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ABSTRACT,

The thesis is split into two independent parts.

In part I we discuss the phemcmerclegy of jets in e+e= anni-
hilation at small relative transverse momentun, with a view to testing
higher order perturbative QCD (viz.the gquark form factor). We phen-
omenologically extrapolate the quark form factor to cover the whole
range in transverse momentum by using the exact O@ls) cross section in
the Parisi-Petromaio prescripticn (PPP). This then enables us to cal-
culate the transverse momentum distribution of charged hadrons at small
transverse momentum; we show that this is a poor way of testing the
quark form factor, due to problems in fragmentation. Energy-energy
correllations at small angles are found to be a much easier cross sec-
tion to deal with. However, although the quark form factor is com-
patible with the data in energy-energy correllations, intrinsic trans-
verse momentum dependence was incorporated in a very naive way, using
the smearing functiorn@(b) borrowed from Drell-Yan (where it des-
cribes hadronic structure).

Fragmentation and intrinsic transversg momentum can be incor-
porated in a more physically meaningful way using the appropriate
evolution equations., Erroneous approximations stemming from in-
correct kinematic limits and misleading leading logarithms are dis-
cussed and corrected. This then allows a calculation of the energy
weighted acollinearity of jets using a numerical solution of the evol-
ution equations. Results are obtained in both singlet and non-singlet
sectors and shown to be compatible with data at Q=30 Gev. The non-
singlet sector is shown to be the dominant one at both Q=30 and at
160 Gev, where predictions are alsp made for the accllinearity. The
effect of intrinsic transverse momentum is found to be much more
significant in the evolution equation approach than when using the PPP,

although at Q=100 Gev this effect is much lessened., Calculations



using two-locop Allarelli-Parisi probabilities are discussed and it is
dompnstrated that these canmnot be relied upon to give an unambiguous
description of the data, due to gauge and renormalization scheme dep-
endence, Various forms of the rumming couplingCKs are used, but the
data as yet does mpt show a strong preference for omne or another.

In part IT we are concermed with analyses involving the S* and
related scalar mesons. We investigate resonant effects in the iso-
scalar S wave scattering near the KK threshold using data on nn and
KK production. Various coupled chamnel parametrizations are con-
sidered, and using information from below and above KK threshold, the
parameters of the S* and %; resonance effects are determined., The &
(1400) is found to be in agreement with an ANL analysis, and the S*
is compatible with a KK bound state picture,

We also study interference effects between the (P wave)?nwson
and the underlying (K K') S wave in the reaction K—p-%(K_K+)/\ at 4.2
Gev/c. A model independent amplitude analysis of the double multipole
moments is performed and we investigate the implications for the

KK—> KK S wave amplitude.
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PART I
Measuring Higher Order QCD

In e"e” Anmihilation
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INTRODUCY ION

Much hope nowadays is pinned on gauge theories (1] to explain
the forces of nature, especially since the success of Quantum
Electrodynamics (Q.E.p.), I% is therefore of utmost importance to
test experimentally the non-ebelian gauge theories of the unified
electroweak interaction and tkhe strong imteraction (Quantum
Chromodynamics Q.C.D, [2]): in view of the fact that QCD is now
widely believed to be the theory of strong interactions, it is a
confrontation of QCD with experimemt which will be discussed in this
part of the thesis.

Quantum Chromodynamics is a non-abelian gauge theory which
describes the inmteractions of a triplet of coloured quarks by the
exchange of an octet of vector gluoms. The spin = %, fractionally

o~
charged quarks are described by spiners L%jL(X) with the colour index,O(
= 1,2,3 (rea, green, blue), and the flavour index i = u,d,s,c,b,...
transform as the fundamental representation of SU(3)c’ which is
assumed to be an exact symmetry. The gluon fields A?A(x) with space-
time QA) and SU(3)c indices, a=l, ....8 transform according te the
afjoint representation, with one gluon associated with each generator
of SU(3) o Gluons do not couple to flavour. The Lagrangian density

for QCD with SU(3) gauge symmetry is written:

i(x): /uw(ﬂ; (70 - A—i’* (X3X/,JL d\@“/’ (K\
_— _ﬁm;{‘ﬁ(x\"t\(x) (11)

where:

Fj x,(x\ =l,.0..8 are the Yang-Mills field strength tensors:

M
F\,(Xﬁ— Q\,o& hs @M(x\-srq{ahcﬁp(x\ﬂ ) (12)
with f the SU(3) structure constants satisfying
C
[ 54’}_, - Q\mx (13)
g is the QCD coupling constant and )xi are the generators of the

SU(3) algebra,
c



# . .

{2“% is the Yang-Mills covariant derivative:
Mo Mo NG M
D(@— %{@a _)\32_57\4@(%&&\

and Mi are the gquark masses,

(14)

In order to covariantly quantize the theory it is necessary to
add a gauge fixing term to the Lagrangian of eqa(Il); and in order to
maintain unitarity it is alsoc necessary to add in unphysical scalar
fields (Fadeev-Popov Ghosts) in a covariamt gauge which remove the
extra degrees of freedom present in the gluon field, [4,5]. The
question of choice of gauge will be discussed in a little more detail
in Chapter 2, However, for the simple poimts considered here, it is
merely necessary to be aware of the existance of such terms, It is the
other terms which provide the main interactions of the theory,

The non-abelian nature is evident from eqo(IZ), with.fabc being
non-zero, This third term is therefore responsible for the triple
and quartic gluon self interactions shown in fig (I1) which originate
from the first term in eq (I1). The second term describes the quark—

gluon interaction as shown in fig (I2).

AN

(7

d v

Fig (I1)
Gluon-gluon

interactions,

Fig (12)
guark-gluon

interaction.

a
)\3“6)“)\,4@
@ oA

Using the Renormalization Group Equation, it can be shown [ 1]
that as a consequence of the gluon self interaction, the coupling
constant g is found to be "asymptotically free" and can be written in

terms of a momentum scale Q as:

()= D _ kT
(W= 80 e (1)



where, @03 W~ %\‘\%‘
with ng = the rumber of guark flavours, and where the momentum scale/qQ-
is intrcduced by renormalization,

As a consequence, at momertum scales large with respect s0 s
the coupling constant CKS@Z?)is small apd it therefore makes sense to
maike a perturbative expansion in terms c¢f the strong coupling<450
Indeed as Q%a@,%(ﬁkﬁ)ﬁﬁ) and the theory becemes (asymptotically)
free. However, in the other kinematic regime of large separation, or
small momentum scales, the theory is expected to lead to confinement
of the (coloured) constitutents within the hadron, which it must at
presemt energies since free quarks and gluons are not observed. The
observable hadrons are colour singlets. While the noen-perturbative
part of the theory is not yet fully understood, it is still possible
to test the theory perturbatively, which in itself must be successful
for the whole theory to be so,

QCD therefore modifies the simple predictions of the parton
model [3] and it is these deviations which must be looked for in the
first instance (e.g. scaling violatiens). The subsequent chapters
concentrate on those tests of QCD which irvolve the observation of
the effects of transverse momentum of jets of hadroms [6J, which
originates from the emission of one or more gluons. Particular
attention will be paid to the energy weighted acollipearity distri-
bution.[lZ], which has the virtue of being fairly easy to measure,
since the collection of data does not require a detailed event-by-
event analysis; and also the effects looked for afe a result of the
underlying dynamics, which means it is quite a direct way to measure
QCD, The main body of the next three chapters will be concerned with
those events which occur at small values of transverse momentum,

Chapter 1 explains the general ideas and reviews first order



calculations, Chapber 2 concerntrates on the regime cf soft gluons
and, after givirng a brief description of the gquark from factor, goes
on to examine the phenmomenclogy of the Parisi-~Petronzio Prescription
[24] for obtaining the form factor, viz, the iransverse mcmentum
distribution of kadrons and the energy weighted acollinearity
distribution., FProblems encourntered with this method are hopefully
overcome in Chapter 3, where the effects of fragmentation are included
in a more physically meaningful and more manageable way, by using the

evolution equations of Bassetto et al. [40].
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CHAFTER 1,

Geperal Ideas and O(OAS) Ceiculations,

. . . . + - o . .
Two jet hadronic fimal states in e e annihilation are believeqd
to be the evolution preducis of a primary quark-ambiguark pair created
from the virtual photon, as shown in fig (1.1).

Fig (2.1)

Production of two
hadronic jets,

kadronic jets

This view is now backed up by much experimental evidence; for example,
the ratio:

R = Oier ( e*e"—é»\"@&\
Oy (e ) (1.1)

(where O tot is the appropriate total cross section) can be shown to be
equal to:

32835{\ + @}TT% v O+ ... . 1

Llau i (1.2)
where terms beyond the first ome are QCD corrections, and where it is
assumed the quarks fragment with unit probability. This result is
quite well verifiea by high energy PETRA, PEP gata (above bottom
quark threshold) [7].

If just zeroth order g q pair production is considered then one expects

them to be produced primarily in a back-to-back orientation in the
e'e” cenmtre of mass frame, followed by fragmentation into hadrons, The
transverse momentum, PT’ of the hadrons with respect to this jet axis
(to be defined more clearly later) will then be small with <Ry 2 oo~ keoMeV.

This small transverse momemtum originates from the inmtrinsic transverse
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momentum,k&r, of the guarks inside the hadrom after fragmertation.
At higher energies (presemtly up to about 30 GeV) noticeable Jjet
broadening is seen to occur, corresponding to a definite increase in
the average transverse mcomexmbum, This pheunocmeron is thought to be due
to the process e+e__>q q g, where ome of the guarks emits a gluon
[8]. It has been predicted that due to the hard sub processes like
those of figure (102),

4@_‘_> A Coﬂs%?aﬂt.ds.g (1.3)
where&% is the centre of mass (c.m.) energy [9]. So although QCD
processes like those in fig (1.2) decrease in frequency with respect
to e+ef__4>q q in accordance with asymptotic freedom, the average PT

gets larger, while at the same time producing a more jet-like structure,

since the ratio <PT>/Y§ is decreasing with 3S.

h
Y=

q
Fig (1.2) %

+ - -
ee .__3qqgto
lowest order in QCD €

So the quark and antiquark become more acollinear, and the
ererging hadrons therefore have more transverse momentum themselves,
Data from PETRA and elsewhere have confirmed this, It is hoped that
one can compare the results of perturbative QCD calculations with the
data at the highest available emnergies. The observable quantities
should of course make manifest the non-zero angle between the unper-
turbed quark and that which emitted the gluon. The quantities to be
discussed here are the hadron tramsverse momentum distributions and
energy-weighted acollinearity distributions of jets. However, before
going on to do that it is necessary to obtain the()&xs) créss section
in e+e:——¢ hadrons and to briefly discuss some of its salient features,

1,1 A Quick Look at the O(cts) Cross Section.

The diagrams which provide the 0(0&5) cross section are shown in

fig (1.2) with momenta labelled., The quarks are considered as massless



for simplicity, and the giucn will be given a mass A to exhibit the
" infra red features of the cross section, Using the Feyrman rules for

QCD, the modulus sguared of the amplitude corresponding to the graphs

of fig {1.2) (excludirg the trivial lepton vertex) can be written
Le(£)]; \
2~ 2
LA N = CF@(SY_S;«—Q? Tt _ 2 (Sd+°t= @&)
! ‘t 5' S't
Z 2
~ 2N (et X)) — S+ 5 - %\1
s't S (1.3)

where these particular Mandelstem invariants are given by :
= (6= 0= & (-x) ) L= (P~ Y= & (- Xa),
W=(P- Y = (i~ ¥z = ﬁ/a.l\ :

and where Q = gis the virtual photonr mass,

The cross section will be obtaired in the c,m, system in terms
of the fractional momenta of the partoms defined as :XA=% where
Pi’ i=1,2,3 are the 3-momenta of the q,a and g respectively., These
variables are particularly useful when discussing jet production,

The differential cross-section is fivefold differemtial since it
depends on two independent final state momenta (or two of the Xi) and
three angles defining the q g g plane relative to the incoming ete”
axis [8]. Integration over the angular variables of the three body phase

space yields :

A det C@&s{x3+x§ o~ ’)_)3‘(&\~\-x1~ >\\
(\

To ax.dxl— 2 T ~¥)(~%2) > (\~x D) (A~ ‘K:L\
— % 5
@03V @) (14)

where
- = T 2,
Gg = G (etepqq V= LT Ee.g.
a- £
and where ® is the QED coupling constant.
The first term of eq. (1.4), originally derived by Ellis et al. (8],

is the only term relevant for massless quarks and is the source of all



(¢}

O(akg,) predictions concerning jets discussed here:

__L. de — Cgd\g ?i?L-+ 3(§i

—

So dxt,clxs 27w (=) ()

(1.5)

Hewever, to look at the infra-red structure of the theory, it will be
necessary to keep the other terms in eg. (1.4).

Integration over Xl anA X2 yields:

!
E%;‘S° o C;FCisﬁX:7¥ 15\V\C§1 o FS __-T‘/Aé_jx

(1.6)

which is obviously singular when )\——% 0. ({The terms which vanish
when A —> 0 have been thrown away)° However, the virtual diagrams
have not been considered at 0{ctg ), i.e. those of fig.(1.3b). They

introduce more singularities since the loop integrals gdiverge for

Fig.(1.3)

(a)

efe"—5q 1
(a) zeroth oraer
(b) O(C&S)virtual

corrections.,

massless gluons. Including these diagrams the total cross section

to 0(ol,) for ete™—=, q g is:

Gy, -

i
L o(eenqg)= 1+ %_"i%[—\n @, Uned — T W:f]
153 P A= 2. (1 7)

from which it can be seen that upon adding eqso(1n6) and (1.7) together
to obtain the total cross section to O(Gg), the singularities exactly

cancel between the real and virtual diagrams, rendering the observable



O

cross section Tinite and leading to tze result of eqo(1°2)o This is

an example of the Kinoshita-Lee-Nauemberg (KLN) theorem, which states
that any transitien probability in a theory involving massless particles
is finite Yo all orders provided a sum is performed over all degenerate
states [14]. This is particularly important since it also applies to
erergy weighted distribubions (to be discussed later).

The infra red singularities discussed above result from poles in
the quark propagator. Denoting the q or q momentum by p and that of
the gluon by k, these divergencies will occur when (p+k)2 = p2 or
2p.k +k2 = 0., For massless quarks the gluons this can happen when
either k= 0 or ket p, the former occurring with the emission of soft
gluons and the latter resulting from collinear gluons emitted parallel
to the quark., Both cases correspond to the situation of being unable
to resolve the quark from the gluon. These poles are manifest in the
cross section of eq,(l°5) as Xy, xz__9lo The singulgrities arise in
an analogous way in QED. A simple calculation shows how.

Consider the scatter of an electron off a charged source, and

which emits a photon of momentum k, as shown in fig, (1.4).

Fig., (1.4)
Photon bremsstrahlung
in QED,

¥
) ’ k’E

B e

The amplitude can be written:

M ~ 2L<. Pl/((h-&%\‘i M%) (1.8)

where€:is the emitted photon polarisation 4- vector and P2 the 4-

momentum of the scattered electron. Mé is the electron mass, And one

can write,



= (VBVR)

3 _— n 2. — 2
Pl:: ((PQ‘.;,M?é)/? QZ» = (P&(wg—%%\l @:\ for m;« e

And so:
— ~>
Mm . — £.

KEWE U%-mg x ’ﬁ@

—> =
o €. P& for W\?é <L @::-
BNE ) (= cose + L0 O (1.9)
2o

The collinear singularity for §=0 is in fact regulated by a
finite Meo The factor \/ﬂgﬂ is responsible for the soft divergence.
In order to reproduce the situation of massless quarks in QCD as closely
as possible, neglect Meo Then the twe divergences appear together,
The denominator in eq. (1.9) thus behaves as @L for small @, Since

—_— .%
a polarization vector & of a real photon is perpendicular to R , then

?;?z: @_\COS(%-Q)&Q?;\Q . Therefore in the infra red (R+~(¢) and
collinear limit (G~-0):

MY A l/p’@ (1.10)

The cross section for single photon bremsstrahlung is thus proportional

to:
\sz\ @W\&K
Jo\mm s frilo&hd\((os@) Ao é?, A0
2Re R &e* R | ©
mb’ G . (l°ll)

where Mb’ is some ficticious photon mass. And so infra red singular-
Y
ities appear from both integrals in eqo(loll), which give \‘(\(\ 2 /mg\ .
\V\(@g——ﬁa . An analogous situation occurs in QCD for gluon bremsstrah-
™
lung, and so the origins of the divergencies in eqo(l.,5) become clear,

We can now use eqo(l°5) as the basis of 0(0{5) QCD predictions.,

1,2 Transverse Momentum Distributions of Charged Hedrons,

When working in the ete” centre of mass, where the virtual photon



is created at rest, the three body fimai state can be drawn as in
tig, (1.5), which defines the energy fractions Xi and momenta Pi of

Fig.(1.5)
3 body kirematics
relative to a tihrust

axis,

X3JPS

the appropriate particles. Transverse momentum QT is measured with

respect to a thrust axis T, which is gefired by:

— el .
T= e S /;’ 12, -

where the PLi are components of the momenta Pi along some axis., This
then redaces to T=max (xl, X, X3) corresponding to the direction of
the unperturbed quark as drawn in fig.(1.5).

Energy conservation gives:

Z Ei=& (1.13)

so that:

Ky+ Kg+ Xa =2 (1.14)
Now, Qy = % X2$CM® (1.15)
and momentum conservation along the thrust axis gives Pl = PL2 + PL3

2 2.
giving: Q5 = (=% ) ~%2 Y\~ %2\ X
2
X\ (1.16)

in the case where the quark gefines the thrust axis, Equations

(1,15) ana (1.16) give:
Xy = 20-x)/(2=%, T ¥, cos©) (1.17)

where @ is the angle between q and a as shown in fig (105),

We now wish to transform eq°(1°5) first into a distribution in



QE of pertons, and then imto a distribution in hadrom transverse

momentum Pm2 . The integration of eqo(LS) to cbtain the parton cross

section L. % with respect to@;ﬁ,ls done in Appendix A and is utilized
Go

again in Chepter 2., Using 2= Q‘T@T the hadron distributicn can

be written:

OL.

)
Ldo s fd s LBL 2% 16 6+ 2656

Go AEE
12.97/@
+d g@%@. @)+ G (m%hj (1.18)

where &0‘ and @ are the distributions with the quark (or antnquark)

ang gluon respectively as thrust axis, anj the G's are functions
representing the fragmemtation of partons into hadrons, Since all
expressions are symmetrical with respect to quark and antiquark, then
that explains the appropriate weightings of the cross sections with
the G functioms. From now on a universal set of G[%} functions will

- \
be used, viz. GOL(-B_-) = Z G; (%3 o To find their corres-

w Y

pondence to the wusual fragmentation functions D(%\, one can use the

multiplicity of charged hadrons <<?'\>> = 0703 . For simplicity write:

= 1 o\w
[:O_OO\QT .1__ GCE\

6‘O d T
@a'/\l
Loy, = \delde |
5 I G
&Y
= Xo&@T 42 G(r) -
o X“@T/Q
QY2 Y5z
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1000

100}
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+0;

0 5 10 ) ‘ 15 20
: 3 " R(Gev)) '
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b

Fig.(1.6). The transverse momentum distribution of charged

T < hadrons Y% AS /eyt o €g.(1.19) to O(ds).
Q=31.6 Gevy, A = 0,5 Gev, As=0.184. Dabta (approx.
- taken) from Ref [17].
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N
S
~

bl de (d% 5 G(T)

where ‘i = @T/C’Q.T’

The fragmentation functions are usually normalized according

to 2 D(R)= < >

J J
mentation functions to be: f)ﬁ%\:: :LG;(%B and one can re—-write

s> one can redefine the frag-

eq (1.18) as:

n
A de go\% D)\ &

Adet SR \
ig- 4 [t e o)

3
_\—ggﬁt—% {%( %\+ qu( %&»\2&1 (1.19)

The result of an C)&%é) calculation with the simple form

for the fragmentation functions :

Dy (2)= DzR) = Dg(2) = 3(-2V/2
( x 2/3 for charged hadrons)
is shown in Fig (1.6) [10,11), apd compared with the data of reference
[17] , from which it can be seen that the QCD result fits the data
closely, This will be discussed in more detail in chapter 2, but at
this point it can be seen that one must introduce the phenomenclogical
quantities t)(%\ which leaves the calculation not wholly dependent
on QCD, but also on predicted forms for EXS%\ at Q = 30 GeV, This
problem can be overcome at C)(éié) by discussing observable cross
sections in the form of energy weighted distributioms.

1,3 Energy Flow

The Washington group S. Ellis et al.[12 ] proposea the study of



. . . . . + - o .
a hierarchy of erergy-weighbed cross sections in e e amnnikilation,
in order to test predictions of QCD in as far as possible an unam-

bigucus way; these quantities hecome increasingly finely tuned to the

process corsidered. The first member is the toval cross section in
+ - G-Q e+e
e e 9 + . 9

Q7Y

the "antenna" energy pattern é&é/o\ﬂ, and the energy-energy

which was discussed above. The other two members are

correllation cress section (energy weighted acollinearity)

2
oq f /a)ﬂdﬂ' in e'e”, These partial cross sections involve emergy
weightings and this should ensure that they are free of infra red

singularities due to the emission of massless soft or collinear gluons.

Fig.(1.7). Set up

to measure energy
flow,
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>
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The set up for measwing energy flow is shown in Fig (1.,7)°
o\i/&ﬂ is simply the power radiated inmto solid angle o\fL
divided by the energy flux of the incident efe” celliding beam, So
experimentally a calorimeter is placed at various orientations with
respect to the beam axis, and it measures the emnergy flowing through
the solid angle, without the need to look for specific hadrons which

carry the energy. So at the hadronic level one measures:

h
é;i_ — zgé\%\,\%\,\ A s
a0 A2.d0
(1.20)



and one can calculate the emergy flow of partoms in perturbative QCD:

?r& %2 o5

S\ 2 CA/’\

(1.21)
where %j\: 2 @.ﬁ/@\ . DBoth of the above expressions will be
seen to De the same (as ome might naively expect from energy
conservation), which renders this particular quantity particularly
easy to test to C)(éis§°

Energy flow in lowest order e+et——9 8”1_$ q q is particularly
simple since the differemtial cross section G&é/&ﬂ is the same as the
ordinary differemtial cross section since the quark or antiquark
carries away exactly half of the total incident enérgy-&%?i}ﬁg,

cﬁ\i d& @@ﬁ%aﬂf z
S==55 @@lig@% (\+ o)

for unpolarized beams
. pa
= = 35t yes
2Q" i

(1.22)
for perfectly polarized beams,

In the subsequent fdiscussion it is irrelevant whether one
considers polarized or unpolarized beams, so we will just look at the
former for simplicity,

Again we require the result of the calculation to be infra-red
safe, In leptoe-production, Drell-Yan or semi-inclusive hadron
production in ete” annihilation, these infra-red complications can be
agdsorbed into the parton demsities ED(ég)or $:(><\ . But in the case
of energy flow in jets all predictable quantities must be free of
6—‘?‘0‘\'

infra-red singularities, as was the total cross section

These singularities can be removed by using Sterman-Weinbergcuts [13] .



Lowever energy weighted distributions will be seen to e finite in

accord with the KIN theorem by adding real and virtual emission graphs
. oV L .

as in the case for O . Again introducing a gluon mass A s

the virtual graphs of fig (1.3b) give to Olet)121:

J é%@'w“ﬁ‘mm@ = .‘?"Eﬁ"&:ﬂb EE@T olc @,ﬂ Alnd
an @ g E A
~- Uf 7

= 1_

for the comtribution of virtual gluon emission to the energy flow of

(1.23)

quarks (cofaeqo(lﬂ))o

Similarly:
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(1.24)
for the real comtribution to the energy flow of cguarks from the

graphs of fig (1.2), The same singularities appear as in Crﬁhﬁ- o
The leading \3§<3$c§% mass singularities now cancel upon
addition of eqs (1023), (1.24), but there still remains the \V\G§9$}
divergence., As one might have expected, this is a consequence of the
fact that perturbative QCD camnot give flavour dependent properties,

which are a non-perturbative problem, However, to complete the

calculation one must also add in the comtribution of the gluon energy:

2 17 D2
d2a = ;\L E%EB@&V— ’D ~+ Sm L{’(%\\f\%-— %E):h
1

an

(1.25)

Adgdging this to the above two equations now removes all mass

singularities [12] and so renflering energy flow infra-red safe.



1,4 Enerpy-Energy lorre.iszticms,

The energy weighted acllirearity distributior is a more
irteresting quantity since it emphasises more the underlying dynamics,
The experimental set up is similer ‘o thet of figo(lo7), but the
erergies c¢f two Jets are measured simualtaneously at a particular angle
with respect to each other, Thus there is no need to invoke the use
of a thrust axis, since there is rc need to use one experimentally,
as there was when measuring transverse mementum distributions.

Although slightly more complicated to evaluate, this quantity is
again free of mass singularities [12], One can define the energy-

energy correlation cross section as:

] Yamax
of _ I waxy A de
a9 i Go d¥id®
e (1.26)

[10,12,15] where one adds the distributions in angle between q q and

q g with Xiain=9, Kinax , i.e, the configurations of fig.(1.8).

Fig.(1.8)

Configurations for energy-
energy correllations,

M

(a) (b) (C)

O

calorimeter



It is straightforward to show that &H/cié for partons is the same
as that for hadrons (which is true for emergy flow in general), Let
te hadrons a,b Lave energy fractions XH = QPH/G} and similarly
for partons A,B. So the emergy fraction of hadron H with respect to
parton P is ‘ZH: Xﬁ/xp . The cross secticn for hadron

production a,b is:

—l— éﬁ—_@ = ’iac&\{ A cl \ &@'
So dXadXpdo g}&& beace Go ohxadxgd®

Da(5.) DZ( () Sk TaXa) Sk ToXe)
Using 5(XH~§HX@\ -L S{S - Xr/xe) and

integrating over the ‘gs gives:

S goxm dxe S\ ()| de

aas A X8 quo'&xb A0

Now the energy weighted acollinearity for hadrons is:

HAM s ¥a X o \ =l

aI\O X@AxbokS
— > N |dra % Dq;xihggmom:@b&
Q% }{xa *a Q<m>2' ~ X %(xe)'
pr‘x% & dxadxe,
Seo AX@C;{XBO\Q

And using momentum conservation, '2&-5\2 = D(_’k} = \ )
the above equation reduces to

Axadxg xaxg L _ds
@g‘f Aore ﬂxe@oob%cﬂxed@

which is the energy-energy correllation cross section for partons and

can be written in the form of eq. (1026) since,

A do A 48 € (xa-xglxa,0))
S dodrade G deeds o i



(

2C

where X@(X@,Q\) is given by eq. (1.17).

So one can make a measurement of the erergy flow of hadrons and
make a direct prediction by calculating it for partons using
perturbative QCD., The phenom noiogical fragmentation functions have
been removed, and the strong coupling constant 045 appears as
normalization, so one should be able to predict both shape and
normalization of the distributions.

One can only expect the O(&s\ calculations to hold good for

60° fé @é 120° , since single hard gluon bremsstrahlung is
unlikely to be the dominant effect at small and large ®© vwhich will be
discussed in the mext chapter,

Using equations (1.5) and (1.17) one can flné) o‘\cr/& C&Q
and then using equations (1,17) and (1.26) one has dﬁ/d[@ to O(&\g\ o

The contributions from configurations (1 8) a,b,c are:

(108)a O\‘A — 8&5 &XI \&(\(\~Xl\(\<\ +Xg_(‘i§|,@)3
a6 31‘[‘ "%'cnm D*

i

l

a0 37T
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2
P o)
where D = 22— ¥\,— ¥ (oSO,

To do the above integrals numerically one encounters severe
problems of precision at small & , near %,=1(see fig, (1.9)). If you

integrate all the way to ¥,=71, then \&Xz /Axl\ becomes very large

Fig.(1.9) ¥ 1 X(O)

X _X_ phase space,

172 small &

=

. large @




towards Xlzlo Thus the l/DL factor im the inftegrand gives a very
large combtribution at Xlzlo In order not to have to use an incredible
number of infervals, it is much easier to divide the integratioms up
and integrate from O Yo the point X(@) , where X’l = Xz, first in XJL

ang then in Xzo From equation (1,17), XO) = (1- QM@‘\)/(Oﬁg . Then

using&(}: ‘1@‘“@@%@5 the troublescme half of the integration becomes:

o D>
‘ X(®)
olx, ... .. JGQK'LO\X‘.-...... = ldx, 0
J76) 70) e, ) 2.0\~ cose

The result of such anO/ochalculation is shown in fig (1‘,10),
with A <O ‘SIQ: 2.6 Gey and oLg(@L\ . (For gata see ref,
[18] ). This shows the simple O{ols)result overshoots the data
drastically below Q about 30°,

The non-perturbative effects, (i.e, the intrinsic transverse
momentum of partons insidge a hadron, the parton "Fermi motion"), can
be estimateg to fall off as h/@ [12] if they are put in phenomenclog-
ically in a simple way by assuming a Gaussian gistribution in pT
with 4@&75 A A50Mey . The perturbative contribution only
falls off as \/an so eventually ome might hope to completely
forget about intrinsic tQ'y . However, at present energies it must be
included, particularly at small angles, In a simple model, where
non-perturbative effects are put in agditively, they are symmetrical
about O &> 11 — © , whereas the perturbative term in asymmetric
since for O Oo both collinear ang soft glucn emission contribute,

while at @ml%o only collinear emission contributes., This is shown
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100-0

Fig.(1.10). The energy-energy correllation cgross
section da/dto 0{s) usingAs(Q”),
Q=31.6 Gev and/A=0.5 Gev, compared
with PLUTO data from ref [18].
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Fig.(1,11) The asymmetry A(®) in the energy-energy
correllation cross section to 0O(ols) obtained

from fig (1.10) and compared with PLUTO data
[18].
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A
in fig (1.10) where d!‘@j,/c%\@ is plotted, So assuming that non-
perturbative effects can be put in in an additive way, one might hope

that the forward-backward asymmetry,

A= 4 2B [(e)— S8
(69 = (6; Cil (TT éé\f%

(1.27)
is relatively free from non-perturbative ambiguities., This dpes in
fact give quite good agreement with data [18] , as shown in fig (1,11),
in the central region 450§§ e L 90°,

This can be taken as a genuine manifestation of gluon bremsstrah-
lung within the limits imposed by the following corrections [7]

(i) detector imperfecticns, e.g. confusion between electrons,
photons and hadrons in jets, escaping neutral particles, er other
experimental difficulties,

(ii) radiative corrections. Photon radiation in an initial
e'e” state causes changes in the cross section and boosts the event
into a moving frame, thereby altering the angular correllations[16] .
(iii) hadronization effects, as discussed briefly above.

All of the above effects occur together, so that they can only
really be taken into account correctly using Monte Carlo techniques.
The PLUTO group have done this and found that A(®) is in fact
dominated by the perturbative QCD comtribution at Q = 30 GeV for 45°
L. O £ 90°, corrections be1ng'1JlC)—2£§y So the agreement of
A(®) with @ata is indeced significant.

One could repeat the abeve procedure using a model of scalar
gluons [8] to find agreement with data for a strong scalar coupling
of’v?:C>[ld,15] , which makes no sense perturbatively,

Having discussed fhe general approach of this method of
measuring GCD, one must now see what happens at small transverse

momentum, which contains the main body of data and which is a
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particularly interesting regime since single glucn effects can ro

longer be expected to dominate.
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CHAZPTER 2

The Region of Small Transverse Momentum.

2,1 Introduction

Up to this point it has been assumed that hard parton scatter-
ing is the domimant mechanism, which is a good approximation for

2 o . However, when Qi LZ @ , the pertur-

T

bative expansion breaks down due to the emergence of double log-
arithmic terms of the form 012 E\\’r\ @%/@%] =N which ob-
viously diverge for small QT; these double leading logarithms (DLL)
can be resummed in order to control these soft emissions (as done
by Block-Nordsiek in QED). This results in a quark form factor. The
assumption that a quark radiates just a single gluon is unrealistic
in the regime where /ﬂ?Zﬁ?( Qi LL Q2 , and so one must
take into account multiple soft gluon emission, which means summing
all orders in c%sif possible, This was originally done by DDT[19],
and has since been the source of much interest [19-27,30,33,34].

The problem was originally encountered in order to derive the
transverse momentum distribution of lépton pairs produced in Drell-
Yan ;the parton diagrams are simply related to those of ete by
crossing symmetry, and the resulting quark from factor is the same in
both cases, Consider lowest order corrections to Drell-Yan, as shown
in fig. (201)9 vhere the virtual photon.zfﬁrecoils against the single
gluon with transverse momentum QTa Consider just the 2-%2 subpro-
cesses (q i_gifa) depicted in fig (2.1) (b) and let us define the

A oA A N 2 A 2
usual Mandelstam variables slt, W where t = (QI—Q) s 8 =(1?1+P2)

etc, and CF = 4/3 is the su(s) Casimir operator. Then the modulus
c

squared of the amplitude corresponding to the diagrams in fig.{2.1)

(b) is proportional to

Cedls (%—»1‘—_)1-%- (S &\11 (2.1)
"N
U

(>
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fig.{2.1)

(a) An O(Gle ) correction
to Drell-Yan,

usually

P

or

1

. :

—)%/%
q g (b) 0(clg) subprocess real
diagrams for production
of a virtual photon
with non zero transverse
q momentum,

q (c) An O(e\g) virtual corr-
ection.
[20], which is gauge independent. Integrating this quantity over the
2 2
gluon phase space now produces logarithms of 5/@’\' .These are
the source of the singularities which spoil lowest-order perturbation
theory. To see how this happens, it proves convenient to make a

Sudakov decomposition ¢f the gluon momentum, viz,

(2.2)

RM: @QMJ,» /\APf+E?T



28

Vhere Q?_R = KVQT-%;E 6© , and one can write
3,
%
if = (Q.P&}o@c)\kcﬁs Ry S(Om—Rrfe 0 )
o)

= §a&®cﬂ/¥/\© Tg< u\—a\@w/§>
2.

(2.3)

where we are again comnsidering massless quarks and gluons, and the S

N A
function comes from the fact that lQT g @/u\l@)\.%\_'—j-e@)\}\ S

from eq. (2.2). Also, forming the 4-vector products tQ.,P-lg andk’\.P

from eq. {(2.2), we find:

A
/XA:{Q“@@E—;U_\‘») @:R.@a_——%.
N ~ -y
P\-?'L S ?\@& g (2.4)

2+l - ) = S(&(-0-p)— ) . One can

therfore write the cross section in the form:

so that

&G — o!\SCF
Gov C}\QT

jﬂc& dod Ry & ( R+ 37) S(@/ue—tgv/g\.

P T \
98 5(2lo- -0t -]

)
fA (2.5)

where %Y is the zeroth order cross section, 6?0\7 = é@ﬁ'a%/oi §T

2
Utilizing the appropriate S functions to do the Q@ and @

integrations yeilds:

Mot
._\__.,é\_g: —_ dng@ CM;:{ =7 ==
Sovdek 2 Ay S (Rra 3
}\AMW\

E(\\“@%}Q"&f (\- ﬁ\\-}
/U\( (QT/S/\A /““\

(2.6)
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in order to obiain the sofi glucn cross section, one can make the
. X ol | A .
approximation RT/ g L i , and so neglect all terms of this
form in the integrand of eq. {(2.6), where the leading logarithmic con-
tribution also comes from the region of small allk Thus one can also neg-
lect terms which depend on powers cof /A Thus the }LA dependent part of

the integrand in eq. (2.6)can be written,

?-a(\—)’ﬂ +/N\L
=)

— 2 in leading log. (2.7

— —

/\A

The next step in the soft gluon approximation is to overestimate

the;y\ (or®) phase space by setting the upper limit to 1, which corres-
ponds to [RF= O . Also from eq. (2.4) Fmin ™ R*r/g so that

one is left with

\
S NG "Wéﬂ
/@M

Gov @:T 2~"T RT <

TS &T T
(2.8)
/\% /\
. 3 da — (¢ \\\{\ §/
Cov 05 2 a%
™ v T Ay (29)

To exhibit the double logarithmic character of the above first

order result (c&g‘“ )s consider the integrated quantity,

A
' 2 o A
2 (g) = lach 1 a8
ceal _ N Cony ST (2.10)

where }\ is again a ficticious gluon mass. This leads to,
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S ()= —2eTidE _\n g

E 2 =5 '%;'54 - ;\i |
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(2.11)
Similarly, a calculation of the lowest order virtual diagram of Fig.

{(2.7)(c) leads to

\ A
NEAERE-CRNS S
) >
viciuel o A (2.12)

And so, although the mass divergence cancels between real and virtual
graphs, this is not emough; and the double logs in eq. (2.11)emerge

Fy

to spoil the perturbative expansion. Note, that in the hard scatter-
2 o :
ing regime, where sz”b’ S o these double log terms are negligible;
it is the terms which we have thrown away here which become import-
ant.,

Since the virtual graphs only contribute at QTdDQ one can de-

fine a regularized cross section, order-by-order, as,

Ldel =\ de g(aﬂj@@‘a‘:
S dey S QT
=3 (2.13)

which will take care of the mass singularities (as shown above to
Q{ef) end explicitly to 0(:&3) by Lo and Sullivan [23] working in the
Feynman gauge).

The way to proceed is now to calculate second order diagrams and
so on, and hope that a way to sum up all soft emissions emerges. Be-
fore doing that, it is worthwhile to mention a couple of points which
have made practical calculations easier, viz, the choice of gauge

ssc(2.2) and the factorization of soft emissions sec{2.3)which are bas-
ically the main ingredients used by the original workers in the field

[19,20-25, 34]. This will then enable us to understand how the quark
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form factor emerges, after which w2 turn to phemncmenclo at small
ges, p ay

o

2,2 The Choice Gauge.

Consider againm e'e” annihilation. The cross section for single

gluon emission in e+ei=%>q & g is giver by eqg. (1.5). This inciudes
S x
voth leading log contributions (like that of eq (2.9) with $=& ) and
otkhers, and is gauge independent. It was obtained [8] by summing the
amplitudes of fig. (1.2) and taking the square modulus, Diagramatically
this then gives three separate contributions to the overall cross sec-
X PN 5
- M . o

tion of the form \Ml \ , \ 5 \ and 2M M/ ,if My, and M,
are the amplitudes of fig. (1.2). These are shown diagramatically in
Table I, along with the partial cross sections derived from each with

the various choices of gauge for the gluon propagator (from [21]).

The gluon propagator in an axial gauge is given by:

[ 4

R+ R (n. R (n.RY
(2.14)

D}AQ(&Q\: K&})UQA — _L (Q%/\AU <4 (\Mkv + my%g}g\ — \r\lfgﬂ\tqu .

vwhere the gauge is specified by the vector n, such that n §=0, where
€ is the gluon polarization vector and {Q\ the gluon momentum,

TABLE I: Contributions to the total cross section from ladder and inter-
feremnce . diagrams, in various gauges.

' auge Axial
diagram gaug Feynman nfq n=P1
! 2(1_}(1) 2(1+xf) 2(1;-}(1)
M1 : ’\N‘@V\ 7(1:}{,2? (1GX1)(13§2) 1:3{2)
z —Lk/(l—xl)x3
)
2 2
M2 : M@W 2(1-}(2) 2(1+x2) 2(x1+(1-x3) )
2.
(1_xl) (1=x1)(1-x2) il—Kl)@lez)
-[i:/(l"xz)XB
MM, N‘@W 4(1-}{3) 0 4(1-}{3)
2 (1-X1) (l-Xz) (_1-X2)
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n \J\,
g
(24 J'{/mi

so that when the glucn is on-shell it can only be polarized in direc-

Note that =0, o %C}Aw-t: o whea R - O,
tions orthogonal to the plane defined by its momentum K;U\amd the
gauge vector(%ﬁo The third term in the propagater does mot cortrib-
ute in leadirg logy in fact in most casesfﬁg is chosen to be a null
vector, and so the term will be neglected. With the gluon only having
physical degrees of freedom, i.e. only transverse polarizations, there
is no need to introduce an unphysical ghost contribution to cancel the
scalar component.

Even though the overall cross section is always the same gauge
independent result, the gauge does affect the diagramatic inter-

pretation. For example, in an axial- gauge specified by n = P the

1°
gluon can be pictured, in the leading log approximation, as being
emitted solely from cone of the guarks, whereas when n=q, it may be
viewed as being emitted with equal probability from either; this

can be seen in table I where the leading log behaviour comes from the

regions of phase space where X X2=$ maximum. (as shown for example

1°
in Appendix A, where physical predictions are made by integrating eq.
(1.5)). On the other hand in the Feynman gauge it is the interference
diagram which dominates in leading log, and we cannpot determine from
which quark leg the gluon was emitted., So if one choo;es to work in
an axial gauge, then this permits a probabilistic interpretation of the
process, as originally suggested by DDT [19].

In performing leading log calculations in an axial gauge, one

therefore only need consider ladder diagrams, such as that in fig (2.2).

Fig. (2,23: Ladder dia- ]

gram in e e




\a
w

The domipant region of phase space is that in which the transverse

momentum ¢f the gluons is strongly ordered i.e.

2 2 L% 2
by, << By 4< . L Ry L
(2.15)
(see below sec.{2.4)), This enables an n-rung graph to be wirtten as
a product of single rung diagrams, so that their sum leads to simple

exponentiation [19],

2,3 Independent Emissions.

Also in the region of small transverse momentum QT° the calcula-
tion of multigluon amplitudes is greatly simplified becaﬁse thé emis-
sion of gluons becomes independent., Consider for example just two
gluon emission as depicted in fig. ( 2.3), (corresponding as drawn to

an axial gauge n=P1)° The amplitude is proportional to,

A Bforn | e p
(P— R (P=lr,~12,) (P- RaY (P- R,~R))

(2.16)
which for massless quarks and glusns, with LQQ, tQL{< P becomes,

£ £ N S
20, 28Rk, 2P R~ 22 (I, +Ry)

2P.R, 20k,

on combining terms.,

(2.17)

Fig.{2.3): 2 contributions to the amplitude for 2 gluon emission.
Emissions from the other quark leg and from both may or
may not contribute, dependingon the gauge.

k\ g k'A‘. kl kﬂ
— Pt&i

> q, + §
A
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Thus, the emission kas factorized, and this can easily be seen

to generalize to an arbitrary number of soft gluons,

2.4 The Quark Form Factor.

In terms of the Sudzkov variadbles, the above factorization pro-
perty can be seen to come frem the region of phase space wher%sé%@)/mkgz'q
Ay . - -
and T are small, along with the constraint that the/M)bare or-

dered [20,22]. So the denominators in eq.(2.16) can be written,
L A
(O-R) = s (2.182)
2 = =
(- R,-RaY = = ST Mil-02) & pa (1-0) - R Rra )
‘ 3

N
- = S/wl if /Ul?ﬁw/“” (2.18b)
Lf one also igrores the constraint of energy conservation,(which hope-
fully will not be tooc bad if the gluons are very sdft)9 then the
integrals for each gluon can be treated independently, with an iden-
tical factor coming from each gluon. So the extension of the single
gluon cross section eq(2.8) to 2 gluons (or any number for that

matter) is simple, and can be {Witten as [20,22,25],

&%
2 2
Ldet cccﬂ 4B R \n & \n @
o — A TN T
o A% T QJTN_ R R Y lah
2> T -
'S (Rn+ kR s @) (2.19)

for e'e” annihilation, where A is again a ficticious gluon mass and
whereCMg is considered fixed for the‘moment for simplicity. All nec-
essary diagrams have been included in leading log to obtain eq.(2.19),
and so the gauge dependence, (which explicitly occurs in factors A~
\/2{\\?}\_ — \/% (@A_’%’NA\ with n=P_+«P ) has dropped
out. Eq.(2.19) is therefore the leading logarithmic (soft) cross

section for producing a q a pair in e*e” annihilation with relative



)
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transverse momentun QTQ due to tne emission of 2 independent gluons.
Eq.(2.19) is the starting point, or master formula, from which the
expressions for the quark from factor are derived.

Tre simplest epprocach frem this point is to recognise that the
dominant range of integraticn in eq.(2.19) comes from the region of

strong ordering,

bl 2
@7\91444 @Tzﬂ%ﬁl—: QF

(2.20)
so that eq(2.19) becomes: ®
Q¢
A ds \ T d
50 S C@c%s n@ ) Aoy \n| @3
°odOT aw QY 1R Vi§ z
N\ (2.21)
2 L .
E@"@l LA W@ _ \a &
2- QT @T >\'L Q%
(2.22)

Regularizing the cross section of eq.{2.22) by adding in the
same order virtual graphs, according to the prescription of eq.(2.13)

A
removes the \\ﬂ Q/ﬁ' term above. So that eq.(2.22) can be

written in terms of the 1 gluon cross section as,

1 de' s 1) da' | s BT @
So JQF So J&T | 2.7 Q¥

(2.23)

where the single gluon cross section in e'e” annihilation is (c.f.eq.

A -
(2.,9) with S=E &  in ete Yo

Ld\d‘\: L-as (&
So Ja% 2T QR Q¥

(2.24)

Notice that the O(ols) cross section is mnegative, which cancels
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against that of Olelg. This gives an indication that leading lcgs do
in fact tend to cance: against each other in successive orders, in the
regime Qi 44: Q2 .
It can be seen tha®t egnsd2.2L), (2.23) form the first two terms
of an exponential, (with E%ﬂ Ciéiyéﬁcgg% a common factor). In fact
&
eq°(2°19) can be trivially extended to any number of gdluons and the ex-

ponentiation can be seen to occur to all orders, with the result that,

A dell g Erpl-<e2e\n Gk |
2TV v

Co JQ% Co JQ%
OQ’;\ (2.25)

This has exactly the same form as the form factor derived for QED 231,
and so eq.{2.25) will be called the SudakoV type quark form factor
[20-26]. The physical process it describes is outlined in fig. (2.4),

where e'e” is compared with Drell-Yan.

Fig.(2.4) The Perturbative
Quark form factor
(A) e'e"—3q g + ng

(B) (pp~5)a a—» 8] +ng

(A)

0
-

N>
%

(B) o
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In e+eao therefoire, the quarks recoil! against many soft giuons, and it
is this which we eventually want to measure. Moreover, eg.(2.25) pre-
dicts a suppression in the cross section when QT L<L Q2 o and
this point has been the source of sore investigation [22,24,25]. The
case of a running coupling constant is discussed in Appendix B, where
it is shown that 109 logs appear which soften the suppression. If
{his were a correct prediction, then one might hope to lock for it
experimentally to support the approximations used, (ie, those of mul-
tiple, soft independent emissicns), and the theory. However, in the
next section this will be seen to be in some doubt, when momentum

conservation in eq. (2.19) is comsidered accurately,

2,5 Relaxing The Approximation of Strong Ordering.

The approximation of strong ordering (egm .(2.15), (2.20)) is
obviously a doubtful one, particularly when G}T-—:ﬁ> S, vwhere it
is clearly incorrect. Strong ordering envisages the situation where
effectively a single gluon balances the transverse momentum of the
quarks, and it picks out purely leading log behaviour from eqg.(2.19).
This very limited physical regime can be improved upon by taking into
account transverse momentum conservation more accurately, and this
will shortly be seen to have significant consequences [24]. This can
be done by writing the 55 function of eq. (2.19) as an integral in a
two dimensional (impact parameter)ISpaceyii s i.e. generalizing to n

gluons,

SL(RW +Eﬁrz+..._+\5~?ﬂ+87\

« s -7
— N (=50 - SN~ - U

SR
(27 ) €

and substituting this result into the n-gluon equivalent of eq°(2019)9

(2.26)

-— -
and changing the order of the b and ?*TL integrations results in

—
the E%Tk integrals factorizing, so that one obtains a product of the
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t-space transforms of the probebility of emitiing a single independent
gluon. This then simply gives exponentiation in b-space of the 1 gluon
cross section, as shown by Parisi and Petronzio [24] (see also [34]).

Sc defining the b space transform as,

.
Aty = fad L L 25| o (blar)
C€¥3 (2.27)
vhere 'lreg' is defined in eg.(2.13).
(Where the angular integration has been performed using,
3
d by _}_AG‘\ )JQT — d\Q-r \ c%‘ T@(@T\b\ )
W T dRT So éP-T
~eg ™3
And using eq.{2.13), this becomes
Broon
(8 R
Ay = Lo | 3B (e3)\of B Esc(pfm—
ST R =y
M : (2.28)

and one can then write the cross section for multigluon emission as,

L do = 0 {db Explats)) Solbar)
Oy AQy b
(2.29)
and so we have amother expression for the quark from factor. Egq.(2.13)
has provided a neat way to take care of the virtual graphs order-by-
order,
x
The strong coupling constant O{Sis now allowed to run with QT
and so is taken under the integral in eq. (2.28). (For a more de-
tailed discussion of the argument of the running coupling see chapter
. . 2 . T_ R
3). This then introduces the problem thatc@ h7) diverges when @T—/\- s
and so a regulator M2 is used on the bottom limit. The regulator M2
is, however, not needed if an appropriate form fqr'cié kﬂ;) is used,

Since this is the first time a running coupling is introduced, it is

worthvwhile at this point to discuss its form , before examining eqs.



(2.28), {2.29).

e'e  annihilaticn or Drell-Yan is a timelike process, so when
using a running coupling, the coupling constant has to be analytically
continued from that used in leptoproduction i.e. the %Y\ﬁgﬁ/CQLE in

! Z . - . . »
leptcproduction goes to RT\<=°é§cZQZ\> in e'e” amnihilatior, so that
N (1o — aw )

Ois(Q X"V ( \ﬂ @/A'L —_— A . For processes
{such as the one under consideraticon) involving small transverse momen-
hxn@ﬁy then the leading logarithmic contribution to the running coup-
ling comes from the {RT dependence, so O{S is chosen to run with PTO
One is mow left with a choice of the best expansion parameter'cisto
use [28], i.e. for instance 0(3(\\%%—\3 or \a\s(@%)\ o
Because of the wn's which occur in the spacelike to timelike cont-

, . L ) )
inuation of the \v\ , there are large higher order corrections
if one chooses to expand in 0{5(“‘@\2’ \3 [28]. These terms are of

Doy 2y . . . .
0(el (\R*))1“) with respect to leading QCD corrections and will not be

A 2 2 2 2
small until \ﬂ(\h\//\ ‘) ;é %-'T i.e. R//\z
200 . So A | RY is not a good expansion parameter
= S Y p
for present purposes., The so called "frozen coupling" \cks(kizs \
is a better choice, and has been shown to be so explicitly, by cal-
culating the rath)@zin e"e” [28]. This choice has not got the rap-
idl i A | Y i ;
y varying form of <, o and is a more natural parameter
which can be used in both space-like and time-like regioms. It can

then be written as,

\ds(fr‘#“: ) — | = \2 v
\
(33-206)\n (RT/) (3%"’2““&%(%%“?21 /?2 N
vhich "freezes" out to a fixed value as C—O\}r% [ T ~‘I‘-his therefore

automatically takes care of the singularity arising from the lower
limit of integration in eq.(2.28), and so makes the regulator M2 re-

dundant. Having taken care of this point, we can now mention some
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The quark form factor \E‘o CAG-/O\@}V

using a running coupling®s( Ry ) andA=0.5,
Q=31.6 Gev, Curvelis the Sudakov type form
factor and curves 2 and 3 are the Parisi-Petronzio
prescription, egs.{(2.28), (2.29). Curve 3 con-
tains the smearing function @(b) of egs, (2.45),
(2.46), with«(fg?> =400 Mev. We use four
flavours of quarks,

w0 |
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points connected with egs. (2.28), (2.29).

Egns. (2.28), (2.29) give extra terms, order-by-order, which are
powers of logarithms of (Qz/Qi) downr from the leading term. For ex-
ample, in the two gluon case, the cross sscticn is modified by a pos-
itive constant, compared with a leading \§a<é§>ég%\} (see [25] for
instance). These mon-leading terms however, turn out to be very imp-
ortant since they fill in the dip as QT —> © vwvhen summed to all
orders, with the leading log terms cancelling against each other ( as
was seen to second order im eqs. {2.23), {(2.24)). This can be seen in
Fig. (2,5) , where both the Sudakov-type form factor of eq. (2.25) and
the Parisi-Petronzio form factor of eq. (2.29) are plotted for Q=30 Gew
and/ﬂ =0.5 Gev., Since the very small transverse mpmentum contribution
in the multigluon sum of egs. (2028% (2.29) has completely cancelled
out, then very small QT can only be obtained by the cancellation of two
or more much harder gluons, and so perturbative QCD can be applied
there. Therefore, as suggested by Parisi and Petronzio [24], the
effects of intrinsic transverse momentum (in Drell-Yan anyway) might
be expected to be washed cut against those ¢f the much harder gluons.

¥Whilst on the point of mon-perturbative éffec&s and so called
"intrinsic" transverse momentum, it must be noted that Drell-Yan and
e"e” canmot be looked upon in the same way in this respect. The intrin-
sic transverse momentum K%T&m% in Drell-Yan is infrinsic in the cor-
rect sense of the word, in that it originates from{the hadronic struc-
ture, whereas that kQT}W% in e*e” results from fragmentation which is
entirely a different process, although both are non-perturbative. A
parametrization of thek}T@Jt distribution to represent '"hadronic
wobble!" must therefore be put in at the start of any calculation of an

observable quantity in Drell—Yané but in e'e” this only comes at the
end when the quarks fragment, up to which point the form factor might

be expected to give an adequate description. This point will be



considered in more detail in chapter 3, where this distinction is more
correctly considered.
To summarize this section, there can be considered three distinct
physical regions in b: O £ k) é: »Z:l where lowest order per-
turbation theory may be expected to dominates ‘/Q < b £ \//“\
where resurmed perturbation theory can be used; and kb?;i xﬁﬁ which is
sensitive to hadronic size and therefore the non-perturbative regime.
However, in view of the above discussion, one can now hope to do fea-
sible perturbative calculations in the latter regime, where the major
contribution comes from two or more hard gluons cancelling vectori-~
ally against each other,
So even though large b is the domimnant region, order-by-order,
the massive cancellations which occur ensure that émgll b is the rele-
vant and dominant region of integration in eq. (2.29) (ioeok)fé »Cﬂ Yo
¥We mow have all the ingredients necessary to do phenomenology.
However, it might be worthwhile taking a digression for a moment to
look at large b behaviour and asymptotic results using eqs. (2.28)
(2.29), since much interest has been focused on them in the liter-
ature [22,25,26], and it is necessary to try and estimate their imp-

ortance to phenomenological questions,

2.6 Large b and Asymptotic Results.,

Egns. (2.28), (2.29) (which will be referred to as the Parisi-

Petronzio prescription (PPP)) canrnot be precisely evaluated analyti-
& 2

cally, especially since Kbrﬂﬂ@ﬁg is proportional to Q@ . However,
analytic approximations can be useful in order to see how the cross

. 2 . sy .
section behaves as Q—> ¢© or for large b. For instance, it is use-

| %

ful to rewrite egn. {2.28) in terms of the variables Z=b2Q29 x= Ry/a"

and A =AgC8/ as done by S.Ellis et al [22] to give,
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\
AlL) = a(z)= %g% \m-\;[‘so(m\— \t[

where for simplicityogis assumed fixed. Then writing \/:Xx% E\g\ﬂ-"one

obtains, @
A
~ 7, Y \
A = =220 dy T n (E_E.
& ' (2.31)

after performing integration by parts. A(E) is now in a form conven-

ient for investigating its asymptotic behaviour and can be written,

ARy =

28 (52) 2 4 20a ()2 — 2L ), (5)
2 (2.32)

where the coefficients OH‘(S%\ are given by :

\FY
ac(S3) = f 3y TS &)

(2.33)

In particular, the asymptotic limits Cleg®) are given by,

o
aced = [d TN ()

(2.34).
so one can write the contribution to the integrals from the phase

space between SE and 60 as,
=)
5@\? = @@'(&9) - GX«‘(E) = j\é\*\/ 3, (\/\ \:\ (\{X
(=3

s

= \f:(ﬁ\?},(ﬁ\ 4ol Sel) &G c§\\/
V (2035)
\EX
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after integraticn by parts. For lLarge Z the second term gives a negli-
gible contribution and the first term goes to zero as 2 -0@, as ex-
pected, and can be written as &(;%\ltg@ COS(E=% ‘),Using
just the first term of eg.{2.35), the relative contribution of Qe
to A(Z) in eg. (2.32) can be esiimated. The iarge b result is ob-
vicusly less affected by overestimating the range of integration.
However, as discussed earlier, it is small b which is the dominant
region in eqg.{2.29) and so it's crucial to get this correct in A(b).

Returning to the asymptotic form for A{Z),all one needs in eq.
(2.32) are the ooefficientsclrQﬁﬁu These have a generating function
giv;;} by [22,29], oo O . o
S 1 ace) = jo&ﬂ:wﬁ—‘-\w\ﬁ = go\y'd?(v\ vE

c\ ‘ ¢
. 3 =0 5

c=o

= 25 T 1ta) /(%)

oo N
ltexg%d\‘n( w52 )+ EGy) + }:g—\i(\( 'i(ﬂ)-hif—ﬁ_ %
> AL 2N

[l

: QK?E\M AL AG) “MZE"&M(?(M}J) %Zm m%-

which after combining terms becomes,

2 e

exgg-t(lﬂz_zy\ ~ in < (2m+1) /-t>

m=1 (2mat) \=

(20365

The second term above does not contribute until t39 sp the

first three coefficients are easily obtained to be,
| d
qo(dc) = | J C‘i\(a‘@) = \ﬁ2:= ?f, c]l(ao\:-_ (\nl—- K\

where?{ is Euler's constant. So one can now write,
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A(%\,, R wzﬁﬁ%m L-{in 2= +L§_(\m2-?ﬂ2\]
200

or writing

2o = K@ (2@‘(§’ﬂ\ )

{ 2.
AR = —2\R Dy
2" 2~
vhich is |

2
Al A — AsCe|nbQ. ¥
b@—ia@ N E =" —1 (2.37)

If one now substitutes eq{2.37) into eq.(2,19) using eq. (2.26),

one obtains [25],

I ;%‘gr“" 2 2&5 d\\c n b® +K’§ A (\D@l‘v\

- —z(m LT s - 6T
Bl «/F
which is the asymptotic result for two gluon emission, and one can see
explicitly the correction term picked up by exact use of transverse
momentum conservation, which is three powers of logarithms down from
the leading term [22,25].
Summing soft gluons, in b space merely results in
exponentiating eq. (2.37), or in general eq.(2.32). From the form of
the latter, omne can easily see that exp {A(b)) decreases to zero faster
than any inverse powers of Q as Q—>00, and since the b integral in
(2.29) will be depressed by this factor, then the probability of
no emission of gluons with tramnsverse momentum less than a fixed value
decreases in the Same way, and so events at QTQ_- @) can only be
obtained asymptotically by the emission of two or more much harder gluons.’
For large b, A(b) can be easily found by appro:umatlngESG(pr) \1

in eq. (2.28) by ——@(LQT}D*'!\ , resulting in,



fi%
ALY 2 —tos | 2Pt (af R
\/\g.
2/& 5
A 4 =243 \R(Bed)
by 50 EX (2.38)

kS
When SA¢runs with k%r one has to evaluate,
2
Q

b = o ‘igl% §V] -S:c(\ﬁ‘r\@
a6) = Jo [dE \n[;@‘qu I

Using the same heuristic ® function approximation as above and inte-

grating by parts yields,

20 ESCR NI (@A] &
oo (2.39)

Equations (2.38),(2.39) are the leading forms of the single gluon
b space transform [24,26,30], which dempnstrate that large b might be
dominant order-by-order, but exponentiation in b space then forces can-
cellations, resulting in small b deminating the multigluon cross sec-
tion.

One can utilize b space to discuss the various levels of‘approx-
imation if desired. [ This is in analogy with discussing the double
leading log approximation as terms like [ds\%ﬂ QEL/&% ]n and next to
leading as [dsg\n&a/®-$ _'_IV\ etc... in Ry space]. With this in mind,
one can write eq. (2.28) as,

o= N+ A ™M
AlLy = Ce E dn (nda?)

b —> oo o 2z m=0  (In &7//\1\”

(2.40)

(see for example [30]) wheré the leading terms in b space arise for



= N+1, and next to leading for M = N etc... One can rewrite eg.

(2.40) to explicitly show this strucyure9

Ay = oG Yl Tlagts 1@& lngie

L \ S 78 @Y%
\ A Aty
+ \lowe s acders ~v \“@1%} [_\V\QL/A e

= éfl\CJéB X dflg_(\65 O
(2.41)

where A“(b) correspondes to the leading result written down in eq.
(2.39). One can then speculate whether all possible contributions
to a given level of approximation have been included, (more of which
in chapter 3).

However, discussing leading or non-leading terms, order-by-order,
in b space can be misleading since the dominant contribution to the
cross section comes from small b. So in order to confront the cross
section with experiment at finite values of Qz9 it will be necessary
to integrate eqgns. (2028)(2029) numerically, and this then forms the

basis of the subsequent phenomenslogy.

2,7, A First Attempt at Phenomenology

The quark cross section of eqs.{(2.28),(2.29) is not directly
confrontable with data, since the partons fragment into hadrons be-
fore they are chserved., One must first turn it into a transverse
momentum distribution of secondary hadrons or find their energy weigh-
ted acollinearity distribution. These results will be the main ones
of this chapter and hgpefully help to point the way to a better phy-
sical description.

This is an appropriate place at whiqh to megtion how the effects

of intrinsic transverse momentum were put in., As was mentioned in

Chapter 1, one could hope to parametrize the distribution of intrinsic
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hadronic wobble as a Gaussian [24],
<
.?(LQ%-\ — @\QX@C— \Qz\,"l-,—x

with

(2.42)

c©O
g;g, (a3)d R} = |

then,

— W

———

- aks

= s kre | =

AZZEQ;:ﬁnk $§.g::h T RT G
o

(2.43)

and,

4<~K£;:€Ahf:: \/G%

(2.44)
So, to correspond to a measured<ﬁ&ﬁ€)ﬁE'400 MeV, A=2,5.

Then
this distribution can be incorporated into the calculation by smear-

ing eq.(2.29) with it in b space.

So one needs the b space transform,

| > =
() = T_\T__&-d\?‘b‘? e‘“MQT'\O_g(\QT\

0 _aR? AP
p— lggcﬂ% Ry Tj@<h'r® — )
Q

(2.45)
(using eq.11.4.29 of ref.( 29))

And then this simply modifies eq.(2.29) to,

\ 2" (')
L %: _Lx;go\b o) €% 3o (arb)

(2.46)
The effect of this factor can be seen in fig. (2.5), where it



merely causes the cross secticn to increase slightly for @fé ﬁ

Gev, This procedure is essentially borrowed from Drell-Yanm [24],

where it was used to incorporate the effects from hadronic structure,
and so it must not be taken tco seriocusly when discussing fragmenta-
tion., It is merely a first attempt to incorporate the latter, in order
to test the parton distribution with eXperiment,

Bearing in mind the rather naive approach of using the smearing
function P(b) , at least, so far, it sets up the calculation to give both
the shape and normalization of the observed cross section. This seems
a better approcach than another prescription which was proposed by
Altarelli , Parisi and Petronzio [32], again to account for trans-
verse momentum distributions of high mass lepton pairs in Drell-Yan.

Using this method [10,11] the P, distribution of hadrons in the P20

T

region is given by,

S Jdes

where‘%(PT) describes the intrinsic transverse momentum distribution
of quark fragmentation into hadrons and is identical to the one used
a;bove (eq.(2.42)), and 4n§ is the average multiplicity. The above
equation is used to describe two jet events, and SO-F(PT) can be fitted

to data. This is then added to the O(cAg) result by,

L35 = i) o A{o\ o L g [H(E-H) -4 (@)

1
where dG‘ is the 0(9[5) hadronic result derived from eq.,(l.,lf))°

The above prescription is finite at P_A ©®and it also posseses

T—

the following desirable properties,

() | L o der = <Ln>
S et



}
(ii) —L,SAG§ A A\ da {%3r \argﬁ @ﬁ%
S IS G 4es

However, the prescription appears somewhat artificial. For in-

stance, at small P, the first term dominates and by virtue of its

T
parametrization the cross section acquires the correct normalization,
since £nY is taken from experiment, where it is observed to have a

‘V\Gihrise (which means the fragmentation functions D(®) must be A b@a
for small= ). So there is no dependence on any underlying dynamics

when P~ O, and over the remaining range in P the prescription is

T T°

difficult to understand physically. The PPP using eg.(2.46) at least
merits a clear physical picture and provides a simple procedure to
incorporate non-perturbative effects, which can also be applied

simply in energy-energy correllations.

2.7.1, Transverse Momentum Distribution of Hadrons.

In this section, what we try to do is improve upon the first
order result [10,11] used in eq. (1.19). From the form of eq.(1.19),

it is clear that for small hadron transverse momentum P the hadron

T9
distribution will have a large contribution from the parton cross sec-
tion at small QTo This is just the region where the Ong) result div-
erges, and so in order to achieve a meaningful comparison with data,

the cross section from multigluon emission must be used., However,
eq.{1.19) must still be integrated to the edge of phase space, i.e.,
Gf?lz since we must invoke the use of a thrust axis in this section (see
Appendix A). And towards the edge of phase space the O(dg) Cross sec-
tion can be expected to dominate, so it would be nice if one could in-
corporate multigluon emissiom_at small QTg‘and single hard gluon em-

ission at large QT9 with a smpoth transition between the two, at least

phenomenologically., This forms the subject of the next subsection.
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Comparison of different forms of —6\-_;&6‘/(:&&1{ to OPs) using a
running coupling®s(Q3) and/ =0.5 Gev, Q=31.6 Gev. Curve 1 (Solid
line) is the LLA using ln (\/x% ) and curve 2 is the LLA using 1ln
(&*/@% ). Curve 1 (dotted line) is the full O¥ls) result correctly
integrated for the case of np preferential thrust direction. Curve
3 is the full Ofels) result obtalned when using a thrust axis {c.f.
eqn{Az2)).



2.7.1{a) Describing The Whole Range In Qe

The O0{cl¢) leading log approximatiop (LLA), eq. {(2.24), used
in eq. {2.28), does rmot vamish at the edge cf phase space {which is
clearly defimed in this case when a thrust axis is used)y this it
should do to give a meaningful physical cross section. The full
0f{¢) result (obtaired from eq. (1.5) in Appendix A) will have this
property, and will automatically merge into the LLA for small QT°
The whole region of phase space is integrated over to obtain A(b),
and especially since the very small QT region is physically obtained
by the vectorial addition of two or more large Rﬁ’gluons (in the PPP),
then it would be sensible to get this region correct. A form of the

LLA frequently seen in the literature is Crols \Y\ \/ =
.ﬁ.§§= i xT k
2Lley

where XT = _?E; . The extra factor of 4 in the argument of the
logarithm does in fact cause this form of the LLA (solid curve 1 in
fig. (2.6)) to resemble the correctly integrated O{cd¢) result {(curve
3 of fig{(2.6)) more closely than eq.{2.24) (curve 2). Fig.(2.6) also
shows that this form of the LLA mimics almost exactly the integrated
O(cA¢) result where no thrust axis is defined (dotted curve 1). The
factor of 4 has almost the same effect as adding in the mon-leading,
non-logarithmic pieces to obtain the full O&xg) result, and so pro-

vides a convenient parametirization.

With the above point in mind, one can then write eq.(2.28) as,
2
R+ tar
\
.,
Alb) = |dhr L A [Salert)—1 |
S diRy
(2.47)
3
where-i—'gﬁz;' represents the full O@\¢) result, curve 3 in fig.
To dR¢ s ¥ ®
(2.6) in this case.
As mentioned already, in order to use eq. {(2.47), it is nec-

essary to integrate eq ( 1.5), and to use eq. {1.19) this must be

done with each parton in turn as thrust axis, This is carried out in
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Fig. (2.7) The full 0({s) input (/A =0.5 Gev, Q=31.6 Gev, with a running

coupling of &{s( h% )) to the Parisi-Petronzio prescription (PPP)

of egs, (2.47), (2.46)(Curve 1) and the resulting multigluon
cross section (curve 2).
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Appendix A vhere the kimematics are discussed in a litile more detail.,
Having done this, the O{c!g) configurations, where the g and q define
the thrust axis, can be added tcgether, One can then use equs. (2.46),
(2.47) to obtain the parton cross section é@i é%@? for multi-
gluon emissicn. The term with the gluon defiping the thrust axis can-
not be treated in this way, since for the gluon to define the thrust
axis, it must be hard ( Q:'; ~Ar Q% ) ana the PPP only applies to in-
dependent emissions. One can use the Sudakov-type form factor on this
term, butassownin fig. {(A3), this term is much smaller tﬁan the other
one over mpost of the range in QT" and so will have little bearing on
the final result. This merely reflects the fact, pointed out by
Floratos et al [37], that the probability for a quark or antiquark to
carry the thrust, for large thrust, tends to unity.

Egns. (2.46), (2.47) can now be used to obtain the multigluon
cross section, with in this case {Q?:TNO\% = G‘3-/ N in accord
with the use of a thrust axisg the result is shown in fig.(2.7) along
with the O(QLS) cross section from which it was calculated, It is this
multigluon cross section which we now discuss,

What we have attempted to do is simply extrapolate the quark fornp
factor of egms. (2.28)%(2.29) to include the whole region of Qs by
inserting the full 0(0(5) result into it. One might hope that the non
logarithmic terms in é_f&&g‘/&?&% would be enpough to make the PPP
mimic simgle hard gluon behaviour at larger QT9 and then in that case
smoothiy merge the two regimes together.

That this is actually the case seems unlikely when comparing the
integrands (i.e. the integral transforms) in eq.{(2.29) for the two
cases; i.e., multigluon where the integrand is effectively bexp [A(k;)]

T@( bQ?’\ s and non plus one glﬁon vhere the integrand is b(1+A(b))
T@(‘D@\o where in both cases A(b) is given by eq. (2.47). An ex-

ample is shown in fig. (2.8), whereit can be seen that the curve
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corresponding to the gluon sum dies away as b increases, whereas that
for (0+1) gluons develops massive oscillations. Notice that the case of
a running coupling damps out the multigliuon sum much faster than in
the fixed coupling case, which makes it easier ito handle numerically.
One might expect the integration of the two functions to give some-
thing quite different at large QT” which is not what is required.
However, because of the property of the Bessel function that the
oscillations cancel upon integration beyond an argument of about 2.0,
it is only the region &) L 22/%er which gives a significant con-
tribution to the transform; and as shown in fig{2.8) the two integrands
are very similar in that region, even for modest QT° Clearly for
larger QT the situation gets better. This forces the multigluon cross
section to merge with that for a single gluonat large values of QT°
The multigluon cross section is smaller for a large part of the all-
owed region in QT9 as expected from cancellations between neighbouring
orders of perturbation theory.
The resulting cross sections in fig.(2.7) show that the two

curves are reasonably close together over a reasonable range in QTg

which indicates that the OUﬂS) cross section dominates even at mod-
erate QT° This situation gets better asymptotically, as shown by M.R.
Pennington [27] for Q=100 GeV where the single and approximate multi-
gluon cross sections are equal to within 25% for 12 %4 QT £ 32 Gev,
So this suggests that the quark from factor does in fact provide a
simple phenomemoplogical interpolation formula from the small to large
QT regimes,

Moreover, taking the inverse Foupier transform of eqn,(2,29) one

obtains,

@xge[db\] = XO\R&@T(%OE_&%%\ e

d
Ab. @y

(2.48)
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. -, . .
and since b is a two dimensional vector,

L _at] | R
— 2™ | (L e\ & = sz
DAL, | J lceder
Dz=o k;f:o

vhere 4<:@Q%;>> is the average multigluon tramsverse momentum. So

< = (E555)

= (2.49)
and using the fact that,

Dals) — — | fhaf L de' = (b))
— &@T(WOO&%)@W

o A(Q Lhe _L &G' ol {fj‘ ()= -3 (hvb)
At Jir Bl

" from eq.(2.28), one finds, substituting in eq. (2.49) that,

LZQZE> = L RkEy

S
So the &y moments of the input and output distributions in the

(2.50)

PPP must be the same i.e. OQKS) and multigluon, This forces the two
curves to cross at some point, as shown in fig.(2.7), with the cross
section from the multigluon sum being the larger at large QTe In the
light of recent exact O&d%) calculations of energy-energy corrella-
tions [37,38], one might look upon this as rather fortunate phenom-
emplogically, since the OGﬂi ) calculations predict about a 35% in-
crease over a wide range of angles.

One can now put the extrapolated form factor of figure (2.7)

and eqns, (2.46), (2.47)into eqn.(1.19) to obtain the hadron distribution.
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Fig. (2.9) The transverse momentum distribution of hadrons 'é‘:okc/dﬂ}
eq(1.19) to O(Xs) (curve 1) and with multigluon emission
(curve2) using the PPP of eqs (2.46), (2.47). Both curves
are for Q=31.6 Gev, /A =0.5 and a running couplingo{s, and are
derived from those of Fig. (2.7) using eq (1.19) and the
fragmentation functions of eq (2.51) Data-(black dots) are
from réeference [17].
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Fig. (2.10). The transverse momentum distribution of charged hadrons

derived from multigluon emission (as in fig.(2.9)) with
fragmentation functions of the form D(2) L zd( 2.\@
withAA=1.1, B=4.0., Data are from ref [17].

9
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2.7.1({b) Results,

A simple form was chosen for the fragmentation functions, as in

chapter 1, allowing no distinction for fragmentation from gluons,

D ()= Dg(x) = Dy(a) = 3(-2) /2

(2.51)
times 2/3 for charged hadrons. The transverse momentum distributions
of secondary hadrons is not particularly sensitive to the details of
the fragmentation functions (see for example [11]), and chamging the
above parametrization for the gluon fragmentation functions does not
significantly affect results.

The resulting hadron transverse momentum distribution is shown in
fig.(2.9) for Q=31.6 GeV, A =0.5, along with the O{d) result obtained
using the integrated parton cross sections of Appendix A, Clearly the

0(9{5) result has the singularity at small P arising from that of the

T9
parton cross section. The hadron cross section obtained from multi-
glﬁon emission is noticeably smaller than that using the O@AS) result,
due to the finite mulfigluon‘cross section as Qy —> © . The ex-
perimental hadronic cross section is finite at @%F::LCD ( as can be
seen from the data of ref [17] in fig. (2.9)), so using a finite parton
cross section one might at first sight expect to produce a finite had-
ronic one. However, as can be seen from eq.(1.19) ( and approximating
é—ads-/a\@_} by a constant for simplicity), if D(%}/\.a \/E at
small R(as in the forms used above), then one obtains a factor\/e:, irr-
espective of whether the parton cross section is finite or not', and

so the hadronic cross section will always diverge at @L; =0 o

This is rather annoying, since one expects D('?:\ - \/% for small
2 to give the logarithmic rise in multiplicity with Q>, The shape of
-the curves at least does appear to be correct over most of the range

in P

but although the moments cf P

7o  are finite [11], it is impossible



to check the multiplicity of‘-%; Ciﬁy>éﬁci% due to the singularity,
which is not present in the data,

To remove this singularity, cne could try various other forms of
fragmentation function, especially since the form for soft fragmen-
tation is not kmown and this might have a significant affect on the

result., For instance one could try,

D(2) ~ a"*\(\—%\@

(2.52)
‘appropriately normalized in accord with momentum conservation
&A%EJX%YZ‘u Inserting this form into eqai(l°l9) and again assuming a
é;nstant parton cross section for simplicity, results in a hadronic

cross section,

L do" LA (S \f"d‘d\ \ \
—0o5 A - O ATF Ty @ Q
Sder 2(536&% \—dt T PT( e
_ A e
\~N A

(2.53)
So if we choosec£$4, this will remove the spurious singularity. The

result of using this form is shown in fig. (2.10) with A =1- 1,B=4.0,

f_‘(Q%'I) E%\-l(‘__QE\Lk-C)
FENE

can be seen that although the overall normalization is approxXimately

and normalization . From this it

correct, the shape is not.

That thelresults in figs. (209)9 (2.10) are reasonably close to
the data may be viewed as encouraging, however, it is clear that
fragmentation must be included in a better way (see chapter 3). It
is partly for this reason that energy-energy correllations will from
now on be considered. This will only partly overcome the problem, since
the role of fragmentation is only naively included in the function f«b),

However, this will hopefully be improved upon in chapter 3. Before



proceeding, it is worthwhile mentioning a few limitations of the PPP

which have been pointed out by Pennington [27].

2.7.2 Limitations of the PPP.

More careful analysis of the PPP, using egs. (2.28), (2.29) for

instance, does indicate scme shortcomings of the scheme [27]. These

— i
equations were obtained by interchanging the order of the b and F%FA
integrations. If the integrations were done in the order in which
they appear, then for n23 independent gluons other singularities
appear., Using the PPP, the integrals are regularized by the addition
of the appropriate soft virtual graphs; this reﬁoves the soft sing-
ularities, but a more detailed study of momentum conservation reveals
that the cross section is singular due to the incofrect treatment of
collinear configurations which occur when no momenta are soft. The

. —
correct result is only obtained if the interchange of the b andE%Tx
integrations is valid (as it is in the double leading log approx-
imation (DLLA) where these extra collinear singularities do not occur).
The result of this is that when trying to extend the quark from factor
beyond the DLLA, considering independent emissions and exact momentum
conservation does not provide the whole result., Physically this means
that one only considers graphs of the type in fig. (2.11a), ignoring
those of fig. (2.11b),

Fig. {2.11)

a) Independent and
b) dependent gluon emission.

(a) (b)



Alsc it is important to remember that at small QTQ the leading log~
arithm terms cancel , leaving the nop leading terms three powers of log-
arithms down from those to fill in the dip as QT—§ C. It would also
therefore be useful tc see the effect of adding in the interference
terms {in an axial gauge) and tripie gluon interactions, which order-by-
order are themselves only down by two powers of logarithms from the
leading logs. These non leading terms howeverjare also not gauge in-
variant which in principle suggests the need for an exact all orders
calculation!

So an accurate calculation of the small QT cross section and an
extrapolation to high QT will have to await an exact calculation,
outlined by Collins and Soper [39], which will unfortunately have to
be performed in order to make detailed, unambiguous predictions in

the small Q, regime, and to gain an understanding of how a large

T
number of soft gluons became one or two hard ones at large QT° The
PPP does however, indicate the importance of non-leading terms in
summing the perturbation expansion, and must be regarded as a step in

the right direction, but in looking at phernomennlogical consequences

it is necessary to bear in mind its limitations as mentioned above.

2,7.3 Energy-Energy Correllgtions°

In order to bypass the problems encountered using fragmentation
functions in transverse momentum distributions, it is simple to test
the predictions of the quark form factor by looking at energy-energy
correllations in the small angle regime, where one can make the app-
roximation, v = %Q , where if Y is the angle between
two emergent jets, @=W-"X. So & measures the angle by which the
jets are away from the back-to-back orientation. And, as mentioned
earlier, the complications due to the use of a thrust axis are mno

longer there; and experimentally it is a comparatively simple quantity
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Fig. (2.,12) Energy-energy correllations obtained from multigluon emission
using the PPP (eqs(2.46),(2.47)) with full O®s) input (curve 1)
and LLA input of eq.(2.24) (curve 2)., Q=30 Gev,A =0.5 Gev and
As(R% ). Data are from reference [18].
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Fig, (2.13) Energy-energy correllations as a function ofC0S® for Q=30 Gev,
A 20,5 Gev,As( RT ). Curves 1 and 2 correspond to those of
fig (2.,12.)9 and curve 3 uses the PPP with 'RT max = Q?' and
LLA input (eq (2.28), (2.29)). Data are from [18].
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to measure., Also in using eg.(1.26) to evaluate Cﬁ@/}ﬁd; , in the

small angle regime onre might hope to be able to write 3‘2_‘Q§ Wy A~
(which may be a rather harsh approximation in the light of sub-

sequent discussion in chapter 3), sc that the energy weighted acoll-

inearity distribution can simply be written as,

éLQ. = Sa*li &
A0 2 Co Q%
(2,54)
in terms of the multigluon cross section. Eqns. (2.46), (2.47) were
again used, but in this case, since a thrust axis is not used,
P%me = Gj&/q,. .« And eq.(2.28) was used to compare with a purely
leading log result.

The results are shown in fig. (2.12) with Q=30 GeV, A =0.5 and
PLUTO data from ref.[18] (c.f.[35], [36]). Since the correllations as
a function of angle contain the trivial kinematic zero at & = O, when
discussing small angle results in detail it is more sensible to use
the distribution OR/ACOS® , which is finite at@=0. Also the
experiment was performed in finer bins to obtain the latter, giv-
ing more data at small angles. These results are shown in fig.(2.13).

Both figures show reasgnable agreement with data,

The main difference between using the full O(clg) result or the
LLA in the PPP seems to he that the LLA gives a smaller cross section
(in®) at small angles (or QT) than does the full O&ﬂs) and vice-versa
at large@g . A representative sample of PLUTO data [18] is shown in
£ig.(2.13), from which it can be seen that it is mot possible to say
which curve fits the data best, although the overall agreement is en-
couraging. Curve 1 does peak very sharply as@9-$>09 which is because

it has the smallest value of &A(b)lu Curve 3 corresponds to taking

L _ n
RTMG\X = Q

estimate of available phase space, and provides a less peaked cross

(c.f.[25]) which at moderate Qz is clearly an over-



section at & =0°,

Due to the necessity of having to change variables from QT to &
(orC=8@), it is not possible to use a simple extrapolation of the
quark from factor tc describe the whole range in ® , Since QT is in
general a double valued function of Xi and @ and so it's mot possible
to use eqm.(1.26) to evaluate the correllations. However, Collins and
Soper have provideéd a neat way to do this by separating out the lead-
ing behaviour of the exact Okﬂgg result from the other terms, which are
left as they are, with the leading part providing the multigluon sum
[39] (see Chapter 3). The correllations from the two parts are then
added together, with each part dominatiné in its own angular regime,
and the two merging smoothly in the middle.

So far the effects of intrinsic transverse momentum originating
in fragmentation have been included in a rather ad-hoc manner, blindly
bringing over the smearing function &(b) from Drell-Yan, where it
parametrizes the effects of hadron structure. It is now hoped in
chapter three to address this problem more correctly and to include
scft fragmentation which was overiccked in this section, particularily
when discussing the hadron transverse momentum distrikutions, which

was not adequately described in the small PT region, @H-ﬁ:- o ;
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Chapter 3

Soft Gluon Fmission Based on the Zvolution Equaticns for the

Fragmenbation Functions

3,1 Introguection

It is the purpose of this chapiter to evaluate a cross section
for the acollinearity distribution of hadrons in e'e” annihilation
using the evolution equations of Bassetto et al. [40] for the fragment-
ation functions D%(X,E—,@a) of a quark q into a hadron h (with energy
fraction X, and transverse momentum (-’Z?) Solving these equations
provides one with the [R'rdepenﬁience in the soft 1limit, by summing the
emission of gluons to all orders in perturbation theory.,

Consider first just theéﬁL evolution of the fragmentation
functions, which is given by the stanjarg Altarelli-Parisi equations

[41] and can be simply written for the non-singlet partas,

QDQ(X, ) = ole(ad) o\:’) QL(\J; & [ ‘} (3.1)

Aln@* 2w
where Et(%(z) is the approprlate Altarelli-Parisi splitting function,

which gives the probability that a quark with momentum fraction x decays
into a quark with moementum fraction y by the emission of a gluon, as

shown in fig (3.1), and is given by,

Fig (3.1) q x /g}r/ 9,
Altarelli-Parisi -
Spllttlng function Lgi‘i&\.gee_ A
6. (5)
(2) = (g ( 1+ 2°
@W = (3.2)

All momentum fractions y must be integrated over for a given x, to
give the Q'L&epenﬂence of the fragmentation functions arisimng from
multiple single gluon emission.

There is clearly an infra red singularity in eq (3.2) as 2> |

which must be taken care of by the addition of the appropriate virtual
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graphs, as in chapter 2. This is the origin of the '+' prescription

u:ed in eq (3.1), which is oefined by

C
;(o%v folhe] = e fe) - £
o (3.3)

where J;G?\ana N(R) are any test functioms, This regularizes the
behavieur at the upper limit by adaing in the virtual graphs as in
eq (2013), ang rendgers the integral finite, This simple method of
regularizing is clearly very useful when discussing the evolution

equations, and one can equivalently write Pqq(%) in the form,

% (2)= C(:[.Ei D 5(%—4\]
T O~2) 2.
(3.4)

which explicitly shows the Eéﬁ&~4\ which is that part corresponding
to no emission of gluons,

However, when consigering the emission of many soft gluons
eq (3.1) is not enough, since one also needs information about the
other mass scale in the system, i.e. the transverse momentum carried
away by the gluons. Using the appropriate evolution equations [40],
one can include the gdetails of the transverse.momentum dependence into

W =

the fragmentation functions [%’(x,kLWCQ‘)O This approach does place
more emphasis on how the soft gluons fragment into hadgrons. The
evolution equations as derived in ref [40] in the LLA by summing
dressed ladder diagrams [19] using the Bethe-Salpeter equation and are

written (again in the non-singlet sector for the moment ),

\
> Q’v < PT;X\ — jé% Ag(G2) @[G‘/(%\]
= v A

D2\na> 27T

-—&>
d By S(2l-)arr \\) (&er-2RZ %Y,
AN * (3.5)
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wrere the transverse momentumn gepengence has Been explicitly folged
in, (More attenmtion will be paid to the argumenm: of the strong
coupling constantokslater)o The S function irndicates the @ ,Q2)

Tig {3,2) Schematic
Physical Picture

(sLowing just a In 2L T> \
single q for hadronization %(QO,PT,X
simplicity)

multig luon

emlssum

_ ”K
~ evolution

(T x)
Alna™

flependence 0of the transverse momentum (cofaeq(lolfi)), whose
maximum value is clearly given by the virtualness of the internal
quark line (Siin eq(1.3)), ioean(F%Xo In general ﬁQQ-;will be a
fraction,% of this,

The physical picture is drawn schematically in fig (3.2), which
shows the two contributions to the transverse momentum of the quarks
arising from multigluon emission (P-;-\ ) anA hagronization (%\\ ). The
q q pair are created at a momentum scale Q2 with zero transverse
momentum; the subsequent evolution in Q2 anﬂﬁ- is giveh by eq (3.,5),
after which the quark fragments in a known way, (i.e. the experimen-
tally well defined two jet region) at momentum scale Q% R

Since the (infra red safe) energy weighted acollinearity
- distribution is relatively easy to measure (with good data from PLUTO

[18] ang CELLO [36]), this is the quantity which will be Jiscusseq,



especially since it lengs itself particularly easily to the use of the
evolution equations,

3,2 Tne Energy Weighted Acollinearity Distribution

Consider the cross sectiorn for hadron proguction again; it can
. . . "‘““’a\
be written in terms of the fragmembaticn fumctions E%L(X,QT,GQ

as [42],

r\
—L = &Oq X4 O\ @\T\o %(Z)( oo R‘Tcx — E‘?’b
5317 &

S dxa C‘!ng‘zﬁ? Ha R3™)

: {EQK (Xa\ Rra, ZBD‘ (’(‘a pr)®~> + %‘é’?i\}

v (3.6)
where the sums over the quark charges give the appropriate weightings
to the cross section for electromagneticalily creating a q q pair
with charges + e . Pp is the scaled relative transverse momentum of
hagrons a and b, which are createg with energy fractions xg and xp,
anj so originate from quark ith transv t 12?3/ Izib/

q s wi ransverse momenta % and Xy
respectively, Hence the particular form of thei% function in eq (3.6).
Eq (3.6) must now be converteg into the acollinearity

distribution defireg by,

of = jcﬁxa X RaXw VGG

G c- AKQG\KXDO\@
“‘G‘“b (3.7)

where the factor of % originates in orger to aveig gouble counting in
going from PT to 69, since P, is a dgouble valued function of O , -the

T

acollinearity angle. In the small angle limit the relation is simply
N
@::Gig,,
L

It is convenient, in order to use eq(3°7), to take moments of the

ons YR &
functions E%’Xﬂ?nC§~\ (to obtain the energy weightings), and to go
into impact parameter space (which will pick up the next to double

leading logaritkmcorrections, as discussed in chapter 2). This is



one by taking the Fourier-Mellin tramnsferm, (wkich also facilitates
a straightforward approximate solutiom to the evolution equations);

so cone can gefirne,

o

A:(n,\s,cﬁ) :g&x jd tﬁ-ﬁ— @\?EJ\{O‘?‘ /x] Ddi,

in
AauR: (3.8)

where the V; in the exponential can be traced back to the kinematics
described by the 2 function in eq (3.6). One can now write the
acollipearity gistribution as,

dA _
3e o

__l_.éf_ dob Ta(beS) S};eoyza%(g b 6t zo\ (2,6,6%)

& Jeg e
k 4 (qe>7) } (3.9)

The evolution equations (3.5) are now requireAd in impact

parameter space, and so using the Fourier transform,

A& \o/x —=
d(x,b,&z‘yf CMDT D(\Al@-ﬁ&l\
(3.10)
(where subscript and superscripts have now been dropped for
convenience), equation (3 5) becomes,
D Alxo,&) je\a%&st&q @%(% X&@ 467
Alna*
— =
-2b.P
| ex /% D(——-)PT‘ X@X_—_’\Z(\—% P\T &z\
\\RT\
(3,11)

: 2
where the §>function in eq (305) was used to do the tZT-integration,
leaving the angular integration & . The r.h.s. of eq (3.11) is now

written,
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A - ol Ma s 5 5.R<

‘o\%\---é————me4 @R ct::&\—i ;Q_@ la bt o A9 /74 D(@, QT,X/%\
g 27 e —=

where

—_— -
E;,: P — %K \- 2 L“\r/\“"\

and performing the angular inmtegraticn yields,

ao\(x,‘a,@ﬂ_, L (S (bjj" N
o J : E;_T Q=F) (a7 b, %)
X

(3.12)
Cne now just neegs to cast eg (3.12) into an energy weighted

form, using the Me 11in transform,

d(b,at)= [dx x Al b, %)

(3.13)
where all moments from now on will be for N\=2, (so this argument will

be dropped) Eq 3 12) therefore becomes,

é%z(b,@ XA% 1{0&3(& )% o (%ﬂjo%bg_?]o&w S<Q7; ‘0/23

(3.14)
for the non-singlet moment.,

Eg (3.14) must now be solveAd in order to use eg (3.9) to fina
the acollinearity dgistribution. The approximate solution proposed
by Bassetto et al [40], and useg by Baier ang Fey [42] ang Cleymans
and Kuroga [43], consists of splitting up the r.h.s of eq (3.14) into

two parts as follows,
|

(d% = R qf(%\o\;\,s( b, &™) jo\% 2 ?w(%\

{os%(m; BT — dus(o, @)

ang then the leading log approximation is hopefully picked up by
letting¥fﬂ‘in all slowly varying functions of 2 in the second term

above, to give,



e (b, = @S(@2>cﬂwg<b &) Qb;’*‘ fc}a ZC@E@(QBHX-’E}

AMa* -2
T (3.15)

NS
where ﬁ;,_ is the zeroth order (\2] anomalous Aimension,

\go\\?;\,e-( ‘2‘) = — éilcg
3

The solution to eg (3 T5) can therefore now be written,

Aws(b,a?) = dns(b,&3) gx@zio\p ogsflqz) a, ]

2T

EXPI;(CAhz (&) c\% 2k @ AT _jl

(=3)

which gives the solutlon [40],

:?;_@ZS)
2 (@) )
Aus(bG®) =d (b, @)@ 1 7 £ (a2 b)
s (@)
(3.16)
where the non-singlet form facter INS is given by,
& bR
(e, b) = Exp o.cj IR as(2) | I3 (To(5)— 3] |
R* Y
Qs o , (3017)

Swapping the order of the integration round in eq (3,17) angd
QL
doing the p integration yielgs,
bR

NS(Q o,b) = Exp ’-t»CfFOLS c\%\ﬁ \ﬂ(@bj Soly) - \31

(@]
(3.18)

if Q=0 angO\¢ is assumed fixeg for simplicity. And writing eq(3.18)

in terms of transverse phase space gives,

Ns(Q,O,\D\) = EXEEFJOHQY O{S\ﬂ

)E:Q(bp% n)

(3.19)



which is the form factor of Perisi argd Petronzio [24], eqg (2028)°
So the 2->» 1 approximation yields the leading gouble log result
discussed in chapter 2,

Crly one thing remains before the acoliinearity car »e calcul-
ategd; a form forcﬁNs(b,égi) musd be obtaired. The giscussion can be
simplified by assumirg the input functions are independent of the

type of constituents, i.e,

ZA:L( b,Gs) = Eo\%(b,cai‘; = dns(b,@?)
\ |

(3.20)
Taking Qo=3,CGev (as in ref [42]), cne can use the convenient
parametrization for the fragmentation functions,
L(xRe) = B0 2 Eep (2R )
%x, +) = \=x) =P AT
2.
\/\ s v L Ry
(3.21)

where<{h{7is the average intrimsic transverse momentum of the partons,
since at @=9.0Gev the gominant contribution to the hagron spectra
comes from sharp two jet events, which the above parametrization
describes well with<<ﬁ€)£§ 0.5Gev, The form used in eq (3.21) must

satisfy energy-momentum conservation,

which it obviously gdoes, [Little gifference is made to the results
by using a Gaussian form in eq (3021) instead of an exponentiall.
2
CﬂhJSG%&%) can now pe obtained by performing the Fourier-Mellin

transform of eq (308) to give,
\ oo o
—2
A)Ns(b/c‘%) - —6—1: ® (\-X\L@Fﬁ' @ <Rv? To(hTBAA
LRy ]

4 (3.22)




and using the fact that [29],

T _dh
1€ R Solak)dR = S0y, (5¥0)
4 (o2 5 Y™
gives,
\
L
A (b)) = & dy _(A=>
NS L yy S ( L, b 33/1
AN IS

which can ke integrated to give,
A (bai) = a \Dl\ﬂE*T“’F S ]_ L6 ~ 8%

+ (=88 )\ Va2

where b= &)_4_59;?50 Eq (3.23) gives OaNS(O/QEB =1, angd for large b,
2.
dns(0,Q3) ~ \/\og’

All the ingredients are now available to enable the acollinearity

(3.23)

to be evaluateg and compared with the gata. However, before proceeding
it will be worthwhile examining the approximations used above in more
detail,

3,3 Erroneous leaging Logarithms

From the limits on the imtegration in eq (3,,8), it can be seen
that 0¢R,4a0, which is clearly incorrect at finite Q, particularly
§=Qo. Eq (3.8) leags to a very sharp form for OQNS(b,@% ), arising
from theXa~Oregion of the gouble integration, and this can be seen in
fig (3.3); this then gives a very appreciable effect on the cross
sectionAH/&@ as shown in reference [42], over a noticeabI.e range in
angle 04@42¢°, leading to an order of magnitﬁde effect at®% 06", The
correct range of phase space should beOéfRTS% , which also now
makes the S function in egq (396) make sense., So the upper limit in

eq (308) must be changed, and this mogdifies eq (3°22) to reagd,
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Fig.(3.3) The starting fumnction OQNs(b,Q%,) for QO=9.0 Gev, Curve 1 is
that of eg(3.24) and curve 2 is that of eq(3.22),
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Fig(3.4). Integrands in eq(3.14) for Q= Q= 9.0 Gev. The solid curve is the exact
result, whereas the dotted curve is the approximate form of eq (3.15)
Both curves use oﬂNS(b/QZ“) from eq(3.24).
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Sus(bQo) = —-@*L(&X(\‘M ‘,C'\"*QT e~ TGQQT‘D/‘AB
L) J
° e (3.24)

Bq {3.24) can be integrated numerically gquite simply arng the result
for<ﬁh§>:C¥§is shown in fig (303), where the normalization is fixeg
byﬁgE»G£33§° Again it is the region of small bwhich dominates the
cross section, and this is particularly where the curves in fig (3.3)
are more largely gifferemt. (Also recall that these functions occur
squared in the cross section),

Furthermore, the Z—-) approximation used to solve the evolution
equat ion (3.14) analytically is too harsh at finite values of Q2;
it Jdoes correctly proguce the leagding Jouble log result which is a
good approximation asymptotically. As already pointed out, it is the
region of small b which is important in inverting the Fourier-Bessel
transform (eqs (2029), (309)) to obtain the cross section, ang it is
in this region of finite @b where the leaging gouble log approximation,
(generated by the approximation of Bassetto et al. [40] ang used by
Baier ang Fey [42] and Cleymans ang Kuroda [43]),3does not dominate anA
can therefore lead to erroneous results., This is exemplified in fig
(3.4) where the exact integrang in eq (3.14) is plotteq out for two
values of b , along with the approximate form eq (3.15); both curves
used the functiorxcﬁ(ky@ii} evaluateg using eq (3.24). This again
shows an appreciable gifference between the two curves at small 1 ,
the crucial region, and shows that the approximate integrang is not as
peaked at = | .

Moreover, putting b=0 in the exact evolution equation (3.14)

yields,
@l_é_éws(cf,o\ = — 2 Celh(@?) d\Ns (Q'&l O}
oat 3 A



ang using ols(&®) = 4“’/@0‘1&{\@}‘1 simply gives,

NS
o,
Al Al o)) slad)
Ns<@,03 = Ane{Qe ,0\ ‘\ i Tl
lele (@8)
(3.25)
NS
where KQ; :’"2@&/@0. Eq (3.25) is also simply obtained for the
approximate result of eqns (3016), (3017)0 However, the approximate

result (eq (3516)), gives,
NS

2 dys(@80) = D s (a3,0) \‘f ()

Db ASb As(@3)
(3.26)
since QFNs (Q?;Qt,‘o)\":_ O
o !
=o
whereas the exact result of eq (3c14) yvielgs,
1
) ANS(QQT E\ — o
D@D b
b=o
so that,
S duelato) = & daelxs,0)
b b (3.27)

which shows that the approximat ion of Bassetto et al Joes not predict
the correct behaviour for the derivative at small b , which means it
is not going to evolve correctly unless ég\Ns(Q:B,O\/a\O =-O .

of lcourse if @b is large enough then the approximation becomes a
reasonable one, However, this is not the case, since it is necessary
to evolve the fragmentation function from some relatively low value
of Q=Qo 9.0Gev or less, where two jet events dominate; if @, is f,oo
large all the QCD evolution will be put into the starting function

&NS(Q’;'\D) , and so that would not say anything about QCD behaviour,
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So a way to proceed is now to evolve eq (3.14) numerically using
the correctly infegrated input function of eq (3.24) ang fig (3.4).

3.4 The Acollirnearity Distribution {Continued)

The numerical evelucicen of eg (3,14) is fairly straightferwarg,
starting from a value Q0=900 Gev , at which the input function
O\NS(b,@é ) from eq {3.24) was useg with values at the arguments
(b/z) interpolated at each stage in the eveolution for each 2 . The

-1
input functionalms(blagf) was calculated exactly for 0% b< 4.0 Gev ,
after which a simple form was used out to infinity; the region b >

-1
4,0 Gev has a negligible effect on the final result, angd it was
-3

1rrelevant whether the parametrization was ~~ b , an expobential A~
—cls
e or a straight line.,

Thus the acollinearity can be written (from eq (3,,9) in the

small angle regime (PT’L-@_;_@) s

af o&\o o\%(b @3‘\0& (b a*) b Solber)

d@-r
(3.28)

in which the configurations where the particular hadron comes from a
quark anj an anti-quark have been summed over (i.e, a factor of 2),
If again one assumes that the quark and antiquark fragmemt in the

same way, this leags to an acollinearity,

&\Q\ N o
dCc)s@ L &\DE\NS“—J A ﬂ ° \ (3.29)

which is to be compared with gata for CoS® Z O-97.
The larger Qz, the more independentaﬂms(b,Qz) becomes on the
input Jistribution, For instance, a good approximation ofa\NS (%)

~'b/2 5 for

is 0£ b<L 2Gex_f , but. for b > 2 it falls off much faster

than the exact value, so was not used in practice. Yet the resulting



céfk%ﬁf§ :

dA

dcos®

Fig.(3.5)

10

5t
\
0
5 b 10 15
30 ¢ {b)

0

10 99 (osd % g7

(a) the b-space fragmentation functions in the non-singlet sector
for Qo = 9.0 Gev, Q=30 Gev,/A = 0.2 Gev, Curve 1 is the
starting function dws(b,at) of eq.(3.24). Curves 2-5
are the dws(b,&%*) obtained by numerically evolving
eq.(3.14) from Qo to Q. Curve 2 usest{s(Q2), Curve 3 uses
As(Q2(1-2)). Curve 4 uses O(S(Qz(l—z)) and the two loop
Altarelli-Parisi densities from refli44] withAgg=0.2 Gev,
Curve 5 is as curve 4 with Pqq(z) of ref[45] and
Ams=0,2,

(b) The resulting energy weighted acollinearity obtained from the
oQNg(b,,Qz) functions of (a).
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NS(@/Q") evolveg funcbions in the two cases were closer together
tran their respective imput functions. So even at modest Q 7L 30Gev
this effect can be observegd.

The resnlting fregrentation function ang accllinearity can be
seen in fig (3.5) with O(S’(@%) arnd an arbitrary /\:O-izo This can how-
ever be improveg upen, as we will now Jemonstrate,

Consiger the second orger Altarelli-Parisi splitting function

in the non-singlet sector. This can be written,
(1 (t
3
Ei, ()= C % () a(-2) Rq ()
2 (3.30)
N . .
where I§qq is the first order result of eq (3.2) (previously simply
referred to as Pgq (z))o The first term in eq (3.30) is the leaging
term ang gauge ingependent with C= =%(® +%'\-§TR=“E‘L.@0, (see for example
the results of the calculations performed in references [44], [45],
o (@)
[46]). Ang the term P&é(%} contains no terms like Pgq(2)\n(i-2)
To this order the evolution eq (3.14) will be,

v
S dyuslb &) = Al B (2) 4 (el |
o dz 2| 2=l (2) 4 EH(%\,T..].

To\EbTTE |he (6 98)

(3.31)
O{Swas shown to rum with Q2[2:| using the renormalization group
equation; but an explicit evaluation of the graphs which proguce this
running can be gone in an axial gauge in leagding logarithms, which
shows that the argumemt ofc(sis the maximum‘value of Pr_% which is

Qz(\‘-%) [49]. One can then write,

ds(@"{\«%\\ = la-ﬁ/@o\ﬂ &l(\-a\‘l

. \,_\ ots(@?\ Ro\n(1-2) — . . 1&4@%
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asymptotically, So clearly using this gefinition ofcissums the term
in Pc(zg (2 ) of the form —% & };:21( 2 )\n (\=2), whick is the leaging
term of next to lowest orger P(é?; (2 ). Furthermore, Amati et al,
showegd that this argumend afciswill correctly sum all the leading
double log terms of Pqq (%) to all orgers, into the first term too

[47] . So that eq (3.31) can now be written.
\

Ol b) = da 2{»g(@‘(«~2\3% (2) +(o’~s(@?*(\-%\\) P“Q;, ()
ANna™ 277

S
1}

4- higher terms ~ oig(&z(l %\)) (%J(:;;h;! 3;(&b %)ANS(%IQZ>
2T "

n=
(3.32)

where all tems_;égﬂao net contain the leading double logarithm parts,
which are themselves a gauge invariant subset of the whole result.

So using just the lowest orger result in eq (3,32) will incluge the
gauge ingependent leaging terms to all orgers, This was the form

used, where again \ols(&z(\:%\\\ was taken (see chapter 2),

\ds(@(-2N\ = Lo TT \
Boﬁr%(@g‘:/_%%*&).\.wj " (3.33)
where the parameter C was used to regularizeoigas Z2—1; C=1.0 Gev [48].
Four flavours of quarks were useg,

The terms of a less leaging form in {n{(i~2), at each orger,
are gauge gependent angd camnot be summegd into Pt(;lz\(E) Ang it must
be remembereg that large logarithms are still present, even though
the perturbative expansion using dg(@zfl*%\\ is an improved one,

The results of the evolution wusing O(s(@l(l-i\\ are again Jisplayed
in fig (305), where it can be seen that modifying the argument of the
strong coupling constant Joes have an appreciable affect, particularly

at small angles where the acollinearity is quite larger when using °{S(®a‘§.-



In view of recent results [50] ang discussion {[30], [51]), it
is a worthwhile exercise to go cre stage further in the evaluation
of the acollirearity, viz, to examire the effect of adding in the

¢
term Pq&(%:) in its leaging form,

3.5 Ircludirg Two-ILoop Altarelli-Parisi Probabilities Angd Gauge
Dependence

Kodaira ang Trentague [50] have attempted to go beyon? the
leaging results giscussegd above, (ioeo soft Altarelli-Parisi (AP)
splitting function at lowest nom-trivial order and summation of leagding
higher order terms), by including the 0@{2) AP gensity and also scme
terms beyond the leading leog result, which to O(AS) is given By
eq(2¢24)° The motivation for the OQAE) part can be seen from looking
at eg (2.41), where the next to leaging terms are given in ZSZCES o
However, contributions of this type can also originate in,c*5_<3|(b)
ang this is therefore inclugded by using the AP probability to next
order, shown in eq (3.32). The analytic results of reference [50] again
rely heavily on the harsh 2 | approximatior of Bassetto et al.

After performing the above calculation, Kogaira ang Trentague
concluge that there is no agreement with experiment [50]. This
erroneous conclusion comes mainly from the form they use to generalize
eq.(2°24) to incluge the Jominamt non-logarithmic pieces; so for the
moment consiger just the OGXS) input. (This is equivalent to the
giscussion in chapter 2, concerning the form of the cross section to
put in eq (2.,47)). The form they use is,

4t W\n@ E_—X
In@FL @ =

(3.34)
ang this is hoped to be a goog approximation to the full 0(6(&) result,
(i.e. that obtaineg by integrating eq (1.5)). This is then trans-

formeg into impact parameter space ang the evolution equations then



provige the form factor which is amalogous te that of Baier angd Fey
(eq (3.17)) with the logaritkm mogified by the constant term -3/2,
One might therefore expect the form factor to lock something like
{:C%Ngfhnyj} of fig (3.5), whick is morotonically gdecreasing in b,
However, the ferm facter of Kogdaira ang Trentadue has a hump at small
b before decreasing away, and it is this which gives their conclusion
that the theory is not comsistent with the gata.

The reason for this enhancement [51] comes from their approx-—

imation of the full 0(c\¢) result by just incluging the single term
l_g!
2

&

o The full gistribution to O(cis) is positive gefinite ang so
the log of the b space form factor(a&(ﬁ\of eq (2,47))0r the argument
of the exporential in eq (3017)) will be regative gefinite since-SS(K\
£ | for all real 7(,2;\nTo get a hump in the b space form factor (i.e.
exp[;ik§1§>\) woulg require Ab) to be pesitive over that particular
range in b, angd this is what happens if only the term '—g ' is added
in, It is the behaviour of the O(c%s) cross section at largehq

which getermines that of the b- space transform at small b (finite Q),
and it is precisely this region which Kogaira ang Trentague have not
incorporated correctly, The full 0(c&5) result (integral of eq (1°5))

can be written analytically as [27,51],

E\_g%%_: 2Ce E +XT}\ EQ‘\T;P}_G LN F 3~>m—ﬂ

T
(3.35)
on integrating eq (A2) from 0 to \~}(-\- , where Xy = %T o '—g‘

is the next term in the expansion of eq (3.35) forEQT<K'G§'but the
terms which are small for small kp make sure "the cross section

remains positive at largekz and it is these next terms which KoAdaira

T
and Trenmtague leave out, and so their O(c&g) result of eq (3.34) is

not positive gefinite. Hence their results cannot be expected to be

accurate, The simplest way to ensure that the O(cis) cross section



(04}
(€)Y

remains pesitive gefinite is tc use the full O(cis) result as in
chapter 2, or using eg (3.35),

There are other problems in extending the lowest orger results
of eq {(3.32) ang section {3.4) to incorporate higher crder AP
prcbabilities, The gouble leading log terms are summed to all orgers
using C(gﬁSf(h#%i\ as gescribed above, which is fine since they are
gauge ingepengent. One can then think about putting in the next to

. Z . . .
leading O(cz(S )_parts (as done in ref [50]), i.e. those like -~
= .
Pqq (%-)q,(L@a )/(\§}), but these are now gauge Jependent ang also
renormalization scheme depengent. For instance consiger the calcul-

Q)

ations of refs [44], [45], [46], which calculate qu(%:) in various
gauges, The leaging term is

— 5} Re (142 \n(1=2)
(=-=)
(3.36)
in all three calculations, as expected. The next to leading term

derived by Kalinowski et al, [44] is,

[N 0 4+ 22)
g‘*@ %) GheTa \Yi G- =)
(3.37)

where the authors used a light - like axial gauge ang the MS
renormalization scheme, Whereas for comparison, Floratos et al [45]

fing this term to be,

(3.38)

for four flavours of quarks, ang where they use the Feynman gauge
and the MS renormalization scheme, (Curci et al.[46] find a next to
leading term identical with that of Kalinewski et al, using a light -

like axial gauge and the MS scheme, so care must be taken to regdefine
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/\ in each scheme), So as can be seen from the two examples quoted
above, they are quite gifferemt and so this means it's Jifficult to
get an unambiguous O(ok?g) next to leading result to compare with
experiment,

It is straightforward to incoporate these extra higher orger

terms into the evolution equations, simply by writing eq (3.14) as,

%_'dws(b/Q&\ = j&% 2 i dg(@lﬂ 20 + K (o’xg(&lﬂ %\\B ] %\}

An@™ 2T
(V) e B 68

where K is given by either of the expressions (3.37) or (3.38)

(3.39)

divided by Cp, (depen&ing upon which gauge one uses).

Ang so using eq (3039), an estimate of the effect of gauge angd
scheme Jependence can be made, to this level of approximation. Eq(3.,39)
makes the assumption that the rescaled coupling O(S(QZ(F%\\ is the
correct choice also at second order, which has not yet been proven,
Fig (3.5) also shows the results of doing the above calculation in the
two different gauges and schemes, and shows a sizeable effect between
the two, It is interesting to note that for A=O-], when using the
0(0&: ) result of ref [44], a negligible change occurs from tﬁe 0(cAg)
result witho(s(&?‘(\—%“ , as shown in fig (3.5). In this gauge the
parameter K2-1.6, ang the effect of this together with that of taking
ds to 2 loops almost exactly cancel out. A more sizeable {though
not large) difference between the two occuré for /\l:O'So

As mentioned above, the coupling constant must be put in at the

two loop level also, and as a function of Q2 this can be written,

As@) v 8\allnSh)
LET’— @o\‘f\Q%z @?; \\/z\ @/%_
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Fig (3.6). Comparison of the effect of gauge dependence at the two loop
level in the acollinearity, with /A ms : Ams=5:2, andols(@%(-2))
Curve 1 uses gq(z) of ref[L45], with/tms = 0.2, Curve 2 uses
Pgq(z) of ref [44] with/TnTé = 0.5.
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When*ﬂs‘runs with QZ(%~2) ang the mogulus is taken {as in eq(3°33)),

one obitains,

A (AN \~%\\% -

L TT L

L 8 _‘J_Lﬂﬂ(@mﬁ“%\%\ e gm“'_'.J
@Or @@ @oF L ' C a

(3,40)
where , -
— - =0
@ = w2 — 380¢
3
and

0T = \A(S2rc)
Furthermore, since/@asz/kwg 2,66: 1 [2], the calculation was
repeated using the results of [45] with/mmg=0°2 ang those of [44]
with,4ﬁ£=,005 (i.e.2%:1), in orger to try to equalize the effect of
the scheme Jependence, This leads to am even greater gJifferemce
between the two results, as shown in fig (3.6). So to attach any
significance to the comparison of a two loop calculation, as performegd
above or in ref [50], with experimernt woulgd seem very optimistic in
view of the theoretical ambiguities.

It must not be forgotten that only the next to leading OQx;')
parts were agded in, which makes the extension from using lowest order
particularly simple, The rest of the many terms present at 0&%?@
might also be expected to play a part, even though these will be gJown
from the next to leading ones by powers of logarithms. In principle
it might be thought possible to just "gauge" or "scheme" these higher
non-leading terms away, just leaving the gauge independent leading
term, which was summed to all orders using OQ{GﬁUv%}\ ang lowest
order, Similarly, no significance can be attached to the possibly
large effect this sort of O&X;') modification has (see fig (3,5)) on
the lowest order result, since for the reasons Jdiscussed above the

OQ%;') modification has not been reliably incorporated. Only an



exact OQX:') calculation is reliably gauge indepengdent and this is
obviously far more Jifficult to include in the calculations. It is
for these reasons that two-loop calculaticns will mo longer be
consigered, ang only ore-lcop gauge independent calculations will be
compared with gata,

To compare with gata, one must also consider the singlet sector,
and so exteng the evelution equations to incorporate it, This will
also check whether the non-singlet goes provide the gominant contri-
bution or mot [42], [50].

3.6 The Singlet Sector

moop . i k(z
Yo fing the fragmentation functiomns bﬁ? for a quark or a
" 2
gluon.césgkyCQ) one must solve the follewing coupled evolution

equations,

2dy (b)) =

AnQ%
(e el 0) g e LT

\n
Ddy(b,@®) =
A

\j;h ® %%4%)'2%0\2(%’ Qz> + @3Q)%(%'Q1Ujo(®bg) (3.411b)

where the extra splitting functions needed are:
(=)
§> 2)Y — £t;§i: lfi______——
3 ) 3 2

@m(%) = g—_{_%zé? (\-Eﬂ

(3.41a)

Ba(®) = ([ 2= v 22 20 47 g(\@"_\

).

where "2:()—'—-_05\) . These describe the probabilities for the



spiittings shown in fig (307) to occur in addition to that of fig
(3.1). 2

.7/
Fig (3.7) -———ir———cﬁ%%élaéut ?gfifal

Decay proecesses describeg

by the AP probabilities Z N 2
n qus (3P4§)a ) gffff e 2 o
S Qﬁ& %

g (2) Bq@) Pyq ()

ArnA so now we allow a quark to decay to a gluon (and vise versa) before
hagronization,
The regularization used in eq (3014) is implicit in eqs (3,41)°
Using the above form for Pgg(2) the r.h.s. of eq (3.41b) can

be written,

o‘% 2 &s@%@m%g@ 34%\@\;(%.@‘3]1@%)

+besMdy (b,
275

(3.41c¢)
where-ﬁgéQ%) does not contain the term involving the & function., For
simplicity the argument ofcisxemains unspecifieg for the moment,

Eqns (3.41) can be solveg numerically in a coupled way, in a
similar fashion to eq (3.14), The same starting function at Q:Qé:
9.0 Gev was chosen for both ﬂ%(b,@l) ang O&;(‘D,@L) , viz, that of eq
(3024)° t is again interesting to look at the b=0 resuits.

Setting b0 in eqgns (3.41) gives, with Q=Qo,

3 da(0,ah) =
D™

\
e Pu B\ (085 ) « R @dg (0,08 (5.420)



ddofoms) =
3\\@@1\

s g&%%%m%@%@c&@v(o,@a\ + o2 dg (0,08 V]

(3.42b)
where the argument of o(sis assumed to be Z independemt. Now the

starting functionsd%(b,@g) anaois(k),@é\ are both igentical ang so

call them c')(‘p/@é\) , SO egns (3042) can simply be written,

§2\20®03—’ As dloak 5[@ (%"{)* A, qﬂ/ﬂ
! (3.43a)

) cﬁg(o Q%) = &3 AMo,63) 20 @\9_(0{/33 + @1(‘33;1

2Ty
At (3,43b)

where the ancmalous Jimensions An(;()\,)l,_')s%,% are definegd in terms

of the moments of @AJ(%\ s
|

Anls;) = fo\% 2 %5 R)
o

It is easy to see that momentum conservation,

j‘&\%%[%%(%\ + 30(((%\] =0

_CO\% 2 E 200 %3(-2—\ Ry | =0

gives,
@\L(cm,\ +Ax{ag ) =0
20§ AQy(q9) + Balag) =0

so that eqns (3 43) give,

3 dq (OQo) o

c'—)\\n@l
(3,44a)
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2. c%(o,@%\ = O

@t (3.44b)

This means that the value of the fragmentation functions
remains unchanged throughcut the evelution at b=0, and so remains
fixed at 1.0 for both, This can be compared with the result for the
ron-sirglet sector egq (3025)9 which can be viewed as a measure of
momertum non-conservation by excluging gluonic Jecays, {ang which
provides a Jecrease of abeut 15%)o The non-singlet sector only allows
an evolution such as that of fig (3.8a), whereas the singlet sector
also allows the quark lime to Jecay along the way into a gluon as
for instance in fig (3°8b)o Ang so the non-singlet evolution Joes

not account for momentum lest to gluons,

(a)

Fig (3.8): Examples of evolution (a) in non-singlet (b) in
singlet case,

However, Lfcis is chesen to have a 2 Jependgent argumemt, as
incﬂjzy(b%A\, then clearly the simple resuit obtained above (egs
(3044)) will not obtain ang momentum conservation will be violateg to
some Jegree, This is borme out in fig (3,93) where the evol&ed
functions c'%;(b,@l) ang 0\3 (,\o,@t) are plotted, and which shows AS(O,QLB
= 1,25 for anOﬁs(Qi(l“%“ : whereas for an o’\g(@z) the correct
behaviour %(O,&l):dlﬂ(o,dt) == 1.0 is obtained, The resulting

acollinearity is shown in fig (3.9b) using,
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Fig. ( 3.9.) (a) The b space fragmentation functions in the singlet sector
d(b,Q%) for Qo=9.0 Gev, Q=30.0 Gev andA= 0.2 Gev., Curve 1 is
the starting function a(b,Q% ) of eg.(3.24), Curves 2-5 are
obtained by numerical evaluation of eqso(B.Ql)n Curves 2 and
3 use®s(Q?) and are dq(ngz) and dg(onz) respectively. .
Curves L4 and 5 use®ts(Q2(1-Z)) and are dq(ngZ) and dg(b,Q7)
respectively. (b) The energy,weighted acollinearity obtained
using the appropriate dq(1b,Q7) of (a).
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(2) Comparison of singlet (Full curve dq(b9Q2)9 long dashed
curve dgingz)) ané mon-singlet (short dashed curve) b-s:ace
fragmentation functions, and (b) energy weighted accollin-
earities for Qo=3.0 Gev, Q=30 Gevgl\ .5 Gev andOLs(Qz),
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for small angles,

(3.45)

The reason for the unsatisfactory behaviour when using OQS{QZ(\-%\J\
can be traceg back to the higher orders summation. This argument sums
the leaging In(1-2) terms in the non-singlet sector to all orgers.
However, in the singlet sector the giagomnal splitting functions qu(v?:)
ang qu(%) do mot contain these \V\ (\—E) terms (as can be seen for
example toO(d\; ) in refs [44,45]), ang so ds (d'(\-=%)) is summing
terms which are mot there, hence leaging to momentum non-comservation,
ng(%) goes comtain theln (\~) terms at higher orders, but it must
also obviously be symmetric in R ang (1~2), which it is not if &g
runs with Q2(1=%).

A reasonable assumption is to use O(S(Qz(\—%)) in the qu(% ) term
of eq (3‘,413), ang d\g(i‘d’) in the qu(%) term (in line with momentum
conservation), with ds(Q2) in eq (3.41c). This proguces a o&%(b,(gz)
almost igemtical with that when using o(s(Qz) throughout, but in this
case now both A\CL(O,Qz) angd &3 (O,Qz) remain at 1.0, So the resulting
acollinearity is identical with that obtained using D(S(Qz)o This
suggests the coupling in eqns (3.41) is only weak as far as cﬁ%(b,.Qg)
is concernegd,

The results obtained with non-singlet ang singlet fragmentation
ang o(S(Q'?')_ are compared in fig (3.10), with /\:005, Q=30 GeV, This
suggests that the non-singlet goes indeed provide the dominant
contribution to the cross section, so that soft glucn emission from
quarks dominates dm/d\cos@ at these mogdest values of §. However, when
the non-singlet is usegd with O(S(Q2(\—~'% )), the gifference between

the two is more appreciable, which can be seen from fig (3,11), where



ab very small angies the nor-singlet is approximately 67% of the
singlet cross section,

3.7 Comparison with Data

Before beginning this section it is worthwhile to point out
that changing the regularizing parameter C of eq (3.33) from 1.0 to
2,0 increases OQ\Q%/&‘(O&@ by about 2% forA =0.2, and clearly less for
/\ =0.5; so the results obtained may be regarded as accurate to with-
in this figure,

Fig (3,11) alsoc compares singlet (dS(Qz)) and non-singlet
(ot (Q2(1=2 ))) with PLUTO gata for SO/AoS® at Q=30.0 GeV. The
data as a function of CoS® are actually for a centre of mass energy
Q=27,6-31,6 GeV, ang as a function of ® for Q=30.0 - 31,6 GeV, It is
the normalization of this particular set of gata which correspongs
most closely to that of the predictions, which are normalized to unity
over just half of the angular range (O“._-@é‘%i\ in © , the gata being
normalizeg to 2,0 for ©&£OLY . Agreement with gata is satisfactory
in both cases with A =0.2. However, as (os@—=> 1.0 the singlet cross
section can be seen to rise more sharply ang so fits the gata in the first
three bins, whereas the non-singlet goes not, ang requires a smaller
value of A .

The Q2 evolution of the cross section AH/O\@ is shown in fig
(3.12) for Q=21 ang 30 GeV, for non-singlet ang singlet predictions,
which can both be seen to fit the Jata much better than the parton mogdel
result which just uses the input function A(b,Qg) of eq (3.,24) with no
QCD evolution, The peak of CQQ/A)@ predicted by the parton mogel is much
too large. The peak of the QCD evolved croéé—section gets higher and
sharper as Q2 increases, which indicates that QCD behaviour does in
fact predict that hadgronic jets become more acollinear at small angles

2 . . . . .
@ as Q7 increases, while at the same time becoming narrower, i.e.
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Fig.%{3.11) Comparison of singlet (dashed curve) and non-singlet (full
curve) predictions, (a) The singlet functions dq(b,Q2) are
obtained withe{¢(Q?) ( or equivalently the mixed form des-
cribed in the text) and non-singlet functions ANS(bQQZ) with’

A s(Q9(1-2z)). Q=30.0 Gev and curve 1 uses/\=0.5 Gev with

curve 2 using/A =0.2 Gev. (lb) The acollinearity compared with
PLUTO data [18].
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The Q(' evolution of singlet (dashed curve) and non-
singlet (full curve) acollinearity dA/d® is compared with
the parton model result (dashed-dotted curve) and the
data [18]. (a) at Q=21 Gev and (b) at Q= 30 Gev., Singlet

predictions use®\s(Q%), non-singlet As(Q<(1-2z)), with
A 0.2 Gev.
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ev, Curve 1 is the singlet
rediction from the evolution 20
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equaticns withA=0,2. Curve 2
(s51id) is that of the PPP with
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y 0.2 and full O{ls) imput.
Curve 2 (dashed) is the same as
curve 2 {solid) with/}=0.8 Gev.
Curve 3 is the PPP with LLA as
input, All use L@y) 0.5 Gev,
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Singlet, (O(S(Q )) and non-su'lglet (Ois(Q)(l z))) (b) pre-
dictions fer the functions d{b,Q°) at Q=100 Gev. Solic
lines are dg(b, Q- ), dashed dg(b, Q2) /A 0.2 Gev, Qo=
5.0 Gev, Llgy =0.5 Gev.
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Fig.(3.16) Predictions for the acollinearity at Q= 100 Gevg/‘ 0.2 Gev,
ZByy 0.5 Gev, Curves 1 (fullline) and 2 are the singlet
and non-singlet results respectively obtained from Fig,(3.15)
Curve 1 (dashed) is the non-singlet prediction withds(Qz),

Curve 3 is the PPP with LLA input. Curve 4 is the PPP with
full OlAs) input, :
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Fig. (3.17). The effect of,)the 4p~‘b dependence at Q=100 Gev, using
singlet As(Q)) results 7ith/ =0.2 Gev., Full curve has
4&7‘7 =0.5 Gev, dashed Zhy) =0.3 Gev,
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<<F§ﬁ> increases but 4<C>f7/Q decreases gue to multiple emission of
soft gluomns, in agreeme=nt with gata.

Fig (3.13) shows the effect of intrinsic transverse momentum
gependence in the QCD evelved result., The curves siacwn correspond to
<%%?7 = 0.3,0.5 ang 0.7 GeV respectively ang show a sizeable geperdence
of the cress section on<<p$) at small angles, im comtrast tc the PPP
(c.f. fig (2.5)), which is only affected by /Ry) gependence for Py
£ .75 GeV or 3° ((ox® 4 .998), for §=30.0 GeV, Clearly this
difference between the two approaches stems from the more realistic
way the kT depengence is embogied in the function A(b,Q%), and so it
plays a more significant role in the subsequemt evolution of multiple
soft gluon emission.

The leagirg log approach of the evolution equations (singlet) is
compared in fig (3,14) with the acollinearity obtained using the PPP,
from which it can be seen that the PPP can be mage to fit the aata,
but with a much larger value ot A, Comparing the leaging log curves
(1) ang (3) shows that the results of the two approaches only giffer
numericaily by a factor which can be corrected by altering /\ ang
LBy (cof. fig (3.13))..

In view of the fact that LEP will hopefully be proviging gata
in 1988, results for Q=100 Gev are shown in figs (3.15)-(3.17) for
both singlet ang non-singlet. Fig (3,15) shows the evolution of the
decay functions<A(b,Q2), and shows a much sharper rise in both cases
at small b, as expected asymptotically, and so a much smaller raﬁge in
b gives the Jominant contribution to the acollinearity at Q=100 GeV.
than at Q=30 GeV. Fig (3.16) shows the resqlting acollinearity ang

| again shows that the non-singlet appears to give the Jominant
contribution. Also included are results using the PPP, ang again all

predictions merge together as@> increases (c.f. fig (3.14)). The
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Fig. (3.18) The acollinearity dA/d® for O 50 4L oo° compared with data of ref [18]. Curve
shown is obtained from the singlet prediction ©s(Q2)) with Q=30 Gev, A =0.2 Gev and

4‘%‘> = 005 Gev,
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effect of the imtrinsic transverse momentum depengence is greatly
reguced by the time the decay functions have evolved to 108 GeV (see
fig (3.17)), ard can be compared with that of 30 GeV (fig (3.13)).
This again shows that as the evolution occurs, the evolved gecay
functions become less dependent on the initial form as Q increases.,

For the sake of completenmess, the above calculation was extenged
to coverogé@é=900 using the methog of Collins ang Soper [39], allugeg
to earlier, This splits up the acollinearity imte two parts,

=Y S I— \/\1(@,@3—&-\((@,@3)
Aes®

Where the leaging log parts of the O(cis) result are comtained in
W(Q,0 ), in which the multigluon evelution or sum is performed. Ang
Y(Q,é;) contains the rest of the first order expression (121, i.e.

. . \
the terms which dJo not behave like /@"’- as®=0, So W(Q,@)
correspongds to the calculations performed above, onto which the term

Y(Q, @ ) was agged [39],

Y(&,8) = L%;@“ ZLZ((é _ i)'\nx v 5

3\ \ =2 % /2 | G\
—_ — 1= e ol X 3+ \2 _\D
‘31) B x (( ST u33> " +§; %z\]

1 Lds(ar) ;L.,(\nx—*-_?;\
2
2T 4%

where X:Singg% ang y=1-x.
The results are shown in fig (3618) as a function.of‘ég, which
shows reasonable agreement with Jata.

3,8 Summary ang Conclusions

Within limitations the above results may be viewed as encour-
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aging, in that the pregdictions of perturbative QCD are seen not to
conflict with the data, and in fact give the correct shape and
normalization. The PPP is limited by the fact that it only considers
indeperdent emissions {as giscussegd in chapter 2), ang deces nod allow
a quars to decay into a gluom before it fragmemts into the observeg
hadrons; the latter is a point which can be included using the coupleg
evalution equations im the singlet sector, The leaging log approxi-
mations used will become more justifiable as the beam energy is
increased with the running of LEP,

It is a pity that the 2 loop calculation cannot be compareg
meaningfully with data, in view of the uncertainties stemming from
gauge and renormalization scheme Jependence, It is also gisappointing
that the summation of leading higher orger terms in the splitting
function qu(g ), by using o{s (Qz(l~%)), have not been extended to
the singlet sector,

However, problems encountered in chapter 2 concerning fragmen-
tation (i.e. the naive incorporation of intrinsic PT in the function
ED(ED) and transverse momentum distributions are overcome by using
the more physically meaningful approach of the evelution equations,
with energy weighted gistributions, which are everywhere finite,

The simple factorized form of Dq(x,hr) of eq (3,21) may be
viewed as too naive, and there remains scope for investigation into
a more realistic form, However, ultimately the initial form ofcﬁ(hy@ié)
will not be so crucial as larger beam energies ang more high statistics
data become available at say Q=100 GeV, The gata at the moment Joes
not seem to have a preference for a fixegd or running coupling.constant

As
| The calculations using evelution equations can be extended to
structure functions and then applied to lepton pair production in

Drell-Yan and leptoproduction for instance, althoughwéhé_annihilation



does have the virtue of proviging cleamer results aﬁe to it being a
more simpler process, There has alse been a significant amount of
investigation recently in applying the transverse momentum Jistri-
butions geriveg from gluon bremsstrzhling in W, Z proguction [53], ang
the first experimental results are eagerly awaiteg.

The gocd agreememt of perturbative QCD with data in efe”
annihilation must support the view that QCD is the theory of strong
interactions, although there is still much to be done to show this
beyond any Joubt, particularly a solution to the confinement problem

would put an end to speculation about fragmentation problems.
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Appergix A

aﬁ‘
Parton Cross Sectlon@,‘é@% tc 0 (s )

It is the purpose of this appendix to obtain the 0(oig) parton

cross secticn in tramsverse momentum G2 , from eq (1 a)

be used in eq (1019) directly or egqnms (2 28)(

to obtain the hadgron gdistribution in trapsverse momentum

The parton variables are shown in fig (1

.5).

Depending upon the situation under

two independent variables (X3,Xo)
consideration eq (1.5) must be transformeg to the variables (X1,@) or
(X1,92)

We require the latter here. Defining XT:zqr/Q, eq (1.16)
can be written,

WrEX, = (%) (=%2) (w+%a=1)

using energy conservation and assuming for the moment that X] defines
the thrust axis,

Solving for Xo yields,

\Z
= - %x' X‘( (\-x-\\ )

where,

(1)

R= é? Xy (\

(\~ X:)
Also from eq (106)

3 U
£§C§W‘ Qv (:L_q 2-’<\'f )QC)
67(—7_ (\~x2) (\‘Kl\

So for the case when X1 defines the thrust axis eqn (1 5) gives
(10],

, then it can

2,29) first then eq (1.19)

Eq (1.5) is in the
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Fig. (A3).
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The cross section é:aéﬁ/o\@}v to O(@s). Curves 1 are
obtained from eq.(AZ2), curves 2 from eq.(A3). The dashed
curves are the results of putting on the Sudakov-type form
factor. Q=30 Gevp/\dO.,S Gev.,
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(16— &\ (1= =R Y ) %
2 (=) R
taking both solutions for X2o

(42)

Since there is complete symmetry under the interchange of
quark amti-quark variables, the above result also applies when the
antiquark is the thrust axis.

Similarly, when the gluon gefimes the thrust axis,

A
1 do — Lt < \--><3:)7—$ @2
So dxz e 35T Q-\— 2

(43)
Equations (A2), (A3) must be inmtegrated over the thrust variable
°Y25><WI'X3 before inserting into eq (1.19) or (1.28).
The maximum value of T is that permitted by eq (A1) for real X

and so,

.
Tmax = \= %3

A plot of the phase space region can be seen in fig (Al),
showing the gouble valueg nature of eq (Al).

The minimum value Tmin is the minimum value at which T is étill
the largest of the three variables, This is therefofe given by eq
(1016) with the two indepengent variables set equal. So Tmin is the

solution of
2 %
%2 = L 1= Tmin) (2 Trin=1) [ Troim
This yields the cubic,

8—|_MM Tm 2.0+X'r\ -+ \QTmm bk =o

(a4)

For small Xq it is straightforwarg to solve (Al) to give,
-_Tﬂnnﬂ :2: \" %Exsr,



However, in general eq (A4) must be solved, which can be gone
either iteratively or amalytically by noting that one can write
eq.(44) in the form \ﬁg"?ﬁ"‘(zo with 275“2 4‘»“‘],3 , sc that the cubic has
tkhree real roots (dgisplayed in fig (A2)). It is solveg analytically

>4
by gefining an anglecg> such that CGS@Z(%) ;LP/Q_ , then

As can be seen from fig (A2), only two of the roots lie in the
physical range%(Tmin<. 1, so the largest of these is chosen.

In order to integrate egns (A2), (A3) numerically, it was
necessary to change variables to remove the square root singularity
caused by the factor R in the genominator, which causes the integrang

V-
to blow up at the end point., A suitable choice was \/_—_'. (\»T—X%\, =

so that,
Twax ~max
Soﬂ._.. = f&\/ LT
R Yy
Train NMmin
where,

Ymin =0, Yeox = A\ = T ¥

The resultant parton cross sections are shown in fig (43), along
with mogifications progduced by the Sudakov-type form factor, producing
the gip at small Qf , as mentioned earlier ang very little alteration
at larger QT as expected. Notice that &G‘%is by far the gJgominant
cross section over &0_93 . Putting these 0(<%) results into eq (1.19)

gives the hagron Jistribution shown in fig (1.6).



The leagding log result (LLA) car be obtaineg by integrating
eq (A2). From the form of eq (A3) ang shown in fig (A3), the term
with the gluon as thrust axis Joes not have the soft singularity
evigent in eq (A2).

As@?ﬁo, Xy—=>» | angd R tends to —»(\‘ \(; \\ =
C\~

S_\T_“

So the integrang in eqn (A2) goes to,
EBRZ*' g@] /l(l—"")R

leaving the imtegral in Y as,

Y %\/z .\.g} = -\-\ -+ %x?_
o =)

T, = % \Y\DT/Z_\X

1, = 3.\“{/1 +\

for small Xﬁo This gives the result of the integral as

2 W]+ %

but the 3/2 can be neglecteg in the LLA, leaving

A do | = 24s \ﬂlj‘#]
T 37 QT *7 (A.5)
LaA

Go AQy
where X;=T. Summing over configurations where q ang q define the
thrust axis introduces a factor of 2, giving eq (2.24),

Putting the factor of 4 into the genominator of the argument of
the logarithm causes fhe LIA to mimic more closely the full(D(c&S)
result towards the edge of phase space.

The top limit in the Q% integration in egq (1019), iaeocgaqz\

can be obtaineg from eq (A1) by inserting the absolute minimum value
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of thrust variabdble X1=2/3 ang keepirg X2 real, Tkis correspongs to
the situation of maximal symmetry in the three jets, where each is
separated from its neighbour by 1200, with each variable Xi=2/3,

The two values of Xy must be used (corresponging to IR), in
order to cover both situwations of small angd large X2 corresponding to
the same Qp, as shown in fig (44).

Fig A4
Two configuratiocns

corresponging to
the same Xj.

Although Xo is a gouble valuedg function of Xj, this just
corresponds to a single point in the (XI,QJ[IQ) plane, since a plot such
as fig (Al) is for fixed Qp. The integral over the thrust variable T
from Tmin to FX;L obviously only incluges the one pole (in Xj say) as

can be seen from fig (A5). To include both poles, one must obviously

add in the configurations where the ;ﬂ and g are the thrust variables,

Fig (45)
(X1,X) plane /\’{1:?
for fixeg Xp
\-(1:7(\
\
\
\\/‘/ X =T
\
XZ > '—' XQ:XB
|
XstT )
X

Setting the lower limit Tmin to zero will obviously include both

poles from the g ang the a, angd éorresponds to the situation

where no preferential thrust Jirection is chosen. In the LLA,



the two situations come together as:

2

N \~ ¥T

2NdT. .. A g&T,,... for XT<< |

T o o

which clearly must be true, ang can be seen from fig (2,6) for small

Xp. So one must agg the contributions where the q,q and, g define the

thrust axis, and in the limit of small Xp, they give contributions of
. 9.

eq (A.5), eq (A,5) ang zero respectively., The smallness of AT " is

due to the fact that the q or g are much more likely to carry a large

thrust than the gluon is [31], which can be Jeguceg by transforming

eq (1.5) to L &G‘q”%
So AT



Appengix B

Sugakov—type Form Factor with A Running Coupling

Wken O(S is allowegd *bo run with \QT then eq (2 19) can be written,

F
OMT ;(}:\' Oi p‘rn o‘ {Q‘rz el \Q-T.,)\ @t
G‘o&&? = law | /T &S, Py
>\
) .~
. Shs(R%) \v\@; S ( B, + g;_#_é?rﬁ
TA
(B1)
and so after strong orgering, one obtalns,
E&ﬂ&s(@ﬁ ) @1 () In @t SRy
6‘0 dl@? ”RY k3
(B2)

As before the virtual graphs take care of the givergent A
dependent terms, so that in effect only the top limit of integration

contributes. So one now obtains for two gluon emission,

d\GL_\A\ c&cr La{x: &‘_\ 2
= a
So daY So Q% oo m/\l 4(\\/\@/5}

(B3)

using,

dg( leTB = _&m <
@O\Q\QT//\'L

Again, this can simply be extenged for any number of gluons ang

summation results in expomentiation, for multigluon emission,

dde

P

A
So AQT (PN

ﬁf}; E;(\;Y&.E{\Y\\Mi’?\ﬂfﬁ _k_\v\@"r}l

Eq (B4) again predicts a sizeable suppression in the cross

section for small Qp. The presence of a running coupling merely



Jst
]
O

softens the singularity in the argument of the expomential,
2
In the region where QI‘ = 0, QT/AL will become less than 1 angd

T .
S0 \W\Y\QT/Al must be written as \ﬂ\\\f\@"}/\n\— AT , so that one

can write the argumert of the exporerntial in eq (B4) as,

ey

1
Wa_mined o« nex
AL AL
(B5)
@
so that as & — 0, the \n //\1 term giverges faster than the other
and one again gets the dip as Qp—=p 0, but in this case it is not as

precipitous as in the fixed coupling case,
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PART 1X

ANALYSES INVOLVING THE S® AND
RELATED SCALAR MESONS.



CHAPTER 1

THE SCALAR MESONS,

In this chapter we introduce the scalar mesons, and in order to
motivate the need for work in this area, we review briefly their cru-
cial place in meson sSpectroscepy. Tnis will then lead us to discuss
n and KK production, and the formalism used to do partial wave anal-
ysis and to extract resonance parameters. We can then outline the ex-
perimental signatures of the scalar mesons, particularly the S*Q‘before
going on in chapter 2 to discuss a coupled channel analysis of nn and
Kﬁo In chapter 3 we attempt a double moment analysis of F<—§3 —_—
F{-kf?/ﬁ , and study S wave production via S-P interference eff-
ects in the @mass region.

1,1. Scalar Meson Spectroscopy.

Mesons are described in the L-excitation quark model [1] as quark-
antiquark bound states. Since quarks and anti-quarks belong to the 3
and 3 representations of SU(B) respectively mesons occur in B(i)E rep-
resentations, i.e. 1®) 8 and so are predicted to group themselves in

1

nonets., Including the spin 37 nature of the quarks and their arbital

excitations leads to the full symmetry group structure,

SULY X O(3)

The fermicn-antifermion system with angular momentum L is an

eigenstate of parity with,

4\
@: (’-\\ (1.1)

-
and the total angular momentum 3 is given by,

S=C+%

where—z is the total spin of the quarks and equals O or 1. The charge

conjugation applied.to the neutral systems is,

L4+S
C= (" ' (1.2)
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so that ome has a series.of states with CP= + for S=1 and CP = - for

S=0., One can define matural and unnatural parity for mesomns such that

=
P= (_—'\\ natural parity (1.3)

=\
R= ()"~

unnatural parity (1.4)
and so natural parity mesons must have S=1; since J=1L + 1.

Using egns, (1.1) and{(1.2), one finds for S=0, J=L so that

c - - -
C = -P giving the sequence of states JP =0 +g o o 2 T eeees. However

C +- - -
one canmot form states with JP 0" o 1 +9 2*7,...and these are known as
"exotics". The resulting allowed values of JpC for q q mesons composed

of uds and ﬁag flavoured quarks are listed in table (1.1).

Table (1.1):

S=0 s=1

C — g
J‘P for mesons 1=0 (0] * 1

L=1 1t” ot

1t

ot

L=2 2™ 17"

o 2-’

. 37

C - -
Only the JP =0 +9 1 and 2** nonets are completely filled

with well-established mesons. The other nonets have members which are
missing or which have properties which are not well known. Apart
from these well-established monets, only the 0** nonet has candidates
for all its members, and these are listed in table (1.2), ‘along with
some important parameters[2]. Their role in meson spectroscopy is
therefore a vefy important one, although it is not as clear cut as the
above discussion might lead one to believe. This is because there is

no reason to believe that the low-lying mesons have to be q q states



TABLE (1.2) Scalar Mesons (P3G April 1982)

G FULL
Meson I MASS WIDTH DECAY MDDES
{mev) (mev) Fraction
# +

S 0 975 33 e 78
t4 i6 KX 22

S 1 983 54 M

-4_-2 +7 KK
¢ c* 1300 200- nn 0
approx, 600 g%% 10

< % 1350 250 Kn

approX. approX.

alone, since four quark states qq&i can also form colour singlets and
therefore are expected to be observed. Moreover, as a consequence of
QCD, mesons are also expected to exist which are composed completely
of gluons - glueballs. The situgtion does mot rest there, since ob-
viously there can also occur hybrid mesons, made partly of constituent
glue, partly of quarks. In particular, the JPC=0++ mesons have been
classified as qqaa states or even glueballs [3,4,5]. This provides
the most imgortant reason for studying the scalar mesons, to clarify
whether or not such "cryptoexotic!" states exist in addition to the
more usual qq SU(3) nonets. We briefly discuss the compatibility of

the scalar mesons with multiquark/gluon states,

Assuming a constituent mass for u,d quarks of 350 Mev and 500
Mev for strange quarks, then qqaq S-wave masses will be about 1400
(uuuu) to 2000 Mev (ssSs), before spin-dependent mass splittings are

. JP + oo+ ot .
considered. The same =0 ,1 ,2 states can be obtained by a P-wave
aq {(¢.f. table loi)g where one might expect masses of order 1000 Mev
before mass Splittiﬁgso By considering spin-spin splittings, Jaffe
[4,5] showed that the 0% qqqq state is pushed lower down in mass than

N

C 4 _ _ .
the‘0 state of qq. And so both qgq and qqgg may be of the same order

!
a
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of mass, In fact Jaffepredicts that the gggq states are lower in mass
than the qq.

The OZI rule is familiar from discussions of qa decays, whereby
decays requiring several gluons toc enable the decay to occur are for-
bidden (see fig.1.1). When one considers qqgq decays, it is clear that

Fig {(1.1) Decay diagrams in 0ZI rule,

DRLL :(

1 {k%/\i//q\; (b) allowed.

/

A Y

(a) 1st.forbidden

(c) super allowed

A A Y v

S TTT——

Qqaq can "fall apart" into qq + qq as in fig.{(1.lc) if phase space
allows it, thus providing a class of OZI superallowed decays. These
will then give rise to very broad states, which might be hard to
identify. However, if the qqaa state is low enough in mass, then its
decays to qq + gqq might be kinematically suppressed, leaving it with
a much less broad width.

The weight diagram for a monet of qqgq is shown in fig.(1.2) along
with that for a conventional qq nonet. It was originally thought [1]

that one might assign the following four quark states to the scalar
mesons s uﬁd&; < 3 | ss A(uﬁ+d&)§'—_ S* 5 ss (uﬁ-dﬁ)ég s ahd
usdd ZK. The £ could then easily fall apart into nn, which would
give it a very broad v;/‘idth as observed, The S* would be able to fall
apart‘i,nto KK as show;n in fig. (1.3a) whereas a decay to =nn would re-

quire the strange quarks first to annihilate, as shown in fig. (1.3b).



Fig. (1.2),
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Weight diagrams for qggaf{a) and gg (b).
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Fig. (1.3) Four quark decays of the S*
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So the dominant decay mode of the S* would be to KK, but since the S*

is jﬁst below KK threshold, the width is consequently narrow, Further-

more, under this mpdel the S5* and S would be mass degenerate with €

lyihg at a lower mass, which might be expected to be due to the extra

sS pair, which the S* ‘and $ contain.

Comparing this situation with the qq monet, in which if the

isoscaler singlet and octet states mix magically, then the € and E;

will be degenerate in mass; with the S* (pure ss) at a higher mass.

In fact the S* and §>are approximately degenerate and this seems to
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lend support to the claim that the O'° nomet is composed of gggq states.
A problem with this classification is that the gwould be expected to be
much broader, since sb—%yTX7? is a superallowed decay. Also, the
above situation is very maive, since magic mixing will mot necessarily
be dominant in practice and members of the two nonets can intermix by
gluon exchange, Furthermore, the mass of the E_is now measured to be
about 1300 Mev, which puts it well above the S* and 5;°

The observed KK S- wave enhancement at 1.3 Gev [6] might lend sup-
port to the idea that two complete O'  wmnonets exist [4,5]. If in fact
this bump is an I-1 resonance [6,7,8], then it might be identified as
the member of the gq monet, analogous to the S (983) I=1 member of the
qﬁqa mnet. It would then, however, be necessary to observe the other
three members, Clearly the real situation is a complex one, which en-
courages further work in this area.

The idea that glueballs exist is amn interesting one, particularly
tn our present case, since all QCD based models predict that the light-
est glueballs will be in the energy range 1-2 Gev, with spin-parities
JPC=40'H'9@"""92++ [1,3,9]. %j meson decays might be expected to be a
copious source of glueballs, for instance the decay of fig.(l.4).In-
deed, QCD predicts that the dominant spin parity of the 2 gluons is

Figc(loé)q{%>1§ hadrons.

C

c : ,
*—<452€22141QQL hadrons
. gluons

that stated above, which may be looked upon as optimistic for the ob-

servation of the production of glueballs in ‘“ib'decays° If these two
gluons resonate, then one has a glueball partiale. However, the two

g%uons might perturbatively decay into two qq pairs; and if these

}
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resonate then one has a multiquark state q&qa as discussed above. One
might alsc imagine the situation where just ome gluon perturbatively

decays into a qg pair, which itself then resonates with the remaining
gluon to form a hybrid state. These possible enhancemgnts and connec-—

tions are shown in fig. (1.5) [3]. Although it is not possible to tell

Fig. 1.5. Possible enhancements from two gluons.A——glueball,
B—hybrid, C—multiquark, D—two qgq mesons,

(p) ! !
| |

|
|
} \ ‘
|
t
]

i l
A B < o) s Q o

from QCD which is the favoured enhancement, it is certainly true that
it can wait until stage D is reached, since gq mesons such as the 71
are seepn in tfi—:7°?§,;x; o Even if fig.{(1.5b) is found to dom-
inate, that still does mot forbid copious production of hybrid qqg
resonant states, even though qaq&-states can be avoided. Clearly the
glueballs and hybrids must be flavour and colour singlets, and if they
are found to actually exist, they might be expected to be rather narrow
since their decay to hadrons violates the 0ZI rule. The existence of
scalar glueballs is highly speculative at the moment, and it is anpther
factor which points to the necessity for detailed data and analysis in
the 07" sector,

Although there occur problems with the decay modes of the scalar
mesons (which will be discussed in sec,(1°3)g they are experimentally
reasanably accessible9 particular in the nn and KK channels which we

will now briefly discuss.,

1.2 ntn and KK Production.

Much information on nn scattering, particularly the I=0 S wave,

»
” 4



[
o
(o

can be gleaned from the production processes

W —» naN {1.5)

nN —> KKN (1.6)
especially since high statistics studies have now been performed [10,
11]. The produced di-meson state is a CP eigenstate with eigenvalues
P = (-I)L9 C=(-=1)L [12], where L is the orbital angular momentum of the
state (=J in this case of spinless particles), So the allowed quantum
numbers of the dimeson state are JPC=!0++91-_92++9°°°° The mn system
has G-parity eigemvalue G={(+), and since G parity for the di-meson
state is (—1)I+Lq where I is the total isospin, this means that I+L is
even, Isospin of the nn system can have values I=0, 1,2, and so the

isospin values are separated out, in particular the S wave J=L=0

will have components in I=0 and I=2, but mo I=1, This limitation does
not apply to the KK system, which has total isospin I=0, 1, but whose
G-parity is not unique as in the n case, This leads to difficulties in
assigning isospin to new resonances in the KK system, and is the ori-
gin of the debate about the isospin of the KK enhancement at 1.3 Gev
[6,7,8] referred to in section (1.1).

Tﬁe KORO system may decay through the KgKZ state, which Bopse stat-
istics forces to have only odd values of angular momentum. If one res-
tricts oneseif to this particuiar decay mode (since there is a reason-
able body of data here), then this allows the K°K® state to have the

2t ..., So altogether, the mn

following quantum numbers JPCdO
and KK channels are a valueable source of scalar mesons.

One pion exchange (OPE) dominates the processes of eq.{(1.5),
(1.6) in the forward scattering region, and this allows a study of nn~—

nr(KK) amplitudes, provided the OPE contribution can be isolated, (see

refs.[13,14] for a detailed discussion). This might seem a reasconable
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assurption in view of the close proximity of the pion pole to the phy-
sical region. The situation is again more complicated in the KK prod-
uction, since in nn productioﬂ G parity severely restricts the number of
possible exchanges.Thisis exemplified in table {1.3) where possible ex-

changes are listed for the processes of (1.5) and {1.6).

Table (1.3) Possible natural {NPE) and unnatural {UPE) parity ex-
changes in mN—5>nn(KK)N

G

Reaction Exchanges X JP

UPE NPE

T p T non s 1 0;

1 1
1 A 1” ot

2

np KX°n T 1” 0~
s A 1” 1t
A, 1 2

B 1 1
z 1t 2”
e 1t 1”

We will now go on to discuss the kinematic formalism of OPE,
which is described by fig. (1.6.) The resonance contribution (R)

which we will wish to isolate will be that of the scalar mesons,

Fig. (1.6) OPE for mN—p nn(KK) N

™(k)
-

T(R)

particularly the S* and E.

1.2.1 Cross Sections and Amplitudes,

To discuss the amplitude for the process of eams. (1.5),(1.6),

we can define the particle 4-momenta as in fig.(1.7), and the following



Fig. (1.7) Diagram of kinematic variables used to describe mN< nn{KX)N.
Mesons M_,M_ are either both ©n or both K,

2 2 2 2
M ] i S= t= - M= - o
andelstam invariants, (P1+P2) o (P2 PS) o (P3+P4) (1.7)
The amplitude will then be a function of the kinematic variables in

eq.{1.7) and the di-meson decay angles @9 ¢ in the M1 M_ rest system

2
(see fig., (1.8)). For a given incident momentum one can describe the
experimentally observed intensity distribution in terms of the four

variables t,m, @,@)where the angles @ and ¢ can be measured in the t

or S frames, which are shown in Fig. (1.8). The intensity distribution

Fig. (1.8) The S and t channel axis used to describe the angular
distribution of the produced Mle system in its rest
frame,

ﬂ/\ M,

incident Tr

outgoing N/
v

can be written,

— 4
L(sit,m,e0)= O = S wE9)
SLIM Heose) P  DMAT (1.7)




and is usually writlten in terms of the integrated intensity,

QWZI>EE«3®

DML
(1.8)

W(B.,P) describes the M M angular distribution, and can be expanded in

19

terms of spherical harmonics,

wW(e,d) = o:i §<\f§[> Re Y1 (o,0)

J=0 M=o
(1.9)

where the <<:\f’;$:> are the Legendre . moments, which contain the
mormalization factor N, which is simply the number of events in the
element dtdm [15], and which will be described below.

The intensity distribution may be expressed in terms of helicity

S &)
amplitudes, N ( at [\/\ @ P \ in the S or t channel.

0
>\ and >\ refer to the initial and final nucleon helicities. These amp-

litudes are normalized according to,

> _ S; \HS’ )\ -
SEIMees)DP = L= L AN \
‘ a7k (1.20)
In most of the subsequent discussion we shall use the t-channel axes and
so for the sake of convenience we shall suppress the channel label on
the helicity amplitudes. The full helicity amplitude \f"\xk('t’M‘@,cPB
may be decomposed into a sum of contributions oorrespoﬁding to inter-

mediate di-meson states of spin L and helicity v = \)\‘— )\\ . This

gives

(‘tm o,9)= ZE(ZL—H) H (*tM)A} (@@) AP

So Yo-L

(1.21)
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Substituting this result into the intensity formula, eq. (1.20),one

obtains,

&

So — z E( G

= 2@,44} (2,L1-¢=d)

(| ; Z

ST DM Mees P N L, T,
HL
i, Wo‘\‘ (@@}ok _(8,9)

(1.22)

So the observables <<YS:> can be expressed in terms of sums
of bilnear products of individual heldicity amplitudes. Since the exp-
erimental moments < Yg> contain an overall mnormalization factor
N, we now need to calculate this to normalize our partial wave helicity
amplitudes correctly.

Consider again purely n exchange of fig. (1.6). To isolate the
TETE-—pTETI(KK) amplitude, one can write the amplitude for the process of

fig, (1.6) in the form [12],

T = Vvan) FE) A (v wwixi))
(‘t—/uf‘\ (1.23)

where V(NnN) describes the lower vertex in fig. (1.6). Using the Fey-
nman rules at this vertex, and averaging over initial and summing over

final nucleon helicity states, gives [13],

— " o
’éZ i \\/(NWN\M\\ — Cst

BUN

]

(1.24)
1/ . . .
where C7 Q‘-TT/_.L' Vo . \ ,/('t—/ul \ is the pion
propagator, with y the pion mass. F(t) is a form factor, which sat-
isfies F(y*)=1 and is determined by fitting the overall amplitude T to

3
the t dgpendence of the data; this is usually parametrized as e )[1 ] .

<
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This method of determining the nn — nn{KK)amplitudes was first pro-
posed by Chew and Low , and by Goebel [12-16], and can be expected to
work very well provided the OPE contribution (which has a character-
istic t-dependence (see below)) shows up clearly in the data, Devia-
tions from this t-dependence might be partly described by form factors,
but this canmot be the whole story as we mention below.

The amplitude of eq(1.23) then leads to the following eXpression

for the intensity distribution [13,14,15],

E;ﬁS‘ 2 > <
= & v
oCtDM 3N MM T B> (Q,ﬁ’)(-t /u{‘) \ el GLM jf{rw

(1.25)
where &ﬂ E&((@5®3&® » and M is the nucleon mass,P, the

pion laboratory momentum and g the di-meson centre of mass momentum

2 W '
(%M —"/Ulz) 2 . AG:WT /é il represents the OPE contribution to

T ~%
the cross-section. The factor LFMM PL is a flux factor and the
factor qu comes from the phase space. Thus we have the normalization
factor N from eq.(1.25), which is contained in the partial wave helicity
|

amplitudes H){)\\) as XN o

It is convenient to use the following combinations of helicity amp-

litudes,

\~ ( [ y L

ve= L (M, T (@Y HL,)

2 |
(1.26)

At high energies the amplitudes Ly+ and Lu- describe the production of a
di-meson system of spin L, helicity VWV , by natural and unnatural parity
exchange respectively., We see that LO+=0° so that a zero helicity di-

meson system cannot be produced at high energies by natural parity ex-

change. In that case, we have an unnatural parity exchange amplitude,

simply defined as Loo

e
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As can te seen in eg. {1.26), we have temporarily omitted the nu-
cleom helicity labels., Each amplitude is in fact two independent amp-

litudes, a nucleon helicity flip HE+. and mon~flip H%;+o Eq. (1.26)

is to apply to both flip and mon~-flip amplitudes. For an experiment in-
volving unpolarized nucleons, we sum over the nuclegn helicities as

follows,

=, e,

Re (L'1*)= Re L Lo, + Lo Lol)
(1.27)

where we have suppressed all indices except the nucleon helicity comp-
onents,
W I
e can now express the observable moments \T/?ﬂ of eq.{(1.9)

in terms of the amplitudes Lu¢ (SOQPogPltgetcoe)of eqn.£1.26). Bach

-

moment is a sum over terms of the form Re (L;a LU)9 and will only con-
l. .

tain terms with L +L = J and (u'—uﬂ = M. Also LI +L must be even

when J is even and vice versa. Assuming only S and P wave di-meson

production is significant we obtain the following relations,

WmdYEY = Vs 18 \ Rt 4 10 2
U<y = 2 Re ($92)
Ner 'Y = T Re (S 02)

\VEEP A S B
Yoy = Late e gt 1eor)

m<\ﬂl>_5:§§ Re (@O@f')
NESQ :'—gj.:szj (oo 1)

(1.28)
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Notice tkhat there are no interference terms between Lv+ and LU_ amp-
litudes; we would need nucleom polarization measurements to do this.,
Thus we have written the observable moments<<\(§§>>in terms of the
helicity amplitudes Lv+ for the whole reaction of egn. {1.5) or {1.6)
{or figs. (1.6) and (1:7))° We can write Los in terms of a partial wave
amplitude ﬁLg for the subprocess nn—%>nn(KK)—(iueo upper vertex of fig.

(1.6) or (1.7)) as,

L = S Saar b

(1.29)
where all indices have been suppressed for simplicity. This will allow
us to describe the OPE contribution to reactions (1.5) and (1.6) in
terms of the partial wave amplitude f; for the subprocess {nn— nn(KK)) .
In particular, we will be interested in the I-0 S wave amplitude f£=o
to describe the S* effect. We will consider the poles and analytic
structure of fL in the next section. To make the formalism of this

section easily compatible with that of the next, it is convenient to

take a factor 1/q out of f » which modifies N to read,

ta

M
ﬂr

2
N= 2 (e: —t_ |R&)"
Mp Gﬁ? 4T ({:——/AA)L

(1.30)
with eq.(1.29) left as it stands.

- The isospin decomposition of the amplitudes fL in terms of comp-

onents fi is given for mnr—spnm by,

2
JEL 2:’.%§L‘Ff?-%-%§‘$L_ for L even

\
l;L_ = 4?; , for L odd

(1.31)
and for nn -5 KK by,



{:L'i Lg-—%’f for L even

\
‘gg:’ %g:gk for L odd
(1.32)

We now turn again to the OPE cross section of eq. (1.25), and
discuss some important factors concerning it. Clearly it vanishes as -t
at t=0, and has the pole factor (‘t-‘p,2)-2° Both these factors give it
a dramatic and characteristic t dependence |:13914,,15]p Deviations
from this t dependence could be partly explained by form factors. However,
1 exchange produces only helicity zero di-meson systems, which gives
a pure helicity non-flip structuz;e in the t channel frame. This imp-
lies the absence of any ¢ dependence, vwhich means 4Y§-> = O

for M =2 © . In this simplified situation then both P_ and
P_ would be zero. (Note it is observed in the mn chanmel (1.5) that
<Yg>ﬁ:og which means H_+l2 \L_| from egs. (1.28)). But
the <Ybb> moments are sizeable in both chamnels {(1.5) and (1.6) ( see
chapter 2), which suggests other exchange mechanisms are present, and
so \L+\2 \L ,,\35' O ., and also the existence of absorptive cor-
rections 13,14,15]. A simple phempmenological way to include absorp-
tive corrections [see ref[13] for a detailed discussion] is the Ochs-
Wagner method [17] of adding on a constant piece C to the L=1, s chan-
nel helicity flip amplitudes. This leads to the assumption that the

t channel amplitudes Lv+ of eq.(1.26) satisfy [18].

(i) \LH\: \Lg—\

(ii) L\)tZO for V> |

(iii) |\ = Sty Lo [ C
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where € is real and can be parametrized as a quadratic function of the
di-meson mass M, One can then express the moments in terms of Lo and
c{m).

Absprptive corrections are assumed to be the main corrections ito
OPE [13]. Contributions in the nn channel {(1.5) from Al and Az ex-
changes {c.f. table (1.3)) are assumed to have a negligible effect in
the small t region [13,15,22]. In the KK channel, since the non-OPE
contributions are more complicated it is usual to extrapolate the data
to the m- exchange pole (see chapter 2).

In chapter 2 we shall wish to study the properties of the I=0
Swave in the nn and KK channels. Resonances are associated with poles
in the two-chamnnel S matrix and so we will briefly describe the analy-
tic structure of the S matri¥, which will be used to describe the be-
havicur of the Iz0 partial wave amplitudes f in the region of

L=0

interest around the KK threshold,

1.3 The S Matrix.

The two channel problem can be described by the channel phase
shifts E;n(nn) and E@ﬁKﬁ) and the inelasticityq? . The S matrix

is then written,

S/L,L = " ez*g;i.i\
Sia = AT e~ (81482) (1.33)

where,

SuW= S(WTT%’TTTY\
Sg;E S(kg—ﬁKE\

Sz = S{rw—s i)

(1.3%)
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Unitarity is imposed by the cordition,

+ T T
Ss=55'=1

(1.35)
One can write the S matrix in terms of the T matrix by,
¥ b
. 2 2
S=T+24 © Te
-~ ~ A, T AT
(1.36)

where’S?is the diagonal matrix of the C.M., chammel momenta kig

(1.37)
with,

R. = AL (g— mT
A= A (s}

(1.38)
S is the total C.M. energy squared and Mi the (1) and K(2) mass res-

pectively., The elements of the S-matrix will have right hand cuts in
the S plane starting at each threshold AFPizlgand therefore a four-
sheeted structure in the complex S plane, as shown in Fig. (1.9) [18].
We shall refer to the physical sheet as sheet I; ‘the physical ampli-
tudes are evaluated on the upper side of the right-hand cuts on this

Fig. (1.9) The Riemann sheets for the two channel problem. The
cuts are displaced below the real axis for clarity.
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=
fined

sheet, We can analytically continue through the cuts from the physical
she¢t to sheets II, IIXI arnd IV as defined such that sheets I - IV
correspond to (IM@\ ,__I:W\ E&y =(+4) ,(-+) 5 (-=);(+-) resp-
ectively,

The Argamd ampiitudes can be written as,

\ )

™~ (1.39)
so that unitarity becomes,
LS
LA = 10
-~ -
(1.40)

and the A matrix can be written in terms of the phases and inelas-

ticity,

24S
A.. —= ’*2 e ==L \

A _
2 A

B = Simmm e
2 (1.41)
Egns. (1.41) correspond to the partial wave amplitudes fL defined in
egns. (1.29), (1.30), but since we are only interested in the L=o S
wave here, the subscript L has been dropped.
One can incorporate the unitarity properties and threshold singul-

arities of the S matrix by defining a real, symmetric K matrix, such

that,

(1.42)

The imaginary part of T is given by unitarity as,

— Y
Tl = f;kL \fzz \ v

(1.43)
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or equivalently;

T 's = ©

(1.4h)

This latter result may be taken to define the analytic continu-

ation of T from (say ) sheet I to sheet II [27,28],

S RNY -t L
K = | + 2x P

(1.45)

Alternatively these S matrix. properties can be conveniently

described in terms of a real analytic function d\ = C’& (Pl ) Pz\ o

the determinant of the Jost function matrix [13,28], with Square roat

branch points at Q‘=O and LQQ =0. Then the S matrix is written in
the form,

gn p— (*9\,62&\/0\ (Pn)PL)
3212 &(Pn)~€>2-‘) /O\(PUP \

.8

SuSaa— Sia = A (=& ,-&) [d (e, e )
= Aa

(1.46)

Analytic continuation of S into various sheets is given by PA—>—€L
and so for example [28],

x XX I - Y
— \ . LL
S\,\ = —_— S&L: D N = 321.
Sy I~

T
Sa

(1.47)
The poles in the S-matrix are causeéd by the zeros of A (P\ )?2..3 °

A pole on sheet II will correspond to a zerc on sheet I and vice versa,
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Fig. (1.10). Argard diagram for the I=0 S wave obfained from the
coupled channel nn~»nn and nn -» KK analysis of ref[34].
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Fig. (1.11). The inferred cross sectionC {nn —»KK) between threshold

and 1.3 Gev from ref[34], which rises sharply to the
unitarity limit for the S wave cross section.
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So the dynamics in the physical sheet is dependent upcon the behaviour on
the othexr sheets.

Since the S* pole is located very near to the KK threshold, we
must taxe into account the opening of the new channelby making the
correct analytic continuation across the threshold. This is done by
taking QQL: "?:’A.“Qa.\: A (Q—Mé* S\)yl/ 2 below
KK threshold.

Having now set up all the formalism we will need, we can now des-
cribe the experimental evidence for the o** mesons, particularly the
S*, before going on in chapter 2 to describe a coupled channel analy;

sis of nrx and KK data.

1.4 Evidence For the Scalar Mesons.

The most striking effect around 1 Gev in the reactions of (1.5)
and (1.6) is the strong opening of the KK channel, The sudden rise of
KK production, which can be seen from the inferred cross section

O (n"n—> K' K7), is shown in fig. (1.10). This shows a peak at
about 1003'Gev followed by a fall. Evidence for this sharp onset of
inelasticity can then also be clearly seen in the nn-s nn channel, as
in for instance the Argamd plot of fig(l1.11) (from an early coupled
chdnnel analysis) of the I-0 S wave. Further evidence for this sig- -
nificant effect is seen in the interference moment <<\T?;j7in the nn
channel (see fig. (2.3 )) which has a shoulder between 9i0 and 950 Mev,
followed by a sharp drop 5etween 950 and 980 Mev, with a flat region
after that. Since <Y$>~Re($]?*)(cnf, eqns(1.28), this drop sugg-
ests a significant change in either the S or P wave over that small
range of mass. As implied already, (c.f.fig. (1.11)) this effect is
most easily understood in terms of a rapid variation of the I=0 S
wave amplituaeg associated with KR threshold.

This interpretation was originally suggested by an LBL group [19]9



who assumed that the I=0 nn-—>nn S wave amplitude could be parametrized
as a coupled channel resonance [20], and who analysed nn— nn data and
the (K+K—) mass spectrum accordingly. They found that the I=0 S wave
amplitude started arcund 900 Mev with phase C}OO9 which reached 1800 at
about 990 Mev (c.f. fig (1.11)). This structure indicated that the

amplitude was being observed on a large background with phase about 900

at 900 Mev. Morgan subsequently found a slowly rising elastic Back-
ground phase, which reaches 90° around a (nn) mass of 1100-1300 Mev[21].
The original S wave effect is attributable to the S* resonance, with the
background being interpreted as largely due to the € resonance.

The I=1 member of the scalar nonet (S ) is seen as a peak in the
'ﬂqu mass spectrum just below KK threshold and as a threshold enhénce-
ment in the K'K° spectrum. The broad Y{ resonance is seen as a rise
through 90° of the I=} Kn S wave around 1200 Mev. We will subsequently
however, be concerned in analyses which predominantly involve the I=0
S wave and the problem of pimming down the S* and E,resonances, It is
convenient, therefore, at this stage to summarize the data which we
will use in the nn—nn(KK) S wave.

There is a rapid variation in the phase Sq across the KK thresh-
old, between .85 and 1.2 Gev, where it rises from 90° to 2’7()09 accom-
panied by a dip in the elasticity”™] just above threshold (c.f.figs.(1.11),
(2.3)). The S* is responsible for this behaviour. 5l increases again at
about 1.4 Gev and thj‘.s is attributable to the E_ resonance., The non-
diagonal phase 5 (= KK) = 5\'@"51_5317.&5 fairly stationary from
threshold up to about 1.3 Gev (see :t:‘igg(z.,Z))g7 after which it rises
rapidly, with,pz approaching unity. The flat behaviour of STI’.K below
1.3 Gev suggests that the S* canmot be parametrized as a Breit-Wigner
respnance,

Early analyses of the I} S wave were restricted by the available
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data to concentrate. almost entirely on n'n  data (ecgon-p,:,?n+n-n)(see
for example [13—150'19-22]), Clearly this is not sufficient to est-
ablish whether the S* is a Breit-Wigner resonance or some other more
complicated effect associated with the close proximity of the KK
thresholid. One would also like to understand at the same time the
nature of the background to the S*, which in the nn channel is pre-
dominantly the broad € effect. Only when high statistics data was
obtained in the KK chammel did this become possible [6,11,23,8,18].
Most information can clearly be gained from a coupled channel analy-

sis, such as that described in Chapter 2, to which we mnow turn.



CHAPTER 2

COUPLED CHANNEL ANALYSIS OF nn AND KX

2,1, Introduction,

In this chapter we analyse data on nn and KK production in order
to try to understand the isospin zero S wave scattering near the KK
threshold. We study various coupled chammel parametrizations in order
to assertain the properties of the $* and § enhancements [26].

A system with the quantum numbers of the scalar mesons, JPC=0++9
and isospin zero can in principle decay to other channels besides un
and KK, such asﬁ77zo However, only nn and KK have been measured, but
seem to provide by far the dominant modes, as can be seen in table (1.2),
or reference [2]. The other chammels may be restricted by insufficient
phase space below about 1.5 Gev; there is no evidence for any dramatic
effects with the opening of the’?7? threshold, in stark contrast to
the case for the KK threshold. The data also provides negligible 4x
inelastic effects in the mass region around KK threshold. We there-
fore feel justified in continuing with a two channel analysis. We
try to use all the availabie information below and above KK thresh-
old in both chamnels in contrast to the work dome by the ANL group for
instance, who use mainly KK data [23].

We consider data obtained from high statistics experiments using
reactions (1.5) and (1.6). The n'n moments <<\(§§)>used are obtained
in reaction (1.5) at 17.2 Gev/e in reference [10], and displayed in
fié (2.1). We use information in the mass range .85-1.55 Gav, and fit
to the an moments (eqs.(1.28))in the region of 0.9-1.06 Gev. In the
range 1?25—1,55 Gev thé nn amplitude is constrained to be consistent
with the B phase shift solution of reference [24]. Refinements of
solutions from reference [sz:were obtained in reference [24] by Pen-
nington and Martin, by imposing analyticity on the nn phase shift ana-

1
lysis. We choose the B solution since that contains the 63 (1600) [ 2]
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Fig, (2.1) The mass spectra of the unmormalized nm moments in the region of

the KK~ and K°K° thresholds. The data are from the 17.2 Gev/c
np-Yn n n experiment [10] and correspond to -t<0.15 Gev', The
curve is the fit using parametrization I of sec (2.21)




152

MAGNITUDE

300 |

) L o
)

o 3 “f
b X -
87 K J
‘T 250 | -
L A ]
)

< L -
o R .
Q.

200

A £

0 1 12 13 Vod 15

iéo L | ]

MASS (CEV)

Fig. (2.2). The ..>culus and phase of the S wave nn—»Kﬁ amplitude. The
points correspond to the points favoured by the ANL partial wave
analysis [6,7,11,23] of their spectrometer data for K"K~ production.,
The mpdulus is normalized to a unitarity circle of radius 0.5. The
curve is the fit using parametrization I of sec{2.2.1).



and it also gives a satisfactory description of polarized target data
[23,25].

The KK data used is the modulus and phase of the I=0 S wave amp-
litude found in the ANL puN—-KKN single channel analysis of reference
[23]. The exchange mechanisms are more complicated in this reaction
{c.f.table (1.3)), and so to obtain the KK mass dependence and resolve
the partial wave uncertainties one can extrapolate the data to the =
exchange pole. This was done by the ANL group, who used the t-depen-
dence extracted from the data and the extrapolation of egs. (1.25),
(1.29) and (1.30). The data are shown in fig. (2.2).

To use the 7 moments to extract the I=0 § wave behaviour, we
specified the P wave to be the e’tail which we describe by the Breit-

Wigner,

foz o= _Mefe(a)
M§=M1~)\me(g{%\

(2.1)
where
v — [9 3 Lot
e@)= (qje\) o M8 ) +a9e
(2.2)

-1
withgﬁﬂ?d00773 gevp‘j% =0.15 gevy R = 3.5 gev . q is the n momentum
in the 7w centre of mass, with C{/e that at the ‘\o mass M(’o

For the I=2 S wave, we simply use,

£ qims, &
4 (2.3)
with values of S& used from reference[22] for(example %‘L = -22.4° at
M=1 Gev).

We now wish to study the possible parametrizations of the I=0 two

channel S matrix in order to extract the parameters of the S wave



resprances, the S* and & . Sirmce the S* occurs on a large background,
which could be largely interpreted as the%i resgnance in the nn channel
(c.f.sec.(1.4)), the I-0 S wave nn amplitude must be parametrized by
two overlapping structures. To do this we use the d(@%)@&) function
(of sec(1.3)), and we now decide which is the most appropriate para-

metrization.

2. 2 Coupled Channel Parametrizations.

Consider the following examples of parametrizations of d(@nea)o

(a) Breit-Wigner resonance:

§ S . 8 2
3r(€,8)= Ma—s—i (€81 + & 5 )
(2.4)
A *
vhere, Mg Q == ?A'?SA
This leads to poles in the S matrix on sheet III and sheet II (see for
example [27]). When the resonance occurs far above threshold, only the

sheet II1 pole is important.

(b) K matrix parametrization:

de=dek (K= L9 )
: ~ -
| (2.5)
The Breit-Wigner form is equivalent to a pole in the K matrix., Yet a
resonant effect can still occur even if the K matrix elements are slowly

. . -1 .
varying as a function of energy. To see this, consider the K matrix to

be parametrized as,

K = 3
(2.6)
so that,

de = (A-s)(8-18)—~T*

(2.7)



For B small and negative one obtains a sheet II (jgﬁmfa pcsitive) pole

just below the KK threshold (@2‘:-\—5\\&\) at

o
_— - * / ;
\&\ & ¥ (g-xe)
(2.8)

The effects of this pole are observed as a resonance in the nn channel
and so we shall refer to it as a KK bound state resonance. There is

no nearby sheet III pole. Ifel,; @, & are chosen to be (real) constants
we have a simple 3-parameter description of a resonance and its back-

ground. For example, one can write the nn—>nn S matrix element as,

Su = Zk;i_"ii P ﬁg
A= AL, A&+ Ca (2.9)

where céis the value of \Qﬁk given by eq.{(2.8). Thus Sulis written

in the form of a resonance (second factor, which gives the sheet II

pole), multiplied by a background, which has a large phase (~-90°)

provided \d&\-<@< ka\ . Therefore the resonance is described by
two parameters, the background one.

(c) Two Breit-Wigmer poles:

‘ R
&RR‘ = AR&\Q‘ - (GK\K: v %_Kz?&\
(2,10)

(d) A Breit-Wigner resonance and background in the nn channel:

A@@ = dedg

(2.11)
with,

d\@ = exg ("’/ngu ¢@X
(2.12)

(e) Factorizing Breit-Wigner and smooth K matrix,
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OKXRK = drdx

(2.13)

We wish to use one of the above parametrizations to describe the
I<0 S wave in the range 0.854L ML 1.55 Gev, where it must incorporate
both the S* a.ndE effects, This might suggest we should simply use
(c), but since the phase g%ﬁ<is very flat below 1.3 Gev, this would
imply a very large width for the S*, We therfore turn to the KK bound
state picture of the S*, and so consider parametrizations (e) or (b),
which we shall call I and II respectively.

Since the S* occurs very close to the KK threshold, where we fit
to data, we must take into account isospin violation which manifests
itself in the K'K~ and Kaﬁo mass difference. This 1is disucssed in
the Appendix A, where it is shown that to a good approximation the
main modification to the above description is the replacement of\Qz‘
by %([R(+tQa)9 vhere PC and hc are the magnitudes of the K'K~ and
K°R° c.m, momenta respectively., As can be seen in fig. {(2.1), the
mass bin centred on .99 Gev contains both thresholds and the fit to
the nm moments leads to the structure displayed. We now turn to
the results of the fits to the data described in sec. (1.4.), using

parametrizations I and II.

2,2,1 Factorizing Jost Function Parametrization I

The data were fitted using

G\Rk = O\R(€}0\K(S*+ background)

(2.14)

wherecﬁK was parametrized in terms of a slowly varying inverse K

matrix,

~1\
M=K = M(o\+ LF\Q.;_ Mm

b

(2.15)



157

Fig. (2.3).

The I=0 nn—% nn and KK~ amplitudes. The curves correspond to parametrization I
of sec(2.2,1). In the absence of K'-K° mass difference the o —p K'x amplitude should

be in a unitarity circle of radius. \/&3: (shown by the dashed curve). The violation
below aboult 1 Gev is due to this mass difference,
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The results of the fit are shown by the continuous cruves on figs.
(2.1), (2.2), with the amplitudes shown in fig. (2.3). The para-

meter values are (im umnits of Gev),

da’ Mg= 1281, ¥,= 076 , ¥, = —© 25
{ ) oy _ _
Fie: M= o6, MG = —003, M)= Ol

0 Myy = ~0 -0 Mmq Q-0
MM :O‘-&-S) gy — T ) v =

(2.16)
' Y
The most significant M matrix element is Pq\\ o

The pole positions of the T matrix nearby the physical region
are,
S* pole on sheet II atﬁﬁg = 988~ 8i Mev

£ pole on sheet III at3%= 1394-110i Mev
(2.17)

The ratio of the residues at the § pole determines the ratio of

its coupling to nn and KK.Ye get,
\
/o,

Ty \ = O-3%

—

\\\ (2.18)

2.2.2 K Matrix Parametrization.
Under this description we include the é‘effect as a pole term
and take into account the S$* and background using a slowly varying K

matrix, viz.

K= KkE)+ K% k"

Pa g

(2.19)

with,
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( — X ¥, 2
E%\LJ = X185 /(- <)
The parameter values {in units of GeV’) obtained frcm the fit are,

Mg = 1397, ¥, = , .= R

( () D)
K\?): \S ) KZL: *\03 ) KEOL = L= 1

() 3 )
Ky = =02, Kaa = =267 K, = —646

(2.20)

(2.21)
The poles in the T matrix are,
S* pole on sheet II at SE; = 986-7i Mev
€ pole on sheet III at 3% =1394-118i Mev. (2.22)
with the ratio of the residues at the & pole,
- 2
‘a2 - S

The two different parametrizations are therefore seen to pro-
duce very similar T matrix elements, with both the S* and &€ turning
out much narrower than in earlier determinations [2]; This is a result
of requiring a desirable fit to the nnm moments, especially in the region
0.96-1.0 Gev {c.f.[18]), The difference in the values of eqs.(2.17)
and (2.21) may be taken as a measure of the uncertainty in the pole
positions. The E; parameters are not critically dependent on the fit
to the nn moments, as those of the S¥ wave are particularly around the
KK threshold.

The properties of the € resonance found in our analysis are quite
similar to those found in the ANL analysis, even though their para-
metrization is completely different [23]. They parametrize the T
matrix directly and include the S* as a background to the E_ . Their
main interest is in KK data and they do mot attempt to describe the =nn
moments close to the KK threshold, which is a crucial feature of our

analysis. In view of such differences between our respective approaches,
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Fig. (2.4). The n'n masés distribution observed in K—p‘:?‘ n_'n+/\' at
13 Gev/C [29], with the background and P resonance e{ents
subtracted., The curve is proportional to RHY\ITTQ.\ and
corresponds to the prediction of parametrization I of sec
(2.2.1).
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it is encouraging that their € (1425) has quite similar properties to

our € (1394) [26].

2.3 Discussion.

Before summarising the main results of this chapter, there are a

few more salient points which should be mentioned.

One could try to examine K exchange by looking at reactions of the

‘type 9 \

Ko —>um(kiR)A

(2.24)
Assuming that K exchange is the dominant mechanism leads to cross
section estimates which are much larger than the data [26], so that
there must be sizeable contributions from non-K exchanges. It is
therefore not possible to perform an analysis of KK-s nn, KK in
the same spirit as that of a nn-—?nngKﬁ analysis. The S* enhancement is
however also observed in the nn mass spectrum from reaction (2.2/..).
The 7mn mass distribution is shown in fig. (204)9 with the baékground
and P tail subtracted, at 13 Gev/c[29] in arbitrary units. This data
is fitted with a curve proportional to LO\,’V\ qT\z \L s calculated
using parametrization I of sec.(2.3[26]. Although there is reasonable
agreement, the data does suggegt that the S* is narrower and occurs
slightly lower in mass than that predicted from the analysis.

One can, however, predict that S wave K'K production will be
much larger than Kchs’ [26]. The process Kp —% K'K A is dominated by
@ production around the threshold, and this opens up the possibility
of studying S wave production by examining S-P interference effects in
the @ mass region. This is the subject of chapter 3, wheré we per-

form a double moment analysis of the data [30].

One can now also look to the decay \F—é) ¢TT+T(¢ to



62

£
-

| = 'R [ IR Il' v ﬂ Froyod L( Iy 7k E ] Wi_ljm<
30k | o

= [ Bkd Subtracted .
= I ]
= 20 g
2 L ]
§ Z H .
wJ __ —
. ﬂﬂﬂ o M% :

@ =- 11 {}1 [ %}n{} 1 ﬂ {}l{} L1 l{%ﬂ‘nwn 1 ug}% [ B 171 1-1

0 0-S 1 15 2 2:5
M{mt+1c) (GeV)

Fig. (2.5). Background subtracted invariant mass of m' & pairs for
events inY —s K'K n'n~ which have a K*K~ invariant
mass in the (13 region.



263

. . L e
¢ the 8* resonance, Data in the 't mass

15

give us information abou
distribution [25] clearly show a peak ncar 970 Mev (sece fig, (2.5)).

The production mechanism is shown in fig(2.6).

Fig. (2.6) Production mechanism for the S* in L%LJ§><®TT*RT“

It is assumed that the coupling is tolthe SS component of q>9wwhich
belongs to an almost ideally mixed SU (3) monet. Allowing for a small
admiitﬁre of nbn-strange qq would provide a lesser Zweig-suppressed
mechanism than that of fig. (2.6), but the admixture is so small that
this is neglected. Moreover, the final nn state (uddau ) is reached by
passing through an intermediate state composed of ussu s which could.form
a KR bound state, since the n'n mass is close to KK threshold. This
picture is consistent with the view that the S* is a KK bound state
resonance, which we used in our K matrix parametrization of the com-
pletely different production mechanism in 'TT~}Q—4%>1TYT(K€Z\ N o
One might then also expect aﬁ S* threshold enhancement in L¥2;3,6b1<£2
in the KK mass spectrum. It would be interesting to see the re-
suits of a coupled channel analysis of thesc‘%’decay modes, from which

much could be deduced.



Isospin violation was touched upon in sec (2.3), and its effects
are shown in fig. (2.2) around KK threshold. Achasov - et al.[31] have
discussed the effetts of I=0,1 mixing near the KK threshold, which causes
S*-§ interference via KX lcops. The four chamel(ﬂﬁ"ﬁﬁ; K*KQI kS ko
formalism is discussed in Appendix A. Achasov et al,examine the in-
fluence of S*-§ mixing in the reaction 'TT'ﬁJ-=>>TTC>”z N , in
which 1 exchange is forbidden by isospin symmetry, and predict sig-
nificant effects. However, reliable data on such a process does mnot
exist at present. We now summarize the main results of this chapter.

It was found that the nn:%;nngKi data suggested the existence of
two I=0 S wave resonances in the mass range 0.86-1.55 Gev., Due to the
lack of phase variation in : nn=»KE over the KK threshold, it was
not possible to parametrize the S* resonance as a Breit-Wigner, which
would have required poles in the T matrix on sheet I1I and sheet 11,

The k matrix was found to be a successful parametrization of the S*
resonance, and in both alternative forms (I and II) requires just a
sheet II pole, which ensures that the nn-=KK phase is slowly varying
over and above the KK threshold. The K matrix formalism is a conven-
ient tool to use to expose the distinction between a Breit-Wigner (sheet
I11I) pole and a KK bound state (sheet II) pole, The former corresponds
to a pole in the K matrix, the latter a slowly varying one.

The same data also require the existence of a Breit-Wigner ¢ res-

onance, which couples predominantly to the nn chamnel, and which has a
mass of about 1.4 Gev. The parameters of the E were found to be stable
against changes of parametrization. The pole position CE% A= 1400-110i
Mev) and ratio of couplings to nn and KK channels (2 L4:1) compare fav-
ourably with the results of the ANL analysis [23], which predicts a mass
of 1425 + 15 Mev and half-width 80+ 15 Mev for the § .

We now turn to a study of the interference effects between the q>

meson and K K' S wave in the reaction K§=—%>K-K+/\ at 4.2 Gav/e,
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CHAPTER 3

INTERFERENCE EFFECTS IN Kp—3K K'A AT 4,2 Gev/c AND THE THRESHOLD
KK S WAVE AMPLITUDE '

3.1 Introducticon.

As was mentioned in chapter two, it is much more difficult to
obtain information on the KK—>KK channel than nn—s-KK,nn, since it's
more difficult to isolate K exchange. We make an attempt to do this
by examining the reaction K—(? —= KT A , where the A acts as
a polarization analyser, allowing one to assess the importance of the
contribution of unnatural parity, non-K exhange amplitudes. Further-
more the data around the KK threshold are dominated by the @ resonance
and so by examining S~-P wave interference in this region we can study
the behaviour of the KK S wave amplitudes, which we assume to be due to
the S* and S resonances,

Our results are obtained [30] from an analysis of the reaction

K..?‘% L K*/\ at 4.2 Gev/c, The data show interference
effects in the relevant moments of the decay distributions of the
and (K'K') systems. The data are described briefly in sec.(3.2). In
sec, (3.3) we describe the amplitude analysis, with discussion of re-

sults in sec(3.4).

3.2 Data.
The dominance of the ¢ resonance in the data at low values of
K K*'mass is shown by the .data in fig. (3.1), with fig. {3.2) showing
that the ¢ is preferentially produced in the forward direction. The
following analysis is restricted to the region (o% @PA > o-5
which contains the main body of data,
The data is presented in terms of the joint moments, H s of the

+ -
/\ and K' K decay angular distributions and can be written as,

(3.1)

RLMRe) = D D (2D (1))
| x
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Fig. (3.1).
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Fig. (3.2). The dN/d cos®ps distribution for events with
0.998 & m(K'K™) £ 1.042 Gev. ©pa is the angle between
the incoming proton and the outgoing A in the overall
centre of mass.



where the sum is over all events in the mass interwral under consideration
The solid angles SLana ﬂu correspond toc the directions of the K and
decay proton in the KK and /A rest frames respectively, and Wi is the
weicht of the /L» event,

Fig. {3.3) shows the eighteen independent observable double mom-
ents { L<£2 ), in 4 Mev mass bins with C®S®PA> Q5 |, In
particular, the six moments with L=1 contain interference terms be-
tween S and P wave KK amplitudes ( see table (3.1)) and the data on

these moments show small but important evidence for this. Also the

twelve moments with —Q = | exist because of the parity violating decay
of the Ag and are purely imaginary, whereas those for R -0 are

purely real.

3.3 Amplitude Analysis,

The observed moments discussed above allow a model-independent
S and P wave analysis to be done, The moments are derived in Appendix
B in terms of the eidt independent S and P wave (S channel) helicity

o
amplitudes and displayed in table (1.1). The amplitudes are S+i

)
o T

@+:\; 3 @+i o, where the subscripts represent the/\ and incident

proton helicities, +%, and the superscripts the (K'K") helicity. A

helicity zero (K'K™) system (S° or P° wave) can only be produced by

unnatural parity exchange. The amplitudes P* are defined as follows,

in terms of helicity A= =3 amplitudes,

O = L (" o)
32

(3.2)
and represent unit helicity KK systems produced by natural and un-

natural parity exchange respectively.

There are clearly 16 amplitude variables which are their magnitudes
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Table (3.1)

Relations between K p—¥ (K'K')/A double moments and helicity

- amplitudes. The moments H(LMan) are defined by eq.(3.1); (LM)

and (Qm) refer to the (K Kt ) andA decays respectively. The
decay asymmetry is taken to be % =0.647 in the f =1 moments.
Forf =0 andf = 1 H is used to dempte ReMand Im W respectively.
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Table (3.2) The K_.p'al(KGKi')/i production amplitudes at m=1.02 Gev. The overall phase is specified by
@ (PO+-)Z 90° and the table lists the one-parameter (taken to be ®(SP.)) family of solutions

The errors, shown in brackets for the solution with

to: the (K-K+)A double moment datas

@ (s®-)= 11—300,,7 are the average of the MINOS errors obtained using the CERN Minuit program.
lL_‘\lz and Pal (L)

are defined in eq. (3.,5)g and are the same for all solutions.

s, | 6 |1se_| o |10, o | lp0_ o |1p],1 o (1P _l s | I2], s [l _| 6
3.5 - 98 2.9 | =150 3.4 - 47 5.8 90 5.2 |- 101 6.0 1{ 7.5 138 7.7 | - 145
2.6 - 65 3.7 | - 120 5.1 - 53 4.4 90 5.7 |- 114 5.5 -9 7.0 123 8.2 | - 154
2.1 - 16 4,1 - 90 6.0 - 40 3.1 90 6.1 | - 108 5.1 -9 6.7 122 8.4 | - 148
1.9 33 4.1 - 60 6.3 | - 22 2.3 90 6.2 - 96 4.9 -1 6.8 129 8.3 | - 135
2.1 76 4.0 - 30 6.4 1 2.2 90 6.2 - 77 4.9 13 7.0 145 8.2 | - 117
2.3 118 3.9 0 6.3 24 2.4 90 6.2 - 581 4.9 27 7.2 159 8.0 - 99
2.6 158 3.6 30 6.1 47 2.9 90 6.2 - 40 4.9 39 7.5 175 7.7 - 83
3.3 | - 171 3.0 60 | 5.1 . 53 4.4 90 5.7 < 42 5.4 341 ,8.0 172 7.1 - 87
3.8 | - 148 2.2 90 3.8 54 5.6 90 5.2 - 49 6.0 27| 8.4 168 6.7 - 98
4.1 |- 137 2.0 120 2.8 38 6.1 90 5.0 - 61 6.1 20 8.3 161 6.7 | - 111

(21.0) | (£23) | (£1.3) (£1.9) | (246) | (£1.3) (£1.7) | (£28) {(*1.6) | (£20) § (*1.5) |(224) | (x1.7)} (228)
4.1 |~ 128 1.9 150 2.1 12 6.3 90 4.7 - 73 6.3 14 8.3 154 6.8 | - 123
3.9 | - 115 2.2 180 2.2 - 18 6.3 90 4.9 - 84 6.2 10 8.1 149 7.0 | - 131

Is?] = 20 * 16 P02 = 45 * 21 [P712 = 63 + 32 Ip*12 = 115 £ 10
Po1(S) = 0.75 £ 0.25 Pol(P®) = -0.55 * 0.3 Pol(P ) = -0.96 * 0.4 Pol(P ) = -0.97 £ 0.3
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and phases, and obviously the overall phase cannct ke obtained.
The moments were analysed in three mass bins centred on 1.016,
1.020 and 1.024 Gev, using a constant S wave and a @ Breit-Wigner

form. The KX mass (m) dependence of the P wave was taken to be,

A » !
P = Plmm) ™a N ma)(m

<
M*— Mg —iMa Wm@\

(3.3)

where’

3 2
[y = M (ma)/ 9 \ + 9a R
Fel \\ g R

(3.4)

. »
where @D(mqﬁx is the magnitude of G> at the resonance mass (to be
2
fitted to the data), and where q is the kagpn c.m. momentum, 51' jownd
1 2
™M /4—m;< . The results given in table (3.2) correspond to the

following resonance parameters,

Wﬂa = 1,020 Gev, rﬂ(mﬂg) = 4,8 Mev, R = 3.5 Gev-1
The forms obtained for the moments were averaged over each mass bin
before fitting.

The results of the fit in the three mass bins are shown in table
(3.2), which shows the one-parameter family of solutions (since the
target proton is unpolarized) in terms of the 14 amplitude components.
The phases are all relative to the phase of Efi(}wQ\MMich was set at

o
o . .
- The solutions are shown as a function of the phase of 5;4 s

S0
each of which gifes an identical fit to the data and is shown in

fig. (3.3). We also calculated the invariant quantities,

W = e W

B = 2 T U0 ) 1207

(3.5)
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which can be taken as a measure of the cross section and baryon polar-
ization'in the production of mespn states of spin L and helicity >\ o
The fit was extrapolated beyond the fitted mass range, and was
found to describe the data reascnably, except for the moments H{QCCO)
and H(CO11) where the prediction away from the (P mass region has too
large a magnitude., These moments (c.f. Table (3.1)), are the only
ones which contain products of S wave amplitudes (of the form SS*),
If the mass bins beyond the@ mass are also included in the analysis,
this just leads to a suppression of the S wave, which then causes a

much less adequate description of the interference moments,

3.4. Discussion.

We would like to isclate K exchiang®z in our reaction under study
Kﬁ@%;,}(ﬂ_ﬁ{/lg and to therefore obtain information on KK scattering.
As described in Appendix C, K exchange much more favours baryon flip
than non-flip , except in the very forward direction COSQPA>> 0.95,
So we might hope to see evidence of this in the helicity zero ampli-

(@) o

tudes S+_ and %_g . If K exchange is the dominant mechanism, then
the solution we require has the S wave K K'— KK amplitude in terms

of the known@resonance P wave amplitude.
We can then mrite the relative phase and magnitude of the flip

S and P wave amplitudes as,

P
S+- _ \ (s™+ S\
° N
6 3
(3.6)
where S* and § are the isoscalar and isovector S wave KK amplitudes,

with ¢ the I=0 P wave, S% is the SZL*H factor for the P wave,
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Using the S* prediction from the coupled channel analysis of
chapter 2 [26], and the parameters of the S deduced in reference [32],

one can write eq. (3.6) at Mg = 1.02 Gev, as

o o
Si- RN
+ (W‘@ P 069)«9@2% >
o
.*._
(3.7)
(The relation between the & , S* and P amplitudes used here is shown
in fig. (3.4), where the@amplitude essentially fills the unitarity
circle at the resconant mass). Thus for K- exchange we expect the
o o
phase of S+ to be about 115 , It can be seen from table (3.2) that
a solution not inconsistent with this prediction exists, within the
large errors. However, it can also be seen that the mn;flip amp-
o .
litudes (e.g. o ) are also quite large in this region, giving app-
reciable non-K exchange corijiributionsq This was already obvious from

the large polarizations in the s® and P° amplitudes (¢.f.table (3.2)).

Clearly the large t bin used makes the analysis only approximate, but

with better statistics one could isolcate the K exchange amplitudes
by studying the t-dependence, which would lead to much more accurate
predictions about the KK-—KK S wave,

Fig{3.4). S* and S denote,

K R’ —_ K R respectively, the I=0 and
I=1 KK S-wave amplitudes at

the @ mass, mormalized to
their respective unitarity

amplitude at M=MR

circles. @ is the I=0 P wave



3.5 Summary, Conciusions and Epilogue.

We have ogbserved S-P interference effecis in the data from the
. ~ ~h :
reaction. ﬂ( @ > WK KA. We have performed a model independent amp-
litude analysis of the double moments of the decay distributions,
resulting in a one-parameter series of solutioms. The predicted amp-
o

o
litudes g+_ and Y, . can be used to give valuable information on the

S wave K_K+—-=> KK" amplitude on *&:heqb resgnance, which will help
determine the parameters of the S* and & resonances. However, there

exists a large non-K exchange contribution to the unnatural parity ex-
change amplitudes ( s® and 115‘0)Q and this leads to unreliable pre-

dictions about K-exchange., Hopefully studying the t dependence of
high statistics data will improve this situation.

In chapter 2, we examined the two I=0 S wave states, the scalars
the S* and E . The 5*(990) was consistent with a KK bound state pic-

ture and the E (1400) as a coupled channel Breit-Wigner, with a
strong preference for the nn channel. The S* was found to be rather
narrowver than previous amalysés would lead one to expect. With the
possible exception of the é o then clearly the other scalars do not
fit easily intq a quark model nomnet; nor is it clear that they are
whol'ly aqqq states, although the KK bound state is a subset of the
latter,

Since these analyses have been performed, there has been con~-
tinued work in the area of scalar meson spectroscopy. In a recent
analysis of Tornquist [33], significant progress seems to have been
made by making a coupled channel analysis which also includes the
N7 channel, and simultaneously includes couplings to all F0"
mespon pairs which can couple to the scalars. The resultant picture
coming out of this analysis seems to be that the scalars are domin-

antly qq systems with a large aqqq component in the form of a meson-
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meson {mainly KX) bound state. The physical masses are then found to

be strongly influenced by the number of nearby di-meson thresholds (hence
the need to include all chammels)., This clears up the problem of mass
differences mentioned in chapter 1. However, the mass and width of the
é; are still difficult to pin down. The mixing angle between SU (3)
singlet and octet is found to be a strogng function of energy, almost
ideal below KK threshold, then tending towards the S* being octet, ¢

singlet at about 1400 Mev. The scalar nonet might then appear to be

gradually unveiling itself,
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APPENDIX A
The Effect of the K' and X° Mass Difference.

We discuss here the effect of isospin vioclation based simply on a
non-zero difference between the u ard d guark masses, effectively re-
taining isospin symmeiry in the couplings. The X" ané K° mass diff-
erence then induces mixing effects near the KK threshold. To do this
one can generalize the K or M matrix parametrization of sec (2.3) to
four channels, which we shall call basis I, % \'ﬁf"’{ _,I: [>)

\ L I:o§) \ e K‘)) | ke E°>) . We then obtain mixing when we
consider the K"'g K° mass difference and take isospin O, 1 components

of the KK system,

(12> = WS )

Iy

| K

Zo=

0\
S

(A1)

This leads us to define an isospin basis II, {\TT”&»’ )
\ KR> \“TT> \KE » So the physical basis I now contains
1) ) o

mixtures of I=0, 1 componentsin each charged or neutral kapn system,
All we now require is the four channel M or K matrix in basis I,
Consider the M matrix, and define the four channel matrix of particle

momenta F as,
[a %3

T ©
Co

o
S O
o O

0=

Aw

0:09¢g ¢
A0 0 O

(A2)

where Pc and % correspond to charged and neutral scaled kaon momenta
respectively, In the isospin basis II, the M matrix must be block diag-

onal in order to respect isospin conservation. One can write it as,
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O @ m\l mll

(A3)

where the superscript (I) refers to that particular isospin sector I

©>
So for example ﬁdn describes nn~ynn, W, the process nn—=KK(I=0).

To determine the physical amplitudes, one must transform MTI to basis

I. The relevant operator is simply

\ O O o©
o © \ &

C\/&O /;i
D/S‘LO /S‘:L

(AL)
so that

ibﬂs \511 — \A)’\ %‘Dagg E?S

Then!@lls given by,

A =
e

(A5)

(46)
So eqgs,

(A2), (A3),(AL) and (A6) result in

e e A )= (o)) i

E(W\(?\\—)\- ?w\(MZ; ) ~\ Ws\ 1—&- —\—(Pc ea\( " A@]\(m(ﬁlkﬁ>

(A7)
where |
i (€« 903

(A8)



Equivalently, working directly with the K matrix, one can write

the determinant of the Jost function matrix as (c.f.eq.(2.20).

(A9)

With the same motation as above, this can then be written [26],

d= dak(T- » 9% aak(z-46"KK")

1, @ | v S '
+ (8- B ) (K= B0 S ) (s — € et )
(A10)

S " g
where, elI’L: )i(t@cﬂ'p@}/&—g\ == ?

In the I=0 nn, KK analysis described in the text, the effect of
2 . .
the (ﬁ?,.-f%) term in eq. (A7) or (Al10) is much smaller than the effect
of putting %(RU-R@) instead of \Qv and so the incorporation of isospin

violation at this level is simple,



APPENDIX B

Double Moment Analysis of Kp —K'K7A .

Consider the reaction Kp—={K'K )A , shown in Fig. (Bl), The

TR
production precess is represented by the amplit

tuce */\A}\P o
Fig, (Bl) Definition of helicities in the production of resonance R
( 5%,6,9) of spin J, helicity A . Ap is the incident proton

helicity, v the final and y the helicity of the A . Sland
Sy are the appropriate centre of mass decay solid angles,

Amplitude
T
- AR

Production
K&
|
l
|
!
{

Using the following exXpansion for the helicity v products of the

/\"=7 ?W decay,

\ﬂ,)\b: z/\ SQ%.A_, D;i)(nb\jm)-w

(B1)
one can write the amplitude for the decay as,
%, 3z
Lo\ WA = 5 D ()t
2T
(B2)

where‘t-v is defined in,

LMyl =%>/"‘§: %%SM}\A‘t—f)

(B3)
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where the superscripi J wiil be dropped, since J=%. Similarly in the

decay of resonance R,

L0l TNy = \2=2 I

\./ LF'J

(B&4)

The complete amplitude is then given-by,

F A
H)\@,}}W— <L,010U T, N> <2, w i /\DT/U\ xo
= A
(B5)
The double angular distribution can then be written as,
g \
wisiad=17 (3A)(Z07)
>\ '3'>\j\)\ I )\
(B6)

vhere the factorjy is an average over initial proton helicity states.

Substituting from (B2), (B4) and (B5) gives,

\W(S Q\ — ?_z E_r]/‘“e (9_'3+\3(9:‘+&?

Vre T3 (L*WSI

)\)\’

I ® M\A
D) D(m\ D(sﬂD (n\ B

(B7)

where E—ET F

The products of D functions above can be decomposed into the Clebsh-

Gordon series,

S(:f\ g ()= > (=N <ToT'0ILe> <T-XT"N\LMY D;O( )

O NO
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Yo i -V D
D;igm D)= T gl Ao 01 IS D ()
v ,Q o)

(B8)
Consider now the resulting v summation, which is,
2, TYE
Sp= 2 \hIE) Liavin\ ey
VY
ey A ( \=t¢=c%+-\w:.\z~) = -JL for 0= o
S Sa.
2 2. '
= 1 (1T ) = —cl or R
S S-,-i;
(B9)

vwhere O(/\ is the/\ polarization (=0.647), which selects out the odd B!
components., The factor (-1)% was added on to give real coefficients
and will be compensated for below. Thus the angular distribution be-
comes,

W(R,3) = N 2 JasEs +|) 1
N

PT?\ \QDTT?“
)\}'

s
P
- g—l)??cx‘o\m><§r—>\3‘%\‘—"’\>§(“‘)<%‘N§ AW

DR D) S
(B10)

The moments H(LM-@M) can nmow be wirtten in terms of the angular

distribution as,

LMW = gw (2,9) D, (7) D (adad s,

(B11)
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and performing the anghklar integrations yields,

(Lt Do) = E;E;Szmwﬁsgf fj§T7HG_m_

R

¥
LTSI WS LT3 N | LMY (! )/\2 L—pd pl9ey Sy

2

(B12)
Defining the following combinations of amplitudes (where just

the A index is retained for simplicity).

f\]>§:z E%é;X:f—:l%L‘ (=-f;\ rﬁ]‘~>\:l

- N 5 for >\#:O
L ey T
S
o) © —
\)\ - ‘—l for >\ — O
(B13)
and using the proper‘ty of parlty invariance,
3
»3 A ~nT
1 = (=1 “1 .
*= (B1L)
gives,
A ~ . N
f\Lh}:z N__ D Ay = — O
A ) A PN
N _ "N~+ J Moo= Yo
(B15)

The lower vertex summation over >\9 and @ can mow be written,

=) 2@*‘\ <‘L*ml‘“\9® 1
N ‘pﬁ /)A ¢

(B16) ‘



and this recduces to an eXpansion of four texrms, each of which is of
the form NJU* or NN* etcoo..s

Finally, the observed moments can be written

L (LM Adm) = (a—\\'Q (MO

(B17)
which gives,
Q )}
MLm= D S E_X(erhm'm .
(2D (2 93)) 55
NN
() L3O\ LTINS MEMY K
(B18)

and the resulting summation gives the expressions of table (3.1) of

the text.
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APDENDIC C

To Fiip or Not to Flip

We describe the contributicns of flip and non-flip amplitudes to
the cross sectign, assuming K exchange. Consider the K p centre of

mass, as in fig. (Cl), vhere & is the angle between the incident proton

Fig. (C1) The kp c.m.

A &
(i7)

< © . e

A

and emergent: (KK) system., The kaan-nucleon vertex of fig. (C2) is

Fig. {(C2) The PAvertex, with helicities Agand >\/\reSpectively°

(K
: A
L
re A

described by the amplitude,

\\j)\(?‘)\/\: —‘A %/\ U\AAKE kj\)\@

(c1)

Substituting in the appropriate spimors, U\ gives the result,

V,_= —x3,s& E(EA-}MA\(CP Mp\—&-YEP-Q—M@(EA—mA)]

Vg = )\8 s ‘&EA'}MAVEQMMP\ 5(E9+MP\(EA“MA\1

(c2)

with a contribution to the cross section ,

Wi o N = S5 [(ep- ey )

(c3)



The results for a labeoratory memenitum PL L, 2 Gev/c are shown in table

(C1), from which it can be seen that the flip amplitude dominates right

up to the very forward direction —c < 0.19.

mabhle {CL) Values of £lip and ron-flip squared amplitudes for
variocus values of Cos®.

ces® " W, | Nyt
i 0.057 o 0.088
.95 0.196 Q.15 0.086
.9 0.335 0.28 0.084
o 75 0.750 0.7 0.077
o5 1.440 1.43 0.066
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