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ABSTRACT 

Some theoretical studies on the propagation of Rossby-MHD 

waves in homogeneous media and the reflection of Rossby-MHD and 

inertial-MHO waves at rigid boundaries are presented. 

The evolution of an initial Rossby-MHD disturbance on a 

beta-plane is studied by the method of stationary phase in two 

dimensions. For positive ~, long wavelength magnetic modes of 

this wave travel eastwards and propagate in a triangular region 

of the beta-plane. To an observer moving with the group velocity 

of a particular wave, its amplitude appears to diminish with time 

t as a function of t-1. 

The reflection of a Rossby-MHD wave by a conducting or 

insulating rigid boundary generates two reflected modes, one of 

which may be a non-propagating wave. The wavenumbers, group 

velocities, magnetic/kinetic energy ratios and energy densities 

of the incident and reflected waves are, in general, different. 

For waves of planetary dimensions, an eastwards travelling 

magnetic mode, on reflection from a N-S boundary, is transformed 

entirely into a long wavelength inertial mode and a large 

conversion of magnetic energy into kinetic energy is observed. 

An inertial-MHO wave on reflection from a conducting or an 

insulating rigid boundary splits up into three reflected modes 

one of which is always a travelling magnetic mode. The 

wavenumbers, group velocities, magnetic to kinetic energy ratios 

and energy densities of the incident and reflected waves are not 

equal. Although, the reflection of any of these modes always 

generates a reflected magnetic mode, no travelling inertial modes 

may be generated for certain orientations of the boundary. In the 

long term this phenomenon will increase the share of the energy 

of the magnetic modes at the expense of the inertial modes. 



PREFACE 

Ever since 1954, when Lehnert recognised that rotation could 

split magnetohydrodynamic waves into fast and slow modes which 

possess unequal shares of kinetic and magnetic energies, a steady 

interest in the properties of these waves in rotating fluids has 

been evident in the literature. These waves are now frequently 

invoked in the dynamo models of the generation of planetary and 

stellar magnetic fields, and are suspected to cause the secular 

variations in the earth's magnetic field. This thesis is 

concerned with the long term propagation in homogeneous media and 

reflection at rigid boundaries of two classes of these waves, 

namely, the inertial-magnetohydrodynamic (IMHD) waves in infinite 

media and Rossby-magnetohydrodynamic waves which are associated 

with certain bounded media. 

As the subject of MHD waves in rotating fluids is a 

relatively new branch of fluid dynamics, no systematic account of 

the generation, propagation, reflection and transmission of these 

waves in homogeneous and inhomogeneous media exists in the 

literature. Chapters 1 and 2 are meant to fill this lacuna and 

provide a general background to our work. 

Rossby-magnetohydrodynamic waves were first introduced by 

Raymond Hide in 1966 to explain certain features of the secular 

variations of the geomagnetic field. In Chapter 3 we study the 

temporal and spatial evolution of an initial superposition of 

these waves by the method of stationary phase. By the help of 

analytical solutions and their numerical evaluation, a complete 

picture of the propagation of a Rossby-MHD wave packet on a beta-



plane is built. How such a disturbance in the toroidal magnetic 

field of a fluid body may influence its peloidal magnetic field 

is also discussed. 

We revisit these two-dimensional Rossby-MHD waves in Chapter 

4, where their reflection by rigid conducting and insulating 

boundaries is investigated. The wave equation and consequently 

the dispersion relation of these waves are of the fourth order in 

their independant variables, so no analytical or geometrical 

derivations of the characterstics of the reflected waves are 

possible. Instead a numerical approach is adopted to reveal the 

properties of the reflected waves. Proper boundary conditions to 

solve this problem are formulated in this Chapter and Appendix I. 

A novel finding of this analysis is that a magnetic mode can be 

partially or completely transformed into an inertial mode or 

vice-versa on reflection. 

The experience gained from this Chapter is utilised in 

Chapter 5 in studying an even more complicated situation, namely, 

the reflection of three-dimensional inertial-MHO waves by· 

conducting and insulating rigid boundaries. Once again because of 

the complexity of the governing equations, the approach is mainly 

numerical. It is shown that up to three reflected waves are 

generated which require three complex boundary conditions to 

solve the problem. Transformation of kinetic energy into magnetic 

energy and vice-versa is noted again, as in Chapter 4, for these 

waves, as well as the fact that multiple reflections of these 

waves may have the effect of increasing the share of the energy 

of magnetic modes at the expense of the inertial modes. 



A summary of the present work and a few concluding remarks 

appear in chapter 6. Appendices I to III elaborate on some of the 

points made in chapters 3, 4 and 5. Appendix IV lists all the 

symbols used in this thesis. Copies of all the computer programs 

used in this thesis have been lodged with the Dept. of Geological 

Sciences and are available on request. 

The work described in this thesis is guided by the central 

concept of a wave packet (also known as wave group), which 

travels at the group velocity of its constituent waves and 

carries the wave energy with it, whose theory for dispersive 

anisotropic waves, was so brilliantly formulated by M. J. 

Lighthill and G. B. Whitham in the late fifties and early 

sixties. The practical applications of our results to the earth's 

core-like fluid bodies are described in the relevant sections. 

I would like to express my sense of deep gratitude to 

Professor M.H.P. Bott for constant encouragement and careful 

supervision of this work. I am very grateful to Dr. Raymond Hide 

(Meteorological Office, Bracknell) who was instrumental in 

shaping many of the ideas presented in this work. I have 

benefitted immensely from my frequent visits to his office for 

discussions on various aspects of this work, and from the use of 

his library which must be one of the finest collections of 

literature on Geophysical Fluid Dynamics in the land. Finally, I 

would like to thank my wife, Amber Khurana, for help in the 

typing and proof-reading of this thesis. During the tenure of 

this work, I was supported by a Commonwealth Universities' 

Scholarship. 
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CHAPTER ONE 

SOME MAGNETOHYDRODYNAMIC WAVE SOLUTIONS AND THEIR SIGNIFICANCE TO 

THE EARTH'S P~GNETIC FIELD 

1.1 BASIC EQUATIONS The dynamics of a conductinq fluid 

permeated by a magnetic field is governed by the ordinary 

electromagnetic and hydrodynamic equations suitably modjfied to 

take into account the interaction between the fluid motion and 

the magnetic field. As one is dealing with fluid velocities it is 

necessary to define a frame of reference with respect to which 

the velocities are measured. With rotating fluid bodies like the 

Earth's core it is customary to choose a reference frame rotating 

with the body. For such a non-inertial frame Newton's law of 

motion applies only if we add two additional fictitious forces, 

namely the centrifugal and coriolis forces. Then the equation of 

motion of a volume element of fluid of density f moving with 

velocity u measured relative to a frame that rotates with 

instantaneous angular velocity Ji is given by ( Acheson and 

Hide,l973, Roberts,l967 

••• (1.1) 

Here the third term on LHS is the coriolis force. p is the non-

hydrostatic pressure given by 

••• (1.2) 

where g is the acceleration due to gravity (which includes the 

/~-
! ' 

1 



centrifugal term -0.5/1lxr/ , r being the distance vector from 

the origin to the fluid element. JX B represents the Lorentz 

force per unit volume where J and B are the electric current 

density and magnetic field. f describes any other forces such as 

buoyancy forces. The fourth term on RHS represents viscous forces 

arising from shear motion in the fluid where v is the kinematic 

viscosity. The last term on RHS vanishes when 1i. is steady. 

The equation of continuity is given by 

~ f 1 at + l iA · ") .f = - f v -l:.i ••• (1.3) 

The Maxwell's equations when the displacement current ~n/at, is 

much smaller than the conduction current J are written as 

'Q)(B = -'\J ••• (1.4) 

'l)(.E = - ~B/ot ••• (1.5) 

'V.B = 0 ••• (1.6) 

"V • D = ¢ ••• (1.7) 

where D = E E, ¢> is the electric charge density and M & ~ denote 

magnetic permeability and dielectric constant of the medium. 

Equations (1.4) and (1.5) are Ampere's and Faraday's laws 

respectively. Equation (1.6) expresses the fact that the magnetic 

field is solenoidal whereas equation (L 7) relates the electric 

field to the volume density of electric charge, ¢ . The Maxwell's 

equations have been written here in their non-relativistic form 

as J).')(r + u is always much less than the velocity of light in 
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magnetohydrodynamics. Any electric charge movinq with velocity u 

relative to a magnetic field B experiences a force u~B in 

-addition to the electric field E. Thus, if the conductinq fluid 

satisfies Ohm's law, then 

J = rr (E + u "B) ... (1.8) 

where is the conductivity of the fluid. 

In magnetohydrodynamics, the electric part of the body 

force ( which is of the order of ~E2 /d or ~B2u2/d, where d is a 

typical length scale of the system) is much smaller than the 

magnetic part (which is of the order of B2/~d and is thus c2;u 2 

times the electric part, where c is the velocity of light) and 

consequently the exact value of net charge distribution is of no 

concern to us. As a result equation (1.7) becomes redundant. 

Equations (1.1) to (1.6) then reduce to 14 scalar equations but 

involve 18 unknowns and thus need to be supplemented by more 

mathematical relations. These are provided by thermodynamic 

considerations. For example, a typical compressible fluid follows 

the perfect gas law: p/(fT) = constant, where T is the 

temperature of the fluid. Now we can visualise two extreme 

situations to which the fluid may be subjected. One is the 

isentropic case, in which changes of the fluid state are so rapid 

that transport of heat can be altogether neglected and we can 

assume that the entropy per unit mass= Cv ln(pf-r), (where Cv 

and cp are the specific heat of the fluid at constant volume and 

pressure respectively and Y = Cp/Cv) remains constant. 

Incompressible fluids can be further classified into 
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barotropic and baroclinic fluids. Barotropic incompressible 

fluids have uniform density and can not be subjected to a torque 

from the gravitational contribution to f in (1.1}. Baroclinic 

fluids have non-uniform density and as a result of gravity tend 

to be stratified which gives rise to buoyancy forces. These 

forces exert a net torque on the f 1 uid and it is not possible to 

maintain a hydrostatic equilibrium in their presence. Therefore 

baroclinic fluids can have hydrodynamic flow as a result of 

variations inside the fluid of temperature or chemical 

composition, whereas, to generate hydrodynamic flow in a 

barotropic fluid force will have to be applied at the bounding 

surfaces of the fluid. 

In this work we will be dealing mainly with incompressible 

fluids, so that (1.2} reduces to 

""' .u = 0 ••. (1.9} 

Equations (1.4},(1.5} and (1.8} can be combined into a 

single electrodynamic equation as follows. Substitute for J in 

(1.4) from (1.8) and operate with curl on both sides. 

. .. (1.10} 

Eliminate E between (1.10} and (1.5) to obtain 

I -
~"\/X(Q:><B) 

which by the help of (1.6) can be finally simplified to: 

= ••• (1.11) 
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where 4. = (o-M )-l is defined as the magnetic diffusivity. In our 

work we will be concerned mainly with the situation ~ -7 oe, ie. 

the magnetic diffusivity of the fluid is very small and 

consequently the flux through each element moving with the fluid 

is constant (see eg. Cowling 1976 or Roberts 1967). This implies 

that the lines of force act as though they were 'frozen' with the 

medium and always move with it. For h\,~0, equation (1.11) 

reduces to 

~B/~t = 'V:X(u 'I- B) 0 •• (1.12) 

1.2 ALFVEN WAVES In the absence of rotation and stratification 

and when the viscous effects are ignored the system defined by 

equations (1.1) and (1.12) can support only transverse waves, the 

so called magnetohydrodynamic or 'Alfven 1 waves, which travel 

along the magnetic lines of force. To study them in more detail 

let us consider a highly conducting fluid at rest in a uniform 

magnetic field B0. Assume that a small perturbation is imparted 

to the fluid and the velocity field becomes u while the total 

magnetic field (ambient field + field due to disturbance) is 

given by: 

... (1.13) 

Then equation (1.1) yields 

... (1.14) 

where second order terms in b have been neglected. 

Taking the divergence of this equation and using equations (1.3) 

and (1.6), we find: 
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... (1.15) 

satisfies Laplace's equation. Now the only 

solution of (1.15) which is regular everywhere including infinity 

is p + B0 .b =constant. Thus equation (1.14) reduces to: 

... (1.16) 

Similarly equation (1.12) yields 

... (1.17) 

Now as '\J.B = "Q.u = 0 

b. Vb = u.'\7u = b.yru = u.'\?b = 0 

and n.k = 0 -ie. b and u are transverse to B. 

Consequently equations (1.16) and (lol7) further reduce to: 

... (1.18) 

and ooo(l.l9) 

Assume solutions of the form: 

-b = B0 n f [m(z:t Vat)] 0 0. (1.20) 

0. 0 (1.21) 

Then it is immediately evident from equation (1.19) that 

• 0 0 (1.22) 

and when we substitute these solutions in equation (1.18), we 
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obtain: W = (V a .m) where 

••• (1.23) 

is the velocity of Alfven waves. Thus the phase velocity is 

independent of the frequency and hence the waves are not 

dispersive. 

The average magnetic energy density associated with the wave 

motion is given by: M = < b2) /(2~) where ~ / denotes 

average over the period. Thus from equation (1.20): 

... (1.24) 

which by the help of equations (1.23) and (1.22) is seen to be 

equal to Su 0
2;4 which is the average kinetic energy of the wave. 

Thus for Alfven waves there is an equipartitioning of energy 

between the magnetic and kinetic fields. 

If we had included l) and tYL terms in equations (1.1) and (1.11), 

damped wave solutions will result and the energy of these Alfven 

waves will be dissipated in finite time; the rate of decay of 

each wave being proportional to the square of their wave numbers 

[see for example Roberts (1967) or Cowling (1976)]. 

Under conditions typical of the Earth's core (Hide,l970; 

Roberts and Soward, 1972) f = 9.6Xl03kg/m2, M = .M0 = 47TXlo- 7 

henry/m and a strong basic toroidal magnetic field of strength 

0.01 weber/m2 (Hide 1966~ the Alfven waves have a velocity of the 

order of 0.1 m/s. But see next section for the effect of rotation 

on these waves. 
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1.3 EFFECT OF ROTATION ON ALFVEN WAVES: INERTIAL MHD WAVES. 

Assuming that the viscocity effects are negligible and 

JL is constant in time, equation (1.1) can be rewritten as 

... (1.25) 

For the sake of generality let us assume, in addition, that the 

fluid is stably stratified. In such a case one can assume the 

Boussinesq approximation to hold, according to which the basic 

rate of change of density is supposed to be so weak that the 

density may be treated as constant and replaced by its average 

value fo everywhere in equation (1.25) except in the buoyancy 

term f. 

Assume small scale perturbations of the form: 

... (1.26) 

where u0 = o and VPo = g)o· Then equation (1.25) yields: 

..• (1.27) 

Similarly equation (1.3) yields 

..• (1.28) 

..• (1.29) 

and from equation (1.6) 

... (1.30) 
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The electrodynamic equation (1.12) linearises to 

... (1.31) 

We eliminate p 1 , f 1 , 8 1 in favour of u1 . Operate on equation 

(1.27) by curl observing v.B1 = 0 to obtain 

Take partial derivative with respect to time of both sides to 

find 

where we used equations (1.29) and (1.31). 

Now if we denote 

equation (1.32) transforms to 

where Va is given by equation (1.23). 

Substitute a plane wave solution of the form: 

... (1.32) 

... (1.33) 

... (1.34) 

... (1.35) 

where k = (k,l,m) is the wave number vector, ~ is the angular 

frequency and r is the distance vector, to obtain the dispersion 

relationship 

... (1.36) 

which has solutions (Hide 1969) 
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"' l -J I T 
. _ ~ [< ,.n.:~ .. )\.(Nx"i.} 

cJ = vQ. K +~ 2. -
K 

... (1.37) 

C 1 ear 1 y if N 2 = g I ~0 * ( d Sold z ) > 0 , w i s a 1 ways rea 1 and the 

density stratification remains stable. Once again due to equation 

(1.28), the particle displacements are transverse to the 

direction of phase velocity. Note that for ~ = N = 0, ie., in 

the absence of rotation and stratification we once again obtain 

the non dispersive Alfven waves travelling with velocity Va. 

Whereas when Va = N = 0, we have inertial waves (Batchelor, 1967; 

Greenspan, 1968) satisfying: 

... (1.38) 

whose energy is partitioned between particle displacement 

(kinetic energy) and rotation (due to coriolis force). 

Similarly when stratification alone is present, only internal 

waves are possible (in which the buoyancy provides the restoring 

forces) (Lighthill 1978). The dispersion relationship being 

... (1.39) 

We will concentrate here mainly on the case of Alfven waves 

effected only by rotation, (Lehnert, 1954; Chandrashekhar 1961), 

ie., N = 0, for which equation (1.37) reduces to: 
l. __ 4 __ '- - _):(. Y;(. 

1 _ _ '-
1 

f (2.])_ _'~ ) -t- ( l 2.1t · t: ) 4l VQ · k} ( .!2 .{)... · IC ) J 
w!::: (Va·~) +;rL ~ - ~::,.4 + . K"' 

(1.40) 

where c.Jr denotes the solution of equation (1.40), when positive 

sign is taken in the expression and£..)_ when the negative sign is 
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taken. It is evident from this equation that 
~ 1 

w ... increases, and w_ 

decreases monotonically with increasing Ji, though their product 

is independent of .7t , ie., 

... (1.41) 

We can infer from equation (1.31) that the ratio of magnetic 

to kinetic energy associated with any of these modes is given by 

... (1.42) 

~ " - - 2 Thus for the mode corresponding to w..- for which c..?.. >> (V a .K) 

(see equation 1.40), most of its energy is in kinetic form and 

therefore it is commonly called an 'inertial mode' and will 

reduce to an inertial wave in the absence of a magnetic field. 

The other solution, for which ~ - - 2 W_<< (Va.K) , is referred to as 

the magnetic mode (see Hide 1966) as most of the energy 

associated with this mode is in the form of a magnetic field. 

There is obviously no equipartioning of kinetic and magnetic 

energies as, eg., in Alfven waves and both modes are highly 

dispersive. These modes are alternatively known as fast ( w ... ) and 

slow ( G0_ ) modes in keeping with their phase velocities. Under 

conditions typical of the earth's core Va=O.l m/s,ii..= 7.3Xl0-5/s 

and thus for wavelengths of the order of several thousand 

kilometres (K = 2Xlo-6 /m), the magnetic modes have oscillation 

periods, 211/Q, of the order of 9Xl09s (300 years) and a phase 

velocity, w_ /K = 4.0Xlo-4 m/s (0.44 rom/sec). These values are of 

the same order of magnitude as encountered in the phenomenon of 

geomagnetic secular variations (with time scales of decades to 
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centuries and westward drifts of a few parts of a mm/sec.), a 

fact which led Hide(l966) and Braginsky(l967) to postulate that 

the geomagnetic secular variation may contain significant 

contributions from free hydromagnetic oscillations of the Earth's 

core. The oscillation periods of the inertial modes, on the other 

hand, are of the order of several hours to days which shows that 

they are unimportant in the phenomenon of geomagnetic secular 

variations. 

Equation (1.40) can be written in a more useful form by 

scaling it with respect to time and length scales derived from Va 

and JL • If the wave vector K of a wave makes an angle ¢ with 

the rotation vector :0... and an angle e with the ambient magnetic 

... (1.43) 

Now if we express distances in Va~units and time in ll.tlunitsv 

equation (1.43) can be written in a form independent of~ and Va 

as 

~ 
w:!: = ( IKI cose) 2 + 0.5 [ (2cos¢) 2±{ (2cos4>) 4 + 

4( IKI cose)2(2cos¢>)2}1/2] ... (1.44) 

1.4 ROSSBY-MAGNETOHYDRODYNAMIC WAVES: MHD WAVES IN A ROTATING 

THIN FLUID SHELL The oscillations studied above so far were 

those of an unbounded rotating fluid whereas in this secton we 

will concentrate on oscillations of bounded fluid bodies. We 

will study in particular the two dimensional oscillations of a 
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rotating incompressible thin spherical shell of highly conducting 

fluid which is in a quasi-geostrophic balance (Hide 1966). We 

shall later relate and link these findings to the quasi two 

dimensional wave motions between the sloping upper and lower 

boundaries of a rotating container (Pedlosky, 1971; Hide, 19 7 7). 

We will also discuss the possibility of generalising the thin 

shell results to a thick shell and spell out the care necessary 

in interpreting these results. 

Consider a thin shell with inner and outer radii a and b 

respectively with b-a << b (Figure l.l).In such a shell the 

fluid possesses little or no radial displacements, so only the 

local normal component of the shell's vorticity, f=2.!1.sin¢, 

(where ..ii. is the total angular velocity of the shell) is 

dynamically significant. In such a situation a local cartesian 

fluid filament 

Figure 1.1 Showing the thin fluid shell geometry. 
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frame of axes centred at the latitude ¢
0 

of the region under 

consideration with X, Y and Z axes directed eastward, northward 

and upward respectively can be employed to describe horizontal 

coriolis accelerations if we take JLsin~, the vertical component 

of the shell's angular velocity as the angular velocity of the 

fluid at latitude <f>. The plane XY is equivalent to the Rossby-

Haurwitz 'beta plane' (Rossby et. al., 1939) used in dynamical 

meteorology. This type of approximation expresses the effect of 

the shell's sphericity through the variation of the coriolis 

parameter, f, with latitude which can now be linearised about a 

mean latitude <Po as 

f = fo + ~ y ••• (1.45) 

where f 0 = 2 .fl.. sin ct> 0 

and ~ = 2 .it cos Q> /R 
0 

••• (1.46) 

R being the mean radius of the thin shell. 

In such a system the equations of motions (1.1) become two-

dimensional and can be written in component form as 

•.. (1.47) 

••• (1.48) 

where u and v are the x and y components of the dynamic velocity, 

B = (Bx,By,Bz) is the ambient magnetic field. p is the local 
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pressure and other quantities are as defined earlier. 

The continuity equation for velocity reduces to 

~u/~x + ~vlaY = o ... (1.49) 

whereas the magnetic field satisfies a similar equation 

... (1.50) 

since B is solenoidal and we are working in a two-dimensional 

system in which all variations with respect to z are ignored. 

Equation (1.12) with the help of (1.49) and (1.50) can be 

written in component form as 

.•• (1.51) 

••• (1.52) 

and ( o/~t + U ~~X + V()/~y)BZ = 0 •.. (1.53) 

Observe that Bz enters only one equation, (1.53), implying that 

any component of B perpendicular to the x-y plane is advected by 

the motion, though it does not contribute to the hydromagnetic 

forces. Therefore without any loss of generality we can restrict 

our attention to the case of uniform magnetic field whose lines 

of force are parallel to the xy plane. [p + Bz 2/2(Mj)] can be 

eliminated between equations (1.47) and (1.48) to obtain a 

modified vorticity equation given by 

.•. (1.54) 

Alternatively, this equation can be obtained directly from an 

extension of Ertel' potential vorticity theorem for the 
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hydromagnetic case as we will see later in this section. 

Now assume small scale perturbations of the form 

..• (1.54) 

P =Po+ pl(x,y,t) 

in the velocity and magnetic components and consequently 

equations (1.47) to (1.53) linearise to: 

::: -!. ( P. -t ~%.0 bz.1 } 
d')( I ,U.f •.. (1.55) 

••. (1.56) 

•.. (1.57) 

••• (1.58) 

Db,c.1 -Dt 
~0 c cos el -T Sl'l'l e1. ) 4 

~)(. c>' 
.•. (1.59) 

"Dbyl Bo ( co.s e :,.. -t- SltY'J e ~>') ~ •.• (1.60) 

Dt 

and ]) bz.1 0 
••. (1.61) 

nt. 

where e is the angle magnetic field makes with the x axis. 

Eliminate [p1 + Bzobzl/(~f)] between equations (1.55) and 

(1.56) to get 

••. (1.62) 
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..• (1.63) 

Operate on this equation with D/Dt and use equations 

(1.59) and (1.60) to obtain 

0 

Finally eliminate v 1 by the help of equations (1.63) to get the 

equation of vorticity 

This equation admits plane wave solutions of the form 

~ = ~M exp{i(kx + ly- wt)} 

whose substitution leads to the dispersion relation 

"'.t 
c.v -t 

where 

~ ~ 
Yo. ( K c:...o.s e -t l S1~ 6) = O 

... (1.64) 

•.• (1.65) 

•.• (1.66) 

••• (1.67) 

and u 1 , v 1 , bxl and byl can be obtained by the help of equations 

(1.57), (1.58), (1.59), (1.60) and (1.63) giving 

= ••• (1.68) 

••• (1.69) 

Equation (1.66) has two roots for each value of the wavenumber 
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K = (k,l), which once again can be designated as inertial and 

magnetic depending on whether upper or lower sign is taken in the 

following equation 

···(1.70) 

We can see that 0m<< c.vi' ie., the time periods of magnetic 

modes are much longer than the inertial modes. We can also see 

that inertial modes always possess a negative (westward) phase 

velocity whereas magnetic modes always have positive (eastward) 

phase velocity. 

Now we shall prove the dynamic equivalence of this system to 

another situation in which the fluid is bound between the upper 

and lower sloping walls of a rotating container (figure 1.2). The 

only assumption we need to make is that to a first approximation 

------------~------------~-------~ ~ ZL 

Figure 1.2 Geometry of a rotating container filled with 
conducting fluid. 
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the fluid motions are in a state of geostrophic balance. We shall 

make use of Hide's modified potential vorticity theorem (Hide 

1983a, b, 1984) to derive the necessary equations. According to 

this theorem for an inviscid, perfectly conducting, rotating 

fluid 

... (1.71) 

where w is the total vorticity of a fluid element (= 2..fl.+o) and 

" is a Lagrangian invariant. ie., 

J)f\ 1 nt _ o ... (1.72) 

For fluids roughly in geostrophic balance we can assume that 

axial filaments of the fluid retain their coherence. Thus we can 

define 

..• (1.73) 

where z is the vertical co-ordinate of a specific point located 

on the fluid filament and Zu and z1 mark the vertical extent of 

the axial fluid filament (figure 1.2). Clearly f\ satisfies 

equation ( 1. 7 2), as the ratio of the length of the lower part of 

the filament ( z- z 1 ) to the total length of the filament remains 

constant because the fluid is mainly in geostrophic balance. 

Substitution of 1\ in equation ( 1. 71) gives: 

.•. (1.74) 

as ""S << ...tL. Subscript z is used in the R.H.S term to denote its 

19 



vertical component. Noting that x and y components of J '1- B are 

and 

Equation (1.74) can be written in an expanded form as 

Axial coherence implies variations with respect to z axis are 

negligible. Therefore 

ie. 

. .. (1.75) 

... (1.76) 

Equation (1.75) is identical to the modified vorticity equation 

(1.54) which was derived with reference to a thin fluid shell, 

proving thereby the equivalence of these two systems, provided 

that we replace ~ (= df/0y) of the thin shell model with 

-2Ad/dy[ln(Zu-Zl}]. This implies that in relation to figure (1.2) 

~ is positive, and inertial Rossby waves will have a phase 

velocity in the direction of positive x axis (ie. pointing out of 

the paper} whereas magnetic modes possess phase velocities in the 

direction of the negative x axis. This may be rephrased as: 
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Rossby inertial waves propagate so that the deeper fluid is 

always on their left (figure 1.2), whereas magnetic modes 

propagate so that the deeper fluid always lies to their right. 

This is in agreement with the findings of the thin shell model in 

which the eastward propagating Rossby magnetic waves always have 

deeper fluid on their right (towards the equator), whereas Rossby 

inertial waves propagate westward so that the deeper fluid is on 

their left. 

Before concluding this section we will rewrite the 

dispersion relation (1.66) in such a way that it becomes 

independent of Va and ~- This can be done by expressing length 

in units of (Va/~)1/2 and time in units of (Va~)-1/2 and equation 

(1.66) will reduce to: 

••• (1.77) 

Notice that in these units Alfven velocity assumes a value equal 

to unity and all other velocities are expressed as its multiples. 

1.5 MAGNETOHYDRODYNAMIC WAVES IN A ROTATING THICK SHELL Now let 

us explore the possibility of generalising the above results of a 

thin shell model to a thick shell. Hide (1966) argued that for a 

thickshell for areas with latitudes greater than a certain 

latitude cp' (see figure 1.3), ~ is, positive as in the case of a 

thin shell, as the fluid gets deeper when we move away from the 

rotation axis. But for the greater part of the shell below ~+ the 

fluid gets shallower as we move towards the equator and hence ~ 

should be negative. Hide (1966) thus argued that for this region 

the quantity (~+2~)/[2(R+H)] will be conserved [2(R+H)sin¢ being 
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Figure 1.3 The thick shell geometry. 
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the thickness of the fluid filament in this region] and 

consequently • ~ will be given by -21lcoscp/(R+H). In this way the 

magnetic Rossby waves will propagate westward for most part of 

the earth as indeed will be necessary to explain the westward 

drift (see section 1.6 below) of the Earth's magnetic field. A 

more careful analysis by Acheson (1978) on these lines while 

confirming these ideas suggests that indeed this will be the case 

if either the boundary slope is small or the waves have a very 

small wavelength in the (cylindrically) radial directon. This 

however is certainly not the case for a fluid shell like the 

Earth's outer core and thus the above conjecture still remains 

tentative. On the other hand some independent empirical evidence 

from laboratory experiments (Ibbetson and Philips 1967) in the 

absence of magnetic field certainly confirms Hide's ideas. 

Fortunately some more rigorous analyses of these waves in 

spherical systems do exist. Stewartson (1967) studied the slow 

oscillations of a fluid in a spherical rotating shell in the 

presence of a uniform magnetic field and confirmed that in a thin 

shell the slow waves do propagate eastwards only. In addition 

Stewartson showed that certain principle modes, (which have 

radial velocity of the same sign for all radii) will also 

propagate eastwards even in a thick shell. The mathematical 

complexity of his model prevent him from relaxing this constraint 

on the radial velocity, so other non-principle modes with more 

general radial velocities may still propagate westwards in the 

case of a thick shell. Malkus (1967) studied these hydromagnetic 

oscillations in a full sphere with no inner boundary, for a basic 
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state of a uniform current parallel to the axis of rotation (or 

equivalently an azimuthal magnetic field Bo proportional to r, 

the distance from the axis of rotation). Fortunately this choice 

of the basic state leads to a modified Poincare eigen value 

problem for the oscillations which have been extensively studied 

in other hydrodynamic situations. Then if one assumes wave 

solutions of the form 

p = p exp[i(mct> -GJt)] ••• (1.78) 

where ~ is the azimuthal angle, it is seen that the eigen-values 

of the hydromagnetic waves can be obtained from those of the 

ordinary inertial waves (~0 ) for the same situation (but without 

a magnetic field) by the expression (Malkus 1967) 

A w -
0 

•.. (1.79) 

where V a is the Alfven velocity and a is the mean radius of the 

sphere. Thus the low frequency magnetic mode will be given by 

\ 
+ ) 

c.Jo is always b. 2.fl. for inertial modes. On substituting the 

appropriate C.Vo for cellular two dimensional (ie no radial 

component) motions, it is seen (Wood 1977) that such modes 

propagate only eastwards whereas roughly as many three-

dimensional modes travel westwards as eastwards. Malkus's study 

thus shows no preference for westwards propagating waves in a 

thick shell which compelled Acheson to consider some selection 
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mechanism by which one type of waves may be preferentially 

generated {Acheson 1971, 1972b, 1973). 

1.6 THE EARTH'S CORE AND ITS MAGNETIC FIELD The applications of 

MHD wave theory to problems so far considered in this chapter and 

the rest of the thesis were made with a particular model, namely 

the earth's core, in mind. In this section we will broadly 

outline its structure and the main features of its magnetic field 

in order to appreciate the choice of various parameters (strong 

toroidal field, low magnetic diffusi vi ty and viscosity over 

certain time scales etc.) made later in our work. 

The earth's core consists of a liquid metallic outer shell 

of a radius of about 3485 kms and a solid inner core of a radius 

nearing 1227 kms. The core is believed to be composed mainly of 

iron with a little alloyed nickel and possibly certain light 

elements like Si, Fe or 0 (Bott 19 8 2). The density of the outer 

core increases from 9970 kg m-3 at the core-mantle boundary to 

about 12120 kg m-3 near the inner core boundary where a sharp 

increase of lBO kg m-3 occurs. These densities should be compared 

with that of the mantle which is about 5500 kg m-3 at the core-

mantle boundary. The estimates for electrical conductivity and 

viscosity are not so precise but values of~ = 3Xl05 mho/m and 

lo-7m2/s<V<l02 m2/s (Roberts and Sowards 1972 ) for the outer 

core are often quoted. The outer core is, by general consensus, 

now believed to be the seat of the earth 1 s magnetic field where 

new lines of force are created by a dynamo process (Bullard and 

Gellman, 1954; Herzenberg, 1958; Backus, 1958; Jacobs; 1963; 
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Soward and Roberts 1976) which converts the kinetic energy 

derived from convection (which in turn might have been caused by 

gravitational differentiation or thermal sources) into magnetic 

energy. 

The earth's magnetic field can be, to a first approximation, 

described by the help of an eccentric dipole inclining at about 

11° to the axis of rotation with its centre displaced by about 

300 kms towards Indonesia. Such a model will explain why the 

earth's magnetic field has roughly twice the intensity at the 

geomagnetic pole when compared with the intensity at the 

geomagnetic equator. However such an approximation leaves out 

most of the detail of the earth's magnetic field like the 

'Siberian oval' seen in the declination maps or the South African 

anomaly best seen in the vertical intensity maps and further 

terms (quadrupoles, octupoles etc.) in this sequence of 

approximation will be required. This is best done by the help of 

spherical harmonic analysis of the main field and various 

coefficient sets for several epochs are available (Vestine et al, 

1947; Bullard et al, 1950; Cain et al, 1967). An exhaustive 

compilation of the geomagnetic spherical harmonic coefficients 

from Gauss's original analysis to the present time can be found 

in Barraclough (1978). Spherical harmonic analysis can be used to 

separate the geomagnetic field of the earth's internal origin 

from that of the external sources. A study of the earth's 

magnetic field as obtained from data derived from magnetic 

observatories, satellite surveys and archeomagnetic & 

palaeomagnetic studies on human artifacts and rocks, reveals two 
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interesting phenomena. First, it is found that the earth's 

magnetic field has frequently reversed its polarity in the past. 

As magnetohydrodynamic equations admit solutions of either sign 

for B, no mathematical problem is foreseen in obtaining a 

magnetic field of one or the other polarity from kinematic 

considerations; though exactly what causes these reversals is 

hard to pinpoint yet. Secondly, a study of the annual means of 

the earth's internal magnetic field shows major changes in its 

intensity and direction over time periods of decades to 

centuries. The maps of equal annual change of any element 

(isopors) at any epoch show focii which migrate slowly westwards 

at about 0.2 degree of latitude per year. This westward drift is 

seen to depend only marginally on the latitudinal position of 

these focii (Bullard et al 1950). When individual spherical 

harmonics are analysed, it is found (Hide 1966) that the w.estward 

drift of the dipole components is much less (typically one third) 

than that of the non-dipole field. Similarly the r.m.s. rate of 

change of the non-dipole field is about 2.5% of the total non­

dipole field wheras the rate of change of dipolar field averages 

only 0.1% of the total. 

So far two theories (Bullard et al, 1950; Hide, 1966) have 

been advanced to explain these features of the secular variation 

of the earth's magnetic field. Bullard argued that assuming that 

the individual fluid particles tend to conserve their angular 

momentum, any concomitant inward advective transfer of angular 

momentum associated with meridional flows will make the inner 

parts of the core to rotate more rapidly than the outer parts. 
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This angular velocity distribution can, however, be steady only 

if this inward transfer of the angular momentum is balanced by an 

outward transfer by some agency. Bullard showed that this can be 

achieved by electromagnetic forces. Thus if the earth's mantle is 

electromagnetically coupled with the core, except in a very thin 

boundary layer where viscosity will impede any motions, the outer 

parts of the core will move westward relative to the mantle 

carrying with it the minor features of the earth's magnetic field 

with it. The main difficulty with Bullard's theory is that his 

assumption that individual fluid particles conserve their angular 

momentum is generally not valid for a fast rotating system where 

a fluid column as a whole tends to conserve its angular momentum. 

Therefore such a system will not be able to sustain a continuous 

inwards transfer of the angular momentum as required in Bullard's 

theory. 

Hide (1966) overcomes this problem by suggesting that the 

westward propagation of the secular variation is a manifestation 

of a wave motion which does not seriously affect the angular 

momentum of the system. Thus by the help of a ~-plane 

approximation (see section 1.4 above), he was able to show that 

for an ambient magnetic field of 50 to 200 Oe Rossby­

hydromagnetic waves will have the right wavelengths and periods 

to explain the observed secular variations in the earth's 

magnetic field (see his Table 2). As we have already discussed in 

sections 1.4 and 1.5, such waves will have group and phase 

velocities which are much lower than the Alfven velocity as will 

be required to explain westward drift velocities of only a 
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fraction of a mm/sec. The main controversy, however, is over the 

sign of the group velocities of these waves and theoretically 

many ways can be visualised (Hide, 1966; Malkus, 1967; Acheson, 

1972b, 1973) by which the waves will selectively drift westwards. 

29 



CHAPTER TWO 

A REVIEW OF PREVIOUS WORK ON WAVES AND INSTABILITIES IN 

CONDUCTING ROTATING FLUIDS 

2.1. GENERAL A non-rotating homogeneous inviscid fluid can not 

provide any restoring forces to shear stresses and thus is 

incapable of supporting any shear waves. In addition, if the 

fluid is incompressible, no waves at all will be possible in it 

(apart from the surface waves due to gravity, which can exist 

only at a free boundary and do not interest us), and its steady 

motion will be completely and uniquely determined by a velocity 

potential if>. However, when either a rotation is imparted to the 

fluid or if a magnetic field pervades the fluid, which is assumed 

to be conductive, a dramatic reversal of this conclusion results. 

In the case of rotation, transverse three-dimensional waves, the 

so called inertial waves, result, as was vividly demonstrated by 

Lord Kelvin (1877) through a series of experiments on rotating 

fluid-filled copper shells. In the latter case, one-dimensional 

transverse magnetohydrodynamic waves travelling in either 

directions of the magnetic field are possible, and were first 

postulated by Alfven (1942). The coriolis force provides the 

requisite restoring force for the inertial waves while Lorentz 

force balances the fluid motions in an Alfven wave. When both 

these phenomena are present simultaneously, two new types of 

hybrid waves, namely, the fast (inertial modes) and slow 

(magnetic modes) emerge (Lehnert 1954), and the stability of the 
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fluid to waves and instabilities becomes a very complex subject 

(Chandrashekhar 1960). 

To put our own work in a proper perspective, we will review 

in the following sections the findings of the past and current 

research on the generation, propagation and reflection of these 

waves in homogeneous and inhomogeneous media and unbounded and 

bounded fluid bodies. No attempt is made to be exhaustive, and 

those works which are either directly relevant to our own work, 

or are fundamental to the understanding of this subject, receive 

most attention. A common thread running through this review and 

the rest of the thesis is that only those fluid motions which 

depart only slightly from a state of rapid uniform rotation are 

treated as these have most relevance to geophysical and 

astrophysical applications. 

2.2. INERTIAL WAVES For a homogeneous, inviscid and uniformly 

rotating fluid in the absence of a magnetic field the equation of 

motion (Batchelor 1967, Pedlosky 1979) is given by 

••• (2.1) 

where the notation is as in Chapter 1. To assess the relative 

importance of various terms in this equation, it is usual in the 

literature to make this equation non-dimensional by expressing 

distances in terms of L, a characteristic length scale of the 

fluid body, time in units of Itl, velocities in terms of U, a 

characteristic magnitude of u and pressure in terms of ~1LUL· 

Then 0 •• (2.2) 
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where the quantity £ = u/(ftL) is the 'Rossby number' of the flow 

and is a measure of the relative importance of inertial to 

coriolis force. For a fluid body in a state of almost rigid 

rotation, this number is very small and therefore the inertia 

terms are negligible, leaving us with 

I 
- Qp ••• (2.3) 

With the help of the continuity equation, elimination of all 

other terms results in a single fourth order partial differential 

equation in p given by 

- 0 ... (2.4) 

named after Poincare who first formulated and obtained the 

solutions of the problem for pressure alone (Poincare 1910). A 

substitution of a standing wave solution of the form p = 

p(x,y,z) exp[-iwt], gives 

:I. 
- .dr-W ~':E 
- '-..)~ "dZ. ::t •.. (2.5) 

which is elliptical for w real when w 2>4 and has no non-zero 

solutions. It is hyperbolic for w2<4 and can have wave solutions. 

Thus if 

p(x,y,z) = Aexp[i(K.X)] 

(2.5) yields the dispersion relation for 'inertial waves' 

W = 2Kz/ 1~1 = 2Cos e ••• (2.6) 

where e is the angle between Kz (which is assumed to be parallel 

32 



to .h.) and K. The phase velocity of these waves is given by 

and is proportional to the wavelength, 21T /K, of the wave, 

implying that the waves are dispersive, the longest wavelengths 

being the fastest. The waves also propagate anisotropically; the 

higher the frequency of a wave, the more parallel to the z axis 

is its phase velocity. The energy of these waves is transported 

at the group velocity of the wave packet to which they belong 

(Greenspan 1968), as can be seen by an asymptotic approximation 

of an initial disturbance obtained preferably by the stationary 

phase method (Stewartson 1978). This group velocity is given by 

... (2.8) 

" where A is a unit vector in the direction ofJL. This equation 

shows that energy transport for these waves occurs perpendicular 

to the phase velocity. It is also evident that Cg vanishes if~ 

is parallel to K, implying that no energy can normally be 

propagated in directions parallel and anti-parallel to the 

rotation axis. However, if the source of the disturbance is 

permanent, for example, a vibrating solid body moving with 

velocity u parallel to the rotation axis, it can cause 

disturbances which travel upstream of the object for long 

distances as well as form a well developed wake behind it (Nigam 

and Nigam 1962). The reasons for this exception are to be found 

in the effects of viscosity on the fluid and the near non-

dispersive nature of waves travelling parallel to the rotation 
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axis (Stewartson 1978). 

The reflection of these waves by rigid boundaries displays 

some remarkable properties. Phillips (1963) showed that the 

magnitudes of the incident and reflected wavenumbers are 

generally unequal and the incoming and reflected flux vectors 

make equal angles with~, the projection of 1i in the plane 

- /\ 
formed by K and n, the unit vector normal to the boundary. A 

forward reflection occurs when the angle o<.l between..!'\ and the 

incident f 1 ux vector is larger than the angle o<: 2 between~ and 

the boundary. When the two angles are equal the reflected wave 

packet travels parallel to the wall and is absorbed quickly due 

to dissipative viscous processes. When ~ 2 >~1 , a backward 

reflection occurs. The energy density per unit volume of the wave 

is not conserved and waves which increase their wavelengths, as a 

consequence of reflection, have their energy densities reduced 

after reflection. When viscous effects are taken into account in 

the above equations, it can be shown that in an unbounded fluid 

these waves are damped with an exponential decay time ~ = l/~K 2 . 

The wave solutions are no longer purely harmonic, and linear 

superposition of different waves can be permitted only for small 

wavenumbers. Phillips (1963) also showed that in a viscous fluid 

the reflection coefficient equals 1-0(Rl/2) where R is the wave 

Reynolds number (=2Q/vK2), and thus for waves reverberating in a 

region of characteristic size L, the fractional energy loss by 

viscous attenuation is of the order of 2vK2LK/-Q which is much 

higher than the energy loss by reflection. Thus when the fluid is 

contained in a large container of arbitrary shape, the energy 
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interchange between various wavenumbers from repeated reflections 

can result in a statistical radiative equilibrium over the high 

wavenumbers. 

Poincare's equation (2.4) does not admit cylindrical wave 

solutions (usually described in terms of Bessel's functions of 

the wavenumber of the wave) of the type invoked in non-dispersive 

wave theory to approximate the scattered waves arising from 

diffraction from uneven surfaces (Hurley 1970). This has some 

interesting implications for the reflection of inertial waves 

from uneven boundaries. Hurley (1970) shows that in the case of a 

forward reflection the diffracted waves give rise to a positive 

back-scatter of energy. When inertial waves are diffracted from a 

wedge, the diffracted waves are as important as the incident and 

reflected waves in a region of a quarter wavelength around the 

apex of the wedge. Baines (1971 a) found that the waves incident 

on a sinusoidally varying surface of small amplitude generate, in 

addition to the reflected wave, two new waves whose wavenumbers 

are the sum and difference, respectively, of the wavenumbers of 

the surface perturbations and the incident waves. In a subsequent 

paper, Baines (1971 b) showed that when an inertial wave is 

incident on a smooth bumpy surface in such a way that its ray is 

tangential to the surface at some point, diffraction takes place. 

However if the ray of the reflected wave is tangential to the 

surface, a 'split-reflection' takes place wherein in addition to 

the back reflected (diffracted) wave, two reflected waves are 

generated on either side of the diffracted wave. 
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2.2.1. The effect of stratification When the fluid is stably 

stratified, the action of buoyancy force speeds up the inertial 

waves to produce inertial-gravity waves which satisfy the 

dispersion relation 

.2. - - :.. 
lN)I.~' -~- (:t...n..·"") w2:: ••• (2.9) 

Unlike inertial waves, these waves can have angular frequencies 

larger than 2 • Here N is the Vaisala-Brunt frequency already 

defined in (1.33). If we assume that N and.f\. are parallel to the 

z axis, then the effect of stratification is to increase the 

horizontal group velocities of the inertial waves considerably 

without effecting their vertical component. 

2.2.2. Inertial Waves in Bounded Media. 

(a) Circular Cylinder. Imagine a rotating fluid- filled 

circular cylinder defined by (O<k<a, O<z<l) in the cylindrical 

coordinates (r,~,z). To obtain inertial wave solutions in this 

situation we need to solve equation (2.3) in the cylindrical 

coordinate system under the boundary conditions 

u = 0 on r = a, and 0p/0 z = 0 at z = 0,1. 

Phillips (1960) and Stewartson (1959, 1978) showed that under 

these conditions (2.3) admits separable solutions of the form 

... (2.10) 

where J\mJ is the Bessel function of order m. These solutions 

yield a dispersion relation 
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relating the 'cylindrical wavenumber' -s with the frequency w of 

the wave. The boundary conditions however stipulate that 

... (2.12) 

Consequentlye0 is different for waves moving with the rotation 

(m > 0) when compared with the waves moving against it (m < 0). 

(b) Inertial waves in spheres. If we transform the cylindrical 

coordinates (r,~,z) to modified oblate spheroidal coordinates 

system by 

::t Y.t .t '/ ~ 
- ( ...L - "'1. ) ( 1- p. ) 
- +->-'" 

then (2.5) transforms into Laplace's equation in (x,y,iz/).) and 

admits separable solutions of the form (Greenspan 1968) 

where p liD\ is the associated Legendre function. n 

solutions yield 

.•• (2.13) 

These wave 

•.• (2.14) 

Experimental confirmation of this relation for several modes has 

been obtained by Aldridge and Toomre (1967) who studied the 
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resonance peaks in the pressure response of a rotating fluid 

sphere to different forcing frequencies. Mathematical solutions 

similar to equations (2.13) and (2.14) for ellipsoidal containers 

have been obtained by Kudlick(l966). 

2.3 ROSSBY WAVES Rossby waves (also known as planetary waves 

in dynamical meteorology) arise in rotating fluids whenever the 

total height of individual fluid filaments is constrained to 

change slowly in certain direction(s) by the geometry of the 

container. Two such examples are a sliced right circular cylinder 

whose sliced face slopes at an angle to the other face and a 

fluid-filled thin spherical shell. In the former geometry no 

geostrophic modes are possible and are in fact replaced by the 

Rossby waves with the consequence that these waves possess a net 

mean vorticity. For the fluid-filled shell, geostrophic modes are 

possible and actually contain all the net vorticity of the fluid 

whereas Rossby modes, though possible, have no net mean 

vorticity. Inertial waves are possible in both cases (though 

devoid of any mean vorticity) and these together with Rossby 

waves and the geostrophic modes can synthesize any initial 

velocity distribution. As already shown in chapter one both these 

situations can be described in cartesian co-ordinates by 

reference to a Beta plane. If we neglect the effect of magnetic 

field (ie Va = 0) then the dispersion relationship for Rossby 

waves follows directly from equation (1.66) giving 

.•. (2.15) 
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which shows that Rossby waves always have westward phase 

velocities though their group velocity 

•.• (2.16) 

••• (2.l7) 

can be westward or eastward depending on whether 1 > k or 1 < k. 

Reflection of these waves at barriers displays many interesting 

oddities. Longuet-Higgins ( 19 6 4a), for example, showed that on 

reflection the angles between the wall and the two wave vectors 

are not in general equal, but the group velocity vectors of the 

two waves are directed at equal angles to the wall. Pedlosky 

(1979) similarly showed that although the amplitudes of the 

incident and reflected waves are conserved, their energy 

densities are not conserved, even though the energy fluxes 

through and out of the wall are equal. 

An interesting study of the evolution of Rossby waves from 

an initial disturbance is reported by Pedlosky (1979 ). He 

employed the method of stationary phase in one direction to study 

the form of a complicated initial disturbance after a long time, 

and showed that for large time t and large distance x from the 

source region, the dominant contribution to the disturbance comes 

from the wavenumbers in the original spectrum whose group 

velocities allow them to travel the distance x in time t. The 

stream function of the disturbance at (x,t) is actually given by 

••• (2.18) 
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where An{ks) is the initial amplitude of the wavenumber ks which 

forms a stationary phase at the region under study. Thus the 

disturbance diminishes like t-l/2, though slightly modified by 

the dependence of ks on x/t. Pedlosky also describes how this 

approximation fails at the extreme front of the wave disturbance 

where the wave amplitude decays more like t-1/3. He also carried 

out the necessary modifications of {2.18) in terms of an Airy's 

function. 

2.3.1. Rossby Waves in Spherical Shells The equation of motion 

(2.3) can be written in terms of a stream function ~ in spherical 

coordinates (r,e,4>,), (Longuet Higgins, 1964a), as 

:::. 0 .•. (2.19) 

This equation possesses separable solutions of the form 

where pns(cose) is the associated Legendre function of order n 

associated with zonal wavenumber s. The substitution of these 

solutions in (2.19) yields the dispersion relation 

cP = -.t-o/[n(n+l)] ..• (2.20) 

The angular velocity¢ is the westward phase velocity we 

encountered in the I!> plane approximation. If we write f!> = 21lsine 

and observe that IKI of the ~ plane approximation equals 

n(n+l)sine, we get 
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~ = -~/K2 which is the same as equation (2.15). 

2.3.2. The Stability of Rossby ~~ The problem of the long 

term stability of Rossby waves to other perturbations is of 

great importance to meteorologists as such instabilities are 

frequently responsible for the unpredictability of the 

atmosphere. Lorenz (1972) showed that zonal steady flows present 

with superposed neutral Rossby waves are unstable to further 

perturbations either when the perturbations have wavelengths 

exceeding that of the basic Rossby wave or if the basic wave is 

sufficiently strong. Gi 11 (19 7 4) generalised the work of Lorenz 

to wavenumbers in arbitrary direction and showed that the 

stability of a wave depends on: (1) a parameter M = UK2/~, where 

U is the velocity amplitude of the planetary wave, and, (2) the 

direction of the wavenumber of the planetary waves. For large M, 

the J> effect on the waves is small and the problem reduces to the 

Rayleigh problem for a sinusoidal velocity distribution. For 

small M, the disturbance is comprised of two waves which form a 

resonantly interacting triad with the basic wave (Longuet­

Higgins and Gill 1967). Whatever is the value of M, the maximum 

rate of growth is of the order of UK. Gill also showed that for 

large M, the wavenumber of the secondary disturbance can lie in a 

large area of the wavenumber space with the most unstable 

disturbance having its wavenumber at right angles to the 

wavenumber of the basic wave. For small M, the wavenumber space 

from which the unstable disturbance can be chosen is considerably 

reduced and the choice of the most unstable wave depends only on 
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the orientation of the basic wave. Both Lorenz and Gill used a 

Fourier expansion to represent the perturbation, and they 

truncated the resulting infinite system of algebraic equations at 

the first approximation with the consequence that the results can 

only be described as qualitative. Coaker (1977) employed a third 

order Floquet system to describe exactly the normal modes and by 

the help of perturbation theory he was able to present the curves 

of marginal stability in the M, ~ space where~ is the 

orientation of the Rossby wave on the ~ plane. Similar studies 

on the stability of Rossby waves on a full sphere are described 

by Hoskins (1973) and Baines (1976). 

2.4. ALFVEN WAVES The basic idea behind the ability of 

conducting fluids to support transverse waves in the presence of 

magnetic field can be appreciated by expressing the Lorentz force 

J x B in terms of Maxwell's stresses. By the help of Ampere's Law 

we can write 

J)lB •.. (2.21) 

where the last term denotes the divergence of a dyad. This 

equation means that the Lorentz force J x B is equivalent to a 

hydrostatic pressure B2/2~ along with a tension B2hM along the 

lines of force, or equivalently a tension B2/24along the lines of 

force with an equal pressure in the transverse direction. It is 

this 'pseudo-rigidity' provided by the tension along the lines of 

force which enables the conducting fluid to support transverse 

wave motions. These waves were first predicted by Alfven (1942) 
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and confirmed experimentially by Lundquist(l949a,b) and 

Lehnert(l954b). They were immediately recognised as the primary 

vehicle by which magnetic disturbances could be carried over 

large distances in astrophysical and planetary bodies without 

serious attenuation by the 'skin effect' prevalent in solid 

conductors (Roberts 1954). The basic properties and dispersion 

relationship of these waves have already been described in 

section 1.2 and will not be repeated here. 

2.4.1. Alfven Waves in Compressible Media: Magneto-acoustic 

waves. When the medium is compressible, its density 1 cannot 

be assumed to be constant in equation (1.14) and must be 

eliminated by employing a thermodynamic constraint of the form 

p/p 0 = Y 1/io in an adiabatic regime. Here Po and io are now the 

mean pressure and density of the fluid andY is the ratio of 

specific heats. The new system of equations can be shown 

[Herlofson (1950), Alfven and Falthammar (1963)] to possess 

transverse-longitudinal plane wave solutions satisfying the 

dispersion relationship 

0 .•. (2.22) 

where Cs in the speed of sound in the fluid and ¢ is the angle 

between the direction of the magnetic field and the wave vector. 

This equation has two real and positive roots forcu corresponding 

to two different wave propagation velocities. The mode with the 

slower phase velocity is normally called a modified hydromagnetic 

wave whereas the other mode whose velocity is near the sound 

velocity is called a modified sound wave. For ~ = 0, ie. when 
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the wave vector is in the direction of the magnetic field, the 

former mode takes the form of Alfven waves (pure transverse 

waves) whereas the latter mode simplifies to pure sound waves 

(longitudinal waves), and there is no interaction between the two 

types of waves. An interesting phenomenon associated with these 

waves is that of over-reflection at a vortex sheet (Acheson 

1976), or by a finite magnetic-velocity shear (Eltayeb 1977) when 

reflection coefficients of greater than unity are obtained. 

2.4.2 Reflection and Transmission of Alfven Waves When an 

Alfven wave encounters an interface between two fluid media with 

different values of Alfven velocities, the wave is partly 

reflected and partly transmitted through the second fluid (Walen 

1944, 1946; Lundquist, 1952; Ferraro 1954). Following Ferraro and 

Plumpton (1961), consider the situation when an Alfven wave of 

frequency t.J in a fluid travelling in the z direction (which 

implies Bo is parallel to the z axis) meets an interface at z=O 

between the two fluids. The magnetic fields of incoming, 

reflected and transmitted waves can be represented by 

•.. (2.23) 

... (2.24) 

••• (2.25) 

where v1 and v2 are the Alfven wave velocities in fluids 1 and 2. 

Then the fluid velocities associated with these waves are 
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••• (2.26) 

••• (2.27) 

••• (2.28) 

At the interface the tangential components of the magnetic field 

and the fluid velocity are continuous, implying 

... (2.29) 

... (2.30) 

These boundary conditions and the above wave equations yield the 

following amplitude relations 

... (2.31) 

and 

At = ... (2.32) 

Equations (2.31) and (2.32) also give the reflection and 

refraction coefficients of the wave for a reflection against a 

rigid conducting boundary on substituting f,_ = oe in these 

equations. Then it can be seen that IArl = 1, and At = 0 and the 

waves suffer a phase shift of lf in the velocity though the 

magnetic field is unchanged. The extension of these results to 

compressible media is given by Simon (1958) and Williams (1960). 

Fejer (1963) discovered the phenomenon of over-reflection 

associated with the reflection of these waves in compressible 
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media at fluid velocity discontinuities (Vortex sheets) already 

mentioned in Section 2.4.1. Fejer also showed that in this 

situation a single type of incident wave can give rise to a 

single type of refracted wave only. 

2.5. INERTIAL-MAGNETOHYDRODYNAMIC l!~HD) WAVES: When, in 

addition to a magnetic field, a conducting incompressible fluid 

is subjected to rotation, the fluid can support modified Alfven 

waves known as inertial-magnetohydrodynamics waves which can 

propagate across the magnetic lines of force. Depending on the 

type of their energy content, these waves are known as inertial 

(energy, mainly in kinetic form) or magnetic modes (energy, 

mainly magnetic). A detailed description of their propagational 

behaviour has already been given in Section 1.3. In the following 

sections, mainly the problem of the' stability of these waves and 

their propagation in non-uniform magnetic fields and media are 

discussed. The author's own work on reflection of these waves by 

rigid boundaries is described in Chapter 5. 

2.5.1. Stability of !~HD waves. Hesselman (1967) pointed out 

that if a single wave train interacts with two infinitesimal 

disturbances such that the three waves constitute a resonant 

triplet, then under certain conditions, the initial infinitesial 

disturbances may grow with time. Thus he proposed that any wave­

train capable of undergoing resonant interaction will be 

intrinsically unstable. Such a phenomenon, by virtue of non­

linear effects, will 'create' fresh waves from the background of 

other imperceptible waves by sharing the energy of the initial 
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waves. This will cause the wave spectrum to become broader and 

more complex as time passes. Dillon (1975) and Bland (1976) 

showed that a single hydromagnetic wave of arbitrary amplitude in 

a rotating infinite medium is a solution of the full non-linear 

basic equations. This, however, is not true of a superposition of 

waves if their amplitudes are high. At second order in wave 

amplitudes it is found that a continuous transfer of energy 

between modes is possible if the kinematic conditions for 

resonance 

Wl± w2 ;t W3 = 0 

are satisfied. Dillon (1975) showed that IMHD waves do satisfy 

these conditions in the rapid rotation limit, and can thus form 

resonant interaction triplets. Neither Dillon nor Bland have 

studied the behaviour of the individual waves in a triplet over 

time, mainly because of the enormous mathematical complexity of 

the problem, and more results are eagerly awaited. 

2.5.2. !~HD Waves in ~ Non-Uniform Magnetic Field Consider a 

rotating, incompressible fluid pervaded by a basic magnetic field 

B0 = [Bx(z),By(z),O] whose magnitude and direction vary slowly 

along the z axis. Now if some IMHD waves of a narrow frequency 

and wavenumber band (w,w+6w), (K,K+~K) are generated in this 

fluid at some place, in a short time they will move away from the 

source of disturbance in an area where the magnetic field is 

different. As the waves propagate, their frequencies will remain 
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unaltered although their wavenumbers K will be affected. Owing to 

the dependence of Bo on z only, the wavenumber components k and 1 

will also remain unaffected and the changes in K will be brought 

about only be changes in the wavenumber component m. Locally the 

dispersion relation [see (1.36)] 

... (2.33) 

still holds if va is chosen appropriate to the local magnetic 

field. By an analysis similar to the one given in section (2.3), 

Acheson (1972a) showed that in this situation (and for N=O) the 

partial differential equations (1.27) to (1.31) admit plane wave 

solutions of the form 

w = ~exp[i(Kx+ly~t] 

w is the z component of velocity and on elimination of all other 

variables this equation yield a dispersion relation 

(P 2 -R2)~" + (R2P'IP+PP'-2iRT)~' + [T2-P2 (K2+1 2 ) 

+ iRP'TIP]C = 0 ..• (2.34) 

where accents denote differentiation with respect to z and 

P(z) = (VXK+Vy1)21(..)2 - 1 ••• (2.35) 

R(z) = 2flzl4.) ••• (2.36) 

T(z) = 2 (llxK+flyl)lc.J ... (2.37) 

v ( z ) = B ( z ) I (A4 f ) 1 I 2 X X · ••. (2.38) 
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and V (z) = B (z)/(..vd)l/2 y y ... (2.39) 

Equation (2.34) has a singularity at z=zc where the field B0 (z) 

reaches a critical value for which p2=R2 ie. 

or equivalently 

4 c .. }.n 2 z 

. .• (2.40) 

•.• (2.41) 

where Vc is the Alfven velocity at Zc· Such singularities at 

cetain critical levels or surfaces have been reported in many 

other linear systems [for example in internal gravity waves in a 

shear flow (Bretherton 1966, Booker and Bretherton 1967) or in 

magneto-acoustic waves in a shear flow (Eltayeb, 1977)] and 

usually take the form of an invisible barrier at which a wave 

packet is neither reflected nor transmitted but effectively loses 

its energy to the fluid there. This can be seen clearly if one 

expresses ( 2.33) in terms of a quadratic in m"' as 

{ [ (v i)2-c.u2J2 - 4w21l 2}m2 - s"'2n (.D. k+n l)m a· z 1 x y 

+ {(k2+12)[(Va.K)2-w2]2- 4~(1lxk+.0.yl)2} = 0 •• (2.42) 

and obtains the larger of the two roots asymptotically as 

••• (2.43) 

by neglecting the last term in (2.42). To the first order 

I 
(z-zc)Va(zc) and therefore the· wavenumber 

1~11 of the wave increases indefinitely as (z-z )-l c 

component 

near the 

critical level. Similarly by differentiating (2.33) with respect 
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to m, the asymptotic value of the group velocity at the critical 

level for this wave is (Acheson 1972a) 

which tends to zero as (z-zc)-2 with the consequence that 

although the wave group is neither reflected nor transmitted, it 

never reaches the critical level in a finite time. A novel 

feature of Acheson's work is that only the mode with wavenumber 

component m, which approaches the critical level from a direction 

such that 

is effectively captured in the neighbourhood of this level 

whereas mode m2 for which Q(m 2 ) < 0 is transmitted across the 

critical field line. Thus a critical level acts as a valve by 

effectively permitting the wave to penetrate it from one side 

only. Another noteworthy feature of Acheson's analysis is that it 

clearly demonstrates that the phenomenon of critical-layer 

absorption does not in general require the presence of a mean 

shear flow. The effects of such a phenomenon on the waves in the 

earth's core cannot be over stressed as the earth's magnetic 

field is believed to be fairly non-uniform in the radial 

direction. If Acheson's conjecture, that the westward drift in 

the secular variations of the earth's magnetic field is caused by 

retrogradely propagating unstable inertial-magnetohydrodynamic 

waves (Acheson, 1972b), is correct, then the earth's toroidal 

magnetic field will have to be non-uniform (starting at about 5 
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Gauss at the core-mantle boundary and increasing to about 100 

Gauss in the deeper parts) to render instability to these waves 

and critical level phenomenon will play a vital role in the 

dynamics of the core. 

2.5.3. Inertial-Hydromagnetic-Gravity Waves in Magnetic-Velocity 

Shears IMHD-Gravity waves (or MAC waves from Magnetic-

Archimedean-Coriolis) also display the phenomenon of critical-

layer absorption in varying backgrounds. (Rudraiah and 

Venkatachalappa 1972: Eltayeb 1977; El Sawi and Eltayeb 1978, 

1981: Grimshaw 1980). Consider for example a basic state in which 

/' 
u 0 = U(z) x, 

/\ 
Bo = B(z) y ••• (2.44) 

so that the basic fluid velocity and the magnetic field (which 

are assumed to be paral·lel to the x and y directions 

respectively) are sheared in the z direction. In this situation 

an IMHD-gravity wave will satisfy a wave equation of the form 

(El tayeb, 1977) 

a(z)w"(z) + 2b(z)w'(z) + c(z)w(z) = 0 ••• (2.45) 

where w is the component of velocity in the z direction and 

accents denote differentiation with respect to the argument 

••• (2.46) 

b(z) 

••• (2.47) 

51 



... (2.48) 

1\. 
~,k,l are the frequency and the horizontal wavenumbers of the 

wave, respectively.~ is the rotational velocity and va is the 

local Alfven velocity. The partial differential equation has a 

singularity at a(z) = 0, which from (2.46) occurs at (~2-12va2>2= 

4.n2~. As already discussed, these singularities are accompanied 

by the phenomenon of critical layer formation. Although both the 

magnetic field and the basic velocities vary continuously, 

locally the waves still satisfy the dispersion relationship 

1 I':L 2. ~ .:1. .a. ~ "% 
( k.~ \. ) (. c.v - L Va ) ( N + L Vo - w ) 

( W~- L~ V/') - + .n.~ C:,.t 
••. (2.49) 

and thus m ~ o0 at critical levels as for IMHD waves. According 

to a criterion from McKenzie (1972), a critical level can exist 

only if the wave normal curve (basically the cross-section of the 

wave normal surface in the plane of propagation) possesses an 

asymptote in the direction in which the properties of the medium 

vary. When this criterion is applied to the present problem it 

can be shown that four asymptotes of this kind occur for every 

wave (Eltayeb 1977) and thus for every wave four critical levels 

can be defined where the wave will be highly attenuated. A useful 

concept in studying this phenomenon is that of a wave invariant, 

also known as wave action (Andrew and Mcintyre, 1978) such as the 

vertical flux of angular momentum which is conserved everywhere 

along the basic shear except at critical levels where it jumps 

from one constant value to another. By the help of this quantity 
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it becomes.possible to discriminate between real critical levels 

" and pathological ones (e.g. atw = 0, when k,l and Va ___, 0 making 

a = 0), where no change occurs in the wave invariant. El Mekki 

and Eltayeb (1978) pointed out that critical levels will exist in 

the solar atmosphere as a consequence of the increase of the 

Alfven speed with height. 

2.6. ROSSBY-MHD WAVES These very low frequency inertial 

magnetohydrodynamic waves which arise due to the combined effects 

of rotation and curvature of the fluid bodies on 

magnetohydrodynamic waves were first proposed by Hide (1966), and 

we have already dealt with their solutions and propagational 

properties at length in Section 1.4. Numerous other studies on 

the propagation and stability of these waves in homogeneous and 

in homogeneous basic states have appeared since, and are reviewed 

in this section. 

Negi and Singh (1974) presented a similarity solution of the 

wave equation on the \3 plane given by Hide (1966). They first 

uncoupled the inertial modes by ignoring inertia terms in the 

equations of motion and derived a third order partial 

differential wave equation sui table for magnetic modes only in 

the form 

••• (2.50) 

where by is the magnetic field of the wave in the N-S direction, 

and Va is the Alfven speed. Then, by assuming that the fluid 

variables do not vary with respect to y (an assumption which, the 
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present author feels, is rather hard to justify), they 

approximate (2.50) to 

= 0 ... (2.51) 

and show by the method of similarity that it has solutions given 

by 

•.. (2.52 

which decay as t-1/3. Superficially, this solution resembles one 

of the author's own solutions [see equation (3.66)] which was 

obtained by the method of stationary phase for waves trapped near 

a caustic. But whereas this solution is periodic elsewhere, Negi 

and Singh made the drastic assumption that ~/~y(u,v,bx,by) = 0 

which by the continuity equations (1.57) and (1.58) results in 

~~x(u,bx) = 0 and restricts the solutions to those which will 

satisfy u = constant, and bx = constant in the x-y plane. Perhaps 

not surprisingly they obtain only decaying solutions. 

2.6.1. Stability of Rossby-MHD Waves An exhaustive study of the 

stability of Rossby-MHD waves on a ¥>-plane was carried out by 

Bland (1976). He showed that the necessary (but not sufficient) 

conditions under which the primary wave is unstable to two other 

secondary disturbances are the same as the kinematic resonance 

conditions, that is 

'' = 0 c..) 1 :!. c..) 2 ::!. ...... 3 

and from a study of the dispersion relationship of these waves 
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this requires that in order, (~1 ,K 1 ) be unstable to two 

infinitesimal disturbances, its wavenumber K1 should be 

intermediate to those of the perturbation waves, that is 

... (2.53) 

This suggests that the energy does not 'cascade' to lower wave 

modes as in turbulence. Bland studied the amplitudes of the waves 

of an interacting triad over a time period by employing a two 

time technique. A fast time variable t describes the typical time 

periods of the waves whereas a slow time variable T is used to 

study the slowly varying wave amplitudes. By the help of non-

linear analysis, Bland showed that the slowly varying amplitudes 

of the waves are governed by equations of the form 

i = 1,2,3 •.. (2.54) 

where ai is the amplitude of the wave i and Cit 1 Ci+ 2 is the 

interaction parameter which should not be equal to zero (dynamic 

condition of resonance) for an interacting triad. The total 

energy (kinetic plus magnetic) associated with the three waves 

remains constant. However, the individual waves do not conserve 

their energy and so kinetic and magnetic energies are continually 

redistributed amongst these waves. The solutions of the 

interaction equations (2.54) are periodic in time and can be 

expressed in terms of Jacobian elliptic functions. In a 

particular novel situation, Bland showed that the energy of a 

magnetic mode is lost to two inertial Rossby-MHD modes in such a 

way that although the total energy of the system remains 
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constant, its kinetic part of the energy increases at the expense 

of its magnetic energy. An analogous situation in which the 

magnetic mode increases its energy at the expense of the inertial 

modes is also possible. 

2.6.2. Rossby-MHD Waves in Magnetic and Velocity Shears. The 

first attempt to generalise Hide's 1966 model to non-uniform 

magnetic fields was made by Suffolk and Allan (1969). While still 

employing the beta-plane model, they assumed in addition that the 

magnetic field was sheared in the y direction, that is 

..• (2.55) 

The modified vorticity equation (1.54) can then be written as 

- 0 
••. (2.56) 

where jz is the disturbance in the z component of the current. 

Similarly the electrodynamic equations (2.51) and (2.52) can be 

combined into 

M ~~Z. -- 0 ••• ( 2. 57) 
~t 

In addition we have 

~ = ol.l ~"' 
oY CI.X 

••. (2.58) 

and ~ -t- dl)-
0 - ••• (2.59) 

~)'. -aY 

Suffolk and Allan then assume small amplitudeperturbations 
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000 (2.60) 

to all the four variables in the above equations and obtain the 

dispersion relationship 

.t .1 I 
i.. k Ll VaJ 
·k.t ~ L.t 

:::. 0 ... (2.61) 

where Va is the local Alfven velocity and accent denotes 

differentiation with respect to y. This dispersion relationship 

shows that except for 1 = 0, the frequencies always have a non 

zero imaginary part, suggesting that the waves are unstable, that 

i~ their amplitudes increase or decrease with time. This is a 

highly unexpected result in comparison with the results of 

Acheson (1972) for propagation of IMHD waves in non-uniform 

magnetic fields (section 2.5.2). There is no evidence of 

instability due to the variations of the basic magnetic fields in 

any of the waves studied above. The author believes that this 

fallacy in Suffolk and Allan's analysis stems from the assumption 

that 1, the wavenumber component in the y direction, is 

independent of y and thus constant in (2.60) and (2.61). 

Therefore any variations in Va in (2.61) with distance will have 

to be compensated by changes inw. This is not correct. A careful 

analysis of the kinematics of wavecrests in any inhomogeneous 

system (Lighthill, 1965, pl3) reveals that energy in waves of a 

given frequency should remain always in ~he waves of the same 

frequency. As these waves propagate to a different region of 

space with a different basic state, their wavenumber components 
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in the direction of the basic change can be expected to change. 

Eltayeb and McKenzie (1977), in a similar study for Rossby-MHD 

waves in a magnetic and velocity shear, followed this principle 

and correctly deduced that the waves are stable and that a 

critical level should be observed for a wave of frequency 

(doppler shifted) at a place where 

... (2.62) 

and a reflection will occur where 12 = 0. 

In a 'jet-like' variation of B with latitude (that is B 

increases or decreases in strength on either side of the latitude 

under investigation) inertial modes will be trapped around the 

centre of the magnetic jet. When the variations in the basic 

state are abrupt, that is when 21T/ L, >> L, where ~ is the length 

scale of the variation of the basic state, the treatment in terms 

of reflection and transmission through a current-vortex sheet is 

preferable. Eltayeb and McKenzie showed that when this sheet is 

parallel to the x axis, an over-reflexion can occur if 

/' A 
where ~l and w3 are the doppler shifted frequencies of the waves 

" in medium 1 and 3. If we take medium 1 to be at rest so that w1 = 
A w, then ~ will have to be negative for an over reflexion to 

occur, which is possible only if the jump in speed 1u31 is 

greater that v3 , the Alfven speed in medium 3. 
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CHAPTER THREE 

PROPAGATION OF ROSSBY-MAGNETOHYDRODYNAMIC WAVES GENERATED 

BY AN INITIAL DISTURBANCE 

3.1 GENERAL A close examination of the dispersion relationship 

(1.66) for hydromagnetic Rossby waves (Hide 1966, Hide and Jones 

1972) indicates that these waves are highly dispersive (ie. 

lt.f'~k=f constant, ~c..>j;)l:f: constant) and anisotropic pc.u;~k :f d"'/ol in 

general) in their propagation. As a result they will not spread 

out isotropically from the source eg. as water waves in a pond 

do, and will not be expected to attenuate as a simple function of 

distance from the source region. The question we therefore ask 

ourselves is: How will an initial complicated disturbance gener-

ated by a source impulse in a localised region evolve in time 

and propagate away from the source region? Mathematically, we are 

concerned with an initial-value problem in which at time t=O, 

~(x,y, 0) = -:) 0 (x, y) and we wish to calculate :J(x, y ,t) for large 

time t. We shall employ the method of stationary phase (Jeffreys 

and Jeffreys 1956, Lighthill 1965, 1978, Pedlosky 1979) to 

examine the asymptotic form of the initial disturbance for both 

large (x,y) and t. We shall work once again with the ~ plane 

approximation of the quasi-geostrophic fluid motions of a thin 

fluid shell or the fluid contained between the sloping walls of a 

container. 

3. 2 FORMULATION OF THE PROBLEM For small amplitude 

disturbances, the vorticity J(x,y,t) of an incompressible 

inviscid and highly conducting fluid on a Jj plane in the 
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presence of a uniform magnetic field B0 is given by (see equation 

[ 

•!l ,_ 3 ~ a] ..t ~ J. ~f:l 
cA _ V, ( c.os e- ;- s•ll'l e - ) ~H ~ + r c!t - = o 

- ~ et ~)!. t)Y ~'1-
c;tt.: ••• (3.1) 

In addition the components of fluid velocity (u,v) and magnetic 

field (bx,by,bz) of the disturbance satisfy the following 

differential equations (see section 1.4) 

dbx/dt = B0 (cose~/~x + sine o/'C~y)u ••• (3.2) 

dby/dt = Bo ( cose ~/~x + sine ~/(ly)v ••• (3.3) 

dbz/dt = 0 

ubx/~x + () by/ay = 0 •• 0 (3.5) 

and ~U/-;)X + -;)V/?JY = 0 

Where 0 = a V /~X - 1 U/i)Y 

Now let us assume that a localised disturbance of arbitrary 

form is imparted to the fluid in the vicinity of x=O, y=O at time 

t=O. By Fouriervs theorem it will consist of many waves (the 

longest of which will have wavelengths of the order of the size 

of the source region), and therefore, the nature of propagation 

of this dispersive wave packet will be quite complex. For a short 

time after the disturbance is made, it will retain its initial 

basic form, though after a long time the disturbance would have 

spread over large distances and the wave propagation dynamics 

would have had sufficent time to contribute strongly to the 

waveform, dispersing waves of different wavenumbers in different 
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regions of the x-y plane. The essential dispersion relationship 

can be obtained by expressing equation (3.1) in the wave domain 

by the help of the Fourier transform. 

Let us define the Fourier transform and its inverse for a 

function f(x,y,t) by 

,0 ..0 

F(k,l,t) = ~ ~exp[i(kx+ly)] f(x,y,t) dx dy ••• (3.8) 
-..c-oo 

~.0 

and f(x,y,t) = dn/_JJ..,exp[i(kx+ly)] F(k,l,t) dk dl ••• (3.9) 

where k and 1 are the wavenumbers of the function F in x and y 

directions, respectively. Then the Fourier transformation of the 

L.H.S. of equation (3.1) yields 

'-
J. l)[ -a" ;- \t.'\ k(OS e -t l Sl"'l 8)] :,t k,l,t) -\' ~ ~t i, k !, (~L,t) = 0 

-( k + L ~:t ~ o 

where it has been assumed that the perturbations in the fluid 

motion are small and the basic fluid velocity is zero. ie. 

J/~t = d/dt 

or 
,_ ~ 

+ \Ia k ""5 ( k, L, t) - 0 ••• (3.10) 

if we assume that e = 0, ie. the basic magnetic field is 

latitudinal. Equation (3.10) will possess solutions of the form 

J(k,l,t) = A(k,l) exp[-i~(k,l)t] ••• (3.11). 

which when substituted in equation (3.10) yields the desired 

dispersion relationship 
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••• (3.12) 

which as we can see is identical to the one given by Hide(l966). 

The two roots of w correspond to inertial and magnetic modes of 

oscillation of plane waves and are given by 

••• (3.13) 

depending on whether the positive or the negative sign is taken. 

Now let us try to obtain a complete solution for -:5 (x,y,t) 

under the initial condition 

-;S(x,y,o) = j 0 (x,y) (3.14) 

This initial waveform of the disturbance can be decomposed into 

an infinite numbers of waves each given by 

,,,.o 
j(k,l,O) = J \"5<x,y,O)exp[i(kx+ly)]dx dy ••• (3.15) 

-..o -..o 

Substitution of this initial condition in equation (3.11) shows 

~ ..0 

A(k,l) = ~(k,l,O) = 5 !~<x,y,O)exp[i(kx+ly)]dx dy ••• (3.16) 
-..o -,.&> 

The disturbance thus consists of an infinite Fourier 

superposition of plane waves of form (3.11) each with a different 

wavenumber K(k,l) and oscillating with frequency ~(k,l) which 

is determined by equation (3.13). The amplitude of each mode is 

given completely by equation (3.16). Therefore, our complete 

solution can be written as 

tJIOtiQ 

:5<x,y,t) = 1/(211)2) ~A(k,l)exp[i(kx+ly-c..>t)dk dl ••• (3.17) 
---..0 
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3.3 THE ASYMPTOTIC EVALUATION OF THE ~AVE INTEGRAL To evaluate 

~(x,y,t), we shall examine its asymptotic form for large t by the 

method of stationary phase.For the sake of brevity, only a basic 

description of the method outlining the physical reasoning behind 

the asymptotic approximation will be presented here, though more 

rigorous derivations can be seen in Jeffreys and Jeffreys (1956) 

or Lighthill (1978). The basic idea is that as t~ oo, with x/t, 

y/t fixed, the phase ~ of the exponential term in equation 

(3.17) is a rapidly fluctuating function of k and 1 (Pedlosky 

1979), ie for large t the function 

!" = t g(k,l) = t[ (x/t)k + (y/t)l - ru(k,l)] ... (3.18) 

changes by large amounts for very small variations of k and 1 as 

and 

d~/Jk =.t(x/t - ~w/~k) 

u~/al = t(y/t- )w/ol), 

... (3.19) 

••• (3.20) 

become very large. Thus ~s t increases both the real and 

imaginary parts of exp[i(kx+ly-wt)] oscillate more and more 

widely between plus and minus one. One can envisage a situation 

in which finally for a very large t, the contribution to the 

integral (3.17) from one value of K(k,l) will be cancelled by a 

neighbouring value of K(k,l) for which the phase has advanced by 

11. This will be possible of course only if A(k,l) is asmoothly 

varying function of k and 1, and is thus nearly the same for both 

values of K(k,l). This type of behaviour can be expected to occur 

for all values of K(k,l) except for those values K(ks,ls) for 

which the phase ~ is stationary ie. c~/ok = 0 and C)!/~1 = 0, 
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which as can be seen from equations (3.19) and (3.20) occur at 

points where 

... (3.21) 

Therefore, the main contribution to the integral of equation 

(3.17) will arise from the neighbourhood of those wavenumbers 

which satisfy equations (3.21). Equations (3.21) have a simple 

interpretation. After a large lapse of time after the initial 

disturbance, the main contribution to ~(x,y,t) at a point (x,y) 

comes from only those wavenumbers whose group velocity ( ~/ak, 

C)c.)/~1) has allowed them to travel a distance x in the east and y 

in the north direction from the point of disturbance at x=y=O in 

this time t. Thus at any large time, relations (3.21) can be 

employed to map the location of the dominant wavenumbers K(ks,ls) 

at each point on the x,y plane. 

Now, in the tiny interval around K(ks,ls), w(k,l) can be 

expanded to second order by the help of Taylor 1 s theorem giving 

v.)lk,L) .:=. W(lc.5 ,L5 ) 1- (""-ks)\~l\<.s.ls) t(L-Ls)~(k.r,L5 ) -t 

so that 

'). .l. l. :L 

_!_ f ~~ .. tks,Ls\tk-k~)+Jw1llc.s) .. s)(l-L.s) -t- .:l.C.k..-k:.s)ll-Lsl·'-'~kJ,t.s)l 
'- l (J > L ~k ~L :J ..• (3.22) 

k."X-ti..Y-GJt ::. ~sX +LsY -c...>Lk.s,L~)t] -t- [x-~Cl~ll<. . .s,Ls>t}k.-\(5 ) t [Y- ~(ks,l..5 )t]cL-L~) 

•.. (3.23) 

The second and third terms in this equation vanish by virtue of 

stationary phase relations {3.21). Thus for 'large t, the 

integral {3.17) can be approximated by 
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Ls~A k.s A 

:!>lx,v,t)=~,~~ ~ 't Atk,L) ~')lp[.:ll~.s,._-+\.,~Y-CJ(k~,Ls.~ X 

~-6 k3-4 

where 2A is the tiny interval around ks and ls in which the 

phase of ~(x,y,t) can be termed stationary. In this interval 

A(k,l) can be replaced by its mean value A(ks,ls) as it is a 

smooth function of k and 1. Thus 

The final result is independent of the size of t::. as long as it 

is small. Now introduce 

in equation (3.25) which becomes 

••• (3.28) 

L .,., if ~ L '<.s L;) 7 0 
l. G\!(.L ' 

where ~'-> ( -sgn- ~<, LJ) - J.. ~" ~ ' 
-I if ~ (k ~) LO 

dl{... s, 

••• (3.29) 
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•.. (3.30) 

As t ~ c.o , P s ~ oe and Qs ~oa and (3.28) reduces to a 

definite integral. 

Now, noting from Gradshteyn and Ryzhik (1965) p.397 

pO 

fsin(ax2+2bx+c}dx = 0.5(~/a)1/2 sin[TI/4 + (ac-b2}/a], a> 0 
0 

oO 

and Jcos(ax2+2bx+c}dx = 0.5(~/a)1/2 cos[rr/4 + (ac-b2)/a], a> 0 
0 

the inner integral in equation (3.28} reduces to 

IJfO cP 

Also note that fsin(ax2}dx = ~cos(ax2 }dx = 0.5[~/2a]1/2 , a > 0 
0 D 

(Gradshteyn and Ryzhik (1965} p.395 

and the integral (3.28} simplifies to 

where contributions from all stationary phases are to be summed 

••• (3.32} 
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Thus cp = 11/2u -11/2 or Ou as the integral is evaluated over a 

maximum u minimum or a saddle point of w • 

It appears from equation (3.31) that the wave amplitude 

diminishes like (t)-lu which is not strictly true since w(ks,ls) 

and hence its first and second derivatives are all complicated 

functions of x/t and y/t by virtue of (3.21). [But see the 

discussion following equation (3.33).] To calculate the denomi-

nator and the exponential terms of equation (3.3l)u we need to 

obtain ks and ls in terms of x/t and y/t. This mapping can be 

done by inverting the equations (3.21) 0 where the required values 

by differentiating the dispersion relationship (3.13) w.r.t. k 

and 1 0 respectively. Howeveru it will be seen that the 

expressions for 

non-linear functions of ks and lsu and it will thus be impossible 

to obtain analytical solutions of ks and ls in terms of x/t and 

y/t. We can overcome this difficulty by studying the phenomenon 

separately for small and large wavenumber limits. 

3. 3.1 The small wavenumber limit. For most wavesof planetary 

dimensions wavenumber IKI = (k2+12 )1/2 << ( f!>;2v )1/2 and as a a 

result equations (3.13) can be simplified by the help of binomial 

expansion to 

0 0 0 (3.33) 

0 0 0 (3.34) 

Equation (3.33) is the well known dispersion relationship for 
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ordinary Rossby waves to which our inertial modes reduce to, in 

the small wavenumber approximation. We will not investigate these 

modes any further as they have already been the subject of 

similar investigations by other fluid dynamicists (see eg. 

Pedlosky 1979 p.l30-144.) 

The frequency of the magnetic modes is a straight forward 

function of wavenumbers k and 1 in the small wave number limit. 

Differentiate (3.34) w.r.t. k and 1 to obtain 

.•. (3.35) 

and ..• (3.36) 

These expressions can be easily inverted to obtain ks and ls as 

functions of x/t and y/t, which are now given by 

... (3.37) 

. I 

~ Y, ( ll. rt: y )Yz. J 
1 = J..1 fo ) ~ r c .c -r.;r ..t J ; t: -, ... -

s .:r \V.:t.. L t t t: 
..• (3.38) 

where the negative sign is to be taken in 1 s when positive sign 

is taken for ks and vice-versa. Thus there is a kind of inverse 

relationship between wavenumbers ks and lsi ls being small when 

ks is large and ks is small when ls is large. Clearly two wave 

solutions are possible for each positive value of x (if ~ is 

positive), thus the waves propagate only in those two quadrants 

where x is positive. Further no solutions occur for ks and ls 

outside the region defined by x ~ .j3 IY/ (see figure 3.1 ). For 

every point inside this region we obtain two waves, whose 
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The zone 
of initia] 
disturbance l : I I 

1 I 

Figure 3.1 The solutions for stationary phases 

possible only in the shaded region encosed by the 

lines x=/3y and x=-/Jy. Each of these lines marks a 

caustic characterised by the presence of two waves 

on one side and none on the other. 
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wavenumbers form two stationary points each (one for positive and 

one for negative wavenumber) which contribute dominantly to 

~(x,y,t) at that point. Figures 3.2 and 3.3 show them as contours 

of constant ks and ls' respectively, on the x/t, y/t plane. 

Also .•. (3.39) 

..• (3.40) 

and ••• (3.41) 

which when substituted in (3.31), simplify it to 

••• (3.42) 

Substitute for ks and ls in the denominator of this equation from 

(3.37) and (3.38) to obtain 

where 4>, = TT/2 when both ks and ls are either +ve or -ve. 

~ = -~/2 when only one out ofks and ls is positive. 

This solution indicates that an observer following a wave by 

travelling with its group velocity (x/t,y/t) will find its local 

vorticity diminishing slowly with time as a function of t-1. If 

on the other hand the observer was tracking a particular crest 

which moves with the local phase velocity, he will find its 

amplitude diminish in a far more complicated manner. This rather 

slow rate of reduction in the amplitude of the wavepacket is not 

surprising as the waves fill a limited region of the x-y plane as 
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Figure !.2 Contours of ks on x-y plane. For any fixe~ value of 

x/t, y/t, there are two waves which have .stationary 

phases. Contour interval = 0. 05 .fo;v a. 
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they propagate. Waves with large wavenumbers are found the 

farthest from the source area at any time and have their energies 

diminished at rates that are rather larger than those of lower 

wavenumbers, as the presence of a term involving velocities in 

the denominator of equation (3.43) points out. This behaviour 

occurs because shorter waves disperse far more rapidly than the 

longer waves as can be seen from equations (3.35) and (3.36). 

Once ~(x,y,t) is known, other variables associated with the 

disturbance like the local velocity fields u(x,y,t) and v(x,y,t), 

the horizontal magnetic field components bx(x,y,t) and by(x,y,t) 

and their temporal variations (~bx/at and ~by/~t) are calculated 

as follows: Fourier transform equations (3.2), (3.3), (3.6) and 

( 3. 7), observing that e = 0, to get 

••• (3.44) 

••• (3.45) 

iku(k,l,t) + ikv(k,l,t) = 0 ••• (3.46) 

and ~(k,l,t) = ikv(k,l,t) - ilu(k,l,t) ••• (3.47) 

Eliminate v between equations (3.46) and (3.47) to obtain 

similarly v(k,l,t) = -ik/(k2+12) )(k,l,t) 

Then from equations (3.44) and (3.45) 

~bx(k,l,t)/~t = -B0kl/(k2+12) ~(k,l,t) 
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••• (3.48) 

••. (3.49) 

••• (3.50) 



•.. {3.51) 

The last two equations are integrated with respect to time to get 

.•• {3.52) 

••• {3.53) 

where use was made of equation {3.11) 

Equations (3.48) to (3.53) can be inverse transformed to 

obtain the various quantities on L.H.S. of these equations in 

space domain. eg. 

u(x,y,t) = 
~ .,0 

~ ~ il/(k2+12) -:) (k,l,t) exp[i{kx+ly)]dk dl 

Q().,O 

= ~ ~ il/(k2+12) A(k,l) exp[i(kx+ly- ot)]dk dl 
-oO -~ 

..0 .,0 

= _1 ~ ~A' (k.l) exp[i(kx+ly-c,.:,t)]dk dl 
l'-1TJ'-oe --

[from (3.11)] 

••• {3.54) 

where A'(k,l) = il/(k2+12) A(k,l) is a smoothly varying function 

of k and 1 and represents the initial amplitude of u{k,l) in 

terms of the amplitude of j(k,l ). 

Equation (3.54) is of the same form as (3.17) and is integrated 

as above to yield 

•.• (3.55) 

••• (3.56) 
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where c = f!>;v 2 
a 

ALkJ Ls) ~)(.pE(k,.lC-tLs>'-wC.ks,Ls)t-<b+ -:;)] 
tJ:!>kff- Li 

... (3.57) 

•.. (3.58) 

••• (3.60) 

So far we have confined our attention to the region enclosed 

by the lines x = .:t J3 y. All the above asymptotic approximations 

clearly break down at the boundary of this region and beyond as 

3ks 2 - ls 2 __....l) 0 along this boundary. Such a boundary is called a 

'caustic' (Lighthill 1978) and it separates a region of 

complicated wave pattern formed by the interference of two groups 

of waves of nearly equal wavenumbers from a neighbouring region 

marked by the absence of any waves. 

To see why such a breakdown occurs and to produce a 'healed' 

version of these functions near a caustic, let us return to 

equation (3.22) and rewrite it in a new frame of local axes in 

which the tensor T formed by the second derivatives (w.r.t. the 

wavenumbers) of W has only diagonal elements. ie. if we denote 
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the wavenumbers in the new frame of axes by k 1 and 1 1 then 

c2 c.) /(~k 1 ()1 1
) = "d2 eu /(H 1} k 1

) = 0 and we get 

, 
WLk,L) = 

... (3.61) 

In this system of co-ordinates the integral (3.24) splits into a 

product of two Gaussian integrals and can be simplified 

(Lighthill 1960, 1978) to 

I I 

~(.')(lylt) = ••• (3.62) 

I 

where x 1 y 1 is the new system of space co-ordinates and ¢ the 

phase of the wave= Tf/4[sgn(;)2c..:l/~k'2) + sgn(d4..>/~1'2)]. This new 

system of co-ordinates can be obtained by rotating the old frame 

of axes by lr/6 in the clockwise direction. Now near the caustic, 

the denominator of equation (3.62) vanishes, implying that one of 

the diagonal elements of the tensor T must itself be zero. For 

our choice of new axes, it is d2c.u/~l 12 , which means that d(..)/01 1, 

the group velocity of the wave at the caustic has reached an 

extremum in the direction of y 1 (actual calculations show that it 

is minimum there) and thus there are no neighbouring waves with 

which these waves can share a stationary phase. This is the 

reason why these approximations fail. Near the caustic we will 

now need to expand W (k 1 ,1 1) to the third order terms in 1 1• ie. 

L I I ~£0 I I { I J ) )'-J ( I I 
;- ( 1'.- kc..)- ( kc. 1 L,) -t L L - Lc. - kc 1 L£..) 

~I<' }L' 

I L , I ~ ~l.c.:J I I I ] 
+ - ( k- l<c) --~ • l kc. LL ) 

~ ;:.1< ... I 

I ( I I ll \ ~ )3<.0 I I 
-- ~- '- J - lk L ) 

b. )L'.3 c, ' 
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when W(k',l'} is substituted in the integral (3.24}, it reduces 

~(x' ,y' ,t) to a product of a Gaussian integral in k' and an 

Airy's integral in 1' ie 

~ I I 
.::.>(x,v, t) 

J
t>O I I I I I I I 3 3 I I J I 

A.y.pfit(L-Lc.)(x-)c.J(~ L.:)l\;-..!....(l-Lc)~(kc. Lc) dL 
L ;:}l' "'<:., ') ' "dl'~ I (3.63} 

-oo 

We have already dealt with the Gaussian integral above and the 

second integral can be evaluated by the help of the integral 

relation 

oD 
~ cos ( ak3+bk )dlr. =- 1T I ( 3a) 1/3 
0 

A· [ (3a}-l/3b)] 
l. 

•.. (3.64} 

where Ai(x) is the tabulated Airy function which satisfies the 

differential equation 

d 2 A · ( X ) /d X 2 - xA · ( X ) = 0 
l. l. .•• (3.65) 

and decays exponentially for positive arguements and oscillates 

for negative arguements. 

This results in an expression which is a product of an 

ordinary stationary phase expression in variable k' and an Airy 

integral term in 1', 

••• (3.66) 
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0 the r quanti t i e s ( u , v , b x , by , 'db xI at , 'db y I~ t ) a r e a 1 so 

calculated by following the same procedure; though the actual 

expressions for these functions will not be reproduced here. 

3.3.2 The large ~ave nu~ber li~it. For very short Rossby-MHD 

waves, the dispersion relationship (3.13) can again be simplified 

considerably. Especially if IKI= Jk2+12>> J~I2Va, then 2Va(K 2+12)1~ 

is much larger than unity and (3.13) yields 

f..Vi ,m = :t V ak ••• (3.67) 

which is the phase velocity equation of ordinary Alfven waves 

propagating non-dispersively ( ~t.:>ldk = 'VIk = constant) in either 

direction of the magnetic field with velocities equal to va. 

(Observe, however, that due to Taylor-Proudman constraint for 

barotropic fluids in geostrophic equilibrium, the fluid columns 

move as coherent units and thus waves are not strictly one-

dimensional). Alfven waves do not have any velocity component in 

the y (north) direction (dc..)l;)l = 0), and will therefore be found 

immediately to the east or the west of the source. The method of 

stationary phase is inapplicable (and unnecessary) for these 

waves as the second derivatives of w are zero for such waves. As 

Alfven waves are non-dispersive, an initial envelope of these 

waves will be expected to travel along the magnetic lines of 

force without any attenuation of its constituent waves and will 

thus propagate for long distances with no changes in its initial 

shape. 
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3.4 A FEW SYNTHETIC EXAMPLES The above discussion suggests 

that from a highly localised source region of magnetic waves, the 

waves that leave that area first are the Alfven waves. As Alfven 

waves travel without spreading their energies in large areas, 

they will be observed at long distances from the source until 

they either lose their energy by the combined dissipative effect 

of the viscocity and finite electrical conductivity of the fluid 

or are reflected by a boundary. Immediately following the waves 

and filling much larger areas will be the magnetic Rossby waves 

of intermediate frequencies which will in turn be followed by the 

slowest waves of all, the large wavelength magnetic Rossby waves 

spreading their energy gradually over larger and larger areas. 

Most of the observable planetary MHD. waves will fall under this 

last category, which we will now study in greater detail by the 

help of a few examples. 

Before we can actually calculate the perturbations asso-

ciated with a propagating disturbance we still need to answer one 

crucial question. In deriving the asymptotic form of the Fourier 

wave integral, we have so far implicitly assumed that 't' is 

large. We will have to give a more precise meaning to this state-

ment to avoid incurring large errors. We can see that the main 

source of error in the asymptotic approximation of the integral 

(3.17) will come from the neglect of higher order terms in the 

Taylor's series expansion of w around c.) (ks,ls). Whitham (1974) 

shows that for one dimensional waves, when the Taylor's series 

expansion of w includes terms up to the 4th order, the method of 

stationary phase provides an addi tiona! term in the asymptotic 
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approximation, which can be written as a factor 

,_ 

(' /
0 denotes derivative w.r.t. k) 

multiplying the terms of the second order approximation. When 

appropriate substitutions are made for these derivatives from the 

above equations, this factor simplifies to 

1 - 0.035/(t<J) = 1 - 0.005 T/t 

where T is the typical time period of the waves. Thus when t~ T, 

there will be less than half a percent of error due to neglect of 

the 4th order term in the asymptotic approximation. Thus in all 

our calculations t has been chosen to be of the same order as the 

typical time period of the wave we are studying. The time periods 

of the waves in turn are derived from the dispersion relation and 

from the length scale prescribed in the initial condition. 

Figure (3.4) shows the field of local vorticity :,(x,y,t) 

associated with the propagating disturbance, calculated in the 

small wavenumber limit. As expected, the disturbance associated 

with the magnetic Rossby waves propagates only in the positive x 

quadrants and is confined mainly in the region enclosed by the 

lines x= :!. Jjy. Inside this region the function is calculated by 

the help of equation (3.43) whereas equation (3.66) involving 

Airy's function was employed for the rest of the map. The initial 

disturbance was assumed to have a constant amplitude for all 

wavenumbers IKI < 2TT /}. ~ being the spatial dimension of the 

initial disturbance.The amplitude of any other wave with 

wavelength >)I was truncated by an exponential factor whose 
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arguement is given by [(T-T:1')/T:1']2, (Tis the time period of the 

wave in question and T~ is the time period of the wave whose 

wavelength is /1 ). In addition we assumed that the initial 

disturbance is symmetric about both the axes and as a result 

* A(k,l) = A (k,l), where * denotes complex conjugate, which 

implies that the imaginary part of the initial amplitude should 

be taken as zero. The highest values of disturbance in the 

vorticity field of figure 3.4 occur near the caustic and tend to 

dominate the amplitude of the wave train. Figures 3.5 and 3.6 

show the x and y components of fluid velocity associated with the 

propagating disturbance which present a very similar picture, 

except that the contours of v(x,y,t) tend to form concentric 

circles around the zone of initial disturbance. We should, 

however, mention that the fields u and v plotted here are not 

unique, as any velocity field 'u(u 1 ,v1 ), whose vorticity 

~(x,y) = JV1/~x - du1;dy = 0, can be added to our velocities with 

impunity. If on the other hand, we can specify in the beginning 

that the original disturbance was purely rotational in character, 

then the above interpretation is certainly correct and the only 

one that is possible. Figures 3.7 and 3.8 show the x and y 

magnetic field components of the disturbance which can be seen to 

decay rapidly for the shorter waves in the front, though the 

temporal variations of these field (=~x/)t andlby/~t, figures 

3.9 and 3.10) remain comparable in amplitude for faster and 

slower waves. 

If we apply the results of this section to the case of the 

earth's core keeping in mind the caution that should be exercised 
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Figure 3.5 u(x,y,t), the x-component of fluid. ve loci·ty 

associated with the propagating disturbance. For 

other details see figure 3.4. Contour interval 

arbitrary. 
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Figure 3 . 6 v(x,y,t), the y-component of fluid veloci.ty 

associated with the propagating disturbance. For 

other details 

arbitrary. 

see figure 3.4. 
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Figure 3.7 b:lt(XuYut)u the x component of the magn~tic field 

associated with the propagating disturbance. For 

other details see figure 3.4. Contour interval 

arbitrary. 
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Figure 3.8 bx(XuYut)u the y component of the magnetic field 

associated with the propagating disturbance. For 

other details see figure 3 .~. Contour interval 

arbitrary. 
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Figure 3.10 the temporal variation of byu 

associated with the propagating disturbance. For 

other details 

arbitrary. 
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while applying the results of a ~ plane model to a thick shell 
0 

(see sections 1.4 and 1.5), for a basic latitude ~ = 34 we can 

take j?> = -3.4Xlo-llm-ls-l (Hide 1966 and equation 1. 76) and for a 

basic toroidal magnetic field of strength 50 Oersteds, Va = 

O.OSm/sec. Then each unit of distance displayed on these maps~ 36 

kms. and the unit of time ~ 9 days. Then the perturbations have 

length scales of many hundred kilometers and time periods of the 

order of several decades. 

3.5 PERTURBATIONS IN THE VERTICAL COMPONENT OF THE MAGNETIC FIELD 

So far we have taken B0 , the ambient magnetic field to be 

uniform in all directions and as a consequence bz satisfies an 

equation of the form (3.4) and thus does not in any way 

contribute to the dynamics of the system. The magnetic 

disturbances in this type of system can not be observed from 

outside as there is no outward component of b associated with the 

disturbance. This is analogous to the situation in the earth's 

core in which the perturbation of toroidal magnetic field can not 

produce disturbances in the radial direction directly. However if 

a non-uniform peloidal field BP (~p!Je::t=-0, ~BplJ4>:f 0) is present 

along with the toroidal field, then it will be convected by the 

fluid motions associated with the original perturbations and its 

radial component can be easily distorted. If we carry this 

analogy to our ~ plane model we could then assume the vertical 

component of the ambient magnetic field in such a way that 

0 •• (3.68) 
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Though still )Bx/~x + ()By/~y = - dBz/~z = 0. Once again the total 

magnetic field (ambient+perturbations) will satisfy the equation 

d[(Bz + bz)]/dt = 0 ••• (3.69) 

which can now be linearised to 

••. (3.70) 

Thus, though the vertical component of the total magnetic field 

still does not contribute to any hydromagnetic forces, it can now 

act as a tracer of the fluid motions by displaying temporal 

perturbations which are proportional to its gradient in the 

direction of the perturbed fluid velocity (ie. ~z/~t = u.oqBz). 

When equation (3.70) is integrated with respect to time we obtain 

••• (3.71) 

wher!= a and b are the fluid displacements at any point (x,y) in 

the E-W and N-S directions, respectively, at time t. 

We have calculated these fluid displacements for the initial 

value problem of the previous section and are shown in figures 

3.11 and 3.12. Now, say for example, we assume that ~Bz/ax = 0, 

ie the vertical component of the impressed magnetic field is 

uniform in the E-W direction and ~Bz/~y = constant (=c say) ie Bz 

varies linearly with latitude, then by virtue of equation (3.71) 

bz(x,y,t) = c b(x,y,t) ••• (3.72) 

and the contours of fluid displacements of figure 3.12 will be 

directly proportional to the variations in the vertical component 

of the magnetic field. 

90 



y 

80 

60 

40 

20 
------ --- -=~ --------- (r:,.:_-~::.:::--

0 
60 80 100 120 140 160 180 )< 

~ 

-20 
l.c::::::.l 

~ \ 
/ 

I / 
/ / 

-40 
' ,. / ... ,. .... / 

/ 

"'- / 
/:!--" / / ...... -'O(J 

-60 ~---
I 

1 ,:;, 

0 
-80 

Figure 3.11 a(x,y,t), the x component of the fluid displacement 

vector associated with the propagating disturbance. 

For other details see figure 3.4. Contour interval 

arbitrary. 
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b(x,y,t), the y component of the fluid displacement 

vector associated with the propagating disturbance. 

For other details see figure 3.4. Contour interval 

arbitrary. 
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CHAPTER FOUR 

THE REFLECTION OF ROSSBY-MAGNETOHYDRODYNAMIC WAVES AT 

A RIGID BOUNDARY 

4.1 GENERAL A good illustration of how a magnetic Rossby-MHD 

wave may convert its magnetic energy to kinetic form and thus 

transform completely or partially into one or more inertial 

Rossby-MHD waves is provided by the case study of the reflection 

of a magnetic Rossby wave by a rigid boundary. Such reflections 

will obviously be important in the studies of all bounded fluid 

bodies approximately in geostrophic equilibrium. Although, in the 

following sections, the dissipative effects of viscosity and 

finite conductivity of the fluid and the boundary will be 

neglected, they will certainly be important in studies involving 

multiple reflections, especially of short waves, which wiil decay 

in a finite time. In this work we will essentially make use of 

the concept of a wave packet which is assumed to travel at the 

group velocity of its constituent waves (see eg. Whitham, 1960, 

1965; Lighthill, 1965, 1978), to understand the ongoing process 

of reflection of waves by insulating and conducting rigid 

boundaries. In some respects this investigation extends the work 

of Longuet-Higgins (1964a,b) and Pedlosky (1979) for ordinary 

Rossby waves. We shall once again assume a beta-plane 

configuration. 

4.2 Formulation of the problem Consider figure 4.1 in which the 

ray of a wave packet of magnetic Rossby waves is incident upon a 

N-S boundary and makes an angle ~. to the x-axis. For the wave to 
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truly approach this boundary, its group velocity and consequently 

its energy flux will have to be directed towards the boundary. We 

also assume that 13 0 , the basic toroidal magnetic field is 

azimuthal ie. parallel to x-axis. The vorticity 

'f.= 0 

Figure 4.1 Reflection of a hydromagnetic wave packet by a rigid 
boundary 

function ~ for any incident plane wave with wave numbers k1 and 

1 1 and frequency w 1 can be written (see equation 1.65) as 

•.. (4.1) 

where w 1 , k1 and 11 satisfy the dispersion equation 

••• (4.2) 

The presence of the rigid boundary will produce one or more 

reflected waves (we shall ascertain their number later) each of 

which can in turn be described by 

••• (4.3) 
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and will also satisfy the dispersion relationship (4.2). 

Following Hide (1966) and equation (1.68), the E-W component of 

the fluid velocity associated with the wave (4.1) can be written 

as 

We can write similar equations corresponding to all the 

reflected waves described by equation (4.3). Now the E-W velocity 

of the fluid should vanish at the boundary. ie. at x = 0 

.•• (4.4) 

The only way equation (4.4) can hold for all tis that w1 = CJ2 

= (...)3 = c.J r = ~ (say) which implies that the frequencies of 

all the reflected waves are equal to the frequency of the 

incident wave. Also if relation (4.4) is true for all y then 11 = 

1 2 = 1 3 = lr = L (say), ie. the projection of the wavenumber 

parallel to the boundary is also preserved under reflection. 

To gain a clear understanding of the situation let us turn 

to equation (4.2) and rewrite it in units of (Va/~)1/2 for 

distance and (V p)-1/2 (see equation 1.77) Fo1 t;-me. • a 

••• (4.5) 

which can be a~ranged as a quartic in k as 

••• (4.6) 

As w and 1 remain unaffected by the process of reflection 

equation (4.6) associates 4 values of k (say k 1 ,k 2 ,k 3 and k 4 ) 
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with each of these cJ and 1. It is impossible to extract the 

roots of equation (4.6) analytically but we can readily deduce 

the size and nature of these roots from the 'normal curves' which 

are contour maps of frequency 0 in the (k,l) plane. Hide and 

Jones (1972) published an exhaustive numerical study of the 

dispersion relationship (4.5) and figure (4.2) here has been 

reproduced from their work. 

It can be seen from these normal curves that if is 

greater than a critical frequency w* and l<<l*(w), for each set 

of ~ and 1, we can assign 4 different values to k as already 

suggested by equation (4.6). It can also be seen that two of 

these wavenumbers [corresponding to the largest negative root 

(=k 3 say) and the root with the smallest absolute value (=k 2 

say)] are associated with waves which have westward group 

velocities (ie. ~c.>/~k < 0 which means that the gradients of the 

normal curves of these waves are in the direction of negative x­

axis) while the other two wavenumbers (=k1 the only positive root 

of the equation and k 4 , the remaining root) belong to eastward 

travelling waves. But as the reflected waves can have only 

westward (ie. pointing away from the boundary) group velocities 

at x = 0, we are forced to conclude that the amplitude of the 

wave corresponding to k 4 must be zero and thus at the most two 

reflected waves can be generated. 

To see whether these reflected waves are magnetic or 

inertial in their behaviour, we shall look at the magnetic and 

kinetic energy contents of these waves. To do this first obtain a 

simple equation of the form 
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••• (4.7) 

by a little manipulation of equations (1.59) and (1.60) and 

considering that e = 0. 

The left hand side of this equation represents the ratio of the 

magnetic energy of a wave of frequency c.) and x-wavenurnber k, to 

its kinetic energy. Write this equation in new units of distance 

and time as 

_, .2. .2. 
i ).A ( b,. 1' by) 

..!.. 1 ( u.t-\" 1.)~) ,. 
k~ 
-.:L. 
c.u ••• (4.8) 

This equation states that for any wave for which in the 

normalised units k >>c..), its energy will be mainly magnetic, 

whereas the waves with C.V >> k are mainly inertial. Waves with 

~~ k are marked by the equipartitioning of magnetic and kinetic 

energies and thus represent Alfven waves unaffected by rotation. 

A cursory examination of the normal curves shows that by this 

criterion one of the waves (k2 ) is an inertial Rossby wave while 

the wave represented by k 3 is mainly Alfven, though its kinetic 

energy is slightly larger than its magnetic energy. 

Thus in the light of discussion we can say that a magnetic 

Rossby wave represented by equation (4.1) produces on reflection, 

an inertial Rossby-MHD waves and an Alfven wave which can be 

described by 

••• (4.9) 
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and ... (4.10) 

The boundary condition (4.4) then simplifies to 

0 ..• (4.11) 

where l,k1 ,k2 ,k3 ,A1 and consequently A2 and A3 are all real. 

A very different picture of the situation emerges when the 

frequency of the wave is less than a critical frequency * w or 

* when 1 > 1 (W ), as is the case with most of the hydromagnetic 

planetary waves found in nature. In such a situation equation 

(4.8) will have only two real roots of k (Hide and Jones 1972); a 

fact also evident from a consideration of the normal curves of 

figure of 4.2. In this case root k 3 becomes complex which 

signifies the presence of a 'non-propagating' or leaking type of 

mode at the boundary. These modes continually radiate energy into 

the surrounding medium and thus attenuate as they travel away 

from the boundary. Such waves cannot penetrate deeply into the 

media and can thus exist only at the boundary. The total energy 

associated with these modes is negligible and they often arise as 

a consequence of a phase shift in the reflected waves. (See 

Pilantl979 p.l63, or Officer 1974 p.201 for examples of similar 

leaking modes in the case of elastic waves). To obtain the 

amplitudes A2 and A3 of the reflected (or leaking) waves, we 

shall presently study the two cases in detail separately. 

Case 1. The frequency of the incident wave is large 

ie. C0 ~~ and ! ~ 1/J..c..>l 
The boundary condition (4.11) alone is not sufficient to 
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determine the amplitudes of the two reflected waves relative to 

the incident wave. Therefore we shall introduce the second 

boundary condition, namely, the continuity of the normal 

component of the magnetic field across the boundary. If bxl' bx2 

and bx 3 denote the x components of the incident magnetic Rossby 

wave, reflected long wave inertial Rossby wave and reflected 

Alfven wave, then 

... (4.12) 

where points [1] and [2] are situated very close to each 

other in the fluid and the rigid boundary respectively and [Bxl 2 

is the value of the x component of the magnetic field in the 

boundary at point [2]. 

Now depending on the co~ductivity of the rigid boundary two 

further cases arise. 

Case l.A Boundary has infinite conductivity. 

The electromagnetic skin dept& is zero for a solid perfect 

conductor and consequently no time varying field penetrates its 

boundary. Therefore [Bxl 2 = 0 and equation (4.12) reduces to: 

(see Stewartson 1956 and 1957 for the range of applicability of 

such an assumption) 

bxl + bx2 + bx3 = 0 at the boundary •.• (4.13) 

Notice that as we are dealing with an inviscid and perfectly 

conducting fluid there are no boundary conditions on the 

tangential components of velocity and magnetic field and hence we 
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cannot rule out the possibility of both vortex and current sheets 

existing at the interface (Shercliff 1965). 

Thus by the help of equations (1.69) and (4.13) 

.•• (4.14) 

By eliminating A3 between (4.11) and (4.14) we obtain 

:::: 0 

or ••• (4.15) 

Similarly eliminate A2 from (4.11) and (4.14) to get 

••• (4.16) 

Thus we can obtain the amplitudes of the reflected waves relative 

to the amplitude of the incident wave from (4.15) and (4.16) if 

we have a knowledge of k of the incident and reflected waves. 

These can be obtained from (4.6) by employing some numerical root 

solving techniques like the Newton-Ralphson algorithm (see eg. 

Hilderbrand 1974 p. 575). In this work we: (a) first of all 

extracted two real roots ki,kj numerically, (b) divided (4.8) by 

k-ki and k-kj respectively to obtain a quadratic equation in k 

which (c) was solved exactly for the remaining two roots which 

can be real or complex. 

Case l.B The boundary is ~perfect insulator. 

This corresponds to a more realistic case. For example the 

earth's mantle may be treated as an insulating boundary as the 
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time scales involved are very large. Stewartson (1960, also see 

Roberts 1967, p.26 and Shercliff 1965,p.l32) shows that for a 

fluid of conductivity~ and kinematic viscosity v in contact with 

a fixed solid insulator, any jump in the tangential component of 

the magnetic field is related to the jump in the tangential 

component of the fluid velocity by the relation 

provided a strong component of magnetic field exists in the 

normal direction. This relation suggests that in the limit of 

lJ ~ 0 and rr ~ e>O, only one of the two boundary sheets ie. current 

or vortex sheets can exist. In fluids of importance in terrestial 

or planetary context Vo- is invariably very small and therefore 

Bs = 0. [Note that these results were derived for a non-rotating 

steady fluid. In appendix I it is shown that as long as w<.£\ 

these conclusions are valid in planetary contexts even for large 

rotation.] Thus both of the magnetic field components will be 

continuous across the interface and inside the insulating 

boundary the magnetic field can be expressed by a potential field 

cf>. ie. 

b = 'V¢ (inside the boundary) ... (4.17) 

Now div b = 0 • Therefore ~24> = 0. 

This equation has solutions of the form 

~ = A exp(ily - lx) .•• (4.18) 

which when substituted in equation (4.17) yields 
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ie. • •• (4.19) 

Then at x=O, the continuity of magnetic field implies 

0 •• (4.20) 

which with the boundary condition (4.11) gives 

::1.. ::1.. k~- k~ - i L lk1 - k:~) 
A;l - .Al 

\<..2.+ L 
- k~ -t L1 k_; - k~~ - i L l I<~- I<~) 

••• (4.21) 

and 

~ ::1.. ?.. :l 

A"> A1 
k 3 -t- L k.- k-:l _iL(\c:.,-k~) 

-
k~+ \.,4 ~~ - k~ - i l. ( k~- k~) - ••• (4.22) 

Both A2 and A3 have imaginary parts indicating that the reflected 

waves suffer phase shifts. If we denote these phase shifts by E 2 . 
and E3 respectively then the complex amplitudes can be written as 

where 

••• ( 4. 23) 

c
2 

= tan -1 .J. l k, + ~ -t .t k3) ••• (4.24) 

~ - ( kt T k.3 )( Ka.Tk3) 

.2 ::1.. 
A1 k 3 + L 1<.1. - k4 

(k~-tk!>)'\L~ 1<..~-~"L~ kJ-k;z. )\ 

[ l (k1-t-ka,)(ka:tk})-L~l + 

I fl.. 
.\ J..J L ( 1<.1 + \<3 + ~ kt) ••• ( 4 • 2 s ) 

and t; ••• (4.26) 
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Note that in this case, though a vortex sheet is permitted, no 

current sheet can exist at the interface. 

Case 2. The frequency of the incident ~ is small. w~w*oR 1>1 *<1.)) 

As already mentioned, k 3 becomes complex in this case and 

consequently "'5 3 (see equation (4.10)) decays exponentially as 

this mode moves away from x=O. The necessary electromagnetic 

boundary condition is again specified by the conductivity of the 

rigid boundary. Let us first assume a perfectly conducting 

boundary. 

Case 2.A The rigid boundary has infinite conductivity. 

Equation (4.13) supplies the necessary boundary condition 

and A2 can be obtained from equation (4.15) by replacing k 3 by 

R+ii in it. As A1 , 1, k 1 and k 2 are all real quantities this 

equation shows that A2 becomes complex. This is possible only if 

the wave 2 emerges with a phase shift after reflection. 

~ ~ ~ ~ 
llk1 -R)<R-\<:.~)-1 J -+Il\<1-K~) ••• (4.27) 

( R- k~) ~ 1- :I.~ 

E..t 

_, 
tOJVl ••• (4.28) 

A3 can be obtained from (4.16) by replacing k 3 by R+ii but the 

mean value of the amplitude associated with ~3 (=A 3exp(ix), 

remembering that x is negative in the fluid) averaged over many 
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wavelengths is infinitesimal. 

CASE 2.B The boundary is ~ perfect insulator. 

In this case the electromagnetic boundary condition is given 

by equation (4.20) in which k 3 should be replaced by R+ii. 

Then A2 can be obtained from equation (4.21) as 

1<.1~- R ~ .,. l- I L -t i. L R. l - .:t I R- k1 L) 

k-:t:t.- R.~ -t :I.~ -I.\. -+l.(R.L- Q.IR- k.:tL) 

It is a simple matter to extract IA 2 1 and 

... (4.29) 

E2 from this 

equation, though the exact expressions are very long and will not 

be reproduced here. A3 once again has a zero averaged value as 

its amplitude decays exponentially in the x direction. 

4.3 A NUMERICAL STUDY OF THE PROCESS OF REFLECTION. 

In the following pages a numerical investigation of th~ 

process of reflection carried out for a wide range of incident 

waves (from small to large frequencies and wavelengths) is 

reported. Figure 4.3(a) which is based on equation (4.6) 

illustrates graphically the relationship between k 1 and the x­

wavenumbers of the reflected waves over a large range of 

frequencies ~. L, the y-wavenumber is unchanged for reflected 

waves and is held constant at t=O.OS. It is immediately evident 

from this diagram that for w <w*, only one reflected wave which 

has k 2 << k 1 is produced. * For w > c.J , another reflected wave 

corresponding to k 3 is generated amd again we can see that k 3 < 

kl u indicating that the reflected waves are of much longer 

wavelengths. Figure 4.3b shows the relationship between k1 and k 2 
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for the case 1=1.0. Similar remarks as above apply to this 

figure except for the fact that k 3 and k 4 are complex for all w. 

Once we know the exact values of the wavenumbers and the 

frequencies of the incident and reflected waves, we can determine 

the relative contents of magnetic and kinetic energies of each of 

these waves by the help of equation (4.7). These have been 

plotted in figure 4.4(a) for waves with 1=0.05 and confirm that 

Emag/Ekin (k 2 ) << Emag/Ekin (k1 ) demonstrating once again that 

wave 2 represents an inertial Rossby-MHD wave. Thus for low 

frequencies (most planetary waves have w << 0.2 and K << 0.4 in 

these dimensionless units), there is a major conversion of 

magnetic energy into kinetic form as a consequence of reflection 

at a N-S boundary. Wave 3 is generated only when the incident 

wave has a very high frequency. At such high frequencies the 

incident magnetic wave is essentially an Alfven w~ve which is 

unaffected by rotation as is evident from its magnetic to kinetic 

energy ratio which is 0(1). Then wave 3 is also an Alfven wave 

though Emag/Ekin(k 3 ) < Emag1Ekin(k 1 ). Figure 4.4(b) shows these 

ratio plots for waves with 1=1.0. Once again similar inferences 

can be drawn except that only one wave is generated after 

reflection. 

The E-W and N-S group velocities of a wave i (i = 1,2,3) 

can be obtained from (4.5) by differentiating it w.r.t. k or 1. 

( .!!£..)-\" 
[ '-kc - 0 0 0 (4.30) 

1 
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1 
.•. (4.31} 

The group velocities so determined are shown in figures 4.5 

to 4.7. It is clearly evident from these figures that for all '0, 

the group velocities of wave 2 are much larger than the group 

velocities of waves 1 and 3. At higher frequencies waves 1 and 3 

have group velocities which are representative of Alfven waves. 

Further the E-W component of the group velocity of wave 1 is 

positive which confirms that it is an eastward propagating wave 

whereas the x components of group velocity of wave 3 is negative 

which shows that it is an inertial Rossby-MHD wave moving away 

from the boundary as we stressed earlier. 

As the group velocities of the reflected inertial waves are 

· considerably larger than that of the incident wave we would 

intuitively expect these reflected waves to have much lower 

energy densities. The average energy density of a hydromagnetic 

wave j is given by (Acheson and Hide 1973) 

.t "-
<Ej> = < O.S(uj2+vj2) + O.S(bxj+byj)/(~1) •.. (4.32) 

where uj, vj are the x and y components of the kinematic fluid 

velocity associated with the wave and bxj and byj are the x and y 

components of magnetic field perturbation. < > denotes average 

over a period. 

Now from Hide(l966) and equations (1.68) and (1.69) 

... ( 4 . 3 3A) 

••• (4.33B) 
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Thus from (4.32) 

which can be written in terms of the amplitudes as 

< E. i 
..L 
4 

••. (4.33C) 

••• ( 4 • 3 3D) 

••. ( 4. 34) 

where Aj is given by one of (4.1), (4.15), (4.16), (4.21), 

(4.22), (4.23) or (4.24) and observe that Va is unity in our 

units. 

One can easily appreciate from figure 4.8(a) which has been 

drawn for the case of reflection of a magnetic wave by a 

conducting boundary that the energy density of the incident 

magnetic wave far exceeds that of the inertial wave. At higher 

frequencies an Alfven wave is also generated whose energy density 

is marginally smaller than that of the incident wave. Contrast 

this with the reflection at an insulating boundary (Figure 4.8c) 

where the energy density of the returning Alfven wave is actually 

larger than that of the incident wave. Thus at higher frequencies 

we can expect an insulator to return more energy in the form of 

an Alfven wave than a conductor. Figures 4.8(b) and 4.8(d) are 

identical to each other (as one would expect, because all the 

incident energy returns in the same reflected form in both the 

cases), though the differences of energy densities between the 
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FIGURE 4.8{b) .same as figure 4.8{a) except 1 = 1.0 
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incident and reflected wave are not so dramatic. The reflected 

waves are never in phase with the incident wave as can be seen 

from figures 4.9 (a), (b), (c) and (d); the conducting boundary 

in general producing larger phase differences between the 

incident and reflected waves. 

Though the energy densities of the reflected inertial waves 

are much smaller than that of the incident wave one would expect 

the flux of energy to remain constant for incoming and outgoing 

waves. The energy flux through a unit area of the rigid boundary 

is given by (for the justification of this choice, of the 

definition of energy flux, see Appendix II.) 

••• (4.35) 

where ~j is the angle of incidence or reflection measured anti­

clockwise from the normal to the boundary. It will be given by 

••• (4.36) 

Figures 4.10 (a) and (b) graphically illustrate the relationship 

between the angles of incidence and reflection for a wide range 

of wave frequencies. It can be seen that both the incident and 

reflected wave packets make very small angles to the x-axis and 

thus propagate, for the range of frequencies studied, almost 

parallel to the x-axis. At low frequency limit the incident wave 

can be seen to fall far more obliquely on the rigid boundary than 

the emerging reflected inertial wave which would imply that the 

width of the wave packet increases as a result of reflection. 

Figures 4.11 to 4.13 show the x and y components and total energy 
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Figure 4.9(a)The phases of the incident and reflected waves for 
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1 = 0.05. 
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shown by solid circleso The reflecting boundary was 

assigned infinite conductivityo 
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Figure 4.11(b) Same as figure 4.11(a) except 1 = 1.0. 
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Figure 4oll(c) The x component of the flux of energy for the 

incident and reflected waveso 1 = OoOS and the 

reflecting boundary is highly insulatingo· 
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FIGURE 4.ll(d) Same as figure 4.ll(c) except 1 = 1.0 
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FIGURE 4.13(b) Same as figure 4.13(a) except 1 = 1.0 
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area of the insulating boundary by the ~hree waves. 

F(k2) is shown in solid circles. 1 = 0.05. 
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Figure 4.13(d) Same as figure4 .• 13(c) except 1 = l.Oo 

141 



flux passing through a unit area of the boundary for incoming and 

outgoing waves. Though the individual components of the flux are 

not conserved the total outgoing flux of energy contained in 

waves 2 and 3 is equal to the flux of energy provided by the 

incident wave (see figures 4.13 (a), (b), (c) and (d) ) vindicat­

ing that the total energy of the waves is conserved. 

To sum up, when a low frequency magnetic Rossby wave packet 

propagating eastwards encounters a N-S boundary, it is reflected 

back as a phase shifted faster inertial wave packet. Since the 

group velocity of the wave packet increases as a consequence of 

reflection, it will have its length stretched along the ray and 

because the reflected wave packet emerges almost parallel to the 

normal to the boundary it will have its width (as measured in the 

direction perpendicular to ray path) slightly enlarged. As a 

consequence its energy density will be considerably reduced, 

though the total energy of the wave packet is conserved by 

reflection. A wave packet consisting of higher frequencies will 

produce on reflection an additional Alfven wave packet whose 

group velocity and energy density are comparable to that of the 

incident wave packet and which manages to capture a larger share 

of the energy (and almost all the energy when the reflector is 

highly insulating) from the incident wave packet. 

We can mention here in the passing that a complementary 

process of reflection will occur when an Inertial Rossby-MHD wave 

encounters a rigid boundary situated at the eastern end of the 

fluid body. This time the reflection will produce two westward 

travelling waves whose properties can be evaluated by treating 2 
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as the incident and 1 and 3 as the reflected waves. 

4.4 THE REFLECTION BY AN E-W BOUNDARY 

The process of reflection is a function of the orientation 

of the rigid boundary. The special case of a boundary parallel to 

the x-axis (see figure 4.1~) can be studied by the same method of 

analysis as above. Once again the frequency and the wave vector 

parallel to the boundary are preserved implying that ~ and k are 

the same for incident and reflected waves. A simple study of 

figure 4.2 then shows that wavenumber 1 undergoes only a change 

of sign, so that the mode, wavelength, group velocity and thus 

the energy density of the waves are unaffected by reflection. 

Figure 4.1~ The reflection of the hydromagnetic wave packet at 
an E-W boundary 

Another property of the process of reflection in this special 
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case is that the angle of incidence of the wave packet equals the 

angle of reflection ie. the wave reflection obeys Snell's law. 

In general, when the direction of the rigid boundary is 

intermediate to these two special orientations we have studied, 

the reflection of a magnetic (or inertial) Rossby-MHD wave packet 

will produce both magnetic and inertial wave packets 

simultaneously whose energies can be determined by the above 

approach. 
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CHAPTER FIVE 

THE REFLECTION OF INERTIAL-MAGNETOHYDRODYNAMIC WAVES 

AT RIGID BOUNDARIES 

5.1 GENERAL Ordinary inertial waves and Alfven waves which can 

be regarded, respectively, as the rotation dominant andmagnetic 

field dominant cases of inertial-magnetohydrodynamic (IMHD) waves 

possess many remarkable propagational and reflection properties. 

Inertial waves are highly dispersive and anisotropic and are 

reflected by boundaries in such a way that the incoming and 

reflected flux vectors make equal angles with £1P' the projection 

of the rotation vector in the plane occupied by the normal to the 

boundary and the wave vector. The wavenumbers of the incident and 

reflected waves are in general unequal: though the frequency is 

conserved. [See e.g. section 2.2 or Phillips (1963)]. Alfven 

waves on the other hand are non-dispersive and are reflected by 

rigid boundaries without change of wave amplitude, wavenumber, 

frequency or phase of the associated magnetic field (though the 

velocity has its phase reversed) and return in the direction of 

the magnetic lines of force [See e.g. Walen (1944, 1946), 

Lundquist (19 52), Ferraro and Pl umpton (19 61), Alfven and 

Falthammar (1963), Roberts (1967)]. When both rotation and 

magnetic field are important, from our experience of the last 

chapter, we can expect more than one wave to be generated by the 

reflection of an IMHD wave at a rigid boundary and in many 

situations a major conversion of kinetic energy into magnetic 

145 



energy or vice versa. Such studies are crucial in the 

determination of the effect of boundaries on the exchange of 

energy between different wavenumbers (Phillips 1963) and the 

dynamo action associated with random IMHD waves (Moffatt 1970). 

5.2 FORMULATION OF THE PROBLEM Consider a plane boundary which 

passes through a point p(p1 ,p 2 ,p 3 ) and has an outward normal 

A 
given by n = (nx,ny,nz). The boundary can be represented by 

ll - I\ -n.X = n.p ... (5.1) 

where p is the position vector defined by p and X = ( x, y, z). For 

a wave to be truly incident on this boundary its group velocity 

will have to be such that 

... (5.2) 

Let us define the z axis of our rectangular system of co-

ordinates in the direction of the rotation vector JL and because 

we are mainly interested in the geophysical applications of our 

results we assume a strong basic magnetic field in the x 

direction which on a local scale simulates the earth's toroidal 

magnetic field. Once again we assume that the fluid is highly 

conducting, inviscid, incompressible and rotating rapidly and is 

thus able to support plane IMHD waves of the form 

u = A. exp [ i (i< .x - w t > l ••• (5.3) 

where u is the local velocity = {u,v,w), K = (k,l,m) is the 

wavenumber of the wave and W is its frequency. The dispersion 

relation {1.36) [noting that N = 0 in our case] for these waves 

can then be written as 
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If we express distances in units of Va~ and time in units of 

1/r.L u this equation can then be non-dimensionalised to 

ooo(5o5} 

It is a simple matter to show by the help of the continuity 

equation (L28)u Gauss 1 s Law (L30) and the wave equation (L34) 

(when N = 0) that the components u and v of the local velocity u 

in these units can be represented in terms of w as 

ooo(5o6} 

{ -(k.~c.)') IYV\ L - ..ti.kn'Y\W 

\ (k~cwl.)(k=~."'"e·) 
ooo(5o7} 

Similarlyu the electrodynamic equation (lo3l) can be manipulated 

to yield the magnetic field components bxubyubz in terms of UuV 

and Wo 

ooo(5o8} 

by = -kv /(,.) ooo(5o9} 

and o o o (SolO) 

Let us assign the subscript 11 1 to quantities associated with the 

incident wave so that 
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... (5.11) 

where K1 and w1 are the wavenumber and frequency of the incident 

wave and X is the position vector. The presence of the rigid 

boundary will produce one or more reflected waves each of which 

can be described by 

... (5.12) 

and satisfies the dispersion relation (5.5). 

Now the mechanical boundary condition at the wall requires 

that the normal component of velocity should vanish at the 

boundary. ie. 

u.fl = [ iil + ~ ur ] .fl = 0 at the boundary ... (5.13) 

As ~he origin of ~he co-ordinate system is at our disposal, we 

can choose it in such a way that it lies somewhere on the 

II 
boundary. Hence n.p = 0 and the boundary can be defined by 

" -n.X = 0 .•. (5.14) 

-Let us decompose each of the K into two vectors Kn and Kt which 

are, respectively, normal and parallel to the boundary ie 

" K j = Kn j n + Kt j ... (5.15} 

Hence, as a consequence of (5.14} our boundary condition (5.13} 

specifies that 

•.. (5.16) 

and since this condition holds at any time and at any point on 

148 



the plane, the frequencies and the tangential wavenumbers of 

incident and reflected waves must be identical. ie 

... (5.17) 

and ... (5.18) 

Once we know the frequency and the tangential component of 

the wavenumbers of all the reflected waves, their normal compo-

nents can be obtained from the dispersion relation (5.5). To this 

end substitute for K from (5.15) into this relation and rearrange 

after a little mathematical manipulation, to find a sixth order 

polynomial in Kn ie 

••• (5.19) 

where c 0 = nx 4 

-2 w 2 (K >2 - 4 w2 n 2 
tx z 

Here Ktx and Ktz are the components of Kt in the direction of the 
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magnetic field (which is parallel to x axis) and rotation axis 

(parallel to z axis) respectively. This polynomial has six roots 

of Kn, each of which when combined with Kt yields one of the six 

wavenumbers that are possible which have the same frequency and 

tangential component and satisfy dispersion relation (5.5). 

Clearly one of these wavenumbers belongs to the initial incident 

wave we started with and the other five will belong to the 

reflected waves. However, if the group velocity of a wave j, 

represented by any of these wavenumbers is such that 

- " cgj·n '/; 0 (5.20) 

ie its group velocity is towards the boundary, its amplitude will 

have to be equal to zero, because no wave can propagate across 

the rigid boundary. However, the analytical extraction of the 

roots of the polynomial (5.19) is impossible and therefore we 

cannot analytically ascertain the number of waves that have the 

right group velocity. Fortunately this can be easily judged from 

the appropriate normal curves for these waves which are the 

contours of (...) drawn in the wavenumber (k,l,m) space. Figures 

5.l(a) to (f) based on equation (5.5) show such curves for 

inertial modes [corresponding to positive sign in (5.5)] in solid 

lines and for magnetic modes [negative sign in (5.5)] in broken 

lines. Figures 5.1 (a) to (c) have been drawn for certain fixed 

values of 1 and are particularly useful for studying reflections 

from boundaries which are parallel to y axis [as wavenumber 1 is 

conserved for reflections by such boundaries as in these 

diagrams), whereas Figures 5.1 (d) to (e) show normal curves for 

certain fixed values of m and are best suited to investigate 
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Figure 5.l(a) Normal curves for IMHD waves for which 1 = 0.2 

[see equation (5.5)]. The curves for inertial 

modes are drawn in solid lines whereas for 

magnetic modes they are in broken line. All 

quantities are in normalised units. The contour 

interval for these U) curves is 0.3 units. 
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Figure 5.1(b) Same as Figure 5.l(a) except 1 = 0.8 units for 

these curves. 
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Figure 5.1(c) Same as Figure S.l(a) except 1 = 1.6 units for 

these curves. 
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Figure 5.l(d) Normal curves for IMHD waves for which .m = 1.2 

normalised units. The curves for inertial modes 

are in solid lines whereas magnetic modes are in 

broken lines. The contours are dr~wn for·a 

frequency interval of 0.3 units. 

154 



-2 

Figure 5.l(e) Same as Figure 5.l(d) except m = 0.8 units for 

these curves. 
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Figure 5.1(f) Same as _Figure 5.l(d) except m = 1.6 units for 

these curves. 
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reflections from vertical boundaries {though the orientation can 

be arbitrary). A cursory glance at these figures reveals that for 

any fixed wavenumber K{k,l,m) an inertial mode has a much higher 

frequency than its magnetic counterpart. In addition the group 

velocity Cg = n(.)/~k, ~w/~1, cc..:y3m) [whose rough measure for any 

wavenumber K in these diagrams is the density of w contours 

around that wavenumber] of magnetic modes is much smaller than 

those of the inertial modes. 

To illustrate the use of these diagrams let's assume a 

magnetic IMHD mode with wavenumber K={l.4, 0.2, 0.2) and 

frequency w = 1.2 {all quantities are in normalised units) 

incident on the boundary x = c, where c is a positive constant. 

This mode is marked by point 1 on diagram 5.l{a). Now from our 

discussion above we know that after reflection, the frequency of 

the wave and the tangential components of its wavenumbers are 

conserved. Therefore, b.) = 1.2 t, = 0.2 and m = 0.2 for all the 

reflected waves. In addition to point 1, five more wavenumbers 

satisfy these criteria and are marked 2 to 6 on this figure. Out 

of these, waves 2 and 4 clearly have group velocities whose 

normal components are towards the boundary. This leaves us with 

waves 3, 5 {which are inertial modes) and 6 {which is magnetic) 

only, which can be generated by a reflection. One can repeat this 

exercise for any other orientations or for any other set of 

wavenumbers and always arrive at the conclusion that, atbest, 

three reflected waves can be generated. For certain combinations 

of wavenumbers and frequencies one of the roots of {5.19) can 

become complex and will mark the presence of a non-propagating 
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leaking mode at the boundary. In that situation only two 

travelling waves will be generated upon reflection. A similar 

study of Figure 5.l(d) shows that on reflection from a vertical 

boundary which is normal to the magnetic field lines, an inertial 

IMHD mode splits into two inertial and a magnetic mode. However 

under the same conditions a low frequency magnetic mode will 

produce only one reflected wave which will again be magnetic. A 

reflection from an x-x' boundary produces only one reflected wave 

of finite wavenumber (the other two roots become infinite) which 

is of the same type as the incident wave. 

If the plane boundary is not tangential to y and z axes, 

wavenumber components 1 and m of the reflected waves will also 

suffer change and clearly diagrams of Figure 5.1 cannot be used 

satisfactorily for such cases. Therefore, in order to gain a 

better qualitative knowledge of the wavenumbers of reflected 

waves we propose the use of 'normal surfaces' which are surfaces 

of constant w in the three dimensional wave number space (with k 

and 1 horizontal and m vertical). Figures 5.2(a) and (b) show two 

such surfaces on which frequency has constant values of 0.2 and 

1.2 respectively, the latter diagram being the relevant one for 

the example we have been studying. The six points of intersection 

of the line 1=0.2, m=0.2 with this surface will represent the 

required wavenumbers. Clearly, we can use the same diagram for 

any orientation or inclination of the boundary now; each time the 

points of intersection of this surface with the line drawn 

through the incident wavenumber in the direction of the normal 

(to the boundary) representing the required wavenumbers. However, 
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Figure 5.2(a) 

0 

The normal surface for IMHD waves with frequency 

C.U = 0.2. This surface represents all the 

possible IMHD waves whose frequency i~ 0.2 units. 

159 



-1.5 

Figure 5.2(b) 

-1.5 

The normal surface c.0 = 1.2 in the k,l,m space. 

Notice the six intersections of the line 1 = 0.2, 

m = 0.2, with this surface. All quantities are 

in normalised units. 
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this generalisation has been obtained at a cost;now, no 

information can be obtained about the group velocities of the 

waves as the location of the neighbouring normal surface is not 

known. 

In our work we have adopted a numerical approach to obtain 

the wavenumbers and group velocities of the reflected waves. If 

the orientation of the boundary is known, h (the unit normal to 

the boundary) can be calculated easily and from a knowledge of 

the wavenumber of the incident wave Kt can also be calculated. 

- I' Then if we substitute for Kt' nand w in equation (5.19), we 

can obtain a sixth order polynomial in Kn whose coefficients are 

known. We then employ an efficient root solving computer routine 

(see eg. Conte and Boor pp.ll0-124) to extract all the real and 

complex roots of this polynomial. Finally we obtain the required 

wavenumbers by adding the tangential components to these by the 

help of (5.15). To obtain the components of group velocity of any 

wave ( ~ ,k,l,m) first obtain the inertial and magnetic modes of 

c..> from ( 5. 5) in the form 

If we specify in addition that wi and 

then 
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These are then differentiated w.r.t. k, 1 and m to yield 

C - ~t.J;,..., 
~y-- = + 

~\.. 
••• (5.26) 

where upper sign is taken for inertial modes and lower sign for 

magnetic modes and sgn(m) is 1 when m is positive and -1 when it 

is negative. 

Thus by the help of these equations we calculate the vectors 

cgjs and by the help of criterion (5.20) we reject two of the 

unwanted roots and arrange the remaining three wavenumbers in 

such a way that wavenumber K4 represents the magnetic mode (ie. 

the ratio of its magnetic to kinetic energy is greater than unity 

which from (1.42) stipulates that lk/wl > 1 for this mode) and K2 

and K3 represent the small and large wavenumber inertial waves, 

respectively. 

With the above discussion in mind the incident and the three 

reflected waves can be expressed by 

••• (5.28) 

••• (5.29) 
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wt) 1 ... (5.30) 

and ... (5.31) 

where 'A 1 is known and our task is to calculate 'A 2 ,A 3 and "A 4 . In 

addition we have the boundary condition 

..• (5.32) 

Note however that if any component of Aj (say = Aj' the 

amplitude of wj) is known the other two are automatically defined 

by (5.6) and (5.7). As the origin of the time scale is at our 

disposal we can assume that A1 (the amplitude of w1 that is) is 

real implying that its phase is zero. The reflected waves canv 

however, suffer phase shifts so that A2 ,A3 and A4 will in general 

have imaginary parts. This leaves us with three complex unknowns 
. 

and only one complex equation (5.32). The additional constraints 

are provided by the electromagnetic boundary conditions and 

constraints imposed on the tangential components of the velocity. 

Once again we consider the cases of reflection by infinitely 

conducting and insulating boundaries separately. 

5.2.1 Reflection £y ~ highly conducting rigid boundary This 

type of situation arises when the conductivity of the boundary is 

much larger than the fluid (as for example in some laboratory 

experiments). Strictly speaking, the effects of ohmic dissipation 

will be significant in the fluid though no significant energy 

loss occurs due to the process of reflection itself. As the 

electromagnetic skin depth is zero for a solid perfect conductor, 

the normal component of the magnetic field should become zero at 
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the boundary. ie 

... (5.33) 

which by the help of equations (5.6) to (5ol0) can be reduced to 

••• (5.34) 

The assumption of this less than perfect conductivity for the 

fluid automatically excludes the possibility of a current sheet 

forming at the boundary. Similarly if we assign a finite 

viscosity to the fluid, we will also rule out the formation of a 

vortex sheet at the boundary and consequently the tangential 

components of the velocity will also be zero at the boundary. ie 

•• 0 (5.35) 

A 
where t is a unit vector in the plane of the boundary. In 

Appendix III we employ equations ( 5.32) v ( 5.34) and ( 5.35) in 

their vector component form to generate a six by six matrix which 

can be inverted to obtain the real and imaginary parts of 'A 2 ,A 3 

and A 4 o 

5.2.2 Reflection £y an insulating rigid boundary The case of 

the Earth's core mantle is best treated under this condition 

(Acheson and Hide 1973). For terrestrial conditions the factorn~ 

is very small and therefore the jump in the tangential componet 

of the magnetic field will be infinitesimal (see Appendix I for 

detailed discussion of the electrodynamic boundary conditions 

when J.) ~ 0, <r -t oe , w =#= 0 and 1i ::f 0) o Thus the magnetic 
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fields will be continuous across the interface and is expressible 

in terms of a potential cp inside the boundary ie. 

(inside the boundary) ••• (5.36) 

As ~.b = 0, therefore ~2~ = 0 inside the boundary. 

This equation has solutions of the form 

••• (5.37) 

where t 1 ,t2 and r define a rectangular co-ordinate system and Ktl 

and Kt 2 are the wavenumbers in the direction of t 1 and t 2• Let us 

assume r to be in the direction of the normal to the boundary so 

that t 1 and t 2 describe two orthogonal co-ordinates in the plane 

of the boundary. Then from (5.37) 

••• (5.38) 

••• (5.39) 

and ••• (5.40) 

We can derive two local boundary conditions on the magnetic field 

from the above three equations. For example 

.•• (5.41) 

and ••• (5.42) 

which, by the help of equation (5.36) and equations (5.8) to 

(5.10), are written in their expanded form as 

- ,.. 
Kt2[k1A1.t1 + 

Ktl [ kl Al.t2 0 .•• (5.43) 
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and IKtl [k1 A.1 .t1 + k 2A. 2 .t1 + k 3A.3 .'tl + k4A4 .tl 1 

iKt1 [k1A1 .n + k 2A.2 .ri + k 3A3 .n + k 4X4 .n1 = o ... (5.44) 

"' "' I' where t 1 ,t2 and n are unit vectors in the directio~of t 1 ,t 2 and 

r, respectively. In Appendix III we employ equations 

(5.32), (5.43) and (5.44) in their expanded form to obtain six 

linear equations in as many unknowns. We also describe there, the 

necessary modifications to these equations when the wavenumber of 

one of the waves becomes complex. These equations are then solved 

for the real and imaginary parts of the amplitudes of the 

reflected waves. 

5.3 A NUMERICAL STUDY OF THE PROCESS OF REFLECTION In this 

section we report the results of a few numerical investigations 

of the process of reflection of IMHD waves by rigid boundaries. 

We study in detail the reflection of two waves, one an inertial 

mode with frequency = 1.21 normalised units and wavenumber = 

(1.0, 0.2, 0.2) and the other a magnetic mode with frequency = 

0.012 units and wavenumber = (0.1, 0.05, 0.05) by conducting and 

insulating boundaries at various orientations and inclinations. 

5.3.1 Wave 1. Reflection of an inertial mode This moderate 

frequency inertial mode travels with a group velocity of 1.345 

units. [All the quantities are in normalised units, therefore 

velocities are in units of Alfven velocity.] The group velocity 

0 

vector of this wave makes angles Cg~ = -3.15 with the x axis 

(ie. the horizontal component of the group velocity of the wave 

lies in the positive x, negative y quadrant) and cge = 55° with 
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the horizontal (ie. the vertical component of the wave's group 

velocity is upwards). To cover most of the interestinq possibili­

ties we will first present this wave with boundaries of common 

inclination for a wide range of orientations (ie. ne = constant, 

n~ =variable, where h = (l,n9 ,n~) is the unit normal of the 

boundary) and next with boundaries with a fixed orientation in 

the x-y plane for a wide range of inclinations (ie. ne = 

variable, ntP = constant). 

We choose ne = Cge = 55° for our first case and study the 

reflection of this wave for n~ ranging from Cg~- ~/2 to cg¢+ ~/2. 

Notice that outside this range, the group velocity of the 

incident wave has no component towards the boundary so that no 

reflections are possible. From our results it is seen that for 

this inclination the incident wave pro?uces only two reflected 

waves for each reflection over the entire range of n¢. Fiqure5.3 

shows the wavenumbers IK I of the incident (thick line) and 

the reflected waves plotted against n¢, where it can be seen that 

IK4I> IKllandiK 41>!K 31 and IK 31= O(IK 11 ), suggesting that K3 is an 

inertial mode whereas K4 represents a magnetic mode. This conjec­

ture is confirmed by Figure 5.4 [based on equation (1.42)] where 

we plot magnetic to kinetic energy ratios of all these modes. 

The magnetic energy of the wave represented by K4 is seen here to 

be many times that of its kinetic energy whereas mode K3 has most 

of its energy in kinetic form. The nature of these modes (ie. 

whether they are inertial or magnetic) is also reflected in their 

group velocities lcgl shown in Figure 5.5 [see equations (5.25) 

to (5.27)] where it is seen that the group velocity of the 

167 



3 -

2 

.0 

~~- l\<11~ 
-Tt-,--- \K~\ 

6 

5 

4 
0 ~ 0 0 

-80 -60 -40 -20 0 
0 

40 
0 

60 
0 

80 

Figure 5. 3 

n<P-~) 

The wavenumbers K of the incident and reflected 

waves as functions of n~. K2 is complex for 

the complete range of orientations shown here. 

The incident wave quanities in this and 

subsequent plots are shown in thick lines and the 

reflected magnetic modes are in broken lines. 

Solid lines represent inertial modes. All 

quantities here and later are in normalised 

units. W = 1.21 units for all these waves and 
0 

ne = 55 • 
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magnetic mode K4 is less than the Alfven velocity (of unity) for 

the entire range shownu though both the incident wave and mode 3 

have group velocities larger than unity. For certain values of 

" n = (lun9 un¢ )o one of the reflected waves may emerge parallel 

to the boundary with the consequence that due to the dissipative 

action of viscosity its energy will be quickly absorbed by the 

boundaryo Such a situation does occur for magnetic modes when the 

boundary is parallel to x axis ie. n¢ = ~/2 where cgn the 

normal component of its group velocity becomes zerou as shown in 

Figure 5o6o 

For dispersive waves 0 the amplitude of a wave is not a good 

indicator of the energy content of the waveo For example a 

magnetic IMHD wave and an inertial IMHD wave of the same velocity 

amplitude and frequency do not have equal energies. The function 

of the amplitude for a dispersive wave is best carried out by its 

0average energy densi ty 0 
0 which for IMHD waves (see Acheson and 

Hide 1973) can be expressed by 

where < > denotes average over a period. By the help of 

equations (5o3) and (5.6) to (S.lO)u we can obtain 

.1. a :L 

)( 
a. a ) ~~ ( k.;. .... LJ ..... 11'11" c;Jk ..... k,.: ..!... r ooo(5.46} E· r .i k·a.. L~ GJ.=t 

} -t J- } 

where Aj is the amplitude of the vertical component of the fluid 

velocity associated with the wave jo These energy densities for 

our case study obtained from the numerically computed amplitudes 
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(see Appendix III) are shown in Figures 5. 7 (a) and (b) for 

conducting and insulating boundaries, respectively. Notice that 

though the energy densities of the reflected inertial modes is of 

the same order as the incident wave in both these cases the 

energy density of the magnetic mode is distinctly higher for 

reflections from conducting boundaries as compared to reflections 

from insulating boundaries. As the time over which the reflected 

waves are generated is the same for all the reflected waves, 

waves that have group velocities larger than the incident wave 

will have the lengths of their wave packets stretched, whereas 

slower reflected waves will have the lengths of their wavepackets 

reduced. In addition the emerging wavepackets do not make the 

same angle with the boundary and hence will have their widths 

either enlarged or decreased depending on whether they emerge in 

a direction more normal or parallel (compared with the direction 

of the incident wave packet) to the boundary. 

The measure of the total energy content of a wave packet is 

provided by its energy flux vector defined as 

••• (5.47) 

From energy conservation considerations, we will expect the 

energy flux of the incoming wave to equal the flux of the 

outgoing wave. If we concentrate on a unit area of the boundary 

this condition implies that the flux per unit area through and 

out of this boundary should be equal. ie. 

F1 Cos o< 1 = • •• (5.48) 
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Figure 5.7(a) 

5 

4 

The average energy densities of the incident and 

reflected waves as function of n¢ for a 

conducting boundary. All of th~se energy 

densities are expressed here as fractions of the 

energy density of the incident wave. w = 1.21 
0 

units for all these waves and ~e = 55. 
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lower energy densities of the magne~ic mode in 

this case. CA.) = 1.21 units for all these waves 
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and n'le = 55. 
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where is the angle the wave packet j (incident or reflected) 

makes with the normal to the boundary. By the help of (5.47) this 

equation can be written as 

... (5.49) 

where F n j is the norma 1 component of the energy f 1 ux vector F j of 

wave j. These (as fractions of the incident normal flux) are 

shown in Figures 5.8(a) and (b) for the case of conducting and 

insulating boundaries and point out that quite large proportions 

of the incident energy (up to 37% from a conducting boundary and 

up to 15% from an insulating boundary) are captured by the 

magnetic mode. Figures 5.9(a) and (b) show the phases, ~j' of the 

incident and reflected waves and are seen to be highly dependent 

on the orientation of the boundary. 

Figures 5.10 to 5.16 repeat the same experiment but keeping 

the orientation of the boundary as measured in the x-y plane 

constant.this time and varying the tilt of the boundary around 

the incident wave [ie n~ is taken as constant at n~ = Cg~ but 

Cge - 1T /2 < n6 < cge + TT;2 ] • It is seen that when n9 is small 

ie when the rigid boundary is almost vertical, an incident 

inertial IMHD wave on reflection generates three reflected IMHD 

waves, one of which is a magnetic mode and the other two are 

inertial modes. For larger n9 the wave represented by~2 (ie 

small wavenumber inertial mode) becomes a non-propagating leaking 

mode and does not partake of the energy flux. Figure 5.10 shows 

the wavenumbers \K\ of the incident and reflected waves and it 
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Figure 5.10 
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when the rigid boundry is horizontal. Figures 5.11 and 5.12 show 

the magnetic/kinetic energy ratios and group velocities of these 

waves respectively, confirming the fact that K4 is indeed a 

magnetic mode whereas K: 1 , K2 , and K3 are inertial. A steep dip 

for a particular value of n8 in the normal component of the 

group velocity of a reflected wave (see Figure 5.13) shows that 

Cgn ~ 0 for that n8 indicating that the reflected wave emerges 

parallel to the boundary and will be dissipated quickly by the 

boundary. Such dips are seen around 11e = -5°, and = 16° for wave 
0 

K3 and at 90 for the magnetic mode. Though the dips in the Cgn 

curve of K 3 are real, the dip in the magnetic mode is 

pathological because for n9 
0 = 90, ~ oo and will be subject 

to large viscous and ohmic dissipation anyway. Figures 5.14(a) 

and (b) show the energy densities of the reflected waves relative 

to that of the incident wave. Both figures present qualitatively 

similar results though the magnetic mode has much higher energy 

density when reflections are from conducting boundaries. The 

normal flux vector diagrams of 5.15(a) and (b) present a highly 
0 

intriguing and complex picture. For very small values of ner (-5 

to 5°), ie, when the rigid boundary is approximately vertical, 

most of the wave energy from the incident inertial mode is 

captured by the emerging magnetic mode. For ne out of this 

range, the energy captured by magnetic modes falls dramatically, 

though it recovers to about 30% of the incoming flux for 

conducting boundaries and 10% of the incoming flux for insulating 

boundaries in the region 0e 
0 0 = 20 to 80 When the rigid 

boundary is horizontal, (ie ne 0 - • = 90 ) only inertial mode K3 l.S 
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Figure 5.12 
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Figure 5.13 
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generated. 
0 0 

For even larger n9 (say between 115 to 135 for 
0 0 

conducting boundaries and 125 to 135 for insulating boundaries) 

the magnetic mode captures most of the energy, though its share 

drops sharply beyond n9 = 13~. Figures 5.16(a) and (b) show the 

phases fj of the incident and reflected waves and are seen to 

depend greatly on the tilt of the boundary. 

5.3.2. Wave 2. Reflection of ~ magnetic ~ode. In this 

section we study the reflection of the second wave which has 

frequency C.V = 0.012 and wavenumber K = (0.1, 0.05, 0.05)u 

mentioned earlier. This low frequency magnetic mode travels with 

a group velocity of 0.37 units with its energy flux vector making 

0 0 

an angle cge = -31.52 with the horizontal and cg~ = 7.05 with 

the x axis. Obviously, this is a downwards propagating wave 

whose horizontal group velociti component is in the positive x-y 

quadrant. Once again we will first look at the case n9 = Cge = 

constant and Cg¢> - ff /2 < nrp < Cgrp + 7r /2. This corresponds to 

studying the reflection of the wave for the complete range of 

orientations of the boundary in the x-y plane for a fixed value 

of tilt. 
0 0 

It is seen that except for 102 < n/J < 107 , for each 

incident wave only one reflected mode (K4 , which is magnetic) is 
0 0 

generated. In the interval 102 < n~ < 107 another magnetic 

mode i 3 is also generated. The wavenumbers IRI for the incident 

and reflected waves depicted in Figure 5.17 show that for most of 

The magnetic/kinetic energy ratios of the incidentl 

reflected magnetic modes sketched in Figure 5.18 show that these 
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Figure 5.17 
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modes have most of their energy in the form of associated 

magnetic field. Such waves will be expected to have very small 

group velocities as actually evident from Figure 5.19. The 

normal components of the group velocities of these waves show 

(Figure 5.20) that except for n~ 
0 = 90 [at which wave 4 has a 

pathological dip ( /K 41 ~ oe there)], the reflected waves in 

general do not emerge parallel to the boundary. The energy 

densities of the reflected waves [Figures 5.2l(a) and (b)] are 

higher than that of the incident wave, mainly because of the low 

group velocities of the reflected waves, their wave packets have 

their lengths compressed along their propagational direction. 

The flux of energy per unit area of the boundary, is the same for 

incoming and reflected waves for conducting and insulating 

boundaries as Figures 5.22(a) and (b) illustrate. Figures 5.23(a) 

and (b) show the phases E. of the incident and reflected waves 

from conducting and insulating boundaries and are seen to vary 

between 0 to 2IT for reflected waves. A much more interesting 

picture emerges when we study the reflection of the same incident 

wave for varying values of the tilts of the boundary (Figure 
0 

5.24). We assume boundaries for which n¢ = 7.05 and 
0 

-121.5° < 0 0 
< 58.5. For -121.5 < ne < -82 , two reflected 

waves are generated both of which turn out to be magnetic. For 
0 0 

-82 < ne < 20 , only one wave is generated which is a magnetic 
0 

mode. For 20 < n
9 

0 
< 58.5 in addition to the magnetic mode 

another wave is generated, which is rather hard to classify. For 

most values of n 6 for which it is present, it has its energy 

mainly in the magnetic form but in a very narrow region around 
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0 
n ~ 25 , its energy is predominantly kinetic. Figure 5.25 showing 

the magnetic/kinetic energy ratios and Figure 5.26 illustrating 

the group velocities of these modes basically confirm this 

0 -picture. Except for n9 = 90 when the wave K4 has a steep dip in 

its normal velocity plot {Figure 5.27); no other reflected waves 

emerge parallel to the boundary in this case. The energy 

densities [Figures 5.28{a) and {b)] of the reflected modes K2 and 

K3 are far below that of the incident wave due to their rather 

large group velocities. Figures 5.29{a) and {b) show that most of 

the energy of the incident magnetic mode is captured by the 
0 

outgoing magnetic modes except at n 9 = 25 when the inertial mode 

captures about 50% of the incoming energy flux, for reflection 

from conducting boundaries and up to 20% of the energy flux for 

reflection from insulating boundaries. Figures 5.30 {a) and {b) 

depict the phases of the reflected waves which once again are 

very complicated functions of n9 and n¢· 

To sum up, an IMHD wave on reflection splits into 3 

reflected waves out of which all three, only two, or only one, 

wave may be of the propagating kind and the rest may be non-

propagating 'leaking' modes which do not share any energy from 

the incident wave. In general, the wavenumbers, group velocities 

and energy densities of the reflected waves are different from 

that of the incident wave though their frequency and the 

wavenumher component tangential to the boundary are conserved. 

Most of the energy of an incident wave is captured by a reflected 

mode which is of the same type as the incident mode. A very 

important feature of the reflection of IMHD waves by rigid 
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boundaries is that even when the incident wave is of the inertial 

type, one of the reflected waves is always a magnetic mode. On 

the other hand, when the incident IMHD wave is a magnetic mode, 

for a very large range of the orientations and tilts of the 

boundaries only magnetic modes are generated. Thus, in a random 

superposition of IMHD waves the long term effect of this 

reluctance of the magnetic modes to share their energies on 

reflection with inertial modes will be to increase the share of 

the energy of the magnetic modes at the expense of the inertial 

modes. However, as our observations are based on the study of a 

very few waves in idealised conditions (eg. no effort has been 

made to include the effect of finite conductivity and viscosity 

of the fluid) what effect such a phenomenon may eventually have 

on the partitioning of energy between the magnetic and kinetic 

energy fields of a rotating system, is hard to judge yet. 
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CHAPTER SIX 

SUMMARY AND CONCLUDING REMARKS 

6.1 ~ Summary of the present work 

Three studies of the propagation and reflection of 

magnetohydrodynamic waves in rotating fluids with implications to 

the dynamics and magnetic fields of the earth's core-like fluid 

bodies have been presented. The salient features of these studies 

are summarised as follows. 

The asymptotic form of an initial MHD disturbance on the 

beta-plane is obtained by the method of stationary phase in 

Chapter 3. It is seen that due to the dispersive nature of these 

waves the contribution to the disturbance at a point (x,y) at a 

large time (t) comes from only those waves which have a group 

velocity given by Cg = (x/t, y/t). For magnetic modes of 

continental to global size this is possible only in roughly a 

triangular region enclosed by the lines x= + Jjy, x= - J)y, and x= 

t Cgm, where Cgm is the group velocity of the fastest waves in 

the wave packet. Inside this region at any point two waves 

contribute dominantly to the waveform whereas outside this region 

no waves have stationary phases. The wavenumber Ks and ls which 

form stationary phases have an inverse relationship; ls is small 

when ks is large and vice-versa. The amplitudes of these 

planetary size waves diminishes due to dispersion, as t-1 inside 

the triangular region and as t-5/6 near the caustics, x=±py. The 

geometrical spreading factor is very small, being (x2-3y2)-l/4 

for the region where stationary phases are possible and the waves 
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decay exponentially as Airy's function near the caustics. The 

perturbations in the vorticity, the velocity and the magnetic 

field associated with the propagation of an initial symmetric 

disturbance when studied for t ~ 16 years and x = 1600 kms and 

above, show perturbation wavelengths of several hundred 

kilometers and waveperiods of several decades when a magnetic 

field of 50 Oe is assumed. 

Some insight into how a magnetic Rossby-MHD wave may 

transform partially or completely into an inertial mode by 

reflection is provided by the study of reflection of these waves 

by rigid boundaries (Chapter 4). The mechanical boundary 

condition for any flow at rigid boundaries dictates that the 

normal component of the fluid velocity at the boundary must 

vanish. For Rossby-MHD waves this condition implies that the 

frequency and the wavenumber component tangential to the boundary 

should be preserved for reflected waves. For frequencies larger 

than a critical frequency ~*, for each magnetic mode incident on 

a N-S boundary, three such waves are possible, out of which only 

two waves possess the appropriate (away from the boundary) group 

velocities to qualify as reflected waves. When c.:> <c.! or l>l*(c.v), 

a critical wavenumber, one of these reflected waves may become a 

non-propagating leaking mode, which does not share any energy 

from the incident wave. To obtain the amplitudes of both 

of these reflected waves, one more boundary condition is 

required, which is provided by the continuity of magnetic field 

across conducting and insulating boundaries. A numerical 

investigation of the process of reflection of these waves shows 
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that in general the group velocities, magnetic to kinetic energy 

ratios, energy densities and the phases of the reflected waves 

are different from those of incident waves; though the flux of 

energy through a unit area of the rigid boundary for incident and 

reflected waves is equal. For waves of planetary dimensions, an 

eastward propagating magnetic mode (ie.~ > 0) on reflection from 

such a boundary will be entirely transformed into a long 

wavelength inertial mode and a large conversion of magnetic 

energy into kinetic energy will be observed. A reverse process, 

involving the conversion of kinetic energy into magnetic energy, 

will take place if an inertial mode is reflected by a N-S 

boundary. The conductivity of the wall does not determine the 

wavenumbers or the group velocities of the reflected waves but 

certainly influences their energy densities and phases. For 

example an insulating boundary returns more energy in the form of 

a magnetic mode than a conducting wall does. The conducting 

boundaries in general produce larger phase shifts between the 

incident and reflected waves. 

The reflection of full three-dimensional inertial­

magnetohydrodynamic (IMHD) waves by rigid boundaries in the 

presence of a magnetic field that is normal to the rotation axis 

is studied in Chapter 5. The constraint on the normal component 

of fluid velocity once again specifies that the frequencies and 

the tangential component Kt of the wavenumber should be conserved 

on reflection. When w and Kt are fixed in the dispersion 

relation of the waves, a sixth order polynomial in the normal 

component Kn of the wavenumber results. The six roots of this 
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polynomial when combined with Kt, yield six waves that are 

possible which have the same frequency and the tangential 

component and satisfy the original dispersion relationship. Out 

of these waves one of the waves will be the incident wave we 

started with, and an examination of the normal curves and normal 

surfaces reveals that two of the other waves have incorrect group 

velocities (pointing towards the boundary) and therefore cannot 

exist.at the boundary. This leaves us with three reflected waves, 

out of which at least one will always be of the propagating kind. 

As there are three unknowns (the amplitudes of the reflected 

waves, which are complex quantities because the reflected waves 

suffer phase shifts), we need two more complex equations to 

evaluate them. These are provided by the constraints on the 

tangential component of the velocity, and continuity of the 

magnetic field lines across the boundary. In addition, inside an 

insulating boundary, the magnetic field is expressible in terms 

of a potential. Numerical evaluation of these amplitudes for an 

incident inertial mode and an incident magnetic mode for various 

orientations of the boundary shows that the wavenumbers, group 

velocities, magnetic to kinetic energy ratios and energy 

densities of the incident and reflected waves are, ingeneral, 

different. The reflection process thus provides an interchange of 

energy between different wavenumbers and can also transform one 

type of energy into another. Generally, most of the energy of 

the incident wave is captured by a reflected mode which is of the 

same type as the incident mode. A novel result of this analysis 

is that, even when the incident wave is an inertial mode, one of 
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the reflected waves is always a magnetic mode. On the other hand 

when the incident wave is a magnetic mode, for a very large range 

of the orientations and tilts of the rigid boundary only magnetic 

modes are generated. Thus in a container of arbitrary shape, in 

the long term, the reflection process will tend to increase the 

share of the magnetic modes at the expense of the inertial modes. 

6.2 Some Remarks on Chapter l 

It will be noted that though a very detailed analysis of the 

propagation of Rossby-MHD waves has been made in this chapter, no 

attempt was made to actually compare the calculated maps of the 

disturbance with the maps of the geomagnetic secular variation. 

There are several reasons for this. First of all the beta-plane 

approximation is valid for wavelengths that are much smaller than 

the circumference of the earth, whereas the geomagnetic secular 

variation has most of its energy in the first few spherical 

harmonics. Secondly, the calculated disturbance is a function of 

the initial conditions about which no information is available. 

(Admittedly, this dependence on initial conditions decreases with 

time, but for the range of time in geomagnetic context, we expect 

it to affect the final results substantially.) Finally, the 

procedure of extending the thin shell results to a thick shell 

model, though perhaps justified, is inexact. All these factors 

compell us to deduce that the results of the present analysis can 

only be suggestive of what might be expected in a real situation. 

Nevertheless, besides shedding valuable light on the 

propagationa 1 behaviour of these waves, this analysis confirms 
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the finding of Hideu that these waves possess the right wave­

lengthsu time periods and drift velocities to be able to cause 

the secular variations in the geomagnetic fieldo This analysis 

also makes it clear that the group velocityu and not the phase 

velocityu of these waves should be compared with the westward 

drift of the geomagnetic fieldo As a consequenceu an ambient 

magnetic field of only 30 to 50 Oeu will be required to explain 

the observed drifto 

6o3 Some Remarks on Chapter! 

We studied the reflection of Rossby-MHD waves by rigid 

boundaries on a beta-plane in chapter 4u without in any way 

suggestingu what could act as a boundary in this systemo In 

oceanographyu the edges of the ocean form the natural barrier 

from which Rossby waves are reflectedo In a rotating thin shellv 

unless there are some large scale protrusions on the boundaries 

of the containeru this will hardly be the caseo The situation is 

somewhat different for a thick rotating shellu like the earth's 

outer coreo In such a systemu due to Taylor-Proudman constraintv 

there is no change in the fluid velocities in the direction of 

the rotation vectoru and the individual vertical filaments are 

constrained to move as coherent uni tso The beta-planes for this 

system will then be parallel to the equatorial plane and the z 

axis will be in the direction of the rotation vectoro The 

bounding surfaces of this shell can then easily act as reflecting 

surfaceso The exercise presented in this chapteru thereforev is 

not just a theoretical curiosityo 
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6o4 Some Remarks on Chapter ~ 

An interesting experiment as a sequel to the work in this 

chapter will be to assume a known superposition of IMHD waves in 

a large box (in the sense that its dimensions are much larger 

than the typical wavelengths of the waves)u which for simplicity 

can be a large cube or a rhombohedron and observe the magnetic 

and kinetic energy contents of the system at various time 

intervalsu as the waves propagate and get multiply reflected from 

the boundaries of the boxo As we are interested in the long term 

behaviour of the systemv we will have to include the effects of 

the finite viscosity and conductivity of the fluidv as well as 

the finite conductivity of the reflecting wallso The author's 

contention is that for certain geometries of the container and 

some suitable initial conditionsu there can be a gradual increase 

of the magnetic energy of the system at the expense of its 

kinetic energya 
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APPENDIX I 

ELECTRODYNAMIC BOUNDARY CONDITIONS AT AN INSULATING RIGID 

BOUNDING SURFACE OF A CONDUCTING ROTATING FLUID 

The 'jump' conditions for u and B at the boundary of a 

conducting fluid in contact with a rigid surface in the case of 

11 = 0, cv = 0 ( ie. no rotation and s~o_jy flow) are easily obtained 

from the theory of Hartmann layer (see for example Roberts, 

1967; chapter 6). However when one is dealing with non-steady 

flows like the wave motions in fast rotating fluids (Hide and 

Roberts, 1960; Hide, 1969b) Ekman-Hartmann layer theory may need 

certain modifications to be applicable in this context. 

Following Hide (1969b) assume a conducting, rotating fluid 

in a magnetic field in the z direction bounded by a rigid surface 

(normal n) in the x-y plane. Separate B and u into their interior 

parts Bi, ui and their boundary layer parts Bb, ub such that 

••• (I.l) 

••• (I.2) 

The gradients of "B.n and p will be small within the boundary 

layer so that 

pb = "Bb:n = 0 ••• (I.3) 

Hide and Roberts (1960) showed that the variables Bxb' Byb' ub 

and vb satisfy a partial differential equation of the form 

2 ::t ::1.. ':1. .t ,.. !l 

[c:t-f.D)(!t-Vl>)-VQD]cpb ;- f(~t->-D)C/>b= 0 
••• (I.4) 

223 



where "Jt.. = 1/(~,.t.\), o- is the conductivity of the fluid , Vis its 

viscosity, f is the component of .11... in the z direction and D = 

~/ 0 z. This equation has solutions of the form 

"' c:f>b o<cp expi [c...> t + mz)] ••• (1.5) 

provided 

In our problems of reflection of Rossby-hydromagnetic and IMHD 

waves we are generally concerned with waves for which w << f, so 

that steady solutions are acceptable. Then (I.6) yields 

..• (I.7) 

where o< = Va 2/(f?'-) is a dimensionless parameter measuring the 

relative importance of the magnetic field to the rotation and~= 

O.Scot-lo~-. Thus from (I.S) and (I.7) 

.•• (I.8) 

and Bxb + i Byb =(-ufi..) (V/f)l/2 "Bi.n/(l+c(.2)1/4 * 

e xp- [ ( 1 + ~'<2 ) 1 I 4 (cos l). + i s i nz.).) 5 + il.9.] ••• ( I. 9 ) 

where ~ = z/(V/f)l/2 

The changes in Bb and ub across the boundary layer will represent 

the jumps in B and u. (I.8) and (I.9) give this jump in B in 

terms of jump in u as 

<Bx + iBy> = <u + iv>(M~)l/2sgn(Bi.n)(-4o-L>)l/2* 

[ H ( o') - i K (o<) ] 
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where 

G(co~.) = H("'-)- iK(C() = o(l/2;n+))l/ 4 exp[(-i/2)cot--kl ..• (I.ll) 

In planetary situations ~ ij 1 for which 1 > G(~) > 0.4 (see Hide, 

1969b; Figure 2) therefore 

.•. (I.l2) 

For the case of the earth's core, taking M = 10-6 H/m-l,f = 10 4 

Kg/m-3 and ~ ~ 3Xl05 mho/m (Roberts and Soward, 1972) and a 

viscosity of the order of 10-7 m2/s (Bullard 1949). Thus the 

R.H.S. of (!.12) is infinitesimal for any reasonable values of 

<u+iv>. This will sugges~ that a1least for the earth's core- f 
mantle interface we can c1fidently assume that in boundary layer 

problems the strength of the current sheet is negligible compared 

to the strength of the vortex sheet there. 
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APPENDIX II 

AMBIGUITY IN THE DEFINITION OF WAVE ENERGY FLUX 

For dispersive waves there are two separate methods by which 

their mean energy fluxes can be calculated. The first one depends 

on the energy propagation velocity to define the energy flux as 

the product of the mean energy density E of the wave with its 

group velocity Cg. The other relies on an energy flux vector 

derived from the equations of motion from the first principles. 

In most cases the two fluxes are equal but for Rossby waves and 

now we show here for Rossby-MHD waves the two fluxes disagree. 

This paradox is resolved in this appendix by proving that the 

disagreement between the two quantities is equal to a non-
. 

divergent vector field and occurs because the equations defining 

the energy flux vector from the first priciples are insensitive 

to the addition of divergenceless quantities. The implication of 

this exercise is that while dealing with problems like the 

reflection of Rossby-MHD waves at a plane boundary the first 

definition (F = E Cg) should be preferred because it will 

correctly predict the conservation of total energy flux through 

and from an insulating boundary. We will first calculate the 

energy flux vector from the equations of motion from the first 

principles. 

For a homogeneous inviscid fluid rotating with angular 

velocity 1i, the equation of motion can be written as 

~(du/dt + 21i.)l. u) = -ur + 1/.u('V )(. B))( B + g~ •.. (II.l) 
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Let us linea rise this equation by writing 

u = u 

B = Bo + b 

p = Po + p 

Where i has been assumed constant, as the fluid is homogeneous. 

Then 

..lJ c~u/~t + 211..><-l:') = -vp + 1/M(V .x.B 0 ) ~ "b + 1/.~.dv )(.b))( 'B0 

+ [ -~ p 0 + 1 I .A.d \1 'f. B 0 ) X B 0 + g 1] ••• (I I. 2 ) 

where squares and products of small perturbation variables have 

been neglected. Notice that the terms in the square bracket on 

R.H.S. represent the basic magnetohydrostatic balance and are 

equal to zero if we assume that the fluid was initially in 

hydrostatic equilibrium. In addition let us assume that the 

macroscopic variable s 0 varies on a length scale D which is very 

large compered to the length scale d of the variable b. Then the 

second term on the R.H.S. of (A2) can also be neglected in 

comparison with the third. Thus 

... (!!.3) 

Multiply (11.3) scalarly with u. 

. •• (1!.4) 

Now the linerarised form of the induction equation for a 

perfectly conducting fluid is written as 

••• (11.5) 
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which when multiplied scalarly with b yields 

... (II.6) 

where once again terms involving derivatives of B0 have been 

neglected. Add (II.4) and (II.6) to obtain 

r>;~t[fu 2/2 + b 2/(2#0 )1 =- u.~p + l/At[(B 0 .vH>- B 0 (v."b)].u 

+ [ (B 0 .'\7)u - Bo(<CJ.u).b 

= -v .[(p+B0b/..<A)u] +'Q·[B0 (b.u)/A]. •• (II.7) 

Now let us focus our attention on the the second quantity on 

the R.H.S. of (II. 7 ). Let us integrate this quantity over a small 

Figure II.l Showing the geometry of field lines. 

volume V
9 

initially undisturbed but whose boundary (S) has now 

been weakly distorted by waves. The boundary S can be thought to 

be composed of two parallel planes Sl and S2 which are initially 
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perpendicular to the lines of force and a simply connected 

surface s 3 which is initially composed of field lines (Fig. 11.1) 

Thus by divergence theorem 

(b.u/..A-~fB 0 .ds 1 + 5) (b.u/.A,dB 0 .ds2 + 
5~ 

) ~ (b.uf,,dB 0 .ds3 ••• (11.8 > 

\ ( ~ \7 · (b. u I .~~.dB 0 dV = ) ~ 
L) sl 

53 

where s 1 , · .8 2 and s 3 are the outwards normals of the surfaces 

s1 , s 2 and s 3 • Evidently ,.ds2 = - B0.ds1 • Now if we further 

assume that the distance between s1 and s2 is much smaller than 

the typical wavelength of the disturbance, the quantity (b.u )B 0 

can be assumed to have the same value on s1 and s2. 

Then 

H<iJ.U./,.t.~)B 0 .ds 1 + H<"h.u/J.t>'B 0 .ds2 = o 
51 ~ 

and 

ss~~.(b.u/~)Bo = 
L) 

n (iJ.u.;~ >i3 0 .ds3 
s3 

••• (11.9) 

••• (11.10) 

Now by Alfven's theorem a surface initially composed of field 

lines will continue to consist of the same field lines. Thus 

H (i>.U.>"b.ds 3 
53 

Also integrate other terms of (11.7)to obtain 

)H d/()t[l/2 1u2 + b2/2..v.ldV = 
LJ 

where the quantity 
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and is neglected. Thus (II.l2), can be written as 

'Jf)t ~~ ~ Edu = ... (II.l2) 
b 

where E = l/2~u2 + b2/2Mo is the total energy density per unit 

volume and 

... (II.l3) 

can be defined as the energy flux vector. By the help of 

divergence theorem (II.l2) can be written as 

t)/)t[ JH E dv] = - {f{v.F'd 
J) J.) 

which can be integrated over V to yield 

~/;)t( E)+ 'Q.F' = 0 ••• (II.l4) 

For any general system energy is propagated at group 

velocity (see eg Lighthill ·1965, 1978 or Whitham 1974) and energy 

conservation considerations give us another definition of the 

energy flux vector: 

F = <E> Cg 

where <E> is the average energy density of the wave and Cg its 

group velocity. 

Now we will first show that F .:f F' for the case of 

Rossby-hydromagnetic waves and that F" = F-F' is a divergenceless 

quantity which we need to add to F' to bring the two forms of 

flux vector to the same value. The difference arises from the 

fact that any divergenceless quantity can be added to the R.H.S. 

of (II.l3) with impunity, without affecting the equation. 
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Now for the sake of simplicifation we assume that B0 = 

(B,O,O), so that 

,.. ~ l.] _ w + v(}. k l 
< E > - 1 I 4 [ :l ~ ':l) .g 

w (lc.+L 
•.. (II.l5) 

(See 4.34 which gives this result in non-dimensionalised form.) 

where A is the amplitude of the vorticity associated with this 

wave, which is assumed to be constant for neighbouring waves. And 

from (4.30) and (4.31) 

••• (II.l6) 

•.• (1!.17) 

so that 

and Fy = 

where p = ij(k2+12) [i~l/k - f] A exp[i(kx+ly~)] 

From the linearised form of (1.47) and (1.65) 
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Therefore ..• (II.20) 

and ..• (II.21) 

which by the help of dispersion relation (2.66) can be further 

simplified to 

••. (II.22) 

••. (II.23) 

.•• (II.24) 

where a is the amplitude of the stream function associated with 

the wave and 
II 

Fy = 0 

Now if we were dealing with an inertial mode, for all frequencies 

w>> (Va2/,a) k(k2+12) and thus the first term in (II. 24) is 

negligible. ie. 

- ,, 2 
F = CPA .1Jj4, 0) 

which is equivalent to the expression obtained by Longuet-Higgins 

(1964). Instead if we were dealing with the flux of a magnetic 

mode, for small frequencies 
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... (1!.27) 

so that 'F" = ( 3~ a 2f I 4, 0) ... (1!.28) 

(11.26) and (11.27) can be combined in a single equation as 

:p'' = F - :F' = ia2c/4 P/-;)y, - }j~x)f ... (11.29) 

where c = 1 for Rossby waves or inertial modes 

= 3 for magnetic mode. 

So, we have shown that atleast for small frequency waves the two 
_, 

flux vectors F and F are equivalent and differ only by the curl 

of a function A defined by 

Such a function is generally regarded as a stream-function for 

the difference of energy fluxes. 

Another point that emerges from this analysis is that the 
_, 

flux vector F as defined by (11.13) is valid for magnetic modes 

for small frequencies only. At higher frequencies relation 
- _, 

(II.27) is clearly not applicable and the difference F - F will 

be a function of Va, k and 1 and will certainly be divergent. 

This point is understandable, as we neglect higher order terms in 

b and ~ in the derivation of F 1 
from the first principles. 

Which of the two flux vectors is more appropriate in the 

study of reflections of these waves is clear from (11.29). If the 

amplitude a of the reflected wave r is different from that of the 
-11 _,, 

incident wave i, the differences Fi and Fr will not be equal 
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_, 
because of the ambiguity in the definition of F. F, on the other 

hand correctly predicts the conservation of energy flux in 

reflection of these waves from rigid insulating or perfectly 

conducting boundaries. 
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APPENDIX III 

THE EXPANDED FORM OF BOUNDARY CONDITIONS EMPLOYED IN CHAPTER 5 

It is a common practice in fluid dynamics to seek plane 

wave solutions for one of the variables (u,v,w,bx etc.) 

associated with a wave and express the rest of the variables in 

its terms. In our work we choose w, the vertical component of the 

fluid velocity for this purpose and the incident wave can then be 

represented by 

•.• (III.l) 

where A1 is assumed to be real, as the choice of the origin of 

the time scale is at our disposal. 

A reflection will produce three waves (out of which 

atleast one will be a travelling wave) whose vertical fluid 

velocities can be written as 

•.. (III.2) 

•.. (III.3) 

.•• (III.4) 

where AjR and Aji are the real and imaginary parts of the wave 

amplitude of a wave j. Then the other variables associated with 

any of these waves can be written in terms of wj as (see 

equations 5.6 to 5.10) 

235 



1.)• 
} = 

::: 

-k~ leu W· r 

k· w· 6 r 

••• (III.S) 

••• (III.6) 

••• (!!1.7) 

••• (III.B) 

••• (!!1.9) 

When we substitute for variables uj,vj and wj in the boundary 

condition (5.13) [specifying that the normal component of 

the velocity should vanish], its real and imaginary parts can be 

written in their full form as 

+ ••• (III.lO) 
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0 

•.. (111.11) 

where ~ = 0 for j=l and 

= 1 for j=2,3,4 

and 
_,... 

n = (nx,ny,nz) is a unit vector in the direction of the 

normal to the boundary. For a conducting rigid boundary the 

second boundary condition is (see 5.33) 

.•. (111.12) 

which by the help of (111.5) to (111.9) can be split into its 

real and imaginary parts as 

... (111.13) 

and 

+ 

L~.L ( 
•.• (111.14) 
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" Similarly if t(tx,ty,tz) represents a unit vector in the plane of 

the boundary, the boundary condition (~.35) on the tangential 

component of the fluid velocity can be rewritten as 

.•. (III.l5) 

Substitute for u,v and w from (III.l) to (III.6) to obtain 

- ,.,..,. k· r .c t 
- " -k .~ L ~ 

J + f 

0 

... (III.l6) 

.2. Lj. rrl'\i "-> t;x. 

( k/- c.l")( k../'-t- L j"J 

0 

••• (III.l7) 

In the case of an insulating rigid boundary, the second boundary 

condition is given by [see equation (5 .43)] 

h ,...t d /'- . . th 1 w ere 1 an t 2 are two un1t vectors 1n any two or ogona 

directions in the plane of the boundary and Ktl and Kt 2 are the 

wavenumbers in those directions. If we denote the components of 
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the quantity in the first square brackets in (III.l8) by Px,Py 

and Pz, by the help of above equations, it can be separated in 

its real and imaginary parts as 

p)C - · · ·(III.l9) 

..,.. [ ( ~· k. - ,. t P. -
;-") 2.::1. )1. 

L ki ... L· 
i=-' 11 'Jo 

· · · (III.20) 

The final boundary condition for an insulating boundary is given 

by (5.44) and can be expanded to 

-( 
· ·(III.21) 
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When one of the roots of equation (5.19) [say Kn 2 J becomes 

complex, it marks the presence of a non propagating wave at the 

boundary. In this case k 2 ,m 2 and 1 2 will also have imaginary 

parts with the consequence that equations (III.lO) to (III.22) 

will no longer be either purely real or imaginary. For this 

special case, the two parts of each boundary conditions are added 

(through complex additon) and then split again into their real 

and imaginary parts. 
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APPENDIX IV 

LIST OF SYMBOLS 

Unless specifically mentioned, the symbols used and the 

quantities they represent in this thesis are as follows. 

a the x component of the fluid displacement 

A amplitude of a wave 

b the y component of the fluid displacement 

B(Bx,By,Bz) ambient magnetic field 

b(bx,by,bz) perturbation magnetic field 

C the velocity of light 

Cg(Cg/cg1 cg.J group velocity 

CP specific heat at constant pressure 

cp phase velocity 

Cs the velocity of sound 

Cv specific heat at constant volume 

D electric displacement vector 

E energy density 

E electric field 

f coriolis parameter 

f buoyancy forces 

F(Fx,Fy,Fz) energy flux vector 

g acceleration due to gravity 

I imaginary part 

J current density vector 

K(k,l,m) wave vector 

Kn component of K normal to the boundary 
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Kt ( Kt)l! Kty, Ktz) 

ks, ls 

n 

I' 
n 

ne 

nd> 

N 

p 

r, R 

R 

t 

T 

U(U, v, W) 

u(u, v, w) 

va 

X(x,y,z) 

t:J(. 

~ 

"( 

" 
E 

11, 

e 

"" 
1) 

i 

component of K parallel to the boundary 

stationary wavenumber components 

normal vector 

unit normal vector 

angle between normal to the boundary and z axis 

angle between normal to the boundary and x axis 

Brunt-Vaisala frequency 

fluid pressure 

position vectors 

real part 

time 

temperature 

ambient fluid velocity 

perturbation fluid velocity 

Alfven velocity 

position vector in cartesian coordinates 

angle of incidence or reflection 

rate of change of coriolis parameter with latitude 

Lagrangian invariant 

dielectric constant of the medium, phase of a wave 

magnetic diffusivity 

polar coordinate, angle between B0 and x axis, 
angle between K and B 0 

permeability of free space 

kinematic viscosity 

density of fluid 
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average density of fluid 

electrical conductivity 

longitudinal coordinate, electric charge density, 
angle between K and ~ , scalar potential field 

stream function 

angular frequency 

angular velocity 

local vorticity 

In addition, subscripts '0' and '1' denote respectively the 

ambient and perturbation-associated values of a variable. < > 

denotes average over a period, or jump across the boundary layer. 
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