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ABSTRACI

This thesis is concerned with some of the limitations

concerned with the imaging properties of astronomical telescopes

of large apertures. These arise from the atmesphere, the
diffracting aperture, the residual errors in the optically
worked surfaces and the <characteristics of the detection
devices. Methods of Fourier optics are wused to determine
modulation transfer functions and associated point spread
function. They are applied to three problems.

The first of these is a comparison of the diffraction
patterns that are expected from the multi-mirror telescopes.
These are made either of separated individual mirrors or of
segmented mirrors shaped to an overall parabolic shape. The
effect of the dilution of the aperture in the former and the
effect of misalignment in the latter is investigated.

In the second study, the factors contributing to the
imaging of the UK Schmidt telescope-are considered and design
studies of this and other two variants are examined. In
particular the limiting effect of the atmosphere and of the

detecting photographic emulsion are noted.

Thirdly the overall limitation of the atmospheric seeing is
considered experimentally. ‘The Durham Polaris seeing monitor
has been designed and built with a shear interferometer. It has

been tested at local ground level where local measurements of
seeing have been made. In the near future i1t will be taken and

used at La Palma.
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CHAPTER 1 INTRODUCTION

Large optical telescopes with their enhanced light
collecting power have been developed and used for some time now
to detect faint objects deep in the Universe. In recent times,
improvements in methods of detection have increased the
effective use of the light collection <capability of telescope
mirrors. For example, the 5Sm Hale telescope with charged
coupled devices for detection is equivalent to a 50m telescope
where ligﬁt is detected and recorded by the photographic plates
of 1950 vintage. The sensitivity of detection is unlikely to
increase much further and so in order to penetrate deeper into
the Universe (that is to detect the very distant, very faint
objects) increases in mirror size are again being contemplated.

Apart from the technical difficulties of producing very
large mirrors the main problem is that of cost. Doubling the
size of a mirror is found to lead to an approximate eight-fold
increase in price so that a 25m mirror telescope (including dome
and other facilities) would cost in the region of 100M pounds.
Instead of a large monolithic mirror the same light collecting
power could be obtained with an array of mirrors each of small
size and hence with correspondingly low cost. This would halve
the price of the mirror approximately. Clearly an evaluation of
the optical performances of monolithic and arrays of mirrors
must be carried out. Furthermore, with costs so high the

optimum performance of a system must be achieved. An optimum




becomes apparent yhen it is appreciated that the performance of
a telescope (that is, the quality of the image produced) is
determined by turbulence in the atmosphere and in the air inside
the dome, by the mirror aperture, its surface irregularities,
the stiffness of the support and the quality of the detector.
Cost effectiveness is approached by considering the effects of
each of these on the quality of the image and designing a
telescope with these effects in mind.

The effects of atmospheric turbulence, aperture diffraction
"and surface errors will be determined either separately or
together. Becauée of the complex nature of the interaction of
these three effects it has not been possible to describe the
imaging properties of the telescopes in a satisfactory way.
However the effect of these degradations to the image can be
handled by Fourier transform techniques which lead to the  use
of the modulation transfer function, MIF. The advantage of
using the MIF is that if these functions <can be calculated
individually fo} atmospheric turbulence, aperture diffraction
and surface error, then the MIF for the whole atmosphere-mirror
system is the product of the individual values. The inverse
Fourier transform then yields the distribution of 1light within
the image (poiﬁl spread function, PSF). To deal with this same
problem using the point spread function directly, the individual
PSFs must be convoluted together tvo obtain the system PSF. This
is much more laborious and very consuming of computing time.

The methods of Fourier transforms and the calculations of the

PSF and MTF are outlined in chapter 2.



The image qﬁality of a large ground based astronomical
telescope is largely governed by turbulence in the atmosphere,
with aperture diffraction and surface .errors playing less
important roles (¢xcept in the far infrared region, where
atmospheric turbulence becoées less important). Changes of
pressure and temperature in the atmosphere cause changes in its
density and refractive index which will result in the distortion
of the light wavefront passing through the atmosphere. This
will cause the image to exhibit effects of motion, blurring and
twinkling. In astronomical observations this effect is called
“seeing” and represents the major limitation on resolution.

Three degradations of atmospheric turbulence, aperture
diffraction and surface errors and their MIFs are described
individually in chapter 3. The firm of Grubb-Parsons, Newcastle
have made available to us some of their measurements of surface
quality of several mirrors which enable wus to find realistic
MI'Fs for surface errors.

The development of MIF based methods of calculating optical
system performance and the knowledge of the properties of the
turbulent atmosphere have provided means by which the
performance of ground ©based telescopes <can be assessed in a
realistic way, in which the whole process from the top of the
atmosphere to the image in the photographic emulsion 1is taken
into account. An example considered is the Schmidt telescope
and this is described in chapter 4.

In a large multi-mirror telescope, there are many ways of

combining the mirrors, of which there are broadly two choices.



The first is a large segmented aperture formed from a number of
hexagonal mirrors -which are joined at their edges and which are
individually figuréd to give, in combination, a single parébolic
mirror with one primary focus (see fig 1.1). The other éhoice
is for an aperture made from a number of separate paraboloids

each figured 1identically and mounted on a regular array with

parallel optic axes to give a number of primary foci. These are
then <combined to give one single focus. The diffraction
patterns of a variety of mirror combinations are shown in
chapter 5.

The multi-mirror combination leads to a diluted aperture
whose diameter can be controlled from a minimum value (when all
mirrors are touching) to higher values which are <controlled by
the cost of mounting well separated mirrors. The effects of
dilution are described in chapter 6.

Chapter 7 describes the measurement and monitoring of
atmospheric seeing. A seeing monitor has been designed which
uses a 30cm diamgtej mirror to image Polaris, whose light after
passing through the atmosphere is examined by a shear
interferometer. The interferometer shears the wavefront of
light on itself s@ that variations in phase in the wavefront
become apparent as changes in visibility of interference wedge
fringes. By scanning across the fringes with a raster scan, the
MTF can be measured as a function of shear. The seeing monitor
has been built and tested at local seeing. The seeing monitor

will be taken and tried at La Palma in the near future.



a) monolithic mirror

~— \_//

b) 6 circular mirrors cl 36 hexagon segmented mirrors

FIG 1.1 Telescope mirrors



CHAPTER 2 | POINT SPREAD FUNCTION

AND MODULATION TRANSFER FUNCTION

2.1 POINT SPREAD FUNCTION

In any imaging system light is gathered from a point or
extended source and channelled into an image. The structure of
the image is largely determined by the object but this is
modulated by characteristics of the imaging system. For example
in an astronomical telescope system there will be contributions
to the image structure from the atmosphere, diffraction by the
aperture, aberrations and noise from the recording system.
Hence the light from a ‘point’ star is spread into a small area
around the expected point image.

If I, (X,Y) is the intensity distribution 1in the object
plane, the point XY will emit a radiant flux which is then
processed by the imaging system represented by a lens (fig 2.1).
The radiation will be imaged at the point x,y in the image plane
(and the small area surrounding this point) where X,y 1is
obtained by geometric imaging. The spreading of this radiant
flux by the imaging system is described by the intensity
distribution function S(x-X,v-Y) for a point source, which is
known as the poin} spread function, or PSF. Hence the intensity
distribution at the image plane for an extended object is

I (x,y) = “ I (X,Y) S(x-X,y-Y) dXdY . (2.1)
This equation 1s a'convolution integral which can be written as
I (x,y) = I, (X,Y) & S(x-X,y-Y) . (2.2)

If the source is a point object (eg a star on the central axis,



OBJECT PLANE IMAGING SYSTEM IMAGE PLANE

FIG 2.1 A lens system forming an image

TO IMAGE PLANE

./

APERTURE
fix,y)=1 inside
f(x,y) =0 outside

FIG 2.2 Aperture in polar coordinates

2.2



X=0, Y=0) then the intensity distribution of image, I,/ (x,y),
becomes the PSF, S(x,y).

For a diffraction-limited imaging system having no
aberrations, S(x,y) would correspond in shape to the diffraction
pattern at x,y of a point source which is easily calculated for
most geometries. Since the PSF is a squared modulus of the
amplitude distribution, a(x,y), then

S(x,y) = Ia(x,y)ll. (2.3)
The amplitude distribution is a Fourier transformation of the
aperture function f(u,v), where u,v are spatial frequencies.
The aperture function usually has a constant value of unity over
the whole area of the aperture and is zero outside. (It would
vary from unity with apodization). So the amplitude
distribution is
a(x,y) = JI fCu,v) expf{ -2mi(xu+yv)} dudv . (2.4)

In astronomy, measurements of the stellar image are usually
made in terms of angular distance (such as arcsec or arcmin).
In polar coordinates the PSF is, (fig 2.2),

$(0,6) = la(w,6)1", (2.5)

and
a(0,d) = II f(u,v) exp{iksinO (ucosé + vsind)} dudv , (2.6)
where O is the polar angle, ¢ is the azimuth angle and k = 2m/A.

The Fourier transform, 7, of equation 2.2 gives

70 1e(x,y)] = 7[ 1o (X,Y) 6 S(x-X,y-Y) ], (2.7)
and by application of the convolution theorem,
70 1;(x,y)) = 70 1, (X,Y)] 7[ s(x-X,y-Y)] , (2.8)

that 1is



ig(u,v) = ig(u,v) T(u,v) . (2.9)
Here ii(u,v) is the spatial ffequency content of the image
intensity distribution and it is given by the product of the
spatial frequency content of the object intensity distribution
and a complex quantity, T(u,v), which is commonly known as the-
optical transfer function, OTF, ie
T(u,v) = Jj S(x,y) exp{-2mi(xu+yv)} dxdy . (2.10)
Clearly this is the Fourier transform of the PSF. It can be
expressed as
T(u,v) = MTF(u,v) exp{iPTF(u,v)} , (2.11)
where the modulation transfer function, MIF, is a measure of the
reduction in contrast from object to image over the frequency
spectrum. The argument of the OTF is the spatial phase tranfer
function, PTF, which represents the relative shift of the image
pattern from its normal position. Phase shifts in centered
imaging systems occur only off-axis and often the PTF is of less

interest than the MIF. Consequently the MIF, rather than the

OTF, is considered in the next section.

2.2 MODULATION TRANSFER FUNCTION
As seen above, in the absence of phase modulation the MIF
becomes the Fourier transform of the point spread function. It
is a measure of the modulation or contrast of features which
exist in the exit aperture at various spatial frequencies and it
can be expressed in either linear or angular dimensions as
MTF(cycles/arcsec) = MIF(cycles/mm) * £/(2.063x10%) , (2.12)

where f is the focal length of the imaging system in cms. The



MTF has become a widely used means of specifying the performance
of a wvariety of systems such as lenses, telescopes, the
atmosphere, the eye, photographic films and magnetic tapes.

To illustrate the meaning of MTF consider that the input to
an imaging system has a sinusoidual intensity distribution i;
the object plane with a spatial frequency of w cycles/mm. Then

the object modulation is defined as, (fig 2.3),

MQ(W) = Ja - Ip .
Ia+ ]b

After passing through the imaging system, the image modulation
becomes
’

Mz(W) A
I+ I

The ratio between image modulation and object modulation is then

the MIF at the spatial frequency, w,

MTF(w) = M:(w) . (2.13)
Mo(W)

The structure of a general object is expressed as a spectrum of
spatial frequencies for each of which an MIF(w) exists. These
comprise the complete MIF for the system. It can be determined
experimentally by measuring the modulation in the image obtained
from a grating-like target having decreasing line separations
(increasing spatial frequencies). Target patterns such as these
are wused routinely for assessing the reproduction quality of
copying machines and television systems. The MIF of optical
systems are usually measured by interferometric methods.

There are several methods for calculating the MIF of an
optical system. One of the methods, which although it involves

the computation of the aperture function including the effects



2.6

IMAGING
SYSTEM
Ib
OBJECT IMAGE
a) ’ b)
FIG 2.3 Harmonic object and resulting image
f (x) aperture a () amp litude
funct ion distribution
FOURIER
TRANSFORM
———
/N /N

al x b) \\// \\// \\ji

AUTO-
VCORRELATION SQUARED
MTF (s) modulat ion 1 (W) Intensity
transfer distribution
funct ion
FOURIER
TRANSFORM
<
c) s d) u

FIG 2.4 Example of Fourier transformation and autocorrelation



of aberrations does, however, lead to a quite straightforward
calculation. The amplitude diffraction pattern of the image of
a point source is a Fourier transform of the aperture function,
f(x,y) of the diffracting system. The squared modulus of this
is the PSF, and the Fourier transform of that is the MTF. Thi;
is shown symbolically in one dimension in fig 2.4. The
calculation route just described is (a)3(b)>(d)s(c), ie

MTF(u,v) = 7 {17(0(x,y) 1%} . (2.14)
We can use a short cut in the calculation (ie from (a) to (c))
by using the autocorrelation theorem. By calculation of the
autocorrelation of the aperture function, the MIF is given by

MTF(u,v) = ” flx.y) f{x-pAu.,y-2v) dxdy . (2.15)
f(x,y) dxdy

Consider an imaging system with an aberration-free aperture,
then the aperture function, f(x-Au,y-Av) is identical in form
with f(x,y) but shifted by a length, A(ur+v2)™ . The expression
2.15 for the MIF has a geometrical interpretation. The
numerator represents the overlap of two displaced aperture
>functions, one centered at (0,0) and the second centered at the
shiftred (Au,Av) as shown in fig 2.5. The denominator simply
normalises this area of overlap by the total area of the

aperture. Thus

MTF = area of overlap . (2.16)
total area

When the aperture function has been displaced upon itself by the
size of the aperture, D, the overlap area is zero and hence the
angular

MIF 1s zero. This occurs at a maximum, cut-off,Aspatial

frequency in the direction of displacement of



FIG 2.5

FIG 2.6

MTF

Two sheared aperture functions

b)
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2.8

The MTF of two different apertures

SPATIAL FREQUENCY




2.9

W, = D cycles/arcsec. (2.17)
—_—D
2.063x10° A
Thus, features which exist in the object at separations

equivalent to spatial frequencies w> w,will not appear in the
image since the system is incapable of transmitting information
for frequencies beyond the cut-off wvalue. Different imaging

systems will have different values of cut-off frequency.

After measuring the MIF of different apertures the
situation described in fig 2.6 might result. Curve (a) with the
greater value of MIF at Jlower frequencies will lead to

contrasting images but curve (b) will lead to better resolution
since it has a higher cut-off frequency. When observing stellar
images, the resolution is usually important ie the MIF values
must be large at high values of spatial frequency. This will be
seen in the case of an annular mirror as described in chapter 3.
The most imporiant properties of the MIF are listed below:
a) MIF(0,0) = 1 ,
b) MTF(-u,-v) = MTF(u,v) ,
¢) MIF(u,v) < MIF(0,0)
When the wavefront errors at the aperture (such as
focussing error, spherical aberrations or surface polishing
errors) exist, the phase error in the wavefront at the point X,y

in the exit apernture is represented by kW(x,y) where W is an

effective path length error. Then the aperture function becomes
f(x,y) = of (x,y) explikW(x,y)} , (2.18)
where o (x,y) = 1 inside the aperture and = 0 outside. For an

aberration-free system, W(x,y) = 0 and so f(x,y) =1 or 0. In

general the aperture function is complex so it is the OTF rather



than the MIF that should be considered. Then

: 2
T(u,v) = f(x-Au,y- dxd (2.19)
| f(x,y)I*dxdy

and this can be rewritten as

T(u,v) = ;_ff exp{ikd} dxdy |, (2.20)
A

where the integral is evaluated over the area of overlap. Here
d is the wavefront difference between the wavefront, W(x,y) and
the sheared wavefront, W(x-Au,y-#v) and A is the total area of

the aperture. This expression can be written as

T(u,v) = i_jj [cos(kd) + isin(kd)] dxdy . (2.21)
A

When there are random wavefront errors on the surface, the
average of the s;ne function reduces to zero and the average of
the cosine funétion becomes less than unity. Hence the OTF
becomes real and the MIF is given by

MTF(u,v) = J_JJ cos(kd) dxdy , (2.22)
A

which is now smaller than it was when there were no wavefront
_errors. This expression allows wus to relate the wavefront
errors and the MIF. The expression 2.22 reduces to that of 2.16
when the wavefront errors are negligible.

In general, aberrations will lower the MIF of each spatial
frequency compqﬂent of image intensity and hence the PSF will be

broadened.




2.3 NUMERICAI CALCUILIATION

There are two calculations considered - one involving a
single individual system eg diffraction only or other
degradation. The other involves an overall system ( with

atmospheric seeing, diffraction, etc)

2.3.1 Individual System

When dealing with the intensity distribution of a point

source due to diffraction by an aperture of simple geometry, the

calculation is best performed wusing the analytic Fourier
transform of the aperture function (eq 2.4). This will give a
relatively simple analytic expression. For difficult
geometries, or for simple apertures made complicated by surface
errors and aberrations, the Fourier transform of the
two-dimensional MTF is necessary. This is one of considerable
numerical integration and 1t has become possible only by

computer methods.

When calculating Fourier transforms numerically, the
integral— expression in equation (2.10) is replaced by a
summation. The continuous function, MIF(u,v) is replaced by a
step-wise function, MIF(jdu,kdv), where the indices j and k run
from -N/2 to +N/2 covering N points in total where du and dv are
the increments. Then a value of S(x,y) in the PSF is found by
summation of values of MIF(u,v)exp{2mi(xu+yv)} for all values of

u and v in the 1ncrements du and dv:

S(x,y) = S(ldx,mdy) ,

SYMTF(jdu,kdv)exp{2mi(1dxjdu+mdykdv)} dudv .  (2.23)
K




This transform is specified by values dx,dy up to an angular
distance of x,, ym(see fig 2.7 for a one-dimensional example).
The main calculational problem is that of selecting incremental
sizes for the «calculation which are small enough to give
accuracy but big enough to give sensible computing times. %he
optimum values of the increments can be found by the sampling
theorem:

dx = 1/u., xuq= 1/du , (2.24)
where uc is a cut off frequency.

The procedure is repeated for different values of x,y in
the intervals dx and dy to give a complete two-dimensional PSF.
This is usually normalised to unity at the centre of the image .

Some reduction in computing time can be made when there is
circular symmetry ie MIF(w) where w = (u‘+v1)%' Then its Fourier
transform simplifies to a one-variable Hankel transform:

S(r) =j MTF(w) Jo (2mwr) w dw . (2.25)

Here J, denotes the zero-order Bessel function and r is the

angular distance measured from the <centre of the image,
2 2% ; . .

r = (x*+y*)7 Values of the Bessel function are available from

the software library of the computer. This method is suitable

for a circular or annular mirror and also for averaged effects

of atmospheric turbulence which is circular symmetric.

2.3.2 Overall System

However, when dealing with the overall imaging system
performance of a telescope, the combined effects of the sources

of the various degradations (eg atomspheric seeing, aperture
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diffraction, surface errors, etc) have to be calculated. If the
individual PSFs for each degradation are known, the overall PSF
is given by the joint convolutions:

S(x,y) = S, (x,y) ® S,(x,y) & Sz(x,y)... , (2.26)
ie the individual PSFs are convoluted to obtain the system PSF.
This series of convolutions is a laborious procedure. However

from the Fourier transform of eq 2.26 (using the convolution

theorem),
MTF(u,v) = MIF, (u,v) x MTF,(u,v) x MTF3(u,v)... , (2.27)
provided the phase transfer functions are negligible. So the

system MIF at any spatial frequency is the product of the

individual MIFs of the system components. Multiplication 1is
much simpler than convolution. After this, the intensity
distribution in the 1image of a point source is readily

.calculated by the Fourier transform of the system MTF as
described above.

The total MIF is often simply the product of individual
MTFs. But, this is inapplicable to combined lenses since the
aberrations in one lens may be designed to compensate for those
of another lens to produce an image quality for the <combination
which is superior to that of either component. Then the
wavefront errors due to the optical surfaces and optical
misaligments must be added for the combined lenses to give an
overall MTF which is then used with other MTFs in
multiplication.

In the next chapter the modulation transfer function

associated with the atmosphere, the diffracting aperture of the



mirror and the surface irregularities of the mirror are
considered in detail. For these the overall MIF will be given
by

MTF = A[TF;hmuthF;P&,h[FFsud . )
When the detection and recording of the image is considered then
MTFs associated with these must also be taken into account. An
example with photographic recording is considered in detail in
chapter 4 in which the scattering of light in the emulsion and
the graininess of the image are evaluated. Then
MTF = MT@WQRMTQW.MT&MjNﬁF”w.

The overall point spread function is the

PSF = 7(MTF)



CHAPTER 3 MODULATION TRANSFER FUNCTIONS
ASSOCIATED WITH APERTURE DIFFRACTION,

ATMOSPHERIC SEEING AND SURFACE ERRORS

3.1 APERTURE DIFFRACTION

As was seen in chapter 2, the modulation transfer function
of the aperture diffraction due to an unobstructed circular
mirror can be calculated as the ratio between the overlap area
of the two sheared figures and the total area. Since the MIF of
a circular mirror is symmetric, it can be <calculated along a
radial direction. As illustrated in fig 3.1, the MIF is given
in terms of spatial frequency, w, by:

MTF(w) = 2 [cos'dw - Aw 1-ng’ ], (3.1)
™ 2r 2r 2r

in the range between O and 2r. Outside the diameter, the MIF is

zero and this gives the cut-off frequency:-

W = 2r cycles/arcsec. (3.2)
2.063x10° )

The MTF for a single circular mirror 1s shown in fig 3.2.
However, many telescopes (such as Cassegrain, Maksutov,
Schmidt- Cassgrain telescopes) have secondary mirrors that block
light from reaching the centre of the primary mirror and hence
make it effectively annular. Thus its diffraction
characteristics are altered. The presence of the central
obstruction of an annular mirror complicates the calculation of
the MTE. However it can be solved analytically (O’Neill ref
3.1) as summarised in Appendix C. The MIFs of the annular

aperture at various central obstructions are shown in fig 3.3.
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(p is the ratio of the inner and outer radii of the annulus).
These curves show that the high spatial frequency response of
the system is improved at the expense of low frequency detail ie
increased resolution but reduced contrast. After Fourier
transformation, this implies a decrease in the width and height
of the central maximum with more light passing into the outer
rings of the point image diffraction pattern. These effects can
be seen in the two - dimensional figures of MITF and PSF, (figs

3.4a-d) for increasing sized central obstructions. In figures

3.4a-d the intensity has been normalised to a fixed <central

maximum intensity of  unity. This has been done so that the
contraction of the Airy disc can be seen in the graphs. The
task of handling these three - dimensional solids viewed in

perspective, is conveniently done by computer graphics (GHOST).
There is a problem of computing time when making a Fourier
transformation of a two-dimensional MTF to produce a
two-dimensional PSF. However for a symmetric system, the 2-D
PSF can be easily and much more quickly <calculated from the
square of the amplitude of the wavefront. For an unobstructed
circular mirror, (following from equation 2.6 and because of
circular symmetry) the amplitude depends only upon the polar

angle, O, and is written:

a(Q) = car* J  (krsin@®) , (3.3)
krsin®
where ¢ is a constant, k = 2w/A and J, is the first order Bessel

function.

For the annular aperture with outer and inner radii of r

and r,, the amplitude is then
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a(0) = c[ar? ), (kresin@®) - are J (kr=sin0) ] . (3.4)
kry sin@ kr, sin®

The intensity distribution, or PSF, is therefore given by

1(0) = 1a(@) 1%, (3.5)
This will have a maximum at © = 0 of I,= (cTT(r‘L—rf))Zie I,
depends upon the collecting area.

In fig 3.5 the contributions to the diffracted amplitude of
equation 3.4 are shown as ‘outer’ and ‘inner’ curves. Their
difference i1s the diffracted amplitude of the annulus. The
first zero of this curve gives the first minimum in intensity
(the Airy disc). Obviously this occurs at an angle less than
that corresponding to the outer radius. Since this ‘outer’
curve corresponds to a solid aperture then the resolution of the
annulus ig‘higher than for the solid aperture. Furthermore, as
the Airy disc contracts, light energy is transferred from the
core of the central spot to the surroundings giving a less
contrasted image. This can be seen in the figure 3.6 as the PSF
with various obstruction ratios, @ = rl/r‘, where r,is fixed at
2.0m. Further details about the effects of the annular aperture
with fixed area but variable overall radius are given in chapter
6.

Aperture MIF due to a diffraction from a number of similar
abertures can be calculated, when the MIF of an individual
aperture 1S known:

MTF(u,v) =59 MIF( Ag) (3.6)
< J
where A;= [Cag -a5 -ur) + (by-bj-vA) 1,

where a;

¢» bgare the centres of the apertures. For example, the

MTF for six circular apertures on a hexagonal matrix as shown in
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figure 3.7, is

MTF (u,v) =é§}2% [0Sl as) - (Ag) 1[;/%,} 1. (3.7)

where r is the radius of a single mirror. The aperture MIF for
the six apertures is shown in figure 3.8. This figure shows
that along the xjdirection, from a central peak, there are two
secondary peaks.| The first secondary peak is caused by when two

sheared circles nos. 3 and 5 overlap with two unsheared circles,

nos. 2 and 6 |respectively, to give a larger overall overlap
area. The other|smaller peak is caused by when a sheared
circle, no. 4, overlaps with an unsheared circle, no. 1. At

the 30 direction|to the x-direction, there is only one secondary
peak which is |caused by when two sheared circles nos. 4 and 5
overlap with two unsheared circles nos. 2 and 1 respectively.
So this gives a|sixfold symmetry MIF pattern, which will give a
sixfold symmetry|diffraction pattern. This will be discussed in

chapter S.

3.2 ATMOSPHERIC SEEING

3.2.1 Introduction

As seen in chapter 1, atmospheric turbulence 1is a major
problem in optical astronomy as it drastically reduces the
angular resolutifn of the telescopes. Because of the variations
in atmospheric refractive index, which are mnoticed as

“twinkling”, the/wavefront from a stellar object reaching the

telescope is no longer plane parallel but is distorted so that

the phase is constant only over a few cms distance. Thus, no

1
1
!
!
1
|
1
!
!
I
|



FIG 3.7 Six circular apertures
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matter how large the telescope, the resolution obtained is no
better than that of a few cms telescope aperture. Hence the
diameter of the stellar image varies from 0.5 to 10 arcseconds,
or more according to weather conditions. Large telescope
mirrors are merely collectors of light energy for poorly
resolved stellar images. This limitation on performance 1is
called ”seeing”.

Seeing is characterised by a coherence distance, 1, . In
average seeing, T, is equal to 10 cm and this gives 1 arcsec FWM
diameter (which is also the diffraction Jlimit of a 10 cm

aperture). Good seeing means I, ~ 20cm. During the course of a

(o > 16cm Jov 10% of

year the number of nights with good seeing is very low,px Apart
from the seeing of the atmosphere, the seeing of the dome in
which the telescope sits is very important and this is thought
to be responsible for about a half of the seeing. This can be
reduced through proper attention to dome design, forced
ventilation and temperture excess of mirror surfaces.

There are two cases considered- the short exposure case and
the long exposure case. The atmospheric degradation leadé to
changes of image position with a characteristic time of a few
milliseconds. 7The eye is therefore unable to follow them. In a
high speed photograph, it is possible to freeze the movement of
the distorted, speckled image. This 1s a short exposure case.
In a conventional astronomical photograph, the exposure time is
considerably longer than the characteristic time of seeing, in
which «case the recorded image is the whole ensemble of

instantaneous image positions. This 1s a long exposure case.

time .



3.2.2 Atmospheric Turbulence Model

In the early sixties, the physics of image degradation by
atmospheric turbulence was little wunderstood but since that
time, the state of the model and the theory of atmospheric
turbulence have been developed considerably.

The atmospheric turbulence model is based on the work of
Kolmogorov (ref 3.2) who showed that the turbulent flow can be
described statistically for turbulent eddies of scale size
l<<lLyg. Lyis called the outer scale of the turbulent flow and 1is
usually large compared to the size of the telescope aperture)U%whw%
The turbulence is damped out for eddies of size smaller than Ilg,
the inner scale of the turbulence. The range of 1l varies from
a few millimetres mnear the ground to about 1lcm near the
tropopause. For turbulent eddies within the range, 1<4¢14{l,, the
turbulence is isotropic and its intensity depends only on the
single parameter, e, which is the turbulent-energy dissipation
rate per unit mass. Energy is injected on a scale of Lyand s
degraded into smaller eddies at a scale of 1, .

In orde; to describe the strength of the turbulence on a
scale comparable to the telescope aperture, more direct
information is obtained by measuring the mean-square difference
in refractive index at two points, distance 1 apart. The
variation with r of this mean square difference is «called a
structure function, D(r). Tatarski (ref 3.3) showed that,
following from Kolmogorov, the difference of the local
atmospheric temperature at two points has a mean square value

that is proportional to the two-thirds power of the distance



between the two points from dimensional analysis. Thus the

temperature structure function is

2
D.(r) = <[ T(r’)-T(r’-1) ];Z (3.8)
and can be written as
2 2/ _
De(r) = Cor' s (3.9)
where Cris a temperture structure constant. Similarly one can

define the refractive index structure function as
Da(r) = ([ n(r)nCrr-r) 1) (3.10)
Since fluctuations in n depend linearly on fluctuations in T, it
follows that
Da(r) = Cor'3 (3.11)
where Cqpis the refractive 1index structure constant. C,is

related to the temperature structure constant, C4, by

~b
C,= 80x10 C P , (3.12)
TZ.

where the air pressure, P, is expressed in millibars and the air

temperature, T, in degrees kelvin. Thus under normal conditions
-6 . 2 . .

Ca~ 10 Co,. l'he parameter C, expresses the «contribution of
. A . 2. ) .

turbulence to optical propagation. While Cpis difficult to

measure, C:can be measured in a relatively simple way as it 1is
found to depend on the altitude.

Gur’yanov (ref 3.4) has made a survey of the published
results of measurements of vertical profiles of the refractive
index structure constant, C:, in the atmosphere. These
have measured C: (hence C; ) as a function of altitude using
captive balloon-borne, high speed, temperature sensors. A wide

spread in values at different times of the day was found. The

2
typical values of C,at 12m above the ground are found to be in
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the order of 10 m7” during the daytime and 10 m during the
nighttime. There 'is found to be a steady decrease in these
? -Y
values with increasing altitude. An h jdependence has been

predicted under un?table daytime conditions on flat land by
several authors (ref 3.5), and also an h deéendence under
nighttime and neut;al conditions. Fig 3.9 shows the averaged
measured Cz depenaence on the altitude. A bump on the curve in
fig 3.9 occurs at about 10km and this is due to turbulence near
the tropopause where strong wind shears frequently occur. Below
about 4 km, the ph§sical shape of the earth’s surface <certainly
plays an importagt role, but above 4km, it is found that the
behaviour of turbulence is almost independent of the Jocation.
The Kolmogordv—Obukhov model of atmospheric turbulence
(described above) appears to be substantially correct, and is
supported by a lérge amount of experimental evidence. Both
D,(r) and D,(r) have been found to exhibit a ;%dependence under

general meteorological conditions.

3.2.3 Long Exposure Atmospheric MIT and Imaging Properties

The modulation transfer function for imaging through a
turbulent atmosphefe in a long exposure <can be calculated.
Fried (ref 3.6) and Hufnagel and Stanley (ref 3.7) following
Tatarski’s work, haQe studied the detailed image structure which
undergoes random changes related to the motion of the
atmospheric inhomoggneities above the telescope aperture. They
were able to show th@t it is possible to assign an MIF to

atmospheric image transmission.
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FIG 39 Average C% profile (HUPNAGEL [1974)) extended towards low altitudes according a
h~% law (neutral nighttime conditions). Dotted line: extension according a h~t law (unstable
daytime conditions).



After traversing the turbulent atmosphere, there will be
two effects on a wavefront from a stellar object - one by phase
disturbances and the other by amplitude disturbances. So the
wavefront, collected by the telescope aperture, will deviate
randomly from the uniform amplitude of a plane wavefront. The
aperture function for this wavefront is

f(x,y) = oc(x,y) explli(x,y)+id(x,y)] , (3.13)
where 6(x,y) is the random variable which describes the phase
variation at the point x,y and 1(x,y) is the random perturbation
of the logarithm of the amplitude. The effect on amplitude is
usually taken to be small unless the origin of the seeing s
very distant. In that <case the propagation of a corrugated
-wavefront will ultimatly lead to interference between originally
separated parts of the wavefronts and amplitude variations will
result. However, when these are taken into account then it s
estimated that these effects are about 20% of the effects of
phase. In the following discussion only phase variations are
considered.

The optical transfer function for an overall telescope and
atmosphere system is

T(u,v) = 1_[] o (x,y)oc (x-pu,y-Av) * »

A explid(x,y)-id(x-Au,y-Av)] dxdy , (3.14)
with 1(x,y) now set to zero. Here é(x,y) varies randomly with
time (the average period is a fewmilliseconds), so the average
OTF over a long exposure is

T(u,v) = l_j].oc(x,y)oc(x—Au,y—AV)<exp[iJ]> dxdy , (3.15)
A

where the angle brackets <...> are used to denote an ensemble



average and J is the difference between the phase variations,
6(x,y) and d(x-Au,y-Av). If this difference has a Gaussian
distribution, then

<expl[id]> = exp[:L<Jt>] ,
2

where
2 2
«d > = <[é(x,y) - é(x-ru,y-av)] > = D(u,v)
D(u,v) is the structure function for a random field of 4. Hence

T(u,v) = A_JJ o« (x,y)ex (x-pu,y-Av) expl-1 D(u,v)] dxdy . (3.16)
A 2

Since the right hand side of T(u,v) is now expressed in terms of
real quantities only, then T(u,v) has become a real MIF, ie

MTFE(u,v) = MTﬁdéu,v)exp[ D(u,v)] , (3.17)

-1
2
where MTﬁﬂéu,v) is the MITF of the telescope aperture and the
phase fluctuations now give rise to intensity variations in the
image. This equation 3.17 can be considered as the product of
the telescope MIF and a quantity exp[-1/2D(r)], which we can
consider to be the atmospheric MIF since it is independent of
the telescope’s parameters. D(u,v) can be related to the
statistical properties of the refractive index field by a

straighforward, but lengthy. calculation which will not be given

here. This calculation (ref 3.8) gives the relation

D(r) = 2.91* 8) ch(z) dz , (3.18)
where k = 2T/) and the integral is taken over the propagation
path, z.

When observing at an angular distance, ©, from the zenith,
the thickness, dh, of each layer become dhsecO and so

D(r) = 2.91k* /¥secO fC:—(z) dz . (3.19)




Fried introduced a very convenient measure of seeing which
1s a coherence diameter, r,. From calculations involving the
resolution of a telescope through the atmosphere, he gave the

MTF for the atmosphere as

S,
MTF (w) = exp[—3.44[m S (3.20)
rD
and so the wave structure function is
D(r) = 6.88&&5/3. (3.21)
ro
The convenience of the use of a coherence diameter, T, derives

from the fact that it ‘represents’ the equivalent diameter of a
telescope aperture giving the same size as the seeing-limited
stellar image. So the resolving power is Ilimited by the
telescope when its diameter, D, is smaller than re and 1t is
limited by the atmosphere when D is greater than r,. Large 1,
values mean good seeing while small values mean bad seeing.

The relation between the coherence diameter, ro,, and the

kX
profile, C,, with respect to height is obtained by equating
3.19 and 3.21. We get
2 -3/5
o= [0.423K Pseco J C,(z) dz] , (3.22)

which shows that r, depends wupon the zenith angle and the

wavelength, A = 27/k, ie

° 3
Io (@) = 1, (0) (cosO) . (3.23)
The wavelength dependence is given by
2% s
Lo (N2) = A (3.24)

and is comfirmed experimentally by Boyd (ref 3.9) and by Selby,
Wade and Sanchez Magro (ref 3.10). The turbulence-limited

optical resolution is of the order of A/r, , so from equation



_|/5
3.24, it is thus proportional to A. The turbulence-limited

resolution of conventional imaging in the visible region is

almost, but not quite, independent of wavelength. Between the
visible and ten microns region, there is a factor of 1.79
difference in the turbulence-limited angular resolution. Boyd’s

results are in good agreement with this theoretical prediction.
He compared the infrared and visible seeing by taking pictures
of the sun’s limb simultaneously at 10 microns and at visible
wavelengths, and he found the RMS width of the point spread
function for seeing to be 1.9£0.2 times greater at 0.55 micron
than at 10 microns.

Selby, Wade and Sanchez Magro measured the size of the
seeing disc at infrared wavelengths by studying infrared speckle
patterns with wvarious filters, and they found that the
resolution obeys a X%law.

The coherence diameter, To is wusually measured at one

wavelength, 2,= 0.5 micron, so for other wavelengths, A, the MIF

for the atmosphere is given by

9
MTF(w) = eXp[—3.44{M]/3] , (3.25)
T
where the parameter, T, is related to the known value 1, at

wavelength, Ao, by

r = 1o [ A_J&g. (3.26)
to
So on subtitution,
S 2
MTF(w) = exp[—3.44(ﬂl] PP (3.27)
To A
Experimental measurements of the atmospheric MIF and the

coherence diameter, r,, are described in chapter 7.



From equation 3.27, the MIF curves for the atmospheric
turbulence at average seeing, ie r, = 10cm, can be obtained at
infrared wavelengths. These are shown in fig 3.10a, and from
these the beneficial effects of the X%Jaw at longer wavelengths
can be seen. The broader the MIF is then the narrower the PSF
becomes. Also fig 3.10b shows the MIF curves at Te = 20cm and
here the width of the MIF has been doubled, hence the image 18
narrower. A useful rule of thumb is that the cut-off frequency
in cycles/arcsec for the atmosphere is of the order of ro/10 for
the visible region.

For an aberration free system, the MIF due to diffraction
by the aperture of the exit pupil and the atmospheric turbulence
can be calculated quite simply, that is

MTF = MTﬁuax MTE 05 -
Then the PSF can be calculated using a Hankel transformation,
since the atmospheric MIF has rotational symmetry.

For average seeing fig 3.11 shows the resolution for the

seeing-limited 1image at the visible wavelength A = 0.5 micron,
for various aperture diameters, D. The resolution at good
seeing is shown as a dotted line. As can be seen, the

resolution achieved by a very large system in the presence of
turbulence is just equal to the resolution that would be
achieved if the aperture diameter were 1T, , and there was no
turbulence-induced wavefront distortion. This image has a size
which is equal to a FWHM value of 1 arcsec corresponding to
A = 0.5 micron and 1o = 10cm. When the value of the aperture

diameter is smaller than ry, the angular resolution is inversely
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propdrtional to the diameter which corresponds to the
diffraction limited performance. The elbow of the curves, 1e
the point of intersection of the two curves, (PSF for aperture
only and PSF for atmosphere only) occurs at D = ro . For 1o =
20cm, the limited resolution 1is equal to a FWHM value of 0.5
arcsec.

The two sets of curves, shown in fig 3.12 for 1r,= 10cm and
20cm  are obtained for various aperture diameters, D, and
wavelengths, A. It is desirable to examine the combined effects
of atmospheric turbulence and aperture diffraction to determine
if the improvement of the atmospheric image quality with
wavelength produces an optimum wavelength for imaging efficiency
for attainable apertures.

The minima exhibited by the curves arise from the opposing

effects of increasing diffraction-limited image size and
decreasing seeing-limited image size as the wavelength
increases. Although in all «cases the images at Vvisible

wavelengths are seeing-limited, the steeply rising portions on
the long wavelength side of the minima become more and more
diffraction-limited. Furthermore, due to the minima, there
exist aperture-dependent wavelengths at which optimum angular
resolution may be obtained. In the r,= 10cm <case the minimum
occurs at a wavelength in microns equal to the telescope
aperture in metres as first noted by D.S.Brown (ref 3.11). With
better seeing conditions, (rg= 20cm) the wavelength minimum
moves to shorter wavelengths by a factor of up to 2.

Infrared telescopes are mnot wusually regarded as high



resolution instruments, probably because aperture diffraction
and the limitations of ©present day detectors restrict their
performance. So large apertures are required (eg greater than

. S . -5 .
4m) to obtain a significant benefit from the A improvement in

atmospheric seeing—at infrared wavelengths as seen in fig 3.18.
The UK Infrared Telescope (3.8m diamter) at Mauna Kea is
capable of producing better resolution than in a Vigible image .
Hence at far infrared, millimetre and radio wavelengths, the

angular resolution attainable s determined by aperture

diffraction and not by atmospheric seeing.

3.2.4. Short Exposure Atomspheric MIF and Imaging Properties

In a small aperture (D=~several 1, ), the image will consist
of several speckles giving an asymmetrical instantaneous point
spread function which will require a complex optical transfer
function in its description. This image is blurred by the
instantaneous MIF and displaced by the PTF. Over a long time
each speckle will move about randomly and cover an area ~A/r1, e
typically 1 arcsec). As the aperture is increased and includes
more ro, patches, then there wil] be increase in the number of
speckles which are distributed over about 1 arcsec. The typical
speckle size is about A/D and since the size of the seeing disc
is of the order of A/1r, , the number of speckles in the image s
(D/reo )% If the intantaneous sizes and centroids of speckles
were to be recorded then when D~r, , the pattern would be one
speckle displaced from the origin. Further with three or four

speckles, the centroid would, in general, be displaced from the



origin and the «circle centered on the centroid which just
includes all the speckles would be less than 1 arcsec. As more
speckles are included the full arcsec is covered and of course
the centroid moves closer to the origin. So for a wvery large
mirror the instantaneous speckle pattern will tend to become a
continuous distribution centered on the origin and being
approximately 1 arcsec in size. This is exactly the same result
as for long exposure seeing.

So it is expected that at small apertures, where the Airy
disc is more than 1 arcsec, the seeing effects will add some
small blurring instantaneously and it will have the same effects
as the long exposure seeing. At large apertures the short and
the long exposure cases are the same. In between the small and
large apertures when few speckles are seen, then the enclosing
circle based on the centroid will be smaller than the long
exposure case of seeing.

Fried (ref 3.6) calculated the short exposure atmospheric
MTF where the random displacement of the image  (centroid of
speckles) is ignored and the average of a series of short
exposures is taken. He found that

MTF(w) = MTF exp{—3.44[M]$@[l - [m]"s]} . (3.28)
T D

The term in the square brackets represents the tilt suppression
effect, and this involves a dependence on the telescope aperture
diameter, D. The optimum value of D to give the minimum PSF is
D=~4r, . For large apertures, the term in the square brackets

becomes equal to unity and the MIF then equals that for long

exposures.



3.25

For a short exposure, the combined system of the telescope
and atmosphere can be calculated using eq. 3.28. Figure 3.13
shows the angular diameter, FWHM of the PSF, as a function of
aperture diameter, D, for both long and short exposure images at

r, = 10cm seeing. The minimum of the short exposure curve
occurs at D=x4r,, The angular diameter (FWHM) is improved to

about 0.34 arcsec from 1 arcsec (seeing disc). In Fried (ref

s

3.12) a similar calculation is made using the ”resolution” which
is an integration taken over the short exposure optical transfer
function. This can be used to advantage as a controlled plane
mirror can be used to keep the centroid of the speckles at the

origin, or a series of short exposures can be added together to

a resultant image, with all their centroids at the origin.

3.3 MIRROR SURFACE ERRORS

3.3.1 Introduction

In the polishing of mirrors, there will _bc some surface
errors which act as a phase grating, diffracting light out of
the central maximum of the ©point spread function and thus
reducing image quality. The effects of surface errors on image
quality are examined here with the aid of computer simulations
using the shear interferometric measurements made by Grubb
Parsons on several mirrors. These are:-

a) European Southern Observatory 1.4m telescope

b) Isaac Newton Telescope (2.5m)

¢) Danish - Copenhagen telescope (1.5m)
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d) Anglo-Australian telescope (3.9m)
A set of measurements of interferograms have been supplied by
Grubb Parsons after their formal acceptance testing for several
mirrors. Image quality is usually evaluated in terms related to
the performance requirements of large astronomical telescopes

that must perform in visible light. In practice the polishing

is stopped when the requirements are reached.

3.3.2 Basis of Calculation
Mirror surface deformations act as an irregular phase
grating, advancing or retarding the reflected wavefront by twice
the height or depth of the corresponding point on the mirror
surface measured relative to the normal surface éhape. The
deformed wavefront is represented by a interferogram that plots
departure from the normal shape in wavelengths of optical path
difference as a function of position in the aperture of the
telescope, W(x,y). So the aperture function is then
f(x,y) = explikw(x,y)] . (3.29)
and the MTF can be computed from the measured wavefront error

interferogram using equation 2.21,

MTF(u,v) = 1 ” cos(kd) dxdy . (3.30)
A

The integral is taken over the overlap area of the mirror
aperture. d is the wavefront difference between the zero
sheared wavefront, W(x,y) and the sheared wavefront,
W(x-Au,y-Av). The PSF can be obtained by a Fourier transform.
The measurements of the interferograms from Grubb Parsons

represent the wavefront slope between the points on the surface.



This is then converted to the wavefront difference, d. The MIF
is <calculated using eq 3.30 and this is repeated for every step
in shear units in the x-direction to give an MIF in a spectrum
of spatial frequency, up to the cut-off frequency where there is
no overlap area. This procedure 1s repeated for the
y-direction. Then the MIF for overall surface errors is given

by averaging both the x- and y-direction M[Fs.

3.3.3 Results

The data were processed for the Furopean Southern
Obervatory 1.4m telescope. These data consist of an average of
four parts for a constant mirror where the mirror and its

support are both orientated at four different angle positions,

© L] o (-]

0, 90, 180, 270, to remove the aberrations of the shear
interferometer and null lens. The MIF can be seen in fig 3.14
showing x- and y-direction and the averaged MIF. The averaged

MTF for lssac Newton Telescope, Danish telescope and AAT are
shown in figs 3.15, 3.16 and 3.17 respectively.

The range of MIFs for different telescopes are shown drawn
to the same scale in fig 3.18 and it is interesting to note that
as the diameter is increased, the MIF becomes smaller, that 1s,
it becomes more difficult to polish a large mirror.

To a good approximation, the image degradation due to
telescope surface errors can be treated in a similar way to
atmospheric seeing with a large value of r, . lor comparison the
MTF for the atmosphere is drawn in fig 3.18 for a value of 1, of

200cm; and it is noted that surface errors of recently
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constructed large mirrorsare equivalent to extraordinarily good

seeing.



CHAPTER 4 SCEIMIDT TELESCOPES

4.1 INTRODUCTION

Aperture diffraction, surface errors and seeing as
limitations to imaging have been considered in chapter 3. In
this chapter all these effects are examined 1in a real system
where the whole process from the top of the atmosphere to the
image in the photographic emulsion is taken into account. By
doing this it will be possible to see how a telescope system may
be optimised. The example considered is a Schmidt telescope.

At present, the two largest Schmidt telescopes are the 1.2m
(48”) Palomar Scdmidt telescope at the Hale Observatory on Mount
Palomar, USA and the 1.2m (48”) United Kingdom Schmidt telescope
at the Anglo-Australian Observatory at Siding Spring, Australia.
There are also several smaller ones.

In the future, there will be a need to build bigger Schmidt
telescopes to capture more starlight so fainter stars can be
recorded. A detailed examination of the contributions to
imaging by the different parts of the telescope and recording

system will indicate in which way future designs might go.

4.2 BASIC FEATURES OF SCHMIDT TELESCOPES

When a plane wavefront is reflected from a parabolic mirror
it becomes a converging spherical wavefront giving rise to good
imaging. However, when a plane wavefront is reflected from a
spherical mirror, the wavefront becomes parabolic and converges

to an extended image (spherical aberration). The parabolic




mirror gives perfect imaging for the axial rays but off-axis

rays suffer from coma. Therefore the mirror has limited ability
to cover more than a small angular field of view. However, the
spherical mirror, with an aperture stop at its <centre of

curvature, would give images over a wide field f}ee from
off-axis aberrations, but suffering from spherical aberration.
1t should be noted that if the stop is not at the <centre of
curvature, then coma and astigmatism would be present.

To correct this residual spherical aberration, Schmidt
introduced a thin glass aspheric corrector plate into the
aperture stop. The purpose of this plate was to pre-correct the
plane wavefronts entering the system by introducing wavefront
changes that would compensate exactly the spherical aberration
introduced by the spherical mirror. This is the basic principle
of Schmidt telescopes and it permits critical definition over a
large field with a focal ratio that is an order of magnitude
smaller than is possible with a lens system ie faster system.

The s ame aspheric correction is required for each
wavelength but with a single glass corrector this can only be
properly done at a single chosen value of wavelength. However,
by introducing extra optical power into the corrector plate (by
changing from a second order to a third order surface) it is
possible to minimise the <chromatic aberration. Nowadays
achromatic <corrector plates can be made by using two glasses of
different refractive index and then there is precise correction
at two wavelengths and good correction at all other wavelengths

in between.



Before entering the Schmidt telescope, the wavefront of the
starlight suffers from ”seeing” giving an alteration in
intensity and phase from variations in the refractive index of
the atmosphere.

On entering the telescope, the wavefront further suffers
from three degradations before reaching the recording
photographic emulsion; firstly by diffraction at the aperture of
the mirror, secondly from changes in phase by the manufacturing
errors in the mirror surface and surfaces of the aspheric
corrector plate. Thirdly, although the achromatic <corrector
plate gives perfect correction at two wavelengths, there will be
some small residual wavefront errors for wavelengths in between.

As the starlight is directed and focussed into the
photographic emulsion, its wavefront is further degraded by
scattering in the -emulsion. Further, the composition of the
emulsion (graininess) leads to fluctuations in the structure of
the image which is a further degradation. The photographic
emulsion is exposed to starlight and the night sky (sky
background) long enough to ensure that the photographic density
of the sky background 1is unity after processing. At this
exposure the ratio of the signal (due to the image of the
stellar objects) to noise (due to graininess and fluctuations of
the background) is at a maximum, so that the system is optimised
to detect faint stellar objects against the background.

The effect of all these degradations 1is examined by
simulating them in three different models of Schmidt telescopes

in order to determine their relative importances. The basic



model telescope, S1, is similar to the United Kingdom Schmidt
telescope (UKST). This has a 1.24m (48”) f/2.5 mirror. The
other two models are:

a) S2, 2.5m (96”) f/2.5. This is a telescope whose size is
doubled both in aperture and focal length relative to S1.

b) S3, 2.5m (96”) f/3.0. In this telescope, extra focal
length is included.

It i1s expected that larger Schmidt telescopes will lead to
an improvement in detection sensitivity through enhanced signal
to noise ratios. However, the degree of improvement will depend
upon the relative 1importance of the degradations which
contribute to the size and structure of the stellar images.
From these the limiting sensitivities of Schmidt telescopes can
be evaluated.

Of course in the future the photographic systems will
probably be replaced by direct reading by charge-coupled
device. CCD detectors register up to 80 per cent of incident

photons compared to one or two per cent for a photographic plate

4.3 THE THEORY OF THE CORRECTOR PLATE

The corrector plate of the Schmidt telescope is used to
correct the residual spherical aberration which 1s produced by a
spherical mirror. The aspheric glass <corrector plate 1s less
difficult to fabricate than the aspheric surface of a paraboloid
mirror. This is because the refractive index difference across
the glass corrector is about 0.5 compared to the effective index

difference of 2.0 at the reflecting surface of the paraboloid,



making it only a quarter as sensitive to fabrication errors.

The theory of the aberrations of a Schmidt telescope and
the shape of corrector plate has been treated by several authors
(ref.4.1). The following is a simplified theory which will be

sufficient for the simulations of the computer model.

4.3.1 Spherical aberration

The wavefront aberration produced by reflection of a plane
wavefront at a spherical mirror can be calculated from the
difference in surface height between the sphere and a paraboloid
which gives an axial image without aberration.

In fig 4.1, we have a parabola, OA of focal length, F. y is
the distance from the axis while z is the axial direction. The
shape and slope of the parabola are:

z = §74F and dz/dy = y/2F

Further, if AN is the normal to the parabola at A then:

BN = 2F ; PQ = y>/8Fand 6 = y>/16F>.
Now 4 represents the difference in slope ©between the parabola
and <circle centered at P of the same focal length. Using h to
represent the height difference between them,then

6 = dh/dy = y3/16F> hence h = y*/64F>.
For the case of the paraboloid and sphere, the equation becomes:

h o= (x2+ y2) /64F>, (4.1)

where x and y are the two coordinates normal to the paraboloid
axis.

When a wavefront passes through a surface, its shape is

changed and the amount of change depends on the difference in
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refractive index. The change in wavefront form, W, is given by
W = (np-n, )h where n and n,are the refractive indices and h is
the surface height. The reflection of a wavefront is denoted by
a reversal of sign of the refractive index, so that for a
reflection in air, W= -2h. So for a reflecting spherical

surface, the wavefront aberration, W is

2
W= -(x2+y2) /32F2. (4.2)
4.3.2 Aberrations in Schmidt telescope and shape of corrector

plate

A circular aperture is placed at a distance 2F in front of
the spherical mirror as shown in fig 4.2. The coordinates X,y
are in the plane of the aperture and its origin is at the centre
of curvature of the sphere. For small angles of incidence the

2 2
wavefront aberration is then W = -(x*+y%) /32F, regardless of
the angle of incidence at the aperture stop. Therefore it has
no off-axis aberrations. The focal surface will be spherical
and concentric with the minjor so we have to use curved
photographic plates (or flat plates by using a field flattening
lens in front of them).

If a refracting element (corrector plate), which introduces
an equal and opposite aberration, i1s placed in the plane of the
aperture stop, 1t will correct the spherical aberration of the
optical system. The wvariation of thickness of the corrector

plate with refractive index, n, required for this 1is:

t = (x2+yz)z . (4.3)
32F3(n-1)

However, the <corrector plate does introduce an axis and



therefore must produce off-axis aberrations but these are
usually very small. Hence the wuseful angular field is made
larger by this device.

Since the refractive index of the corrector plate varies
with wavelength, the spherical aberration of the sphere can be
corrected accurately for only one value of the refractive index
and therefore for only one wavelength. |If the corrector plate
is calculated for use at a wavelength for which the glass has an
index nc(corrected index), but is then used for a wavelength for
which the index is n, it is evident that the wavefront produced
from the corrector plate 1is

W = (x2+vz)z(n—1) . (4.4)
32F%(ng-1)

The difference between <corrected wavefront and non-corrected
wavefront gives the residual aberration caused by the lack of

achromatism of the corrector plate, so

2
O = (x*+y%2) (n-ne) , (4.5)
32F*(nc-1)
ie when n = n., then A = O. Clearly the <chromatic aberration
becomes worse at the thicker parts of the corrector plate. This

can be reduced by introducing extra optical power into the
corrector plate and alter its shape. This will, of course,
change the focal length of the combined system. The shape of
the <corrector plate depends on how the chromatic aberration is
to be minimized. There are two different ways of looking at
this as described below.

The cartesian equation of its surface which i1s given in eq

4.3, becomes, with higher powers,



t(r) = a 1%+ a,r%+ agrh+. ... ,

X

2 2 . . .
2 =x% +y" . To a good approximation, the terms in r®and

where r
higher powers can be neglected giving a quadratic term:
t(r) = Ar*- Br*, (4.6)

where A = 1
32F3(n-1)

When the surface slope is zero at radius, rp, we have

dt = 4Ars - 2Brz= O, (4.7)

dr
or
B = 2ArZ. (4.8)
This occurs where a ray parallel to the axis and incident to the
surface is not deflected overall on its passage through the
corrector plate. This is known as the neutral! zone and is
usually fairly close to the edge of the plate. There are two
values of rp: .
differene 1n
i) when theAthickness at the outer radius, R, of the plate
is equal to zero, so from eq 4.6,

t(R) = ARY- BR*- 0

Hence B = AR and substituting in eq 4.8, this gives
=R V2 . (4.9)
ii) when the surface slope at the outer radius, R, of the
plate is equal and opposite to the maximum slope in the area

r< r, . Differentiating eq 4.7 to give the maximum slope

kel 2
dt = 12Ar®- 2B = 0 ,
dr®

or
B = 6Ar%.

Substituting in eq 4.8, gives 1 = 71, 3. This point has a



maximum slope inside r,, and hence the outer radius which has
the opposite slope, is

R =2, V3, (4.10)
ie the neutral zone radius, ryis equal to v3/2 of outer radius.

Fig 4.3a shows an aspheric corrector plate with the neutral
zone radius which is equal to 0.707 of outer radius, while in
fig 4.3b rzis equal to 0.866R.

In practice, the value of neutral zone radius,rp,is usually
specified, and the <chromatic error would be minimised by
changing the coefficient, B. If the chromatic error 18 small
then 1= R/V/2' is used (equal height) and this is the most common
case. If the chromatic error is large then 1= V3R/2 is used
(equal slope). -

So in the Schmidt telescope with this form of <corrector
plate, the wavefront due to residual aberration is modified from
that of eq 4.4 to:

A =A’r“4- B'rZ, (4.11)

where A? = _1 (n-ne) and B’ 3A2A'ri.
32F3(nc-1)

4.3.3 Achromatic Doublet Corrector Plate

Despite the minimising feature above, the singlet corrector
plate is corrected for only one value of the refractive index,
n,, and therefore for only one wavelength. At other wavelengths,
refractive index, n, the image will broaden due to a minimised
chromatic aberration.

The chromatic aberration can be made smaller by introducing

a further refractive index into the <corrector plate. An



al r
r4

b) r,

FIG 4.3

FIG 4.4

= 0.707R

= 0.866R

Profiles of Schmidt singlet corrector plates

Profite of achromatic doublet corrector plate

L



achromatic doublet is made from two different refractive index
glasses (usually crown and flint) cemented together and then
there 1s precise correction at two wavelengths and good
correction between these values. Fig 4.4 shows a typical shape
of a doublet corrector plate.
The residual wavefront aberration produced from a doublet
corrector plate is given by
A = A"r%- BUr®, (4.12)

where A" = 3;r3(ac(nc-1) + af(nf—l)—l) and BY = 2A"rg,

where a. , a;and ne, nfare asphericities and refractive indices
of crown and flint glass respectively. Eq 4.12 is similar to eq
4.11 except for an extra asphericity term. The term asphericity
is used to describe the departure of an optical surface from the
true spherical form and having the fourth power of r in the
polynomial surface.

In the UK Schmidt Telescope, there are two corrector plates
available, of which one is a singlet «corrector plate made of
Schott BK7 glass and is corrected at a wavelength of 0.42
micron. The other is an achromatic cemented doublet of Schott
UBK7 and LLLF6 glass which 1is corrected at wavelengths of 0.38

and 0.80 micron.

4.4 MODUIATION TRANSFER FUNCTION

As described previously in this chapter (4.2), there are
five degradations of the light wavefront as it passes from a
star through the atmosphere and the Schmidt telescope to reach

the recording photographic emulsion. To simulate these



degradations, the cumulative convolution of these on the image
structure of a star is calculated and for this it is easier to
use the response in Fourier space through the modulation
transfer function, MIF. The advantage.of using the MIF is that
by the <convolution theorem, the overall MIF of a system is the
product of the transfer functions of successive degradations of

the system (see chapter 2).

The MTF of each degradation is described as follows:

4.4.1 Seeing

From chapter 3, there is an accepted model of turbulence
for the atmosphere which leads to an MIF at spatial frequency,
w, of:

s

MIE(w) = expl-3.44(aw/r)7] , (4.13)
where the coherence length parameter, r, is related to the known

value 1, at wavelength Agby

ol
T =14 (A/Ag) (4.14)
On substitution we set
2 Slg

MTF (w) = expl-3.44{(A/x D(wr/1oJ7}] . (4.15)
The value of 1, has to be determined experimentally, but r,= 10cm

is a typical value.

4.4.2 Diffraction

The MTF of the aperture has a geometrical interpretation
which is used to calculate the MIF (see chapter 3). It
corresponds to the ratio of the area of the overlap of the
aperture shifted on itself (by WwA) to the area of the aperture.

Then




MIE(w) = ;J dA | (4.16)
A Jeveriap

where A is the total area.

4.4.3 Surface errors

The wavefront errors in the surfaces of the mirror and the
corrector plate should really be calculated from the
manufacturer’s data. To a good approximation, the surface
errors can be expected to behave in a similar way to atmospheric
seeing with ry, at higher values (section 3.3). In the present
calculation the surface errors have been regarded as equivalent
to very good seeing and are represented by equation 4.12 with 1o
of 30cm, as there are three surfaces from which the light is

reflected or through which the light passes.

4.4.4 QOptical design

The optical design of the <corrector plate can be
conveniently introduced into the MIF for the aperture. When the
residual wavefronts errors are taken into account the MIF of the

aperture becomes

MTE (w) = ;f cos(2nd/M)dA (4.17)
* A
dva/(ap

where d is the difference in phase between the wavefront and the
shifted wavefront at dA, ie

d = a(r) + alr+aw)
From equations 4.11 and 4.12, for a singlet

O(r) = 1 (n-nc) (r*- 2r&r;),
32F3 (ne -1)

and for an achromatic doublet



Alr) = _1 [ac(nc—1)+a;(n§—1)—1](r“-2r"r§)
32F3

As we will want to calculate the MIF for the optical design only
and to compare this and other MIFs, we simply divide this
etquation 4.17 by the MIF for the aperture only (eq 4.16).

It is assumed that the corrector plates wused in the S1
telescope are scaled in diameter for the S2 and S3 telescopes

but are otherwise made of the same glasses.

4.4.5 Photographic emulsion

There are two contributions to the MIF in the photographic
emulsion, one from the scattering of light in the emulsion and
other due to latent image formation and chemical development.

a) Scattering of light |

Light incident at one point of an emulsion is scattered
into neighbouring areas primarily because of refractive
non-uniformities within the emulsion. This and other
mechanisms, such as finite grain size and halation, will —cause
blackening over a larger emulsion area than expected. This
spreading corresponds to a value of MIF less than 1.0 at all
spatial frequencies.

b) Development

During exposure, the grain size will change (latent image
formation) as silver halide is reduced to silver. In the
development, the exposed point in the emulsion may influence the
image at neighbouring points. These effects are primarily due
to the diffusion of ©by-products of development and spent

developing solution across the emulsion area. This is an



adjacency effect and it wusually makes the MIF values greater
than 1.0 at low spatial frequencies.

The MTF values for an emulsion are to be found in the
manufacturer’s data books. The MIF for the emulsion <considered

in these «calculations (Il1la-J, Kodak Ltd (ref.4.2)) is shown

in fig 4.5. Manufacturers wusually quote spatial frequency
in cycles/mm. These can be converted to cycles/arcsec as
follows:

cycles/arcsec = cycles/mm x F/2.O63x]02, (4.18)

where F is the focal length of the telescope mirror in metres.
Clearly the effect of the emulsion will depend upon the
size of the broadened image falling on it. For~ a long focal
length mirror, the image will be proportionately bigger and so
the effect of the emulsion MIF will be smaller than for a short

focal length.

4.4.6 The Cumulative MIE

The cumulative MTIFs have been calculated for the three
models of Schmidt telescopes, S1, S2 and S3, over a range of
wavelengths. The telescopes have been assumed to have, in turn,
both a singlet and an achromatic doublet corrector plate.
Further, the calculations have been made wunder conditions of
average seeing (re = 10cm) and of good seeing (rg= 20cm). To
summarise these calculations, the value of MIF at a typical
spatial frequency (w = 0.3 cycles/arcsec) is shown as a function
of wavelength in figs 4.6a,b,c for a telescope S1.

The cumulative effects of seeing, diffraction, surface
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errors, optical design of the corrector plate and the effects of
the emulsion are shown. In all the figures 4.6a,b,c, the seeing
reduces the MIF considerably, although its effect 1is less at
longer wavelengths as expected. - While the aperture diffraction
and surface errors have little effect, the optical design of the
plate has a much greater effect. For example, for the singlet
(fig 4.6a) the MIF is severely reduced for wavelengths away from
its corrected wavelength (A=0.42micron). However the achromatic
doublet (fig 4.6b and 4.6¢c) is very well corrected and
contributes negligibly to the reduction of MIF except in the UV
region. Finally the effect of scattering in Illa-J emulsion is
seen to be quite important. Indeed, with good seeing, the
emulsion becomes the limiting feature, (fig 4.6c¢c).

The calculations have been repeated for two larger Schmidts
S2 (in fig 4.7a,b,c) and S3 (in fig 4.8a,b,c). The effects on
these telescopes are similar to, but smaller than, S1. As the
focal length is increased the image on the photographic plate
increases and so the effect of the emulsion is reduced. So for
telescopes S2 and S3, the image <continues to be limited by
seeing, even when the seeing is good (r,= 20cm). Also, the
effect of the residual aberrations (particularly for the singlet
corrector plate) is reduced.

So although telescope S2 will collect four times as much
light as S1 and distribute it over a focal area four times
larger for sky background, the improvement in MIF with longer

focal length will lead to relatively narrower and hence brighter

star images. This is apparent in the next section.
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4.5 POINT SPREAD FUNCTION

The image structure, or point spread function, is given by
the inverse Fourier transform of the MIF and the broader the
distribution of the MIF, the narrower is the PSF. This is
illustrated in figs 4.9 and 4.10, which show the intensity
patterns, as a function of angular size, expected for the three
telescopes at a wavelength of 0.5 micron and at an average
seeing of ro= 10cm. In fig 4.9, the telescopes have a singlet
corrector plate whilst in fig 4.10, they have a doublet
corrector plate.

In figs 4.9a and 4.10a, the normalised intensity patterns
are shown to illustrate the small sharpening of the image due to
an increase in aperture size. In figs 4.9b and 4.10b, the
relative intensities are shown where increased apertures have a
large effect on intensity. Furthermore, when figs 4.9a and 4.10a
are compared the extra sharpening of the image can be seen

because of the improved performance of the achromatic corrector

plate at A = 0.5 micron.

4.6 THE PHOTOGRAPHIC IMAGE

The star image has to be detected from the photographic
plates. The photometric use of photographic plates depends on
the blackening of the developed emulsion after exposure to light
and this response is non-linear and depends on various factors.
The wusual photometric function considered is the density. This
is defined as the logarithm to base 10 of the ratio of the

radiant flux, l,, incident on the developed image to the radiant
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flux, It, transmitted by the developed image . This ratio 18
also known as the transmittance of the developed image, T. Thus
the photographic density is given by:
D = logw(le/1c) = - log(T) . (4.19)
The curve relating density to the logarithm of exposure 1is
called a characteristic curve (Hurter and Driffield, 1890) (fig
4.11). This curve is a function of emulsion type, development,
wavelength, exposure time, etc. The gradient of the
approximately straight portion is the contrast or ‘gamma’, J.
Fog usually occurs when photographic material is developed and
some grains are reduced in areas that have received no exposure.
The maximum density occurs when all the grains are fully
developed.
The exposure is most commonly a simple product of intensity
and time,
Exposure = 1t . (4.20)
It is usually expressed in photometric units such as
metre-candle-seconds or can be expressed in photons per unit
area. When long exposure times are used, this reciprocity law
fails so equation 4.16 becomes the ‘effective’ exposure
E = 1t (4.21)
where p is usually 0.8. To reach a given density, the required
It product is a minimum for some optimum exposure time in the
region of seconds and increases for exposures of minutes and
hours. However Kodak make special ‘astronomical’ emulsions
(such as Il1la-J) with reduced low-intensity reciprocity failure,

so we are not concerned about this in our calculations.
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The emulsion is approximately 10% silver halide (chiefly
bromide) and 90% gelatine by volume. The latent image consists
of developable centres on the surface of the AgBr grains where,
starting from these centres, development causes each exposed

grain to be reduced to metallic silver. Before we can calculate

the density of the stellar image, we need to find a basic model

of photographic density. A good account of such a model is
given in Dainty and Shaw (ref. 4.3) and is sunmmarised in
Appendix A.

4.6.1 Basic model of photographic density

In the unprocessed emulsion, there are Ng grains in
projected area, A. There is a distribution of grain sizes, a,
and quantum sensitivities, Q (where Q is the minimum number of
photons to be absorbed by a grain to make it developable.). The
proportion of grains of size, a, is $. and the proportion of
grains with quantum sensitivities, Q, 1s &gq- From Appendix A,

the photographic density is then:
!

Q—
- r
D = Dm“{l—%% uaﬁaa/a exp(-aq) é(aq)/r!} + Dy (4.22)
This is an analytical equation for a characteristic curve which
can be wused to find out the distribution of the grain size and

the quantum sensitivities using a curve fitting method to a

known experimental characteristic curve.



4.6.2 11Ja-J emulsion
From electron micrographs, (see fig 4.12), the I1la-]
emulsion has a cubical grain of constant size, a = 0.36 micron.

If it is assumed that the developed grain size, d, 1is equal to

undeveloped size, a, then ﬁ,= a/a = 1, and eq 4.22 becomes
D = 0.434N,a {1- E.ocexp( aq) Ei! g) b (4.23)
A Q r-o r!

The gamma (slope of the characteristic curve) can be calculated

from eq 4.23:

§ = dD = 2. 3DQ£_0¢exp( aq) _L_gl_ (4.24)
d(loge(aq)) (Q-1)!
This has a maximum when d¥/d(aq) = 0 and occurs when Q is equal
to aq. So,
§n= 2. MDEi oc exp(-Q) (QQ])' (4.25)

The photograpic <characteristic of IIla-J has been fitted

with a physical model based on a fixed grain size (0.36 micron )

using a minimising computer programme ‘MINUIT’ (ref. 4.4). 1t
is found that, to a good wapproximation, a fixed quantum
sensitivity of two photons per grain is adequate. This is shown

in fig 4.13 where the fitted curve predicts a maximum value of
density, Q“=3.269. Hence its photographic density is

D = 3.269{1-exp(-aq) (1-aq)} + 0.343 ,
and its maximum gamma,

§,= 3.269 x 2.3 x exp(-2) _2° = 4.07
(2-1)!

This is in good agreement with the value given in the Kodak data

book (ref. 4.2).

This fit to the <characteristic <curve can be used to
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determine the photographic densities in exposures. There is a
difficulty in finding the exposure, (aq), since this is the
number of absorbed photons in the exposure rather than the total
number of photons per grain. However, in the <case of the
Schmidt photographic plates exposure is continued until the sLy
background gives a photographic density of unity. This can be
used to define a sky Dbackground exposure (aq% as described
below.

After development, the transmission of the plate is

T = exp(—nda/A) , (4.26)

where ngis the number of grains with area, a, in the developed
plate within a projected area, A. For ITlTa-J emulsion, a is
constant; for others (eg 103a-O) there is a spectrum of sizes
and a is replaced by the average size.
For the sky background, the photographic density is
D= -log,l = logeexp(nga/A) = 0.434n4a/A = 1.
Hence the number of the developed grains, ng, can be found, ie

nyg = 1 A grains/cnﬁ
0.434 a

. A . 2. . . . .
If A is a pxp microns pixel size (a microdensitometer scanning
beam), then the number of developed grains per pixel size 1s

ng = 1 o~ grains/pixel. (4.27)
0.434 a

At the maximum density,

D,= 0.434Nqa ,
A

and this is a saturated level where all the grains are

developed. Hence an original number of wundeveloped grains



before exposure to light can be found, ie

Na= 1 A Dn1grains/cm?
0.434 a

. i S . . .
For a pxp microns pixel size,the number of undeveloped grains 1is

5NP= 1 p?Dm grains/pixel. (4.28)
' 0.434 a

The number of photons from a star of apparent magnitude, m,

is given by

A | 7 -0-4 '

i = 1.26Ax10 x10 " photons/cm™/sec, (4.29)
where A is measured in microns. The apparent magnitude for sky
background, myis uspally expressed in arcsec’of the sky. So ‘the

number of sky bapkground photons collected by a telescope
aperture, diameter D (cm), is

I - . m
i, = l.26%x]er£D?X1004 bphotons/sec/arcseg‘of sky. (4.30)
B .

Now the angle subtended by a pixel of size p (microns) at the
mirror is p/fxldqr@dians where f is a focal length (cm). So the
number of sky background photons entering a pixel is

.L'M

iy, = 5.360x10 xﬂD}(p/f)ledo ®photons/sec. (4.31)
4

Only a small perceﬁtage of these photons are absorbed and lead
to the latent fmage (~1%) . This scaling factor <can be
determined from thé number of photons incident on a pixel during
an exposure to give unit density ie to give mnydeveloped
grains/pixel (eq 4.27). This scaling factor is then to used to
determine the exposures for stars of various apparent magnitudes
and hence to deter%ine their photographic densities which are

added to the sky background.



4.6.3 11la-J results for (agle
When the Schmidt telescope, S1, with IIla-] photographic

. Lo . . % .
plate and a microdensitometer scanning beam of 8x8 microns pixel

size, is used, th;n the number of developed grains after
exposure to sky ; background is (from ed 4.28), ngq = 410
grains/pixel, and the number of undeveloped grains 1is NP= 1,338
grains/pixel. The total number of sky background (my= 22.5

arcsec?) light photons collected by the 124cm diameter Schmidt
telescope, S1, is 76 photons/sec/arcseclof sky in the visible
spectrum. The num@er of sky background light photons entering a
8§x8 micronf'pixel d= 0.289 arcsec) at a focal length of 307cm is
22 photons/sec/pixél.

Typically abéut "one hour is required to give a sky
background densityiof unity. In this time there are 79,200
photons/pixel “miéh produce 410 developed grains. (Note that
the quantum sensitivity for Illa-J is 2 ie, 1t needs 2 photons
to make 1 grainfdeve]opable). Hence theAfraction of absorbed
photons 1s 0.0]04,5that is 1% of the incident photons contribute

to the image. f This is fairly typical of absorption

probabilities of AgBr grains in the visible region.

4.6.4 Exposure Times

The plate is exposed to the sky background until the

photographic density reaches unity. Exposure depends on time,
t, telescope apérture diameter, D, and its focal length, f, as
follows:

2-
exposure oCt D*/ .



So for the same exposure using two telescopes (S1 and S2)
2
DY/ f2= 1,Dh/ £, . (4.32)
In the S2 telescope, the diameter and focal length are doubled,

D,= 2D,, f,= 2f

2 , » 80 the time taken to give the same exposure as

for S1 is

2 2

t,= t,(D, /Dg) (f,/f ) = t,,

ie the same exposure time as S1. The S3 telescope has the same
diameter as S2 but its focal length is further increased, ie D3=
2D, , f3= 2.4f, , so the exposure time, tg, is 1.44 S1°s exposure

time to give same sky background density of unity.

4.6.5 Simulation of Photographic Plate

The simulations in the photographic plate were made in two
dimensions. For the S1 telescope, the densities were evaluated
in a microdensitometer scanning beam with pixel size of 8x8
microns where the point spread function, PSF, of a stellar image
(seeing disc) covers a 21x21 matrix of such pixels (a total
angular size 10x10 arcsec>). The PSF has been calculated in
arbitrary units normalised to wunity at the «centre, so by
integrating over each pixel it represents the total number of
photons coliected from a star.

The total number of photons collected from a star of
apparent magnitude, m, by a telescope aperture with diameter D
cm 1is:

~oum
i = 1.26Ax10 x1D %10 photons/sec. (4.33)
4

Then the numbers of photons per pixel are found by integrating

the PSF over each pixel. These pixels are added to a constant
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sky background given in photons/pixel and then are converted to
developed grains by simple scaling. The scaling factor is nq/ip
where iyis the number of photons from the sky background, giving
ng , the number of developed grains, for an exposure made until
the density is unity. Then the number of gr;ins per pixel is
converted to the photograpic density by eq 4.22.

An example of a one dimensional simulated measurement of
density through a star of 22mis shown in fig 4.14, for the three

designs of telescope with the singlet corrector plate and fig

4.15 with the doublet corrector plate.

4.6.6 Grain Noise

There will be random fluctuations of grains from one pixel

to another giving the noise of the system. This 1s the
granularity. From Poisson statistics it is expected that this
is /m, where n is the number of grains in the pixel. From the

relationship of density and number of grains, it is expected
that the fluctuations of density are given by

o= CJD, (4.34)
where C is a constant for the particular material. The standard
deviation of the density fluctuations, ¢, has been measured by
Furenlid (ref. 4.5). He standardised to a measuring area of
1,000 mjcroné% He found that the characteristic value of 6p for
astronomical emulsions varied between 0.01 and 0.08 over a
density range of about O ¢ D ¢ 3 and that such values appear to
be a function of the emulsion type and density only, and to

depend very little on the developer and hypersensitization.
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2
Furenlid’s results for a Ub(area, 1,000 microns) of IIla-J are
shown in fig 4.16. Using Furenlid’s results and fitting a curve

to them, it is found that

‘038
o= 0.0195D°°%] (4.35)
rather than the A/ﬁ‘ form. As this 1s measured in an area of

. 2 . ) 2
1,000 microns, then for a pixel on a plate of area A microns,

then
I

o = 0p(A/1000) . (4.36)
To simulate this, the results of Furenlid have been scaled
to pixels of the sizes used here. For the longer focal length
telescopes, 1t 1s the linear size of the image which is
increased, and not the angular size. To give the same angular
resolution, the pixel size is increased from 8 microns to 16
microns for S2 and to 19.2 microns for S3. As these larger

pixels now cover more grains, the relative fluctuations will be
reduced. This is seen in fig 4.17 where Furenlid’s results have
been converted for the three pixel sizes.

The 2-dimensional distributions of photographic density are
then randomised by the standard deviation in density
fluctuations corresponding to the density and pixel size. An
example of a one-dimensional simulated measurement of density
with fluctuations through a star of 22"are shown in figs 4.18
and 4.19. It can be seen that a star at 22" s just seen by the

S1 telescope.

4.6.7 Sensitivity and Signal/Noise

Because of the complexity of the photographic process,
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sensitivity and signal/noise cannot be assessed as simply as in
the case of direct photoelectric detection. Nevertheless data
is now available that enables the signal/noise performance
of the photographic detector to be estimated and optimised. The
details of the photographic process can be a;oided by treating
the ©photographic emulsion plate as a ‘black box’ with an input
of photons and an output of a measurable signal/noise ratio,
SNR. The detective quantum efficiency is defined as

DQE = (SNR)._/ (SNR), (4.37)
that is the ratio of the number of ideally detected photons that
would produce the observed SNR to the number of photons actually
required. Furenlid points out that there is a difficulty in
interpreting the DQE and there is no way to determine, from the
DQE alone, the amount of change in either SNR gor or SNR oy without
measuring at least one of them. He uses SNR, to refer any value
to the photometric properties of the plate.

The output SNR in a photographic emulsion is defined as the
ratio of the exposure to the rms fluctuation 1in exposure
(noise). This quantity cannot be measured directly on a
photographic plate because of the non-linear relationship

between input and output signals, but it is related to density

via the characteristic curve which can be measured. SNR is
given by

SNR = 0.434%/0p , (4.38)
where & is the gamma, or slope, of the characteristic curve. It

can be measured graphically from the curve and it is a function

of density. The standard deviation of the density fluctuations,




Oy > can be measured by a microphotometer or other kind of
measuring equipment. Furenlid has tabulated opas a function of
D for various astronomical photographic emulsions. One example
of this for IIla-J emulsion is shown in fig 4.16.

11Ta-J emulsion is found to have a lo&er 0pthan any other
astronomical photographic emulsion. In fact a ‘fast’ emulsion,
such as 103a-0, has quite a high oy and hence it has a poorer SNR
than Illa-J, resulting in the limiting sensitivity for 103a-0
being reduced. The 1I1la-J emulsion was produced by Kodak in
response to astronomers demands for a reasonably fast plate
capable of a high SNR.

For the detection of the faintest possible objects on a
single exposure, it is the SNR that determines the detectability
of a faint image above the sky background. The output SNR
usually increases with increasing exposure, reaches a maximum,
and then, with some photographic materials, decreases with
further exposure.

In practice, the exposure is continued until the image is
recorded at a density level corresponding to the lower portion
of the straight line of the D-logE relation, and this occurs
when the SNR is at a maximum. This means that a faint stellar
object can be detected against the sky background. For [Illa-J,
the maximum SNR occurs when the density is equal to unity
and, this is shown in fig 4.20. The improvement in the SNR
between the telescopes, S1, S2 and S3 can be shown as follows.

The number of grains in the emulsion depends on a pixel

size with area ﬁL which also depends on the focal length



1 T
I”
’I
/ -13
U4
50}
':‘E :
40 2
L Dansi
S
o 30
20r IIe-0O 1!
10 )% -
dﬂf' - -~ _
—— -2 - LOG ta
0 -1 1 )

FI1G 4.20 SNR curve for 11la-J plate with a characteristic curve




(p = ©f). For a constant angular size, O,
n OCf"grains.
For the same blackening in the emulsion, the noise due to sky
background, emulsion fluctuations, etc, is
N =/ ocf, (4.38)
ie the noise is proportional to the focal length.

The signal depends on the pixel size ie S a:f% and also on
the intensity distribution of the stellar image which 1is
proportional to the square of the MIF. So the signal is

S o 12 (MTF)”, see below Jor  (4.39)
MTF valuzs .
and the SNR 1is
S/N ocf (MIF) . (4.40)
For the same density of the sky background in the Illa-]
emulsion and with rg= 10cm seeing at A = 0.5 microns and with a
doublet corrector plate, the MIF values at 0.3 arcsec are 0.38
for the S1 telescope and 0.46 for the S2 telescope, so the MTT*
ratio is 1.46. Then the SNR for the S2 telescope is
(S/N),= (S/N), (fp/f,)(MTF,/MTF, - (4.41)
=2.92 (S/N), .

The change in apparent magnitude of a star that can just be

detected is given by

~oufm

ASNR = 10 . (4.42)

For the S§2 telescope Am = -1.167. ie it gains about one
magnitude improvement from S1, and hence it increases the

limiting sensitivity.
In the S3 telescope, the MIF value at 0.3 arcsec is 0.511,

so the MTF1ratio between S1 and S3 is 1.8, and thus the SNR for



the S3 telescope 1s

(S/N)y= 4.34(S/N), .
So it improves SNR by a factor of 4.34 and it gains a factor of
1.59 magnitude from S1. It must be recalled that with S3, the
change in f number requires a longer exbosure to reach unit
density for the sky background.

The limiting magnitude of stars that are just seen has been
determined by quantifying a ‘significance’ for the stellar
density. For the field of a stellar images of 21x21 pixels, the
density is made up from starlight (S) and sky background (BG),
and is randomised according to the grain noise. A further 50
randomised sky background fields have been generated and a
significance, Sig, calculated where

50

2
Sig = _1 S [(S+BG) - BG;] . (4.43)

{=t

The significance is shown in fig 4.21 (for a singlet corrector
plate) and fig 4.22 (for a doublet) with increasing stellar
magnitude. When this such that the star is ‘lost’ in the noise,
the Sig approaches V2. With the doublet corrector plate, this
occurs at about 22Mfor S1, at about 23Mfor §2 and at about 23.5m
for S3. Thus there is an improvement in S2 by a one magnitude
from S1 and in by a 1.5 magnitude from S1, and these values are
the same as the values given above.

To demonstrate this improvement in sensitivity, nine stars
of 22" have been generated in a stellar field of 121x121 pixel

for the three telescopes $S1,52 and S3. The fields are shown in

figs 4.23a,b and ¢ for the doublet corrector plate.
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All these results have been summarised in Table 4.1 where
the three telescopes, each with a doublet corrector plate were
exposed to a photographic ©background sky density of unity in

Ie = 10cm seeing at A = 0.5 micron.

The above calculations were repeated but with good seeing,
ie 1, = 20cm. The significance is shown in fig 4.24 and there
is an improvement of all three telescopes by about half a
magnitude each. In the S1 telescope, it can be seen that there
ia an improvement in sensitivity by comparing fig 4.25 and fig
4.23a of 9 stars of 22"in a stellar field of 121x121 pixels.

Farnell (ref 4.6) has shown that the quantum sensitivity of
photographic grains is independent of grain size and the speed
of the photographic plate is increased with grain size only up
to an area of 1.0 micron. When the grain size is doubled to
0.72 micron® or halved to 0.18 micron, it is found that the
photographic characteristic of the IIla-J emulsion has exactly
the same fitting with a physical model based on a fixed quantum
sensitivity of 2 as before except that the exposure scale factor
is changed. So when the grain size is doubled then the exposure
is halved to give the same photographic density as before.

When the photographic plate, with reduced grain size, a,,
is exposed to sky background to give unit density, it has no
effect on the shape of the photographic image. But now there
are more grains per pixel size, so the standard deviation of the
grain fluctuation is decreased as

o= 0.0195(a, /a D) o (4.44)

where a is equal to 0.36 micron®
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The significance is shown in fig 4.26 for a grain size of
. 2 . . . . z -
0.18 micron  and fig 4.27 for a grain size of 0.72 micron. The
limiting sensitivities (ie when the star is ’'lost’ in the noise)
for wvarious grain sizes and seeing are sunmmarised for the three
telescopes in Table 4.2. From this Table, it can be seen that,
in all three telescopes, the limiting sensitivity is improved by
- . . . . z
a half magnitude when the grain size is halved from 0.36 micron
) z . . o )
to 0.18 micron (which is similar to a good seeing, To = 20cm),
but is reduced by a half magnitude when the grain size 1is
) 2
doubled to 0.72 micron.

In summary, if limiting magnitude is the <c¢riterion, then
the equivalent of doubling the telescope dimensions (and
increasing the cost by a factor about 8) can be achieved with
better site selection and finer grained emulsions.

This work has been published in Brown, Dunlop and Major

(1983) (ref. 4.7).
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CHAPTER 5 MULTI -MIRRORS

5.1 INTRODUCTION

The limitations of technology in fabricating, transporting
and mounting _large mirrors at somewhat inaccessible altitudes
leads to a largest mirror diameter of about 7.5m. Further cost
effectiveness (with the cost of telescopes going up by the 2.5
to 3 power of the aperture diameter) can be roughly doubled by
forming the large <collecting area from smaller mirrors.
Although there are several ways of combining the mirrors there
are broadly two choices.

The first is a large segmented aperture formed from a
number (eg 36) of hexagons which are joined at the edges and
which are individually figured to give a single parabolic mirror
with one primary focus. The problems associated with this model
are the wavefront errors that will arise from the figuring and
particularly from the phase errors due to poor alignment of the
large number of mirrors. The University of Califorina has
planned to build a ten metre diameter Keck telescope with 36
hexagonal mirrors joined in this manner.

The second choice is for an aperture made from a number (eg
6) of separate, circular, paraboloid mirrors, each of which is
figured identically, mounted on a regular matrix array (eg
hexagonal) with parallel optic axes to give a number of primary
foci. These are then combined to give one single focus. The
problems of this method arise from the combination of these

images to give an in-phase image. The existing multi-mirror



telescope has been built at Arizona as the first of the New
Telescopes of the Future. It did succeed in reducing the cost
of construction by two thirds. Other MMTs have been discussed
or planned, for example by RGO (6MT) and Kitt Peak National
Observatory (4MT).

In this chapter, the diffraction pattterns for several
geometries will be considered. Although these can be generally
examined by first determining the modulation transfer function
for the aperture, and from its inverse Fourier transform finding
the diffraction intensity distribution, the computing time is a
severe limitation. For the simple geometries of circles and
hexagons diffraction amplitude distributions are more quickly
calculated directly and this will be the approach taken here.
However, the MTIF will be shown so that it can be compared with
other systems in terms of spatial frequency.

The seeing will always dominate the structure of the
stellar images, but the diffraction calculations are essential
for determining the limitations of speckle pattern analysis in
short exposure recording and for determining the limitations
under very good seeing, or where seeing is not important in the
regions of the far infrared. Further in the future, active
optics may reduce the seeing disc to the diffraction limit.

A combination of multi-mirrors leads to a diluted aperture
whose diameter can be controlled from a minimum value ie when
all the mirrors are touching, to higher values which are
controlled by the cost of mounting well separated mirrors. As

the overall diameter largely controls the resolving power, the



Airy disc size is reduced as the individual mirrors are
separated (or the aperture is diluted). Further details about
dilution can be seen in chapter 6.

Several diffraction patterns of various numbers of circular

mirrors on a regular array will be shown to demonstrate their

different characteristic patterns.

5.2 TELESCOPES OF THE FUTURE

5.2.1 Arizona MMI

There is a multi-mirror telescope which has been
successfuly built and operating at Mount Hopkins, Arizona, as
the first of the Next Generation telescope concepts (ref 5.1).
The overall cost has been reduced to a third of the likely «cost
of a conventional single mirror telescope with same overall
area. The telescope consists of six parabolic primary mirrors
each of 1.8m diameter, positioned in a hexagonal array of base
length, 2.25m giving the equivalent of a 4.5m telescope in
collecting area. The configuration of the Arizona MMI is shown
in fig 5.1a.

The light ©beams from each of the six mirrors, are brought
together near the centre by plane mirrors where a six-sided beam
combiner produces a single image. There are two problems
associated with this image:

i) the individual focal planes are inclined which results
in defocusing with distance off-axis. This can be avotded by

extra reflections to make the inclined angle very small.
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ii) the alignment of the six mirrors may give a unphased
image . This can be controlled by active optical coalignment to
give a phased image.

The MMT acts also as multi-interferometric system when

opposing pairs of telescope mirrors are wused; as it has a
maximum 690cm baseline from edge to edge. It has been used for
infrared Michelson interferometry (where seeing s Iess
important in the far infrared) and for optical speckle

interferometry.

5.2.2 Two Mirror Telescope (2MT)

We shall now consider one of the Next Generation telescope
concepts such as the two mirror telescope as developed by
Bingham at the RGO (ref 5.2). His design as shown in fig 5.1b
has the individual primary mirrors of eight metre diameter Wwith
a ten metre separation between the two mirror centres (ie a two
metre gap between the two mirrors).

The aim of this arrangement is to provide a 18 metre
maximum span (edge to edge) for angular resolution. At the same
time it is possible to provide separate spectrographs or other
detectors for the two primary mirrors, which 1is the efficient
way of using them, when combined beams are not required. The
beam combining and phasing are simpler than with some other
concepts eg Arizona MMT.

The configuration of fig. 5.1b gives better angular
resolution in one dimension than the single mirror without

troublesome secondary peaks. However these secondary peaks can
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be removed by a filtering process on the output of the detector
in an actual observation.

The only way of taking advantage of the enhanced lateral
resolution associated with the interference fringes will be by a
very good seeing or by short exposure recdrding with speckle

pattern analysis, or by adaptive optics.

5.2.3 Kitt Peak Four mirror telescope

Kitt Peak National Observatory has proposed to build a very
large ground-based optical and infrared telescope with an
overall aperture of at least 15 metres, known as National New
Technology Telescope (NNTT) (ref 5.3). There will be four
mirrors made of a honeycombed structure to reduce the mirror
weight, and each of 7.5m diameter. The configuration of these
four mirrors is shown in fig 5.1c. The beam combining is
simpler than for six beams as there only four beams to be
combined into one focus. Each of the four mirrors would be able
to act as an i1ndependent telescope but tracking on the same
object., which might be useful for spectrographic work at various

wavelengths.

5.2.4 RGO Large Multi-Mirror Telescope

There has been a proposal that RGO should design and build
a large telescope with a collecting area - 250m as one of the
Next Generation Telescope concepts (ref 5.4). The telescope
would consist of six parabolic primary mirrors each of 7.5m

diameter with <central holes of 2m diameter, as shown in fig



5.1d. This shows a different configuration from Arizona’s MMT,
as each circular mirror has a slice cut off two of its sides to
form ‘scallops’. These <correspond to the hexagons with
circumscribed circles which form a compact system. The
calculation of the diffraction pattern for this telescope s

considered in Appendix D.

5.2.5 University of California Ten Metre Keck Telescope

The University of California has désigned a segmented, ten
metre diameter optical and infrared telescope which it plans to
build and erect on Mauna Kea in Hawaii (ref 5.5). The segmented
mirror telescope consists of 36 hexagonal mirrors joined at the
edges and which are individually figured to give the effect of a
single parabolic mirror with one primary focus. There will be
some problems of which the first concerns the wévefront errors
that will arise from the overall figuring and particularly from

the phase errors due to poor alignment of the large number of

mirrors.  However these <can be refigured overall during
operation, controlled by the sensors which measure the
displacement of each element rTelative to its mneighbours.

Secondly, it is not an easy task to polish each of 36 mirror

elements which have to be individaully figured as off-axis

segments of a paraboloid. However there are several methods
which are available. The group (ref 5.6) at California has
successfully figured a 0.4m mirror using stressed-mirror

polishing, ie the mirror is first warped mechanically, and then,

after a sphere has been polished in its surface the loading s



removed. The mirror is allowed to relax, thus creating the
desired off-axis figure.

A configuration of a 36 hexagonal segmented mirror is shown
in fig 5.1e and this has an overall diameter of about 10m. Each
hexagonal mirror elements has a base léngth of 0.9m, and there
is a gap of lcm between elements. Each element 1is only 7.5cm
thick and hence 1s lighter and this allows a reduction in the
weight of the telescope. It is expected that reducing the
weight will be effective in reducing the cost of the telescope.

The diffraction patterns of 36 hexagonal segmented mirror
and the effect of the phasing will be considered in section 5.5

i

5.3 CALCULATION OF DIFFRACTION PATTERNS

The determination of the diffraction amplitude distribution
(and intensity) of a numbe r of similar apertures is
straightforward, provided there is symmetry. For example, fig
5.2 shows 6 circular mirrors on an hexagonal matrix, (X, .Y, ,X2,Y,

R ). From eq 2.6, the general expression for the

iy

J
amplitude distribution is given by

a(0,4) = J[ exp[2misin® (xcosd + ysind)] dxdy . (5.1)
A

over afga

For the configuration shown in fig 5.2

a(0,4) = Jjji expl2Tisin@ {(Xj+x)cosé + (Y;+y)sind}] dxdy, (5.2)
j A

and this can be rewriten as:

a(0,4d) =:§;exp[2ﬂﬁsinQ(XJcosd + Yjsindl] *
J A

erxp[2ﬂisin9(xcos6 + ysind)] dxdy . (5.3)
A
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In this expression the amplitude has divided into a product of
two terms. The first of these is the amplitude for a matrix of
pinholes at the centres of the mirrors and the second is that
for a single mirror, ie
2(0,6) = apm(@.6) ag(0,8) (5.4)
where a, refers to the amplitude distribution for the matrix of
centres and ag to single mirror. The condition for this
amplitude separation is that the angle characterising the mirror
should be an integral multiple of the angular separation of the
mirrors. Hence separation of amplitudes can be obtained for
octagonal mirrors arranged on a square or octagonal matrix,
hexagons on a triangular or hexagonal matrix and circles on any
regular matrix.
With similar nomenclature, the intensity distribution in
the diffraction pattern (calculated from the square of the

amplitude) is

1(0,8) = 1,(0,4) 15(0,4) . (5.5)
This approach gives <considerable i1nsight to the formation of
diffraction patterns. For example in fig 5.3a, the intensities,

1,(©) and 1(0) are given for a fixed value of 6 and lead to the
resultant 1(©). In fig 5.3b the dilution has been increased by
separating the mirrors on to a Jlarger matrix of centres. This
is shown by the maxima of I, (O) being closer together. The
pattern of the single mirror gives the overall envelope to the
total pattern. For increased dilution the Airy disc becomes
smaller and contains less energy whereas the secondary maxima

become more enhanced.



5.4 DIFFRACTION PATTERNS

In this section, the diffraction patterns for a variety of
circular aperture <configurations are presented. For each, the
number of circular aperture configurations, the
three-dimensional MTF and the 3-D PSF with a contour (plan) of
the PSF are calculated and shown diagramatically. All these
configurations have 1m diameter <circular aperture for each
mirror and 1.2m separation between the centres ie there is 0.2m
gap between the edges of the mirrors. We start with a simple
form of a multiple aperture - two aperture configuration and
increase the number by one extra aperture each time up to siX
apertures and then eight apertures. Of course, the resolution
will be improved since the overall diameter of these
configurations increases as the number of apertures increases.
But the size of Airy disc for a single mirror remains unchanged
and it is shown as a dotted line around the contoured
diffraction pattern (plan of the PSF).

These configurations will produce several fine structures
surrounding the central peak in the diffraction patterns. These
structures usually have a number of secondary maxima which are
distributed in the azimuth direction depending on the particular
geometry of the configuration.

The radial intensity and enclosed energy distribution as a
function of radial distance from the centre are calculated by an
average of the azimuth directions, for several configurations
except for the two-aperture case since it does not have a

symmetric central peak.
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5.4.1 Two apertures

Two <circular apertures on a line provide an increased
resolution in a direction along the length of the line. The
simplest stellar interferometers are based on this principle.
Two apertures produce fringes similar to Young’s slit fringes,
but the peak intensities of this pattern are reduced to an
envelope by the diffraction pattern for a single aperture. The
Airy disc for a single aperture is shown as a dotted line on the
plan of the PSF (fig 5.4d). The maximum resolution of the Airy
disc is 0.043 arcsec from the centre in one direction, while in
the other direction, the resolution is 0.126 arcsec from the
centre. The enclosed energy of the central maximum is 63% of
the total energy while .each of the two secondary maxima has 9%

of total energy.

5.3.2 Three apertures

Three apertures on a triangular array give a diffraction
pattern which <consists of a central maximum intensity and six
surrounding secondary maxima (fig 5.5¢). 1t can be understood
in terms of the two-aperture system where now there are three
combinations of two apertures each pair producing 1its own
diffraction pattern. These patterns overlap with each other at
angles of 126, so there is an approximately hexagonal pattern
produced at the lower part of central peak and six secondary
maxima rather than three. These maxima are slightly fused
together with the central peak and so zero intensity around the

central peak is not observed. Hence it is rather difficult to
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be precise about the extent of the central maximum and to

calculate its enclosed energy. However, from average radial
energy distribution (fig 5.3f), the enclosed energy of the
central peak is about 56% of the total energy. This is less

than for the two-aperture system, as it transfers energy into
the secondary maxima from the central peak. Its Airy disc is
approximately 0.05 arcsec in radius, which is less than two
apertures because of the fused secondary maxima to the central

peak.

5.4.3 Your apertures

Four apertures on a square array lead to four combinations
of two apertures with separation of 1.2m and another two
combinations of two apertures with 1.2/2m separation. These
produce an orthogonal pattern in the diffraction image
(fig 5.6¢c) with four secondary maxima in principal directions
packed around a central maximum peak. It produces an almost dark
zone at & 45°of the principal directions.

An interesting change in the diffraction pattern becomes
apparent when an odd number of apertures is used. The
four-aperture pattern shows only four secondary maxima while the
three-aperture pattern shows six secondary maxima rather than
three. This doubling of the diffraction details will be seen in
other cases with an odd number of circular apertures (eg five
apertures).

This is the minimum that would have useful application to a

multi-mirror telescope since it does produce an Airy disc which
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is almost circular with zero intensity. Two apertures produce
an elongated pattern, while three apertures do not produce zero
intensity around the central maximum as sixXx secondary maxima are
fused together.

In fig 5.4f; the average radial energy distribution shows
that the central peak has 51% of total energy and the first ring

of secondary maxima has 36% of total energy. The Airy disc is

0.046 arcsec 1in radius.

5.4.4 Five apertures

The diffraction pattern for five circular apertures on a
pentagonal array is shown in fig 5.6c. The central maximum is
surrounded by a ring being broken up into ten elements. From
the average radial energy distribution (fig 5.6f) the central
peak has 45% of total energy while the secondary maxima has 41%.

The Airy disc is 0.038 arcsec in radius.

5.4.5 Six apertures _

Six apertures on a hexagonal array produce a diffraction
pattern as shown in fig 5.7c. The central maximum peak is
surrounded by continuous ring with six secondary maxima while a
further six maximum peaks form a third ring at % 36 to the
secondary maxima. Its average radial intensity and energy
distribution are shown in figs 5.7e¢,f. From these the Airy disc
is 0.033 arcsec in radius and the enclosed energy of the central

peak has 40% of total energy. The second and third maxima have

29% and 17% of total energy respectively.
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It should be noted that in the average radial energy
distribution, the enclosed energy inside a radius «corresponding
to the Airy disc of a single mirror is always the same despite

the number of apertures.

5.4.6 Eight apertures

The diffraction pattern for eight apertures on an octogonal
array 1s shown in fig 5.8c. This pattern resembles that for an
annular aperture with a circular, continuous, diffraction ring
and with the third ring being broken up into an inner and an
outer part. The inner ring part consists eight brighter
intervening wedge shaped details while the outer part consist of
eight Jlower intensity maxima. In effect it forms 16 maxima in
the third ring.

The Airy disc is 0.025 arcsec in radius and the enclosed
energy of the «central peak 1s 32% of total energy. The
secondary and third maxima has 28% and 27% of total energy

respectively. _

5.4.7 Summary

The effects due to the various numbers of apertures
considered are summarised in a Table 5.1 giving the size of the
Airy disc, the radial enclosed energy of the Airy disc and the
radial enclosed secondary energy. Because of the increased
overall diameter, the size of the Airy disc is reduced as the
number of apertures increases.

Table 5.2 shows the various numbers of apertures with a
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No of overall average enclosed enclosed
apertures diameter radial Airy energy of energy of
(max imum disc Airy disc |[secondary peak
edge to edge)] (arcsec) (radial) (radial)
(metre)
(lstfing)
2 2.20 0.043 6 3% 18%
(max. resol.)|(not radial) (both peaks)
3 2.20 0.052 56% 2 0%
4 2.70 0.046 51% 36%
S 2.94 0.038 4 5% 41% e ing)
6 3.40 0.033 40% 29% (+17%)
8 4.14 0.025 32% 28% (+27%)
TABLE 5.1 Various number of apertures with 1.0m diameter aperture
No of diameter overall average enclosed
apertures of each diameter radial Airy energy of
aperture (ma x imum disc Airy disc
(metre) edge to edge)| (arcsec) (radial)
(metre)
2 1.00 2.20 0.043
3 (.82 1.80 0.063 ul
>
4 0.71 1.56 0.065 O
a0
5 0.63 1.85 0.061 <
6 0.58 1.97 0.057 &
8 0.50 2.07 0.050
TABLE 5.2 Various number of apertures with the same area

as two apert

ures.




constant area, firstly as two apertures, ie as two 1.0m diameter
mirrors with a 0.2m gap. For a higher number of apertures with
the same total area, the gap between adjacent apertures is equal
to one fifth of the diameter of each aperture.

5.5 SEGMENTED MIRRORS

The segmented mirror telescope such as as a University of
California Keck telescope, <consists of 36 hexagonal mirrors
joined at the edges. The configuration of the Keck telescope is
shown in fig 5.10. There is a very small dilution - 1/37 of the
total area, resulting from the absence of the central hexagon to
allow the formation of a single Cassegrain focus.

The modulation transfer function is calculated and is shown
in fig 5.11. It can be seen that it is similar to the shape of
the MIF for single hexagon (see fig B.5 in Appendix B). The
diffraction patterns for a 36 hexagonal mirror system have been
calculated from that of a single mirror, 15(0,6) modulated by
that for the matrix of centres of the hexagons, IM(O,é) to give

1(0,8) = 15(0,4) 1n(0.,0) . (5.6)
The point spread functions of the image for a single mirror,
l¢ (O,6) and of the array matrix. Im(@,0) are shown in fig 5.12
and fig 5.13. The PSF for the whole system, 1(0,4), ie a
diffraction pattern of a 36 hexagonal mirror system, is shown in
fig 5.14a and its enlarged pattern is given in fig 5.14b which
it can be seen that it has a similar shape to single hexagon
mirror (fig 5.12). The encircled energy in the Airy disc is

shown in fig 5.15. The encircled energy has been calculated for
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base length = 0.9200m

separat 1on between centres = 1.56%m

FIG 5.10 Configuration of 36 hexagonal mirrors
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the single mirror and is shown in fig 5.16.

With this system, the relative phasing of the mirrors is of
prime Importance. The lack of phasing has been simulated by
assigning phases to the 36 hexagonal mirrors chosen randomly
between specified limits. This is done by changes to the PSF of
the array matrix, IM(O,é). The effects are shown in figs S5.17a,
5.18a and 5.19a of the resulting patterns for random axial
displacements of the mirrors between + A/8, A/4 and A/2,
respectively from the mean positions. The corresponding
encircled energies are shown in figs 5.17b, 5.18b and 5.19b.
When the mirror movement is limited to + A/2, ie varying by a
wavelength, the 36 hexagonal mirrors become independent
optically and produce an intensity pattern corresponding to that
of a single mirror. The encircled energy (average) becomes
jdentical with that for the single mirror. This result may be
seen by comparing figs 5.19a, 5.19b with figs 5.12, 5.16. When
the mirror movement is limited to + A/8 it is noticeable
that this is almost idential with figs 5.14a and 5.15 as there
is little effect on the pattern.

The Keck telescope will also work in the 10 microns region
so the phasing is not very important when controlled in the
visible region. As seen before (Brown’s law in section 3.2.3)
this telescope will work best in this region at the average

seeing conditions (ro= 10cm).
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CHAPTER 6 DILUTION

6.1 ANNULAR APERTURE

The effects of the dilution are more readily understood for
the case of an annulus of fixed area and hence of fixed light
collecting power. The dilution of the aperture is controlled by
adjusting the ratio 71, /1, of the internal to external radii
whilst keeping the collecting area constant. This is done to

emphasise that apertures of equal area all have the same central

(0 = 0) intensity since the geometry of the aperture is only
manifest in the angular dependence of the intensity. This is
illustrated diagramatically in fig 6.1a. It can be seen that as
dilution increases, the resolving power improves, since the
outer radius increases. This means that the Airy disc decreases
in size. However, as the central intensity is fixed the
encircled energy in the Airy disc must decrease. The average

brightness of the disc cannot be ~calculated analytically.
However if the Airy disc region of fig 6.1b is approximated by a

linear fit up to the first minimum, Oy, then

1(0) = 1, (1-0/0m) (6.1)
and the encircled energy is
-]
E(O) = f 1(@)odo = 1, [e"- &°] . (6.2)
0 2 30

The energy in the Airy disc is then

E(On) = loQh, (6.3)
6

and the average brightness of the disc is

B = E(Om) = 1o . (6.4)
o}, 6
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Hence, to a first apﬂroximation, the brightness of the Airy disc

will remain unchanged since less energy is passed into the

|
smaller Airy disc as ;the dilution increases. As will be seen

i
|
later, as a result of more accurate numerical integration, the

average brightness of] the Airy disc does change and increase but

by less than 20-30% kven under severe dilution. Moreover, more
energy will pass into% the secondary maxima. So although a
higher resolution i# achieved by dilution it 1s at the expense
of tolerating enhanceh secondary maxima.

The diffraction, patterns and encircled energies have been

|
calculated for an annular mirror of constant collecting area for

|
!

a series of ratios of%q = 1, /1, , ranging from O (no dilution) to
0.95 (extreme dilution). These results are shown in figures 6.2
and 6.3 with a startihg outer radius, 1, = 1.0m. The normalising

i
values of O, and Eocorﬁespond to those for a circular mirror of
|

. \ . : - .
the same area without dilution (g5 = 0). From the encircled
|

energy graph the same feature is seen again but now more
\

guantitatively. The%proportion of encircled energy in the Airy

disc changes from 84% (no dilution) to 8% under extreme dilution
I

as the size of thk Airy disc decreases. In fig 6.4 the
\

|
variation of enclosedienergy‘with size of Airy disc is shown and

|
is seen to be almost |linear as suggested by the approximation of

i

equations 6.1 and 6.%. The brightness of the disc is shown in

fig 6.5 and this incheases by about 20% from the brightness for
|

the undiluted aperture. In fig 6.6 the fractions of energy

i
|
i

. . | . . . .
passing into the secondary maxima are shown as the dilution 1is

increased. As expected these generally increase with dilution.
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Curiously, for an obstruction ratio between 0.2 and 0.3 of the
diameter, the second bright ring 1is very much suppressed
compared to the first and third rings with the second apparently
missing. This can be seen in fig 6.6.

Fig 6.7 shows the variation in the resolution of several
minima. As the dilution is increased, the Airy disc is reduced
from 0.067 arcsec at zero dilution (q = 0.0) to 0.005 arcsec at

extreme dilution (q = 0.95). Also it shows that the second

minimum increases from 1 = 0.0 and reaches a peak at 3 = 0.3 and
then reduces while the third minimum reduces from n = 0.0 until
at 5 = 0.3, then i1t increases to a peak. This explains why the

fraction of the enclosed energy of the second bright ring 1is
reduced at n = 0.3 (see fig 6.6).

Most telescopes do have an obstruction ratio of about 0.3,
so their Airy discs are reduced to 68% of total energy. But the
average brightness is about the same and the resolution s
higher.

These features are expected to be dominant in all diluted

apertures syvstems, {for example, 1n multi-mirror systems.

6.2 MULTI -MIRROR

The combination of the multi-mirror system leads to a
diluted aperture whose diameter can be controlled from a minimum
value ie when all the mirrors are touching, to higher values
which are controlled by the <cost of mounting well separated
mirrors. As the overall diameter largely controls the resolving

power, the Airy disc size is reduced as the individual mirrors



are separated (or the aperture is diluted). The diffraction
pattern for a multi-mirror system consists of a convolution of
two basic patterns - one due to a single mirror and another due
to the centres of the mirrors, which produce a pattern of maxima
and minima. These patterns can be <changed by increasing the
separations between the centres. 1t has a considerable effect
on the relative intensities of the maxima surrounding the
central peak. When the separations areé increased, i1t will cause
the first ring of bright secondary maxima to move away from the

first dark ring (Airy disc) in the single mirror aperture, thus

effectively increasing the intensity of these maxima. This
means, in fact that, s ome of the energy 1s transferred into
secondary maxima from the central peak. . These effects can be

seen by comparing fig 6.8a for when all the mirrors are touching
and fig 6.8b for when the separation is increased to 0.4m
separation, with siXx circular apertures.

The diffraction patterns and enclosed energies have been
calculated for six circular apertures (1m diameter each) on a
hexagonal array and for four circular apertures on a squaTe
array for a set of dilution values ranging from a situation when
all the mirrors are touching to 2.45m gap between the edges of
the mirrors. These results are shown in figures 6.9a for six
apertures and 6.10a for four apertures. The normalising value
of ©, and Egcorrespond to the angular size of the Airy disc and
its enclosed energy for a single circular solid mirror of the
same surface area. The corresponding variations of brightness

of the Airy disc of the central peak are shown in figs 6.9b and
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6.10b.

In figs 6.9a and 6.10a, the variation of enclosed energy
with Airy disc size, is seen to be almost linear as suggested by
the approximation of equations 6.1 and 6.3. The brightness of
the Airy disc is seen to increase by about 10% from the
brightness for the zero gap between the edges.

When tWo apertures are considered, the dilution s
difficult to define. Further the average radial intensity and
energy are not useful quantities because of the high degree of

asymmetry of the pattern.



CHAPTER 7 DURHAM POLARIS SEEING MONITOR

7.1 INTRODUCTION

There are Various ways to characterise seeing. A
straightforward “my§ is to measure the FWHM of the blurred
stellar image usuall& called the seeing disc. When this is
measured for a lafge telescope then the image is largely a
convolution of atmoﬁpheric seeing and dome seeing. Similarly,
in stand-alone devﬂces such as the Polaris Trail Monitor with a
typical aperture of '15cm the image is then largely a convolution
of the atmospheric!seeing‘with the diffraction at the aperture.
To estimate the contribution of seeing alone to the size of the
image, detailed measurements and deconvolution of these images
are required. Howe;er, the size of the image, though not a
precise quantifica&ion of- atmospheric seeing, is a useful means
for comparative measurements of observatory sites.

A more precise characterisation of seeing can be made by

i

determining the Vaﬂue of the coherence length, 1, , which 1is the
distance over which fLe phase of the wavefront changes by one

radian. Using Fried’s model, 1, can be found from the MTF for

seeing, (see eq. 3.25):

MTF(W) = exp[—3.44(“¢/r)%] , (7.1)
where
r = ro(k/xjw.
The MIF is convenient]y measured interferometrically. Then with

a stand-alone device with an aperture of sufficient minimum size

(~30cm so that diffraction is relatively unimportant), the MIF



of the atmosphere alone can be found and there are no important
deconvolutions to be made. The MIF is the proper measure of the
optical properties of the atmosphere pertinent to imaging.

Interferometric measurements of the MIF for seeing have
been made using horizontal laser beam propagation (1970-71, ref
7.1). These provided the first experimental check of the
expression given by eq 7.1 and especially of the 5/3 law.
Similar measurements were Jlater performed on stellar sources
(ref 7.2).

The Polaris monitor which is described in this chapter is
based on the shear interferometer as described by Brown and
Scaddan (ref 7.3). Their paper describes a simple
interferometer suitable for direct photographic use and capable
of giving data for shear distances of 0-10cm. It can be
modified for use with a telescope of 20-30cm aperture. The
monitor has been built in the workshops of the University of
Durham with some financial support from the Royal Greenwich
Observatory. It is designed to monitor the seeing at La Palma
in the Canary Islands. —éo far, the monitor has been tested at
Durham (60m above sea level) and it has been to used to measure
the local seeing, which is typically in the range of ro~1-2cm.

In a recent review (ref 7.4) Woolf summarised the value of

I, as ranging from 3 to 25cm from site to site and varying with

time . The Durham shear interferometer can record values of 1,
throughout this range. Consequently, typical average seeing at
a mountain site (ry= 10cm) can be deterimined and, more

importantly, the number of times and the duration of those times



that seeing is good (say 1, >20cm) can also be found.

Monitoring seeing is mneeded for several reasons, which
include: -

a) testing the suitability of new sites for telescopes.

b) monitoring external and internal (dome) seeing to
highlight worsening dome conditions.

¢) with real time monitoring of 1, , the use of telescope
time with respect to good seeing can be optimised.

d) providing basic statistics from which optimised designs
of devices for wavefronts tilt (or full) corrections can be

made .

7.2 SUMMARY OF THE SEEING CONDITIONS AT LA PAIMA

The shear interferometer has to be matched to local seeing

conditions at La Palma. There have been several measurements of
seeing at the Canary Islands since 1971 when the Royal
Observatory, Edinburgh, started measurements. Mclnnes and

Walker (ref 7.5) have given results of studies of astronomical
observing conditions Jsing polar star trail observations and
meteorological data at two sites in the Canary Islands. These
are lzana on Tenerife and on La Palma. They found that the
seeing conditions at La Palma were very good or better than
those known at any other site outside the Canary Islands at that
time, including Tenerife. The seeing disc was smaller than 1
arcsec for 40 percent of the time on La Palma. Their

observations strengthen the earlier conclusion by Walker (ref

7.6) that the best astronomical seeing occurs at sites on peaks



near a coast with a cold ocean current offshore or on isolated
peaks on small islands where, in both cases, the peak projects
above the inversion layer and where laminar airflow over the
ocean still persists.

Further measurements of the seeing conditions at the Canary
Islands were made by the testing groups for the Joint
Organization for Solar Observations (JOSO) who investigated
daytime observing conditions. After many years of extensive
comparative observations on La Palma and Tenerife, these
investigators came to the «conclusion that lLa Palma may have
excellent nighttime conditions but Tenerife (lzana) was a better
site for daytime observing. The results of JOSO’s testing
groups are described below.

During 1973 and 1974, Barletti and others (ref 7.7)
measured the values of 1, by indirect means in the atmosphere
above La Palma and Tenerife. The results were obtained from
measurements of the atmospheric temperature variation up to 20km
using balloon-borne radiosondes. From these the temperature

.o 2
structure coefficient, C

o was found, and hence the refractive

index structure coefficient, CZ was calculated wusing the

"
associated pressure and temperature. Finally 15, was deduced
using eq 3.19. It was found that the values of 1,above the
altitude of the balloon varied from 20cm to well over 40cm
during both day- and mnight-time. Tt is important to realise

that this corresponds to the atmosphere above Skm. When this is

reduced to the mountain site altitude then smaller values of 1,

result.



In 1979, Brandt and Wohl (ref 7.8) used two telescopes on
the Canary lIslands, ie a 40cm telescope on Tenerife and 45cm
telescope on La Palma, taking photographs of the solar
granulation during daytime. After measuring the resolution of
the solar granulation from the apparent width of the granulation
edges, they obtained daytime seeing measurements showing that
Tenerife was superior to La Palma since in 23% of the observing
time at Tenerife images in the range O.6<FWHIMgl1.2 arcsec were
found compared to 17% of the time at La Palma. The highest
resolution obtained with both telescopes was 0.5<FWHMg0.6 arcsec
at an observing wavelength, 0.55 micron.

From above it can be seen that an average value of 1,
deduced from indirect measurements at La Palma is about 10cm.
There are no direct measurements of r, .

It should be noted that the value of 1, varies with zenith
angle, ©, and decreases as:

0 s
L (0) = 1, (0) (cosO) . (7.2)
Since La Palma is situated at 28N, then the =zenith angle of
Polaris 1is 6f and from_lhe cosine term above, 1, of 10cm would be

reduced to r, of 6.4cm and the average seeing disc increased to

1.6 arcsec.

7.3 SHEAR INTERFEROMETERS

The most important part of the Durham Polaris monitor, (to
be described later), is its shear interferometer which is used
to measure the MIF of the atmosphere. This MIF results from the

varying optical path lengths in the atmosphere which lead to the



7.6
wavefront at the aperture of a telescope becoming <corrugated.
Beside the ©phase variations, the amplitude may also vary,
although this is unlikely to contribute more than 20% to the
structure of the final image. The instantaneous optical

transfer function is given by the autocorrelation of the

wavefront sheared upon itself by a shear interferometer, ie

.
T(w) = Iwoc(x)OC(x—Aw) exp(-i(d(x)-d(x-Aw)) dx . (7.3)
. e 2
boc (x) 1% dx
- 00
In the overlap région of the shifted wavefront, a complicated
interference pattern results. Moreover this pattern fluctuates

with a high frequency (~100Hz) so that any integrated pattern
will give uniform illumination.

As the stellar light level of Polaris is low only
time-integrated ipatterns are available and so the interference
pattern needs to;be converted into an integrable form. This s
done by putting a small wedge angle between the sheared and
unsheared wavefrénts to produce wedge fringes. Then the effect

of the instantaﬁeous phase differences due to seeing is that of
|

de-modulating the shape of the fringes. For time-integrated
seeing, the moving fringes will result in broadened recorded
fringes and their intensity modulation will be reduced. The

time averaged MIF(w) can be determined from the ratio between

the modulation f@nction without seeing, M,, and the function
with seeing, Mé,zie

MTF(w) = M{/Mo. (7.4)

There are &arious kinds of shear interferometers in use.

The simplest form divides the wavefront into two circular images

which are sheared relative to each other by a fixed amount. The



modulation of associated wedge fringes is measured. This method
requires the fringe pattern without seeing for normalisation and
it needs resetting for each shear; this is a time consuming
procedure. So a method is needed which contains a normalisation

reference and also includes a range of shears (range of spatial

frequencies, w) so that the atmospheric MIF as a function of w
can be determined in a single recording of fringes. There are
three instruments in which the range of shear and the

normalisation point can be included.

i) One instrument is a reversing (or folding)
interferometer, such as that described by Dainty and Scaddan
(ref 7.9), in which the wavefront is reversed upon itself. This
gives a range of shears from zero to the size of the wavefront.
The aperture needs to be relatively large (~30cm) to avoid
diffraction limitations. However, beyond shears equal to about
o, the visibility of the fringes will be zero so only the
central area bf the aperture is used and the rest of the light
is wasted (ie 2/3 of the area if a 30cm aperture is used). This
means that the interfe;ometer has to be used with a very bright
star or with a long exposure time for the photographic recording
when using 310cm aperture.

ii) The second instrument s a shear rotation
interferometer, such as that described by Roddier (ref 7.10).
The shear rotation interferometer consists of a beamsplitter and
two prisms. One of the prisms is rotated to give a rotational

shear on one of the two interfering beams. The fringe can cover

the whole field of view and the shear values can be varied by



rotating one of prisms, so it is possible to use a 30cm mirror.
There is a small problem in that zero shear occurs only at one
point (at the centre of the field of view) and only the fringe
passing through the centre of the field is useful.

iii) The third instrument 1is a Jamin-based shearing
interferometer with a pair of prisms, such as that described by
Brown and Scaddan (ref 7.3). With this, maximum shear can be
adjusted to be equal to about 1, and hence it will wuse most of
the light. The Durham shear interferometer unit is the same in
principle as this and details of this instrument are given in

section 7.3.3.

7.3.1 Brown and Scaddan Shear Interferometer

The Brown and Scaddan shear interferometer consists of a
Jamin interferometer, a pair of opposed prisms and a
compensating glass plate within the two light paths as shown in
fig 7.1. A pair of opposed prisms will cause an anamorphic
magnification of one wavefront passing through it. When the
wavefronts are supe;}mposed and a wedge angle is introduced,
then f%inges are seen in the overlap region. On the diameter of
the two images, the two wavefronts are unsheared and are exactly
in phase. The fringe modulation there 1s unaffected by seeing
and this gives the normalisation modulation, Mg. In this way it
is possible to ensure that the wuseful area of interference
almost completely fills the telescope aperture, regardless of

its diameter, so that all parts of the aperture contribute

useful information. It can produce a desired range of shears by
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FIG 7.1 Brown and Scaddan shear interferometer
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adjusting the magnification of the prisms by wusing suitable
prism angles and orientations.

Brown and Scaddan used the 74-inch telescope of the Helwan
Observatory at "Kottamia to test the shear interferometer unit.
The interferograﬁ was recorded with an exposure time of two
minutes using Véga as the star source. They found a value of 1
of about 5cm for Kottamia from microdensitometer measurements
across the interferogram. They also deduced that it should be
possible to use‘the shear interferometer with a magnification of
0.75 in a static telescope of 20-30cm aperture with Polaris as
the star source and with an exposure time of about 2 minutes to
give the MIF for the atmosphere.

In the Durham Polaris Monitor, there is a 30cm mirror, S0
the magnification should be about 0.75 giving a full view of the
fringes. The mégnification can be adjusted by varying the prism

angles and orientations. This 1s described in next section.

7.3.2 Anamorphic Prism Pair

An anamorphic prism pair consists of a pair of opposed
prisms such as %hown in fig 7.2. There, it can be seen that when
the light rays pass from left to right, there is a
demagnification and when the prism pair is placed in a reverse
position, therefis a magnification. This causes the image,
after passing ' through a prism pair, to increase or decrease in
one direction Whilst remaining unchanged in the other direction.
The results 6f this effect are shown in fig 7.2 for a circular

image . This  arrangement is used in wide-screen cinema



projection. By { the use of suitable prism angles and
orientations, magnifications in the range 0.4 to 2.5 can be
obtained.

There are two ways to change the magnification by a prism
pair. Either the prism apex angle, A, is varied, or the angle
between the two prisms, O, is varied. The relationship between
the apex angle, A, and the incident and emergent angles, i, and
ig, is given by:

A= sin (sini/n) + sin (siniyn) , (7.5)
where n is the refrhctive index of the glass of the prisms. The
angle between two prisms, ©, as shown in fig 7.2b, can be found
as a sum of the t“miangles i, and i, , ie:

O = i+ i, .

This 1s the case fof zero overall angular deviation, where the
angular deviation ,by the second prism is equal and opposite to
the first. So equaﬂion 7.5 can be written as

A = siﬂ*ﬁsiny/n) + sin (sin(© - i)/n) . (7.6)
This can only be sol&ed numerically to determine the value of 1,
when the values of A and © are given. The relationship between
the incident angle, ﬁ‘and the magnification of two prisms, m, is
given by:

2 . 2. .2 .
m = cos- i, n. - sin_ iz, (7.7)
cos*i,n*- sin®i,

where ig= 0 - i.

Using equations 7.6 and 7.7, the three curves for each of
three different prisﬁ apex angles, (A = 451 30 and 12.§) as
shown in fig 7.3, répresent the relationship between the angle

of the prism pair, ©, and the magnification, m. From this
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figure, for an iangle, A = 12.5% the rate of change in

magnification with © is small whilst for A = 45°, the change - 1s

large.

Once the anglés, A and ©, are arranged to give a required
magnification, it is necessary to make the overall angular
deviation of the central ray by the prism pair equal to zero.
The beams emergil;g from the interferometer should be parallel.
This is done by rotating the whole prism about the central axis
which varies the incident angle, 1i,. The relationship of
equation 7.6 is shown in fig 7.4 by curves corresponding to
three different p?ism apex aﬁgles, (A = 451 30° and 12.5). For
an angle, A = 45? there is a large rate of change in
magnification when the incident angle is varying, while for A =
12.5% there is small rate of change. It is easier to rotate the

: . o . .
prism pair with angle, A = 12.5, since the movement of the image

is correspondingly small.

7.3.3. Durham shear:interferometer

The Durham shear interferometer consists of a Jamin
interferometer, a pajr of opposed prisms and a compensating
glass plate. 1t 1s shown in photographic plate, no. 7.1 and in
fig 7.5. The two Jamin glasses are enclosed in metal cases and
each is fixed kinematically to a rectangular support at three
points. This arrangement can be moved about two axes controlled
by screws A and B for block B and screws F and G for block A.
The screw A (or F) controls the alignment about the horizontal

axis along the plane of the Jamin block while screw B (or G)
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controls the alignment about the vertical axis.

Each of the two prisms is fixed to a movable metal base
with adhesive. The metal base can move forward or backwards
using screws D and E to change the overall path length of the
prism pair before being locked into a permanent position. They
are encased with a rotating support so that the incident angle
to the first prism can be varied by rotating the whole prism
pair about the <central vertical axis. The compensating glass
plate is supported in a metal frame which 1is fixed to the
rotating plate controlled by screw C, so that the displacement
of the image and optical path length can be varied. The light
paths through the device are shown in fig 7.6. None of the
optical surfaces is coated so only about 10% of the initial
light emerges in the interfering beams. A baffle removes the
effect of other reflections. Optical coating could Jlead to a
light efficiency of 25%.

Tests with various prism apex angles and orientations and

with compensating plates of different thicknesses are needed to

get an understanding of the principle of the shear
interferometer since there is no published literature on the
subject. The results of the tests will be given below and the

principle of the shear interferometer will be explained in the

next section.

7.3.4 Tests with the Durham shear interfergmeter

The shear interferometer, initially without the prism pair

and compensating plate, is placed on the woptical bench, which



also «contains an achromatic doublet lens, a pinhole holder with
various sizes of pinholes, a white light source (or a sodium
source) with a focussing lens. This is shown in fig 7.7. With
a sodium source and a pinhole of, say, 12.5 microns, fringes are
seen immediately and Tmade to be horizontal by adjusting the
screws A and B (fig 7.5). They cover the whole of the field of
view. The white light source with a bandpass filter (about
1000&) then replaces the sodium source and the screws A and B
are further adjusted to obtain fringes in the field of view.
Because of the bandpass the visibility of the fringe extends
only over 2 or 3 fields of view. The fringes are positioned so
that those of maximum visibility are in the field of view.
Then, when the filter is removed, white light fringes will be
close by as seen in plate no. 7.2. The fringes are at infinity
so that the size and position of the pinhole has no effect in
visibility.

The prism pair and compensating plate are inserted. With
the sodium source, the prism pair is adjusted until an oval
field of view from the prism pair and a circular field from the
compensating plate overlap in the centre. [If the fringes are
not found, then the screw D is needed to move the second prism
forward or backwards to adj;st the optical path length within
the prism pair, or screw C can be used again to rotate the
compensating plate to change the path length, until the fringes
are found. The fringes are made to be horizontal by adjusting
screws A and B. The white light source is then used and similar

adjustments as before are made to obtain white light fringes;






that is when the optical path length of the prism pair is equal
to that of the compensating plate. The white light fringe
patterns are shown in plates nos. 7.3 to 7.9 for prism angles
A = 30, 0 = 40"

With two different prism apex angles, 30° and 12.5"and three
different thickness of compensating plate,-ie 12.5mm, 7nmm, Imm,
the results of the mbvements of the pinhole in three dimensions
are found to be follows:

i) Lateral shift of the pinhole source - this has a major
effect on the fringe pattern as it causes the fringes to incline
as shown in plate n&. 7.4. Here the pinhole, with a size of 5
microns, has been displaced by 40 microns compared to the normal
position (plate no. 7.3). When the pinhole is displaced in the
other direction, - then the fringes incline in the other
direction.

ii) Longitudinal movement of the pinhole source - this has

a minor effect on the fringe pattern and causes the fringes to

curve, as shown 1n plate no. 7.5. Here the pinhole is
displaced longitudinally by Inm from a normal position. When
the pinhole is displaced in the other direction, the fringes

curve ‘in the reverse direction.

iii) Vertical shift of the pinhole source - this has no
effect on the fringe pattern as there is no sheared effect along
the vertical lines of the image.

iv) Different sizes of pinhole - these have a major effect
on the fringe patﬁern as source size causes the fringes to lose

their visibility at the edges, as shown in plates nos. 7.6 to



7.9 when the pinhole is increasing in size from 12.5 to 100

microns. This can be understood in terms of the lateral shift
as mentioned above. For example a pinhole 50 microns in size
can be thought of as a succession of ©pinholes, 5 microns in
size, all side by side. The outermost 5 micron holes are then
displaced + 25 microns from the «central hole. Consequently,

there will be horizontal fringes from the central part of the 50
microns hole and inclined fringes from the outermost parts of
the pinhole. Intermediate parts will give fringes of reduced
inclination. When all the fringe patterns are added together
the inclined fringes demodulate the outer parts of the resulting
pattern giving rise to fringes which are reduced in extent
(plate no. -7.8). The fringe patterns in plate nos. 7.3 and 7.6
to 7.9 have been measured with a microdensitometer and their
MTIFs have been found and are given in section 7.3.7.

The results of the all the above tests are summarised
in Table 7.1. ]f can be seen that it is better to use
a prism pair with an apex angle of 12.5%° to reduce the
sensitivity of the fringe pattern to source motions. However
with 12.5°ang]es tbe magnification is nearer to unity.

Because of dispersion, the zero order of the fringe

patterns corresponding to different wavelengths may not coincide

at the centre. Then the overall fringe pattern (white light)
has reduced visibility. The screws B and C are needed to bring

all the zero order fringe patterns of each wavelength to
coincide at the centre (with some checks using filters). This

gives better modulated fringes with two well defined black



fringes become unusable.

(2)

extending

- Maximum size of pinhole giving usable fringes

to 2/3 the maximum width of pattern.

magnif - incident angle of longitudual ma X imum
ication angle inclined ma X imum size of
m 1y fringes per tolerance pinhole
10pm movement (1) (mm) (2) (pm)
o
A 30 o o
o 0.5 54 15 0.25 25
o 60
A= 30 o .
o 0.667 43 3.5 1.0 50
&) 40
A 12. o o
o 0.75 39 1 3.0 100
o 60 ‘
TABLE 7.1 The results of the effects on the fringe patterns
Notes:
(1) - The longitudual tolerance is a subjective estimate of how
far the source be moved longitudually before the curved

ie fringes




fringes at either side of the single bright zero order fringe.

The image from the prism pair is astigmatic. If crossed
hairlines are put behind the re-imaging lens then in the
circular field, both lines are in focus. For the oval beam, the
horizontal hairline is also in focus but the vertical line has a
virtual image about 2m distance upstream. This is due to the
demagnification of the wavefront curvature of the image which
causes the focal point to change with shear distance. So the
overlap image will show a sharp border at the top and bottom of
the oval field, but a blurred border on either side of the oval
field, as seen in plate no. 7.9.

The problem of chromatic aberration is considered later.

7.3.5 Diagrammatic understanding of fringe patterns

In the Jamin interferometer (fig 7.8), the amplitude of a
wavefront in a converging beam from a light soure is divided
into two beams at a point, P, on the surface of the first Jamin
block. These beams converge to separate image points at A and
B. From these points, the diverging beams are refracted
(reflected) and recombined at Q situated on the surface of the
second Jamin block. The apparent images will appear to be
coincident at X B if there is no wedge angle between the blocks.

When a slight wedge angle between the two blocks s
introduced by tilting the second block out of the plane then
there is no difference between the beams until the surface of
the second block is reached. With reference to fig 7.8, the

normal to the surface at Q is tilted out of the surface and so
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the reflected beam at Q moves out of the paper and its apparent
source, ﬁ, is below the paper. At the point, R, the refracted
beam will move down below the plane of the paper and its
reflection at the back surface will continue to move downwards
and arrive just below Q. On projection its apparent source, Ac
will appear to be above B{ The in-phase apparent sources A and B
will give rise to Young’s fringes and several horizontal fringes
are then obtained with white light.

If the converging beam from a point source is moved to the
left (or right), so that the point of incidence P moves along
the surface of the Jamin glass, then A and B move which will
cause the apparent images A and B  to move also to the left (or
right) by the same amount and so the fringes are not affected.
Hence the finite size of the source has no effect on the fringes
when it is focussed at infinity.

When the prism pair and compensating plate are introduced
and adjusted, the apparent images Afand B/are unaffected and
fringes are produced as before. When the converging beam from a
point source is moved to the left or right, i1t will cause the B’
image to move to the Jeft or right as before since the
compensating plate has no differential effect. However, as the
image moves between the prism pair, the length of the air path
between the prisms changes. Hence the displacement of light on
exit from the prisms is less than in the compensating plate and
this will cause the A image to move to the left or right by a

/. . . .
smaller amount than the B image and so inclined fringes are

seen.



This gives the clue to the operation of the system. To
reduce the limitations from the inclination of fringes just
mentioned then the seeing disc is imaged between the prisms.
However when the system is adjusted so that the centre of the
seeing disc gives horizontal fringes, then points taken
progessively further away from the centre will lead to more
inclined fringes as described earlier. As the time-averaged
seeing disc is formed by speckles over about one arcsec, then
fringes due to each speckle in turn can be considered.

Seeing typically alters phase rather than amplitude and so
a wavefront of —constant phase has fixed amplitude but 1is
corrugated. Without the prism pair and compensating plate, the
recombined wavelronts interfere due to path differences
introduced by the wedge angle and the white light fringes would
be the same as without seeing.

However, when the wavefront is sheared by the prism pair,
the differences in phase due to its variation by seeing across
the wavefront will introduce further path differences. On the
short time scale involved, this will distort the fringe pattern
except along the =zero shear line, PP, (fig 7.9b) where the
phases match. With a longer time scale the fringes move up and
down leading to increasing broadening further from the zero
shear line, PP Measuring along RR gives the modulation
transfer function with shear., s, or with spatial frequency, w,
where w = s/h. The zero shear line can be moved across the
aperture image by rotating the whole prism pair unit about an

axis normal to the plane of the optical diagram. When an outer



get an average central of the amplitude, d. Then the
atmospheric MITF can be found as (fig 7.12),

(c(s) - c(0))/4d
MTF(s) = 10 , (7.11)

where c(0) is the height from the average at the zero shear and
c(s) is the height at the shear, s. This method needs only two
scans and is quicker than the first method described.

The MIF for the atmosphere can be determined in terms of
spatial frequency by dividing the shear values by the averaged
wavelength (say 0.5pum) and the value of 206300 (eq 2.17), ie

spatial frequency, w = s/206300A (7.12)
since the zero orders of all wavelengths coincide at the central

bright fringe.

7.3.7 Results of optical bench tests

In the experiment, the seeing disc is simulated by
illuminating pinholes of various sizes (from 5 to 100 microns)
and imaging these between the prisms of the shear
interferometer. The fringe patterns are shown in plates nos.
7.3 and 7.6 to 7.9 for prism angle, A = 30. Thesé
interferograms are inspected visually and scanned wusing a
Joyce-Loebl microdensitometer with a 40x100pnf beam. The
interferogram has a scale of approximately 1/100 (ie 1mm on the
interferogram = 10cm in the telescope aperture). Density MIF
curves are shown in fig 7.13 for pinhole sizes ranging from 5 to
100pm. These correspond approximately to seeing conditions
ranging from 1~ 20cm to r,~2cm. Clearly the interferometer 1s

matched to the range of seeing on La Palma. Changing to the



0.8

’mm thick compensat ing

plate
0.6 |
w
}—
=
o
s 12.5pm hole
)
8 0.4
= : 50pm hole
+
0.2
100pm hole
O.,O 1 L | t
0.0 0.2 0.4 0. 0.8
shear on film (mm)
FIG 7.13

Density MIF curves for several sizes of pinhole

7. 32



. o . . . .
prism angle of 12.5 in the final version of the interferometer

will not change this conclusion.

7.4 OVERALL DESIGN OF THE DURHAM POILARIS MONITOR

7.4.1 General optical design

The light from Polaris is collected by an F/6 30cm mirror
and directed onto the 45°ellipical plane mirror (see fig 7.14)
which reflects the light beam to an external primary focal point
just below another 45°e11iptical plane mirror, where it is then
reflected towards a re-imaging lens. This lens focusses a
second image of Polaris Ybetween the prism pair. The lens 1is
controlled in the x- and y-directions with two screws so that
the fringe pattern can be adjusted properly and made to appear
horizontal and straight. The movable plane mirror 1is placed
outside the re-imaging lens (see fig 7.14 and plate no. 7.13).
When this plane mirror is in an up position, the light will pass
through to the shear interferometer. When it is down, it causes
the image of Polaris to reflect and form at the ocular eyepiece
which has a cross hairline and a movable hairline controlled by
a micrometer screw. The purpose of this plane mirror is to help
with the alignment of the telescope with Polaris.

The camera with an automatic winder is fixed at the back of
the shear interferometer (as shown in plate no. 7.13) to
photograph the interferogram. The shutter 1is opened by a
miniature solenoid which is controlled by an automatic switch

box at the right of the camera. This is powered by a 12 wvolts



7.3k

JO 3 1uow m_LQJOQ EGILDO

BUIJIeY SSOUD + MBUDSOUD W NY Id
yitm @001deks ueynoo

@yod 1e1158180 yadou 01 -
siue)0q 031 ="

L@P@EOL@%LOUC_
Jesys

A3IA LINOYA n3IA 301S

m:oomx < -
& Agewt ud \/ | o5

S
O Jouuiw aue)d O
pesdiyye Gy «J

J0uuiw sue)d
8] genow
sua)
Buibewi-au

7172 914

JOJJ I w
51y0qeaed
wopg
9/4






rechargeable battery inside the box. The sequential switch can
be adjusted so that a two or four minutes exposure every 30

minutes can be taken.

7.4.2 Mechanical design

In order to get adequate illumination for an exposure it is
necessary that the telescope should track Polaris for 2 to 4
minutes. Instead of a ~conventional telescope mounting, the
telescope framework is rotated about its mechanical axis, which
is pointed at the north celesfial pole. The 30cm parabolic
mirror is placed so that its optical axis is offset by an angle
of 48 arcminutes to the celestial axis checked wusing a laser.
Provided that the hour angle of the telescope is correct, then
Polaris will lie on the optical axis. This means that the

monitor will track Polaris around the north celestial pole and

the image will form at the same position in the shear
interferometer. Further, on the optical axis, coma and
astigmatism in the image are zero. If the angle between the

optical axis and Polaris reaches 1 then the coma becomes the
order of the size of the seeing disc. The telescope framework
is rotated on eight stud rollers attached on the inside of a
stainless steel ring which is fixed at the front. At the back
there is a roller bearing to hold a shaft which is fixed to the
telescope framework and is driven by a motor via a worm and
wheel gear. The motor is powered by a 12 volts rechargeable
battery (plate no 7.14).

Seeing for La Palma is usually quoted at about 1 arcsec.






However there will be a sec O effect due to the zenith angle so
the image will be about 1.6 arcsec as measured from Polaris.
Hence it is required that the RMS of the movement of the
telescope perpendicular to the mechanical axis as it rotates

should be much less than 20 microns (which <corresponds to 2

arcsec).
a) Telescope rotational motion

The RMS motion of the telescope rotation has been tested
both mechanically and optically.

i) Mechanical test

A dial gauge, which can be read to 2 microns, was fastened
to the telescope framework, so that its plunger rested on one of
the stud rollers. The relative movement of four different studs
at 0O, 907, 180° and 270° along the frame were measured in turn for
every 10 of rotation. The results are shown in fig 7.15.
Between 0° and 180i 1e the top part of the ring, there was a
large movement of between O and 40 microns. This is not
important because the top part of the ring carries no weight of
the telescope framework and the stud rollers are probably
relaxing. There was a small movement of between +£10 microns at
the bottom part of the ring, ie between 180 and 360 This 1s
where the most of the telescope framework weight is supported.
The RMS (long term) of the movement of the stud relative to the
rim of the ring for the bottom part was 7.2+2.0 microns based on
measurements made for every ld’of rotation. For the RMS (short

term), the measurements were taken at intervals of half minute

for 10 minutes with the telescope framework rotating under



power . The RMS (10 minutes) variation of the_stud was 1.5
microns. Referring to Table 7.1, within a two minutes exposure
the inclination of fringes will be negligible; over long term
viewing the change in inclination is less than 1.

ii) Optical test

The previous measurements were concerned with individual
stud rollers. However the motion of the mechanical axis is a
result of the concerted movements of all the rollers and 1t may
show up as a ’wobble’ on the optical axis. Consequently an
optical test was devised. A plane mirror replaced the
paraboloid and was aligned at the back of telescope so that on
rotation there was no visible movement of an image, produced by
a narrow beam laser, on the lens (see fig 7.16) which was
temporarily covered with paper. This lens is clamped on the
front of the telescope framework. Then a pinhole, 5 microns
diameter, was placed in front of the laser. As the telescope
was rotated about its mechanical axis, carrying a plane mirror

and focussing lens, then a focussed track of the 5 microns

source was mapped out on the photographic plate. The telescope
was driven by its motor. The trail on the photographic plate
was about 45 microns in width. The edge of the trail was used

as the path of the image and a scatter measurement of this trail

was made using a microscope. This gave an RMS (long term) value
of 4.3 microns after correcting for grain noise. This
measurement is likely to be an overestimate because of

uncertainties in defining the trail edge.

If the short term and long term RMS motion of individual
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stud rollers scale to the RMS motion of the mechanical axis in
the same way, then the short term RMS motion of the optical axis
will be less than 1 micron. This noise will contribute an RMS
noise of about 0.05 arcsec to the seeing disc and is completely

negligible.

7.5 LOCAL GROUND LEVEL TESTING

Testing of the monitor is essential. There are two
questions to be answered:-
a) are the light levels sufficiently high to be able to obtain
exposures in a reasonable time?
b) is the tracking of Polaris by the monitor sufficiently
accurate that there is a negligible rotation of the fringes
during an exposure?
Both of these questions can be answered by examining the seeing
which is local to Durham. The quality of seeing is not
important in these tests. However, since it will be poor then

fringes limited in extent can be expected in the interferograms.

7.5.1 Exposure times

The estimate of exposure time necessary for the Durham
Polaris monitor can be found by scaling from Brown and Scaddan’s
experiment. Although the 74-inch telescope of the Helwan
Observatory at Kottamia was used, the shear interferometer only
sampled a (5x75)cm?rectangular aperture. The interferogram was
recorded at a reduction of 180:1 at an exposure time of 2

m
minutes on Pan F emulsion (ASA 50) using Vega (0.04 ) as the



source star.

The Durham monitor is based on a 30cm mirror which
collapses the interferogram of Polaris (2.1™) to a 3mm image on
400 ASA film. The reduction is 100:1. Scaling from the
Kottamia telescope to the monitor, then similar levels of light

intensity in the image will be obtained in under 3 minutes of

exposure.

7.5.2. Experimental results

The Durham Polaris monitor rests on a standing frame so
that it faces the north «celestial pole from one of the
laboratory rooms. The internal siting of the instrument is very
convenient at this early stage of adjustment as power and
other facilities are readily available. The telescope alignment
is adjusted so that the mechanical axis is parallel to the north
celestial pole. When they are mnot parallel, there are four
values to adjust, ie the two angles, f and g (at right angles to
each other) between the mechanical axis and north celestial
pole, the hour angle of the telescope, h, and the angular offset
of the parabolic mirror, d. When these values are properly
adjusted then Polaris will stay in position when looking through
the evepiece. If the hour angle or offset of the mirror is
changed, Polaris does not appear 10 move as the telescope
rotates but is simply displaced from its normal position to
another fixed position in the eyepiece. This is not very
important unless the displacement is large when coma of the

image will appear. But if the mechanical axis does not coincide



with the celestial pole, then it will cause the image of Polaris
to move along a circular path in the eyepiece as the telescope
rotates; the radius of the «circle being (f1+g2;&1 It can be
reduced by the following procedure:- the displacement of the
image of Polaris in the eyepiece 1is measured using crossed
hairlines of an ocular eyepiece with a micrometer screw every 10
minutes for half or one hour. Then the telescope is moved up or
down to adjust g and the measurements of the movement are
repeated. If the total displacement is less than before, the
telescope continues to be moved down until a minimum
displacement is obtained. Then the procedure 1is repeated for
the sideways movement, f, and this «cycle continued until a
position of no apparent movement of Polaris is reached. Then
the telescope is ready to use. (For more expla nation of these
movements and theory see Appendix F).

Initially there is some general adjustment of the optical

parts so that when an image of Polaris is sharp in the ocular

eyepiece, then straight fringes are seen through the
interferometer. All the controls in the shear interferometer
are then locked in position. The telescope alignment s

adjusted so that Polaris is at the centre of the field of view
in the evepiece. The movable plane mirror is placed at the up
position. Then images of the overlapping circular and oval
field of wview <can be seen through a small telescope which
replaces the camera. The fringes are difficult to see as there
is only a very low light level from Polaris and the edges of the

fringes move rapidly because of seeing. However with the light



adapted eye there is sufficient light to be able to judge (and

to adjust) how horizontal the fringes are. If the fringes are
not horizontal, then the re-imaging lens is adjusted sideways
(as described in section 7.3.4). The small telescope is

replaced by an automatic camera and interferograms of Polaris
are taken. By experimenting it is found that HP5 (ASA400) film
requires 2 minutes exposure.

The image of Polaris, when seen through the -eyepiece,
appears to be dancing about and changing in size. Sometimes
these effects are much smaller when the seeing conditions are
better such as when there is a smaller temperature difference
between the inside and the outside of the laboratory in which
the monitor is placed.

Several interferograms of various seeing conditions have

been taken. A typical interferogram is shown in plate no.
7.15. This plate contains short fringes due to the local ground
level seeing. The measurements of the MIF from the fringes in

the interferogram are given in the next section.

7.5.3 Densitometer measurements

The interferogram, as shown in plate no. 7.15, of the

local ground level seeing has been scanned along the fringes

using a Joyce-Loebl microdensitometer. The results of the
scanning are shown in fig 7.17 and the MTF curve of the
interferogram is shown in fig 7.18. The value of 1, can be found
by fitting a curve of equation 7.1 to this curve, or from the

shear value where MIF is effectively zero. The value of 1, for






plate no. 7.15 is found to be equal to 1.4cm. Several other
interferograms have been measured. Values of r,were found in
the range 0.5 to 2.0cm.

These measurements conclude the testing of the monitor.
Soon it will be transported to lLa Palma where it will be used to

gather statistical information on seeing.

7.6 FUTURE IMPROVEMENTS

It is envisaged that in the future the photographic film in
the seeing monitor would be replaced by a CCD device or an image
intensifer and a TV scanning device running automatically. The
fringes would then be scanned with automatic read-out recorded
onto magnetic disc, using a microprocessor. This would lead to
automatic recording and data-reduction, and real time
determinations of the quality of seeing. Exposure times would
be reduced since photographic film is inefficient (about 1%
efficient) whereas CCD devices are about 70-80% efficient.
There is a possibility that the required time for a short
exposure could be reached.

The Jamin glass blocks could be optically coated to give an
increase in the light efficiency from 10% to about 25%.

The size of the shear interferometer can be reduced since
only the prism ends and a thin compensator plate are really
needed, so it could be placed in the primary focus of Polaris to
avoid the chromatic aberration of the re-imaging lens of the

present design.



APPENDIX A Basic Model of Photographic Density
In the wunprocessed emulsion, there are N, grains in
projected area A. There is a distribution of grain sizes

(areas), a, and quantum sensitivities, Q (where Q is the minimum
number of photons to be absorbed by a grain to make it
developable). The proportion of grains of size, a, is p and the
proportion of grains wth quantum sensitivities, Q is &

The probability that a grain of size, a, will absorb Q or
more photons and be made developable is assumed to follow a
Poisson distribution. The number absorbed will depend upon
size, a and also to an exposure to g absorbed photons per unit
area. The average number absorbed per grain is (aq) and the
distribution of absorption of 0,1,2,...Q,.. photons is given by
the Poi1sson series,

2 . Q
1 = exp(-aq)+aq exp( aq)+laq) exp(-agl+...+(aq) exp(-aql+..
2! Q!

The fraction of grains of size, a, absorbing Q or more photons

aund hence becuoming developable, 1s
i

Q-
d r n
R.= 2 exp(-aq) (ag) = 1 - E exp(-aq) (aq) .
r=Q ! (] r!
Now the number of grains unexposed (Q,a) in area A is
NQP= O(F Nﬂ s
and so the number made developable is
o™ oK F Nﬂ PQ.G ’
Q- r
- xf Nﬂ{lii exp(-aq) (aq) } . (A.1)
S r!

After development, grains of size a have scaled to size d. Each

grain will represent area d to a microdensitometer scanning beam



and so the transmission T is given by

T - A -S6Sadng-1-1SS dnga
A A q o
With overlap, the transmission

no overlap of grains.

assuming
-becomes an exponential function of which 1 - 1/A Zidnqlais an
Q@ a
expansion. So
T = expl- lzzdnqp]
A q a
The photographic density, is then
D = log expl _1_22 dngal
A @ o
using eq A.l
aQ-f
D = 22 ﬁd{lie)\p( aq)(g)},
A Qa
r
D = 4 Ngd 22 g I-Zexp(—aq) (ag) } . -
A Q a d o r!
Now d/d is assumed equal to a/a where a is the average size of
undeveloped grains. So
@-!
D = 4 Nad 22 a% —Eexp( aq)_(J_)_}
A Q a a o
Now o b a/a =1
22 pﬂ e
1. (A.2)

4,34N d [1 ZE %E% exp(—aq)Z(agl
a < a o T!

There will be a maximum density when all the grains are
the bracket i1s equal to 1.

developable ie the value of
D= 0.434 Nad (A.3)
fax
A
Experimentally there is a D;due to fog. Hence
(A.4)

~1 "
aq)i_(ﬂl ] + Dpin-

D = DM[I-ZE «ﬁi expl
g a %7 o r!



APPE X B MTIF and PSF for a hexagonal aperture

The modulation transfer function for a hexagonal aperture
is calculated as the ratio of the overlap area between IWO

sheared hexagonal apertures and the total area, (fig B.1) ie,

MTF(x,y) = overlap area = A(x,y}/&[ib , (B.1)
2

total area
where b is the base length of the hexagon and A(x,y) 1is given
below. But there are four conditions because there are four
different rates of change in the éverlap area. These conditions

are shown diagrammatically in fig B.2 and are given below. It

can be calculated only in the top right quarter since MTF(x,y)

]

MTF(-%x,-y), and because of symmetry, for which MTF(x,y)

MTF(x,-y).
1) Alx,y) = (3b-2x)(/3b/2-y) + y(2b-x-y/V3)
condition: y =0, 0 ¢ x ¢ b y £ /?x, 0 £ Xx g b/2
y = h, b/2 ¢ x g 3b/2 y » /3(x-b), 0 ¢ x g V/3b/2
2) Alx,y) = (3b-x-y/¥3)(V3b/2-4/3x/2-y/2)+/3x(2b-x-y//3)
condition: x = 0, O_g y < 2h
v »/3x, 0 €« x g b/2 v ¢ 2h - /3x., 0 £ x 5 b/2
3) Alx,y) = (V3b-y)(2b-x-y/V3)
condition: y = 2h, 0 & x ¢ b v < (2h-V3x), 0 < x < b/2
y = h, b/2 < x g 3b/2 y » (2h-/3(x-b)), b < x 5 3b/2
4) A(x,y) = (2b-x-y/VB)(S3b-/3x/2+y/2)

condition: y =0, b s x g 2b
y < /3(x-b), b ¢« x g 3b/2 y < h=-/3(x-b), 3b/2 g x < 2b
where h = V3b/2

Fig B.5 shows the MIF for the hexagonal aperture; it has six



corners, which will cause its Fourier transform, the PSF to
contain six fans (or spikes) in the diffraction pattern. The
shape of the MIF is more similar to the MIF for a circular
aperture (see fig 3.22) except at the base which is hexagonal in
shape.

After a Fourier transform, the PSF obtained is shown in fig
B.6 and is similar to the circular aperture (see fig 3.23)
except that the first diffraction ring 1is mnot completely
circular, but is a hexagonal shape with six shallow peaks at the
corners of the hexagon.

Instead of using the Fourier transform of the MIF and to
save computing time, the PSF of the hexagonal aperture can be
calculated from the square of the amplitude, (fig B.3)

PSF(0,6) = 1a(0,6)1",
where

2a(0,8) = JJ expl[2Wisin® (xcosé+ysind)] dxdy . (B.2)
A

For each x,y there is a corresponding -X,-y and so the terms of
expi(..) and exp-i(..) can be collected to give real terms.
Further from symmetry, the amplitude needs to be calculated
using only the top half of the hexagon, so
a(x,y) = J[ 2 cosl{k(xcosé + ysind)] dxdy ,
where k = 2msinO/A. The top half of the hexagon can be split
into three regions for the integration (fig B.4), ie
a(0,6) = 2(A + B + C)
After calculation, the three amplitudes, A, B and C are obtained

and then are added to give an overall amplitude, ie,



a(@,6)=2 4 [(-cos(kbcosd)/3sind-cosé(sin(kbcoséd)sin(/Ikbsing)
Ksind 2 2

+ /?siné{cos(kbposé)cos(zgkbsiné)})/(cos’é - 3sin%4)
2 2

+ sin(gpposd)sin(jgkbsiné)/cosé ] . (B.3)
- 2 2

The PSF is found by squaring the amplitude and is shown in fig

B.6.
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APPENDIX C MIF for annular aperture

Modulation transfer function for annular aperture s
(O’Neill, ref 3.1)

MIF(w) = (LA + B + C ) ,

(1 - %)
where n = 1, /1, the ratio of the internal and external radii
and
- |
2[cos' aw - aw [1 - Dw)* 17 0 < Aw < 271
A=4T 2r,  2r, 21,
0 AW > 2,
~f . 2 ‘/2.
L} [cos Aw - Aw [1 - (M] ] ] 0 £ Aw ¢ 21,
B = T 2r, 21, 21
0 AW > 2rg
[ _ng 0 ¢« AW g Q_(l—q)

C = 4 -21}2+ 2psind + (1+gl)é - 2(]—g2)tan [(1+n)tang ]
T T ™ (1-n) 2

1, (1-9) ¢« Aw < 1, (1-7)

0 Aw > 1, (1-p)

2 2
where 6 = cos []+q2— ()\W/r’n)
2y



APPENDIX D RGO Large Multi-mirror telescope

The design of the RGO large multi-mirror telescope consists
of six parabolic primary mirrors, each of 7.5m diameter and each
with a <central hole of 2m diameter, as shown in fig D.1. This
shows a different configuration from the Arizona MMI, as each
circular mirror has a slice cut off two of its sides to form
scallop shapes. These correspond to the hexagons with
circumscribed circles which form a compact system.

The diffraction pattern.for the scallopped mirrors can only
be handled approximately since they do not meet the symmetry
requirements detailed in section 3.3. The approximation comes
about from considering them as circular mirrors with a degree of
overlap and allowing for this. This is difficult analytically
exéept by approximating the overlap by a rectangle (too large)
or by a rhomboid of half the area of the rectangle (tdo small).

Since it is found that the amplitude is essentially the same for

the two overlap geometries at small image sizes, the amplitude
correction for the rectangular area is ‘taken scaled to the
correct overlapping area of two «circles. The PSF for ihe

scallopped mirrors is shown in fig D.2

The radius of the Airyv disc is 0.006 arcsec and the
enclosed energy 1is 58% of the total energy. The scallopped
mirrors produce less pronounced secondary maxima than the six
touching circular mirrors (see fig 6.8b), hence the Airy disc
has more enclosed energy. However, there is a reduction in the

resolution since the overall diameter of the six circular

mirrors with the same area is bigger.
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APPENDIX E Theory of fringe formation in the Durham Polaris
monitor

In the shear interferometer (as described in section
7.3.3), there are two interfering beams, of which one 1S a

direct beam with a complex amplitude, A(x,y,t) and the other is

a sheared beam with a complex amplitude, A(x+s,y,t). The
angular magnification, m, of the prism pair is independent of
shear to a good approximation, ie Alx+s,y,t) = fA(x+s,y,t) where
f~1/m. The second Jamin block is tilted to introduce a wedge
angle, o, which changes the phase of A'by exp(amiocy/A).  The
amplitude is seen to be wavelength dependent. Hence the

contribution to the intensity of the fringe pattern is:

dl, = I A*x,y,t) + fA{x+s,y,t)exp(4miocy/A) szA . (E.1)
An assumption is made that seeing is manifestly a change in
phase rather than a change in amplitude, therefore
A}x+s,y,t) = A§x,y,t)exp(ido) and lA§x,y,t)!z= IAIx+s,y,t)ll,
where d, is the phase difference between two amplitudes at a
shear. Hence equation E.1 becomes:

dl, = IA(x,y, D [ 1 + %+ 2fcos(dmocy/a+d,) ] dr
and can be rewritten as:

dly= R [ 1 + 4 2fcos(4mocy/A+d, ) 1 if{x,y,t) dA ,
where iy1s the intensity of the incident wavefront and R 1s the
light efficiency of the shear interferometer. The phase
difference. 6o, is wavelength dependent, ie &, becomes A, d, /M.
Then

Iy= (1+f7)R f iy, AN+ 2fRJ cos(4mocy /A + 2,86 /0 ) iy dA

This intensity, Iy, needs to be averaged over the representative




set of phases associated with that particular shear, S.

Therefore

1(s) = (1+f)R J;ihdA + 2fR % J;cos(4ﬂ04y/A + Ao Bo /A ) indA
Since A and ds are indepegzent of each other, the order of
integrating and summing can be reversed and the cosine term s
expanded into the sine and cosine terms. At a fixed wavelength,
the average of the sum of the sine terms will be reduced to zero
for the full range of d,values (positive and negative ones),
whereas the average of the sum of the cosine terms will only be

reduced to zero if 4@, values stretch uniformly through fr.

Therefore

1(s) = (1+f*)R fhi%dk + 2fR f cos(4mocy/A) cos(Ae 8o /A) iy dA
» A (E.2)

Without seeing or at the zero shear where the phase differences,

do, are zero, equation E.2 becomes:

1(s) = (1+f*)R J~ihdk + 2fR J;cos(4ﬂocy/A) indd . (E.3)
A

By comparing the two equations, E.2 and E.3, at a given

wavelength the effect of seeing is to reduce the effective f

from f to fcos(hodo/A) (see fig E.1). Consequently for a single
wavelength, A,, the fringes will have a cosine intensity whose
modulation reduces with increased shear (ie ©broader phase

difference distribution): ie,

modulation at shear, M;= lme- lmin = 2fcosdo
z
Lot Tin 1 7 f
modulation at zero shear Mpo= _2f
or without seeing, 1 + f*




Hence MTF(s) = cosd, . For each value of 6o, the cosine fringes
are shifted, but the individually shifted fringes add up in
total to give the cosine term with reduced modulation.

For a spectrum of wavelengths, the white light fringe
pattern will be demodulated when phase shifts are introduced.
However the ©phase shifts are wavelength dependent, so not only

is the pattern demodulated but its detailed shape <changes (see

fig E.2). This is quite severe for a square spectrum of

wavelengths. Then the information given by the pattern shows
_ 2

the central maximum at 1+f+2fcos(Aods/A) and the average

. . . ‘z IS . .

intensity still at 1+7t. T'herefore modulation at shear 1is

2fcos(hg 8, /A) / (1+f*) and MIF = cos(A,d0/A).




MAX

MIN
a)  at zero shear
’
\/\A/WV\/V ] ]HAX
—_ 7
IMN

b) at shear, s

FIG E. 1 Single wavelength fringe pattern

A

VAVAY

a) at zero shear

b)  at shear, s

FIG E.2 White light fringe pattern

E.

4




PPENDIX F Apparent motion of Polaris in the field of view

in the Durham Polaris monitor

The ocular eyepiece of the Durham Polaris monitor (as shown
in fig 7.14 and plate no. 7.13) rotates with the telescope frame
about the mechanical axis of the telescope. The optical axis,
OA, is approximately at the centre of the field of view with the
appropriate values of the hour angle, H, and the angular offset,
d, of the parabolic mirror, ie the angle between the mechanical
axis, MA, and the optical axis. These are shown in fig F.1.

Suppose that the mechanical axis, MA, does mnot coincide
with the north <celestial pole, CP, but is displaced by two
angles, f and g, (at right angles to each other) from the
celestial pole. H, is the true hour angle of Polaris. The
difference between this hour angle and the telescope’s hour
angle is h. The angular offset of Polaris from the north
celestial pole is d,.

The position of Polaris, P, relative to MA is

X ~dosinHo+ f

y docosHo+ g (F.1)

and the position of OA relative to MA is
X, = -dsinH
dcosH . (F.2)

Yo

I

Then the difference between P and OA is
2o (x - x,) + (y - 5,0, (F.3)
and using equations (F.1) and (F.2), this gives
*= d5+ &+ £+ ¢ - 2ddcos(H - Ho) + 2f(dsinH - dsinH,)

- 2g(dcosH - dgosH, ). (F.4)
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The angle between the X-axis and a line between P and OA, oc ,(as

shown in fig F.2) is given as

o«=p - H, (F.5)
where B = taﬁJ(y - Yo )/(x - Xo) and using equations (F.1) and
(F.2),

-
B = tan dcosHe - dcosH + f , (F.6)

-dsinH, + dsinH + ¢
hence o= tan [_dcosHe - dcosH + f - H . (F.7)

-dsinH,+ dsinH + ¢

The ~values of r and o0¢ will describe the apparent motion of
Polaris in the field of view. Some examples of the motion are
given below: -
i) The angle between the mechanical axis, MA, and the north
celestial pole, CP, is assumed to be equal to zero, ie f = O and
g = 0. Then

2

rT= d§+ 4> - 2ddcosh

ie constant and independent of hour angle, Ho.

o = tan [ decosHe - dcosH - H
-ds inHy, + dsinH

Further,

a) if H=Hoand d # do, then r*= d>+ d*- 2dd  and

oc= tan'(_deosHe - dcosHe) - H,,
-dsinH, + dsinH,

o= tan ( cotHo{ do - _d J ) - Hg,
-d, + d
o= tan ' (cot(-H)) - H,= -1/2 ,
ie constant and does not depend on the hour angle, H,. There
will be fixed position whose distance from OA is dé + d* - 244

along y-direction. Alternatively

b) if d = dyand H # Hyand H = Hy+ h, then r*= 2d, (1 - cosh) and



o = ﬁ - H ,

taking tan of both sides, ie

tanoc = tan(f - H) ,
tanoc = tanB - tanH ,

1 + tanBtanH

using equation (F.6)

cosHo - cosH - sinH
tanoc = -sinHe+ sinH cosH ,
1 + [ cosHa - cosH] [sinH

-sinHe + sinH cosH
2 . . .
tanos = cosHeosH - cosH + sinHsinH - sinH ,
-sinHgcosH + sinHcosH + cosHsinH - cosHsinH
tanoc = cos(He- H)Y - 1 ,

sin(Hpy - H)

hence tanoK = cosh - 1
sinh
Expanding

tanoe = cos(h/2) - sigfh/2) - sin(h/2) - cod(h/2)
2cos(h/2)sin(h/2)

Hence 0= h/2 ie constant and does not depend on the hour angle,
H,. There will be a fixed position whose distance from OA s
2&11 - cosh).

ii) If there is a displacement between the mechanical axis and
the north celestial pole ie f # 0 and g # 0.

a) when d is equal to doand H is equal to Ho(ie h = 0), then
oy gl does not depend on the hour angle and is constant.
However oc= tan (f/g) - Hydepends on the hour angle, so the
image of Polaris will move round about the centre, OA, with a
radius of (f*+ glf?

b) For the general case of all parameters out of adjustment,

then the image of Polaris will move along a circular path about

a point displaced from OA. This is shown in fig F.3 as a series



. . 7 Y2 .
of circles for decreasing values of (f"+ g* )7 This means that f
and g are the most important parameters on the adjustment of the

alignment of the telescope.
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