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ABSTRACT 

This study concerns an underexpanded jet, issuing from a convergent 

slot into quiescent air, as it is deflected by a convex surface of constant 

radius. Emphasis is placed on the mechanism of breakaway, a phenomenon 

whereby the jet leaves the surface tangentially. 

An optical system based on the standard Z-type Schlieren 

configuration and capable of interferometric, Schlieren and shadowgraph 

techniques has been designed. The techniques are interchanged simply, a 

laser source being employed for Interferometry and a Xenon spark source for 

Schl ieren and shadowgraph. Vibrations limit the interferometry and 

improvements are d iscussed . Shadowgraph and both spark and continuous 

Schl ieren techniques gave good results. 

Total pressure traverses and surface oil flow visualization show that 

the influence of secondary flows on breakaway is small. Measurements of 

the coefficient of discharge show an increase both as the stagnation 

pressure Is increased and as the slot width is reduced. The existence of a 

separation bubble has been established from surface static pressure 

measurements and shadowgraph and Schlieren photographs. Surface oil flow 

visualization shows a region of reversed flow wKhin the bubble. The 

bubble grows as the stagnation pressure Is increased and eventually causes 

breakaway. 

A potential flow calculation method using the method of 

character ist ics has been developed. Calculation of a fully attached Jet is 

inaccurate because the separation bubble is ignored. A calculation using 

the measured surface static pressures accurately predicts the main features 

of the first shock cel l . Reattachment occurs further downstream of the jet 

and its breakaway should involve a coupling of the solutions of the outer 

shear layer, potential core and separated boundary layer, the latter 

including reversed flow. 
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CHAPTER 1 
INTRODUCTION 

1.1 THE COANDA E F F E C T 

The behaviour of fluids in the vicinity of curved solid surfaces is 

of prime importance in fluid mechanics. Smeaton (1759), after various 

experiments on windmills, was one of the first people to state that a 

curved surface gave more lift than a plane one. The deflection of a jet of 

air due to contact with a cylinder, and the resulting force on the 

cylinder, was first documented by Young (1800). This phenomenon has become 

known as the Coanda Effect, named after the Rumanian aeronautical engineer 

Henri Coanda (1885-1972) who patented several devices employing the effect, 

but contributed very little to the understanding of it. It can be readily 

observed by holding a finger against a steady vertical jet of water running 

from a tap. The jet will adhere to some extent to the finger and thus be 

deflected, producing a horizontal force on the finger. 

The term Coanda Effect is used as a blanket term for the deflection 

of jets by solid surfaces and covers a number of important features of the 

flow. Wille and Fernholz (1965) identify two features that explain the 

effect:-

a) An Inviscid effect, known as the "teapot" effect, where the 

curvature is explained as a simple consequence of the inviscid 

flow equations. 

b) A viscid effect where the entrainment of ambient fluid causes a 

low pressure region on the side of a jet adjacent to a solid 

surface (i.e. the Jet sucks itself onto the wail). This has 

also been cal led the "Chllowsky Effect" by Metral and Zerner 

(1948). 
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Walker (1984) has investigated the 'teapot' effect and showed that 

fluid poured sufficiently slowly from a teapot does not leave in an arc , 

but flows down the outside of the spout. He also showed that coating the 

spout with margarine did not alter the effect. , 

Bradshaw (1973) identifies a third feature of jets attached to convex 

sur faces , that of the increased growth rate compared to a plane wall jet. 

and suggests the term 'Coanda Effect' should be reserved for this 

phenomenon. Rayleigh (1917) determined, by balancing centripetal 

accelerat ions and pressure forces on an element, that a curved flow will be 

unstable if the angular momentum decreases with radial distance (the 

special c a s e of irrotational flow with concentric streamlines implies 

constant angular momentum with radial distance). In such a flow radial 

displacement of an element of fluid away from the centre of curvature 

places it in a region of lower angular momentum. The smaller local 

pressure gradient in this region Is insufficient to contain the element and 

so it moves further away from the centre of curvature. The tangential 

velocity in a convex jet, outside the small inner boundary layer, decreases 

with an increase in radial distance, as does the angular momentum and so it 

is unstable by Rayleigh's criterion. This instability increases the 

turbulence and thus c a u s e s the increased growth rate of the jet. 

1.2 COANDA F L A R E S 

The design of flares for the burning off of light, non-commercial 

hydrocarbon fuels, which are released at oil production platforms and at 

oil refineries, is becoming increasingly special ised. F lares must not only 

provide a stable smokeless flame, but also be able to cope with a wide 

range of flow rates, from low purge through continuous flaring to emergency 
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disposal , while operating in hostile environments such as the North Sea . 

To meet this chal lenge a group under Professor D.H. Desty, working at B.P. 

R e s e a r c h Centre, Sunbury -on-Thames , developed two flares based on the 

Coanda Effect during the early 1970s; the indair and the Mardair flares. 

These proved so successfu l that British Petroleum set up a wholly owned 

subsidiary, Kaldair Ltd., in March 1978 to market these flares. Their 

f lares, including the new Stedair, can now be found on many of the North 

S e a oil production platforms and in locations such as Alaska, Brazil, India 

and Kuwait. In 1982 the company won the MacRobert Award Gold Medal and in 

1984 the Q u e e n s ' s Award to Industry for technology. 

The basic principles of the Coanda flares are Illustrated In Figure 

1.1. A high pressure gas exits from a narrow slot at the base of the flare 

as a supersonic jet and follows a curved surface. The gas entrains up to 

twenty times its own volume of atmospheric air which ensures the gas is 

thoroughly pre-mixed before combustion to ensure a smokeless flame. The 

jet is ignited on its outer edge at the maximum diameter of the flare and 

burns inwards so that there Is a protective layer of unburned gas which 

insulates the Up of the flare against flame Impingement. Thus the flare 

tip can be made of conventional steel alloys and be manufactured by normal 

welding methods. Another major advantage of the flares Is that the 

radiation levels are much lower and the flame lengths shorter than the 

traditional pipe flare. The boom or tower that holds the flare can thus be 

made shorter and a considerable reduction In the cost of the flare plus its 

installation is achieved. 

The Indair (Induced-Air) flare is an axisymmetric flare whose c r o s s -

section has the same shape as that of Figure 1.1. The entrainment 

properties of the jet are so good that gas at near atmospheric pressure can 
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be added into the jet at the top of the Coanda surface, via an axial duct, 
without producing any smoke. The Mardair (Marine-Induced-Air) flare is the 
involute of the Indair flare (i.e. the jet issues into the flare and 
travels round a convex surface (Figure 1.2)). It Is normally used in a 
matrix of small individual flares (to achieve shorter less radiative 
flames) although recently a large single flare has been developed. It has 
even shorter flame lengths and emits lower radiation levels than the Indair 
which makes it particularly suited to small-field off-shore platforms. The 
Stedair (Steam-Induced-Air) flare has a similar shape to the Indair flare 
without the conical section after the convex surface. Steam is ejected 
from the slot, entrains air while following the convex surface and then 
mixes with the gas which issues from an axial duct. This flare is 
particularly suitable for very low-pressure gases . The design and 
development of both the Indair and Mardair flares are outlined by Wilkins 
et al (1977). 

Research Into the performance of these flares has been undertaken at 

British Petroleum's Research Centre at Sunbury -on-Thames and at both Durham 

and Exeter universities. At Exeter the research has concentrated on the 

noise production of the f lares. Carpenter and Green (1983), which has not 

been considered in the present research. The research at Sunbury-on-Thames 

and Durham has concentrated mainly on the performance of various flare 

geometries, concentrating in particular on an undesirable phenomenon known 

as breakaway. Under normal operating conditions the Issuing gas follows the 

convex curvature of the Indair flare (Figure 1.1), but as the pressure 

behind the slot Is increased a critical pressure Is reached at which the 

jet suddenly separates from the surface and travels out horizontally. The 

upstream stagnation pressure at which this occurs Is defined as the 
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breakaway stagnation pressure. At stagnation pressures below this the jet 
can separate from the surface, but it always reattaches, thus following the 
general outline of the surface. At the critical pressure and above it, the 
mixing properties of the flare are lost. 

Two definitions are used throughout this work. Firstly, the 

stagnation pressure ratio is defined as the ratio of the downstream static 

pressure (in this c a s e atmospheric pressure, p ) to the upstream stagnation 

pressure, p^. This ratio Is always less than unity. Secondly the Coanda 

surface is defined as the surface downstream of the slot exit and which 

deflects the jet. This is usually a surface of constant radius followed by 

a flat section,although sometimes a short flat exists before the circular 

arc . 

Breakaway tests on Indair flares have been conducted by British 

Petroleum (1979, 1980, 1982) and indicate that as the slot width to 

downstream radius ratio is reduced the breakaway stagnation pressure 

ratio (p /p ) d e c r e a s e s . There is also a hysteresis effect between the 
a 0 

breakaway stagnation pressure ratio and the ratio at which the jet 

reattaches to the Coanda surface. The inclusion of a step between the slot 

and the Coanda surface was also found to decrease the breakaway stagnation 

pressure ratio at a set slot width. The ratio progressively decreases as 

the step height Is Increased up to an optimum height, beyond which the 

ratio increases . In addition to these axisymmetric tests at Sunbury-on-

Thames , Sadler (1983) investigated the effect of altering the angle through 

which the Coanda surface turned the flow on a plane two-dimensional rig. 

The breakaway stagnation pressure ratio at a set slot width progressively 

increased as the Coanda surface was reduced below a turning angle of 1500, 
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although the change of turning angle had little effect on the reattachment 
stagnation pressure ratio. 

At Durham, Gregory-Smith and Robinson (1982) investigated the 

discharge coefficients and the downstream surface static pressure 

distributions on a plane two-dimensional model. The latter investigation 

was restricted to incompressible flow. An Investigation of the breakaway 

and reattachment stagnation pressure ratios was also carried out. However, 

due to restrictions on the air supply to the rig, the radius of the Coanda 

surface was reduced to one only just bigger than the slot thickness. This 

resulted in the flow attaching itself to the nozzle rather than the Coanda. 

thus issuing horizontally, at large slot widths. in two unpublished works, 

Gilchrist (1981) and Savin (1982) extended these experiments, investigating 

the effect of altering the shape of the nozzle and including a step between 

the slot and the Coanda surface. The breakaway stagnation pressure ratio 

at a set slot width was unaffected by a change in the shape of the nozzle 

and, as in the axisymmetric flare, was decreased by the inclusion of a 

step. A few Schl ieren photographs were also taken to visualize the 

structure of the jet, although problems were encountered with oil coming 

over from the compressor and obscuring the final picture. In addition to 

these Investigations , Morrison (1982) has Investigated the mean properties 

and the turbulence structure of a low speed jet flowing over a half-model 

of the axisymmetric indair flare. This Investigation Is discussed in 

section 2.5. 

1.3 O B J E C T I V E S 

The stagnation pressure ratio required to achieve the phenomenon of 

breakaway at a set slot width to downstream radius has been investigated on 

both plane and axisymmetric flare models (Section 1.2). However, the 
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mechanism of this phenomenon has not been studied and in particular the 
dependence of the phenomenon on the slot configuration and/or the shape of 
the downstream surface is unknown. An understanding of the mechanism of 
breakaway would enable the flare designers to alter their designs in order 
to delay breakaway. 

The main aim of this project was to investigate the jet structure 

from a plane model of the axisymmetric 18-H-AS flare marketed by Kaldair. 

A range of slot widths to downstream radius ratios were to be studied. At 

each ratio the resultant jet was to be studied over a range of stagnation 

pressure ratios down to that required for breakaway. The experiments were 

to include oil surface flow visualization and static pressure measurements 

round the Coanda surface. In addition, the density changes within the jet 

would enable shadowgraph, Schlieren and interferometric techniques to be 

used. It was aimed to design and develop an optical system that would 

allow all three techniques to be used and that required only simple changes 

to switch from one technique to another. The jet was to be photographed 

over a range of stagnation pressure ratios down to that required for 

breakaway at several slot widths to downstream radius ratios. This would 

enable the structure of the jet to be determined. 

The theoretical work was to include . two prediction techniques. 

Firstly the whole jet was to be modelled assuming potential flow, thus 

ignoring the effects on the jet structure of both the inner boundary layer 

and the outer shear layer. The properties of the predicted jet would be 

compared to those obtained experimentally to test how far downstream of the 

slot the calculation method accurately predicted the jet. This technique 

cannot predict separation of the jet from the surface, so the second aspect 

of the theoretical work was to model the boundary layer. It was hoped a 
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boundary layer calculation method could be found, or adapted, to model the 
layer from the static pressure distributions obtained from either 
experimental measurements or the potential flow model. This would enable a 
prediction of the separation, or possibly the breakaway, to be made. The 
method could then be applied to different geometries in order to improve 
the flare design such as to avoid breakaway of the jet. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 BASIC RELATIONSHIPS 

The static temperature is related by the Mach number to the 

stagnation temperature for steady adiabatic flow on which no work is done 

and on which gravitational effects are negligible, 

T^ = 1 + |y-^ Vvi2 

. . .(2.1) 

. . .(2.2) 

T \ 2 

For a perfect gas 

p = pRT 

and if the flow is Isentropic 

p = const 

p"** . . .(2.3) 

Equations 2.1, 2.2 and 2.3 can be combined to relate the static pressure 

and density to their stagnation values, 

-1 y / 7 - 1 
1 + (y-^ \M2 

.(2.4) 

- .1 /7 -1 
1 + /7-1 \M2 

.(2.5) 
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2.2 CALCULATION METHODS 

The Navier-Stokes equations for two-dimensional steady flow in which 

body forces and heat sources can be neglected can be written as 

ap + aG = 0 

ax 3y . . .(2.6) 

where 

F = 

pu 

pu2 + 

P U V + T 
xy 

(e+a ) u + T V - k (aT/ax) 
A yX 

G = P U V + T y ^ 

pv2 + O 

f-e+o ) V + T u - k (aT/ay) 
y '̂ y 

and where 

= p - X (du + av \ - 2 fl dii 

ax a y / ax 

l a y ax 

OTy = p - X p u + 3v \ - 2 fi dw 

I 3x ay / ay 

and where X and ji are viscosity coefficients, e is the total energy per 

unit volume and k is the coefficient of heat conductivity. 
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The Navier-Stokes equations are non-l inear second-order partial 

differential equations. Such equations have the general form 

A a2f + B a2f + c a2f = D 

3x axay ay2 . . .(2.7) 

where A, B, C and D may be functions of x, y, f, di/dx and at/ay. A 

characterist ic is a line in the flow where the second-order derivatives of 

f are indeterminate, their gradients being given by Chow (1979) as the 

solution of 

A / d y \ 2 - B /dy y- C = 0 

\dx i dx/ . . .(2.8) 

There are three possible types of solution to equation 2.8 and these 

form the classif ications of equation 2.7:-

B2 - AC > 0 There exist two real values of dy/dx and 

equation 2.7 is hyperbolic. 

B2 - AC = 0 There exists a single repeated value of dy/dx 

and equation 2.7 is parabolic. 

B2 - AC < 0 There exist two imaginary values of dy/dx and 

thus the characteristic lines do not exist and 

equation 2.7 is elliptic. 

The physical signif icance of the three types of classification can be 

understood by considering the regions of Influence of a point In a flow 

field. Disturbances from this point are propagated at the speed of sound. 

If the flow is supersonic disturbances cannot be propagated upstream and 

the region of influence of a point Is confined to an area downstream of the 

Mach lines from that point. The equations of motion are hyperbolic, the 

character ist ics being the Mach lines, and the whole flow field can be 
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solved in a single sweep downstream. If the flow is subsonic the region of 
influence of a point is unbounded and the characteristics do not exist. 
The equations of motion are elliptic and the solution must be obtained by 
matrix methods or by making an Initial guess of the solution and then 
iterating the whole flowfield until convergence to the solution is 
achieved. 

Under certain conditions, such as the c lass ica l boundary layer 

assumptions, the elliptical equations can be approximated to become 

parabolic equations. The region of influence of a point Is limited to a 

region downstream of the characterist ic, the characteristic running normal 

to the surface. The equations of motion can be solved directly by a single 

sweep downstream through the flowfield. 

An additional complication in the set of equations 2.6 is that they 

do not form a closed set of equations If the flow is turbulent. The 

methods of c losure are d iscussed by Schlichting (1979), Cebeci and Smith 

(1974) and by Bradshaw et al (1981). There are two main approaches to the 

solution of the differential form of equation 2.6 for boundary layer type 

flows, the approaches being identified by their closure assumptions. The 

first approach combines the mean flow equations with a closure assumption 

that models the Reynolds s t resses . These include the mixing-length 

approach of Patankar and Spalding and the eddy viscosity approach of Cebeci 

and Smith (1974). in both these methods the governing equations are 

approximated to become parabolic equations for boundary layer type flows. 

The Patankar and Spalding method transforms the y ordinate into a non-

dimensional stream function and uses an upwind difference scheme for the 

simultaneous solution of all points at a given x. The method of Cebeci and 

Smith transforms the equations into a rectangular grid. The governing 
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equations are written in the form of a first order system and then solved 
by Kellers Box method (Keller (1978)). The resulting equations are 
implicit and the scheme is unconditionally stable. 

The second approach combines the mean governing equations with an 

equation for the transport of the Reynolds stress. The method of Bradshaw, 

originally described for incompressible flow by Bradshaw et al (1967) and 

extended to compressible flow by Bradshaw and Ferr lss (1971). uses the 

turbulent energy equation. Three non-dimensional empir ica l relationships 

are defined in this equation. An important feature of this set of 

equations is that they are hyperbolic for boundary layer flows and can thus 

be solved by the method of characterist ics. This allows large streamwise 

steps and is a fast, efficient method. Three characterist ics exist, one 

normal to the shear layer and two that spread downstream from each point of 

the flow field. These latter two characterist ics are related to the spread 

of turbulence downstream from a point.. 

One feature of these methods for solving boundary layer flows is that 

influences are passed upstream only through an imposed streamwise pressure 

gradient, the calculation method marching spatially downstream. Thus any 

regions of reversed flow, where information is passed upstream through the 

mean momentum cannot be calculated. The set of equations 2.6 are now 

elliptic. An alternative approach in the calculation of the elliptic 

equations of a shear layer is by re-introducing the unsteady terms into the 

Navier-Stokes equations. A solution Is guessed and the flow Is then 

artificially marched forward in time until a steady solution Is reached. 

These methods require all the grid points to be stored and often require a 

large number of iterations (McNally and Sockol (1985)). However these 

methods do allow the computation of a flowfield that contains regions of 
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reversed flow. MacCormack (1982) has accurately computed a shock/boundary-
layer interaction that includes a region of separation. 

The usual method of coupling the potential flow solution that 

provides the streamwise pressure gradient and the shear layer calculation 

is through a displacement thickness approach. The potential solution is 

found initially Ignoring the presence of the shear layer and the resultant 

pressure imposed upon the solution of the shear layer. The tatter 

calculation usually ignores the y momentum equation. The potential 

solution is then recalculated with any boundaries displaced by an amount 

equal to the displacement thickness of the shear layer. The new pressure 

gradients can then be used to recalculate the shear layer and the process 

iterated until convergence. Dash et al (1979) have used this method to 

calculate the flow field in the region just downstream of a nozzle 

exhausting into an external stream. 

However the use of a displacement thickness does not accurately model 

the effect of the shear layer on the potential flow if there is a strong 

interaction between the shear layer and the potential flow. A strong 

interaction can occur in the presence of pressure gradients normal to the 

shear layer or can result in the reflection of wave processes in supersonic 

flow. These waves will be attenuated and curved in the shear layer. One 

alternative method of coupling is that of pressure-spl i t coupling, one of 

the first developments being by Mahgoub and Bradshaw (1979). The potential 

flow solution is Initially found ignoring the presence of the shear layer. 

The resulting streamwise pressure gradient is imposed at the edge of a 

shear layer calculation, this calculation including the y momentum 

equation. An initial guess of the normal pressure gradient must be made 

and the fluid properties along the normal calculated. The resultant 



- 15 -

properties can be used to correct the normal pressure gradient and tlie 
fluid properties recalculated. Once the total shear layer has been 
calculated, the potential flow can be recalculated with the known 
entrainment velocities at the known outer edge of the shear layer as a 
boundary condition. The potential flow and the shear layer are solved 
alternately until a converged matched solution is found. 

Dash et al (1983) reviews the progress made in the calculation of 

curved wall jets with or without an external stream. The pressure-split 

method was applied to the solution of subsonic turbulent wall jets and 

results are presented. The extension of this methodology to the solution 

of underexpanded jets is proposed and results from a program that models an 

inviscid jet presented. 

2.3 TURBULENT WALL J E T S ON FU^T S U R F A C E S 

The mean velocity profile of a fully developed turbulent wall jet 

flowing over a flat surface can be considered to consist of two layers. 

The outer layer is analogous to that of a half free jet and the Inner layer 

analogous to a typical wall layer. Glauert (1956) obtained a near similar 

solution using this model. A solution was sought where 

U ^ a x^, y ^ , „ a x ' ' . . .(2.9) m ' m / 2 

The eddy viscosity in the outer layer was assumed to be constant and 

the velocity profile In the Inner layer was assumed to vary as y^^^ 

(Blasius' pipe flow formula) and that the eddy viscosity varied as u^. The 

two layers were patched at the velocity maximum, with the assumption that 

the shear st ress was zero at this point, and the effect of the viscous 

sublayer was Ignored. The values of the constants were found to be a =-0.5 

to -0 .6 and b = 1.0. Experimental values of these constants were 

determined by Schwarz and Cosart (1960), who quote a value for a of -0.555 
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(this value was an average of results ranging from - 0.5 to - 0.6) and 
b = 1.0. 

Launder and Rod! (1981) critically review all the available 

experimental data. Where sufficient data was available the results were 

checked for two-dimensionality using the momentum integral equation and if 

the flow was found to depart significantly from two-dimensionality the 

results were disregarded. They found that the growth rate of the jet 

agrees with the theory of Glauert and was given by 

dy^^2 = 0.073 ± 0.002 

dx . . .(2.10) 

This growth rate is about 30% below that of a free jet. Launder and 

Rod! (1983) suggested that the reason for this is that the normal 

fluctuations near the wall are damped. The mean velocity profile is also 

accurately predicted by Glauert, Launder and Rodi (1981) showing that the 

similarity of experimental profiles is very satisfactory when plotted as 

U / U ^ against y^yi/2- Wilson and Goldstein (1976) show that the normal 

velocity profiles are also similar when plotted as V / U ^ against 

Bradshaw and Gee (1960) note two discrepancies between the real flow 

and the theory of Glauert. Firstly, the theory underestimates the wall 

shear s t ress by 25%. Launder and Rodi (1981) show there is a wide 

variation in the measurement of the wail shear s t ress , but suggest the data 

of Bradshaw and G e e , measured with a Preston tube. Is one of the most 

accurate. They found that 

r = 0.0315fu V ^ 
(i) m m 

1/2 p U 2 ^ \ V I . . .(2.11) 
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Launder and Rodi (1981) suggest that this is valid in the range 
3 X 103 < U ^ y ^ / v < 4 X 10* . The errors in the measurement of the wall 
shear s t ress have also led to difficulties in applying the log law of the 
wall to the inner layer. Launder and Rodi (1983) also suggest that authors 
have also attempted to apply the formula to too large a portion of the 
inner layer. However, the inner layer can be described by 

U = A log/y + B 

\ V / . . .(2.12) 

where the results proposed by Patel (1965) of A = 5.5 and B = 5.45 

appear to be the most accurate. 

The second discrepancy, noted by Bradshaw and Gee . is that the shear 

stress is not zero at the velocity maximum. Thus any theory that models 

the shear s t ress on the first derivative of velocity is inadequate. 

Launder and Rodi (1981) note that large sca le eddies from the outer layer, 

bearing a shear stress of the opposite sign to that from the wall encroach 

into the Inner layer. This not only reduces the range of validity of 

equation 2.12. but is also the reason for the shear stress zero occurring 

within the inner layer and before the velocity maximum. They note that, 

while the velocity maximum occurs approximately at y / y i / 2 " 2®''° 

shear s t ress occurs at approximately y/y-j/g ~ ^-^ ^'^^ value of the 

shear s t ress at the velocity maximum is of the same order, although of 

opposite s ign, as the wall shear s t ress . 

2.4 CURVED WALL J E T S 

During the 1960s there was a surge of interest In the flow of a 

turbulent jet over a convex surface, motivated mainly by the aeronautical 

Industry. The work consisted mainly o f the flow of an Incompressible jet 
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flowing over a convex surface of constant radius, with interest being 

focused on the increased growth rate of the jet, the surface static 

pressure distributions around the surface and the separation of the jet 

from the surface. Wille and Fernholz (1965) and Fernholz (1971), in a 

translation of an earlier work, review the progress made during this period 

and only the works directly relevant to the present investigation will be 

mentioned here. 

Newman (1961) descr ibes the flow of an incompressible jet over a 

surface of constant radius (Figure 2.1). If the fluid were inviscid and 

non-turbulent, the flow would become independent of 0 just downstream of 

the slot and thus the jet width, velocity distribution and the static 

pressure at the surface would be invarieint. In addition the flow would 

never separate from the surface. The radial momentum equation can be 

integrated a c r o s s the jet to give a non-dimensional surface pressure 

2 C = p - p p ^ s '^a 

P o - P a 

2 b + /b 

a \ a / . . .(2.13) 

Fernholz (1964) has integrated the radial momentum equation, together 

with energy and perfect gas equations (equations 2.1 and 2.2) to give the 

non-dimensional surface pressure for compressible flow 

[y-yy 

^"0 

-1 1 + b T + 1 

y/(y-V 

.(2.14) 
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Gregory-Smith and Robinson (1982) integrate the radial momentum 

equation to show the Mach number distribution through the jet is given by 

^ 1 / 2 
1 + 7-1 M2 

2 / 

1 

M 

. . .(2.15) 

where r* is the radius at which the Mach number is unity. 

The real fluid continuously entrains air from the surroundings, 

(Figure 2.1), increasing the jet width and decreasing the jet velocities as 

the angle round the surface increases. If the fluid is Incompressible this 

c a u s e s a gradual Increase in the static pressure at the surface which 

finally leads to the separation of the jet from the surface. Newman (1961) 

suggested that at some distance from the slot, where the flow is fully 

developed, the flow becomes independent of the slot conditions (p - p ) 
0 a 

and b, but depends on their product, the jet momentum. A similar velocity 

profile at an angle 0 could have been formed by a larger slot situated 

downstream or a smaller slot situated upstream of the original slot, 

provided the exit momentum was the same. He showed the non-dimensional 

surface static pressure was related by 
p - p / a ^a ^ s = f 0 0^ 

(Po-P3)ab 
1/2 

.(2.16) 

where 0^ is measured from the position of a hypothetical slot of zero 

height but whose exit momentum is the same as the original slot (Figure 

2.1). In addition, at high Reynolds number the flow becomes independent of 
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viscosity and the non-dimensional surface static pressure becomes a 
function of angle only. 

A similar analysis for the angular position of the separation of a 

fully developed incompressible jet gives 

»sep = ' 

P V 2 . . .(2.17) 

which suggests that it tends to become constant at high Reynolds number 

provided a suitable origin is chosen. 

The experimental surface static pressure distributions of Newman 

(1961) and the more accurate ones of Fekete (1963) confirm the results of 

equation 2.16, the critical Reynolds number being about 4 x 10* . Fekete 

noted that the ideal jet momentum, (p - p )b . in the non-dimensional surface 
0 3 

pressure should be replaced by the actual jet momentum, the latter being 

smaller due to the boundary layers at the slot exit. Newman (1969) gives 

the range of validity of these results as 0.01 < b/a < 0.05, viscosity 

being Important at smaller slot widths. At larger slot widths the flow 

does not become fully developed until very large angles. 

The universal angle of separation given by equation 2.17 is 226° ± 3 ° 

(Newman (1969)) and is valid at Reynolds numbers greater than 4 x 10* . 

Wilson and Goldstein (1976) confirm the separation angle is constant at 

Reynolds numbers greater than this. Keshavan (1975) extends the theory to 

a jet issuing from a tangential slot on a cylinder that is in a uniform 

external stream. He found the separation angle at high Reynolds numbers 

depended only on the angle of the slot to the direction of the external 

flow and on the ratio of the jet momentum to the external dynamic head. 

Roderick (1961) Investigated the deflection of a compressible jet, 

•jovering a stagnation pressure ratio range of 0.625 to 0.355. The jet 
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issued over a deflection surface that consisted of a short flat section set 
tangentially to a circular arc that deflected the flow through 9 0 ° . The 
deflection surface could be set such that the flat was at an angle a to the 
initial jet axis, the range of a that was tested being 0° < a < 25°. A 
slot width to downstream radius ratio range of 0.0156 to 0.0625 was 
studied, but variations in the slot width of up to 50% were found across 
the breadth at the smallest slot width. These variations, caused by 
warping during welding of the nozzle section, cast doubt on the two-
dimensionality of the flow. An extensive investigation was made of the 
surface static pressure distribution round the surface. These were found 
to exhibit a wave-l ike structure about a constant mean negative value at 
small angles round the surface, the waves damping out as the angle 
increased. The angular distance between the wave peaks and the amplitude 
of waves increased as the stagnation pressure ratio was decreased. The 
mean value at a set stagnation pressure ratio decreased as the slot width 
was increased. 

Korbacher (1962) investigated the surface static distributions over a 

similar deflection surface to that of Roderick (1961). though the leading 

edge of the flat was displaced away from the nozzle edge, both along the 

jet axis and vertically to it. A compressible jet was studied at 

stagnation pressure ratios mainly above the critical ratio (i.e. unchoked). 

The non-dimensional surface static pressure distributions were found to 

consist of an initial 'adjustment' region followed by a constant region as 

predicted by equation 2.14. 

Bradbury and Wood (1965) investigated the deflection of a thick jet 

(b/a = 0.5) over a deflection surface that consisted of a circular drum 

with a straight flap attached tangentially to it. The drum could be 
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rotated to vary the angle of the flap to the initial jet axis, although 
there was some doubt about the position of the zero. The drum and the flap 
contained a limited number of static pressure tappings which indicated the 
flow at the surface became supersonic even at stagnation pressure ratios 
above the critical ratio. The breakaway of the jet from the flap was also 
studied, the angle of the flap to the jet being increased until breakaway 
at a set stagnation pressure ratio. Only small deflections, of the order 
of 1 0 ° , were achieved before breakaway at stagnation pressure ratios less 
than 0.5. The presence of an auxilliary jet issuing tangentially from the 
drum, was found to increase the possible deflection angle before breakaway 
at stagnation pressure ratios near unity. However, at ratios of less than 
0.5 it had no effect. Recent experiments into the breakaway of a jet are 
reviewed in Section 1.2. 

Launder and Rodi (1981, 1983) review recent progress of experimental 

work on curved wall jets. Two detailed studies on the turbulence structure 

of an incompressible jet flowing over a constant radius convex surface are 

by Wilson and Goldstein (1976) and by Alcaraz et al (1977). Wilson and 

Goldstein measured the structure of the flow over a flat plate and over a 

convex surface, the slot width to downstream radius being 0.0605. Alcaraz 

et al measured the flow from an 18 mm slot flowing over a surface of radius 

5800 mm (b/a = 0.0031). Wilson and Goldstein reported a growth of 

y^/2 = 0 0 7 8 7 X + 6 1 + 2.956 y ^ / g l - 0.1559 '1/2 

.(2.18) 

Where y^^^ was well represented by a simple linear fit until 180° round the 

cylinder, where the quadratic term was required. Launder and Rodi (1981) 
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suggest that for the apparatus used, the flow c e a s e s to be two dimensional 

by the 180" position. Newman (1961) gives the growth as 

y i / 2 = 
I 
1 + 1.5 y 1/2 

a / . . .(2.19) 

and Newman (1969) gives a correlation of the results of Fekete (1963) and 

Guitton, who measured flow over a concave surface, as 

y^/2 = 0.069 + 0 . 3 / y ^ ^ 2 \ - 1/2 
— I 

.(2.20) x \ a 

Wilson and Goldstein (1976) found that the mean velocity profiles 

appeared to be similar when plotted as U / U ^ against y/y-i/g- "'̂ ^̂  maximum 

velocity occurred at approximately the same position as a wall jet flowing 

over a flat plate. However the non-similarity of the flow was evident in 

the non-dimensional plots of the mean normal velocity, the ratio of V / U ^ 

increasing at a given y/y-j/g ^® angle round the surface increased. 

Both Wilson and Goldstein (1976) and Alcaraz et al (1977) showed that 

the zero value of shear stress occurred In the Inner layer. The maximum 

shear stress In the outer layer and the two fluctuating velocities were 

found to increase as the angle round the surface increased. Wilson and 

Goldstein found the normal fluctuating component increased more rapidly 

than the streamwise fluctuation, but Alcaraz et al found the increase was 

similar in both c a s e s . The increases In these components were mainly 

confined to the region y < y-i^g- discrepancy between the two results 

is given by Launder and Rodi (1981) as probably due to the difference in 

y^l^g/a. In the experiment of Alcaraz et al this was approximately 0.01 

whereas in that of Wilson and Goldstein it was approximately 0.4 at the 

1300 station. Thus the wall can be expected to damp the normal 

fluctuations to a greater degree in the experiments of Alcaraz et al. 
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Wilson and Goldstein recorded turbulence intensities of up to 25% over the 
convex surface compared with about 18% over the flat plate, the maximum 
intensities occurring in the outer layer where dU/dy, and thus the 
production of turbulence, was a maximum. 

The flow of a wall jet over a logarithmic spiral has been shown by 

Guitton and Newman (1977) to be self-preserving. They took great care to 

establish two-dimensional flow and were to a large extent successful . The 

streamwise and normal mean velocity profiles were similar at all downstream 

stations and the position of the zero stress point was again found to be 

inside the inner layer. 

There have been two studies of concave jets flowing round the Inside 

of a circular arc , which are reviewed by Launder and Rodi (1981). The 

R«\>^lfii^h criterien. (Section 1.1) shows that these are stably curved shear 

layers and they are not strictly relevant to the present study. 

2.5 AXISYMMETRIG WALL J E T S 

An early investigation into an axisymmetric jet is that of Bakke 

(1957) who investigated a turbulent low speed jet of air spreading out 

radially over a flat plate. A ser ies of pitot traverses were made 

perpendicular to the plate and velocity profiles deduced assuming the 

static pressure to be atmospheric everywhere. The resultant velocity 

profiles were found to be similar and found to agree with the theory of 

Glauert (1956). The two similarity constants a and b (equation 2.9) were 

found be to -1 .12 and 0.94 respectively. 

Sharma (1981) investigated a conical wall jet whose apex angle, a. 

varied from 0 ° to 9 0 ° and compared his results with several previous 

Investigations. The two limits of the investigation, 0 ° and 9 0 ° , represent 

a cylindrical wall jet and a radial wall jet respectively. The results 
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showed that the growth rate was independent of a and of the initial slot 

width and could be expressed as 

y^/g/b = 0.120 (x/b)°-^^ . . .(2.21) 

where b was the height of the slot. The velocity profiles were similar 

both in the inner and outer layers for a set value of a . and proved to be 

independent of the slot width. There was also a close resemblance of the 

shape of the similar profiles at varying values of a. An earlier 

investigation by Starr and Sparrow (1967) on a cylindrical wall jet found 

that whilst the outer layer velocity profiles were similar the inner layer 

were not. Sharma suggests that this is a result of curvature effects, the 

ratio of the slot height to the diameter of the rod used by Starr and 

Sparrow being over four times greater than that of Sharma. All the inner 

layers measured by Sharma could be described by the log law of the wall 

(equation 2.12) with the constants A = 4.17 and B = 7.6 for distances 

y U^/v < 200. However there is some doubt as to the accuracy of these 

results because the outer diameter of the pitot tube was large in 

comparison with the jet width. 

Morrison (1982) investigated the flow over a half model of an Indair 

flare (Section 1.2). Two slot width to downstream radius ratios of 0.167 

and 0.066 were investigated at stagnation pressure ratios of 0.98 and 0.94 

respectively. Surface static pressure measurements showed that the 

pressure gradually increases round the Coanda to atmospheric after an 

Initial drop caused by the curvature of the Jet. The mean properties were 

measured at various stations round the Coanda by both a three-hole probe 

and hot wires. The measurements show that the streamwise velocity profiles 

appear to be similar, as found by Wilson and Goldstein (1976) in their 

experiments on a plane convex downstream surface, until an angle of 75° 
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round the Goanda had been reached, when the similarity broke down in the 
outer layer. This breakdown in the apparent similarity was caused by the 
influence of the flat section further downstream. The non-similarity of 
the flow is shown, as with Wilson and Goldstein, by the normal velocity 
profiles, the non-dimensional normal velocity increasing at a set y/y^/g 
the flow proceeded downstream. 

The growth rate of the jet from the smaller slot is similar to that 

found by Wilson and Goldstein (1976) in their experiments on a plane convex 

wall jet (equation 2.18). As the growth rate of a plane and a radial jet 

are similar, this result was expected. However the growth rate of the jet 

from the larger slot was below that found by Wilson and Goldstein, the 

reason being that the potential flow region was larger and thus the Jet was 

not fully developed. 

Detailed hot wire analysis at the larger slot width showed normal 

turbulence intensities of up to 45% on the curved part of the Coanda. The 

maximum intensities were recorded at y/y-,/2 " 0.6, which coincided with the 

maximum negative gradient of the streamwise velocity. The shear stress 

profiles show that the zero shear stress is inside the inner layer, as 

found on plane and curved wall jets. 

Tests were also made on a full scale 8" Indair fiare with a three-

hole probe. The mean velocity profiles were found to be similar and the 

growth rate similar to that measured by Wilson and Goldstein. 

2.6 S U P E R S O N I C J E T S 

The classification of supersonic jets exiting from a convergent-

divergent nozzle is given by Shapiro (1953) together with Schlieren 

photographs of the three types. The structure of the jet differs depending 
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on the ratio of the free air downstream to that of the static pressure at 

the nozzle exit. A jet is termed underexpanded if this ratio is less than 

unity and a Prandtl-Meyer expansion at the nozzle lip decreases the static 

pressure of the jet to that of the free air. A jet is fully expanded if 

the ratio is unity and termed overexpanded if the ratio is greater than 

unity. The latter jet requires a compression at the nozzle lip to raise 

the static pressure to that of the free air. This compression can take on 

two forms depending on the pressure ratio. An oblique shock forms at the 

nozzle lip that either undergoes a regular reflection at the jet axis or, 

if the shock is strong, leads to the formation of a Mach disk (Chow and 

Chang (1972)). The nozzle configuration of the present study is of a 

purely convergent type and thus only underexpanded jets are considered. 

The structure of a typical underexpanded axisymmetric jet is shown in 

Figure 2.2. A Prandtl-Meyer expansion centred on the nozzle lip reduces 

the static pressure to that of the still air. These expansion waves are 

reflected at the jet axis and then, as compression waves, from the free jet 

edge. These compression waves coa lesce to form an oblique shock which, if 

the stagnation pressure ratio is c lose to the choking value, undergoes a 

regular reflection at the jet axis. However if the stagnation pressure 

ratio is low the oblique shocks lead to a normal shock that bridges the 

oblique shocks. This normal shock is commonly known as the Mach disk, or 

sometimes as a Rlemann wave. The central core of the jet is decelerated 

through this shock to subsonic speeds. The initial incident oblique shock 

is reflected at the edge of the Mach disk and the flow in the outer annulus 

of the jet remains supersonic. The oblique shock Is reflected again at the 

free edge of the jet as a Prandtl-Meyer expansion. A slip line divides the 

outer supersonic and Inner subsonic regions. The area of the Inner region 
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d e c r e a s e s further downstream and the flow is accelerated up to supersonic 
speeds. 

Love et al (1959) describe a detailed study of axisymmetric 

underexpanded jets. Nozzles whose exit divergence angles ranged from 0 ° to 

200 and whose exit Mach numbers ranged from 1.5 to 3.00 were tested over a 

range of stagnation pressure ratios. In addition a simple convergent 

nozzle whose exit angle was 0° was tested. Schlieren photographs were 

taken and compared with a potential / model using the method of 

character ist ics (Chapter 3). Investigations were made of the existence and 

location of the Mach disk, of the length of the first shock cell and of the 

inclination of the jet boundary to the jet axis at the nozzle exit. The 

divergence angle of the nozzle was found to have little effect on the 

length of the first shock cel l , the length increasing as the stagnation 

pressure ratio was reduced. As the stagnation pressure ratio was decreased 

below the value at which the Mach disk appeared, the disk moved further 

downstream and increased in diameter. The method of characteristics was 

found to predict accurately the jet boundary in the initial part of the jet 

and to predict accurately the location of the incident oblique shock. 

Theoretical predictions of the size and position of the Mach disk and 

of the wavelength of the first shock cell have been made by Abbett (1971), 

Fox (1974) and Chang and Chow (1974). The method of characterist ics Is 

used to solve the supersonic flow together with the standard shock 

equations. The subsonic flow downstream of the Mach disk is treated as 

one-dimensional flow, the pressures and velocity directions being 

continuous a c r o s s the slip line. The position of the Mach disk is 

initially guessed and the flow field calculated. An improved prediction 

can then be made because , if the disk has been introduced too early the 
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flow downstream of the Mach disk is still subsonic by the point at which a 
minimum area of the central core has been reached. If it has been 
introduced too late the flow in the central core becomes supersonic before 
the minimum area has been reached. Chang and Chow show that the 
rotationality of the flow after the oblique shocks has a strong influence 
on the final solution, the effect being to bring the Mach disk closer to 
the nozzle. This inviscid method agrees closely with the data of Love et 
al (1959) for exit Mach numbers less than 2.5. The one-dimensional stream 
tube approach for the subsonic region has also been used by Dash and Thorpe 

(1981) . 

Several studies, motivated by the space industry and VTOL aircraft, 

have been made on the impingement of axisymmetric jets upon downstream 

sur faces. The shock structure of the jet is further complicated by the 

presence of the solid surface. Hunt and Lament (1976, 1980) have studied 

the shock structure and surface static pressure distributions of 

axisymmetric jets that impinge on wedges and flat plates. both 

perpendicular and inclined to the jet respectively. Jennions and Hunt 

(1982) studied the impingement of jets on cones of various angles and 

recorded static pressure distributions showing regions of compression and 

expansion as the jet flowed down the outside of the cone. 

An early study of plane two-dimensional underexpanded jets was made 

by Ladenburg et al (1949). Interferometric pictures of two jets confined 

by side walls were made, the stagnation pressure ratios being 0.164 and 

0.103. The aspect ratio of the slot was 5.0. They found a strong normal 

shock at the lower stagnation pressure ratio, although there was no 

evidence of an oblique shock leading to it. The measured pressure rise 

a c r o s s the normal shock was much less than that predicted by normal shock 
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theory. Ladenburg et al suggest that the side wall boundary layer 
separates due to the large pressure gradient across the shock, thus 
implying that the flow is no longer two-dimensional. Thus the normal shock 
does not extend a c r o s s the entire breadth of the flow field, which led to 
large errors due to the small aspect ratio. 

Benson and Poole (1965a) investigated the structure of a plane two-

dimensional jet by taking Schl ieren photographs over a stagnation pressure 

ratio range from 0.7085 down to 0.075. The method of charcteristics was 

used to provide a theoretical prediction of the structure of the first 

shock cell at stagnation pressure ratios below the critical ratio. Three 

types of shock systems (Figure 2.3) were identified, similar to those found 

in axisymmetric jets. At stagnation pressure ratios just below the 

critical ratio the shock pattern is as Figure 2.3a. The Mach waves from 

the initial Prandtl-Meyer expansion at A are reflected at the jet axis (B) 

as expansion waves to satisfy the condition that the flow follows the 

jet axis. These waves are reflected off the free surface (C) as 

compression waves and again at D. The compression waves then coa lesce to 

form a weak oblique shock at point F. 

As the stagnation pressure ratio was reduced the cell length 

increased and the oblique shock moved physically downstream, although the 

coa lesc ing of the waves occurred at an earlier point within the shock cell. 

A second shock system appeared by a stagnation pressure ratio of 0.1234, 

where the coalesc ing of the compression waves occurred at E before they 

reached the jet axis (Figure 2.3b). The weak oblique shock underwent a 

regular shock reflection at the jet axis, the flow being rotational after 

this shock. Benson and Poole made no attempt to investigate the rotational 
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part of the flow, although the method of characteristics accurately 
predicted the occurrence of these two shock systems. 

As the stagnation pressure ratio was further reduced a third shock 

system appeared on the Schl ieren photographs equivalent to the appearance 

of the Mach disk in axisymmetric flows (Figure 2.3c). Thus the incident 

oblique shock became highly curved and led to the formation of a normal 

shock. The method of characterist ics however, still predicted that a shock 

system of Figure 2.3b was possible (i.e. that a strong reflection of the 

incident oblique shock was still theoretically possible). No explanation 

of this early transition to the Mach disk shock system is given. 

Interferometric pictures were taken at two stagnation pressure 

ratios, 0.7085 and 0.4250. The latter was compared with lines of constant 

Mach number predicted by the method of characterist ics and a good agreement 

was found. Benson and Poole concluded that numerical solutions based on 

the compressible potential flow theory accurately predicted the structure 

of the first shock cell and that the influence of the mixing region did not 

appear to influence the jet in this region. 

The author is not aware of the existence of any previous published 

work on an underexpanded plane wall jet. The structure of a plane wall jet 

is expected to be similar to a plane free jet, the free jet axis being 

replaced by the wail. A Schl ieren photograph of Gilchrist (1981) confirms 

this. An additional complication is introduced by the boundary layer at 

the wall. The strong adverse pressure gradient in region D (Figure 2.3) 

could c a u s e the boundary layer to separate which could have a marked effect 

on the shock cell structure because supersonic flow is very sensitive to 

the flow angle, especial ly at Mach numbers close to unity. The boundary 
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layer also transmits information upstream which can affect the shock 
structure and jet shape. 

The shock ceil pattern of a plane underexpanded jet flowing over a 

convex curved downstream section is further complicated by expansion waves 

emanating from the surface. The effects of the curvature can be expected 

to depend on the ratio of the curvature to the initial jet width and on the 

stagnation pressure ratio. The surface static pressure measurements of 

Roderick (1961) and Korbacher (1962) are d iscussed in Section 2.4, as is 

the investigation of Bradbury and Wood (1965) into the deflection of thick 

jets. Under certain conditions the jet c e a s e s to follow a curved convex 

downstream surface, a phenomenon known as breakaway. Previous 

investigations into this phenomenon are d iscussed in Section 1.2 

2.7 DISCHARGE C O E F F I C I E N T 

The discharge coefficient, C ^ , at a given stagnation pressure ratio 

a c r o s s a nozzle or slot is defined as 

C p = Actual mass flowrate 

Ideal mass flowrate . . .(2.22) 

The mass flow through a nozzle or slot is given by 

m = J pU dA 

A . . .(2.23) 

where U is the velocity component normal to the plane of the slot exit. If 

the flow is one dimensional and isentropic, the mass flow rate can be 

related to the upstream stagnation conditions and to the exit IVIach number 

(Section 2.1). Thus the ideal mass flow rate through a nozzle or slot 

becomes 
m = A p M jy 1 + V - i \lVi2 ' 

1/2 

w J . . .(2.24) 
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At a stagnation pressure ratio below the critical ratio, an ideal 
slot becomes choked and equation 2.24 reduces to 

,1/2 
m = A 

. . .(2.25) 

Thus the ideal mass flow rate becomes independent of the downstream 

conditions and depends only upon the slot area , the stagnation conditions 

and the ratio of the specif ic heats. The critical pressure ratio for air, 

and thus the ratio for transition from equation 2.24 to 2.25 is 0.528. 

The behaviour of two-dimensional flow through a slot at various 

stagnation pressure ratios is described by Guderley (1962). At stagnation 

pressure ratios close to unity (Figure 2.4a) the entire flow field is 

subsonic . The flow at points A and D is stationary, the flow accelerating 

along AB such that the static pressure at B has dropped to the downstream 

value. The flow is then turned along B E such that the static pressure 

remains constant, the streamlines becoming parallel at point E. As the 

stagnation pressure ratio is reduced the critical pressure ratio is reached 

and a sonic line appears (Figure 2.4b). A Prandtl-Meyer expansion is 

centred at B to further reduce the static pressure from the sonic pressure 

to the downstream value. The last of these expansion waves is shown 

intersecting the sonic line at point F, from where the downstream 

conditions are transmitted further upstream. Thus the slot is not choked 

b e c a u s e downstream information can be transmitted upstream. However, 

information from some point C on the jet edge does not reach the sonic line 

and so cannot be transmitted upstream. As the stagnation pressure ratio is 

further reduced, the point C moves closer to B until they coincide 
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(Figure 2.4c). A further reduction in the downstream pressure cannot be 
transmitted upstream, and the slot is choked. 

A review of both theoretical methods and experimental results of flow 

through plane and axisymmetric nozzles is given by Alder (1976) and only 

plane supercrit ical nozzles will be d iscussed here. The difficulty in the 

theoretical solution of this flow is that the governing equations change 

from the elliptic to the hyperbolic form as the sonic line is crossed 

(Section 2.2). Norwood (1962) investigated the flow of air from a sharp -

edged slit supplied from a chamber having a wall perpendicular to the plane 

of symmetry of the slot (Figure 2.5a). The flow was transformed into the 

hodograph plane which simplifies the boundary conditions of the free jet 

edge. A stream function distribution was assumed along the sonic line and 

the supersonic and subsonic regions solved separately. The assumed stream 

function distribution along the sonic line was then altered and the flow 

recalculated until the solution was continuous across the sonic line. 

After this solution was found, it was transformed into the physical plane. 

The effect of the upstream wall was included by specifying an input IVIach 

number, M.̂ , which corresponded to an area ratio, b/c , after the solution 

was transformed back into the physical plane. A set input iVlach number 

corresponded to a decrease in the area ratio, b/c , as the stagnation 

pressure ratio was decreased to the choking ratio, because the slot 

d ischarge coefficient increased. The position of the sonic line was also 

Investigated and found to intersect with the axis of symmetry at a distance 

of 0.43 b units downstream of the exit plane of a choked slot when the 

input Mach, M^. number was zero. 

Benson and Poole (1965a) used Norwood's method to predict the 

discharge coefficient from a two-dimensional slot (Figure 2.5b) over the 
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entire range of stagnation pressure ratios. They also continued the 
downstream solution to predict the structure of first shock cell (Section 
2.6). Benson and Poole (1965 a, b) also carried out experimental studies 
on the jet. The discharge coefficients were found to be accurately 
predicted by the theory down to a stagnation pressure ratio of 0.4. Below 
this the measured values of the coefficient of discharge deviated from the 
theoretical ones and by a stagnation pressure ratio of 0.1 the measured 
value was 2.5% higher than the predicted value. This discrepancy was put 
down to experimental error. 

Alder (1976, 1979) extended this work to convergent nozzles, the 

angle of convergence being constant (Figure 2.5c). The entire stagnation 

pressure ratio range was calculated over a range of convergence angles, >8, 

of 150 to 900. The coefficient of discharge was found to increase at a set 

stagnation pressure ratio as the angle of convergence was decreased and the 

ratio at which the slot choked increased with a decrease in the angle of 

convergence. Experimental tests on a nozzle whose convergence angle was 

30° gave discharge coefficients about 2% below the predicted values over 

the entire stagnation pressure ratio range. This discrepency was assumed 

to be a result of side wall boundary layers. The theoretical results were 

also compared with experimental results that Alder (1976) quotes from Brown 

(1968), who tested two nozzles whose convergence angles were 20° and 4 0 ° . 

The theoretical results were below those measured by Brown, but there is 

some doubt about the accuracy of the measured results because some of the 

coefficients were greater than unity. 

Gregory-Smith and Robinson (1982) Investigated the discharge of a 

plane two-dimensional jet from a nozzle over both flat and convex 

downstream surfaces. The coefficients from a sharp nozzle over a flat 
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plate were 3% higher than those obtained by Benson and Poole (1965 b) at 
stagnation pressure ratios below the critical ratio. Two further series of 
discharge coefficient tests were carried out; firstly from a circular 
nozzle over a flat plate and secondly from a circular nozzle over a convex 
downstream curvature of constant radius (Figure 2.5d). The streamwise 
length to slot width ratio varied from 1.75 to 7.0 and It was thus a thick 
orifice. Below the critical stagnation pressure ratio, the discharge 
coefficient increased at a set pressure ratio as the slot width was 
decreased . A rise in the coefficient was also found from the slot with a 
downstream curvature (Figure 2.5d) as the stagnation pressure ratio was 
increased from the critical value. This rise was more rapid as the slot 
width was increased. However the rise could not be reproduced by Gilchrist 
(1981) in tests on the same apparatus. In both the above investigations 
coefficients of discharge greater than unity were recorded at small slot 
widths which was attributed to errors in the measurement of the slot width 
and possibly to distortion of the slot at high upstream stagnation 
pressures . 

An investigation into the discharge coefficient from thick 

axisymmetric orifices was undertaken by Deckker and Chang (1965-6). The 

streamwise length to diameter ratio was varied from 2.0 to zero (or a 

sharp -edged orifice). At subsonic and critical stagnation pressure ratios 

the coefficient of discharge Increased as the thickness of the orifice was 

increased. However at low stagnation pressure ratios the sharp-edge 

orifice had a slightly higher discharge coefficient. 
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CHAPTER 3 
THEORETICAL ANALYSIS 

3.1 THEORY OF THE METHOD OF CHARACTERISTICS 

3.1.1 Equations of Motion for Isentropic Flow 

The Navier-Stokes equations (Section 2.2) are simplified for steady 

plane two-dimensional adiabatic inviscid compressible flow. They become 

(pu)u^ + (pv)Uy + = 0 . . .(3.1) 

(pu)v +{pv)v + = 0 . . .(3.2) 
A y y 

The continuity equation becomes 

pu^ + pVy + uPjj + vpy = 0 . . .(3.3) 

The energy equation can be replaced by the speed of sound equation if 

the flow Is isentropic. This has the advantage of eliminating the enthalpy 

derivatives from the governing equations. The speed of sound is given by 

a2 = Zap 

, a p / is . . .(3.4) 

If the flow is isentropic, the partial derivatives can be written as 

total derivatives. Thus along a streamline in two-dimensional steady flow, 

equation (3.4) becomes 

upjj + vpy - a2upj^ - a2vpy = 0 . . .(3.5) 

Equations (3.1), (3.2), (3.3) and (3.5) form a closed set of 

hyperbolic equations^which can be solved by the method of characteristics. 

An additional simplification can be made if the flow is irrotational. This 

implies there are no gradients of entropy or stagnation properties normal 

to the streamlines and thus equation (3.4) is valid throughout the flow 

field. The condition of irrotationallty in two-dimensional flow Is 

3u av 
— - — = 0 
3y 3x . . .(3.6) 
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The continuity, momentum and speed of sound equations, together with 

equation (3.6), can be combined to give the gas dynamic equation 

(u2 - a2)u + (v2 - a2)v + 2uvu = 0 . . .(3.7) 
X y y 

The local speed of sound is related to the stagnation speed of sound 

of the flow, the stagnation conditions being constant throughout the flow 

field 

a2 = 3^2 - ( y - l ) ( u 2 + v2) 

2 . . .(3.8) 

Equations (3.6), (3.7) and (3.8) form a closed set of hyperbolic 

equations. The use of the speed of sound equation has also enabled the 

density derivatives to be eliminated. The other flow properties are 

related to the stagnation conditions of the flow and the local Mach number 

(Section 2.1). 

3.1.2 Method of Character ist ics For Supersonic Flow 

The two different sets of equations in section 3.1.1 both form a set 

of hyperbolic equations and thus there exist in the flow characteristics 

along which the governing equations become ordinary differential equations. 

The advantage of the method of characterist ics over other finite difference 

methods for solving hyperbolic equations is that much larger steps can be 

used without a significant loss of accuracy. The method of characteristics 

is thus quicker and more efficient. This method has been used successfully 

by, among others. Love et al (1959) in their study of axisymmetric free 

jets, by Benson and Poole (1965a) In their study of plane free jets and by 

Mesli et al (1981) In their study of a plane plasma jet exhausting into a 

vacuum. 

The theoretical derivation of the characteristic lines of hyperbolic 



- 39 -

equations and the total differential equations along these lines, the 
compatibility equations, is given by Shapiro (1953) and Zucrow and Hoffman 
(1977) and by Smith (1978). Only the results will be quoted here. 

3.1.2.1 Irrotational Flow 

The governing equations for steady, irrotational, isentropic, planar 

flow are the gas dynamic equation (3.7), the condition of irrotationality 

(3.6), and the equation for the local speed of sound (3.8). These 

equations yield two character ist ics given by 

(dy/dx)_j_ = = tan (9 ± a) . . .(3.9) 

where 6 is the angle of the flow to the x axis and a. the Mach angle, is 

defined by 

a = s in~^ (1/M) . . .(3.10) 

The two character ist ics, defined in Figure 3.1, are the Mach lines of 

the flow. The point A can only influence flow contained in the region 

between the right and left running characterist ics originating from that 

point. Similarly, the point can only be influenced by upstream points 

contained within the region of the two characterist ics that intersect at 

point A. An important feature of the flow is that the two characteristics 

do not exist if the flow becomes subsonic (M < 1.0) and thus the method of 

character ist ics for supersonic flow can only be used provided the flow 

remains supersonic. 

Along each Mach line there is a compatibility equation given by 

(u2 -a2 ) du^ + [2uv - (u2 -a2 )X^ l dv_̂  = 0 . . .(3.11) 

There are several alternative forms of the compatibility equation 

that are theoretically equivalent, although one might lead to greater 

accuracy than another. Two such forms are 

du_j_ + X - dv_j_ = 0 . . .(3.12) 
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and 

JM2 - V dv^ + d 0 ^ = 0 

V . . .(3.13) 

3.1.2.2 Rotational Flow 

The governing equations for steady, isentropic, rotational planar 

flow are the continuity equation (3.3), the two momentum equations (3.1, 

3.2) and the speed of sound equation (3.5). These equations yield three 

character ist ics , the two Mach lines (equation (3.9)) and the streamline, 

(dy/dx)^ = = v/u = tan e . . .(3.14) s s 

Two equivalent forms of the compatibility equation along the Mach 

lines are given by 

(pv)du^ - (pu)dv^ + [X^ -u(uX_j_-v)/a2]dp^ = 0 . . .(3.15) 

and 

y M2 - 1 ' dp_j_ ± de_|_ = 0 

pV^ . . .(3.16) 

There are two different compatibility equations along the streamline, 

given by 

pVdV + dp = 0 . . .(3.17) 

and 

dp - a2 dp = 0 . . .(3.18) 

Equation 3.17 is Bernoulli 's equation and equation 3.18 is the 

equation for the speed of sound, valid for an isentropic process. 

3.1.3 General Method of Solution 

The general method for the solution of the characteristic and 

compatibility equations Is to form finite difference equations and then 

solve them by the Euler predictor-corrector method. The finite difference 
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equations for irrotational flow are given in detail in Appendix A and by 
Zucrow and Hoffman (1977) and thus only the principles will be presented 
here. 

In irrotationai flow the position and properties of point 3 (Figure 

3.2) can be found if the position and properties of points 1 and 2 are 

known. A prediction of the position of point 3 can be made by substituting 

the values of the properties at point 1 into the right running 

character ist ic equation passing through point 1, together with the 

properties of point 2 into the left running characteristic equation passing 

through point 2, and solving the two resulting equations simultaneously. A 

similar prediction of the velocities at point 3 can be made by the 

simultaneous solution of the compatibility equations valid along either 

characterist ic. There are two methods of improving the estimation of the 

position and properties at point 3 (Appendix A): the average property 

method and the average coefficient method. The average property method 

involves replacing the flow properties in the finite difference equations, 

initially assumed to be those of points 1 or 2 for the right and left 

running character ist ic respectively, by the average of the flow properties 

at 1 and 3 or 2 and 3. The average coefficient method involves replacing 

the coefficients of the terms in the finite difference equations, initially 

calculated from points 1 or 2, by the average of the two coefficients 

calculated from points 1 and 3 for the right running characteristic, or 

from points 2 and 3 for the left running characteristic. In either c a s e 

the two improved characterist ic equations are solved simultaneously to give 

a corrected estimate of the position of point 3 and the two compatibility 

equations are solved simultaneously to give a corrected estimate of the 

velocities at that point. The corrector is then reapplied until the 
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required convergence at point 3 is achieved. Hoffman (1973). who drew some 
general guidelines from a ser ies of accuracy studies, suggests that in 
general the average property method of correction produces more accurate 
results. 

These are two methods of applying the solution method outlined above: 

the direct marching method and the inverse marching method (Figure 3.3). 

In the direct marching method the left and right running characteristics 

are followed throughout the flow field, the solutions being obtained at 

their intersections. Thus any solution at a predetermined point on the 

flow must be interpolated from the grid generated by the characteristics. 

In the Inverse marching method the solution is obtained at predetermined 

grid points. This involves running characterist ics back to the previous 

grid line (column P) and interpolating for the property values at points 1 

and 2 from known points on the grid (points A, 8- £)• To ensure stability 

for the interpolation, points must be known outside the intersection of the 

rearward character ist ics from point 3 with the previous grid line. Zucrow 

and Hoffman (1977) suggest that. In general, the direct marching method Is 

the more accurate of the two methods because errors are introduced in the 

interpolation of points 1 and 2 in the inverse marching method. The 

inverse marching method is also difficult to employ where the boundary of 

the solution is unknown, such as the free surface of a jet. 

There are several procedures for solving the equations for rotational 

flow, which are d iscussed by Zucrow and Hoffman (1977). All the procedures 

involve interpolating for at least one point on the known grid. One method 

using the direct marching method is shown in Figure 3.4. The two 

character ist ic equations can be solved to initially predict the solution 

point (point 4). The intersection of an estimated streamline running 
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through this point with a line joining points 1 and 2 can then be found. 
The conditions at point 3 can then be interpolated from the known values at 
points 1 and 2. The compatibility equations along the two characteristics 
can be solved simultaneously to give p^ and 6^ and the two compatibility 
equations along the streamline can be solved to give and p^. The 
prediction can then be improved by either the average coefficient or 
average property method descr ibed above. 

3.1.4 Boundary Conditions and Shocks in Irrotational Flows 

3.1.4.1 Free Surface 

At a free surface boundary only one characterist ic and one 

compatibility equation are available (Figure 3.5). Thus two extra 

equations are required to solve for point 3. The first equation is 

obtained from the fact that the jet edge is a streamline 

(dy/dx) = Xg = v/u . . . (3.19) 

This can be solved simultaneously with the relevant characteristic equation 

to give the position of the solution point. The second equation is 

obtained from the fact that the total velocity is known because there 

exists a unique relationship between the static pressure and the total 

velocity ' 

V32 = (u2g + V23) = f(pg) = f(p^) . . .(3.20) 

The compatibility equation can be written in finite difference form 

Q ± " 3 " V 3 = ^ ± • • 

where Q, R and T are defined in Appendix A 

Equation (3.20) and (3.21) can be solved simultaneously to give 
i 

U3 = ? / R V V ~ ^ + R2_ĵ ) - T2_^] 

Q2_^ + R2_^ . . .(3.22) 
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^ 3 = / ^ ^ ^ ^ - ^ . . . ( 3 . 2 3 ) 

The negative root of equation (3.22) is valid if the left running 

characterist ic is used (an upper boundary point) and the positive root 

valid if the right running characterist ic is used, (a lower boundary 

point). 

3.1.4.2 Solid Boundary 

As in section 3.1.4.1, only one characteristic and one compatibility 

equation are available (Figure 3.6). However the location of the wall is 

known and the wall itself is a streamline. Thus 

y = y(x) . . .(3.24) 

dy V 

dx u . . . (3.25) 

Equation (3.24) can be solved simultaneously with the characteristic 

equation to give the location of the solution point and equation (3.25) can 

be solved simultaneously with the compatibility equation to give the 

properties at the solution point. 

3.1.4.3 Shocks 

There are two methods of including shocks in the method of 

character ist ics; the method of foldback and the method which includes the 

standard oblique shock equations. The former method effectively Ignores 

the shock and the character ist ics are allowed to fold back on top of one 

another. Eventually the solution again marches downstream, the flow being 

assumed to be irrotational throughout if the initial flow is irrotational. 

Zucrow and Hoffman (1977) suggest that in general this method yields 

reasonable results downstream of the "shock" provided the static pressure 

ratio (downstream pressure/upstream pressure) ac ross the real shock is less 

than 1.25. 
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The second method Involves combining the method of characteristics 
with the standard oblique shock equations. The flow must be supersonic 
after the shock. The conditions just behind the shock can be found and 
then the standard shock equations used to find the conditions after the 
shock. An initial guess of the angle of the shock must be made and an 
iterative procedure employed to correct this guess. The flow downstream of 
the shock will be rotational if the shock is curved. 

3.2 PROGRAM DESCRIPTION 

A computer program has been developed to calculate an inviscid 

irrotational supersonic jet, flowing either over a flat or convex wall. 

The method of character ist ics Is used as outlined in section 3.1 and uses 

some subroutines developed by Zucrow and Hoffman (1977). The coordinate 

system is the Cartesian system. Figure 3.7, and the Euler predictor-

corrector method based on average properties was used throughout. The 

program establ ishes an initial profile and marches downstream by the direct 

marching process and uses the foldback method in the treatment of shocks. 

A flow chart is shown in Figure 3.8. 

The program, which is written in FORTRAN IV, initially reads in the 

Jet parameters such as the stagnation pressure ratio and the slot width to 

downstream radius. The subroutine INITIAL then calculates the properties 

on the initial starting column and the Prandtl-Meyer expansion (Figure 

3.9). The Mach number along the first column at x = 0.0 can be specified 

either to be constant or to Increase linearly to a specified value at the 

nozzle lip. The method of characterist ics breaks down If the Mach number 

is equal to unity because the tangent of the characterist ics becomes 

infinite, and so as an approximation to a unity exit Mach number, a minimum 
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Mach number of 1.02 was chosen . The Prandtl-Meyer expansion is modelied by 
propagating several expansion waves from the nozzle lip. The number of 
grid points is increased during this expansion (Figure 3.9). The first 
grid point of e a c h column is held at the point (0.0, 1.0), the nozzle exit. 
The properties, specified by subroutine INITIAL, are such that there is an 
equal static pressure ratio drop across adjacent expansion waves. 

The calculation marches downstream from the initial line. After the 

initial Prandtl-Meyer expansion the number of each solution points in each 

column is l<ept constant, the solution column alternating between a wall 

column and a free pressure column (Figure 3.10. E a c h point in a set column 

is shown with a constant value of x for clarity. This will not be the case 

in the calculated jet). Subroutine MOVE picks out points from previous 

columns which are then used to solve for a downstream point, subroutine 

INTER being used to solve an interior point in the flow, subroutine J E T 

being used to solve a free pressure point and subroutine WALL being used to 

solve a solid boundary point. The latter subroutine calls a further 

subroutine BOUNDY which generates a specified wail contour. The flow 

properties at the solution point are calculated by subroutine THERMO from 

the isentropic stagnation and static relationships (Section 2.1). The 

calculation is continued for a specified number of columns and the results 

then outputted. 

Two additional subroutines, CHECK and ROTATE, are required to 

calculate flow over the convex surface to avoid any of the gradients of the 

character ist ics becoming infinite. After each calculation of a new column, 

the tangent of the right running characterist ic is examined by subroutine 

C H E C K and if any of the tangents are less than a specified value, 

subroutine ROTATE is called to rotate the entire column back by an angle 0 i 
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(a d e c r e a s e in 0, where 0^ < 0 (Figure 3.7)). The calculation is then 
renewed downstream and the resultant positions and velocities rotated 
forward by the angle 0 i at the end of the program. 

The program was run on an IBM 4341/1 mainframe computer operating 

under IVITS. The running time of the program depends on the number of 

columns calculated downstream, but Is typically 60 seconds of C.P.U. time. 

3.3 T E S T S AND R E S U L T S 

3.3.1 Flat Plate Tests 

Tests were carried out on an underexpanded jet flowing over a flat 

plate downstream of the nozzle exit. This is equivalent to the plane 

underexpanded jet investigated by Benson and Poole (1965a) and provided a 

check on the program. 

The absolute accuracy of the method of characterist ics cannot be 

determined because the true result is not known and there are no 

theoretical methods available to calculate the accuracy of the Euler 

predictor-corrector method. However as the number of rows in the mesh is 

increased the step size is reduced and the accuracy is increased. Three 

mesh s izes were tested:-

a) 10 rows with 5 initial Prandtl-Meyer expansion waves 

b) 20 - " 11 

c) 40 ° " 21 ° 

The meshes were run at two different stagnation pressure ratios, 

0.357 and 0.167, the exit Mach number being 1.02 across the nozzle as an 

approximation to an exit Mach number of unity (Section 3.2). The 

compatibility equation used was equation 3.11, although tests were also 

carried out using equation 3.12 and also equation 3.13. 

Tests were also made at several other stagnation pressure ratios to 
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examine the effect of the stagnation pressure ratio on the jet structure. 
The initial tests were of underexpanded jets exhausting with a uniform 
Mach number of 1.02. An investigation of the effect o f a linear variation 
of exit Mach number was also made. The Mach number varied from 1.02 at the 
flat plate downstream surface to a specified higher Mach number at the 
nozzle lip. 

3.3.2 Flat Plate Results 

The tests involving meshes of different size produced no change in 

the structure or length of the first shock cell of a jet and are not shown 

here. The only slight change between the meshes was in the location of the 

start of the shock at the end of the cel ls , the change between meshes (b) 

and (c) being very small . This change was due to the increased sensitivity 

created by the increase in the initial number of Prandtl-Meyer expansion 

waves. Similarly, there was no change produced In the jet by a change of 

the compatibility equation. The results presented below use compatibility 

equation 3.11 and were produced by a grid of 20 rows with 11 initial 

Prandtl-Meyer expansion waves. 

Figures 3.11 to 3.13 show the effect of decreasing the stagnation 

pressure ratio on the structure of an initially uniform Jet. It should be 

noted that the s c a l e s on the three graphs are different. Figure 3.11 shows 

the jet predicted for a stagnation pressure ratio of 0.286. The figure 

shows the jet edge and the initial Mach lines produced by the Prandtl-Meyer 

expansion at the nozzle Hp and their continuation downstream. The initial 

Prandtl-Meyer waves are straight lines, each successively propagating a 

lower pressure until they reach the point where they meet the reflection of 

the first wave from the wall. These reflections further expand the flow to 
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satisfy the boundary condition that the flow does not separate from the 

wall. In the region where the initial expansion waves interact with their 

reflections the Mach lines are curved. After they have interacted with the 

last initial expansion wave, the reflected Mach waves again become straight 

l ines, each propagating a unique static pressure until they interact with 

the reflections from the free surface. These reflections are compression 

waves to satisfy the f ree-stream boundary condition of constant pressure. 

These compression waves are then reflected from the wall as further 

compression waves. They then coa lesce and form a shock, indicated by the 

character ist ics folding back upon themselves. The initial shock occurs 

c lose to the wall near the intersection of the last two characteristics. 

The intersection shows that two distinct pressures exist at the same point 

which Is a physical impossibility. This shock Is a weak oblique shock and 

of the first type described by Benson and Poole (1965a) (Figure 2.3a). 

As the stagnation pressure ratio is reduced the shock moves 

downstream and the maximum width of the jet increases due to the Increased 

expansion at the nozzle (Figure 3.12). The oblique shock at the end of the 

first shock cell Is now formed earlier in the shock cell by the coalescing 

of compression waves resulting from reflections of the first few original 

Prandtl-Meyer expansion waves. As the stagnation pressure ratio Is further 

reduced (Figure 3.13), the shock appears before the reflected compression 

waves from the free surface reach the wall and is of the second type 

described by Benson and Poole (Figure 2.3b). However at the stagnation 

pressure ratio of Figure 3.13, Benson and Poole found experimentally that 

the third type of system existed, although this was not predicted by the 

method of character ist ics. Thus the oblique shock, formed by the 

coalescing of the compression waves, leads to a normal shock that 
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decelerates the flow near the wall to subsonic speeds. At the junction of 

the oblique and normal shocks, a third shock propagates Into the upper part 

of the jet. This is a reflection of the incident oblique shock. 

The effect of decreasing the stagnation pressure ratio on the 

surface static pressure c a n be seen in Figure 3.14, where atmospheric 

pressure Is 1 bar. The pressure remains constant until the Prandtl-Meyer 

expansion waves reach the surface. A pressure drop then takes place until 

the expansion is complete, the size of the drop being dependent on the 

stagnation pressure ratio. The pressure then remains constant until the 

compression waves, caused by the reflection of the Prandtl-Meyer expansion 

off the free surface, reach the surface. The pressure rise caused by the 

compression waves ra ises the pressure to that at the nozzle. The increase 

in the length of the first cell as the stagnation pressure ratio is reduced 

is clearly visible, the lowest stagnation pressure ratio calculation being 

terminated before the pressure rise at the end of the cell has begun. 

The structure of the jets in Figures 3.11 to 3.13 are similar to 

those calculated by Benson and Poole (1965a). A direct comparison Is 

difficult because the conditions at their slot are difficult to determine 

and a vena contracta also exists after their nozzle exit. Also they only 

present the jet structure and so measurements of shock positions and 

maximum jet diameters taken from the jet structure pictures would be only 

estimates. However, the Jet structures produced by the present program are 

similar to those of Benson and Poole and give confidence that the program 

was functioning correctly. 

The effect of a linear variation of exit Mach number of 1.4 at the 

nozzle lip to 1.02 at the surface Is shown In Figure 3.15. The stagnation 

pressure ratio is 0.123 and the structure can be compared with Figure 3.12. 
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Only the Mach lines originating from the Prandti-Meyer expansion are shown, 
although expansion and compression now also occur elsewhere in the jet. 
The cell structure is very similar to that of a uniform exit Mach number, 
although the maximum diameter and the cell length are reduced. The first 
coalesc ing of the compression waves also occurs slightly earlier and is at 
the wall. The effect on the linear variation of Mach number at the nozzle 
exit on the surface static pressure is shown in Figure 3.16. The initial 
part of the first expansion occurs earlier due to the initial expansion 
waves reaching the surface earlier. The main difference however occurs at 
the end of the shock cel l , the compression coming earlier as the nozzle 
Mach number variation is increased. 

3.3.3 Fully Attached Curved Jet Tests 

Tests were carried out on an underexpanded jet flowing round a 

circular cylinder, the jet being assumed to be always fully attached to the 

cylinder. Three different slot width/downstream radius ratios were 

investigated, the ratios being equivalent to 2 mm, 4 mm and 8 mm slot 

widths on the experimental model (Section 5.1.2). A range of stagnation 

pressure ratios were tested at each slot, down to the ratio at which 

breakaway was observed (Section 6.4). The exit Mach number was assumed to 

be a constant value of 1.02. 

A method for calculating the exit Mach number profile at the nozzle 

exit of the axlsymmetrlc Indalr flare (Section 1.2) has been developed by 

Green (1982). This combines the continuity equation with the centripetal 

momentum equation as the flow approaches the nozzle exit. Variations of 

exit Mach number from 0.8 at the solid wall surface to 1.3 at the nozzle 

lip have been recorded. However there is some doubt about the valldty of 

the method because the centripetal force disappears at the exit of the 
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nozzle, resulting in a discontinuity in the flow as It ""jumps" to a uniform 
Mach number profile. A ser ies of tests were run with the present program 
to find the effect of a linear variation of Mach number across the nozzle 
exit. The Mach number ranged from 1,02 at the solid surface (a subsonic 
Mach number not being possible in the method of characteristics) to a 
specified Mach number at the nozzle lip. 

3.3.4 Fully Attached Curved Jet Results 

The results of selected tests are shown in Figures 3.17 to 3.25. 

Figure 3.17 shows the effect of a decrease in stagnation pressure ratio on 

the structure of the jet exiting at a uniform Mach number of 1.02 from a 4 

mm slot over the 30 mm downstream radius. Figure 3.17a shows a stagnation 

pressure ratio of 0.394. The free pressure surface is shown together with 

the Prandtl-Meyer expansion waves from the nozzle lip and their subsequent 

reflections. These expansion waves and their reflections interact with 

additional expansion waves originating from the solid surface, which in 

turn are reflected as compression waves from the free surface. These 

additional expansion waves are not shown. However their effects can be 

seen by examining the path of the Prandtl-Meyer expansion waves from the 

nozzle lip. T h e s e initially travel in straight lines, each wave 

propagating a unique constant pressure. When the jet flowed over a flat 

plate these expansion waves continued as straight lines until they 

interacted with their own reflections from the solid surface (Section 

3.3.2). However, those of Figure 3.17a can be seen to bend before the 

interaction with their own reflections from the surface. This is caused by 

the surface expansion waves turning the flow round the surface. After the 

Interaction with the surface expansion waves, the Prandtl-Meyer expansion 
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waves no longer propagate constant pressures. The initial Prandtl-Meyer 
expansion waves are reflected from the solid surface and then reach the 
free surface where they are reflected as compression waves which in turn 
are reflected off the solid surface. Some of these latter reflections then 
c o a l e s c e near the outer edge of the jet to form a very weak oblique shock. 
It was found impossible to continue the calculation further downstream 
because the flow is further compressed by reflections from the free surface 
of surface expansion waves. This results In the flow becoming subsonic in 
the middle of the jet. 

As the stagnation pressure ratio is reduced the ceil length increases 

(Figures 3.17 b to d, note the sca le changes In the latter two) and the 

initial coalescing of the compression waves occurs earlier in the cell . 

The calculation had to be terminated earlier as the stagnation pressure 

ratio was reduced because the point at which the flow became subsonic 

appeared earlier In the cel l . At the stagnation pressure ratio of 0.238 

(Figure 3.17d) the compression waves coa lesce before they reach the solid 

sur face , suggesting a regular shock reflection occurs . The characterist ics 

that foldback can also be seen to fold into the surface and this 

calculation was terminated before the flow became subsonic. 

The surface static pressure distributions of the four stagnation 

pressure ratios presented In Figure 3.17 are shown in Figure 3.18. There 

Is an initial drop caused by the surface expansion waves turning the flow 

round the surface. This is followed by a more rapid drop as the Prandti-

Meyer expansion waves arrive at the surface. The pressure continues to 

drop after the last Prandtl-Meyer expansion wave has been reflected due to 

more surface expansion waves, but the rate of this drop is slowed before 

the reflections from the free surface of the Prandtl-Meyer waves arrive at 
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the surface. There are two reasons for this, firstly as the Mach number 
inc reases the pressure drop to turn the flow through a given angle 
d e c r e a s e s and secondly the surface expansion waves originating from near 
the slot arrive at the surface again, having been reflected off the free 
surface as compression waves. These latter waves help turn the flow 
further round the surface. The pressure then rises sharply as the 
reflections off the free surface of the original Prandtl-Meyer waves reach 
the surface. After the last of these waves have left the surface the 
pressure continues to r ise, indicating that reflections from the free 
surface of earlier surface expansion waves are of sufficient strength to 
turn the flow round the surface. Figure 3.18 also shows the Increase of 
the cell length as the stagnation pressure ratio is reduced. The foldback 
of the character ist ics at the start of the compression at a stagnation 
pressure ratio of 0.238 is also shown. 

Figure 3.19 shows the structure of a jet from an 8 mm slot and Figure 

3.20 shows the surface static pressure distributions. The increase in the 

initial jet width lengthens the angular distance covered by the first shock 

cei l . The curvature of the Initial Prandtl-Meyer expansion waves before 

they Interact with their own reflections from the solid surface can clearly 

be s e e n . The compressive reflections of the Prandtl-Meyer expansion waves 

from the surface do not coa lesce until they are close to the jet edge. 

Figure 3.19b shows the structure of the jet at the breakaway stagnation 

pressure ratio and shows that the compression waves at the end of the cell 

do not c o a l e s c e until they are c lose to the jet edge. 

Figure 3.21 shows the structure of Jets from a 2 mm slot width and 

Figure 3.22 shows the surface static pressure distributions at these 

stagnation pressure ratios. The length of the cell at a given stagnation 



- 55 -

pressure ratio is reduced compared to the two previous slots, although the 
structure is similar. However the appearance of a shock before the 
compressive reflections of the Prandtl-Meyer waves reach the solid surface 
does not occur until a much lower stagnation pressure ratio compared with 
the 4 mm slot. Figure 3.17d shows this has occurred by a stagnation 
pressure ratio of 0.238 at the 4 mm slot whereas it has not occurred by a 
ratio of 0.192 at the 2 mm slot (Figure 3.21c). Figure 3.21d shows it has 
occurred by a stagnation pressure ratio of 0.161, the breakaway ratio, and 
also shows foldback into the solid surface. The surface static pressure at 
this pressure ratio reaches a minimum of 1000 Pa (Figure 3.22). This 
calculation was terminated just before the compression initiated by the 
reflections of the initial Prandtl-Meyer expansion waves to avoid the 
foldback. 

The effect of a linear variation of the nozzle exit Mach number on 

the static pressure profiles of jets, at their breakaway stagnation 

pressure ratio can be seen in Figures 3.23 to 3.25, the slot widths being 

4, 8 and 2 mm respectively. The graphs all show a similar trend. As the 

linear variation is increased the initial expansion at the surface occurs 

earl ier, although this effect vanishes as the Prandtl-Meyer expansion waves 

reach the surface. The static pressure is then unaffected by the linear 

variation of nozzle exit Mach number until the end of the ceil when very 

large variations c a u s e the pressure rise to occur earlier. When the exit 

Mach number varies from 1.40 to 1.02 this rise occurs 5 ° earlier than that 

from a jet whose exit Mach number Is constant (Figure 3.23). The rise 

occurs even earlier when the exit Mach number varies from 1.57 (a full 

expansion) to 1.02. 
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3.4 MODIFICATION OF PREDICTION PROGRAM 

The method of charaterist ics program described in Section 3.2 

calculates the properties of an inviscid jet flowing fully attached over a 

radius of constant curvature. The characteristic running into the wall was 

solved such that the flow remained tangent to the wall. It is shown in 

Chapters 6 and 7 that the real jet does not remain fully attached to the 

wall, but a separation bubble is formed. This leads to gross Inaccuracies 

in the prediction of the jet which are d iscussed in Section 8.5.1. Thus, 

to improve this prediction, a modification was made to the program that 

replaced the condition that the flow remained tangent to the wall by one 

that calculated the inner edge to a known static pressure. These static 

pressures were interpolated from the measured values obtained in the 

mechanical experiments (Section 6.5.4). 

The modified program initially calculates the jet such that it 

remains tangent to the wall, because the first measured static pressures 

were at 5 ° or 10° round the surface. At a specified angle the program 

switches to calculating the inner edge of the jet to a known static 

pressure. The pressure Is Interpolated from the Input data by a parabolic 

interpolation using known values at one angle directly downstream of the 

calculated point and two data points directly upstream (Appendix B). An 

assumption is made that the static pressure remains constant along an 

extended radius from the Coanda to the Inner surface of the jet. The 

calculation proceeds downstream for a specified number of columns. In most 

c a s e s the calculation of the jet was not limited by the subsonic region 

found In the fully attached jet and thus the calculation could proceed 

further downstream than the fully attached jets. 

The program outputs the Jet shape, the interpolated surface static 
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pressure distribution and the known surface pressures. In some c a s e s the 
interpolated static pressure distribution departed from a reasonable fit 
through the known values. In particular near the region of initial 
separation. The actual static pressure between the measured angles is not 
known, but in regions where the interpolation seemed unreasonable, extra 
(hand Interpolated) data points were inputted and the program rerun. It 
should be emphasised that these extra points are the author's personal 
Interpretation of the static pressure profiles. The results of this 
program are presented and d iscussed in Section 8.5.2. 
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CHAPTER 4 

OPTICAL THEORY AND REVIEW 

4.1 INTRODUCTION 

Methods involving optical techniques have found widespread use in the 

measurement of flow fields and have the advantage that they do not 

generally disturb the flow. Some of the most useful of these techniques 

are based on the fact that the refractive index of a gas changes with 

density. The connection between the two properties derives from classica l 

electromagnetic theory which models light as an electromagnetic wave and 

a s s u m e s that a gas consists of independent neutral molecules which have no 

natural electric dipole moment. An additional assumption is that the 

natural frequencies of these molecules are appreciably different from the 

frequency of the visualizing light. The resonant wavelengths of 

electronic transitions in air are well into the ultra-violet unless the 

internal states of the molecules are excited and so this assumption is 

valid for most flow studies. The relationship between the density and the 

refractive index of a gas is given by the Gladstone-Dale formula. 

n - 1 = Kp . . .(4.1) 

An additional assumption, valid for g a s e s , is that the refractive 

Index is c lose to unity. If the gas consists of a mixture of several 

components, the Gladstone-Dale constant, K, of the mixture becomes 

K = E K , P j 

p . . .(4.2) 

where p Is the total mixture density and the subscript I refers to a 

partial density of a gas whose Gladstone-Dale constant is Kj. The 

Gladstone-Dale constant is a function of the nature of the gas and a weak 
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function of the wavelength of the visualizing light, but Is to a large 

extent independent of the pressure and temperature of the gas. The index 

of refraction of dry air for various wavelengths Is tabulated in standard 

books of physical constants, for example the C R C Handbook of Chemistry and 

Physics (1984-5) or the Physics Handbook (1980), and from this the 

Gladstone-Dale constant can be calculated. 

Mach number 0.2 0.5 1.0 2.0 

0.02 0.12 0.37 0.77 

Table 1: Variation of density with Mach number 

There are two main forms of flow; those of a high Mach 

number and those where heat is added or removed. Table 1 shows the 

variation of density from stagnation conditions at various Mach numbers, 

and shows that even at a Mach number of 0.2, there is a 2% change in 

density. The change in density of a fluid by the addition of heat is given 

by the perfect gas law (equation 2.2) with the assumption that the static 

pressure Is constant. 

Ap - A T 

p T . . .(4.4) 

Thus a few degrees change in temperature can result in a measurable 

density change. 

in flows of a high Mach number the static density is related to the 

stagnation density by the Mach number (Section 2.1). Thus if the upstream 

stagnation conditions are known and the flow Is reversible and isentropic 

(or in the c a s e of a shock wave where the change in stagnation conditions 

can be calculated) a knowledge of the density at a point defines the Mach 

number and hence all the other properties of the flow. 
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The first part of this chapter covers the deflection of light in an 
inhomogeneous refractive field. The remaining sections d iscuss the 
shadowgraph, Schl leren and interferometric techniques respectively, the 
latter section containing a discussion, of the two main types of 
interference and the various systems developed. 

4.2 LIGHT DEFLECTION IN AN INHOMOGENEOUS REFRACTIVE FIELD 

The behaviour of light when passing through an inhomogeneous 

refractive field is covered in many text books, especially Merzkirch (1974) 

and Hauf and Grigull (1970) and that edited by Ladenburg (1955), and thus 

only a brief summary of the results is given here. 

in a steady compressible two-dimensional flow-field the refractive 

index, n, is a function of the two spatial coordinates, n = n(x,y), 

(Section 4.1). A light ray will be deflected from its original direction 

and arrives at a s c r e e n at point Q* instead of Q (Figure 4.1). The optical 

path length covered by a light ray is defined by the integral 

/ ^nds 

S^ . . .(4.4) 

where s is the geometrical path length along the light path. Thus the 

optical path lengths of the undisturbed and disturbed rays are different 

and it Is possible to measure three different quantities of the disturbed 

ray:-

a) The displacement, QQ* 

b) The angular deflection of the disturbed ray with respect to the 

undisturbed ray, e * 

c) The phase shift between both rays, owing to their different 

optical path lengths, w - u * 
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The three basic optical visualization methods of shadowgraph, 
Schl ieren and interferometry measure the quantities of a, b and c 
respectively. 

A beam of light can be considered to consist of a ser ies of surfaces, 

or eikonals, made up of rays that have travelled the same optical distance 

from the source. If these elkonals are initially plane and perpendicular 

to the beam axis, they will remain so on reflection from a spherical 

mirror. However they will be distorted if the beam travels through an 

inhomogeneous optical disturbance. If the field of the optical disturbance 

has no discontinuous changes of refractive index. Fermat's principle 

applies, 

6 / n (x, y. z) ds = 0 . . .(4.5) 

This states that the variation of optical path length along a light 

ray must vanish, or that if an initially plane eikonal passes through an 

optical disturbance, the resulting eikonai will be distorted such that each 

ray has travelled the same , and shortest possible, optical distance. 

The solution to equation 4.5 Is given by Merzkirch (1974) for rays of 

light initially parallel to the z axis and which pass through a two-

dimensional flow field. An assumption is made that each ray undergoes only 

an infinitessimal deviation (i.e. a ray enters and leaves the field with 

the same x and y coordinates), but has a non-negligible curvature. 
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The observable quantities discussed above take the following form, 

(QQ)«^ = L / 1 dn dz 
S 

n dx 

(QQ)* = L / 1 dn dz 
^ S 

n dy 

Si 
tan e = / 1 dn dz 

S 
n dx 

1 
tan e = / 1 dn dz 

y S 
n dy 

.(4.6) 

.(4.7) 

"1 
M = t* - t = 1 J* [n(x,y,z) - T]Q\ dz 

s 
c .(4.8) 

where the S and S.| are the z coordinates at the beginning and end of the 

disturbance respectively. 

In both the Schlieren and Interferometric systems a lens Is 

introduced before the final screen to focus the working section onto the 

screen CM,V^ thus eliminate the displacement Q Q * . A focusing error is 

introduced because the individual rays, which travel In straight lines 

after the disturbance, are deflected by differing angles. The ray shown 

will have a virtual origin at plane f (Figure 4.1) If correctly focused, 

the position along the z-axis of this plane varying with the final angle of 

deflection of each ray. Thus if the system was focused on plane g, the ray 

shown would appear to originate from an undeflected position Ql. In 
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general, this error, which depends on the placement of the plane of focus 
in the working section, is negligible. 

4.3 SHADOWGRAPH 

The shadowgraph technique is the simplest of all optical visualizing 

procedures. The original arrangement Is attributed to Dvorak and consists 

of a single lens that collimates light from a source, the beam then passing 

through the optical disturbance and striking a screen. Many shadowgraphs 

are observable naturally such as those produced by sunlight passing through 

convection currents in the air. The principle can be seen in Figure 4.2. 

The rays that pass through a region of zero refractive index gradient 

perpendicular to the ray are undeflected (rays 1). Those that pass through 

a region of constant change of refractive index (rays 3) and are deflected 

by a uniform angle, produce an unchanged uniform intensity at the screen. 

However in regions of a change in the gradient of refractive index, the 

rays are deflected by differing amounts (rays 2 and 4) and a change in 

intensity is seen at the screen. 

This is shown mathematically, Ladenburg (1955), by assuming that the 

initial state of illumination of the screen is l(x,y). The Intensity, 

function I* of (x*,y*) in the disturbed case results from the sum of all 

the intensities I of all the points x,y mapped onto x»,y*. Since x* and y* 

are functions of x and y, each intensity I, must be divided by the Jacobian 

of the transformation of (x,y) to (x*,y*). 

I*(x*,y*) = £ l.(x,y) 

a(x*,y*)/a(x,y) . . .(4.9) 
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If the assumption that the deflections are infinitesimal holds, the 
two systems are connected by a small quantity. A , which is a function of x 
and y. 

X* = X + A (x,y), 
X ' 

y* = y + Ay (x,y) . . .(4.10) 

A linearisation of the Jacobian can be introduced by assuming the 

products and higher powers of A and A can be neglected and the 
X y 

derivatives of equation 4.10 then substituted into equation 4.9. The 

result combined with those of equation 4.6, which give the deflections in 

terms of the density gradient, give the change in intensity at the screen 

due to the optical disturbance. 

S, 
l - l* = Ai « L / / d 2 + d2 Vinn) dz 

— ^2 - - ] 

\* I* \^dx2 d y 2 / . . .(4.11) 

Thus the shadowgraph is sensitive to the second derivative of 

density, if the refractive index is close to unity, and a double integral 

of the intensity distribution would be required to obtain quantitative 

data. This integration is prone to large errors for three reasons; firstly 

only a few data points are obtained because the method Is only sensitive to 

the second derivative. Secondly, the one to one mapping from (x,y) to 

(x*,y*) Is violated and it is impossible to conclude how many values of I. 

reach a given l*(x*.y*). Thirdly, the linearisation of the mapping 

function is invalid if the displacements become large such as through a 

shock wave. However, because it is so simple, the shadowgraph technique Is 

often used to obtain qualitative data of a flow field. 
4.4 SCHLIEREN 

The Schlieren method is a term usually used to describe optical 
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methods that show the first derivative of the density without using the 
interference properties of light. It is often used for qualitative 
measurements, although quantitative results are more easily obtained than 
from the shadowgraph method. The method was developed over a century ago, 
one of the earliest people who recognised its importance being Toepler. 
His system consisted of two lenses and a knife edge (Figure 4.3). A light 
source, S, of finite length is placed at the focus of lens LI , and so any 
point P in the flow receives light from ail points of the source. A second 
lens, L2, focuses the light at A, so for each point of the flow field, P, 
there corresponds an Image of the source at A. Provided there are no 
optical disturbances in the test region all these images will coincide and 
a lens, L3, focuses an Image of the working section onto a screen or 
photographic plate. If a knife edge is introduced at A to cut off some of 
the image of the light source, the screen will be uniformly darkened. Let 
d be the reduced height of the image passing the knife edge and e be the 
width perpendicular to it (Figure 4.4). The light intensity, i(x,y), 
arriving at any point of the screen will be constant and ignoring any loss 
of light or aberrations in the system, an approximation is given by 

l(x,y) " 1Q / de \= const 

\ fg^ / . . .(4.12) 

where I is the original intensity of the source and f„ is the focal length 
O o 

of lens L3. If a disturbance is now introduced into the flow at point P, 

the corresponding image at A will be laterally translated (Figure 4.4). 

This will result in a change In the intensity of the light arriving at the 

image of point P on the screen. If is the y component of the total 

angle of deflection, e, due to the disturbance, the shift of the source 

image at A Is given by 
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Ad - fg tan . . .(4.13) 

where f̂  Is the focal length of lens L2. Thus the relative Increase in the 

light intensity arriving at the screen at the image of point P is given by 

AI = Ad « Eyfg 

I d d . . .(4.14) 

Substitution for E ^ from equation 4.7 reveals that, if the refractive 

index is close to unity, the change in intensity is proportional to the 

density gradient at point P, 

Si 
AI = f / dn dz 
- - -

I d dy . . .(4.15) 

Thus the y-component of the density gradient can be recorded and if 

both the source and the knife edge are rotated by 90° the x-component can 

also be recorded. 

The placement of the knife edge relative to the image of the light 

source at A controls both the sensitivity and the "range" of the system. 

The system can be made very sensitive by cutting off almost all the image 

at A (d becomes small in equation 4.12). However this results In no light 

passing the knife edge even for a small density gradient, and so no 

distinction at the screen will be apparent for a small or large density 

gradient. The usual combination between the sensitivity and "range ° of a 

system is achieved by placing the knife edge so as to cut off half the 

source image when there are no disturbances in the working section. 

There are numerous variations of the basic configuration 

cited In the literature, often systems being designed for a specific 

experiment. There are many review papers of these systems, in particular 

those of Holder et al (1956), Weinberg (1963), Hauf and Grigull (1970) and 
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Merzkirch (1981). One specific development was that of a colour Schlieren 
system by Holder and North (1952). A prism is placed between the white 
light source and the first lens, which ensures that the image of the source 
at A (Figure 4.3) appears as a series of coloured bands. A slot is placed 
at this image, cutting off both sides and thus ensuring only yellow light 
arrives at the screen (yellow light being in the middle of the visible 
spectrum). If the Image moves due to a disturbance the colour arriving at 
the screen changes, one example being compressions appear red and 
expansions green. An alternative form of colour Schlieren is achieved by 
replacing the knife edge of a Toepler system with a coloured filter that 
consists of two or more bands. Reviews of these colour systems are given 
by Settles (1980, 1985). The advantage of these systems is that the eye is 
more sensitive to a change of colour than a change of light intensity, but 
this is offset by the increased complexity and cost of the colour 
photography. 

In systems where the change of density is small, a double traverse 

system similar to the Mickelson Interferometer (Section 4.5.2) is used. 

However in systems where sensitivity is not the overriding concern, the 

standard configuration has become that shown in Figure 4.5. There are 

several advantages of this system, Weinberg (1963); firstly mirrors of 

large diameters are easier to make and are thus cheaper than a lens of 

equivalent optical tolerances, secondly, the folding of the optical axis 

reduces the length of the system and thirdly, chromatic aberrations, caused 

by a variation with wave-length of ray refraction in a lens, are absent In 

reflections from the surface of a mirror. The sensitivity and range, 

together with a discussion of the individual optical components and a set

up procedure, are given by Holder et al (1956). 
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There are two optical aberrations introduced into an off-axis system 
if, as In most systems, spherical and not parabolic mirrors are used. 
These are coma and astigmatism. Coma is due to the same cause as spherical 
aberration, which is that different zones of a lens or mirror do not form 
images at the same point, Houston (1957). One of its consequences is to 
make the magnification of an image vary with distance from the axis, the 
image of a point having the appearance of a comet. This aberration can be 
eliminated in the Z-type Schlieren system provided both mirrors have the 
same focal length, thus ensuring the aberration Is of equal and opposite 
sign, or by the use of parabolic mirrors. Astigmatism arises when a 
spherical wave front is reflected from an off-axis spherical mirror because 
the wave front becomes ellipsoidal and has different curvatures in and 
perpendicular to the plane containing the axis and the direction of the 
source. This results In the image of the source consisting not of a point, 
but of two perpendicular lines separated by a short distance along the 
optical axis. This aberration can be corrected by the addition of a 
suitably shaped lens. Holder et al (1956, ref. 46), or by the use of a 
parabolic mirror. Under most practical conditions neither coma or 
astigmatism are serious if the angular offset of the source and the optical 
axis of the spherical mirror is less than 50 and both can be reduced if the 
ratio of the focal length to the diameter of the mirrors Is increased. 

The problems encountered when a laser Is used as the light source are 

discussed by Oppenheim et al (1966). The laser Is effectively a point 

source, so by geometrical optics (where each ray Is treated Individually 

and does not interact with others) the light should focus at a point after 

the second mirror, thus resulting In the knife edge acting as an on-off 

switch. However this does not happen due to the wave properties of 
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coherent light, so physically the knife edge Interacts with fringes of a 
diffraction pattern rather than a geometric point of light. The knife edge 
amplifies the diffraction pattern so the final picture becomes a series of 
diffraction lines, rather than a variation of Intensity, when there is an 
optical disturbance in the working section. This strengthening of the 
diffraction effect was reduced, although not eliminated, by replacing the 
knife edge by a neutral wedge with a sufficiently gradual gradient of light 
transmission with position across the beam. This neutral wedge proved 
insufficiently robust when the high intensities of a ruby flash laser were 
used and so it was replaced by a prism of quartz. This rotates the plane 
of polarization by an amount proportional to the distance traversed through 
the prism, and when used in conjunction with a sheet of polaroid 
effectively eliminates the diffraction lines. 

The use of a laser in a Schlieren system is advantageous if the 

system is also designed for interferometric measurement (Section 4.5). It 

Is also of use if Schlieren measurements are to be made of combustion 

processes, where normally the luminosity of the process interferes with the 

final patterns. If a laser Is used whose wave-length is well away from the 

expected peak of the luminosity, a filter can be used to block out all the 

frequencies except that of the laser. Such a system has been developed by 

Andrews and Netzer (1976). A laser Schlieren system, based on the original 

Toepler configuration, has been developed by Whiffen and Ahuja (1983) for 

their study of accoustically excited Jets. This system incorporates a 

Bragg cell after the laser, which deflects light away from the system until 

it is excited at its centre frequency. This allows very accurate control 

of the time between the excitation of the jet and the Schlieren picture. 
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4.5 INTERFEROMETRY 

4,5,1 Principles of Interference 

The distortion of a wave front that has passed through a region of 

variable density can be made visible when it is made to interfere with 

another beam. The phase relationship between the two beams must be 

constant for this interference to occur, which implies they must be 

coherent. This is achieved by splitting the beam before the optical 

disturbance and recombining afterwards, because separate physical light 

sources with the same frequency and phase are difficult to attain even with 

lasers. If non-coherent light sources are used, the optical path length of 

both beams must be made almost identical. There are two main forms of 

interferometry, normal and differential, which correspond to two different 

types of interferometer, namely the Mach-Zehnder type and the Schlieren or 

wave-shearing type. In the former interferometer the measuring beam is re-

combined with an undistorted beam and In the latter It is recombined with a 

beam that has also passed through the optical disturbance, but displaced by 

a small lateral distance. 

The difference between the two methods can be seen in Figure 4.6 

after Hauf and Grigull (1970). The peaks of a wave front are represented 

by solid lines and the troughs by dashed lines. Figure 4.6a shows normal 

Interference, with the reference beam travelling along the z-axis. A 

single peak of the measuring beam is shown, other fronts being omitted for 

clarity. Constructive interference occurs when this front coincides with a 

peak front of the measuring beam and destructive Interference occurs when 

it coincides with a trough. Thus a series of dark and bright lines appear 

at the focusing plane, from which the optical path difference at any point 

between the measuring and reference beam can be determined provided the 
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sign of the gradient of the deformed wave front is known. Hence the 
density in the disturbance can be found using the Gladstone-Dale formula 
(Section 4.1). This method Is known as infinite fringe interferometry 
because if there Is no disturbance In the measuring beam, the screen would 
be uniformly Illuminated. Any resulting fringe due to an optical 
disturbance in the measuring beam represents a line of constant refractive 
index and thus density. An alternative form of normal interferometry is 
finite fringe interferometry. This is achieved by tilting one wave front, 
either that of the measuring beam or that of the reference beam by a small 
angle. If there is no disturbance in the working section and thus the 
measuring beam remains as plane wave fronts, an interference pattern of 
straight parallel fringes will be seen on the screen. Any disturbance In 
the measuring beam results In shifts of these fringes, the direction of the 
shift depending on whether the optical path length in the disturbance has 
increased or decreased. A line where the fringe shift is constant 
represents a line of constant refractive index in the working section. A 
finite fringe form of normal interferogram has the advantage that a shift 
of a fringe can be measured much more accurately than the position of the 
fringes in an infinite fringe interferogram, although both pictures allow 
the refractive index to be measured directly. 

The second form of interference, the differential, is shown in Figure 

4.6b. Both beams pass through the optical disturbance, laterally 

translated by a small known distance Ay. It is assumed that both wave 

fronts are Identical and it can be seen that the resulting interference 

pattern occurs in regions of refractive index gradient, hence the name of 

Schlieren Interferometry. An Increase in the displacement of Ay increases 
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the sensitivity of the system, but the assumption that both wave fronts are 

identical becomes dubious and a position on the screen ceases to correspond 

to a physical point in the flow field (even at very small displacements, a 

'double' Image of the working section is produced). This method enables 

the gradient of refractive Index to be accurately obtained, and a single 

Integration gives the refractive index in the flow field. 

4.5.2 Review of interferometers Employing a Non-Coherent Light Source 

Before the advent of lasers, interferometers had to be designed with 

incoherent light sources. These sources, which were usually monochromatic 

such as a mercury-vapour lamp, introduced severe restrictions into the 

design of an interferometer. Firstly, their very short coherence length of 

"6 

approximately 5 x 1 0 m requires that both the reference and measuring 

beams travel almost exactly the same optical path lengths, and secondly 

they cannot be considered as point sources and so the beams cannot be made 

exactly parallel. The latter restriction means the fringe contrast at the 

Interference is often poor unless great care is taken. 

One of the earliest designs of normal interferometers is that of 

Jamin, which consisted of two inclined parallel glass plates of the same 

refractive index (Figure 4.7). The displacement of the reference beam from 

the measuring beam is controlled by the thickness of the mirrors and is 

generally very small, thus restricting the area of the working section. 

Another early design was that of Michelson, shown in Figure 4.8. The 

measuring beam travels through the test section twice, along different 

paths which makes it only suitable for measuring the refractive Index of 

gases, or alternatively for the measurement of surface defects if the 

mirror M2 is replaced with the surface to be investigated. 
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The Mach-Zehnder interferometer was the first interferometer that was 
suitable for the measurement of transparent objects and It is still used as 
a standard interferometer (Figure 4.9). A beam is expanded to the diameter 
of the working section and then split into the measuring and reference 
beams at the beam splitter B l . The measuring beam Is reflected at the 
mirror Ml before passing through the working section, the reference beam 
being reflected at the mirror M2 before being re-combined with the 
measuring beam at B2. The Incoherence of the light source usually requires 
a pair of compensating windows, identical to those of the working section, 
to be placed In the reference beam to ensure that the optical path lengths 
of both beams are almost identical. The interferometer can be placed in 
two anti-vibration boxes, such as shown by the dotted lines in Figure 4.9. 
The interferometer is complex to set up and operate, the procedure and 
guidelines for their design being given by Holder et al (1956) and Tanner 
(1957). The expense of the Interferometer also increases drastically with 
an increase in the diameter of the working beam because both mirrors, both 
beam splitters and all four windows (the compensating and working section 
pairs) must be of the same diameter. Tanner (1957) reviews various methods 
of treating the reference beam including passing it through the tunnel well 
ahead of the model where the flow is uniform. This makes the system very 
insensitive to vibration and also further reduces the optical path length 
difference between the reference and measuring beams, so improving fringe 
contrast. 

Weinberg and Wood (1959) replaced the mirrors and beam splitters by 

diffraction gratings which reduced the cost of a system and made it easier 

to operate (Figure 4.10a). However as only two diffraction orders were 

used at each grating, the system was very wasteful of light, a problem that 
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was avoided in a system developed by Kraushaar (1950). The system was 
based on the Schlieren configuration using two lenses (Figure 4.10b), the 
diffraction gratings being placed at the focii of the lenses. All but two 
diffraction orders were lost at each grating, but the lessening of light 
loss was been achieved at the expense of the lateral separation of the 
beams, and so only small test objects could be viewed. 

The most common method of shearing the light beam for use in a 

differential interferometer is by use of a birefringent device such as a 

Wollaston prism, A birefringent device has two mutually perpendicular 

axes, each with a different refractive index, so that light whose plane of 

polarization is at 45" to both axes will be split into two beams of equal 

intensity, A Wollaston prism consists of two such prisms laminated 

together so that the axis of higher refractive index in one prism is 

aligned with the axis of lower refractive Index in the other (Figure 4.11). 

Thus if a ray passes through the centre, or median plane, of the Wollaston 

prism, both planes of polarization have the same optical path length but 

will diverge by an angle E after leaving the prism. Chevaierias et al 

(1957) developed two systems using monochromatic light one based on the 

standard lens, the other on the standard Z-configuration Schlieren system. 

The light was polarized and split before the working section and then 

recombined by a second prism afterwards, two prisms being necessary to 

achieve good fringe contrast from the light source of finite width. 

Kamutzki and Griffiths (1970) developed a similar system that used a white 

light source so that any optical path difference appeared as a change in 

colour. 

The above Is a brief outline of the main developments of early 

interferometers in fluid dynamics, Ladenburg (1955) and Holder et al 
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(1956) review several systems for the measurement of high speed flow, 
concentrating mainly on the Mach-Zehnder interferometer and various 
modifications. Born and Wolf (1959) give a comprehensive review of 
interferometers and their many different fields of application and Weinberg 
(1963) reviews interferometers suitable for measuring combustion processes, 
many of which are suitable for use in high speed flows. 

4.5.3 Review of Interferometers Employing a Coherent Light Source 

The advent of inexpensive lasers, which produce monochromatic 

coherent light, in the early 1960's revolutionised interferometry. Three 

of the main advantages of the coherence property of laser light, discussed 

by Tanner (1966), are: 

1. The necessity of having closely equal path lengths in the two beams 

is removed. 

2. The difficulty of obtaining good fringe contrast in the presence of 

dispersion in the optics is reduced, i.e. no compensating windows are 

required. 

3. The difficulty of obtaining good fringe contrast despite the finite 

aperture of the light source disappears because a laser behaves as an 

ideal point source. 

The coherence, however, introduces two main problems; firstly that 

stray reflections must be avoided to prevent unwanted Interference, and 

secondly that light will diffract at any out-of-focus particle, such as 

dust or fingerprints. The former can be overcome by the use of suitable 

anti-reflection coatings on lenses and the latter by a good standard of 

cleanliness. 

Grigull and Rottenkolber (1967) developed modifications of both the 

standard Mach-Zehnder (Figure 4.9) and Michelson (Figure 4.8) 
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interferometers, using these special properties of laser light to treat the 
reference and measuring beams independently. The reference beam of their 
Mach-Zehnder was not expanded to the diameter of the working section and 
compensating windows were not used. The only optical components whose 
diameter was of the working section were two lenses that collimate the 
measuring beam, the other components being of small diameter whose required 
optical accuracy of a flatness of X/10 was easily achieved. Thus this 
Mach-Zehnder variant was much cheaper than that of Section 4.5.2, 
Similarly, the reference beam in their MIchetson interferometer was 
reflected back directly after being split, thus reducing the diameter of 
the mirror and the cost of the system. However the fundamental 
disadvantage of this interferometer's application to fluid dynamics still 
remained, the measuring beam travelling twice through the working section. 
(Section 4.5.2). 

The coherence and monochromatic properties of laser light give much 

more freedom to the designer of a system. During the 1960's several 

interferometers were based on standard Schlieren configurations and have 

the obvious advantage that, with small alterations they can be used for 

more than one type of flow visualization. Goldstein (1965) developed a 

system based on the standard Z-configuration, although both the laser and 

the camera were on the same side of the main beam, the reference beam 

passing directly to the recombination unenlarged. This configuration 

introduced rather large aberrations but despite this, and the fact that the 

individual quality of his optical components was poor, he obtained fairly 

straight Interference fringes of good contrast In the no-flow finite fringe 

picture. All the optical components were Individually mounted which meant 



- 77 -

the system was very prone to vibrations, a problem that was overcome by the 
use of very short time exposures for the photography. 

Tanner (1965) and (1966) reviews several interferometers based on the 

Schlieren configuration and the various possibilities of splitting and then 

recombining the beams. Various simplifications can be made to early 

differential interferometers, for instance the system of Ghevalerias et al 

(1957) no longer needs the first polarizer or birefringent device because 

the light is initially polarized and coherent. Merzkirch (1964) has 

developed a system using this principle. 

Oppenheim et al (1966) developed a system based on the standard Z-

type Schlieren configuration that combined several flow-visualization 

techniques and discussed the problems involved when using a laser in a 

Schlieren system (Section 4.4). In the interferometer the knife-edge was 

replaced by a concave lens placed just before the focus, and the resulting 

parallel beam was then sheared at a glass slab, similar to the shear 

produced in a Jamin interferometer (Figure 4.7). The thickness of this 

slab determines the amount of shear, a very thin slab resulting in a small 

shear and hence differential Interferometry. A very thick slab results in 

the bottom half of the beam being folded onto the top and hence, if only 

half the beam has passed through the working section, giving normal 

interferometry. To obtain shadowgraphs the system is set as for Schlieren, 

the knife-edge removed and the final picture made slightly out of focus. 

A major review of Interferometers is given by Schwar and Weinberg 

(1969). They discuss the attributes of laser light, the criteria for the 

choice of laser and the several methods of splitting and recombining beams. 

Over sixty laser interferometers developed for use in combustion research 

are cited, many of which can be applied to supersonic flow problems. Hauf 
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and Grigull (1970) review interferometers for use in heat transfer 
experinnents and more recent developments are given by iVlerzl<irch (1974) and 
Murty and Shukia (1976). The latter paper gives modifications to the Jamin 
and Mach-Zehnder interferometers to reduce the problems of vibrations. 
Ways of increasing the beam separation in the Jamin interferometer are 
shown by replacing the front and bacl< faces of the glass slabs (Figure 4.7) 
by a beam splitter and a plane mirror respectively, the two being 
mechanically connected. Also wedge shaped plates are Introduced to enable 
finite fringe interferograms to be made. 

Pollock (1980) has developed an interferometer based on the standard 

Z-type Schl ieren configuration (Figure 4.5) and known as an aperture 

reducing type of interferometer, in which the reference beam passes through 

the working section. A lens is introduced, between the light source and 

the first mirror, that focuses half the beam to a point at the mid-piane of 

the working sect ion, the other half being the parallel measuring beam. The 

reference beam is focused after the second mirror and folded onto the 

measuring beam by a plane mirror placed at the focus of the second mirror. 

Thus this system produces normal interferometry and is virtually 

insensitive to vibrations because both measuring and reference beams travel 

virtually the same geometrical path. It is also optically robust (i.e. 

there are no problems when high powered lasers are used) but has the 

disadvantage that the c ross -sec t iona l area of the measuring beam is only 

about a third of that of the Schl ieren mirrors. 

A polarization interferometer that produces a large lateral shear, 

and thus normal Interferometry, has been developed by Lee and Woolsey 

(1981). This consists of six matching ca lc i te -g lass prisms, which are 

cheaper than the Wollaston prism but produce only half the shear, arranged 
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in a regular hexagon formation. The two 'halves' of the hexagon are 
independent, thus ensuring the possibility of long beam lengths and large 
shear. This interferometer proved relatively easy to set up and adjust and 
was fairly insensitive to vibrations. 

Merzkirch (1981) reviews various optical systems and points out the 

increasing popularity of holographic over conventional interferometry. The 

principles of its operation are given by Heflinger et al (1966) and 

involves a double exposure of the film, a no-flow and a flow interference 

pattern with a reference beam that arrives at a different angle to the 

film, superimposed. The negative, when illuminated from the same angle as 

the original reference beam, will act as a diffraction grating and produce 

in its first order an interference pattern between the no-flow and flow 

test beams. Thus the main difference between holographic and conventional 

interferometry is that in the former the reference beam is temporally 

separated from the test beam but follows the same spatial path, and in the 

latter the separation Is spatial. Thus in holography, optical 

imperfections are eliminated and so components of poorer quality can be 

used. Holography, which also contains information about three-dimensional 

properties, Merzkirch (1981), is not considered further. 

4.5.4 Measurement of Fringes 

There are two main methods used to measure the location of fringes on 

an interferogram, and thus for evaluating the fringe shifts In the finite 

fringe method. The first method is where the light intensity is measured 

by eye, either through a travelling microscope or on a digitiser, and the 

second method is where it is measured by a densitometer or a photo-electric 

cel l . 
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The former method is widely used, for example by Kuehn and Goldstein 
(1976) who use a tool-makers microscope to view the negative. The c r o s s -
wires of the microscope are placed at the centre of the fringe by eye and 
the position manually recorded. The best accuracy of this method is 
generally accepted to be about 1/10 to 1/20 of a fringe width, the 
limitation being of the eye. Ben-Dor et al (1979) propose the use of a 
digitiser together with computer programs to evaluate fringe shifts and 
hence flow properties. A digitising table consists of a fine rectangular 
mesh of wires and a travelling cursor with a pair of c ross-wi res . When a 
' log' button on the cursor is depressed, the position of the c ross-wi res 
relative to the origin of the rectangular mesh is recorded digitally in 
terms of x and y coordinates. These digitised results can be used as data 
for computer programs, which can be written to eliminate fringe shifts due 
to optical Imperfections (by analysis of no-flow Interferograms) and also 
to remove uniform changes In the flow field due to the fluid motion by the 
analysis of a reference point. This method eliminates a lot of the pain
staking drudgery in the use of microscopes and is. as a result, not only 
faster but less prone to human error. However the accuracy of this method 
is not improved over the use of a microscope, because the light Intensity 
Is still measured by eye. 

Arzoan and Ben-Dor (1985) have developed a fully computerised 

extension of this method. The interferogram is transfered to the computer 

memory using a television camera . The recorded interferogram is then 

'touched up' by the manual input of dark and light spots and then evaluated 

by a fully computerised method. Thus this method eliminates the time-

consuming and tiresome process of the manual digitisation of the 
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interferogram. and a big reduction in the time taken to evaluate an 
interferogram is achieved. 

A more accurate method of obtaining fringe positions is by use of 

photocells which produce a voltage proportional to the intensity of light 

reaching the cel l . Dew (1964) descr ibes a system where the negative Is 

held in a plate whose movement is controlled by micrometers. Light is 

shone at the plate and p a s s e s through onto two 'matched' photocells, placed 

approximately half a fringe width apart. When both photocells give the 

same reading, the centre of a fringe is exactly between them, and because 

the intensity distribution of the interference pattern is of a sine squared 

type and the photocells were monitoring the steep gradient, an accuracy of 

1/lOOth fringe was achieved on 1 cm width fringes. The accuracy depends on 

the micrometers and the sensitivity of the photocells, although problems 

were also encountered due to 'drift' of the photocells. The main 

disadvantage of this technique is that, though the fringes need not be 

straight, the fringe spacing must be nearly constant throughout the 

interferogram. Thus this method is of use in the evaluation of 

Interferograms of surface defects or optical defects (I.e. a no-flow 

picture), but it is of little use In the evaluation of flow interferograms. 

An earlier method, developed by Werner and Leadon (1953), uses one 

photocell together with reference and test pictures. The two photographs 

are developed in several high-contrast p r o c e s s e s , one finishing as a 

negative, the other as a positive. The reference picture is then solidly 

mounted and the test picture Is placed on top so that It can move relative 

to the reference picture, the movement being controlled by micrometers. 

The pictures are moved relative to one another until light passing through 

produces a minimum voltage from the photocell. At this moment the positive 
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and negative versions of the fringe exactly coincide and the coordinates 
can be recorded. Although a c c u r a c i e s of 1/500th fringe shift were 
obtained, this method has the same limitations as the previous one, both 
also being very tedious because each point must be recorded by hand. 

These draw-~backs are overcome in a machine devised by McKeen 

and Tarasuk (1981). A densitometer traverses a c r o s s the photograph in 

small steps, its analogue output being converted to an Intensity Digital 

Number. These numbers are stored as the densitometer traverses the light 

part of a fringe and when the intensity falls below a reference value both 

the mode (the location of the brightest part of the fringe) and the median 

(the location of the average intensity) are calculated and then stored for 

output. The mode is taken as the centre of a fringe if the flow is 

changing rapidly ac ross a fringe (i.e. the sine squared intensity 

distribution is distorted) and the median used if the photograph is of poor 

quality (for Instance there might be several 'peaks' of intensity within a 

single fringe). The entire flow field can be covered in several traverses, 

e a c h fringe appearing once in a traverse. A fringe can then be followed 

through the traverses, great care being taken to match the same fringe 

through the traverses in rapidly changing flows. The machine Is capable of 

locating fringes that are at least two steps apart (i.e. 0.5 mm in width), 

its accuracy being primarily dependent on the accuracy of the densitometer. 
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CHAPTER 5 
EXPERIMENTAL APPARATUS 

5.1 MECHANICAL APPARATUS 

5.1.1 Air Supply 

The compressed air was supplied by a Reavell CSA9 two-stage water 

cooled compressor , operating at 720 rev/min, rated at 450 p.s.i.g. at a 

rate of 434.5 m 3 / h F.A.D. This was stored in a 200 ft3 welded air receiver 

and as no drier was installed with the compressor, a valve at its base was 

cracked open to drain off some of the water. The receiver fed a high 

pressure line 1,5" diameter B.S.P. which had several drop valves situated 

along its length. The compressor was commissioned and the high pressure 

line extensively purged to remove the graphite left from the drawing 

process on the inside of the pipes. A diagram of the inlet line to the rig 

from one of the drop valves is shown in Figure 5.1. 

An Auld double control high pressure regulator, which was fitted with 

a spring that enabled the downstream pressure to be varied from 110 to 55 

p.s.i.g., controlled the pressure in the inlet line. The regulator also 

incorporated a safety blow-off valve to prevent the downstream pressure 

exceeding 140 p.s.i.g. 

As it was important to prevent the problems, experienced by Gilchrist 

(1981), of oil carry-over from the compressor to the windows of the rig, a 

high degree of filtration was required. The presence in the air of the 

water and graphite, picked up off the walls of the high pressure line, 

together with the cost of the disposable high-grade filter element meant a 

two stage filtration process was required. A Norgren 30CG-10 filter, with 

a 25 micron sintered bronze element and an automatic drain, provided the 

first stage of filtration that removed the water, graphite and some oil. 



- 84 -

The element could be removed and cleaned in an ultra-sonic bath with 
ethanol when Budenberg pressure gauges showed an excessive pressure drop 
a c r o s s the filter. The second stage of the filtration process was a 
Balston A15 filter, fitted with a differential pressure gauge and an 
automatic drain, whose microfibre disposable element gave a 99.99% 
efficiency for 0.1 micron particles and droplets. 

The air mass flow rate was measured by an orifice plate with D and 

D/2 tappings, designed according to B.S. 1042. The size of the orifice 

plate could be changed and the static pressure altered by the regulator, to 

give a reasonable pressure drop across the plate, thus reducing errors at 

all operating conditions of the mechanical rig. 

A 2" bore flexible reinforced rubber pipe connected the air line to a 

valve which controlled the mass flow into the rig. 

5.1.2 Mechanical Rig 

The aim of the mechanical rig was to produce a plane Jet which could 

be viewed through two windows as it followed the Coanda surface. The basis 

for the design was to be the axisymmetric 18-H-AS flare, marketed by 

Kaldair Ltd., whose Coanda surface consists of a small flat section 

downstream of the slot, followed by a curve of constant radius through 100° 

and ending In long flat section at a tangent to the end of this curve. At 

the largest estimated flow rates through the rig, the rig was to be run for 

up to two minutes on the blow-down principle. The final design consisted 

of two sect ions, a settling tube supported by adjustable feet and a top 

section that contained the nozzle and the Coanda surface (Figure 5.2). 

The diameter of the g lass windows determined the radius of the Coanda 

surface as the jet had to be visible from behind the slot to the flat 



- 85 -

portion of the Coanda surface over a range of slot widths up to one-third 
that of the Coanda radius. After considering several different radii, it 
was decided that 30 mm was the largest feasible radius that allowed not 
only a view of the attached jet, but also one of a jet after breakaway from 
the Coanda surface. The radius of curvature on the nozzle and the width of 
the settling tube were in the same ratios to the Coanda radius as found on 
the 18-H-AS flare. To satisfy the two minute running time criterion, a 60 
mm breadth slot was designed, which gave an aspect ratio of 6 at the 
largest slot widths envisaged. 

Of the two ways of altering the slot width, movement of the Coanda or 

movement of the nozzle, the former was more simple. Figure 5.3 shows that 

the motion was achieved by a screw-thread assembly mounted above the 

surface and the direction controlled by five feet which slid in grooves 

milled into the back plate. The Coanda was then clamped into position by 

screws attached to these feet. The slot width was measured by two 

micrometers mounted above the Coanda. Its uniformity across the breadth 

was checked by slip gauges and found to vary by 0.01 mm in the worst c a s e , 

an inaccuracy of 0.5% at a 2 mm slot width. 

The Coanda surface contained 0.75 mm diameter surface pressure 

tappings, which were staggered across its breadth, at every 5° over the 

first 4 0 ° of curvature and every ^0° thereafter. More tappings were 

not Included for two reasons: firstly that they might start interfering 

with the flow, and secondly that there was little space behind the Coanda 

where the tappings emerged. Plastic tubing, which exited through a hole in 

the back plate, was fitted to the nipples r e c e s s e d Into the back of the 

Coanda. 
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Two different nozzles were made, one designed so that the slot 
configuration was as on the 18-H-AS flare, with a small flat on the Coanda 
after the slot exit, the other designed with a larger radius so that the 
slot exit coincided with the start of the curvature of the Coanda (Figure 
5.3). The window frames bolted onto the back plate and near the nozzle and 
could easily be removed to enable the glass and perspex windows to be 
interchanged. The windows rested in the frames and were restrained by a 
rim on the outer side. Rubber 'O ' - r ings minimised leaks at the joins 
between the Coanda , back plate, window frames and the nozzle. 

The settling tube was designed to be twenty maximum slot widths in 

length, ensuring the flow was two-dimensional at the slot and at three 

static pressure tappings which were fitted upstream of the slot. These 

tappings gave, after a correction dependent on the local Mach number, the 

stagnation pressure in the tube. 

A flange connected the top Coanda section to the settling tube, which 

in turn was supported on a tripod bolted to the floor, and an arm bolted to 

the wall. The height of two of the feet of the tripod could be adjusted to 

ensure that the rig was vertical to the ground, essential in the setting up 

of the interferometer (section 5.2.2). 

5.1.3 Instrumentation 

The static pressure upstream of the slot was measured on a Budenberg 

gauge. Three different ranges were used, the low pressure range gauge 

being calibrated against a mercury manometer, the intermediate and high 

pressure range gauges against a dead-weight tester. After a change In the 

valve setting at the base of the rig, the drift in the static pressure was 

less than 0.02 bar over a long time period. 
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The surface pressure tappings were connected to a mercury or water 
filled inclined multimanometer, depending on the magnitude of the pressures 
being measured. The height difference between a surface static pressure 
and atmospheric pressure could be read to the nearest millimetre and the 
angle of inclination of the manometer to the nearest degree. When surface 
static pressure measurements were not being taken, the manometer was 
removed and the plastic tubing clamped. 

Two Druck pressure transducers, which could be read to 0.01 volts on 

a lOCWivolt full sca le deflection, were used to measure the pressures at the 

orifice plate. A 1.0 bar differential transducer, calibrated against a 

mercury manometer, measured the pressure difference across the plate and a 

35 bar differential transducer, calibrated against a Budenberg gauge, 

measured the upstream static pressure. A mercury thermometer, which could 

be read to 0 . 1 ° , was placed In an oil pocket downstream of the plate to 

measure the static temperature. This temperature rose by as much as B ° 

over a long run, due to increased heating of the air as the compressor 

warmed up. 

5.2 OPTICAL APPARATUS 

5.2.1 Design Considerations and System Development 

A system was required to measure optically the properties of an air 

jet flowing either round the Coanda surface onto its flat section, or away 

from the surface after breakaway. The system was to be capable of 

Interferometric, Schl ieren and shadowgraph techniques, the former being 

normal interferometry rather than differential Interferometry (section 

4.5.1). This enables quantitative measurements of the density to be made 

from the interferometry and qualitative measurements of its first and 
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second derivatives from the Schl ieren and shadowgraph respectively (Chapter 
4). The three techniques were to be readily interchangeable using the 
minimum re-arrangement of the optical components. 

The advantages of using a laser in an Interferonietric system are 

d iscussed in section 4.5.3, and allow an interferometer to take a 

Schl ieren-type configuration. The coherent light also means the system is 

easier to adjust than a conventional Mach-Zehnder and improves the fringe 

contrast. The aberrations in the system of Goldstein (1965) can be 

eliminated by using the standard Z-configuration Schlieren system, and if 

parabolic mirrors designed to deflect light through the desired angle are 

used, coma is eliminated and an exactly parallel beam is produced to pass 

through the working section. Two configurations of optical components were 

considered (Figure 5.4 amd 5.5) and tested, both of which allow the total 

area of the Schl ieren mirrors to be used for the measuring beam. Both the 

systems of Pollock (1980) and Oppenheim et al (1966) require the area of 

the mirrors to be at least twice that of the measuring beam. In the 

present configurations only the two mirrors and the glass in the working 

section are of the working section diameter and their total area is used, 

thus reducing the cost of the system. There are many warnings in the 

literature on the problems of vibrations when the measuring and reference 

beams follow totally different paths. Goldstein's optical components were 

all Individually mounted, the vibration problem being overcome by use of 

very short time exposures for the photography. In the present rig It was 

proposed to overcome the problem of vibration by mounting the optical 

components on connected optical benches. These benches were to be mounted 

on anti-vibration feet, thus isolating the system from any disturbances 

transmitted through the floors. 
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Although both the configurations considered lose half the light at 
the second beam splitter, it was calculated that a laser source of 2 mW 
would provide enough power to darken the negative even if short time 
exposures were used. The beam from a standard Helium-Neon laser, which 
produces red light, is very narrow in diameter and the resulting high 
intensities make it dangerous to view with the naked eye. It was proposed 
to expand this beam, which would become the reference beam, so that it 
could be viewed comfortably, thus making the process of setting up the 
interferometer easier . This was initially achieved using a beam expander 
which consists of a diverging lens and a collimating lens (Figure 5.6) and 
is thus simple to operate, cheap, and results in little power loss in the 
beam. However the final pictures at the camera were found to contain 
numerous interference rings even when only one beam was viewed. The origin 
of this interference was traced to the laser and beam expander. An 
examination of the laser output revealed a single dark line across the 
beam, presumably caused by a mark on the output mirror, and one of the beam 
expander revealed that the diverging lens produced several interference 
rings despite several efforts to clean it. Thus it was decided to replace 
the beam expander by a spatial filter, which consists of a focusing lens, a 
pin-hole and a collimating lens, (Figure 5.6). Any light that is not 
parallel at the input lens (Ray A), or that is diffracted by dust on. or 
imperfections in the input lens, does not pass through the pin-hole and 
provided the collimating lens is optically perfect a clean beam is 
produced. The pin-hole produced a very faint diffraction pattern Itself, 
consisting of concentr ic c i rc les , which was not obtrusive at the camera but 
did enable the centre of the beam to be accurately placed. This proved an 
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invaluable aid in the setting up and alignment of the system (Section 
5.2.2). 

The beam splitter holders were modified, by cutting away the sides, 

to avoid impingement of the reference beam as it passed through the 

splitter. The measuring beam was reflected off the front surface and 

expanded at lens LI (Figures 5.4 and 5.5). The beam was overexpanded at 

the mirror Ml and thus only the central area was reflected through the 

working sect ion, the outer edge being lost. This overexpansion is 

desirable because a laser beam has a Gausian intensity distribution across 

its diameter which c a u s e s problems when the interference pattern is 

photographed. The fringe clarity is unaffected by this variation of 

Intensity because the interference is formed by two rays of equal 

intensity, as they originated from the same part of the beam. By 

overexpanding the beam, the intensity distribution is almost constant over 

its useful a rea , and thus it darkens a photographic plate uniformly. 

The system was set up in both configurations (Figures 5.4 and 5.5) 

and shadowgraph, Schl ieren and interferometric pictures of a candle flame 

viewed. All the optical components were locked onto connected optical 

benches supported on anti-vibration feet. These feet were effective from 

ten to several thousand hertz, and sat on rubber pads. These measures were 

designed to eliminate external vibrations. Near infinite fringe 

photographs were obtained (Plate 1) even though the parabolic mirrors were 

deflecting the beam through a greater angle than their design angle of 

2 .70. The required deflection, to avoid contact of the reflected beam from 

mirror Ml with the lens holder of L I , was greater in system B (Figure 5.5) 

than system A (Figure 5.4) and thus the extra aberrations caused an 

additional fringe in the 'infinite' fringe picture. A finite fringe 
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picture, achieved by rotation of mirror M2, is also shown in Plate 1 for 
comparison. There seemed to be no difference between the two 
configurations in their sensitivity to external vibrations caused by 
movement of people in the room or machinery in adjacent rooms. 

Photographs of Schl ieren and shadowgraph pictures caused by the 

candle are shown in Plates 2 and 3 respectively. The cut off for the 

Schl ieren was a razor blade and the resulting diffraction pattern, shown by 

Oppenheim et al (1966), is clearly visible. It was decided to overcome 

this problem by using an alternative light source rather than using a prism 

and a sheet of polaroid, as used by Oppenheim et al (Section 4.4). A Xenon 

spark source emits incoherent light at a range of frequencies thus avoiding 

the problem of diffraction at the knife edge and is also a source of finite 

width, which allows greater control of the amount of light cut off at the 

knife edge. The intensity of the spark could be varied, its duration 

varying from 2.5 n s e c at low intensities to 6.5 /i s e c at high ones. The 

frequency of the pulse could also be varied, from 1 to 100 Hz at low 

intensities and from 1 to 9 Hz at high ones. The advantage of using this 

source is that it enables both spark and continuous Schlieren pictures to 

be taken, the former by a single pulse of high intensity and the latter by 

the superposition of several low intensity pulses upon the same 

photographic plate. This source replaced lens LI of the Interferometer 

(Figure 5.4) and a razor blade was used to cut off the light at the focus 

of mirror M2. 

Experiments with the mechanical rig (Chapter 7) produced very 

satisfactory results with both Schlieren and shadowgraph techniques. 

However the interferometer was prone to vibrations and no final picture 

could be viewed by eye. Pictures taken 1/1000th second revealed 
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satisfactory finite fringe pictures over a range of pressure ratios down to 
p^/p^ = 0.55. Wooden covers were placed over the beam paths to prevent re 
circulation of the air from the mechanical rig through them, but this 
resulted in no improvement In the fringe stability. This vibration problem 
might partly be due to vibration of the mechanical rig Itself and is 
d iscussed in Section 5.4. 

The photographs were taken with a Cannon AE1 camera mounted on a 

tripod with a standard 50 mm lens. The camera was fitted with bellows to 

give the desired magnification and the photographs taken by means of a 

cable release. A range of speeds of conventional black and white films 

were tested to obtain the best results for both the laser and white light 

sources . A red-sensit ive HIE 2481 Kodak film at 80 ASA was also tested 

with the former source to try to improve the contrast, but it was found to 

give inferior results to conventional films. 

The most satisfactory results for the Interferometer were obtained 

using a 400 ASA film at 1/1000th second exposure, this being the shortest 

exposure possible and thus minimised the vibration problems. The 

continuous Schl ieren photographs were taken on a 125 ASA film at a speed of 

1/60th second which was long enough to ensure a t ime-averaged picture was 

obtained. The same film speed was used for the spark Schl ieren. the source 

being at a higher Intensity setting (Section 7.3.1). and also for 

shadowgraph photographs. 

5.2.2 Initial Set Up Of Optical System 

It was important to avoid any aberrations In the final picture by 

ensuring that the light travelled through the various optical components 

undistorted and undeflected. Great care was taken to ensure this and it 

Involved repeating several stages in the setting up process many times. 
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The first stage in the setting up process was to replace the perspex 
windows with the high quality optical windows In the mechanical rig and to 
ensure the rig was exactly vertical to the floor. The latter was achieved 
by adjusting the height of two of the feet of the tripod stand whilst 
monitoring the angle of the settling tube with a large spirit level. The 
optical benches were joined together, the right angles being checked by a 
large set square, and levelled using a spirit level by adjusting the height 
of the anti-vibration feet. 

The spatial filter was attached to the laser and adjusted until the 

beam emerged undeflected from it. The pin hole caused a set of faint 

diffraction rings to be observed in the beam which consisted of concentric 

c i rc les reducing to a point at the centre of the beam. This point enabled 

the centre of the beam to be accurately located and was used in the 

alignment of the beam through the optical system. The light source was 

mounted in a Vee-block and the direction of the beam altered by tilting the 

laser using paper pads until the beam travelled directly down the middle of 

and parallel to the central optical benches (Figure 5.4). The beam 

splitter, B l , was roughly set in position such that the reflected beam was 

reflected off its front surface, the modifications to the holder ensuring 

that the reference beam travelled through unimpeded. The beam splitter was 

then rotated until the centre of the reflected beam fell upon the centre of 

mirror Ml . This centre was made visible by placing a piece of paper in 

front of the mirror upon which there was a circle of the same radius as the 

mirror and a c r o s s at its centre. The position of the beam splitter was 

adjusted along the central optical table, together with the angle of 

deflection and the height of lens L l , until the centre of the beam remained 

on the c r o s s , whether or not lens L l was present, or where it was placed 
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along the optical table holding mirror Ml . The beam was now aligned up to 
the mirror, although the position of the lens LI still had to be determined 
such that the reflected beam from the mirror was a parallel beam. 

At this stage it had to be ensured that the light reflected from the 

mirror Ml would pass perpendicular through the plane containing the 

mechanical rig. The angle of deflection at the mirror was adjusted so that 

a nominally parallel reflected beam did not Impinge upon the lens holder of 

L I . It was found that if the unexpended beam (i.e. lens LI removed) was 

shone onto the glass windows, a reflection was visible at the mirror. Ml . 

The beam was correctly aligned when this reflection coincided with the beam 

falling on the mirror from the beam splitter. This required rotation of 

the optical benches and some fine adjustment of the mechanical rig itself. 

The height of the optical benches were also adjusted until the centre of 

the beam at the optical windows coincided with the centre of the windows, 

again made visible by placing a circle of paper, whose centre was marked 

and whose radius was the same as that of the window, in front of the 

window. The height was altered by screw threads on the anti-vibration 

feet, the process being checked by use of the spirit level. The process of 

aligning the optical system with the mechanical rig was lengthy, involving 

several ' restarts' . 

Once this alignment had been achieved, the position of lens LI was 

determined such that the beam passing through the working section was 

exactly parallel. The lens was moved along the optical table until the 

diameter of the beam at the working section was exactly the same as that of 

the mirror. The mirror M2 was then placed such that the centre of the 

measuring beam coincided with the centre of the mirror in the xz plane, the 

alignment being automatically right in the yz plane provided that all the 
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previous alignments were accurate (Figure 5.4). A check was then made to 
ensure that the focus of the mirror M2 and its collimation occurred before 
the beam splitter B2. The whole optical table holding mirror M2 was moved 
along the central one until this was achieved whilst the centre of the beam 
from mirror Ml was aligned with the centre of mirror M2. The direction of 
the reflected beam from M2 was adjusted until it travelled down the mid-
plane of the optical table and so that its height at B2 was the same as 
that of the original reference beam. Lens L2 was then placed after the 
focus of mirror M2, such that the beam was approximately parallel, its 
height being adjusted until the beam was undeflected from its position 
after the beam splitter when no lens was present. 

The lens L3 could then be inserted after the second beam splitter and 

moved until the working section became In focus at a screen . The system 

was now ready for fine adjustment and although this coarse set up was 

tedious and lengthy, once it had been done the system needed no further 

c o a r s e adjustment during the tests, a period of several months. 

5.2.3 Components 

The configuration of the optical components in the optical system is 

shown in Figure 5.4. The components were held in carr iers whose dovetail 

fittings with the optical benches eased alignment of the components and 

allowed the carr iers to be accurately positioned longitudinally along the 

tables. Four high stability optical benches were used, two 4 ft in length 

joined longitudinally to form the central "•body" and two 8 ft benches which 

held the mirrors. These benches, which were rigidly connected together, 

were supported by four pairs of anti-vibration feet which had screw 

adjustments so that the height of the benches could be altered. 
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The laser light source was an Oriel Helium-Neon Research Laser 

o 

(wavelength of 6 3 2 8 A) with a rated minimum output power of 2 . 0 mW. The 

laser operated in the TEiVl^^ mode, the Gausian beam being 0 . 8 mm in diameter 

and having a divergence of 1.2 mr. An Ealing spatial filter which screwed 

onto the front of the laser consisted of a 4 mm focal length lens which 

focused the beam onto a 5 micron diameter pin hole. The beam was then 

collimated by a lens resulting in an output beam of 9 . 6 mm in diameter. 

The pin hole could be moved laterally across the beam and the focusing lens 

rotated about axis perpendicular to the beam to ensure the correct 

alignment of all the components. The laser and spatial filter were held in 

a Vee-b lock and could be tilted, using padding, to ensure the beam 

travelled in the desired direction. 

The Schl ieren light source was an Oriel pulsed Xenon light source 

emitting light at a band of wavelengths from 2 0 0 to 9 0 0 nm. The power 

output and the pulse frequency could be varied from 1 to 1 0 0 Hz on a low 

energy pulse of 0 . 1 2 5 fiJ, from 1 to 8 0 Hz on an 1 . 2 5 M J pulse and from 1 to 

9 Hz on a 1 2 . 5 f i j pulse. An ultra violet grade fused silica condensing 

lens was placed next to the source and the resulting virtual image of the 

spark was placed at the focus of mirror Ml . The light source could be 

mounted so that the spark was either parallel or vertical to the top of the 

bench in a plane perpendicular to the length of the bench. Whilst this 

source was on order a conventional light source which consisted of a single 

helical filament supplied by a 1 2 volt car battery, a focusing lens and a 

rectangular slit was used. The lens focused an Image of the filament onto 

the rectangular slit which was then placed at the focus of mirror Ml . The 

knife edge of the Schl ieren system consisted of a razor blade that could be 

freely moved and locked in a holder mounted on a standard carrier. 
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The beam splitters were an inch in diameter and made from fused 
silicon and had a front coating that gave a 50% reflectivity and 50% 
transmission when the plane of polarization of the input beam was at 4 5 ° to 
both the 2 and y axis (Figure 5.4). The other surface was coated with an 
anti-reflection coating to prevent higher order reflections. The two 
lenses LI and 12. were also an inch in diameter and had a focal length of 
100 mm. 

The two mirrors Ml and M2, were 4" diameter off-axis paraboloid 

mirrors, made from a 9" diameter on-axis parabola and designed to deflect 

the beam 2 . 7 ° . They had a surface coating of Aluminium oxide, the front 

surface reflection eliminating extra reflections, and were supported in 

holders that allowed rotations about the x and y axis. Their long focal 

length of 1334 mm ensured the beam was clear of the lens holder of LI and 

the focal length to diameter ratio of 12 minimised any aberrations (Holder 

and North (1956)). 

The two windows in the working section were also 4° diameter and 1° 

thick, their sur faces being parallel to l/20th wavelength of the laser 

light. These were also coated with an anti-reflection coating. 

The focusing lens L3 was 1" diameter and of 80 mm focal length. This 

focused the image onto a s c r e e n , made from tracing paper, or onto the Canon 

A E l camera which was fitted with bellows to magnify the Image to any 

desired size. 

The total cost of the system was £6500 at 1982 prices. The major 

expenses were the laser and spatial filter (£1000) , Xenon source (£1300), 

the working section windows (£1000) and the optical benches and the holders 

for the optical components (£2600) . The cost of increasing the diameter of 
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the measuring beam is dependent only on the increased cost of the working 
section windows, the parabolic mirrors being cheap in comparison. 

5.3 OPTICAL S Y S T E M CONVERSION AND ADJUSTMENT 

5.3.1 Interferometry 

After the system had been set up as in section 5.2.2, it was ready 

for fine adjustments for interferometry. Control over the fringe pattern 

was by three adjustments, the number of horizontal or vertical fringes 

being controlled by rotations of mirror M2 and their curvature by movement 

of lens L2 along the optical bench (Figure 5.4). The no-flow interference 

fringes appeared as straight lines only if the focus of lens L2 coincided 

exactly with the focus of mirror M2. concentric rings appearing if they did 

not coincide. Once this lens had been accurately placed, the number and 

direction of the final fringes was controlled by the fine rotations of 

mirror M2 about the x and y axis (Figure 5.4). 

The position of the holder of lens LI was carefully marked, this 

being the only component disturbed on conversion to a Schlieren system. To 

convert the system back to an interferometer this lens was simply placed 

back In position, the conversion being done several times throughout the 

ser ies of tests without any loss of quality in the final picture. 

5.3.2 Schl ieren 

To convert the interferometer to use for Schlieren techniques, the 

lens LI was replaced by the spark light source and a knife edge was 

inserted at the focus of mirror M2 (Figure 5.4). The spark source 

consisted of the lamp and a coliimating lens which was placed as close as 

possible to the spark in order to focus as much of the power of the source 

as possible. This resulted in a virtual image which, when placed at the 
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focal point of mirror Ml produced a parallel beam through the working 
section. The position of the spark source along the optical bench, and its 
height above it were correct when the reflected parallel beam from mirror 
Ml exactly filled mirror M2. The spark source could be mounted such that 
the spark was horizontal or vertical, the knife edge being horizontal or 
vertical respectively. The knife edge itself consisted of a razor blade 
mounted in a holder, the entire assembly being moved away from the mirror 
M2 until the focal point was reached. The position of the razor blade in 
the holder was then adjusted so as to cut off approximately half the image 
of the light source. 

The setting up process was carried out when the spark source was set 

to a rapid low intensity spark which gave a continuous image of the working 

section. After setting up, reflections from the Coanda surface were 

sometimes observed which was an indication that either the light was not 

exactly parallel through the working section or that the light beam was not 

exactly perpendicular to the plane of the working section. The setting up 

process was therefore repeated until these reflections were absent and the 

intensity of the light source and its frequency then changed for the 

particular experiment (Section 7.2 and 7.3). 

5.3.3 Shadowgraph 

Shadowgraph pictures could be made from either light source, the 

change from the interferometer being to block out the reference beam using 

a piece of card and to defocus the final picture by moving lens L3. The 

change from the Schl ieren system was to remove the knife edge and defocus 

the system. The sensitivity of the system depended on the amount that the 

final picture was made out of focus. This was restricted when the laser 

source was used because the coherence of the light meant that it was 
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severely diffracted at the Goanda surface and at shock waves causing a 
ser ies of diffraction lines at the final picture which made the position of 
the surface or shock wave difficult to place accurately. This was not a 
problem when the Incoherent, multi-frequency spark source was used and the 
system could be made out of focus until the solid surfaces became slightly 
blurred. 

5.4 PERFORMANCE OF THE OPTICAL SYSTEM 

The development of an optical system combining shadowgraph, Schlieren 

and interferometric techniques is described in Section 5.2 and experiments 

employing this system in Chapter 7. Three light sources were employed, a 

laser , a spark source and a continuous source. The latter source was used 

as a temporary source while the spark source was on order. 

The shadowgraph photographs were taken employing either the 

continuous light source or the laser. Those obtained employing the laser 

showed severe diffraction not only at solid surfaces but also at shocks and 

thus the laser source is not recommended for shadowgraphy. The continuous 

light source produced photographs of a good quality and it is expected 

similar photographs can be obtained by use of the spark source. 

Schl ieren photographs were taken employing either the continuous 

light source or the spark source. Continuous Schiieren photographs were 

obtained using either source , the latter being the superposition of several 

sparks , and spark photographs were obtained using a single pulse from the 

spark source. The photographs obtained were of a good quality. 

Interferometric photographs were taken employing the laser source and 

were satisfactory at stagnation pressure ratios above 0.55. However the 

extensive vibration that made the interferograms impossible to view by eye 
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prevented interferograms being obtained at lower stagnation pressure 
ratios. Three reasons for these vibrations were examined: firstly 
recirculation of the air exiting from the rig, secondly vibration caused by 
noise emissions from the rig and thirdly vibrations either of the rig 
itself or transmitted through the floor into the optical system. 

Wooden covers were designed to enclose the beam paths of the optical 

system to reduce any effect caused by recirculating air. However this 

resulted in no improvement in the stability of the final picture. Thus it 

is thought unlikely that the recirculation is the cause of the problem. 

Similarly the vibration is unlikely to be caused by sound vibration, even 

though sound levels of up to 140 dB were recorded near the nozzle. The 

sound intensity is proportional to the square of the pressure amplitude 

(Whelan and Hodgson, (1977)), and is proportional to the inverse square of 

the distance from an isolated noise source. The density changes caused by 

the pressure changes are insufficient to produce a detectable fringe shift. 

The third possible cause examined was vibration either of the 

mechanical rig or the optical rig. Two ser ies of tests were devised to try 

to trace the source of any vibrations. In the first ser ies the mechanical 

rig was unbolted from the floor and allowed to stand free. Interferograms 

were then taken over a range of stagnation pressure ratios. In the second 

ser ies of tests, the mechanical rig was moved away from the paths of the 

laser beams and allowed to stand free. Interferograms were again taken 

over a range of stagnation pressure ratios. The results show that clear 

fringes in the still air can be distinguished down to stagnation pressure 

ratios of 0.25. Fr inges can also be distinguished within some regions of 

the jet itself. However at a stagnation pressure ratio of 0.25 the 

diffraction of the light at the Coanda is very noticeable. These results 
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suggest that the c a u s e of the original vibrations are vibrations from the 
mechanical rig that are transmitted by the feet of the rig through the 
floor and into the optical rig. These results also show that recirculation 
of the air from the mechanical rig is not a problem. 

Thus further work on the prevention of the transmission of vibration 

from the mechanical rig to the optical rig is required. This can either be 

done by altering the supports of the mechanical rig or by altering the 

support system of the optical system. The former should be designed to 

prevent vibrations being transmitted into the floor and the latter to 

prevent vibrations being transmitted from the floor into the optical 

system. There is some doubt that the anti-vibration feet, that sit on 

rubber pads and support the optical system at present, perform up to the 

manufacturer's specification. Apart from this problem, the optical system 

performed well and required very little adjustment after the initial set up 

procedure. 
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CHAPTER 6 
MECHANICAL EXPERIMENTS AND R E S U L T S 

6.1 TOTAL P R E S S U R E T R A V E R S E S 

6.1.1 Experimental Method 

Several t raverses were made across the jet to check the two-

dimensionality of the flow as it flowed round the Coanda surface. The 

traverses were made with a total pressure tube that consisted of a long 

aluminium tube, whose external diameter was 4 mm, which decreased to a 0.8 

mm external diameter hyperdermic tip. This probe was mounted on traversing 

gear set away from the rig. The angle of the probe could be adjusted such 

that It lay tangentially to the Coanda surface and the tip then moved until 

it lay on the surface. Movement of the probe was then possible in the 

plane normal to this tangent. The stagnation pressures were measured by a 

mercury manometer. 

Tests were conducted at angles of 0 ° , 20" and 40" round the Coanda 

surface, traverses a c r o s s the jet being carried out at several distances 

from the Coanda surface at each stagnation pressure ratio. Slot widths of 

2 mm and 4 mm were tested. At low stagnation pressure ratios the force of 

the jet on the end of the probe caused severe deflections as the probe was 

moved into the jet. This prevented readings being taken near the surface 

at low stagnation pressure ratios. 

6.1.2 Results 

All the traverses a c r o s s the slot exit showed that the stagnation 

pressure was constant over the whole slot area. The influence of the side 

wall on the main jet is shown in Figures 6.1 and 6.2, which show 

respectively traverses at 20" and 40° round the Coanda surface of flow 

from a 4 mm slot at a stagnation pressure ratio of 0.662. The distance of 
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the centre- l ine of the probe from the Coanda surface is marked for each 
traverse and a s the total pressure traverses were virtually symmetrical 
about the centre- l ine of the slot breadth, only half the slot breadth is 
plotted. At 2 0 ° (Figure 6.1), the flow near the surface is virtually 
unaffected by the side wall, though near the edge of the jet 40% of the 
breadth showed a variation of total pressure. At 40° (Figure 6.2), 10% of 
the breadth has been affected near the Coanda surface and the variations In 
total pressure of the flow near the wall and further from the Coanda 
surface have increased. Only 40% of the breadth is affected by the 
variations. 

The effect of decreas ing the stagnation pressure ratio on a traverse 

6.4 mm from the surface at an angle of 40° round the surface is shown in 

Figure 6.3. At the two higher stagnation pressure ratios the traverse is 

near the edge of the jet, and approximately 40% of the breadth Is affected 

by the side wall. At the lowest stagnation pressure ratio the jet grows 

more quickly due to the greater initial turning angle of the flow at the 

nozzle and the traverse Is Inside the jet. The effect of the side wall 

influences up to 50% of the breadth of the jet. 

The result of decreasing the slot width on the effect of the side 

wall can be seen in a comparison of Figures 6.2 and 6.4. The encroachment 

of the effect of the side wall has been reduced from 40% to approximately 

25% of the slot breadth by the halving of the slot width. 

6.2 FLOW VISUALIZATION 

6.2.1 Experimental Method 

A surface oil flow technique was used to visualize the flow on the 

Coanda surface and on the side walls to check the two dimensionality of the 
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flow and for any separation bubbles on the Coanda surface. The side 
windows were covered with adhesive cellophane to protect the perspex and 
frames, but it proved impossible to protect the surface pressure tappings 
on the Coanda surface in the same way because the cellophane lifted off as 
soon as the flow control valve was opened. A discussion of the oil 
surface flow visualization technique is given by Maltby (1962). In the 
present work a sil icone fluid, MS 200/1000 c s , was mixed in a ratio of 3:1 
by weight with a pink "Dayglo" pigment and painted directly onto the Coanda 
surface and onto the cel lophane on the window frames. This mixture allowed 
the oil pattern to develop, set and leave a clear picture at all slot 
widths and stagnation pressure ratios tested. 

Initial observations revealed bands of fluid accumulating on the 

curved portion of the Coanda surface and regions of reverse flow between 

them. These bands col lapsed as the rig was shut down which obliterated the 

pattern. Thus observations or photographs of the curved section of the 

Coanda surface had to be made while the rig was running. The pattern on 

the flat of the Coanda surface and on the side walls were unaffected by 

shut down. Two ser ies of experiments were devised:-

Build 1: Written Observations 

A record was made of the position of the bands and the direction of 

flows on the Coanda surface. Three slot widths of 2, 4 and 8 mm were 

tested at nominally the same stagnation pressure ratios as those of the 

surface pressure measurement tests (Section 6.5). The surface was painted 

and the rig was quickly set at the desired pressure ratio. Once the 

pattern had set, the position of the bands were recorded in relation to the 

surface pressure tappings, whose angle round the surface was known. At low 

stagnation pressure ratios regions of reverse flow between bands were 
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clearly visible, because oil was being continuously 'flicked' from one band 
to the next one downstream and then running back along the surface to the 
original band. 

Build 2: Photographic Record 

Three representative stagnation pressure ratios, the lowest being 

near breakaway (Section 6.4), were photographed at each slot width of 2. 4 

and 8 mm. Four views were taken at each stagnation pressure ratio:-

a) Curved section of the Coanda surface, 

b) Corner of Coanda flat with the side wall, 

c) Flat section of the Coanda surface, and 

d) Side wall. 

The oil was painted on, the rig set to the desired pressure and the 

first view taken as soon as the pattern had set. The rig was then shut 

down, one window frame removed and the second view taken. The second frame 

was then removed and the third and fourth views taken, the camera being 

normal to the surface being photographed. The oil was illuminated with an 

ultra-violet lamp to enhance the pattern, the lamp being held as close as 

possible to the surface being photographed. A range of shutter speeds was 

used for each view and the best negative selected for printing. A Canon 

A E l camera with a standard 50 mm lens was used to take the photographs 

together with a black and white film whose speed was 125 ASA. 

6.2.2 Results of Build 1 

The angles round the Coanda surface at which beads of oil accumulated 

are plotted against the stagnation pressure ratio in Figures 6.5, 6.6 and 

6.7 for the three slot widths of 2, 4 and 8 mm respectively. The accuracy 

of the measured angles is estimated to be 1 o at surface angles of less than 

40" (where the static pressure tappings were at 5° intervals) and to be 20 
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at surface angles greater than 40° (where they were at 10° intervals). 
Occasional ly a very faint band appeared, these positions being marked by a 
c r o s s . Except at stagnation pressure ratios near unity reverse flow on the 
surface was detected between the second and first bands. However it was 
never detected between other bands. 

Five bands were detected at stagnation pressure ratios near unity at 

the 2 mm slot width. As the pressure ratio was reduced, the leading edge 

of the first band moved slightly further downstream and the band increased 

in width. All the other bands moved appreciably downstream and disappeared 

once they reached an angle of approximately 70° round the Coanda surface. 

As the breakaway stagnation pressure ratio was approached only the first 

and second bands remained, the leading edge of the first band settling at 

about 100 round the surface. A similar progression of the bands occurred 

at the 4 mm slot width (Figure 6.6). A maximum of three bands were clearly 

visible, the angle at which these bands appeared being greater than the 2 

mm slot due to the increased width of the jet. A slight difference 

occurred at the 8 mm slot width, where the first band moved upstream as the 

separation stagnation pressure ratio was approached. A maximum of two 

bands were visible at this slot width. 

6.2.3 Results of Build 2 

The photographs taken all show similar features, four representative 

ones being shown in Plates 4 to 7. Plates 4, 6 and 7 show the flow from a 

nominally 4 mm slot at a stagnation pressure ratio of 0.333 over the curved 

section of the Coanda, at the intersection of the Coanda with the side wall 

and along the side wall respectively. Plate 5 shows flow over the curved 

section of the Coanda from an 8 mm slot at a stagnation pressure ratio of 

0.667. 
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The flow in Plate 4 emerges from the slot at the bottom of the 
photograph and flows up the picture. Three bands are visible, the first 
main one, together with smaller ones just below and above the 'glare'. An 
additional line, which can be seen above the third, is situated at the 
start of the flat part of the Coanda. Six accumulations of oil can be seen 
in the first band, one situated at each corner and one centred along the 
lines of surface pressure tappings. Small trailing vortices were visible 
behind each tapping which resulted in the accumulation of oil in a 
separated region along the lines of tappings. It is not thought that these 
vortices affected the main flow. These accumulations of oil continually 
lost oil which was then deposited by the main jet onto the second band. 
The oil then flowed along the surface rapidly back to the trailing edge of 
the first band. 

The first two bands stretch uniformily across the surface suggesting 

the flow, at least at the surface, is two-dimensional. However by the 

third band a vortex from either side has encroached Into the surface flow. 

This vortex is possibly initiated from the first band and others are 

initiated at the third band and at the start of the flat of the Coanda. 

This first vortex is however still present in Plate 5, where the stagnation 

pressure ratio was not low enough to cause any separation. A second vortex 

can be seen initiated at the start of the flat. 

The growth of these vortices round the Coanda and their interaction 

with side wall can be seen In Plates 6 and 7. At the Coanda surface the 

vortices, which sweep flow away from the side wall, grow rapidly until the 

flat of the Coanda is reached where the growth is reduced. The size of 

these vortices and their encroachment onto the Coanda surface increases 

with an increase in the slot width. Only the middle third of the Jet from 
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an 8 mm slot width is unaffected at the start of the flat (Plate 5). The 
inner part of the jet on the side wall is swept down onto the surface by 
those vortices, while the outer part is swept away a s it loses momentum in 
the mixing layer. The outer edge of the jet is sharply defined, the oil 
outside the jet being undisturbed. 

6.3 DISCHARGE C O E F F I C I E N T 

6.3.1 Experimental Method 

Before the mass flow rates through the slot could be measured the 

leakage rates of both the inlet line and the settling tube had to be 

determined. This required two ser ies of experiments because, at a set slot 

stagnation pressure ratio, the two sections were at different static 

pressures due to the pressure drop across the flow control valve. The two 

ser ies were:-

Build 1:- Inlet line 

Build 2 : - Settling tube 

The flow control valve (Figure 5.1) was kept closed for the 

experiments of Build 1 and open for Build 2, the Coanda surface being 

forced down onto a sheet of rubber placed on the nozzle to prevent flow 

through the slot. 

In each experiment the line was pressurised to the test pressure and 

the drop valve on the ring main closed. The time taken for a small 

pressure drop of the line was measured on a stop watch, the pressure being 

monitored at the orifice plate using the 35 bar differential pressure 

transducer. The temperature of the air in the line was measured at the 

orifice plate. A range of initial static pressures were tested in each 

Build, the highest pressure in Build 1 being 10 bar gauge which was the 

design limit of the inlet line. The highest pressure of Build 2 was 
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limited to 3 bar gauge for two reasons: firstly the time taken for a small 
pressure drop became small and secondly leaks round the rubber blocking the 
slot occurred and the pad itself was blown out. The volume of the inlet 
line and the settling tube were also estimated from an approximate 
measurement. 

Mass flow rate measurements through slot configuration A (Figure 5.3) 

were taken over a range of stagnation pressure ratios down to breakaway. 

Three nominal slot widths of 2, 4 and 8 mm were tested. The static 

pressure upstream of the orifice plate and the pressure drop across it were 

measured by pressure transducers and the temperature of the air flowing 

through the orifice was also recorded. A 26.5 mm diameter orifice plate 

was used (orifice diameter to pipe diameter ratio of 0.52) and the pressure 

of the inlet line controlled by the regulator to ensure the maximum 

pressure drop a c r o s s the plate for a set mass flow rate. 

6.3.2 Leakage Results 

The leakage rate was calculated from the calculated air density in 

the pipe before and after a test, the volume of the pipe and the time taken 

for the mass loss. This leakage rate was plotted against the median 

pressure of the test. The results of the Build 1 tests showed that the 

maximum mass loss rate of the inlet line was less than 0.1 g /s . This leak, 

that occurred at the join between the inlet line and the reinforced rubber 

tube, represented less than 0.1% of the measured mass flow rate through the 

2 mm slot width and so was ignored. 

The results of the Build 2 tests are shown In Figure 6.8, the line 

extrapolated to a gauge pressure of 4 bar on the assumption that the 

increase in leakage rate follows the same trend. This extrapolation is 

required to obtained estimates of the leakage rates for low stagnation 
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pressure ratio measurements of the 2 mm slot width. The leaks occurred 

mainly at the corner where the window frame, back plate and settling tube 

join. The rate of increase of leakage flow rate with stagnation pressure 

in the tube is faster than a directly proportional relationship, which is 

an indication that the area through which the leaks occur also Increases 

with the stagnation pressure. 

The errors in the measurement of the mass leakage rates are difficult 

to a s s e s s but increase as the stagnation pressure is increased. However the 

leaks represent approximately 1% of the flow rate measured through the 

smallest slot width of 2 mm. Thus an error of 10% in the leakage 

measurement would represent an error of 0.1% in the mass flow through a 2 

mm slot. This error d e c r e a s e s as the slot width is increased if it is 

assumed the leakage flow depends only on the stagnation pressure inside the 

settling tube. 

6.3.3 Discharge Coefficient Results 

The actual m a s s flow rate through the nozzle at a set slot width and 

settling tube static pressure was calculated according to BS1042. The 

British Standard also lays down a procedure for determining the uncertainty 

of the flow rate, the two main contributions to the uncertainty of the 

present flow rates being an error in the measurement of the pressure drop 

a c r o s s the orifice plate and an error In the measurement of the pipe 

diameter. The pressure difference across the orifice plate fluctuated 

rapidly about a mean by up to 1.0% and the internal diameter of the inlet 

pipe, although nominally 2 inches, was 51.4 ± 0.3 mm. The total error In 

the measured mass flow was calculated to be 0.8%. 
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The known mass flow rate can be used to provide a IVIach number 
correction to convert the static pressure In the settling tube into the 
stagnation pressure. The variation of Mach number in the settling tube 
with stagnation pressure ratio is plotted in Figure 6.9. The Mach number 
increases with a decrease in stagnation pressure ratio up to a limiting 
value which signifies that the slot has become choked. The Mach number at 
a set stagnation pressure ratio increases with an increase in the slot 
width due to the decreased area ratio. 

There are two errors in the readings taken for the theoretical 

calculation of the ideal mass flow rate, namely in the measurement of the 

slot width and of the settling tube static pressure. The errors in the 

measurement of the slot width were determined using slip gauges and are 

estimated to vary from 0.5% for a 2 mm slot width to 0.1% for an 8 mm slot 

width. The error in the measurement of the static pressure in the settling 

tube was 0.2% at one bar gauge and decreased as the pressure was raised. 

The theoretical mass flow rate was calculated from equation 2.24 at 

stagnation pressure ratios of greater than 0.528 and from equation 2.25 for 

those less than 0.528. The uncertainty in the discharge coefficient thus 

varies from a maximum of 1.6% for a 2 mm slot and from 1.1% for an 8 mm 

slot. 

The variation of the discharge coefficient for the three tested slot 

widths is plotted in Figure 6.10. At a set stagnation pressure ratio the 

coefficient Increases with a decrease in slot width, the slot approaching a 

one-dimensional nozzle. The coefficient increases as the stagnation 

pressure is reduced. However the coefficient becomes greater than unity at 

stagnation pressure ratios of less than 0.26 when the slot width is 2 mm, 

and reaches a maximum of 1.018 which lies outside the estimated error 
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range. There are two possible explanations for these high readings, 
firstly that the slot becomes distorted at the high settling tube 
stagnation pressures , thereby increasing the area of the slot, and secondly 
that the estimation of the leakage rate at the high pressures was 
inaccurate, the limit of the leakage measurements being at a stagnation 
pressure ratio of 0,28. 

6.4 J E T BREAKAWAY AND REATTACHMENT 

6.4.1 Experimental Method 

The breakaway stagnation pressure ratio was defined as the ratio at 

which the jet 'flipped' from the Coanda surface to a horizontal quasi-free 

jet. The breakaway occurred at a definite ratio as the stagnation pressure 

in the settling tube was increased. As the stagnation pressure was reduced 

after breakaway, the jet was progressively deflected towards the Coanda 

surface. This deflection did not result In a deflection from the 

horizontal of more than ten degrees before the jet 'flipped' back onto the 

Coanda surface. The stagnation pressure ratio at which this occurred was 

defined as the reattachment stagnation pressure ratio. 

The static pressures in the settling tube at which breakaway and 

reattachment occurred were recorded over a range of slot widths for both 

nozzle configurations (Figure 5.3). The slot width ranged from the maximum 

possible to the minimum width that breakaway could be achieved. At a set 

nozzle configuration the flow control value was slowly opened until 

breakaway was achieved and then slowly but smoothly closed until 

reattachment occurred. The static pressures were measured on a Budenberg 

pressure gauge. Up to eight readings were taken at each slot width and an 

average for the breakaway and reattachment calculated. These were then 

corrected to include the effect of the air velocity at the static pressure 
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tapping in the settling tube (Figure 6.9). Occasionally the reattachment 

pressure was noticeably different from similar tests and if this occurred 

the result was not included in the averaging process. 

6.4.2 Results 

The stagnation pressure ratios at which jet breakaway and 

reattachment occurred are plotted against the variation of slot width in 

Figure 6.11 for nozzle configuration A (no flat) and in Figure 6.12 for 

configuration B (a flat before the constant radius curvature). The jet was 

always attached to the Coanda at ail pressure ratios down to breakaway. As 

the slot width was reduced the pressure ratios at which breakaway and 

reattachment occurred d e c r e a s e d , although the hysteresis between the two 

Increased. The scatter of the points that contribute to the average points 

plotted was ± 0.5% for the breakaway and ± 2% for the reattachment. 

A discontinuity in the breakaway stagnation pressure ratio was 

noticed at a slot width/downstream radius (b/a) ratio of 0.14 in Figure 

6.11 and a second ser ies of tests were carried out. These are also plotted 

in Figure 6.11 and outside the range 0.12 < b/a < 0.15 the breakaway 

occurred at the same stagnation pressure ratios. However within this range 

the plotted points differ by up to 7%, even though each point represents an 

average of points whose scatter was less than ± 0.5%. A variation of up to 

8% In the reattachment stagnation pressure ratio was also noticed at small 

slot widths. Neither effect occurred during the re- tests of the ratios for 

nozzle B. 
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6.5 S U R F A C E STATIC P R E S S U R E S 
6.5.1 Experimental Method 

Three ser ies of tests were conducted at various slot widths over 

different stagnation pressure ratio ranges. The slot width was set for 

each test and the static pressure tappings connected to a mercury or water 

multimanometer, whose angle could be varied depending on the range of 

pressures required. The stagnation pressure ratio was then set and the 

surface pressures relative to atmospheric pressure recorded, the stagnation 

pressure ratio being continually monitored to ensure there was no drift. 

In all the tests nozzle configuration A was used (Figure 5.3). The three 

ser ies of the tests are described below:-

a) Build 1 - Low Speed Flow 

Tests were carried out over several stagnation pressure ratios near 

unity at nominal slot widths of 1, 1.5, 2, 4, 6 and 8 mm. The majority of 

the tests were at stagnation pressure ratios higher than 0.95, where the 

flow was effectively Incompressible, although pressure ratios down to 0.83 

were also tested. The tappings were connected to the water multimanometer 

which was inclined at an angle of 3 0 ° . The settling tube static tapping 

was either connected to the same multimanometer or to the mercury 

multimanometer, depending on the settling tube stagnation pressure. 

b) Build 2 - Compressible Flow 

Tests were carried out at nominally the same stagnation pressure 

ratios as the interferometric experiments (Section 7.4) at nominal slot 

widths of 2, 4 and 8 mm. The tappings were connected to the mercury 

multimanometer which was inclined at 30° and the settling tube static 

pressure was measured on a Budenberg gauge. 
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c) Build 3 - Choked Flow 

Tests were carried out over several stagnation pressure ratios down 

to breakaway at slot widths of 2, 4, 6 and 8 mm. The pressure tappings 

were connected to the mercury muitimanometer, either placed vertically or 

at 300 depending upon the pressure range required, and the upstream static 

pressure was measured on a Budenberg gauge. The settling tube static 

pressure was raised in steps of 0.5 bar for the 4 and 6 mm slot widths. 

The static pressure was found to drop rapidly initially, but then recover 

as the jet flowed round the Coanda and so the test stagnation pressure 

ratios for the 2 and 8 mm slots were chosen such that the peak of this 

recovery coincided with a pressure tapping on the surface. An additional 

ser ies of tests were carried out at a 2 mm slot width using nozzle B 

(Figure 5.3). 

6.5.2 Results of Build 1 

The results of the low speed, mainly incompressible flow tests are 

plotted In Figures 6.13 to 6.18, the graphs progressively showing the 

effect of increasing the slot width. The surface pressures are plotted as 

the non-dimensional parameter ^Pg'Pg^^^Pg'Pa^ fo"" various stagnation 

pressure ratios against the angle round the Coanda surface. 

The uncertainties of the results varied both with the slot width and 

the stagnation pressure ratio. The pressure difference between atmospheric 

pressure and either the surface static or the upstream static pressure 

could be measured to the nearest millimetre. Thus the reading errors in 

(p - p ) for the 1 mm slot width, varied from 11% at p /p = 0.990, through '^s '^a '^a '^0 

4% at p /p = 0.971 to less than 1% at p /p = 0.907. The reading error of 

the upstream static pressure was less than 1% and so the total error of 

^^s~^a^''^''o~''a^ varied from 12% to less than 1% as the stagnation pressure 
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was increased. The errors reduced at a set stagnation pressure ratio as 
the slot width was increased because the surface static pressures 
decreased . The error at the maximum stagnation pressure ratio of 0.990 in 
the non-dimensional parameter was estimated to be 9% at a slot width of 1.5 
mm, 6% at 2 mm and 3% at a 4 mm slot width. All these errors were reduced 
in a similar manner to those of the 1 mm slot width as the stagnation 
pressure ratio was reduced. 

The graphs in Figure 6.15 to 6.18 all follow a similar trend. The 

surface pressure d e c r e a s e s to a minimum about two slot widths downstream of 

the slot. It then either remains constant or r ises slightly until the jet 

approaches the flat part of the Coanda surface, where the pressure rises 

rapidly. A line can be drawn through the mean points of each graph and. 

although the absolute scatter of the pressures from this line increases as 

the slot width Increases , the percentage scatter of the points is ± 3% in 

all the graphs until the influence of the flat part of the Coanda becomes 

apparent. A similar trend can be seen in Figures 6.13 and 6.14, although 

the initial scatter is greatly Increased and even in the central section of 

400 to 700 the scatter has Increased to ± 8%. The results at the highest 

stagnation pressure ratio of 0.990 show a marked deviation from the others 

and were not included In the above scatter. A retest at this stagnation 

pressure ratio is shown in Figure 6.14, displaced slightly for clarity. 

This shows a marked deviation from the original test which was not apparent 

in similar retests at other stagnation pressure ratios. A possible reason 

for these variations is that the flow rate was difficult to control at the 

stagnation pressure ratios near unity. 
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6.5.3 Results of Build 2 

The results of the compressible flow tests are plotted in Figures 

6.19 to 6.21. The surface static pressures could be read to the nearest 

millimetre and the upstream static pressure to the nearest 0.05 bar. These 

resulted in reading errors of 3.5% at the low stagnation pressures at the 2 

mm slot width reducing to 2.5% at the 8 mm slot width. These reduced to 

1.5% at a 2 mm slot width and to 0.5% at a 8 mm slot width as the 

stagnation pressure was increased. 

A decrease in the stagnation pressure ratio resulted in a reduction 

of the surface pressure coefficient over the first 10° of the surface, when 

a 2 mm slot width was tested (Figure 6.19). This was followed by a surface 

pressure coefficient rise at angles further round the Coanda as the 

stagnation pressure ratio was decreased. This rise was observed until an 

angle of 6 0 ° . At all the stagnation pressure ratios tested the surface 

pressure exhibited a wave-l ike variation for the first 4 0 ° , before settling 

to a constant value. 

A similar wave-l ike variation near the nozzle can also be seen in the 

static pressure coefficient profiles from the 4 mm slot (Figure 6.20). The 

coefficient then becomes almost constant as the stagnation pressure ratio 

is reduced, though an increase can be seen at a ratio of 0.492. The wave

like variation near the nozzle is less noticeable at the 8 mm slot (Figure 

8.21) until the stagnation pressure ratio has been reduced to 0.536. 

6.5.4 Results of Build 3 

The results of the choked flow tests are shown In Figures 6.22 to 

6.26, where the actual surface pressure Is plotted against the angle round 

the Coanda surface for several stagnation pressure ratios. The pressures 
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have been joined by l ines, although these lines are only approximations of 
the pressure because it is not known where a tapping lies relative to a 
peak or trough of the static pressure. The errors in the measurement of 
the surface pressures are ± 0.002 bar. 

The surface pressure distributions from a nominally 4 mm slot at six 

stagnation pressure ratios are shown In Figure 6.22. As the stagnation 

pressure ratio was reduced the first minimum of the surface static pressure 

decreased and moved further round the surface and there was a rise in the 

absolute static pressure after the first recovery. The shock cell 

structure could also be seen more clearly downstream, the cel ls Increasing 

in length and In their pressure ranges. However, as the stagnation 

pressure ratio was further reduced (Figure 6.22b), the static pressure 

remained constant for an increasing angle at Its first minimum. Also the 

first peak in pressure began to decrease in amplitude, although it still 

moved further downstream. At a stagnation pressure ratio just above that 

which caused breakaway of the jet, the constant pressure region after the 

initial expansion extended from approximately 15° to 4 5 ° round the surface 

and the peak of the first pressure recovery occurred at 80" . 

A similar process preceded the breakaway of jets from 2, 6 and 8 mm 

slots (Figures 6.23, 6.24 and 6.25 respectively). As the slot width was 

increased the length of the first shock cell increased and the pressure 

recovery at the end was smaller. A notable feature in all c a s e s was that 

at a stagnation pressure ratio just higher than that required to breal^way 

the jet, the position of the first peak in the surface pressure after the 

constant pressure region was at approximately 8 0 ° . Also, although the 

angle of the start of the constant pressure region increased with slot 

width, the start of the first pressure rise was at approximately 45" . 
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The surface pressure distributions from a 2 mm slot of nozzle B is 
shown in Figure 6.26. At a stagnation pressure ratio c lose to breakaway 
the peak of the first pressure recovery was also at an angle of 80° and the 
end of the constant pressure region after the initial expansion at 
approximately 5 0 ° . There seemed to be no major differences between the two 
nozzles in the pressure distributions from a 2 mm slot. 
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CHAPTER 7 
OPTICAL EXPERIMENTS AND R E S U L T S 

7.1 SHADOWGRAPH 

7.1.1 Experimental Method 

The optical apparatus was set up for the shadowgraph technique as 

descr ibed in Section 5.3.3. Shadowgraphs were taken using both a laser and 

the conventional light bulb source. During tests made with the former, 

lens L I (Figure 5.4) remained in place and the reference beam was blocked 

by a piece of card. For the light bulb source, lens LI was removed and the 

source assembly placed such that the focus of the bulb's filament was at 

the focus of mirror Ml . The position of lens L3 and the length of the 

bellows extension were altered until the image at the photographic plate 

was in focus and of the required magnification. The focusing of the rig 

was achieved by setting the mechanical rig at a given stagnation pressure 

ratio and moving the lens L3 along the optical bench until the shadowgraph 

produced gave the weakest image that could be seen . 

A ser ies of shadowgraphs were taken over a range of stagnation 

pressure ratios at three slot widths, 2 mm, 4 mm and 8 mm. In each test, 

lens L3 was moved sufficiently to obtain a visible shadowgraph. A 125 ASA 

black and white film, together with a shutter speed of l/500th second, was 

used throughout these tests. 

7.1.2 Results 

Severe diffraction at shocks and the Coanda surface, similar to that 

shown in Plate 3, occurred when the laser light source was used and thus 

the results presented here were obtained using the conventional light bulb 

source. Plates 8 to 11 show shadowgraphs of the 4 mm slot at four 
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different stagnation pressure ratios, the lowest being just before 
breakaway. Plates 12 and 13 show representative shadowgraphs taken of the 
8 mm and 2 mm slots respectively. 

Plate 8 shows the jet from a 4 mm slot at a stagnation pressure ratio 

of 0.370. A line representing the edge of the jet can be clearly seen for 

the first half of the first shock cell. There are several disturbances in 

the flow as it approaches the nozzle exit, the majority emanating from the 

nozzle surface. These culminate in an oblique line at the nozzle lip that 

reaches the Coanda surface at 7 ° . These disturbances indicate the 

accelerat ion round the nozzle is not smooth and that a weak oblique shock 

exists at the nozzle exit. 

The reflections from the Coanda surface of some of the waves 

emanating from the nozzle lip can just be seen. Further round the Coanda 

surface at about 15° a weak line is just visible propagating into the flow. 

This indicates the presence of a very weak shock, A stronger line is 

visible emanating from a position about 27° round the Coanda surface. This 

propagates Into the flow and near the edge of the jet Is bent slightly. At 

this discontinuity another line propagates down onto the surface where its 

initial reflecton can be seen . Further round the surface at approximately 

6 0 ° and 850 two slight disturbances can also be seen . 

As the stagnation pressure ratio is reduced to 0.323 (Plate 9) the 

pattern is similar, but individual features move further round the Coanda 

surface. The line representing the initial jet edge indicates the maximum 

extent of the jet Increases . The disturbances at the edge of the nozzle 

are similar to the higher stagnation pressure ratio, although the oblique 

shock emanating from the nozzle lip reaches the surface further round at 

approximately 80 . Again occasional reflections from the Coanda surface of 
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disturbances at the nozzle lip can be seen . The weak shock emanating from 
the surface, only just visible in Plate 8, can clearly be seen and emanates 
from a position slightly further round the Coanda at about 170. A further 
line closely following the surface can also be seen starting from the same 
point on the Coanda as the weak shock. This is a line representing the 
separation of the jet from the Coanda surface, the separation being too 
small for this line to appear at the higher stagnation pressure ratio. A 
stronger oblique shock can be seen at about 350 round the surface. At this 
point the separation line is turned almost parallel to the surface and can 
be seen continuing beyond the shock. The oblique shock is again bent near 
the jet edge, a second shock starting at this point and reaching the 
surface at about 4 3 ° . A reflection of the shock is just visible. An 
additional disturbance can just be seen at about 750 round the surface. 

A further decrease in the stagnation pressure ratio to 0.267 is shown 

in Plate 10. The divergence from the surface of the line representing the 

Initial jet edge has again Increased and the disturbances upstream of the 

nozzle exit have increased. The angle at which the oblique shock from the 

nozzle lip reaches the surface has increased to about 140. However, the 

angle at which the weak shock at the beginning of the separated region 

emanates Is similar to Plate 9. A slight disturbance can be seen at the 

intersection of this shock with the jet edge. The line representing the 

separated region has become stronger and moved further away from the 

surface. Initially it is almost tangent to the surface, but it is then 

bent back towards the surface. A faint line which can be traced back to 

the nozzle lip via reflections from the jet edge and the Coanda surface can 

just be seen at this point. At an angle of about 450 round the surface the 

separation line is again turned away from the surface and a shock is 
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propagated into the flow. The flow reattaches at a point about 67° from 
the nozzle lip. 

Plate 11 shows the pattern of the flow at a stagnation pressure 

ratio of 0.241, which is just above breakaway. The jet width has again 

increased and the angle at which the oblique shock from the nozzle lip 

reaches the surface has increased to 1 7 ° , although it cannot be seen 

extending right to the surface. The point at which separation occurs and 

the oblique shock with it have remained similar to the two previous higher 

stagnation pressure ratios. The separation line again leaves almost 

tangentially from the surface and is turned back towards the surface at a 

distance further away than shown in Plate 1 0 . The line is again turned 

away from the surface at about 5 5 ° , although the shock seen at this point 

in Plate 10 is not visible in Plate 11. It is hard to determine any 

features. Including the reattachment angle, beyond this point. 

Plate 12 shows the structure of the Jet from an 8 mm slot at a 

stagnation pressure ratio just above breakaway. The structure is similar 

to that of the 4 mm slot with lines showing the jet edge and the oblique 

nozzle shock clearly visible. The separation point denoted by the oblique 

shock and the separation line can be seen extending through a large angle 

and has a similar shape to that of the 4 mm slot shadowgraph. Plate 13 

shows the structure of the jet from a 2 mm slot at a stagnation pressure 

ratio just above breakaway. The rapid changes In this flow obscure some of 

the detail, but the structure Is again similar to the previous slots. The 

outer edge of the jet can be seen further downstream extending beyond the 

first shock cel l . The oblique shock from the nozzle Is obscured, but a 

line possibly resulting from a diffraction of this shock can be seen just 

downstream of the nozzle. The oblique shock at the point of separation Is 
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clearly visible and the shape of the separation line is similar to the 
larger slot widths. However the structure cannot be seen after about 60 o 
round the surface and thus the reattachment point is not known from this 
photograph. 

7.2 CONTINUOUS SCHLIEREIM 

7.2.1 Experimental Method 

The optical system was converted to a Schiieren system as described 

in Section 5.3.2. The majority of the continuous Schiieren photographs 

were taken using the conventional light bulb source. The helical filament 

was focused onto the rectangular slit and the slit was then placed at the 

focus of mirror Ml (Figure 5.4), it could be placed such that the slit was 

either horizontal or vertical to the optical bench. The knife edge was 

carefully placed at the focus of mirror M2 and placed to cut off 

approximately half the light. The position of lens L3 and the length of 

the bellows extension were altered until the required image magnification 

was achieved at the photographic plate. To ensure the working section was 

focused onto the photographic plate the knife edge was removed and the 

mechanica l rig set at a given stagnation pressure ratio. The resultant 

shadowgraph at the photographic plate was minimised by fine movement of 

lens L3. Lens L3 was then locked onto the optical bench and the knife edge 

replaced for the Schi ieren tests, 

A ser ies of Sehiieren photographs were taken over a range of 

stagnation pressure ratios at three slot widths, 2 mm, 4 mm and 8 mm. The 

photographs were taken on a 125 ASA film at a shutter speed of l/60th 

second . When the spark source was used, the low power spark of 0.125 / i J 

and the maximum spark rate of 100 Hz were selected. A shutter speed of 1/2 

second then gave the best results. At each stagnation pressure ratio four 



126 -

photographs were taken; two with the knife edge vertical and two with the 

knife edge horizontal to the optical bench. The two photographs taken with 

the knife edge vertical were such that the knife edge cut off firstly from 

one side of the image of the slit and secondly from the other. A similar 

procedure was adopted for the horizontal cut off. 

7.2.2 Results 

Plates 14 to 19 show the jet from a 4 mm slot at five different 

stagnation pressure ratios, the last one showing the jet just after 

breakaway. Each plate consists of two photographs, photograph A being 

taken with a horizontal knife edge and thus showing vertical density 

gradients, and photograph B being taken with a vertical knife edge and thus 

showing horizontal density gradients. Each photograph has a pair, the same 

photograph taken with the knife edge cutting off the other side of the 

image of the slit. This has the effect of inverting the light intensity 

changes (i.e. white becomes black and visa versa). This Is illustrated by 

Plates 15 and 16. and can be used firstly to help clarify certain features 

of a photograph and secondly to eliminate any shadowgraph effects. The 

features of the jets issuing from the 2 mm and 8 mm slots are analogous to 

those of the 4 mm slot and the photographs are not presented here. 

Plate 14a shows the jet from a 4 mm slot at a stagnation pressure 

ratio of 0.370. The photograph shows vertical density gradients, a black 

region denoting an increase in density from top to bottom of , the 

photograph, a white region denoting a decrease in density. Plate 14b shows 

the same jet taken with a vertical knife edge, a white region denoting a 

decrease in density f rom left to right of the photograph, a black region 

denoting an increase. The region upstream of the nozzle exit In Plate 14b 
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is white, stiowlng the flow is accelerating towards the nozzle exit. 
However Plate 14a shows the conditions at the nozzle exit are not uniform, 
the black region near the nozzle lip denoting that the density initially 
increases towards the Coanda surface. The region on the Coanda surface at 
the exit of the nozzle is white, denoting a decrease in density near the 
Coanda. Thus the density must reach a maximum at approximately one third 
of the slot width from the Coanda surface. 

The initial shear layer of the jet is clearly visible in Plate 14a, a 

black region showing the increase in density from the quiescent air to the 

core of the jet. (As the stagnation temperature of the jet is near 

atmospheric temperature, the static temperature Is lower than atmospheric 

temperature which results in an Increase in the density.) This layer 

thickens as the jet flows round the Coanda. The white region between the 

shear layer and the Coanda shows the density decreases towards the surface. 

Two dark lines can be seen in this white region, the first one originating 

at 15" and the second, thicker one, at 27° round the Coanda. These show 

the density increases across them and they are thus oblique shock waves. 

The second of these two shocks has a complicated reflection from the free 

surface, part of which consists of a second shock that is just visible at 

its intersection with the Coanda at 35". 

The continuing expansion of the flow after it has passed through the 

slot Is visible in Plate 14b. There are two faint black lines near the 

nozzle Hp, showing the density increases. These are shocks resulting from 

a slight overexpansion of the flow at the nozzle lip. The jet starts to 

darken about 10° round the Coanda and is dark by 1 5 ° , indicating a gradual 

change from the expansion at the nozzle to compression, a result of the 

reflected nozzle expansion waves from the free surface. A white band. 
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starting at the outer edge of the jet. can be seen near the end of this 
compression. The start of this expansion coincides with the arrival of the 
first oblique shock from the surface at the jet edge. The shock itself is 
obscured in the compression of the jet. The second of the oblique shocks 
from the surface can be seen crossing tlie expansion region resulting from 
the reflection of the first from the free surface. 

As the jet flows further round the surface Plate 14a shows density 

changes along the jet axis and alternating regions of expansion and 

compression can be seen. Plate 14b shows density changes across the jet 

axis at large angles round the Coanda, a light band just visible at the 

outer edge of the jet indicating an increase of density into the jet. A 

dark band is visible at the Coanda surface showing a decrease in density 

from the centre of the jet to the Coanda surface. 

Plate 15 shows the pictures obtained from horizontal and vertical 

knife edge of the jet at a stagnation pressure ratio of 0.323. The 

features are similar to those of the previous Plate discussed above. The 

non-uniformity of the flow at the nozzle exit is clearly visible in Plate 

15a, and the jet can be seen to expand to a larger radius than the previous 

stagnation pressure ratio. The two oblique shocks, visible in Plate 15a, 

emanate from further round the surface at 17° and 3 5 ° . The reflection of 

the latter shock before It reaches the jet edge can clearly be seen. At 

the higher stagnation pressure ratio this was only just visible because the 

shock was almost perpendicular to the knife edge, the density change thus 

becoming undetectable. A further feature of Plate 15a is the dark line 

almost tangent to the surface between the two oblique shocks emanating from 

the surface. This line designates the edge of a separated zone and also 

appears as a black line when the knife edge is placed such as to cut off 
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the other side of the image of the light source (Plate 16a). This line is 
a shadowgraph effect denoting a rapid change of the second derivative of 
the density. A similar shadowgraph effect is visible at the jet edge near 
the nozzle of Plate 15b. The dark line that appears for about 20° also 
appears dark when the image of the light source is cut off from the 
opposite side, Plate 16b. The features of Plate 15b are similar to those 
at the higher stagnation pressure ratio with the addition of a light line 
at the surface of the Coanda during the first compression. This shows the 
separated region. 

Plate 17 shows a further decrease in the stagnation pressure ratio to 

0.267. Plate 17a shows a further increase in the maximum thickness of the 

jet after the nozzle exit and the non-uniform flow at the nozzle exit. The 

oblique shock emanating from the nozzle lip reaches the surface at the 

increased angle of 14° (Plate 17b). The dark region at the nozzle lip in 

this Plate also appears as a dark region when the knife edge is reversed 

and is a shadowgraph effect not a region of compression. The first oblique 

shock leaves the surface at about 1 7 ° , an angle very similar to the 

previous stagnation pressure ratio. Its reflection from the free surface 

can clearly be seen in Plate 17b as the white line representing an 

expansion along the jet. The shadowgraph showing the separated region is 

clearly visible in Plate 17a, the separation region being larger than the 

previous stagnation pressure ratio. The region within the separation zone 

is of the same light intensity as the quiescent air outside the jet. 

indicating that no density changes take place within the region. The 

second of the two oblique shocks seen in the previous two plates no longer 

exists. However the first shock is reflected at the Jet edge as an 

expansion which is in turn reflected from the edge of the separation zone 
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as a shock. At this intersection the flow at the edge of the separation is 
turned away from the surface. This shock in turn is again reflected from 
the jet edge as a further expansion region. The jet can be seen to 
reattach itself to the surface in Plate 17b at about 70° round the surface. 

Plate 18 shows the jet at a stagnation pressure ratio of 0.241, a 

ratio just above breakaway. The features in the jet are similar to the 

previous Plate. The dark region at the nozzle lip in Plate 18b is again a 

shadowgraph effect. The point of separation is at a similar angle to the 

previous stagnation pressure ratio, although the jet moves further away 

from the surface before it is turned back. Plate 18b clearly shows that 

the flow is again turned away from the surface at about 55° round the 

Coanda, the point at which the region of expansion arrives at the edge of 

the separation. The point at which the jet fully reattaches to the surface 

Is hard to determine, but is about 80° round the Coanda. 

Plate 19 shows the jet at the breakaway stagnation pressure ratio. 

The jet leaves the Coanda surface at approximately 10° and continues as a 

free jet. Plate 19b shows the jet has become a classical free jet by the 

end of the first shock cell, with alternating regions of expansion and 

compression. Within the first shock cell the compression starts earlier at 

the Coanda, initiated by the shock wave turning the flow away from the 

surface. This wave is clearly visible in Plate 19a. the jet pattern again 

resembling that of a classical free jet after the first shock cell. 

7.3 SPARK SCHLIEREN 

7.3.1 Experimental Method 

The optical system was converted to a Schlieren system as described 

in Section 5.3.2. The spark Schlieren source was set to a rapid low 
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intensity flash for the purposes of setting up the system. The required 
image at the camera was obtained and the image focused as in Section 7.2.1. 

A series of spark Schlleren photographs were taken of the 2 mm, 4 mm 

and 8 mm slot widths. Photographs were taken with the knife edge 

horizontal and vertical. The spark source was set to give a flash rate of 

2 Hz and the shutter speed set to 1/2 a second. The camera was manually 

triggered, the ratio of the shutter speed to the source spark rate ensuring 

a single spark was received by the f i lm. A combination of the medium-range 

spark of 1.25 jiiJ, whose duration was 4 seconds, with a film speed of 125 

ASA produced the best results. A range of stagnation pressure ratios down 

to separation were photographed at each slot width. In addition some 

photographs were taken of the separated jet as the stagnation pressure 

ratio was increased to the reattachment ratio. 

7.3.2 Results 

Plates 20 and 21 show a jet from a 4 mm slot at two different 

stagnation pressure ratios before breakaway. The main regions of expansion 

and compression are the same as those found in the continuous Schlieren 

photographs and for the presentation of these the reader is referred to 

Section 7.2.2. The growth of the turbulent shear layer is clearly visible 

in both plates. The initial expansion region at the nozzle exit is almost 

unaffected by the shear layer. However the shear layer starts encroaching 

into the potential core such that up to a third of the core has been lost 

by the angle at which the shock from the leading edge of the separation 

region reaches the outer edge of the jet. After this angle the potential 

core diminishes very rapidly and at a stagnation pressure ratio of 0.244 

(Plate 21), it has almost disappeared by the angle that the expansion. 
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resulting from the reflection of the separation shock from the outer edge, 

reaches the Inner surface. 

At a stagnation pressure ratio near breakaway of a jet from a 2 mm 

slot, the potential core is similar to the 4 mm slot. The angle at which 

the separation shock reaches the surface is closer to the nozzle, but by 

this angle approximately one-third of the potential core has disappeared. 

The encroachment of the shear layer into the core of a jet from an 8 mm 

slot is very small, compared to the jet width, at the angle where the 

separation shock reaches the free surface. However the core quickly 

disappears after this angle, similar to the jets from 2 mm and 4 mm slots. 

Plate 22 shows a Jet from a 4 mm slot at the breakaway stagnation 

pressure ratio. The encroachment of the shear layer is minimal during the 

first shock cell, but then the potential core rapidly diminishes, the whole 

Jet being turbulent by the end of the third shock cell. As the stagnation 

pressure ratio is increased from the breakaway ratio the Jet becomes 

unstable before reattaching. This reattachment was usually sudden, but 

occasionally at the 4 mm slot a bistable Jet occurred before reattachment. 

This jet could last for up to about five seconds before full reattachment 

resulted with no further increase in the stagnation pressure ratio. A Jet 

of this type is shown in Plate 23. It is possible to see two distinct 

jets, the split occurring after the initial nozzle expansion Is over. The 

turbulence created extends over a wide area after the Jet has departed from 

the Coanda. Buffeting of the jet could be felt on a hand placed in the 

Jet, the jet appearing to flick between the two positions indicated by the 

photographs. However this flicking, was at a frequency of the order of 1 

Hz. but the photographs show that both jets are visible within 4 n seconds. 

The latter suggests that both jets occur simultaneously, although the 
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photographs give no indication of the position of the jets across the slot 
breadth. No indication of this lateral position of the jets could be felt 
by hand, although it was Impossible to get close to the nozzle due to the 
force of the jet. One speculative explanation of this effect Is that the 
flow at the side walls tries to reattach before the central portion of the 
jet, the air at the surface which is entrained into the jet being more 
difficult to replace at the walls. This gives the appearance of two jets, 
the flicking of the jet felt by a hand placed in the jet being gross 
turbulence. 

7.4 INTERFEROMETRY 

7.4.1 Experimental Method 

The optical apparatus was set up for the interferometric technique as 

described in Section 5.3.1. The focusing and size of the final image at 

the camera were achieved as described in Section 7.2.1 and the number and 

direction of the fringes adjusted by movement of lens L2 and rotation of 

mirror M2 (Figure 5.4). Initial observations showed that the fringes in 

the final picture at the plane of the camera became blurred even at 

stagnation pressure ratios near unity. However fringes could occasionally 

be distinguished outside the jet where the air was still. As the 

stagnation pressure ratio was reduced, the periods during which these 

fringes could be distinguished became infrequent until they were never 

visible at stagnation pressure ratios below 0.55. Initial photographs, 

taken at a shutter speed of 1/lOOOth second, showed clear fringes 

throughout the flow field at stagnation pressure ratios near unity. As the 

stagnation pressure ratio was reduced, fringes in sections of the jet 

became blurred. The clearest fringes were obtained when the photograph was 

taken while the fringes in the still air could be distinguished. Clear 
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interferograms could be obtained over a range of stagnation pressure ratios 
down to 0.55. 

Interferograms were taken at three slot widths, 2 mm, 4 mm and 8 mm. 

over a range of stagnation pressure ratios down to 0.55. The optical 

apparatus was set and a zero flow photograph was taken. The test 

stagnation pressure ratio was then set and a series of photographs taken 

when the fringes in the still air became visible. The stagnation 

temperature and both atmospheric pressure and temperature were recorded. 

The rig was then shut down and the process repeated at a different 

stagnation pressure ratio. A completed film was then developed and the 

negatives inspected to ensure a clear interferogram had been obtained at 

each stagnation pressure ratio tested. Where no such frame existed, the 

test was repeated until a clear interferogram was obtained. 

The width of the fringes set up before a test was a compromise 

between two conflicting criteria. An increase in the number of fringes 

results in an increase in the number of points in the jet where the fringe 

shift can be measured and the density derived. However as the number of 

fringes is Increased, the physical distance that a fringe moves for a given 

shift reduces. This results In a decrease in the accuracy with which the 

shifts can be measured. A fringe spacing of approximately 12 fringes per 

centimetre allowed the fringe shifts to be measured to 1/10th fringe width 

(Section 7.4.3). 

7.4.2 Photographic Results 

Plates 24 and 25 show interferometric pictures of two Jets from a 4 

mm slot. Plate 24 was taken at a stagnation pressure ratio fo 0.654 and 

Plate 25 at 0.579. The photographs obtained from the 2 mm and 8 mm slots 
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are similar and are not presented here. Undisturbed fringes can be seen at 
the top of each photograph to the right of the nozzle, where the density is 
atmospheric. These fringes are shifted near the Coanda and upstream of the 
nozzle exit by densities that differ from atmospheric density. A region of 
constant fringe shift corresponds to a constant density (Section 4.1) and a 
shift to the right corresponds to a density greater than that of 
atmospheric. 

The fringes upstream of the nozzle exit have been shifted to the 

right from their no flow position, showing the higher densities caused by 

the large static pressures. As the flow accelerates towards the slot exit, 

where the static pressure is atmospheric, the fringes become closer to each 

other (Plate 24). Thus each successive fringe has been shifted by a 

decreasing distance from its no-flow position, indicating the density 

decreases towards the slot exit. In addition, the deflection near the 

curved nozzle is less than that near the Coanda indicating a decrease in 

density corresponding to the lower pressure balancing the centripetal 

forces. This variation of density across the exit plane of the slot was 

also observed in the Schlieren photographs (Section 7.2). 

The fringes just downstream of the nozzle exit of Plate 24 are 

deflected by approximately 3 fringes near the outer edge of the Jet. This 

increase in density from atmospheric is caused by the lower static 

temperature of the jet. the stagnation temperature being near atmospheric 

temperature. The shift of the fringe then decreases towards the Coanda. 

indicating the decrease in density caused by the lower pressures balancing 

the centripetal forces. Further downstream the fringes are initially 

shifted slightly to the left as they enter the Jet. This decrease in 

density is caused by the acceleration of atmospheric air as It Is entrained 
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into the jet. The fringe is then moved to the right by the colder air of 
the jet. The maximum fringe shift decreases and the distance required to 
reach this maximum increases further downstream. This is an indication of 
the growth of the outer shear layer. The extent of the potential core of 
the Jet decreases downstream, shown by the position of the maximum fringe 
shift moving towards the Coanda. 

The features discussed above are also visible at the lower stagnation 

pressure ratio of 0.579 (Plate 25). The maximum fringe shifts obtained 

downstream of the slot exit are greater, caused by the greater expansion. 

7.4.3 Processing of Photographs 

The negatives were enlarged and printed onto 10° by 8° photographic 

paper such that the fringe width was approximately 5 mm. These photographs 

were digitised by use of an ICL PERQ computer In conjunction with an ADiViEL 

Zodiac digitising tablet. The 6' by 4' tablet has a rectangular mesh of 

wires such that the position of the cursor from the PERQ computer is 

recorded in x and y coordinates with a resolution of 0.1 mm. A screen 

displayed an image of the points as they were recorded, thus allowing 

spurious points to be immediately recognised. These could then be edited 

out at a later date. 

The fringes on a photograph were numbered, the first full black 

fringe downstream of the nozzle being arbitrarily numbered as 21. The 

fringe number was progressively increased downstream of this fringe and 

decreased upstream in the nozzle. The photographs were then placed on the 

digitising tablet and positioned such that the top parts of the first few 

fringes downstream of the nozzle lay parallel to the y axis. These first 

few fringes rather than the nozzle edge were chosen to align the photograph 

because the nozzle edge was often obscured by a region of destructive 
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interference and because it simplified the analysis of the shifts, an 
undefiected fringe having a constant value of x on digitisation. 

The fringes were individually recorded starting upstream of the 

nozzle, both the position of the change from white to dark and vise versa 

being recorded. Five values of the position of the fringe side at the top 

of the photograph (Plate 24) were recorded and the cursor then run down the 

fringe side to the Coanda. several points being individually recorded 

during this process. The average of the five initial values, which are in 

the undisturbed part of the photograph were used in the processing program 

to locate the zero shift position of a fringe side. After a fringe side 

had been digitised, the cursor was placed on the digitising tablet such as 

to record a large value of x. This value was used by the processing 

program to recognise the end of a fringe side. After the fringes had been 

digitised, the Coanda surface and the nozzle positions were digitised and 

stored in a separate file, although the nozzle edge was hard to define when 

it coincided with a region of destructive interference. 

Several fringe sides were digitised twice to enable the accuracy of 

the digitisation to be evaluated. These studies showed the eye could place 

the fringe side to within 0.3 mm. Thus the digitisation Is accurate to 

better than 1/10th fringe. The digitised points were then recorded on an 

8" floppy disk and transfered to the IBiVi 4341/1 mainframe computer for the 

analysis. 

A Fortran IV program was written to read the data of the position of 

the fringes and to output the shift of the fringe at set y values from a 

maximum value down to the Coanda. The zero position of the fringe sides 

were averaged from the five initial data points of a fringe side. The zero 

position of the fringes leading to the nozzle edge were not known because 
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the nozzle itself obscured their position. These zero positions were 
estimated from the fringe spacing just downstream of the nozzle, with the 
assumption that the fringe spacing was constant in this region. Analysis 
of zero flow interferograms showed that this assumption was correct. The 
data was digitised such that a fringe that undergoes no shift, has a 
constant value of x for all y. The program linearly interpolated the 
value of x of a fringe side at a preset value of y from the data points 
either side of the y value preset. This x value was compared with an array 
containing the zero shift values of the fringes and a shift calculated. 

The centre of the Coanda circle, and its radius in digitised units, 

had to be determined so that the fringe shift at set angles round the 

Coanda could be determined. This was achieved by an Interactive program, 

the radius first being estimated from the photograph. An estimate was made 

of the centre and the distance from this estimate to the known data points 

of the Coanda compared with the estimated radius. The estimate of the 

radius and the coordinates of the centre of the Coanda were renewed and the 

process repeated. It was found to be possible to select a radius and 

centre of the circle such that all the data points lay within 0.3% of a 

radius from the arc produced by the estimated centre and radius of the 

Coanda. The coordinates of lines leaving the Coanda at set angles round 

the Coanda and perpendicular to the tangent at that point were then 

calculated. The fringie shifts at set points along these lines were then 

interpolated from those calculated earlier. 

7.4.4 Results of Density Distributions 

Figures 7.1 to 7.4 show density distributions through the jet along 

normals of selected tangents to the Coanda. The fringe shifts 
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corresponding to the densities are also shown, the latter being calculated 
from the fringe shifts using equations 4.1 and 4.8. Figures 7.1 and 7.2 
show distributions through a Jet from a 4 mm slot at stagnation pressure 
ratios of 0.654 and 0.579 respectively and Figures 7.3 and 7.4 show 
distributions through a jet f rom an 8 mm and 2 mm slot respectively, the 
stagnation pressure ratio being nominally 0.65. 

The density at the exit of a 4 mm slot at a stagnation pressure ratio 

of 0.654 is nearly uniform (Figure 7.1). It is greater than atmospheric 

density because the jet is at a lower temperature, the stagnation 

temperature being nearly equal to atmospheric temperature. As the jet 

flows round the Coanda, two separate regions can be distinguished. Firstly 

there exists an inner potential region where the density falls as the 

surface Is approached and secondly an outer region where the density falls 

to atmospheric density. This latter region corresponds to the free shear 

layer which not only grows away from the Coanda. but also into the 

potential region. At the outer edge there is a region where the density is 

lower than atmospheric, caused by the acceleration of ambient air into the 

Jet. This is discussed in Section 8.6. 

As the stagnation pressure ratio is reduced (Figure 7.2) the density 

at the slot exit is increased and the profile is distorted. This 

distortion is due to the centripetal forces resulting from the acceleration 

round the curvature on the nozzle. The density profiles further downstream 

are similar to those of the higher stagnation pressure ratio, although the 

maximum densities are increased. 

The effect of altering the slot width is shown in Figures 7.3 and 

7.4. At the larger slot width the potential region is less affected by the 

outer shear layer at a set angle round the Coanda. However, at the 2 mm 
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slot, the potential region has virtually disappeared by an angle of 30" 
round the Coanda. These results are discussed further and compared with 
other measurements in Section 8.6. 

The errors involved in the use of the interferometric technique can 

be broadly placed into two classifications. The first classification is 

that of measurement. These Include errors in the measurement of stagnation 

and atmospheric conditions, both reading errors and systematic errors, and 

errors in the measurement of the fringe shifts. The temperatures were 

measured to 0.1° and so the error in their measurement is insignificant, as 

is the error in the measurement of atmospheric pressure. The stagnation 

pressure Is accurate to 0.01 bar, thus giving an uncertainty in the 

stagnation density of 1%. The error in the measurement of the fringe shift 

is 0.1 of a fringe (Section 7.4.3). 

The second class of error in interferometry is the uncertainty in 

hat has been measured. These types of errors, discussed by Tanner (1957) 

and by Hammond et al (1977), include uncertainty as to the two-

dimensionality of the flow, temperature changes of the windows, refraction 

of the light beam and those caused by external convection currents. The 

latter were eliminated by enclosing the light paths with wooden covers, 

(Section 5.4) which ensured the beams were undisturbed outside the working 

section. There are no methods available to correct for refraction errors 

(Hammond et al (1977)), although as the density gradients measured were 

small, these errors are probably insignificant. The minimum temperatures 

reached in the jet were of the order of 220 K which, assuming a recovery 

factor of 0.9 through the side wall boundary layer, indicates the 

temperature of the air neighbouring the window was between 50 and 10° below 

atmospheric temperature. Tanner (1957) shows a change of temperature of 1° 

w 
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will produce a fringe shift of 0.2 of a fringe through a sheet of glass 1° 
thick. An attempt was made to reduce this error by taking the flow 
photograph as soon as possible after the Jet was established. However this 
was not always possible due to the vibrating of the optical rig. This 
error, if present, should increase as the stagnation pressure ratio is 
reduced and as the slot width is increased, both resulting in a lowering of 
the minimum temperature in the Jet. Finally, the secondary flows at the 
side walls will result in an alteration of the optical path length. These 
secondary flows will have a greater effect as the slot width is increased 
as they will increase in size. 
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CHAPTER 8 
DISCUSSION 

8.1 QUASI TWO-DIMENSIONAL FLOW 

Guitton and Newman (1977) identified two main c a u s e s for the 

departure from two-dimensionality of a jet flowing over a convex surface in 

their study of an incompressible self-preserving wall jet. The first was 

related to the conditions in the plenum chamber and In particular at the 

slot ilp and the second due to the secondary flows in the boundary layers 

on the side walls downstream of the slot. 

On a convex downstream surface any irregularities in the slot width 

are amplified further downstream. A thick region at a certain lateral 

position will grow relative to a thin region because the surface static 

pressure under the former is lower, which results in lateral flow from the 

thin region to the thick one. Guitton and Newman designed their rig with 

these difficulties in mind, the rig consisting of a straight wall, free 

from obstructions, leading to a carefully ground slot lip which was shaped 

like a knife edge. However lateral traverses across the slot revealed 

variations in the total pressure of up to 20% at a position fifty slot 

widths downstream of the slot. These variations were unaltered by changing 

conditions in the plenum chamber, but a dramatic improvement was observed 

when the knife edge was honed flat such that the slot lip became right-

angled. The manufacture of this slot was much more easily controlled than 

that of the knife edge slot lip. The slot lip of the rig of the present 

work is also right-angled and no variations of the total head were observed 

away from the side walls at a position of 4 0 ° round the Coanda (Figure 

6.4), a position that was about ten slot widths downstream of the 2 mm 

slot. 
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The second c a u s e of the departure from two-dimensional flow is that 
of secondary flows at the side walls. Launder and Rodi (1983) give two 
methods of minimising the effects of these secondary flows. The first is 
to use a small slot height to breadth ratio and the second is to bleed off 
the side wall boundary layers. Guitton and Newman designed their side 
walls as a ser ies of small plates, arranged in a ladder formation such that 
each succeed ing plate was placed further into the flow and thus cutting off 
the boundary layer formed Immediately upstream of it. This solution, and 
that of sucking off the boundary layers, were not possible on the present 
rig because the side walls consisted of the high quality optical flats 
necessary for the interferometry. 

The directions of the secondary flows on the side wall (Plate 7) and 

at its corner with the Coanda (Plate 6) were also observed by Guitton and 

Newman. Using smol<e they observed that the secondary flow near the curved 

surface was directed towards the side wall, where it then split into two 

directions. The first was towards the Goanda surface and the second was 

away from the surface, contributing to a rapid expansion of the boundary 

layer flow and creating a U-shaped wall jet further downstream. This 

outflow was not explained by Guitton and Newman. 

The secondary flow towards the Coanda can be predicted by the radial 

momentum equation. The pressure gradient In the mainstream Is preserved 

through the side wail boundary layer according to Prandtl's boundary layer 

hypothesis. As the velocity drops at the side wall the radius of curvature 

of the flow d e c r e a s e s and the flow moves towards the Coanda. At the Coanda 

the pressure r ises and the flow is forced away from the side wall along the 

Coanda. The effect of this vortex on the breakaway process Is thought to 

be negligible because the largest encroachment of the vortex by the 
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second band of oil (Section 6.2) is approximately 2 mm (or 3% of the slot 
breadth) at a stagnation pressure ratio just above breakaway of a Jet from 
an 8 mm slot. The vortex grows rapidly after the second band of oil and in 
Plate 4 has encroached approximately 8 mm into the jet by the transition 
from the convex curvature to the downstream flat. The static pressure 
tappings are 25 mm from the side walls and are thus positioned well away 
from the vor t icas . However it is possible that the vortic es caused a 
blockage of the flow. This would cause an acceleration of the flow over 
the pressure tappings, resulting in a reduction of the static pressures at 
the tappings from those that would be recorded by truely two-dimensional 
flow. The surface static pressure measurements, d iscussed in Section 8.3 
show no evidence of a drop in pressure as the jet flows round the Coanda 
and thus it can be assumed that any blockage of the flow by the side wall 
vortic e s is small . 

8.2 DISCHARGE C O E F F I C I E N T 

The results obtained from the present Investigation are plotted in 

Figure 8.1, together with various results cited in the literature. The 

geometry of the slot Is altered in a complex manner as the slot width is 

increased: firstly the area ratio of the settling tube to the slot width is 

d e c r e a s e d , secondly the ratio of the radius of curvature of the nozzle to 

the slot width d e c r e a s e s , thirdly the ratio of the streamwise length of the 

slot to its width d e c r e a s e s , fourthly the aspect ratio (slot breadth to 

slot width ratio) d e c r e a s e s , and fifthly the ratio of the slot width to 

downstream radius increases . All of these changes In the geometry can be 

expected to affect the behaviour of the coefficient of discharge as the 

slot width and stagnation pressure ratio are altered. 
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Norwood (1962) shows the theoretical effect of increasing the slot 
width of the sharp-edged nozzle shown in Figure 2.5a, is to increase the 
discharge coefficient at a set stagnation pressure ratio (Figure 8.1). 
These results also show an increase in the discharge coefficient of a set 
slot width as the stagnation pressure ratio is reduced. The measured 
values of the present tests follow the same trends as those predicted by 
Norwood, although the actual values of the discharge coefficients are 
higher. These higher values can be attributed to the effect of the 
curvature of the nozzle. (However results from the 2 mm slot at stagnation 
pressure ratios below 0.3 are dubious which is probably due to an error in 
the measurement of the leakage flow rate (Section 6.3.2)). The theoretical 
results of Aider (1979) from nozzles of differing convergence angle (Figure 
2.5c) are also shown in Figure 8.1. The curve for the angle of convergence 
of 150 is an approximation from only three points given by Alder. These 
results show an increase in the coefficient of discharge at a set 
stagnation pressure ratio as the angle of convergence Is reduced. 

The present measured values suggest that the effect of the downstream 

radius and of changes in the aspect ratio are negligible. The results of 

Norwood show that the intersection of the sonic line at choking with a flat 

downstream surface is very c lose to the slot (Section 2.7). Thus it might 

be expected that the effects of the curvature of the Coanda on the 

discharge coefficient would be small because this curvature does not begin 

until the flow has passed through the slot. Similarly, the minimum aspect 

ratio tested was 7.5 and so the effect of the changes In this ratio are 

small . 
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8.3 S U R F A C E STATIC P R E S S U R E S 

The results of the surface static pressure measurements from an 

incompressible jet are shown in Figure 6.13 to 6.18 and are presented in 

Section 6.5.2. At each slot width the non-dimensional pressure coefficient 

distributions over the range of stagnation pressure ratios tested collapse 

onto a single curve. This is predicted by equation 2.13 and gives 

confidence that the pressure tappings were all accurately recording the 

static pressures . The results are replotted in the form suggested by 

Newman (1961) in Figure 8.2, each line representing the mean pressure 

coefficient measured at a set slot width. The experimental line obtained 

by Newman for fully turbulent jets at Reynolds numbers greater than 4 x 10* 

is also shown. Newman suggests the jet can be considered fully turbulent 

after a distance of 20 slot widths downstream of the nozzle. 

Figure 8.2 shows that the pressure coefficient r ises with an increase 

in slot width. The result obtained from the 1.0 and 1.5 mm slots lie below 

the experimental curve of Newman. These jets can be considered fully 

turbulent by 4 0 ° and 60" respectively, but their Reynolds numbers lie below 

the critical number of 4 x 10 * (Section 2.4), The maximum Reynolds number 

tested at the 1 mm slot was 2.5 x 10* and at the 1.5 mm slot was 3.0 x 10* . 

Despite this the results from the larger slot width are close to those of 

Newman after 60 o, where the jet is fully turbulent, and before the 

adjustment for the downstream flat. 

The jet from a 2 mm slot becomes fully turbulent at about SO" , and 

thus only after the jet has started adjusting for the downstream fiat. The 

largest Reynolds number tested at this slot was 3.5 x 10* and although this 

Is still below the critical number, the results are close to those obtained 

by Newman. However, as the slot width is further increased, there is a 
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marked Increase in the pressure coefficient. Although these jets have 
Reynolds numbers above the critical number, they do not become fully 
turbulent until a position downstream of the start of the flat. This 
Increase in the coefficient with slot width Is predicted by equation 2.13 
which is derived from potential flow theory. In each c a s e the theoretical 

a. 

pressure coefficient is higher than the m^sured value as would be expected. 

The results of the surface static pressure measurements of a 

compressible jet are shown in Figures 6.19 to 6.21 and are presented in 

Section 6.5.3. As the stagnation pressure ratio is reduced a shock cell 

structure can be seen growing near the slot. This structure, also observed 

by Roderick (1961), is damped out further downstream and the coefficient 

becomes constant. This constant tends to increase in jets from a 2 mm and 

4 mm slot as the stagnation pressure ratio Is reduced, the effect being 

obscured in the jet from the 8 mm slot because the shock cell structure is 

maintained until the downstream flat at a stagnation pressure ratio of 

0.536, This increase of the pressure coefficient plotted as the stagnation 

pressure ratio is reduced Is expected because it does not include the 

effect of compressibility. The effects of compressibility Increase as the 

stagnation pressure ratio Is reduced, the increase in the pressure 

coefficient being predicted by equation 2.14. The results obtained at 

stagnation pressure ratios of approximately 0.61 and 0.52 are plotted in 

Figures 8.3 and 8.4 respectively to show the effect of increasing the slot 

width. The theoretical coefficients predicted by equation 2.14 are also 

shown together with the results obtained by Roderick (1961), at the largest 

slot width he tested. The slot width to downstream radius ratio of this 

slot Is only a nominal value because no account has been taken of any 

warping of the nozzle during its manufacture (Section 2.4). This warping 
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tended to increase the slot width at its centre which was also the plane of 

the static pressure tappings on the downstream surface. Roderick gives no 

data of the warping of this slot plotted, although data is given at the 

smallest slot he tested. If it is assumed that the largest slot warped by 

a similar amount, the actual slot width to downstream radius ratio of his 

results plotted is about 0.072. 

The pressure coefficients plotted in Figures 8.3 and 8.4 show a 

decrease as the slot width is increased, in each c a s e the coefficient being 

greater than that predicted by equation 2.14. The agreement between the 

results obtained at the 2 mm slot and those obtained by Roderick (1961) 

agree within the limitations d iscussed above. 

The surface static pressures of Jets from a nominally choked nozzle 

are shown in Figures 6.22 to 6.26 and are presented in Section 6.5.4. At 

each slot width a shock cell structure can be seen , the peak at the end of 

the first cell Initially increasing as the stagnation pressure ratio is 

reduced. As the stagnation pressure ratio is further reduced a region of 

constant pressure grows after the initial expansion from the nozzle has 

finished and the peak pressure reached after the pressure recovery at the 

end of the first shock cell is reduced and moves further downstream. This 

region of constant pressure and the following pressure rise correspond to a 

region of separation from and to a region of reverse flow on the Coanda 

surface respectively. The growth of this separation bubble as the 

stagnation pressure ratio is reduced is d iscussed and compared with 

photographs and flow visualization experiments in Section 8.4.1. The 

measured surface static pressures are also compared with those predicted by 

the method of character ist ics in Section 8.5. 
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The shock cell pattern and its growth as the stagnation pressure 
ratio is reduced is similar at all the slot widths tested and seems to be 
almost unaltered by the introduction of the flat before the curvature on 
the Coanda (nozzle B, Figure 5.3). In each c a s e the peak pressure after 
the rise at the end of the first shock cell has reached a position of 80" 
round the Coanda just before the breakaway stagnation pressure ratio is 
reached. Thus this is an indication that breakaway is imminent from this 
particular surface and nozzle configuration. 

8.4 SEPARATION FROM THE COANDA 

8.4.1 Growth of the Separation Bubble 

The existence of a separation bubble at stagnation pressure ratios 

well above that required for breakaway is shown by Schlieren and 

shadowgraph photographs, by the static pressure distributions and by the 

flow visualization experiments. Moreover the latter experiments also 

revealed a region of reverse flow on the surface within the separation 

bubble. The growth of this region as the stagnation pressure ratio is 

reduced is shown In Figures 8.5 to 8.7, showing the 4 mm, 8 mm and 2 mm 

slot widths respectively. The graphs show the initial angle of separation, 

the angle of the upstream edge of the region of reverse flow within the 

bubble and the angle at which the jet reattaches. The graphs show data 

from all the experiments mentioned above. 

The angles measured from the flow visualization are accurate to 1° at 

Coanda angles of less than 40" and to 2 ° at Coanda angles greater than 

this. The angles measured from the static pressure distributions are 

accurate to 3" . The initial angle of separation is taken as the angle at 

which the surface static pressure becomes constant, the upstream edge of 



- 150 -

the region of reverse flow taken as the angle at which the pressure starts 
to rise and the reattachment angle as the angle of the peak of this 
pressure rise. The angles of separation measured from the photographs are 
accurate to 2 ° but the accuracy of the reattachment point, which becomes 
difficult to determine especial ly at stagnation pressure ratios near 
breakaway, is no better than 5°. 

The three graphs all show similar features. The angle of the 

separation, which initially increases as the stagnation pressure ratio is 

reduced, becomes constant as the stagnation pressure ratio is reduced to 

that required for breakaway. At the 8 mm slot width it appears to decrease 

just before breakaway. The angle at which separation occurs at a set 

stagnation pressure ratio inc reases with slot width. For the 2 mm and 4 mm 

slots the angle of the upstream edge of the region of reverse flow within 

the separation zone increases as the stagnation pressure ratio is reduced. 

The rate of Increase becomes more rapid as breakaway is approached. 

However for the 8 mm slot this angle appears to become constant as 

breakaway is approached but the number of data points Is small. An 

increase in the reattachment angle of all the jets tested can be seen as 

the stagnation pressure ratio Is reduced. In all three c a s e s this increase 

becomes more rapid as breakaway Is approached. At a stagnation pressure 

ratio near breakaway the reattachment angle is approximately 80° for both 

the 4 mm and 8 mm slots and 70° for the 2 mm slot, the increase in the 

angle being large for a small change in the stagnation pressure ratio near 

breakaway at this latter slot. 

The results presented In Figures 8.5 to 8.7 show that the 

determination of the above angles are, within the measurement error, 

consistent between the various methods of their measurement. In 
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particular, the region of constant surface static pressure after the 
initial expansion corresponds to the stationary separated region and the 
pressure rise after this constant pressure region corresponds to the region 
of reverse flow detected by the flow visualization. The Figures also show 
that the reattachment curve can be used to estimate the breakaway 
stagnation pressure ratio. It would be expected that a Coanda surface 
which turned the flow through a smaller angle than the present rig would 
breakaway at a higher stagnation pressure ratio, and breakaway of a larger 
turning angle Coanda surface would be at a lower stagnation pressure ratio. 
This trend is confirmed by the experiments of Sadler (1983). 

8.4.2 Breakaway and Reattachment 

The breakaway stagnation pressure ratios of both nozzles tested are 

replotted in Figure 8.8, together with results from previous experiments. 

The results obtained from both nozzles are Identical, indicating that the 

nozzle profile has no effect on the breakaway stagnation pressure ratio. 

Similar conclusions were reached by Gilchrist (1981) and Savin (1982) in 

their experiments on a plane two-dimensional rig. However the latter found 

that the Inclusion of a step between the slot and the Coanda surface 

decreased the breakaway stagnation pressure ratio at a set slot width. 

Figure 8.8 shows that the upstream stagnation pressures at which breakaway 

occurred on the present apparatus are higher than those obtained by 

Gilchrist (1981). There are two possible reasons for this; firstly there 

were Inaccurac ies in the measurement of the slot width in the rig of 

Gilchrist (1981) and secondly the side walls of that rig did not extend 

fully round the downstream circular section. The latter reason leads to 

the possibility that breakaway was triggered by a three-dimensional effect. 
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in particular an interaction between the separation bubble (Section 8.4.1) 
and the downstream atmospheric air. 

Figure 8.8 shows that the present results are very close to those 

obtained by Sadler (1983) on a downstream section that turned the flow by 

900, the present rig turning the jet through 100° . This is expected from 

the observations of the growth of the separation bubble (Figures 8.5 to 

8.7), the angle of the reattachment being near the end of the Coanda just 

before breakaway. The results obtained by British Petroleum (1979) in 

their tests on an axisymmetric flare are also plotted In Figure 8.8. The 

stagnation pressures required for breakaway for this flare at a set slot 

width to downstream radius ratio are higher, the absolute difference 

compared to the plane rigs being almost constant over the entire range of 

slot widths tested. This Increase In the breakaway stagnation pressure is 

expected because the radial outflow on the axisymmetric flare effectively 

thins out the jet. 

The stagnation pressure ratios at which the jet reattached to the 

Coanda surface after breakaway are replotted in Figure 8.9. The results 

obtained from both nozzles are similar with the exception of the scatter at 

small slot widths of nozzle A (Figure 5.3). This indicates that the 

reattachment stagnation pressure is Independent of the nozzle profile, a 

conclusion also reached by Gilchrist (1981). The absolute stagnation 

pressures obtained by the latter are again lower than the present results 

at a set slot width to downstream radius ratio for the reasons outlined 

above. Figure 8.9 shows that the present results are almost Identical to 

those obtained by Sadler (1983), who also concluded that the reattachment 

stagnation pressure ratio Is independent of the turning angle of the 

Coanda. There is no data available on the effect of the Inclusion of a 
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step between the nozzle and the Coanda surface, or on the effect of the 
additional curvature of the axisymmetric flare, on the reattachment 
stagnation pressure ratio. 

8.5 J E T S T R U C T U R E AND PREDICTION 

8.5.1 IViethod of Characterist ics Prediction 

In Chapter 3 a computer program using the method of characteristics 

to solve the potential flow equations is presented, together with results 

from this program. The predicted surface static pressure distributions are 

compared with those measured in Figure 8.10 to 8.15 and the jet structure 

compared with Schl ieren photographs in the overlays on Plates 14 and 17. 

Figure 8.10 shows the predicted and measured static pressure 

distributions of a jet from a 4 mm slot at a stagnation pressure ratio of 

0.407. The agreement is c lose during the initial Prandtl-Meyer expansion, 

a process that is complete by an angle of 7°. The method of 

character ist ics then predicts a greater expansion after this point than the 

measured expansion. The following static pressure rise predicted is of a 

similar rate to the measured one, although the predicted peak is higher. 

The separated region of this jet extends from 15° to 30" (Figure 8.5). 

This separated region reduces the expansion, after the initial Prandtl-

iVieyer expansion, of the real jet. This region grows both into the jet and 

in the streamwise direction as the stagnation pressure ratio is reduced 

(Figure 8.5 and Plates 14 to 18) and its effect on the static pressure 

distribution becomes increasingly pronounced. Figure 8.11 shows the 

predicted and measured distributions from a 4 mm slot at a stagnation 

pressure ratio of 0.311 and as before the agreement is c lose during the 

initial Prandtl-Meyer expansion, which is complete by an angle of 13° . 
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However the real jet then separates from the surface and the following 
expansion predicted does not occur. The predicted positive pressure 
gradient following this is greater than the real jet. 

As the stagnation pressure ratio is further reduced towards breakaway 

(Figures 8.12 and 8.13) similar d iscrepancies between the predicted and 

measured profiles occur. Whilst the angle by which the Prandtl-Meyer 

expansion is complete Increases as the stagnation pressure ratio is 

reduced, the separation point remains at a constant angle. Thus by a 

stagnation pressure ratio of 0.289 the separation point occurs before the 

Prandtl-Meyer expansion is complete. The predicted pressure rise further 

downstream has a steeper gradient than the measured one, although the angle 

at which this starts is similar. 

Figures 8.14 and 8.15 each show two comparisons of the predicted and 

measured static pressure distributions from the 8 mm and 2 mm slots 

respectively. The d iscrepancies between the predicted and measured 

distributions are similar to those of the 4 mm slot. The angle at which 

the jet from an 8 mm slot separates Is always greater than that of the end 

of the Prandtl-Meyer expansion. However at the 2 mm slot the separation 

angle has moved upstream of the end of the Prandtl-Meyer expansion before 

breakaway. The predicted positive pressure gradients further downstream 

are also much greater than those measured. Figure 8.15b shows the effect 

of foldback of the character ist ics at the start of this pressure rise. 

The overlays on Plates 14 and 17 show the predicted jet structure at 

stagnation pressure ratios of 0.370 and 0.267 respectively. The overlays 

show the predicted jet edge and the Prandtl-Meyer expansion waves from the 

nozzle lip together with their subsequent reflections. 
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The free edge of the real jet is difficult to define, the shear layer 
growing as the jet flows downstream. The predicted jet edge at a 
stagnation pressure ratio of 0.370 (Plate 14) lies in the middle of the 
shear layer throughout the first shock cell and thus can be considered to 
predict the outer edge well. In the Schl ieren photograph two shocks 
initiated at the surface appear, the upstream shock coming from the point 
of separation. The second shock is coincident with the shock at the end of 
the first shock cell predicted by the method of characteristics. Thus it 
appears that the shock initiated at the point of separation, and the small 
separated zone, do not have a large effect on the flow at this stagnation 
pressure ratio. Thus despite the fact that the method of characteristics 
predicts a lower minimum static pressure, it predicts the first shock cell 
fairly accurately. 

However, as the stagnation pressure ratio Is reduced the separation 

bubble grows and increasingly affects the flow. The overlay at a 

stagnation pressure ratio of 0.267 (Plate 17) shows the predicted jet edge 

is only accurate In the initial section of the jet. The predicted jet edge 

then gradually moves c loser to the surface than the real jet edge, the 

separation bubble causing the real jet to move away from the surface. The 

shock wave initiated at the upstream edge of the separation zone is 

coincident with the reflection from the surface at the last Prandtl-Meyer 

expansion wave. This shock is subsequently reflected from the free surface 

and the structure of the jet is no longer similar to that predicted by the 

method of character ist ics. Similar results were obtained at the 2 mm and 8 

mm slots. 

Thus the method of characterist ics accurately predicts the first 

shock cell at stagnation pressure ratios where the separation bubble is 
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small . However as the stagnation pressure ratio Is reduced the bubble 
grows and affects the flow such that a potential solution that ignores the 
bubble becomes Inaccurate beyond the Initial Prandtl-Meyer expansion. Thus 
the interaction between the boundary layer and the potential flow is 
strong which Implies a potential solution cannot be used directly to 
provide the boundary conditions for a boundary layer calculation. The two 
solutions must be coupled to provide an accurate solution. 

An attempt was made to calculate the initial boundary layer using the 

method of Bradshaw-Ferr iss-Atwei l for the calculation of thin shear layers 

(Bradshaw and Unsworth (1974)). The Navier-Stokes equations are closed 

using the turbulent kinetic energy equation, three empirical terms being 

defined in this equation. The resultant set of equations is parabolic and 

solved by the method of characterist ics (Section 2.2). The program was 

successful ly run with the test c a s e s supplied and also on some measured 

experimental boundary layers cited in the literature. It was hoped to run 

this program on the present boundary layer, using the static pressure 

profiles predicted by the potential flow, to predict any separation of the 

jet. However ail attempts to run the program failed it now being apparent 

that the boundary layer is laminar up to the point of the separation 

bubble. This method cannot be used in c a s e s of reversed flow and thus 

cannot be used to predict the behaviour of the separation bubble. 

8.5.2 Inverse Method of Characterist ics 

The predictions of the modified computer program discussed in Section 

3.4 are shown in Figures 8.16 to 8.20, each figure consisting of two 

graphs. The top graph shows the predicted jet shape, the Coanda surface 

and the Initial Prandtl-Meyer expansion waves and their reflections. The 

second graph shows the predicted static pressure distribution and both the 
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measured data points and those guessed by the author to ensure a reasonable 
interpolated fit (Section 3.4). 

Figure 8.16 shows a jet from a nominally 4 mm slot at a stagnation 

pressure ratio of 0.337. The predicted Jet separates from the surface at 

an angle of approximately 13" , after the Prandtl-Meyer expansion is over. 

The jet then continues to expand, but not sufficiently to remain fully 

attached, until the reflections from the outer edge of the jet of the 

initial Prandtl-Meyer waves again reach the surface. The arrival of these 

compression waves coincides with the start of the static pressure rise at 

about 230 round the surface. These waves turn the flow further round the 

surface, but insufficiently to reattach the Jet to the Coanda. The last of 

these compression waves, after their reflection from the Inner layer, 

c o a l e s c e into an oblique shock near the outer edge of the jet. Further 

downstream the jet continues to move away from the surface. As the 

absolute peak value of the static pressure at 42° is unknown, several 

predictions of jets were made, each with a different peak value. The 

resultant Jets were very similar to the one shown in Figure 8.16 and are 

not shown. 

Figure 8.17 shows the predicted jet at a stagnation pressure ratio of 

0.289. The separation point is coincident with the arrival of the last 

Prandtl-Meyer expansion wave at the surface. The reflections of the last 

two waves from the surface converge, which suggests the presence of a weak 

shock. The static pressure at the inner edge of the jet remains constant 

from the separation point until the compressive reflections from the outer 

surface of the initial Prandtl-Meyer expansion waves arrive at the inner 

surface. The static pressure then rises and the flow is turned towards the 

surface. However the Jet does not reattach to the Coanda. 
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Figure 8.18 shows the jet at a stagnation pressure ratio just above 

that required for breakaway. The separation point has moved upstream of 

the arrival of the last Prandtl-Meyer expansion waves at the Coanda 

surface, the reflection of these last waves coalescing Into a shock near 

the outer edge of the jet. The features of the jet are similar to the 

previous two jets and in particular the jet does not reattach to the Coanda 

surface. Figures 8.19 and 8.20 show jets from an 8 mm and 2 mm slot 

respectively, the stagnation pressure ratios being just above that required 

for breakaway. The features are similar to those of the jets from the 4 mm 

slots, the jets never reattaching after the initial separation. 

The overlays over Plates 15 and 18 compare the predicted and 

photographed jets from a nominally 4 mm slot. Plate 15 shows the outer 

edge within the first shock ceil and the position of the shock at the end 

of the cell are accurately predicted by the inverse method of 

character ist ics. The inner edge of the jet Is also accurately predicted 

until the flow Is turned back towards the Coanda by the compression waves 

resulting from the reflections of the Initial Prandti-Meyer expansion. The 

real Jet is turned further towards the Coanda than the predicted jet by the 

last of these compression waves. One possible cause for this Is that the 

reflections of the expansion and compression waves from the outer edge are 

altered by the shear layer. The growth of this layer and Its effect on the 

flow are ignored by the potential flow model. 

Plate 18 and the overlay shows the jet at a stagnation pressure ratio 

just above that required for breakaway. The separation point Is before the 

last Prandtl-Meyer expansion wave has reached the surface, the shocks 

Initiated at this point being accurately predicted. The outer edge of the 

jet within the first shock cell and the position of the shock at the end of 
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it are also accurately predicted. However, altliough the initial Inner 
layer is accurately predicted, the predicted inner layer is turned through 
a smaller angle near the end of the first shocl< cell than the real jet. 

The results obtained from the 8 mm and 2 mm slots are similar. Thus 

the Inverse method of character ist ics accurately predicts the features of 

the first shock cel l . However the real jet moves closer to the wall after 

the first shocl< ceil and eventually reattaches, and a potential solution 

becomes inaccurate. The potential solution ignores the presence of the 

outer shear layer of the real jet. This layer grows as the jet flows round 

the Coanda and Increasingly affects the reflections of expansion and 

compression waves from this edge of the jet. This c a u s e s the inaccuracies 

after the first shoci< cell in the potential prediction of the jet. 

8.6 INTERFERQMETRY 

The development of an optical system to measure the density changes 

In the jet as it flows round the Coanda Is described In Section 5.2. 

Interferometric pictures were only possible at stagnation pressure ratios 

above 0.55 although It Is thought that improvements in the system, 

d iscussed in Section 5.4, would allow pictures to be taken at lower ratios. 

The interpretation of the interferometric pictures is d iscussed In Section 

7.4. 

An approximate growth of the outer shear layer Is plotted in Figure 

8.21. The width of the shear layer is defined as the distance between the 

maximum density In the jet to the point where it first reaches atmospheric 

density (Figures 7.1 to 7.4). These widths are plotted against the arc 

length whose radius is the radius of the Coanda plus the slot width. The 

width of the shear layer from a set slot was found to be Independent of the 
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stagnation pressure ratio. Figure 8.21 shows the growth rates of the shear 
layers from different slot widths are similar. These growth rates are 
larger than for an uncurved mixing layer (Reynolds (1974)), which is 
expected due to the destabilising nature of the curvature. It is also 
expected that the growth of the shear layers from the different slots would 
be similar because the radius of curvature Is similar. No further flow 
properties can be derived from the known densities of the shear layers 
because the flow Is not isentropic in this region. 

At the outer edge of the jet there is a region where the density Is 

lower than atmospheric, caused by the acceleration of ambient air into the 

jet. If it is assumed that this acceleration from atmospheric conditions 

is isentropic. the measured density drop shows these velocities are between 

30 m/s and 40 m/s. 

The growth of an incompressible shear layer can be written as 

- = - 1 dm 

p dx . . .(8.1) 

where V is positive moving away from the Coanda (Plate 24) and condition 1 

Is in the core of the jet and condition 2 is atmospheric. If It is assumed 

that the density is constant through the shear layer, the velocity profile 

is linear and that V.̂  is negligible, the entrainment velocity can be 

written as 

« - 1 d6 

2 dx . . .(8.2) 

where 6 Is a measure of the thickness of the shear layer. Substituting 

values for the main core velocity and the growth of the shear layer (Figure 

8.21) gives entrainment velocities of 23 m/s. These are lower than those 

measured but given the broad assumptions above (both In the theoretical and 
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measured velocities) they are of the same order of magnitude. 

The flow within the Inner potential region is isentropic and the 

densities are related to the upstream density by the Mach number. The 

other properties of the flow can also be derived from the known stagnation 

conditions and the Mach number (Section 2.1). The total velocity at a 

point is thus known, although the direction of the velocity Is Impossible 

to determine. Figure 8.22 shows the variation of a 'pseudo' discharge 

coefficient, C p ' , with both the slot width and stagnation pressure ratio. 

The measured mass flow is obtained from an integral across the slot exit of 

the multiple of the density and the square of the total velocity. The real 

mass flow rate will be lower because the assumption that the velocity is 

normal to the slot exit Is Inaccurate. The values obtained of the 'pseudo' 

d ischarge coefficient are within 1% of unity, thus showing, as expected, 

that the static pressure ac ross the slot exit Is atmospheric. The values 

of the coefficient of discharge measured by an orifice plate are less than 

unity (Section 8.2). 

Figure 8.23 shows the static pressure variation In the potential 

region of two jets from a 4 mm slot width. The static pressure variation 

a c r o s s a potential jet whose streamlines form concentric c i rc les and whose 

outer edge is fully expanded is also shown. These pressures are obtained 

from equation 2.15. The static pressure profiles are similar at all angles 

round the Coanda, the pressure falling as the Coanda Is approached. The 

rate of change of pressure with distance from the Coanda Is smaller than 

that required for the streamlines to form concentric c i rc les . The smaller 

centripetal force Is an indication that the real flow Is following a radius 

of curvature that is larger than the Coanda. Figure 8.24 shows static 

pressure profiles of jets from 2 mm and 8 mm slots, the stagnation pressure 
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ratio being nominally 0.65. These are similar to those of the 4 mm slot, 
the centripetal forces again being too small for the flow to follow 
concentr ic c i rc les round the Coanda. 

The surface static pressures obtained from the Interferometry are 

plotted in Figures 8.25 to 8.27, the slot widths being 8 mm. 4 mm and 2 mm 

respectively. The static pressures measured by the static pressure 

tappings and the theoretical pressure that would be measured If an inviscid 

flow followed concentr ic c i rc les (equation 2.14) are also plotted. The 

agreement between the interferometric static pressures and those measured 

by the static pressure tappings Is good in jets from an 8 mm slot (Figure 

8.25) . The measured pressures are generally above those that would be 

recorded if the flow followed concentric c i rc les. However, as the slot 

width Is d e c r e a s e d , a discrepancy between the interferometric static 

pressures and those from the static pressure tappings becomes apparent. 

The interferometric static pressures are lower, the discrepancy being 

approximately equivalent to 0.4 of a fringe shift at the 4 mm slot (Figure 

8.26) and 0.7 of a fringe shift at the 2 mm slot width (Figure 8.27). The 

interferometric static pressures are almost equal to those of a jet that 

follows concentr ic c i rc les at the 4 mm slot and are lower at the 2 mm slot. 

The errors involved in the interferometric technique are d iscussed in 

Section 7.4.4. The results from the 8 mm slot give confidence that any 

errors of the measurement type are insignificant, and the derivation of the 

other jet properties from the densities is also accurate. The surface 

static pressures of jets obtained from the 4 mm and 2 mm slots are thus 

hard to explain. The density gradients of these jets are of the same order 

as those In the jets from an 8 mm slot and so diffraction errors are 

eliminated. The errors caused by the side wall boundary layers and by the 
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cooling of the windows should increase as the slot width Is increased. 
Thus It is unlikely that these are the c a u s e s for the consistent 
d iscrepancies between the interferometric measurements and the surface 
static pressure measurements of the 4 mm and 2 mm slots. The discrepancies 
thus remain unexplained. 
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CHAPTER 9 

CONCLUSIONS 

9.1 CONCLUSIONS 

A plane two-dimensional model flare, based on the Kaldair 18-H-AS 

Coanda flare, has been designed and commissioned. The features of the 

model include an interchangeable nozzle, a variable slot width and surface 

pressure tappings on the Coanda surface. In addition the jet can be viewed 

following the Coanda surface through two side windows. These windows can 

be interchanged between perspex or high quality optical g lass, the latter 

allowing optical measurements of the jet. The rig is supplied by an air 

line that filters the incoming air and both controls and measures the flow 

rate. 

Flow visualization tests indicate the presence of secondary flows at 

the side walls that are Inherent in the design of the rig. The vortices do 

not approach the static pressure tappings, although It is possible that 

they act as a blockage to the flow. This would result in the acceleration 

of the flow over the pressure tappings which would in turn result in a 

decrease In the static pressure. Static pressure measurements did not 

reveal a decrease In the static pressure as the jet flowed round the Coanda 

surface and thus It is believed any blockage of the flow by the side wall 

vortices is small . 

An optical system capable of shadowgraph, spark and continuous 

Schi ieren and Interferometric techniques has been developed. A feature of 

the system is that It requires minimal adjustment to switch from one 

technique to another. After the system had been initially set up, it 

required no further major adjustments during the tests. 
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Photographs of good quality have been obtained of jets flowing round 
the Coanda surface using ail four optical techniques. No limitations on 
the use of the shadowgraph or both Schlleren techniques were discovered. 
However It was found Impossible to obtain c lear interferometric pictures at 
stagnation pressure ratios below 0.55, An investigation Into possible 
reasons for this shows that the probable cause is vibrations from the 
mechanical rig are transfered via the floor into the optical rig. 

The phenomenon of breakaway of the jet from the Coanda has been 

investigated. Two nozzles were tested, one designed such that the slot exit 

coincided with the start of the curvature on the Coanda surface and the 

other designed such that there was a short flat section on the Coanda 

surface between the slot exit and the start of the curvature. There is no 

detectable difference in the breakaway properties of the two nozzles. The 

breakaway stagnation pressure ratio decreases as the slot width Is 

d e c r e a s e d , as is the ratio at which the jet reattaches after breakaway. 

The hysteresis between breakaway and reattachment increases as the slot 

width is reduced. 

The existence of a separation bubble at stagnation pressure ratios 

above that required for breakaway has been established. The boundary layer 

up to the point of separation is laminar. Shadowgraph and Schlieren 

photographs, together with flow visualization and surface static pressure 

measurements, show the streamwise length and the extent of its encroachment 

Into the jet Increase as the stagnation pressure ratio Is reduced. Surface 

flow visualization shows that the separation bubble contains a region of 

strongly reversed flow. This reverse flow coincides with a strong adverse 

pressure gradient caused by reflections of the Prandtl-Meyer expansion at 

the nozzle lip. At all the three slot widths tested, it was observed that 
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the reattachment point at the end of the separation bubble reaches a point 
approximately 80° round the Coanda surface at a stagnation pressure ratio 
just above that required for breakaway. 

Measurements of the mass flow rate through the slot were taken. The 

coefficient of discharge at a set stagnation pressure ratio was found to 

increase as the slot width was decreased. At all slot widths tested, the 

coefficient of d ischarge increased as the stagnation pressure ratio was 

decreased . There is some doubt about the validity of the results obtained 

at the 2 mm slot width below a stagnation pressure ratio of 0.3, the 

coefficient of d ischarges being greater than unity. it is believed that 

the reason for these high values results from an error In the estimation of 

the leakage flow rate at the low stagnation pressure ratios. 

Measurements were taken of the surface static pressure on the Coanda 

surface over a range of stagnation pressure ratios. At ratios close to 

unity, when the flow was entirely incompressible, the non-dimensional 

pressure coefficient, Cp, , was found to increase with slot width. At 

large slot widths the jet does not fully develop, the rise In the pressure 

coefficient, Cp , , as the slot width Is increased being predicted by 

potential flow theory. As the stagnation pressure ratio was decreased 

below the critical value a wave-like variation, corresponding to a shock 

cell structure, was observed. As the stagnation pressure ratio was further 

reduced a region of constant pressure was observed after the initial 

expansion. This region of constant pressure corresponds to the first 

section of the separation bubble. 

Interferometric pictures of jets at stagnation pressure ratios above 

0.55 were taken and analysed. An approximate measurement of the width of 

the outer shear layer shows that its growth Is Independent of the total Jet 
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width. The surface static pressures derived from the interferometric 

pictures of jets from an 8 mm slot agree with those measured at the static 

pressure tappings. However the Interferometric surface static pressures of 

jets from both 4 mm and 2 mm slots are lower than those measured by 

the tappings. This difference has not been explained and merits further 

investigation. 

A computer program has been developed to model an inviscid supersonic 

jet flowing over the Coanda surface. The method of characteristics is 

employed and the finite difference equations solved by the Euler predictor-

corrector method. The initial program models a jet that remains fully 

attached to the Coanda surface. This accurately predicts the jets free 

edge and the surface static pressure only during the Initial Prandtl-Meyer 

expansion. The solution then becomes inaccurate due to the strong 

Interaction between the separation bubble and the potential flow. 

A modification to the program replaces the condition that the jet 

remains fully attached to the Coanda surface with one that the inner edge 

Is solved to a known static pressure. These static pressures are 

interpolated from measured values. The main features of the jet shown by 

shadowgraph and Schl ieren photographs are accurately predicted over the 

first shock ce l l , the accuracy then deteriorating after this as the outer 

shear layer of the jet grows and begins to affect the potential region. 

9.2 IMPLICATIONS FOR F U T U R E WORK 

The optical system developed in this work has performed well in the 

shadowgraph and Schl ieren modes. However, vibrations prevented 

interferometric pictures being taken of Jets below the critical stagnation 

pressure ratio. It Is believed that further development aimed at Isolating 
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the mechanical and optical rigs will allow interferometry over a wider 
range of stagnation pressure ratios, thus allowing the properties of 
critical jets to be determined. This work should focus In particular at 
the bolting of the mechanical rig to the floor with the aim of preventing 
the transmission of vibrations from the rig to the floor. 

The mechanism of breakaway of a plane model of a Coanda flare has 

been established. An initially laminar boundary layer separates near the 

slot exit, the separation being precipitated by a pressure rise imposed on 

the boundary layer by the outer potential flow. There follows a strong 

Interaction between the separation bubble and the outer potential flow, the 

latter also being affected by the outer shear layer. This interaction 

determines whether or not the jet reattaches. The inclusion of a step 

between the slot exit and the Coanda is a proven method of delaying 

breakaway. This step ensures the Initial boundary layer on the Coanda 

surface Is turbulent, which increases the ability of the boundary layer to 

withstand the adverse pressure gradient imposed upon It by the outer flow. 

This in turn will reduce the size of the separation bubble and lead to a 

d e c r e a s e In the breakaway stagnation pressure ratio at a set slot width to 

downstream radius ratio. 

It can be assumed that the mechanism for breakaway on an axisymmetric 

flare is similar, with a separation bubble growing as the stagnation 

pressure ratio is reduced. A simple method of confirming the existence of 

this separated region would be through surface flow visualization. This 

would also reveal any regions of reverse flow and the point at which the 

jet reattaches, the latter being of particular Interest near the breakaway 

stagnation pressure ratio. Surface static pressure measurements would also 

be useful to tie up any separated region with the shock cell structure. 



- 169 -

The existence of the separation bubble has important implications for 
the theoretical prediction of any supersonic jet flowing over a convex 
surface and for the theoretical prediction of breakaway in particular. The 
strong Interaction between the separation bubble and the potential flow 
requires a coupling of the two regions Immediately downstream of the slot 
exit. The method chosen to solve the boundary layer must also allow 
reverse flow. The critical region of the jet that determines breakaway is 
the reattachment of the Jet at the end of the separation bubble. This 
reattachment occurs downstream of the first shock cel l , where the potential 
flow has also been affected by the outer shear layer. Thus, in addition to 
being coupled to the boundary layer solution, the potential solution must 
be coupled to a solution of the outer shear layer. 

Calculation methods that attempt to solve the total Jet are beginning 

to be developed. This present work shows the boundary layer is an 

important region of the jet and its growth, separation and reattachment 

must be included in any calculation method of the total jet. However once 

an accurate calculation technique has been developed this will not only aid 

flare designers but will also be useful In fields such as aerofoil control, 

where jets are used to re -energ ise the boundary layer and prevent 

separation of the mainstream flow and the resultant loss of lift. 
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A P P E N D I X A 
EULER PREDICTOR-CORRECTOR METHOD 

This appendix presents the Euler p red i c to r - co r rec to r method for the 

so lu t ion of an in ter ior point In i r ro tat ional p lanar f low (Figure 3.2). 

The method is given in detai l by Zucrow and Hof fman (1976). The condi t ions 

at points 1 and 2 are known, the solut ion point , point 3, being at the 

in te rsec t ion of the charac te r i s t i cs f rom points 1 and 2. The 

charac te r i s t i c and compat ib i l i ty equat ions are rewri t ten here for 

conven ience . They are respect ively, in f ini te d i f fe rence form 

Ay^ = Ax_j_ . . . (AD 

and 

A u ^ + R_j_ Av^ = 0 . . .(A2) 

where 

Q = (u2 - a 2 ) . . .(A3) 

R = 2uv - (u2 - a 2 ) X . . .(A4) 

The equat ions A l can be rewri t ten 

(Ya - y^) = x_ (X3 - x^) 

(Ya - Vg) = ^ 3 - V • • -̂ ^̂ ^ 

where Init ial ly 

X_ = tan (6^ - a^) 

X^ = tan (Gg + a^) . . .(A6) 

The posi t ion and proper t ies of points 1 and 2 are known and thus the 

equat ions of A5 can be solved s imul taneously to give a pred ic t ion of 

point 3. 

The equat ions A2 can be rewri t ten 

Q_ U3 + R_V3 = T_ 

U3 ' ^ ^ 3 • • 
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where ini t ial ly 

T_ = Q_u.| + R_v.| 

and 

2 2 
Q_ = (u^ - a.^"^) 

= (Ug^ - a^^) . . .(A9) 

R_ = 2u^v.| - Q_X_ 

= SUgVg - Q^X^ . . .(AlO) 

The proper t ies of points 1 and 2 are known and so a predict ion of the 

proper t ies of point 3 can be made by the s imul taneous solut ion of equat ions 

A7. 

There are two methods of improving the pred ic t ion of the posit ion and 

proper t ies at point 3: the average property method and the average 

coef f i c ien t method . The average property method involves rep lac ing the 

p roper t ies of equat ions A6, A9 and A lO , init ial ly assumed to be of points 1 

and 2, by the averages of points 1 and 3 and points 2 and 3 respectively. 

Thus , for example , in equat ion A9 u., becomes (u^ + u „ ) / 2 and a , becomes 
1 I O 1 

(a.| + ag ) /2 . The new coef f i c ien ts Q, R, T and X are ca lcu lated and 

equat ions A5 solved s imul taneous ly to give a cor rec ted predic t ion of point 

3 and equat ions A7 solved s imul taneously to give a cor rec ted predict ion of 

the p roper t ies at po in t 3. The cor rec to r can then be reappl ied unti l the 

c h a n g e of the posi t ion and proper t ies of point 3 f rom their previous 

es t imate is suf f ic ient ly sma l l . 

The average coef f i c ien t method involves rep lac ing the coef f ic ients Q, 

R and X by the average of the coef f ic ients of points 1 and 3 and points 2 

and 3. Thus , for example . In equat ion A9 



- 1 8 2 -

Q_ = [(Q_)^ + ( 0 ) 3 1 / 2 

2 2 2 2 
= - a / ) . (U3^ - a3^ ) ] /2 

2 2 2 2 
= [(Ug - ag ' ' ) + (Ug^ - 83^)1/2 

The values of the coef f ic ients can then be used to obtain a new 

est imate of the posi t ion of point 3 f rom the s imul taneous solut ion of 

equat ions A5 and of the proper t ies f rom the s imul taneous solut ion of 

equat ions A7. The co r rec to r can then be reappl ied until the desired 

conve rgence of the posi t ion and proper t ies of point 3 has been obtained. 
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A P P E N D I X B 
PARABOLIC INTERPOLATION 

The values of the sur face static pressure are known at three values 

of the ang le round the Coanda, 0 (points 1, 2 and 3). It Is desi red to 

in terpo la te for the value of the stat ic pressure at an angle 0. where 

Kreyszig (1972) gives the Lagrange 's interpolat ion formula as 

n I (0) 
f(0) « L (0) = Z . f (0 . ) 

k= l 1^(0^) . . . (B l ) 

where 0.j . . .0^ are not necessar i ly equal ly spaced and 

y 0 ) = (0 - 02) (0 - 03) • • .(0 - 0n> 

1^(0) = (0 - 0^) . . .(0 - 0^_.,) (0 - 0^^^) . . .(0 - 0^) 

1^(0) = (0 - 0.,) (0 - 02) . . .(0 -

In the present case n = 3, and thus equat ion B l becomes 

.(B2) 

( 0 - 0 2 ) ( 0 -03 ) ( 0 - 0 ^ ) ( 0 - 0 3 ) ( 0 - 0 . , ) ( 0 - 0 2 ) 
p = p + p^ + 

( 0 ^ - 0 2 ) ( 0 ^ - 0 3 ) ( 0 2 - 0 i ) ( V * 3 ^ ( « 3 - 0 l ) ( 0 3-02^ 

. . .(B3) 

" ) 
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PLATE l a : I n f i n i t e Fringe 

PLATE l b : F i n i t e Fringe 

PLATE 1: DEMONSTRATION OF INTERFEROMETRY 



PLATE 2: S c h l i e r e n u s i n g r a z o r blade c u t - o f f 

PLATE 3: Shadowgraph with l a s e r source 
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PLATE 19a: V e r t i c a l Density Gradients 

PLATE 19b: H o r i z o n t a l Density Gradient 

PLATE 19: SCHLIEREN, BREAKAWAY. SLOT = 4 mm 
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PLATE 22a: V e r t i c a l Density Gradients 

PLATE 22b: H o r i z o n t a l Density Gradients 

PLATE 22: SPARK SCHLIEREN, BREAKAWAY, SLOT = 4 mm 



PLATE 23a: V e r t i c a l Density Gradients 

PLATE 23b: H o r i z o n t a l Density Gradients 

PLATE 23: SPARK SCHLIEREN. REATTACHMENT. SLOT = 4 



PLATE 24: In t e r f e r o m e t r y , Pa/Po = 0.654, S l o t = 4 mm 

PLATE 25: Int e r f e r o m e t r y , Pa/Po = 0.579, S l o t = 4 mm 
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ABSTRACT 

This study concerns an underexpanded jet, issuing from a convergent 

slot into quiescent air, as it is deflected by a convex surface of constant 

radius. Emphasis is placed on the mechanism of breakaway, a phenomenon 

whereby the jet leaves the surface tangentially. 

An optical system based on the standard Z-type Schlieren 

configuration and capable of interferometric, Schlieren and shadowgraph 

techniques has been designed. The techniques are interchanged simply, a 

laser source being employed for Interferometry and a Xenon spark source for 

Schl ieren and shadowgraph. Vibrations limit the interferometry and 

improvements are d iscussed . Shadowgraph and both spark and continuous 

Schl ieren techniques gave good results. 

Total pressure traverses and surface oil flow visualization show that 

the influence of secondary flows on breakaway is small. Measurements of 

the coefficient of discharge show an increase both as the stagnation 

pressure Is increased and as the slot width is reduced. The existence of a 

separation bubble has been established from surface static pressure 

measurements and shadowgraph and Schlieren photographs. Surface oil flow 

visualization shows a region of reversed flow wKhin the bubble. The 

bubble grows as the stagnation pressure Is increased and eventually causes 

breakaway. 

A potential flow calculation method using the method of 

character ist ics has been developed. Calculation of a fully attached Jet is 

inaccurate because the separation bubble is ignored. A calculation using 

the measured surface static pressures accurately predicts the main features 

of the first shock cel l . Reattachment occurs further downstream of the jet 

and its breakaway should involve a coupling of the solutions of the outer 

shear layer, potential core and separated boundary layer, the latter 

including reversed flow. 
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3.24 Variation of Exit Mach Number, b/a = 0.267 

3.25 Variation of Exit Mach Number, b/a = 0.067 

4.1 Behaviour of a Light Ray in an Optical Disturbance 

4.2 Principles of Shadowgraph 

4.3 Toepler Schl ieren System 

4.4 Schl ieren Cut Off 

4.5 Z-Configuration Schl ieren System 

4.6 Principles of Interferometry 

4.7 Jamin Interferometer 

4.8 Michelson Interferometer 

4.9 Mach-Zehnder Interferometer 

4.10 Diffraction-Grating Interferometers 

4.11 Principles of Wollaston Prism 

5.1 Inlet Air Line 

5.2 Nomenclature of Mechanical Rig 

5.3 Coanda Section 

5.4 Configuration of Optical System, Type A 

5.5 Configuration of Optical System, Type B 

5.6 Expansion of Laser Beam 
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6.1 Total Pressure Traverse at 20 Degrees 

6.2 Total Pressure Traverse at 40 Degrees 

6.3 Effect of Pressure Ratio on Traverse 

6.4 Total Pressure Traverse on 2 mm Slot Jet 

6.5 2 mm Slot Surface Oil Bands 

6.6 4 mm Slot Surface Oil Bands 

6.7 8 mm Slot Surface Oil Bands 

6.8 Leakage Mass Flow Rate 

6.9 Settling Tube Mach Number 

6.10 Coefficient of Discharge 

6.11 Breakaway/Reattachment of Nozzle A 

6.12 Breakaway/Reattachment of Nozzle B 

6.13 Incompressible Surface Pressure Coefficient, 0.99 mm Slot 

6.14 Incompressible Surface Pressure Coefficient, 1.50 mm Slot 

6.15 Incompressible Surface Pressure Coefficient, 2.00 mm Slot 

6.16 Incompressible Surface Pressure Coefficient, 4.01 mm Slot 

6.17 Incompressible Surface Pressure Coefficient, 6.00 mm Slot 

6.18 Incompressible Surface Pressure Coefficient, 7.99 mm Slot 

6.19 Compressible Surface Pressure Coefficient, 2 mm Slot 

6.20 Compressible Surface Pressure Coefficient, 4 mm Slot 

6.21 Compressible Surface Pressure Coefficient, 8 mm Slot 

6.22 Surface Pressures From Choked 4.15 mm Slot 

6.23 Surface Pressures From Choked 1.99 mm Slot 

6.24 Surface Pressures From Choked 6.00 mm Slot 

6.25 Surface Pressures From Choked 7.99 mm Slot 

6.26 Surface Pressures From 1.99 mm Slot, Nozzle B 
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7.1 Density Distribution b/a = 0.133, Pa/Po = 0.654 

7.2 Density Distribution b/a =0.133, Pa/Po = = 0.579 

7.3 Density Distribution b/a = 0.266, Pa/Po = 0.644 

7.4 Density Distribution b/a = 0.067, Pa/Po = 0.653 

8.1 Comparison of Discharge Coefficient 

8.2 Incompressible Surface Static Pressures 

8.3 Compressible Surface Pressures , Pa/Po = 0.61 

8.4 Compressible Surface Pressures , Pa /Po = 0.52 

8.5 Correlation of Separation Bubble, 4 mm Slot 

8.6 Correlation of Separation Bubble, 8 mm Slot 

8.7 Correlation of Separation Bubble, 2 mm Slot 

8.8 Comparison of Breakaway 

8.9 Comparison of Reattachment 

8.10 Comparison of Surface Pressure , Pa/Po = 0.407, b/a = 0.138 

8.11 

8.12 

8.13 Comparison of Surface Pressure , Pa/Po = 0.257, b/a = 0.138 

8.14 Comparison of Surface Pressure , b/a = 0.267 

8.15 Comparison of Surface Pressure , b/a = 0.067 

8.16 

8.17 

8.18 

8.19 

8.20 

8.21 Growth of Shear Layer 

8.22 Interferometric Slot Discharge 

0.407, b/a = 0.138 

0.311, b/a = 0.138 

0.289, b/a = 0.138 

0.257, b/a = 0.138 

Separated Jet, b/a = 0.138, Pa/Po = 0.337 

Separated Jet, b/a = 0.138, Pa/Po = 0.289 

Separated Jet, b/a = 0.138, Pa/Po = 0.257 

Separated Jet, b/a = 0.266, Pa/Po = 0.394 

Separated Jet, b/a = 0.066, Pa/Po = 0.169 
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8.23 Pressure Distributions Through a 4 mm Jet 

8.24 Pressure Distributions Through 2 mm and 8 mm Jets 

8.25 Surface Pressures from an 8 mm Slot 

8.26 Surface Pressures from a 4 mm Slot 

8.27 Surface Pressures from a 2 mm Slot 
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LIST OF PLATES 

Plate No 

1 Demonstration of Interferometry 

2 Schl ieren Using Razor Blade Cut-Off 

3 Shadowgraph With Laser Source 

4 Coanda Flow Visualization, Slot = 4 mm 

5 Coanda Flow Visualization, Slot = 8 mm 

6 Corner Flow Visualization, Slot = 4 mm 

7 Side Wall Flow Visualization, Slot = 4 mm 

8 Shadowgraph, Pa /Po = 0.370, Slot = 4 mm 

9 Shadowgraph, Pa /Po = 0.323, Slot = 4 mm 

10 Shadowgraph, Pa /Po = 0.267, Slot = 4 mm 

11 Shadowgraph, Pa /Po = 0.241, Slot = 4 mm 

12 Shadowgraph, Pa /Po = 0.397, Slot = 8 mm 

13 Shadowgraph, Pa /Po = 0.167, Slot = 2 mm 

14 Schl ie ren , Pa /Po = 0.370, Slot = 4 mm 

15 Schl ieren, Pa /Po = 0.323, Slot = 4 mm 

16 Schl ieren With Reversed Kni fe-Edge, Pa /Po = 0.323, Slot = 4 mm 

17 Schl ie ren , P a / P o = 0.267, Slot = 4 mm 

18 Sch l le ren , Pa /Po = 0.241, Slot = 4 mm 

19 Schl ieren, Breakaway, Slot = 4 mm 

20 Spark Schl ieren, Pa /Po = 0.323, Slot = 4 mm 

21 Spark Schl ie ren , Pa /Po = 0.244, Slot = 4 mm 

22 Spark Schl ie ren , Breakaway, Slot = 4 mm 

23 Spark Schl ie ren , Reattachment, Slot = 4 mm 

24 Interferometry, Pa /Po = 0.654, Slot = 4 mm 

25 Interferometry, Pa /Po = 0.579, Slot = 4 mm 
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PRINCIPAL NOTATION 

A area of slot 

a Coanda radius, speed of sound (Section 3.1, Appendix A) 

b slot width 

c settling tube width, speed of light (Chapter 4) 

Cp discharge coefficient 

Cp surface static pressure coefficient 

c . surface static pressure coefficient with curvature, = - c (a/b) 
P P 

d height of light source image above knife edge 

e breadth of light source image 

f focal length 

I light intensity 

K Gladstone-Dale constant 

k coefficient of heat viscosity 

M Mach number 

m m a s s flow rate 

n refractive index 

p static pressure 

p^ stagnation pressure 

Q coefficient in finite difference equations 

R universal gas constant, coefficient in finite difference equations 
(Section 3.1, Appendix A) 

Re slot Reynolds number = [(p -p^ )ab /pv2 ] 
0 a 

S physical path length 

T static temperature, coefficient in finite difference equations 
(Section 3.1, Appendix A) 

T^ stagnation temperature 
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t time 

u x-component of velocity 

u^ wall shear velocity = ^ r ^ / p 

V total velocity = / u 2 + v 2 

v y-component of velocity 

X streamwise coordinate along or parallel to surface 

y coordinate perpendicular to x-direction 

y.|^2 value of y where u = u^^2 

z coordinate along optical beam 

Greek Symbols 

a Mach angle 

7 ratio of specif ic heats 

e angle of light ray to z-direction 

e angle of streamline to x-direction 

gradient of positive characteristic 

X_ gradient of negative characteristic 

gradient of streamline 

fi viscosity 

V dynamic viscosity = pi/p 

p static density 

stagnation density 

r shear st ress 

T wall shear st ress 
w 

0 angle round Coanda from slot exit 

0^ angle round Coanda from hypothetical slot of zero width 

0g^p separation angle round Coanda from hypothetical slot of zero width 


