddy viscosity equation (7.4) becomes a function of P, k and 

e:. This model was used by Ljuboja and Rodi (1981) in predictions of 

flat plate wall jet data. 

7.2 ASSESSMENT OF MODELS 

All of the models described above, with the exception of that of 

Bradshaw et al (1967), can, in principle be used in the calculation method 

described in Chapter 6. However, the simpler eddy viscosity/mixing 

length formulae lack the detail of prediction and universality of a full 

Reynolds stress closure, yet offer surprisingly good predictions when 

constants are adjusted for each flow type. 
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In general, the limitations of a model can be seen by inspection of 

the relevant transport equation at an order higher than that of the closure. 

Thus the limitations of the mixing length hypothesis are seen by inspection 

of the transport equation for turbulent kinetic energy when transport terms 

are neglected ( § 2.3.1). Irwin (1973) and Bradshaw and Gee (1962) both 

found that the position of zero shear stress in a flat plate wall jet 

was consistently closer to the wall than the velocity maximum. ( § 2.4.1) 

This phenomenon can be predicted by a Reynolds stress closur~,but not by 

an eddy viscosity model which would predict uv = 0 at the velocity 

maximum. 

In complex shear layers where several gradients of components of the 

stress tensor uiuj may be significant in the mean momentum equation, the 

use of a scalar eddy viscosity, as in the Prandtl-Kolmogorov formula 

equation (7.4), may no longer be valid. vT is likely to be strongly 

sensitive to direction. Also, neglect of the modelled convection and 

diffusion terms in the uv transport equation leads to retention of only 

the redistribution terms - there is no dissipation term. After retaining 

only the main redistribution terms and assuming v2/k is constant the Prandtl-

Kolmogorov formula is produced. Therefore this eddy viscosity formula 

inadequately represents convective and diffusive processes and implies that 

where a mean velocity gradient changes rapidly, that the Reynolds stress 

will respond immediately. Rodi (1975 b) assesses the constancy of C~ in 

the Prandtl-Kolmogorov formula. 

A Reynolds stress closure of the form of LRR, in which all the 

terms in the transport equation are separately modelled, is likely to be 

the only model, presently available, capable of giving satisfactory 

predictions of uiu. for a complex shear layer. At least one transport 
J 
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. ~ 
equat1on for a length scale would also be necessary as dx is large for 

many complex shear layers. But the application of a Reynolds stress model 

to strongly curved flows is only just being developed (Gibson and Rodi 

(1981) ). Fo~ purposes of the present work, a mixing length formula, 

modified to account for the effects of streamline curvature and diverg-

ence, is likely to give satisfactory predictions of the mean flow, rela-

tively cheaply in terms of computer time and will serve as a good first 

approximation in a calculation method required to give predictions for 

only one flow type. The calculation method described in Chapter 6 is 

such that it could be extended to incorporate a full Reynolds stress closure 

at a future date. 

7.3 REPRESENTATION OF MIXING LENGTH IN CALCULATION METHOD 

For the two cases where the I boundary is either an axis of symmetry 

or a wall, the jet profile is divided into 'mixing regions', to the 

widths of which the mixing length is proportional. This is the procedure 

followed in the PS method. 

Figure 7.l.a shows the positions of these 'mixing regions' for a 

wall jet in which the following mixing length representations are used: 

~0,!2 = A(Y2 - Yl) 

~0,34 = A(Y4 - Y3) 

~0,56 = A(y6 - Y5> 

~ = 1<~0,12 + ~0,34) 0,23 

~ = 1<~0,34 + ~0,56) 0,45 . . .(7.14) 

Values of ~ near the wall are subject to the law of the wall: 
0 

t 1. K y ..• (7.15) 
0 

where K = 0.41. The correction developed by van Driest (1956) for the 
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effect of damping of turbulent motion near a wall, viz: 

All ... (7.16) 

was not used (A = 26.0) as it was not considered necessary. 

For the parts of the profile in which ClU · 11 a 1"s "f" d - J.S sma , "' specl J.e 
(ly 0 

as the average of those values in the two adjacent 'mixing regions'. The 

possibility of t
0 

+ 0 as ClU 
+ 0 is therefore avoided. Cly This procedure is 

consistent with the physical processes involved because in regions where 

the value of ClU is small, production of uv is small and transport terms Cly 

dominate. Since the mixing length hypothesis neglects transport processes, 

it is meaningless in these regions. Accordingly, the value of 

t
0 

IClU/Clyl was not allowed to fall below a certain minimum proportional 

to the local value of U. 

The representation of t
0 

in a jet with an axis of symmetry at the 

I boundary is shown in Figure 7.1 b, where the treatment is the same. 

The positions of y1 + y6 are shown also for the intitial top-hat pro-

files. These were defined so that consistency with the t
0 

representation 

for the downstream profiles was achieved. 

The relative merits of different values of A and ~ are discussed 

by Launder and Spalding (1972). They found that agreement between 

experimental data for wall jets and the PS calculation method could be 

optimised for different flow parameters by using different ratios of 

K/A. The values of K and A used in the present calculation method 

are given in the table N below. 
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JET TYPE k A 

Plane flat plate wall 
0.41 0.09 jet 

Plane jet with axis 
0.41 0.115 of symmetry 

Axisymmetric jet with 
0.41 0.075 axis of symmetry 

TABLE Til: Values of K and A in Jet flows without 

streamline curvature or divergence 

7.4 MODELLING OF STREAMLINE CURVATURE EFFECTS 

The effects of streamline curvature on a turbulent shear layer 

were reviewed in § 2.5. Curvature is likely to affect the higher order 

structural parameters of the turbulence, therefore implicitly changing 

the sizes of the terms in the Reynolds stress transport equations on 

top of the explicit changes in the production and transport terms. See 

Appendix F. Therefore, all of the turbulence models described in § 7.1 

require empirical adjustment to account for the effects of streamline 

curvature . :;. 

7.4.1 Mixing Length CorrectionsFor The Effects Of Streamline 

Curvature 

The laminar shear stress term of equation (E.l) becomes after 

retention of only the significant terms (see § 6.2.3 for assumptions): 

'! = 

... (7.17) 
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Sawyer (1963), using Prandtl's 1929 mixing length arguments derived an 

expression for the turbulent shear stress: 

· - uv = "T 

= .R,2 
0 

(
au c u) 
()y rh 

c u \ 
rh } 

•• (7 .18) 

where C is an empirical constant and .R. is the mixing length in the 
0 

equivalent flow without curvature. Equation (7.18) corresponds to the 

F-factor correction of Bradshaw (1973) applied to .R.
0

• See § 2.5. 

Sawyer found that in equation (7.18) C = 5 for a curved free jet for all 

ratios of jet thickness to radius of curvature of the jet centre-

line. Giles et al (1969) used the same correction for the calculation 

of a turbulent wall jet on the logarithmic spiral. For the self-preserving 

jet, C = 3 gave a best fit to the measured profile shape. 

The fact that C ~ 1 in equation (7.18) illustrates the fact that 

the turbulent shear stress has no direct analogy with its laminar counter-

part. Also the expected variation of C in order to optimise agreement of 

predictions with different curved flow types highlights the approximations 

involved when using a mixing length modification. The variation of C 

accounts for not only the relative degree to which the production and 

dissipation terms in the turbulent kinetic energy equation (F.7) are 

affected, but also accounts for the failure of the local-equilibrium 

approximation where transport terms are significant to a different 

degree. 

Using the analogy between the effect ofbuoyancyon a turbulent 

flow and that of curvature, Bradshaw (1969) made use of the original 
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idea of Prandtl.In buoyant flows the gradient Richardson number is 

defined as: 

Ri = buoyancy forces 

inertia forces 

Bradshaw defines: 

= where = U/r 

.(7.19) au;ay ... (7.20) 

SB is equivalent to the flux Richardson number defined as the ratio of 

turbulent energy production by buoyancy forces to production by shearing 

forces, as shown by retention of only the main production terms in 

equation (F~7). 

In unstably curved or buoyant flows, RiB is negative and in stable conditions 

it is positive. Bradshaw also proposed·the use of a Monin-Oboukhov type 

formula, which was originally derived for modification of mixing length 

by small buoyancy effects, in order to compensate the mixing length in 

a curved flow. It is: 

2c/2
0 

= 1- S RiB . . . (7 .21) 

where 2c denotes the corrected mixing length. For large r, SB is small 

and equation (7.21) reduces to the curvature correction used in equation 

(7.18) for C = 28. Equation (7.21) is therefore equivalent to the F­

factor analysis used by Bradshaw (1973), who tests its use in the cal­

culation method of Bradshaw et al (1967). The calculation method uses 

the thin-shear-layer approximation and the cross-stream pressure gradient 

is neglected. Meroney and Bradshaw (1975) report the comparison between 

predictions and experimental data for a stably and unstably curved 

boundary layer where ± o/r ~ 0.01 - 0.02. Values of 8 = 7 and 4 were 

used for the cenvex and concave cases respectively, although for the 

latter, the presence of longitudinal vortices made the agreement less 
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good. Bradshaw (1973) also reports calculations made for curved wall 

jets using values of B = 7 and 4 in stabilised and destabilised regions 

respectively. No experimental data was available £or comparison. 

However, the jet growth rate data of Giles et al (1966), suggested that 

optimum valubs for B were 4 in stabilised regions and 3 in destabilised 

regions, i.e~ C = 8 and 6 respectively. The boundary layer data of So 

and Mellor (1972) was also used, but agreement was not so good. In this 

case, o/r = 0.08 on a convex surface and 0.13 on a concave surface. The 

linear correction of equation (7.21) is not expected to be adequate for 

large curvature effects. 

7.4.2 Analysis For Mixing Length Correction Applicable To Flows With 

Large Curvature 

The basis of the method is the approximation of each of the 

transport equations for the components of the Reynolds stress tensor 

uiuj, modelling the remaining terms as outlined in § 7.1.3 and manip-

ulating the remaining equations that are algebraic in UiUj· This more 

rigorous approach gives a mixing length correction which is applicable 

to flows with large curvature. 

Irwin and Smith (1975) assume that terms UiUj are of order(~) u2 

and that the terms uiujuk are of order (~)2 
U3 . They also assume that 

the redistribution terms are of the same order as the main production 

terms. Following these assumptions, equations (F.4) to (F.7) reduce to 

their local equilibrium form, i.e. transport and convection terms are 

neglected. The approximate u2 , v2 , w2 , q2/2 and -uv transport equations 

are respectively: 
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- h "iiV au- uuv + p' au 1 e: = 0 

ay r p ax 3 
. . .(7.22) 

2 uuv + h p' av 1 e: = 0 

r p ay 3 . . .(7.23) 

h p' aw 1 e: = 0 

p az 3 
. .(7.24) 

- h ~v _au + uuv e: = 0 

ay r 
.(7.25) 

h v2 au (2 u2 - v2) u - h uv (U sin ~X + V cos a) 

ay r R 

- p' ( av + 
h au r 0 

p ax ay 
. . .(7.26) 

Rearrangement of the approximated turbulent kinetic energy equation 

alone gives equation (7.18), viz: 

where 

- uv = 9,2 
0 

K = U/rh 

The Richardson number is defined as: 

Ri = 2K (1 + K) 

• • . (7 .27) 

. . . (7 .28) 

(1 - K) 2 • • • (7 .29) 

which for small curvature reduces to Ri8 • The only terms that require 

modelling in equations (7.22) to (7.26) are the pressure-strain terms 
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which are done so as in the LRR model, viz equations (7.11) and (7.12). 

The modelled equations are therefore, in the same order: 

h uv au + u iiV 

(Jy 
r 

2 ij iiV 

r 

h ffi1 au 
(Jy r 

h v2 au (2u2 

ay 

w2 -

r k 

+ e: = 0 

3 

. . • (7. 30) 

+ e: = 0 

3 

... (7.31) 

+ e: = 0 

3 

.•. (7.32) 

+ e: = 0 

.(7.33) 

( -h v2 aU + <•u•-,2> 
ay 

h uv ( u sin a + v cos a ) = o 

R 

..• (7.34) 

u) 
r 
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LRR recomend c1 = 1.5 and c2 = 0.4. With the neglect of the divergence 

term in equation (7.34) (see § 7.5 and § 7.7) and the substitution for 

the dissipation rate using equation (7.6), expressions for uv and the 

ratio u2;v2 can be obtained: 

- uv = 

= 

_Q,2 
0 

2 1 + ~l K/(1-K) 

1 - 'Y2K/(l-K) 

. . . (7 .35) 

••• (7 .36) 

These expressions were derived by So (1976) following the analysis 

of Irwin and Smith (1975). The constants are not universal as proposed 

however, for the reasons given in § 7.4.1. A similar procedure is 

adopted by So (1975) who obtained: 

- uv (1 - ~ Ri)
3
/2 (1 - K) 2 

2 

... (7 .37) 

This expression was used by So (1978) for boundary layer predictions 

for the data of So and Mellor (1972, 1973 and 1975). Good agreement 

was found with the predictions of shear stress in cases of large 

curvature, o/r ~ 0.01. 

Finally, it is worth noting that for small curvature, Ri +RiB 

and equation (7.35) reduces to equation (7.21) with 8 = 3a /4. Also 
1 

in the outer regions of a wall jet with streamline curvature, where 

there is destabilising curvature and Ri is negative, the mixing length 

is increased as expected in equation (7.35) for a1 and a
2 

positive. 
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The converse would be true for stabilising curvature. Equation (7.36) 

shows the reduction of the stress ratio for negative K(v1 and1(2 are 

also positive) and incidentally for no curvature the ratio predicted is 

2.0. 22 Townsend (1976 p. 107) quotes u /v as 1.37 and 1.45 for the 

outer layer of a boundary layer and a flat plate wall jet respectively. 

7.5 MODELLING STREAMLINE DIVERGENCE EFFECTS 

It was shown in§ 2.7.1 that the effect of the extra rate of 

strain induced by lateral divergence can be represented by a simple 

formula, bearing in mind the restrictions mentioned in § 2.5. 

Thus the mixing length in a flow with divergence of the mean flow 

streamlines can be represented by: 

Q.D = \ (1 - ~ ( ii sin a + V cos a)) 
. R au;ay • . . (7 .38) 

where ~is an empirical constant of order ten. Now differentiation of 

equation (6.14) with respect to x gives: 

= p oy 
( 

U dR 

dx 

+ R au ) 

ax dx R 

.•. (7.39) 

where dR/dx = 0 and 1 for the plane and axisymmetric (a = 90°) cases 

respectively .. For say, the case of a radial wall jet where R = x, 

assuming the value of x is sufficiently far downstream and that 

au;ax = U/x, then the ratio of radial to plane wall jet entrainment 

rates reduces to two and therefore the ratio of shear stresses also. 

au;ay is negative in the larger outer region of a wall jet, hence 

equation (7.38) gives the expected increase in mixing length for the 

axisymmetric case with divergence. It may be noted from equation (7.38) 
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that for a cylindrical wall jet where a = 0, only divergence of the 

streamlines in the x-y plane with respect to cartesian coordinates occurs, 

whereas for a·~ 0, divergence is three-dimensional, occuring in the 

x-z plane also. 

For the present case o/R = 1/6 is a maximum estimate for transverse 

curvature. This value is less than the value at which Smits et al 
. 

(1979 b) concluded that transverse curvature effects were negligAble. 

No empirical correction is therefore made for transverse curvature. 

7.6 ALLOWANCE FOR "HISTORY" EFFECTS 

The only terms in the Reynolds stress transport equations that can 

change immediately the mean rate of strain changes are the production 

terms and those terms involving p'. The latter can change immediately 

because the mean strain rate appears in the Poisson equation for p'. 

Therefore the effect of a sudden application of an extra rate of strain 

is not immediately apparent on the shear stress. Castro and Bradshaw 

(1976) demonstrate this with data from a strongly curved mixing layer. 

The maximum principal stress has a lagged response to the extra rate of 

strain, i.e. the effect of mean transport on the Reynolds stress is 

apparent. 

For the responseof a shear layer subjected to a sudden extra rate 

of strain, e, Bradshaw (1973) proposed that an effective rate of strain 

could be calculated from the ordinary differential equation: 

X d = 

dx 
• . • (7 .40) 

X is a 'time constant' representing the memory of the stress-containing 

eddies which, using local equilibrium arguments, is approximately lOo 
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for a boundary layer and 2o for a jet or free mixing layer. Equation 

(7.40) therefore shows an exponential growth response to an applied 

extra rate of strain e. The time constant for the present study was 

considered not likely to be very long, and therefore the above 

equation was not used. 

However, problems were encountered in the initial calculations of 

shear stress. These originated not only from the above considerations, 

which are even more pertinent when transport terms are neglected as in 

the mixing length hypothesis, but also from the idealized velocity pro-

file at the slot exit in which ClU/Cly = 0 except at either wall where 

very large gradients occurred. Therefore it was necessary to control 

the rate at which the shear stress UV could grow, being crudely related 

to the mean velocity gradient. This was done by controlling the rate 

at which y3 in Figure 7.1 ~was allowed to move inwards to its position 

"'~~ 
on the fully developed profile. In accordancelestablished rates of 

development of shear layers, the mixing length was initially allowed to 

increase at a rate proportional to the distance downstream from the 

slot exit where the constant of proportionality was 0,12. Reynolds 

(1974 p. 329) suggests a ratio of nominal shear layer width to develop-

ment length of about 0.1. The constant of 0.12 was used here because 

the mixing length was determined from the narrower mixing regions as 

defined by equations (7. 14). This process of controlling the growth of 

shear stress and mixing length linearly was used instead of 

equation (7.40). 

Smits et al (1979 a) derive a second order ordinary differential 

equation in the perturbation of ClU/Cly from its pre-curvature value in 

order to assess the recovery of a shear layer from the removal of the 



- 167 -

extra rate of strain. The equation represents a damped simple harmonic 

response, i.e. the variation of oU/oy and uv is oscillatory as indicated 

by the experimental data. In the present work, no procedure was incorp­

orated into the shear stress calculation to simulate this oscillatory 

response to the removal of curvature, nor indeed the response to the 

sudden change from laterally diverging to converging flow, as occurring 

at a = 0 on an axisymmetric profile with streamline curvature. 

7.7 MODELLING OF COMBINED STREAMLINE CURVATURE AND DIVERGENCE 

EFFECTS 

A simple algebraic solution for uv is not immediately available 

from equations (7.30) to (7.34) with the inclusion of the extra produc­

tion term due to streamline divergence in equation (7.33). The curva­

ture and dive:gence terms are thereforetreated separately as above and 

it is assumed that their effects on the shear stress are additive, which 

is unlikely to be realistic except in cases of small extra rates of 

strain. In any case, with the use of a mixing length model, further 

sophistication is probably not justified. Thus any interaction between 

the effects of the two extra rates of strain present are not taken into 

account in the present shear stress model. 

A discussion of the present turbulence model appears in Chapter 

9 togetherwithpossible improvements to the modelling of streamline 

curvature and divergence effects. 
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CHAPTER 8 

COMPUTER PROGRAM RESULTS 

The calculation method outlined in Chapter 6, with the approach 

for modelling the Reynolds shear stress described in the previous chapter 

was tested against established experimental data for five independent 

cases, all of differing geometries and constants, the program was then 

used to predict the data for the three sets of conditions used in the 

experimental work reported in Chapter 5. Thus eight separate flow 

cases were calculated and these are summarized in Table V below. 

CASE FLOW tmm Us m/sec N NIT 

I Flat-plate wall jet: 
Wilson.& Goldstein (1976) 6.09 34.34 20 1 

II Wall jet on a circular cylinder: 
Wilson & Goldstein (1976) 6.15 36t)02 30 4 
r/t = 16.5 

III Radial ·wall jet: 
Baker (1367) 2.00 117.84 30 1 

IV Round free jet: 
Rodi (1975a) 6.45 100.13 20 1 

v Conical wall jet: 
Sharma (1981) 2.06 46.32 30 1 

VI Case A of experimental results: 
r/t = 6.0 5.00 67.01 30 4 

VII Case B of experimental results: 
r/t = 15.0 2.00 105.68 30 5 

VIII Case C of experimental results: 
r/t = 19.9 2.51 229.15 30 10 

Table V: Test Cases for Calculation Method 
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All the r.ases in the table refer to an air jet in air, although 

the program does allow the physical properties of the primary fluid and 

entrained fluid to be changed. However, mixture properties are only 

obtained by mass average. The values of mixing length constants used 

are given in Table IV. The first pair of values are those used in all 

cases which specify a wall at the I boundary. Case IV is the only one 

in which the i boundary is an axis of symmetry. The values of slot 

exit velocity given in the table are, in the case of the iterative 

procedure, those calculated at the wall node for the.converged solution. 

In all cases excpet the last, Us is below M = 0.34. With the exception 

of the node adjacent to the wall, the nodes were distributed according to 

a power law of 1.5 so that the nodes were closer together at the maximum 

of the mean velocity profile. This was necessary in order to reduce 

errors in aU;ay near the maximum. The node (i = 2) next to the wall 

was kept at a fixed dimensionless distance from the wall to ensure that 

it was always in the fully turbulent region. Where the number of itera­

tions (NIT) is stated as one, the non-iterative procedure:was used. 

Iterative procedures all used the wall-pressure convergence criterion of 

§6.4.6 and a relaxation factor of 0.3 for the adjustment of upstream 

static pressures. Step lengths were controlled so as to be no larger 

than either a preset multiple of the slot width, or a fixed angle incre­

ment, whichever was the smaller. 

8.1 CASES I - V 

The experimental data of case I was used to fix the entrainment 

constants using the two established values of mixing length constants 

specified in Table IV. Subsequently, the values of these entrainment 

constants wer-e not changed. Predictions of growth/velocity decay rate, 

wall shear stress, mean velocity and shear stress profiles are presented 

in Figures 8.1 - 8.16. 
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For case I, the predictions of wall shear stress, figure 8.2, 

are slightly below, but on the same gradient as the wall shear stress 

measurements of Bradshaw and Gee (1962). The mean velocity profile 

· U/Um shows a typically thin velocity maximum and V/Um is quite badly 

underestimated; most of the other mean velocity profiles in the other 

cases show similar defects. The shear stress profiles show good agree­

ment except for 0.8 < ~ < 1.4. This is due to the mis-placement of 

y4 (figure 7.1) which controls the mixing length in this region. This 

fault can be traced to the relative scarcity of nodes in the outer parts 

of the profile and the consequential inaccuracies of au;ay which was 

used as the criterion for positioning y4 . Not surprisingly therefore, 

the values of uv in this region show no degree of similarity as shown 

by the experimental data. Naturally, the position of zero shear stress 

coincides with the maximum in u; no diffusion of iiV can be accounted 

for with use of a mixing length model to give the expected reduction in 

the value of~ at uv= 0 as the jet develops. 

The same predictions for the case of a wall jet with streamline 

curvature are given in figures 8.5 - 8.8. The values of a1 and a2 

used in equation (7.35) for the correction to mixing length to account 

for the effects of curvature are 3.26 and 3.09 respectively. These 

values were SU5gested by So (1976) whose values of v1 = 1.942 and 

v
2 

= 3.865 in equation (7.36) were also used for predictions of u2;v2. 

Subsequently, the values of these constants were not changed for any 

of the other cases. 

The prediction of jet growth rate agrees well with the experimental 

data, but the velocity decay rate is under-predicted. This is peculiar 

since one would assume that both ought to agree for conservation of 
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angular momentum to be enforced. Faulty interpolation for ym/2 or Um 

appears not to be the reason. Predictions of wall shear stress appear to 

oscillate from step to step but show at least qualitatively, the trend of 

the data of Alcaraz et al (1977). The mean velocity profiles do not 

remain similar. U/Um profiles show an over-sharp peak and therefore a 

slightly thicker profile for ~ > 1.0. V /ff is underestimated by as much 
m 

as 50%. The shear stress profiles show quite good agreement, except for 

e = 90° which is over-estimated for ~ > 0.4 and underestimated otherwise. 

Problems of over-large shear stress in the outer parts of the profiles 

apparent in the previous case are not so here, although the predictions 

show no steady increase as indicated by the experimental data. 

The limit of the general axisymmetric geometry (a = 90°) with a 

flat wall produces a radial wall jet, figures 8.9 - 8.12. The value of 

a:= 9.0 was used in equation (7.35) for the estimation of the effects of 

streamline divergence on the shear stress uv. Despite the lack of experi-

mental data for comparison, the shear stresses in figure 8.12 are 

approximately twice those of figure 8.4 as expected. The wall shear 

stress appears to be slightly overestimated at large values of x/t (small 

values of (Re>max> and underestimated at low values of x/t. The mean 

velocity profiles show similar defects to those of the previous cases. 

Values of the mixing length constants used in Case IV, figures 

8.13 - 8.14, are shown in Table IV. The value of K is of course 

irrelevant. It appears that a larger value of A should have been used 

to optimise agreement with the experimental data - the shear stresses are 

underestimated by nearly 50%. However, the mean velocity profile is well 

predicted and does not show the defects common to all the previous cases. 
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Case V is a further test of the axisymmetric geometry where a= 54°. 

The profiles of U/Um are similar to those for the preceeding wall-bounded 

cases. There are no experimental data for comparison with the velocity 

decay rate and shear stress predictions, but the growth rate prediction 

is satisfactory. The local maximum on the shear stress profile at 

x/t = 42, ~ = 0.45 is caused by a slight point of inflexion in the mean 

velocity profile. 

8.2 CASES VT - VIII 

Figures 8.17, 8.22 and 8.24 show the jet growth/velocity decay rates 

for the three sets of experimental data presented in Chapter 5. All 

three cases show underestimation of the velocity decay rate. The jet 

growth rates are predicted quite well, although at large x/t, where 

velocity maxima are not always well defined and where velocity gradients 

in the outer ~art of the jet are small, the experimental values of Ym;2 

are subject to large errors. Therefore no specific comments can be 

made concerning the expected reduction in growth rate after the removal 

of streamwise curvature and the prediction of it. However for smaller 

values of x/t the agreement is least good for case VI. This is not sur­

prising since the ratio r/t = 6 whereas it is 15 for case VII. With a 

larger slot w~dth, the potential core of the jet extends further down­

stream, therefore making the simple assumptions concerning the shear 

stress modelling in the initial regions of the jet ( § 7.6) more critical. 

In fact, the positioning of the mixing region edge Y3, is not determined 

by the usual criterion of oU/oy until 9 = 70° in case VI, whereas for 

case VII this is done so by 9 = 300. This leads to an underestimation 

of shear stress in the initial regions of the jet for case VI but not 

for case VII as shown by comparison of figures 8.21 and 8.23. 
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Figure 8.18 shows the wall shear stress predictions for case VI. 

There are two distinct gradients for the wall jet with and without 

streamline curvature, below and above the experimental laws respectively. 

The value of (Re) is least at 9 = goo. No adjustments were made to max 

the values of the constants in the law of the wall either for the effects 

of streamline curvature, or the changes in surface curvature. The increase 

in wall shear stress up to 9 goo and the subsequent decrease is reflected 

in the profiles of figure 8.21. 

The mean velocity profiles for case VI are shown in figures 8,lg 

and 8.20. Allowing for the profile at 9 = 500 which shows signs of not 

being fully developed, none of the U/Um profiles show any distortion 

caused by the sudden change in surface curvature at 9 = 1000, apparent 

in the experimental data (figures 5.10 and 5.11). The mean velocity 

profiles at 9 = 100° + 50 mm overestimate both U/Um and V/Um· This 

is not likely to be caused by the sudden change in surface curvature at 

9 = 1000. The profiles of V/Vm collectively do not behave as expected 

from the experimental data. 

The shear stress predictions of figure 8.21 (c.f. figure 5.18) 

show a steady increase up to 9 = goo and a subsequent decrease, more 

sudden after 9 = 100°. The non-monotonic response evident in the 

experimental data is naturally not apparent in the predictions since 

no programming was incorporated to model it. However, the maximum in 

shear stress at 9 = 80° rather than 9 = goo or 100° can be interpreted 

as the effect of pressure on the upstream flow. Thus the mean flow and 

therefore the shear stresses can also anticipate the removal of curva-

ture at 9 = 100°. However, this is only because the shear stress is 

directly relaT.ed to au;ay. The large values of uv in the last profile 



- 175 -

at e = 1000 + 50 mm are due to errors in au;ay which are caused by the 

lack of nodes in the outer profile and the large jet width. 

Figure 8.25 shows predictions for the entrainment rates plotted 

(a) for cases with streamline curvature and, (b) those cases without 

streamline curvature. Direct comparison of individual cases is not 

possible as each case has a different slot exit momentum. Cases I and 

II however, do have similar initial momenta and the effect of stream-

wise curvature is apparent. Also of interest is the comparison of 

entrainment rates for the flare geometries (cases VI and VII) and that 

of case IV, the round free jet. Even though the exit momentum for the 

latter is three times those of the former, the entrainment rates for the 

flare cases are larger than that of case IV. 

8.3 DISCUSSION OF CALCULATION METHOD 

The foregoing results indicate certain shortcomings in the calculation 

method which could be improved and are not directly related to the 

turbulence modelling used. 

8.3.1 Node Distribution 

The distribution of nodes according to a power law of 1.5 on w 

combined with the approximations used to calculate yN - yNMI combine 

to give rather a sparse grid for ~ > 1.0. Consequently, the important 

positioning of y3 and y4 is not always sufficiently accurate, leading to 

bad 
tf\fj 

ing 

estimates of uv in this region. This could be remedied by increas­
"1'W.. n.u .... b.u- + 1'\0 J..e..s OU\ol -111\.o.re.~ ~vw-~-
the running time. A reduction in the power law exponent would 

displace nodes away from the velocity maximum outwards, thus causing 

the same problem for y2 and y3 . 
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8.3.2 Mean Velocity Profiles 

With the exception of case IV, all the mean velocity profiles 

underestimate U/Um near the velocity maximum, thereby giving a peak 

that is too sharp. Velocities for ~ > 1.0 are consequently over­

estimated. Consistent with this, the velocity decay rate is under­

estimated in all cases save case IV. (In this case, the growth rate 

is underestimated and as indicated above, correction of this would 

give a more accurate prediction of velocity decay rate than in any of 

the other cases). This trend in the profiles of U/Um is naturally 

linked to those of V/Um. Since au;ax is underestimated, negative 

aV;ay is also; hence V/Um is consistently predicted lower than the 

experimental data. This problem is not directly linked to the model­

ling of the shear stresses and therefore neither the mixing length 

calculation as the shear stress profiles are well predicted particularly 

in the region of the mean velocity maxima. 

§6.1.3 refers to a high lateral convection modification in the . 

calculation procedure, made necessary for reasons of stability under such 

circumstances, e.g. high entrainment. It depends on the relative sizes 

of the component terms (viz: diffusion and convection) of the Ai and Bi 

constants in the finite difference approximation to the x-momentum 

equation (6.28). For computational efficiency, the modification is 

approximated, in which case Ai and Bi are low estimates of their 'true' 

values, and generally the diffusion part of these constants is neglected. 

For strongly sheared flows such as a jet, neglect of this diffusion 

component causes a significant underestimation in velocity decay rate 

which would otherwise be greater due to the increased y-component 

momentum. Neglect of the diffusion component is particularly inaccurate 

near the wail where au;ay is large and the node spacing small; case IV 

which has no wall, therefore fares better. Spalding (1977 p. 73) also 



- 177 -

suggests another approximation for the high lateral convection modification 

which does not neglect the diffusion component but overestimates the 

'true' values of Ai and Bi presumably with effects opposite to those 

described above. The 'true' values of Ai and Bi are exponential func­

tions of the diffusion and convection rates. The end result therefore 

is a compromise between computation time and quality of prediction. 

However, the inaccuracies caused by the neglect of y-direction diffusion 

are bad enough for the 'true' values of Ai and Bi to be used. 

8.3.3 The Pressure Calculation and Stability 

Both the stability and convergence of the calculation method 

depend on the successful calculation of the static pressure. Figure 

8.26 shows predictions of wall static pressure. Agreement with the 

experimental data, figure 5.3, is satisfactory except near the slot where 

predictions are rather high. These predictions of wall static pressure 

are indicative of the rest of the pressure field. For case VIII, the 

prediction oscillates from step to step and at 9 = 20° and 30°, these 

oscillations are too large to fit onto the plot. This calculation 

required ten iterations to converge and despite the use of upwind 

differences in the streamwise direction (unconditionally stable), nearly 

faiied to converge within the required limits. The effects of pressure 

are allowed to propagate upstream at the rate of one step per sweep as 

in a fully elliptic procedure. Therefore it is not expected that 

instability is caused by inconsistencies in the solution algorithm. 

However, the y-componentmomentumequation (6.10) used in the calculation 

contains a normal stress term which under the conditions of these 

test cases is significant. But the normal stresses are only modelled 

by proportionality to the shear stresses, which do not always show a 

consistent trend. Thus the potential instability observed in case VIII 
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appears to be caused by the imprecise nature of the modelling of the 

normal stresses. 

At the time of writing, the three major inadequacies of the 

calculation method had not been corrected. However, with more work, it 

can provide the basic numerical procedure required for advanced turbu­

lence modelling in strongly distorted shear layers. 
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CHAPTER 9 

DISCUSSION 

9.1 COMMENTS ON THE ACCURACY OF THE EXPERIMENTAL DATA 

The conflicting design requirements for the test rig for both high 

and low pressure inevitably introduce an element of compromise into the 

design. The wish to measure discharge coefficients for the slot meant 

that the size of the rig was limited by the available air supply. There~ 

fore, the low speed work suffered from three-dimensional effects which 

could have been reduced by use of a larger model. Construction of two 

separate rigs was not feasible. 

On top of the usual restriction of incompressible flow, the 

maximum velocity was further restricted by the available linearizers 

whose range was limited to ensure that their response was sufficiently 

linear. This is of course a severe restriction for a strongly sheared 

flow. The use of a linearizer is in itself a potential source of 

inaccuracy at low velocities which predominate at the outer edges of 

the jet, particularly if the low-speed design requirements of the air 

supply are compromised by the need for higher supply pressures. This 

is illustrated in the linearization checks of figures 4.2. Without the 

velocity range restriction required with the use of a linearizer, a 

higher exit velocity could have been used, thereby removing the recircu-

lation region shown in the data of case A (fig. 5 .3)·. However, further 

surface pressure distributions (not presented in Chapter 5) for constant 

Re and varying r/t show that the recirculation region is neither a p . 

function of slot Reynolds number only, nor of the ratio r/t only. Indeed 

it seems likely that both the geometry of the slot lip and the slot 

Reynolds number affect the recirculation region. 
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The analogue signal analysis described in Chapter 4 is inherently 

inaccurate for two reasons. Firstly the third and fourth order correla-

• tions are not neglig&ble and their necessary neglect to obtain an analysis 

of manageable proportions is dubious. This is discussed more fully below. 

Secondly, even if the retention of only up to second order correlations 

is reasonable, so many wire positions are required to give a solution 

that cummulative errors in the data are apparent. This is the cause of 

the scatter in the data of figures 5.15 - 5.18. 

Conventional signal averaging at the intermittent jet/ambient fluid 

interface does not have any relevance to the physical situation. More-

over, the neglect of third order correlations in the analysis has already 

been shown to be questionable, since it implies a normal distribution 

of the probability density of the velocity fluctuations (see § 4.6.2). 

With such high intensities, flow reversal, which cannot be distinguished 

by the wire, is likely. This has the effect of 'folding' the probability 

density distribution about the point of zero velocity, causing an even 

larger departure from the assumption of zero skewness. 

More specific comments on the reliability of the experimental data 

concern the hot-wire analysis andhow it is affected by three-dimensionality. 

At an early stage in the work, binomial expansions of the equations of 

the effective cooling velocities in the xz-plane were used to provide the 

two extra solution equations required. This solution often failed to 

converge because of the original assumptions of two-dimensionality used, 

viz: W = iiW = 0. Without these, a factor of (k2 -l)(UW + uw)sin 2a) 
1 

would be added to equation (B.5). However, convergence was obtained by 

expanding equations for wires in the xy-plane for which, without the 

assumptions of two-dimensionality, a term of k~W2 would be added to 
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equation (B. 7). Noting that k1 ~ 0.0 and k2 ~ 1.0, this would imply 

that whilst three-dimensionality of the mean flow had been effectively 

removed, the shear stress uw in the principal traverses carried out at 

the flare centre-line was significantly non-zero.· A logical extension 

of these arguments leads to the supposition that quasi-steady (i.e. "steady" 

as defined by ·Bradshaw (1973 p. 40) - see § 2.6.1) longitudinal vortices 

are present, generated by non-uniformity of the slot or of the flow in 

the plenum chamber, augment .. ed by the unstable curvature and constrained 

sufficiently by the base-plate to give a periodic variation of UW in 

the circumferential direction. However, the wavelength of such a vortex 

system would be rather ill-defined since it would have to be an integer 

multiple of the layer thickness which varies rapidly with streamwise 

extent. Therefore it would seem likely that the longitudinal vor~ices 

are not steady enough to contribute to the mean motion, and therefore not 

detectable by any spanwise variations in wall pressure (figure 5.3). 

9.2 STREAMWISE CURVATURE AND DIVERGENCE EFFECTS 

Discussion of these effects is somewhat restricted by the available 

experimental data, limited to mean flow and Reynolds stress measurements 

outside the log-law region of the wall layer. The data, so far, has 

therefore been discussed by reference to the production terms of the 

Reynolds streqs transport equations. Further inferences concerning the 

flow structure are possible and comparison with data of a wall jet on a 

circular cylinder are particularly useful. However, any conclusions 

attributing observed effects to either of the extra rates of strain 

present, or to the changes in extra rates of strain can be :~entati,ve.(•. J 

only-;since:,their effects are certainly not additive. Furthermore, when 

the wall jet =tructure is regarded as the limit of the interaction between 

a mixing layer and boundary layer of similar thickness, the picture 
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becomes even more complicated. Comparison of the energy balances for a 

flat-plate wall jet and that of a cylindrically-curved wall jet (viz; Irwin 

(1973) and Alcaraz et al (1977)) show that the production term is more 

or less the same. But the dissipation is reduced for the curved case in 

mid-layer and the difference offset by an increase in turbulent diffusion. 

Thus transport and dissipation rates are also required to fully explain 

the present data. 

Up to 75°, the normal and shear stresses are generally greater than 

those of a wall jet on a circular cylinder, c.f. Wilson and Goldstein 

(1976). This can be attributed to the effect of divergence on top of that 

of streamline curvature, and the higher order structural parameters are 

almost certainly affected too. 

al (1979b)) is to increase the 

The fluctuating rate of strain 

A likely effect of divergence (Smits et 
c ~rC-\1-.iV\{lt-~~ 

fluctuating zn'' J component of vorticity. 
c_t' rt..uM.fercu&~.....l 

in the :u 'i 1 direction would therefore 

increase also, causing an increase in all three turbulence intensities 

without preference. The shear stress data of Smits et al revealed an 

outward going peak in the profiles as the downstream distance increased. 

However, the profiles of figure 5.18 are rather flat and no firm conclu-

sions can be drawn. In fact, the large values of uv are maintained right 

out to ~ = 1.5 and one may speculate as to whether this is a real effect 

or merely inaccuracies associated with the data analysis. Evidence 

for the interaction of an 'outer' and 'inner' layer is given by the 

·position of zero shear stress which moves in towards the wall with 

increasing distance downstream. This also emphasises the unrealistic 

use of eddy viscosity models in complex flows of this nature. 

The best comparison of the present data with other experimental 

data comes via the structural parameters in figures 5.19 - 5.21. Guitton 

(1970) and Wilson and Goldstein reported more or less constant values of 
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Ruv = 0.55 with streamwise distance, decreasing near the wall. Alcaraz 

et al reported values of 0.45. In the present case, values of Rav before 

the change in surface curvature are all about 0.45 also. Similarly a1 

in the present case is constant for much of the jet width at 0.13 in 

agreement with the data of Wilson and Goldstein. Therefore, since 

divergence affects these parameters very little, it does not preferentially 

change any one component of the stress tensor. This is true of the data 

for ~ >1.0 also, even though the individual stress components are all 

increased in this region significantly .more than the data in the region 

~ < 1.0. The reason appears to be a valid effect of divergence which 

increases the velocity decay rate but not the jet growth rate. The maxi­

mum on the U-profile is therefore wider in relation to the jet width 

producing a large region of small au;ay and a relatively small region of 

large au;ay in the outer region of the jet. Thus production of the shear 

stress and the u2 intensity is large here whilst it is smaller further in. 

This reasoning also explains the high values of v2;~ at 9 = 45° and 60° 

produced not so much by the preferential effect of streamline curvature 

on v2 , but by the divergence effect of reducing the production of~-

This effect is most noticeable at 9 = 45° and 60° since the jet has 

become wide enough for the reduced au;ay to become apparent before increases. 

in turbulent 'transport (third order products) . ~ ;;? peaks at 4. 5 and 

3.5 in the 450 and 60o positions in comparison to Guitton (1970) who 

recorded values of 0.37 and 0.7 at y = ym/2 for the uncurved and curved 

cases respectively. 

In the region where dr/dx = oo at 9 = 100°, not only the individual 

stress components recover non-monotonically but also all of the structural 

parameters. This is in contrast to the data of Castro and Bradshaw (1976) 

and Smits et al (1979a) where a1 returned monotonically to its equilib-

rium value. The recoveryis slow in terms of the jet growth rate. Inspection 



- 210 -

of figures 5.4, 5.10, 5.11 and 5.14 show that not only the turbulence 

structure, but the mean flow also is distorted by the sudden change in 

surface curvature. The mean velocity and static pressure profiles 

oscillate quite significantly in this region; this is best portrayed by 

the profiles. of V/Um. Thus the mean rates of strain au;ay and av;ax 

must oscillate also, directly affecting both the production and redis­

tribution terms of the Reynolds stress transport equations. The fact 

that the streamwise variation of structural parameters is oscillatory 

also, and that they anticipate the removal of streamline curvature 

indicates very strong history effects on the shear layer, which die out 

very slowly relative to the shear layer growth rate. 

The above comments have been made without any significant allowance 

for the effects of longitudinal vorticity on the flow in this case. The 

data are therefore subject to·being interpreted in a qualitative rather 

than a quantitative fashion. 

9.3 ASSESSMENT OF THE TURBULENCE MODELLING PROCEDURE 

The modelling of the shear stress can be regarded as satisfactory, 

especially when bearing in mind the crudity of the initial assumptions 

and the complexity of the flow. The constants for the streamline curva­

ture and divergence corrections have been tuned individually and the 

simple addition of their effects on the shear stress has proven to be 

an adequate first order approximation, although inaccuracies are masked 

by the simplicity of the model. Two factors have permitted a better 

agreement between prediction and experiment than might have been thought 

possible. Firstly, since a universal model was not required, the con­

stants could be tuned to optimise agreement. Secondly, in cases where 

o/r is large and pressure gradient effects are perhaps only an order of 
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magnitude less than extra rate of strain effects on the turbulence, the 

crudity of the closure assumptions is less critical. 

The direct proportionality of~ to uv used to model v2 in the 

predictions of chapter eight, is clearly unsatisfactory. No correction 

has been applied for the preferential effect of the streamline curvature 

on the v2 intensity. This has repercussions on the stability of the 

calculation method as described in § 8.3.3. This inadequacy can not 

be improved upon without the introduction of more empiricism or the use 

of a higher grade model. 

The values of the constants used in the correction for streamline 

curvature are those as suggested by So (1976) although with the simplicity 

of the assumptions it seems likely that a more suitable pair of constants 

could be found or another pair giving equally accurate predictions. The 

constant used for the divergence correction was the value suggested by 

Smits et al (1979b) and surprisingly, the simple addition of the two 

corrections to the mixing length gives adequate predictions. 

9.4 SUGGESTIONS FOR FURTHER WORK 

The unanswered questions concerning the analysis and interpretation 

of the experimental data give plenty of impetus to further low-speed 

experimental work. A much larger flare model would be required to 

reduce three-dimensional effects caused by any irregularities in the 
~ 

upstream turbulencej/intensities and the means of signal analysis is 

obviously important - the present one is of limited scope. A digital 

data acquisition system would give the required versatility and also 

circumvent the necessity of approximating series expansions in analogue 

signal analyses. 
~·· 
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Recommendations for the improvement of the modelling procedure can 

be made, although the validity of doing this in a flow that is likely to 

be subject to longitudinal vorticity is questionable. At the very least, 

a stress transport equation model isrequired. Some success has been 

obtained in the prediction of highly curved shear layers and wall jets 

(viz: Gibson and Rodi (1981), and Ljuboja and Rodi (1980)) using an 

algebraic stress model. Since these models will still predict coincidence 

of the point of zero shear stress and the mean velocity maximum, their 

use for particularly wall jets with streamline curvature may not be too 

successful, Turbulent transport of both shear stress and energy are 

particularly important in shear layers with destabilising curvature 

and is not likely to be simply related to second order products, nor 

the production and dissipation of turbulent energy. Thus a full Reynolds 

stress closure is required perhaps even using transport equations for 

triple products as suggested by Smits et al (1979a). 

The incorporation of differential equations for the simulation of 

history effects on the extra rates of strain is probably not justifiable 

with the present model. However, such corrections could be included in 

the length scale calculation in a full Reynolds stress closure, and is 

likely to be necessary with such a model where the extra strain rates are 

large. 

9.5 CONCLUSIONS 

The wall jet with extra rates of strain induced by streamwise and 

axisymmetric curvature is a strongly perturbed shear layer in which the 

turbulence intensities are all very high and growth/velocity decay rates 

exceed those of a flat-plate wall jet. 
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The major effect of streamwise surface curvature is the preferential 

increase of the ~ intensity. The additional effect of divergence increases 

the three intensities without preference although for ~ < 1.0, the param­

eter ~ ;u2 is very large at 9 = 45° and 60°, due to small values of ;;2 

as well as. large values of~. The former are caused by a relatively ) 

larger region of small au;ay and hence relatively small production of u2. 

The other structural parameters a1 and Rav are unchanged over the region 

of constant streamwise curvature and their values do not show any prefer­

ential effect of divergence. 

The whole layer shudders in the region of 9 = 100°, caused by the 

sudden change in streamwise radius of curvature. Not only the individual 

components of the Reynolds stress tensor, but also the structural param­

eters and the mean flow oscillate after the removal of curvature; the 

oscillations are those of a damped second order system. 

Discrepancies in the hot-wire data are caused by longitudinal 

vortices. Tl!ree-dimensional effects of the mean flow appear to have 

been removed indicating the longitudinal vortex system was sufficiently 

unsteady to c.ontribute onl~ to' the Reynolds stresses. 

The mean flow characteristics and predominant shear stress gradient 

have been adequately modelled using a partial-parabolic calculation method 

with a simplG mixing length turbulence closure. The latter has been 

modified empirically to account for the effects of streamline curvature 

and divergence. To a first order, the straight-forward add.ition of these 

effects is satisfactory. Within the limits of the assumptions of this 

turbulence model, empirical corrections for any non-linear interaction 

between the two extra rates of strai~or·f~rthe lag of length scale 
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variation with change in extra rate of strain are probably not justifiable. 

However, for a higher order turbulence closure, these modifications would 

be necessary. Since turbulent transport is greatly affected by both 

streamwise curvature and divergence, a full Reynolds stress closure at 

the very least is required. Even then, no account would have been made 

for spanwise periodicity induced by longitudinal vortices. 

Both the experimental data and the predictions of the calculation 

method are, strictly speaking, only relevant to the idealised case of 

a Coanda flare stated in Chapter One. The experimental data, however, 

form the preliminary part of an investigation of a strongly distorted 

shear layer and provide useful data for turbulence modelling. The 

idealisation of the flow was necessary to make measurements possible and 

interpretable. Computer predictions are available for subsonic flow 

without combustion although additional programming could be incorporated 

to permit compressible flow effects at the slot. The program can be used 

for design purposes in the flame-free region of flow, mainly in order to 

optimise the design of Coanda flares for a maximum entrainment rate 

using the simplest possible geometry. 
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APPENDIX A 

THREE~HOLE PROBE CALIBRATION AND CORRECTIONS 

The following assumptions were made in the calibration .of the 

three-hole probes shown in Figure 3 .4a: 

(a) P2 measures the total pressure for the range of mean-flow 

angles encountered in the flare flow. 

(b) (P1 + P3)/2 is a function of mean velocity only. 

(c) (Pl - P3) is a function of mean velocity and pitch angle a 

~ 

(a) was checked and a negligable deviation from total pressure was 

observed for a~± 70. Therefore the calibration used was: 

• • • (A .1) 

(2 ) pl - p3 = f(a) 

p2 - (Pl + P3)/2 ••• (A.2) 

With the use of assumption (a) above, the static pressure in the jet 

could be obtained. The velocity calibration was performed at a = 0°; 

the pitch calibration, for the smaller probe, was done at Umeas = 60 m/s. 

These calibrations are shown in Figure 3.5. Temperature variation between 

calibration and measurement was assumed neglig.lble. 

A.l Correction for Mach Number Effects 

The effect of compressibility on the pitot tube used to calibrate 

the three-hole probes can be allowed for by the formula (Massey (1975 

p.353) ): 

• -2 
2pU act = ip'02meas 

• • • (A.3) 
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assuming Y = 1.4 and M < 1. This correction was particularly important 

for the larger probe whose calibration went up to M = 0.62. This probe 

was used in the large scale tests described in § 3.2. 

A.2 Correction for Transverse Velocity Gradient 

Young and Maas (1937) obtained the empirical relationship: 

6Y 0.131 + 0.082 d 
= 

d D • • • (A.4) 

for the displacement 5y, of the effective centre of a total pressuxe 

tube in a transverse velocity gradient. d and D are the inner and outer 

diameters of the tube which had a square-cut nose. ·However, the validity 

of equation (A.4) was only tested for a range of positive dynamic head 

gradients. Kinghorn ( 1970) investigated several transverse velocity 

gradient correction formulae but none were suitable to the present 

geometry. The use of equation (A.4) was considered but it was felt that 

it would not give an improvement in accuracy. 5Y was estimated at 0.045 mm 

for the smaller probe, but this correction was not applied. 

A.3 Correction for Turbulence 

Velocity data from the above calibration were corrected on analysis 

by the following formula: 

Ptotal = Pstatic + !p (U2 + lP + u
2 

+ ~ + ?) 
• • • (A. 5) 

in order to allow for the effects of averaging by the three-hole probe. 

-- ~ The values of u2 , v2 and w were available from the hot-wire data. 

This formula was originally proposed by Goldstein (1936) and examined by 

Kinghorn (1970) and Bradshaw and Goodman (1968). 
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APPENDIX B 

HOT-WIRE ANALYSIS - FOUR PROBE ORIENTATIONS 

The effective cooling velocity for each wire position (Figure 4.3) 

can be described by:-

• • • (B .1) 

B.l Single Wire Probe 55Pl4 

= ••• (B.2) 

on averaging:-

( U
-2 2 2 ( -2 "2 2 '2 + u ). + k2 v- + v ) + kl w 

• • • (B. 3) 

B.2 Cross Wire Probe 55P54 

2 2 2 - 2 U (O)~z = ( (U + u) cos ~ - w sin ~) + kl( (U + u)sin ~ + w cos ~) 
eff ~, 

2 - 2 
+ k2 (V + v) • • • (B .4) 

on expanding and averaging:-

• • • (B. 5) 

where ~ = + 45° 

B.3 Cross Wire Probe 55P53 

2 ( (U + u) cos ~+ (V + v) sin ~)2 + k
2
2 w2 

ueff (a)xy = 

+ k2 ( (U + u) sin ~ - (V + v) cos ~)2 
1 

••• (B.6) 
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on expanding and averaging:-

= 

• • • (B. 7) 

for a=+ 45°. 



~ (O)xz 
eff 

u2 (a)xz 
eff 

, (a) 
Ueff xy 

""Ji (a >xy eff 

APPENDIX C 

FULL SOLUTION OF SIX HOT-WIRE RESPONSE EQUATIONS 

Rearrangement of equations (B.3), (B.5), and (B.7) in matrix form gives: 

1 

2 2 . 2 
cos a + k1 s1n a 

2 k2 . 2 cos a + 1 s1n a 

2 2 . 2 
cos a + k 1 s1n a 

k2 
2 

2 
k2 

2 2 2 k1 cos a + sin a 

2 2 2 k1 cos a + sin a 

-2 u + ~ 

2 
kl 

. 2 2 2 
S1n a + kl COS a 

2 
~ 

~ 

(C.l) 

0 

0 

(1-k~) sin 2 a 

(1-k~) sin 2 a 

y2 + v 2 

2 
Where values of k

1
, k 2 and a are 

w 
dependent on the wire. 

uv + Uv 

X 
~ 
t.) 

M:>-
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For Ueff(a)xy' expansion of equation (B.6) yields after 

averaging:-

where 

and 

-2 -2 u u 

+ 97 v -;z + 98 v w
2 + 99 v2 

uu2 u u2 u2 

2 
92 = v/2 - ~ /8 

93 = -\) + i!J,2 

94 = k~ 

2(cos 2 
a+ 2 . 2 ) kl s1n a 

2 
95 = \) ( -~ \) + ~ ~ ) 

96 = k~ 
2 

cos a + 

~ v sin 
4 

2 
98 = - .!. k2 ~ 

4 

2 . 2 
kl s1n a 

2 C(. (1-kb + ~ ~3 

16 

99 = sin(2 a (1 - k~)).<~ 'V - ~ ~2 ) 
2 8 

• • • (C .2) 

2 
~ = sin 2 a (1 - kl) \) = ki cos2 a+ sin2 a 

2 2 . 2 cos a+k1 s1n a 2 2 2 
cos a + kl sin a 

~) 
-2 u 

Substitution for u2 + ~~ y2 + ~~ UV + uv and w2 in equation (C.2) 

yields two equations for a = + 45° of form: 

-3 _2 -- -2-2 _3_ --3 -2 -4 
a1 U + a2 U + a 3uv + a4U V + a 5u V + a 6 UV + a 7v + a8v = 0 

••• (C.3) 
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APPENDIX D 

SIMPLIFIED HOT-WIRE ANALYSIS FOR NEAR-WALL REGION 

Equations (B.3) and (B.5) are used together with binomial 

expansions of equations (B.2) and (B.4) up to second order terms and 

assuming V = o. 

Hence:-

• • • (D .1) 

. 2 -2 2 2 2 2 - - 2 2 2 ~ff(a)xz = (U + u )(cos a + k1 sin2a) + k2 V2 + w2(sin a + k1 cos a) 

• • • (D .2) 

Ueff(O)xz = u (l+k~v2 + k2~) 
--- u .(D.3) 2 u 2 . . 

~ff(a)xz = u (1 + ki tan2 a) 
2 

~ cos a + k2 

2 2 cos C1 u 

+ k~ (1 + 2 tan2 a + tan4 c.v> cos c.v. ;2 

2 
u ••• (D.4) 

By successive substitution these equations reduce to a quadratic: 

-2 -a u + bU + c = 0 • • • (D. 5) 
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APPENDIX E 

EQUATIONS OF MOTION 

Rather than deriving the full Navier- Stokes equations for incom-

pressible flow with streamline and axisymmetric curvature from first 

principles, the following approach is adopted. Goldstein (1965) gives 

the x- and y-component Navier-Stokes equations for flow with streamline 

curvature as:-

()U + 1 U aU + V aU + UV = - 1 oP + 

at h ax ay rh ph ()X 

"(1 iu + a
2

u - y 0 ( 1/r) au + 1 aU - u + 

~ ---
h2 (lx2 (ly h3 ()X ax rh oY r2h2 

1 (){1/r·)V + 2 av) 
h3 ()X rh2 oX • • • (E .1) 

()V + U 0V + V 0V - u2 = - 1 ap + 

(lt h ax aY rh p (ly 

"(~b + a2v y o(l/r) ()V + 1 ov v 

h2 (lx2 aY
2 h3 ()X ()X rh aY r2h2 

1 0(1/r) u 2 au) 
h3 ()X rh2 (lx • • • (E .2) 

Similarly the continuity equation is written as:-

1 ()U + oV + V = 0 

h (lx oY rh ••• (E.3) 
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E .1 Simplification of the Viscous Terms 

For a turbulent jet flow, the ratio of turbulent to laminar shear 

stress is likely to be of order 10-5 • Therefore the viscous terms can 

be greatly simplified without compromising accuracy except in the viscous 

sub-layer where the laminar shear stress predominates. Applying too 

order of magnitude assumptions of § 6,2,3 and retaining terms O(U/0) 

only, the viscous term of equation (E.l) reduces to:-

2 
v a u 

and the viscous term of equation (E.2) can be neglected. 

E .2 Developn1ent of Equations in Axisymmetric Form 

Following Bradshaw (1973), the axisymmetric equivalent of 

equations (E.l), (E.2) and (E.3) can be obtained by placing them in 

their divergence form and multiplying all velocity products and pressure 

gradients by the axisymmetric radius of curvature R to the point. Thus 

addition of equation (E.3) x U to (E.l) yields the divergence form of 

the latter, viz:-

ax ay r p ax • • • (E .4) 

and the axisymmetric equivalent becomes:-

ax ay r p ax ay2 

• • • (E. 5) 

The corresponding equation of continuity is:-

a(UR) + a(VRh) = 0 

ax aY • • • (E. 6) 
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putting U = U + u 

v = v + v 

and p = p + p' 

in equation (E.5) yields, after averaging, subtracting U x equation 

(E.6) and rearranging:-

u au + h v au + uv = - 1 ()p -

1 

R ( 

0(u2R) 

ax 

+ 

r p ox 

a (huvR) 

oY 

\) ~(R h oU) 
R oY oy 

• • • (E. 7) 

Note that the viscous term has been rearranged slightly to include 

. · 1 h cos CL 
the hJ.gher order terms <; + R ) oU Th" th t th 1 . -. J.S ensures a e amJ.nar 

oY 
and turbulent shear stress terms are of the same form. 

In the same way, an equation of instantaneous momentum in the y 

direction can be derived: 

0 (UVR) + - h R oP 

()X oY r p oY • • • (E .8) 

and the equation for mean momentum: 

u ov hV oV 
_2 

oP + - u = h 

()X oY r p ()y 

lc <uv R) + () (v2 Rh) -ti~) 
R ()X oY . . • (E .9) 

The equation of continuity for the mean flow is:-

o(UR) + o(VRh) - 0 

()x oy ••• (E.lO) 
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Equations (E.5), (E.7), (E.8) and (E.9) are all exact except for 

the viscous terms which are approximate. 
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APPENDIX F 

REYNOLDS STRESS TRANSPORT EQUATIONS 

2 "?. The transport equations for the four Reynolds stresses uv, u , v-, 

w2 and the equation of turbulent kinetic energy are derived for two-

dimensional axisymmetric flow with streamline curvature. The starting 

point is the instantaneous equation of momentum, viz: 

x-component 

u au + h v 0u + uv = - 1 aP 

ax oY r P ax • • • (F .1) 

y-component 

u 0v + h v 0v u2 =-haP 

ax aY r P aY • • • (F .2) 

z-component 

u ow + h V (JW = - h aP 

ax aY P az • • • (F. 3) 

The transport equation for the stress uiuj is obtained by 

addition of the products of the i-component equation and Uj, and the 

j-component equation and ui. After substitution of ui = ui + Ui and 

averaging the following equations are obtained: 

D( ~ u2) = 

Dt oY r PRODUCTION 

+ p' au 
p ax REDISTRIBUTION 
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~ ( 0 (u
3
R) + 

2R 0x 

- 1 0 ( p 'u ) - 3 u2 v -

p oX 2 r 

3 

D ( i~) = - uv 0 v - h ~ 0 v + 2U Uv 

Dt ax oY r 

+ h p' ov 

p 

- h 
- 3 

0 ( p 'v) + u2 v - v - 1 

P oY r 2r 

- 1 E. 

3 

D(~~) = h p'ow 

Dt p (Jz 

- vw2 - 1 ( a<uw2
R) + h O(~R)) 

2r 2R ax oy 

- 1 E 

3 

2 h 0(u vR)) 
oY TRANSPORT 

+ h 

DESTRUCTION 

• • • (F .4) 

PRODUCTION 

REDISTRIBUTION 

a<-;sR>) 
oy 

TRANSPORT 

DESTRUCTION 

• • • (F. 5) 

REDISTRIBUTION 

TRANSPORT 

DESTRUCTION 

• • • (F. 6) 

Addition of the three normal stress transport equations yields the 

transport equation for turbulent kinetic energy. 
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= u2 (au + ~)- h ~ av uv (h au + av - ~ ) 
Dt ax r ay ay ax r 

PRODUCTION 

1 a ~p'u) - 1 a (q2uR) 

p ax 2R ax 

TRANSPORT 

- h a (p'v) 1 a (h q2 v R) 

p aY 2R aY 
• • • (F. 7) 

-E DESTRUCTION 

The equation for the shear stress is: 

D<-uv> = u2 cav- ~ )+ h v2 au - u (u2 - -;2) - h uv (U sin a + V cos a) 

Dt ax r aY r R 

PRODUCTION 

- p' 

( :: + h ou) 
p ay REDISTRIBUTION 

- (u2vR) - (uv2R) + a (p'v) + 1 a + h a {p'u) + h a 

ax p R ax ay p R ay 

+ 2(u~ - ~) 

·r TRANSPORT 

••• (F.7) 

These equations are very nearly exact for two-dimensional flows 

where there is no mean transport in the z-direction. The only assump-

tion made is that the Reynolds number is high enough for the small 

scale motions to be isotropic and transport by viscosity to be neglig~bly 

small. This is true for all regions of flow except in the viscous sub-

layer where vlscous transport would be significant. With these assump-

tions however, the turbulent energy dissipation rate € is equally 

distributed in the three component directions and there are no viscous 
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h 
n<-uv) . 

terms in t e ~ equat1on. Hence viscous terms in equations (F.l), 

(F.2) and (F.3) are not required for development of the stress 

transport equations. 
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A P P E N D I X G 

C 0 A N D A F L A R E 

PROGRAM-USERS GUIDE 

by 

J. F. MORRISON 

SUMMARY 

This is a brief description of the use of a FORTRAN program written for 
the prediction of jet flow around the Coanda Flare. This guide refers to the 
program version of 26th June, 1981. 
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1. INTRODUCTION 

The program comprises a main routine and nine subroutines not all of 

which are called by the main routine. It can predict the mean flow 

parameters (two components of velocity and static pressure) and shear stress 

in a two-dimensional isothermal jet. The geometry is variable, but orien­

tated towards that of the Coanda flare. It is nominally axisymmetric 

therefore, but in the limit handles plane flow geometry also. The term 

'plane' refers here to a non-axisymmetric geometry. The exterior (E) 

boundary is free whilst the interior (I) boundary is a wall or also free 

and therefore an axis of symmetry. The program is iterative in nature, 

a necessary feature in order to handle flows with a significant ·cross­

stream pressure gradient. For flows with negligible streamwise curvature, 

however, only a single sweep of the flow field is required. For further 

details and in particular the sequence of the main algorithm see chapter 

six of reference (1). The finite difference procedure used is that of 

reference (2). 

2. SUBROUTINE DESCRIPTION 

BDATA 

Block data entry. Non-variable data entry including physical 

properties of jet and ambient fluid, entrainment rate constants, free 

stream pressure gradient control constants,and streamline curvature/ 

divergence constants. 

MAIN 

Main routine. Contains all READ statements and all programming 

pertinent to the parabolic calculation method. It calculates: 

initial velocity profile 

entrainment rate 

step length (first iteration only) 
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and sets up arrays for solution of the x-component momentum equation. 

It also controls the step length according to the geometry requriements. 

START 

Two entries: 

ENTRY INIT- initialises variables at beginning of program run 

ENTRY RESET- initialises main flow variable for each iteration and 

calculates a consistent set 'of initial conditions; assigns boundary 

conditions according to flow type and tests for supersonic flow at 

slot exit in which case calculation method is invalid and procedure 

stops. 

MIXLEN 

Two entries: 

MODELl - calculates effective viscosity and shear stress, according to 

mixing length hypothesis and use of'mixing regions'. 

MODEL2 - facility for use of different turbulence model. This is not 

used at present. 

MODIFY 

Multiple entry: 

· ENTRY CURVSL(CURV) - adjusts mixing lengths for streamline curvature. 

Called from MODELl. 

ENTRY CURVDV - adjusts mixing lengths for streamline divergence/convergence. 

Called from MODELl. 

CURVSL and CURVDV can be used simultaneously for geometries containing 

both streamwise and axisymmetric surface curvature. 

ENTRY KIND4(DX,XDCHNG,ICALL) - changes main control switches for a 

geometry change from a curved to a flat wall. Called from MAIN three times 

for each iteration. 
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WALL (Il ,OUTl ,OUT2) 

Calculates wall shear stress (OUT2) and wall function (OUTl) 

accourding to modified law of the wall. 

SOLVE ( N , I SW, PH I) 

Solves a system of N-2 linear simultaneous equations of a general 

variable PHI by use of the tri-diagonal matrix algorithm. See ref.2. 

It is used for a solution to the two components of mean velocity. 

GRID 

Three entries: 

ENTRY OMCALC calculates (first iteration only) functions of oo, the 

non-dimensional stream function used as the cross-str.eam independent 

variable. 

ENTRY YCALC calculates the y-coordinate of the grid and equivalent 

values of R and h. 

ENTRY INTERP interpolates for Umand Ymf 2 using Newton•s quadratic 

divided difference interpolating polynomial. 

CMPUTE 

Three entries; contains all extra computation relevant to the 

partially- parabolic procedure. See Chapter 6, reference 1. 

ENTRY VCOMPT - calculates static pressure variation across layer. It 

then calculates the component of velocity perpendicular to the !-boundary 
-:)euonA-~- R.~g..._ k~-lto.... 

using a eae step Euler approximation and the appropriate boundary condition sb 

Finally, it updates the static pressure at the previous calculation station 

using a fraction of the difference between the pressure just calculated 

at the present station and the equivalent pressure from the previous 

iteration. 

ENTRY UCOMPT - calculates extra terms in x-component mean momentum 

equation made non-negligtble by large streamwise curvature. 

ENTRY TEST - tests for convergence. The criterion is that the percentage 

change in wall pressure for all calculation stations from one iteration 
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to the next should change by no more than 0.2%. Maximum number of 

iterations equals ten. 

OUTPUT 

Two entries which contain all t~RITE statements for IS~I = ¢. OUT¢ 

called from main for writing out of geometry and initial flow conditions. 

OUT called from MAIN when convergence criterion is satisfied, or if 

number of iterations exceeds ten. 

3. POSSIBLE GEOMETRIES 

Plane Cases: wall jet (KIND= 1) procedure parabolic or partially-

parabolic depending on degree of streamwise wall curvature. Figure 1 

free jet (KIND = 0) parabolic procedure Figure 2. 

Axisymmetric Cases: Cylindrical/radial wall jet (KIND= 3) parabolic 

procedure. Figure 3 Coanda flare jet (KIND= 4) parabolic procedure or 

partially-parabolic procedure depending on degree of streamline curvature. 

Figure 4 free jet (KIND= 2) parabolic procedure Figure 5 . 

. 4. INPUT DATA 

Three input devices are used and numbered 5, 7 and 8. Data attached 

to unit 5 is used for all runs. Data attached to units. 7 and 8 are 

adjusted for the requirements of each geometry, unit 7 being used for 

plane cases and 8 for axisymmetric cases. Integer variabl~ are in 

FORMAT (Il~) whilst real variables are in FORMAT (FlQ.5). 

Unit 5 Data 

Variables 

KMODEL 
KPARAB 

KRAD 
KIN 

Function 

= 1, MODELl·. called. =2, MODEL2 called. 

= 1, parabolic. = 2, partial-parabolic (iterative) procedure 

= 1, plane geometry, = 2, axisymmetric geometry. 
= 1 , wall at I boundary. = 3, axis of symmetry at r boundary 



LASTEP 
N 

XDLAST 
DCOEFF 
PATMOS 
TATMOS 
PSUP 
TSUP 
AK 
ALMG 
rsw 
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max. no. of steps. 
no. of cross-stream nodes 
max. distance downstream for solution. 
Coefficient of discharge 
Atmospheric pressure 

11 temp. 
Supply pressure 

II temp. 
Mixing length constant K : t 0 = Ky 

II II II A. : to = >. (y2 - Yl ) 
= 1, additional output to that of OUTPUT 
= ~' no additional output. 

Data for units 7 and 8 (See figures for definition of variables) 

7(KRAD=l) 
~~ 

8{KRAD=2) 
~---:____ 

KIN=l KIN=3 KINll KIN~3 
I 

R SLOT 

SLOT 
/L~ 

KFLOW=l KFLOW=2 

I R I 
RRIN RRCC 
RRS RRS 
ALPHAP SLOT 
SLOT ALPHAl 

SLOT 

5. OUTPUT DATA Units 6 and 11 

Unit 6 

ISW = ~: Labelled output data layed out for each step of last 

iteration. See list of main flow variables for meanings. Note that 

pressure data refers to previous step owing to nature of program. 
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ISW = 1: not advisable unless substantial debugging required! 

Additional output labelled only by subroutine. One has to be careful to 

distinguish which data refers to which step or iteration. Also some of 

the data i~ repeated, but this additional output can be useful as it 

follows sequence of control in program whereas output generated by 

OUTPUT does not. 

Unit 11 

Useful output for monitoring progress of calculation when iterative. 

Prints number of iteration, wall pressures of present and previous 

iteration and their difference. Recommended assignment to printer in 

batch use and V.D.U. in terminal use. 

6. GENERAL NOTES AND HINTS 

(a) Regrettably some of the program contains non-standard FORTRAN 

statements which will have to be changed for use on machines other than 

the NUMAC computer. These are largely statements involving declaration 

of double-precision variables or double-precision library functions. 

(b) For use with the NUMAC computer, all input units must be assigned 

in the RUN command even if they are not actually used. 

(c) For cases involving significant streamwise curvature, it is advisable, 

if not necessary, to use 30 (maximum)number of cross-stream modes. This 

makes calculation of cross-stream mean-velocity gradients more accurate. 

and eliminates a potential source of instability. 

(d) Typical run time is about 1 sec c.p_u. time per iteration for a 14-

step 30-node calculation. Naturally, the input/output commands take the 

longest to execute and therefore use of ISW = 1 will greatly lengthen the 

execution time required. 

(e) Maximum size of arrays permitted is 30 for cross-stream variable. 

Press (30,50) is the only two-dimensional array where the maximum number 

of calculation stations is 50, i.e. 49 steps. 
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(f) A major source of potential instability is the crude relatt.onship 

linking the shear stress to the mean velocity gradient aU/ay. Therefore 

if the procedure fails to converge, adjusting the constants affecting 

the curvature and divergence corrections may be tried. Nearly all the 

problems that will be encountered will have a root source in MIXLEN 

and the calculation of the mixing lengths and shear stresses. 

(g) Some predictions of static pressure are unsatisfactory. This-is 

because of the normal stress term in the y-component momentum equation 

which is linked to the shear stress merely by a constant of proportionality. 

See Ref. (1) for further details. 
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3. Listing and *FTNTIDY listing of source program. Latter is very useful 

for locating main flow variables. 

List of Main Flow Variables 
. 

CON (30) · m~ ALPHA 
~ } curvature 

DIFU (30) T.,;, BETA correction 
DUDY (30) aTI/ay BPE lPE 
EL ( 30) to BPI '¥ -
EMU{30) lo'eff CUVMN u2/~ or v2/uv 
FLOW(30) m'x DPDX dp/dx 
H(30) h PEI 1P - 1P 
OM(30) w REM (R~")E I 
RH0(30) p TAU -rE 
RR(30) R TAU! -ri 
U(30) u SIGMA '(J divergence 
UVMN(30) uv correction 
V(30) v 
Y(30) Y... 
PRESS(30,50) p 
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