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Abstract

Many computationally difficult problems are attacked using non-exact algorithms,
such as approximation algorithms and heuristics. This thesis investigates an ex-
ample of the latter, Bee Colony Optimization, on both an established optimization
problem in the form of the Quadratic Assignment Problem and the FireFighting
problem, which has not been studied before as an optimization problem. Bee Colony
Optimization is a swarm intelligence algorithm, a paradigm that has increased in
popularity in recent years, and many of these algorithms are based on natural pro-
cesses.
We tested the Bee Colony Optimization algorithm on the QAPLIB library of Quadratic
Assignment Problem instances, which have either optimal or best known solutions
readily available, and enabled us to compare the quality of solutions found by the
algorithm. In addition, we implemented a couple of other well known algorithms for
the Quadratic Assignment Problem and consequently we could analyse the runtime
of our algorithm.
We introduce the Bee Colony Optimization algorithm for the FireFighting problem.
We also implement some greedy algorithms and an Ant Colony Optimization al-
gorithm for the FireFighting problem, and compare the results obtained on some
randomly generated instances.
We conclude that Bee Colony Optimization finds good solutions for the Quadratic
Assignment Problem, however further investigation on speedup methods is needed
to improve its performance to that of other algorithms. In addition, Bee Colony
Optimization is effective on small instances of the FireFighting problem, however as
instance size increases the results worsen in comparison to the greedy algorithms,
and more work is needed to improve the decisions made on these instances.
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1. Introduction

This thesis explores the application of Bee Colony Optimization (a swarm intelli-

gence metaheuristic) to a pair of combinatorial optimization problems, the Firefight-

ing problem and the Quadratic Assignment problem. These problems are formally

defined in chapter 2 which also outlines the Bee Colony Optimization algorithm and

a variety of graph-theoretic measures we use later in the thesis.

Chapter 3 discusses the application of Bee Colony Optimization to the FireFighting

problem and analyses some results on some randomly generated graphs, compared

to results obtained by a pair of greedy algorithms and an implementation of Ant

Colony Optimization.

Chapter 4 outlines Bee Colony Optimization for the Quadratic Assignment Problem,

testing the algorithm on most instances in QAPLIB (a standard library of Quadratic

Assignment Problem instances, [QAP]) and attempting tweaks on the algorithm to

improve the runtime.

The remainder of this chapter discusses the central concepts of Combinatorial opti-

mization, Complexity theory and Graph theory (and Graph classes).
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Introduction

Combinatorial Optimization

Combinatorial optimization studies problems in which we aim to select the best pos-

sible solution from a search space. Usually, we study problems in which exhaustive

search is not a viable method for obtaining this solution, and often these problems

have an equivalent NP-hard decision problem (NP-hard means at least as diffi-

cult as NP-complete and so if P 6= NP there is no polynomial-time algorithm for

NP-hard decision problems, and so no polynomial-time algorithm for the equivalent

optimization problem). Instead of using exact algorithms for these problems (which

we cannot compute in polynomial-time), we often use heuristics or local search al-

gorithms, which we expect to give near-optimal solutions in polynomial running

time.

These optimization problems arise in a large number of disciplines, such as routing,

AI and engineering so creating effective algorithms that can be applied to many

problems is ideal. If these problem-independent methodologies rely on iterative

improvement they are known as metaheuristics.

Many metaheuristics have been adapted from natural processes, such as Genetic

Algorithms (GAs) and Ant Colony Optimization (ACO), and are amongst the best

algorithms for a variety of problems ([DS04]).

Complexity Theory

Complexity theory involves categorizing decision problems according to their com-

putational difficulty. One of the most important decision problem categorizations is

determining whether a problem is in P or if the problem is NP-complete. Problems

in P can be solved in polynomial time (ie. there is an algorithm that can solve a
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Introduction

problem of input size n in time O(nc), where c is a constant), and are generally

accepted to be computationally tractable. NP-complete problems cannot be solved

in polynomial time unless P = NP, and are known as computationally hard prob-

lems. It is often useful to restrict the input for NP-complete problems to obtain

polynomial-time algorithms for inputs with specific properties. A simple example

of such a restriction is for the NP-complete problem, SATISFIABILITY. If we re-

strict the input so that each clause is of maximum size 2, we have the problem

2-SATISFIABILITY, which is known to be in P. More importantly for this thesis,

this can also be applied to graph problems by specifying our input is of a specific

class of graph, and we can often use the properties of the graph class to help solve

the problem in polynomial time.

Graph Theory

Graph theory is the study of graphs, each defined by a vertex set, V , and an edge

set, E. For an directed graph (or digraph) an edge is defined to be an ordered pair,

(a, b), where a and b are elements of the vertex set, each pair defining an edge from

a to b. To define the class of undirected graph, each edge is simply a unordered

pair, (a, b), each representing an edge from both a to b and b to a. Within these

classes, there are a large number of other classes, which have specific properties.

For example, a bipartite graph has the property that its vertex set, V , can be split

into 2 sets V1, V2 such that each edge (a, b) in the edge set E has the property that

a ∈ V1 iff b ∈ V2 or a ∈ V2 iff b ∈ V1.

6



2. Literature Review

2.1. Bee Colony Optimization

Bee Colony Optimization is a metaheuristic based on the natural foraging behaviours

of bees. When a bee successfully finds food, it returns to the hive and communicates

the position and distance to the food source to hivemates via a waggle dance, which

was not understood until decoded by Karl von Frisch in 1974 ([vF74]). The waggle

dance is a figure of eight dance, and communicates direction as the dance’s angle to

the sun and the length of the central section of the dance is directly proportional

to the distance to the food. Other hivemates then have a choice, they can choose

to follow another bees’ dance and fly to the same food source, where they may find

more food sources, or to explore randomly (which in nature is very rare). Once the

dancer has completed its dance it can either observe another bees dance, or return

to the food source it advertised.

Bee System was first introduced in [LT01], which led to the development of Bee

Colony Optimization and its application to the Traveling Salesman Problem (TSP)

in [WLC08a]. The metaheuristic is a swarm intelligence approach, meaning it is

characterized by individuals doing repetitive actions and a simple communication

method between individuals, resulting in iterative improvement of solution quality.

Bee Colony Optimization has been used to attack a variety of problems, including

7



2.1 Bee Colony Optimization

TSP [WLC08b, WLC09a, WLC09b] and the p-median problem [TDS11].

The Bee Colony Optimization metaheuristic has 4 steps per iteration, and the algo-

rithm iterates until some condition is met. The algorithm has a set of virtual bees,

the number dependent on the problem and problem instance, though between 20

and 50 is normal. The input is first read into memory, usually as some number of

matrices and the algorithm starts. Each iteration contains the following four steps:

1. Solution Construction. Each bee constructs a solution using the solution

chosen in step 4 of the previous iteration (unless it is the first iteration, which

is discussed later) and some problem-specific property (such as edge length in

TSP).

2. Daemon Actions. Problem-specific actions and local searches are run in this

phase to improve the solutions. The combination of constructive and local

search methods helps strengthen results.

3. Advertise ‘Waggle Dance’. Bees advertise good quality solutions to each

other for use in later iterations.

4. Follow ‘Waggle Dance’ . Each bee constructs solutions based upon a pre-

viously constructed solution. In this step, each acquires such a solution, either

by using the solution it constructed in the previous iteration, or by following

a good solution created by another bee.

The stopping condition is commonly either a specified number of iterations, or a

number of iterations without improvement.

Solution Construction

The solution construction section of the algorithm is the main area that needs in-

vestigating when applying the metaheuristic to a new problem. The construction of

8



2.1 Bee Colony Optimization

the solution S, uses information from a previous iteration in the form of a “followed

solution” S∗, where this solution is selected from the bee’s previous solution, or

copied from a ’Waggle Dance’ of another bee in step 4 of the previous iteration.

The solutions are constructed one element at a time (so for TSP the solution is

constructed by selecting one node at a time). Pi,j is the probability that element j

is added to the solution as the nth element where element i was the (n−1)th element.

We also let θ denote the element that followed i in S∗, λ is a predefined constant

in the range [0, 1], and Ai,n is the set of available choices from i (the choice made

at time n− 1 during this solution construction phase by this bee, eg. in TSP every

vertex not yet chosen) at time n. At time 0 we say the bee is at the hive, and so

the set Ai,n is the set of all possible choices. We then define Pi,j as:

Pi,j =
pαi,jη

β
i,j∑

j∈Ai,n
pαi,jη

β
i,j

(2.1)

where η is some problem specific value (such as inverse edge length in TSP, so

j is more likely to be chosen after i if there is a short edge between them) and

pi,j =



0, j /∈ Ai,n,

λ, j = θ, θ ∈ Ai,n,

1−λ
|Ai,n|−1 , j 6= θ, θ ∈ Ai,n

1
|Ai,n| , θ /∈ Ai,n.

,

pi,j gives a λ chance of choosing θ if that choice is still valid (deviation from the

followed solution in previous selections might prevent this being a valid choice), and

a 1 − λ chance of deviating, spread evenly across other allowed selections. If the

selection made by the followed solution is not valid, the probability is evenly spread

across all allowed selections. Pi,j is then calculated by modifying these probabilities

9



2.1 Bee Colony Optimization

by some problem specific measure ηi,j, which attempts to quantify how good each

selection might be, and helps the algorithm move away from following poor solutions.

The first iteration of the algorithm is another special case as we have no followed

solution, so θ doesn’t exist. Other algorithms (such as Ant Colony Optimization)

use special initialisation rules, however Bee Colony Optimization defines pi,j = 1
n

during this iteration, as θ /∈ Ai,n.

We use the values of α, β to encourage bees to either follow previous iteration results

more closely (by increasing the value of α
β
) or to pay more attention to the problem

specific values (by decreasing the value of α
β
).

We illustrate the definitions by considering a simple example from TSP. In TSP

we have our distance matrix D where di,j is the edge weight of edge (i, j), and our

solution is an ordering of nodes to make up a Hamiltonian cycle. [WLC08a] uses

ηi,j = 1
di,j

as the measure of edge quality. During the first iteration the algorithm

creates solution entirely dependent on the edge weights, with lower edge weights

more likely to be selected. The move from the hive at time 0 is picked entirely at

random as ηi,j is undefined from the hive in the first iteration, and in later iterations

is picked according by calculating Pi,j as though ηi,j = 1 for all vertices (so favouring

the θ selection). For TSP, λ lies in the range [0.95, 0.99] as experiments found it

allowed enough variation through solution construction to work effectively with the

non-constructive sections of the algorithm.

If we take the graph with distance matrix

D =

0 1 2 4

1 0 5 8

2 5 0 12

4 8 12 0

10



2.1 Bee Colony Optimization

λ = 0.95, α = 1, β = 2 and assume we have a bee with followed solution [1, 3, 4, 2].

We initially move from the hive with probabilities [0.95, 0.017, 0.017, 0.017]. Assum-

ing we move from the hive to node 1, pi,j is then [0, 0.025, 0.95, 0.025], and ηi,j is

[0, 1, 0.5, 0.25]. Pi,j is then [0, 0.095, 0.90, 0.005], and let’s assume we follow the high

probability and add node 3 to our solution, which is now [1, 3, ]. The algorithm re-

peats this again, getting Pi,j values of [0, 0.23, 0, 0.76]. Clearly selecting node 2 next

would give us a better solution, and our equation has pushed us towards selecting

this node next, though it still favours node 4 substantially. However if we increase

β to 5, this Pi,j becomes [0, 0.81, 0, 0.19], showing the importance of settings these

parameters correctly for an instance.

Daemon Actions

During Daemon Actions, we attempt to improve the constructed solutions using

quick local search algorithms before advertising them to the rest of the colony. For

many problems this can help avoid spending too much time constructing solutions

far from the optimal. For example, in TSP, use of 2-opt (a simple algorithm that

breaks 2 edges in the solution, (a, b) and (c, d), and replaces them with (a, d) and

(c, b) if this results in an improvement in quality of the solution) can quickly reduce

the search space to the area near the optimal solution, resulting in better runtime

[WLC08b].

Waggle Dance Phases

Bees only advertise solutions if they found their personal best solution.

Bees that find solutions significantly better than the average found in the previous

iteration are highly likely (usually significantly greater than 80% [WLC08a]) to use
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2.1 Bee Colony Optimization

their own solution for a guide instead of choosing another bee’s solution to follow. If

the quality of the solution found by the bee is worse, the chance of following another

bees’ solution increases, as it seems less likely that iterating on weaker solutions is

going to improve the overall solution.

Another important parameter is the number of iterations a good solution is adver-

tised for. [WLC08b] use 3 formulae to define the duration, Di, for the TSP:

Di = K · Pfi
Pfcolony

where

Pfi = 1
Li
, Li = tour length

Pfcolony = 1
NBee

NBee∑
i=1

Pfi

K is a user defined constant and NBee is the number of bees in the colony.

Finally, if no bees have danced for a series of iterations then the value of the best

solution found by each bee is weakened by a user-defined percentage, known as

a memory adjustment policy. This prevents stagnation of the search as the bees

begin to find new solutions believed to be their personal best and so waggle dancing

begins again, which is important as it allows the algorithm to investigate more of

the search space. Due to the local search procedure, this should not occur until

12



2.1 Bee Colony Optimization

the solutions found are near-optimal, enabling increased search especially around

potential optimals.

Fragmentation State Transition Rule

[WLC09a] introduces the Fragmentation State Transition Rule (FSTR) for Bee

Colony Optimization on the TSP. They note that good solutions for a specific TSP

instance are likely to have sections that are similar, eg. One solution (solution A)

may be [1, 2, 4, 5, 6, 7, 3] , and another (solution B) [3, 7, 6, 2, 4, 5, 1]. Solutions that

share most edge choices must have similar quality as the only differences in the

example solutions are the edges 1, 2 and 5, 6 are replaced with the edges 1, 5 and

2, 6 (assuming the problem is symmetric - the FSTR has not been tested as far as

we know for asymmetric TSP). They realised that due to the way swarm intelli-

gence algorithms work, utilising both local search and constructive solutions, they

only need to change a few edges (if any) to potentially get improvement from the

local search. They then changed the transition rule as follows: before beginning the

constructive phase of the algorithm, split our followed solution into fragments of a

few cities, eg for solution A above [1], [2, 4, 5], [6, 7, 3] could be our fragments. The

fragments can either be of a fixed size or of a random size - this is implementation

dependent. Now start constructing the solution as before - except only travel to

cities at either end of a fragment - so in this example from the hive the choices

are [1, 2, 5, 6, 3]. If node 1 is selected, the solution at this stage would be simply

[1], if node 2 is selected then it would be [2, 4, 5] or if node 3 is selected, [3, 7, 6].

This reduces the number of selections needed in this example to 3 from 6, and the

maximum number of probability calculations to 11 from 27. This should reduce the

runtime of the constructive phase of the algorithm significantly, and as long as the

size of fragments is correct the results should not be affected. The size of fragments

13



2.1 Bee Colony Optimization

tends to be chosen experimentally.

Frequency Based Pruning Strategy

Another improvement for Bee Colony Optimization introduced in [WLC09b] is the

Frequency Based Pruning Strategy (FBPS). While the FSTR presented above seeks

to reduce the runtime of the constructive segment of the algorithm, the FBPS seeks

to reduce the runtime of the local search section. However, unlike the FSTR which

aims to reduce the runtime of every solution construction, the FBPS seeks to reduce

runtime by running fewer local searches. The FBPS is based on building blocks,

which for TSP could be edges used in solutions. Let’s assume we have a 7-city TSP

problem, we then need a 7x7 matrix, H, initially filled with zeros.

We start running the algorithm without alterations, and our first found solution

is [A,B,C,D,E, F,G]. We then need to update H with the building blocks used

in the solution, so for this solution we need to update AB,BC, ... and the reverse

BA,CB, ... (assuming our instance is symmetric).:

H =

A B C D E F G

A 0 1 0 0 0 0 1

B 1 0 1 0 0 0 0

C 0 1 0 1 0 0 0

D 0 0 1 0 1 0 0

E 0 0 0 1 0 1 0

F 0 0 0 0 1 0 1

G 1 0 0 0 0 1 0

We then repeatedly do this and after several iterations we might have ended up with

the following H :

14



2.1 Bee Colony Optimization

H =

A B C D E F G

A 0 10 50 140 140 50 10

B 10 0 10 50 140 140 50

C 50 10 0 10 50 140 140

D 140 50 10 0 10 50 140

E 140 140 50 10 0 10 50

F 50 140 140 50 10 0 10

G 10 50 140 140 50 10 0

We then convert each of these rows and columns to percentages:

H% =

A B C D E F G

A 0 2.5 12.5 35 35 12.5 2.5

B 2.5 0 2.5 12.5 35 35 12.5

C 12.5 2.5 0 2.5 12.5 35 35

D 35 12.5 2.5 0 2.5 12.5 35

E 35 35 12.5 2.5 0 2.5 12.5

F 12.5 35 35 12.5 2.5 0 2.5

G 2.5 12.5 35 35 12.5 2.5 0

We now have a measure of which edges are common (and assuming our algorithm

is constructing good solutions, good edges). We can now introduce the idea of hot

spots - building blocks with a use percentage (ie. value in H%) of above q (where q

is user defined) are hot spots. We define another constant, κ and run local searches

on solutions that have no more than κ% of building blocks that aren’t hot spots.

15



2.2 Ant Colony Optimization

2.2. Ant Colony Optimization

Ant Colony Optimization is similar to Bee Colony Optimization, utilising the same

idea of solution construction and daemon action phases, but instead of waggle dance

phases there is a central pheromone matrix which is updated after each iteration and

directly influences the solution construction step of the algorithm. The transition

function is generally defined as

Pi,j =
ταi,jη

β
i,j∑

j∈Ai,n
ταi,jη

β
i,j

(2.2)

where τi,j is the pheromone value stored between nodes i and j, and η is some prob-

lem specific value. The dance phases from Bee Colony Optimization are replaced by

a single pheromone update phase after the Daemon Actions phase. In this phase,

pheromone is applied to each edge used in any solution, with more pheromone added

to edges used in high quality solutions. After the application, each pheromone value

is multipled by a constant 0 < ρ < 1, which helps avoid algorithm stagnation, and

reduces the effect of results found in earlier iterations, which will usually be poorer

than later results.

2.3. FireFighting

We can informally define the FireFighting problem as follows:

At time zero (time proceeds in discrete steps), a fire breaks out at some vertex (or

vertices). During each discrete time step a firefighter can be placed at any vertex

that is not burning (and so this vertex is now defended). Then fire spreads from

any vertex that is on fire to every neighbouring vertex that is not defended. This

continues until the fire can no longer spread (ie. it is either contained or all unsaved

16



2.3 FireFighting

vertices are on fire). The aim is to place the firefighters to limit the spread of fire as

much as possible. Figure 2.1 contains an example of the FireFighting problem and

an example solution.

Initial graph:

r

After 1 timestep:

r

After 2 timesteps:

r

After 3 timesteps and completed graph:

r

Figure 2.1.: An example of FireFighting on a small graph. Red nodes are nodes
on fire and green nodes are nodes which have a firefighter placed on them.

To formally define the problem let us first define a strategy for the FireFighting

problem. A strategy is a finite sequence of vertices, d1, d2, ..., dt of length t where

vertex di is not on fire at time i. Once we have a strategy, we can easily verify if it is a

valid solution to the FireFighting problem instance by stepping through the process

as described in the informal definition and placing a firefighter on each vertex in the

strategy in order. Once we complete this process we can simply count the number of

vertices burnt or unburnt to determine if the solution meets the criteria.This leads

17



2.3 FireFighting

us to define the FireFighting problem:

FireFighting

Instance: An undirected graph G = (V,E), a vertex r ∈ V and an integer k ≥ 1.

Problem: Is there a strategy for G for which at most k vertices burn, where initially

only r is on fire?

FireFighting is known to be NP-complete on general graphs. We can easily modify

the problem to create an optimization problem that will also be NP-hard as follows:

OPT-FIREFIGHTER

Instance: An undirected graph G = (V,E) and a vertex r ∈ V .

Problem: What is the a strategy for G that minimizes the number of burnt vertices,

where initially only r is on fire?

It is obvious that OPT-FIREFIGHTER is NP-hard; if we can solve OPT-FIREFIGHTER

in polynomial time, we can solve the decision problem FireFighting in polynomial

time (by solving OPT-FIREFIGHTER and find a value of x for the least possi-

ble number of vertices burning, we know the answer is YES for all k ≥ x, and

NO for all k < x.) and so we would prove P = NP. As we assume P 6= NP,

OPT-FIREFIGHTER is NP-hard.

Previous Work on FireFighting

Most previous work on FireFighting has studied the complexity of the problem on

a variety of graph classes, and more recently its parameterized complexity.

Perhaps the most important piece of work, at least with regards to this thesis, was

the proof of NP-completeness of FireFighting on bipartite graphs ([FM09]). The

reduction was from EXACT COVER BY 3-SETS (X3C), a known NP-complete

problem, to FireFighting by constructing a bipartite graph. Another important

18



2.4 The Quadratic Assignment Problem

result from the survey is that FireFighting can be solved in polynomial time when

applied to binary trees.

[KM10] contains a proof of NP-completeness for FireFighting on cubic graphs by

reduction from 3-NN SAT (Not All Equal 3-SAT without negated literals).

It has been shown that FFP is NP-hard on trees of maximum degree 3 ([CFvL12]),

and so FireFighting is NP-complete for general trees . Additionally, it has been

shown that for any optimal solution for FireFighting on trees, s1, s2, ..., sn, any

choice in the solution si will be adjacent to the fire at time i, and thus has depth i

from the root ([MW03]).

2.4. The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is believed to be one of the most difficult

optimization problems studied, with few problems over size 50 solved exactly. The

problem is defined as follows: we have 2 sets, a set of n locations L with distance

matrix l, and a set of n facilities F with flow matrix f , where li,j is the distance

between location i and location j, and fx,y is the flow between facilities x and y (for

example if a hospital were modeled as this problem, the flow could be patient travel

between departments). Our aim is to find an assignment of facilities to locations, φ

that minimizes the equation:

zQAP = min
n∑
i=1

n∑
j=1

li,jfφ(i),φ(j) (2.3)

For the hospital example, this would equate to minimizing the overall travel for

patients between departments.
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2.4 The Quadratic Assignment Problem

The problem tends to be attacked in one of two ways. The first involves lower

bound ascent procedures, which compute lower bounds then attempt to ascend

systematically to try to find an optimum solution. A large amount of work in

the field was initially based on computing lower bounds for problems, and one such

example is the Gilmore-Lawler Bound [Gil62], so these ascent procedures have many

bounds to work with. The second is a standard optimization approach, using genetic

algorithms, tabu search or Ant Colony Optimization (which is a broad title given to a

family of similar algorithms). There has also been some work on optimal algorithms,

many of which use a branch and bound algorithm, such as the exact algorithm in

[MDBS98].

Previous Optimization Work

For problems in QAPLIB ([QAP]) that haven’t been solved to optimality, the vast

majority of best known results were found by Tabu Search (most commonly the

Robust Tabu Search [Tai91]). Other good algorithms on QAPLIB instances have

been genetic algorithms ([FJF93]) and Ant systems ([MC99]). Other algorithms

have produced similar results, such as Approximate Nondeterministic Tree Search

([MDBS98]) and simulated annealing ([BR84]).

Tabu (or sometimes Taboo) Search for the QAP is based on a simple switch proce-

dure. It has been noted that if we have a solution µ obtained from solution π by

a 2-opt move switching two assigned facilities (or locations) r and s we can quickly

compute the value of solution µ if we know the value of solution π, which speeds

up the process dramatically over recalculating the value of solution µ. In Robust

Tabu Search (Ro-TS), the algorithm has 2 defined parameters t and u, and allows

moves at iteration a (regardless of if they improve the solution) if they satisfy the

following rules (taken from [Tai95]):
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2.4 The Quadratic Assignment Problem

a) If a > t, and a facility i hasn’t been at location x in the last t iterations, the

available set of moves must all place facility i at location j.

b) If during the last u iterations facility j was placed at location y and facility k

at location z then the available set of moves contains no solutions which contain j

placed at y and k placed at z unless the solution is the better than the best solution

found so far.

The algorithm creates a set of allowed moves from iteration k, Πk, and selects the

move with the best value in the move set to be the new move πk+1. The values of

u and t depends on the instance being solved (ideally) and promote variation of the

move set.

Ant system for QAP is the standard Ant system model with a 2-dimensional matrix

(an explanation of how Ant System works generally is discussed in section 3.4).

In [MC99], they used the Gilmore-Lawler Bound as the measure of how good an

assignment is. ANTS ([MDBS98]) used a simpler lower bound, whereas Min-Max

Ant System ([Stü97]) used only the pheromone, but mixed with a stronger local

search (using Ro-TS instead of a simple 2-opt mechanism). The results for all 3

were good, however Ant System was slower due to the time required to calculate

the Gilmore-Lawler bound.
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3. Bee Colony Optimization for the

FireFighting problem

3.1. Graph Centrality

Before we discuss the algorithm for the FireFighting problem, we need to introduce

the concept of graph centrality.

Centrality

Centrality is a measure of how “central” a node is to a graph’s structure. A simple

example is in a star graph. The node with high degree would often have a high

centrality value, whereas the leaves would all have lower centrality. Also in node

symmetric graphs, isomorphic nodes should have the same centrality measures. A

variety of centrality measures are highlighted below.

Degree Centrality

The degree centrality of a node in a (di)graph is simply the (out-)degree of the node.

The runtime to calculate this centrality for a node takes O(n) time to compute if the

22



3.1 Graph Centrality

graph is stored as an adjacency matrix, but O(1) time to compute from adjacency

sets (it is simply the size of the adjacency set).

PageRank Centrality

The PageRank centrality of a node is a refinement of degree centrality, and is based

upon eigenvector centrality and is similar to PageRank ([PBMW99]), except we do

not use a transportation matrix as our graph is undirected and connected. Eigen-

vector centrality takes into account that not all links in a graph are equal in im-

portance ([New08]) and so attempts to weight nodes connected to more important

edges higher than other nodes. PageRank centrality is calculated from an adja-

cency matrix, so if our graph is stored as adjacency sets, we need to convert it to

an adjacency matrix, which takes O(n2) time. Once we have an adjacency matrix,

we normalize each column so that they add to 1 (ie. for a vertex x, the values in

column x in our matrix are either 0 if a link doesn’t exist or 1
deg(x) if a link exists).

For example if our graph is:

G =

0 1 0 1 0

1 0 1 0 0

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

(G is an n× n matrix) after normalization we get:

G
′ =

0 1 0 1
2 0

1
3 0 1 0 0
1
3 0 0 0 0
1
3 0 0 0 1

0 0 0 1
2 0
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3.1 Graph Centrality

We then create our initial column vector which contains our centrality values, and as

our adjacency matrix is normalized, the vector of 1
n
s is a good initial estimate. We

then use the power iteration to repeatedly compute vectors until the values in this

vector converge, which usually takes no more than 50 iterations. The power iteration

works by using the following formula, νi+1 = G
′ ·νi

sum(G′ ·νi) , where ν
i is the vector found

at iteration i and sum(G′ · νi) is the sum of the elements of G′ · νi, thus the values

in νi+1 always sum to 1. We observed the vector converging similarly to PageRank

despite the lack of transportation matrix due to the graph being undirected and

connected. This results in a runtime of O(n2) time on adjacency sets, or O(n) on

adjacency matrices. The PageRank centrality of node n is then the nth value of the

final vector computed.

Betweeness Centrality

Betweeness centrality is a measure of how much load there is on a node if traffic

is passing through the network. It is calculated as the number of shortest paths

between all pairs of nodes z, y that a node x lies on, ie. the number of paths

y, ..., x, ..., z (x = y is allowed, but x 6= z) that are the shortest paths between y and

z. We can easily find the shortest paths between a node z and all other nodes in

O(|V |2) time, so betweeness centrality can be calculated in O(|V |3) time. [Bra01]

created an algorithm to compute this in O(|V ||E|) time on unweighted graphs,

which for sparse graphs is likely to be better than our simple O(|V |3) bound. This

improvement is attained by using the Bellman criterion, which states: A vertex v ∈

V lies on a shortest path between vertices s, t ∈ V iff dG(s, t) = dG(s, v) + dG(v, t),

where dG(s, t) is the shortest distance between s and t.
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3.2 The Updated Algorithm

Closeness Centrality

Closeness centrality is a simple measure of closeness ie. how close a node is to all

other nodes. First, define the farness of a node s as the sum of its distances to all

other nodes. Then closeness is the inverse of this. To calculate closeness, we first use

breadth first search algorithms, one starting at each node, to compute the farness

of each node. Breadth first search takes O(|V | + |E|) time per search, so the total

time for this stage is O(|V | · [|V |+ |E|] ). Once this is computed, we can simply find

the reciprocal of this value to obtain the closeness centrality of a node.

3.2. The Updated Algorithm

As noted in section 2, BCO requires some way to measure how good a node may be

if selected to be added to a solution during the constructive phase (ηi,j in equation

2.1). For FireFighting there may be a variety of effective parameters, however most

of the ones we tested were related to either centrality or distance from the root

(or a combination of both). Centrality seems a good measure, as its definition

implies nodes with high centrality (and thus high probability to be selected in our

solutions) will significantly affect connectedness of the graph, so saving such nodes

should hopefully either increase the diameter of the graph (giving us more selections)

or act as a vertex cut, completely isolating a section of the graph from the fire. In

section 2 we reviewed 4 different types of centrality, all of which were tested in the

algorithm. We also introduced a variation on betweeness centrality for this purpose

which we have named single betweenness.

Betweeness centrality computes centrality of a node amongst the whole graph, so

the obvious change to make for the FireFighting problem is to compute a version of

betweeness that considers only paths from the root.
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3.2 The Updated Algorithm

Single Betweenness was computed using a simple algorithm, where the graph is

stored as adjacency matrix.

• First, starting at the root, we run breadth first search and find the depths of

all nodes. During this search, when we discover a node of depth d we store all

of its parents with depth d− 1. This process gives us all shortest paths in the

graph between r and any other node v.

• Secondly, for each node we count the number of shortest paths it lies on be-

tween the root and all other nodes, and this gives us the centrality value of

each node.

We also introduced some simple upper and lower bounds on the number of nodes

that could be saved when selecting a node (discussed in section 3.3). However,

due to the “turn-based” nature of the FireFighting problem, very little information

about the future fire spread can be obtained by saving one node, so neither bound is

tight (whereas for a problem like QAP these bounds can be fairly tight and provide

a lot of information for constructive algorithms for some instances).

Due to the minimal difference between optimal solutions and any solution found by

the algorithm for most instances, all bees have a 50% chance of using their previously

found solution and an equal chance to follow another bees solution (providing any

bees are advertising solutions) during the “Follow Waggle Dances” stage of the

algorithm. The time that bees advertised solutions was set to be a number of

iterations equal to twice the value of the solution (the value of the solution is the

number of saved vertices) found for the same reason. If no bees had danced in 50

iterations the memory adjustment policy was applied to all bees. These values were

based upon experimental observation.

From an experimental point of view, it can be easier to think of the FireFighting

problem in a new way. During each time step we do the following: 1) Select a vertex

26



3.3 Local Search Algorithms

v and remove v and all incident edges from the graph. 2) Take our root, r and merge

all adjacent nodes to create a new “supernode”, r′, which becomes adjacent to all

nodes that were adjacent to the merged nodes. As such, we create a new graph

G′ = G\(v ∪ N(r)) with root r′, where N(r) is the set of neighbours of r. This

ensures only our root node is ever on fire. We can then repeat this process until

|N(r)| = 0 in which case the fire can no longer spread and we can stop.

3.3. Local Search Algorithms

Due to the “turn-based” nature of the FireFighting problem, a standard 2-opt al-

gorithm will almost certainly fail to find improvement due to the strategies being

invalid (as no longer saving a vertex could change the way the fire spreads). 2-opt

for FireFighting simply consists of selecting a node in our strategy, and replacing it

with a node not otherwise selected if that change improves our strategy. Instead, we

placed restrictions on our 2-opt decisions, to either save a vertex at the same depth

or to save a vertex with depth one less, as well as a random choice. Figures 3.1 and

3.2 show how these algorithms could work on a simple problem.

r

1

3

2

Figure 3.1.: A simple graph with an example strategy shown. Vertices in blue were
selected as the solution before local search.
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3.3 Local Search Algorithms

a)

r

a

b b

a

b)

r

b a

b a

Figure 3.2.: Results of 2 local search algorithms. a) shows the result of our same
depth restriction, b) the result of save vertices with depth one less. Vertices in
green are vertices that were saved but are no longer after our local search. Clearly
b) is not a valid strategy, however these can sometimes be useful, as shown in figure
3.3.

One further idea we used to attempt to improve these algorithms was not to imme-

diately discard a move that makes the strategy invalid. A situation could occur as

highlighted in figure 3.3, where we use an invalid strategy, before moving back to a

valid, better strategy.
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3.4 Greedy Algorithms

r

1

2
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3

r
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2

1)
2)

3)

Figure 3.3.: An example of improvement via invalid strategies during random local
search.

However, we returned to the last valid strategy if we didn’t return to a strategy

within a small number of iterations of local search, as the repeated illegal moves

made the chance of moving back to a valid strategy much lower.

3.4. Greedy Algorithms

We created 2 simple algorithms that could be used as comparison algorithms with

our Bee Colony Algorithm. The first algorithm is based on selecting the node at

each timestep which gives the largest increase of the number number of vertices

that can no longer be burnt, Lv. This is easy to compute for each v ∈ V as

Lv = |V | − |U | + D(G\v, r) − 1 where U ⊆ (V \v) is the set of vertices reachable

from the root node, r, once v is removed and D(G\v, r) is the greatest distance of

any node from r in G\v.

The second algorithm is a little less obvious. We know we cannot select more than

2 vertices with depth less than or equal to 2, and we can then define for each v ∈ V ,

29



3.5 Ant Colony Optimization Comparison Algorithm

U v = |V |−Z(G\v)+1, where Z(G\v) is the number of nodes in G\v with depth 2 or

less. In the greedy algorithm we then select the vertex in the graph with maximum

value of Uv. An obvious downside of this method is nodes with depth > 1 will always

have a poor value as they will not affect the size of Z(G\u), whereas nodes close to

the root have the potential to increase the depth of other nearby nodes (since the

direct paths to them from the fire are removed).

The implemented algorithms were simple. For the first method, we first calculate Lv

for all v ∈ V . Then, we set the node picked at time 1 to the node v with highest value

of Lv, combine the adjacency set of r with those of all of its neighbours (excluding

v if v is a neighbour of r) and set G1 = G\(N(r)∪v) (ie. G1 has a root node, r that

is adjacent to all nodes with depth 2 in G excluding those with only reachable via v

from r). We then repeat this calculation and picking until the fire no longer spreads,

and our strategy is the nodes picked at each time step during the algorithm.

3.5. Ant Colony Optimization Comparison Algorithm

We also implemented a simple Ant system algorithm for the FireFighting problem.

We used a 1-dimensional pheromone matrix, Π where πa represented the ‘quality’

of selecting node a calculated from solutions computed so far during the algorithm.

The pheromone matrix was initially set so every value was 1
n
, where n is the number

of vertices in the graph.

The transition rule was based on rules for both TSP and QAP that have shown Ant

Colony Optimization algorithms are capable of finding good solutions ([DS04],[Stü97])

without access to a node quality measure other than pheromone values. Let us de-

note Pij as the probability of choosing node j at timestep i and ηij as 1 if choosing

node j at timestep i of the solution is a legal move, and 0 otherwise. This results in
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3.6 Problem Instances

a transition rule described by:

Pij = πjηij∑
∀j∈G πjηij

(3.1)

The pheromones were updated in each iteration. We first calculated a value τi for

each node i, where for each time i appeared in a solution S, we added 1
val(S) to τi,

where val(S) was the number of nodes saved by the solution. Once these values

were calculated for all nodes, we updated the pheromone matrix so for each node i,

πk+1
i = 0.95 · πki + 0.05 · τi, where πki is the pheromone value of node i at time k.

3.6. Problem Instances

As FireFighting is known to be polynomial-time solvable for binary trees ([MW03]),

and in general for trees the optimal solution will save a node at depths 1, 2, 3...d,we

ran the algorithm on graphs that contained at least 1 cycle. We decided not to

use trees as our algorithm was to be as general as possible - however it would

be easy to add something to recognize a tree input and restrict to save nodes at

depths 1, 2, 3...d. Problems were randomly generated by constructing a spanning

tree over n nodes, and then adding m edges to the spanning tree until the graph

was constructed. Some instances are listed in appendix 1 - the format is adjacency

lists with each list on a separate line. Most of the instances are quite sparse (as

these have larger solution values and optimal solution sizes) and a few have 1 vertex

optimal solutions (ie. the graph has a vertex cut of size 1 at depth 1).
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3.7 Experimental Results

3.7. Experimental Results

All experiments were run on a Intel Pentium G840 CPU running at 2.8 GHz using

only 1 core. We set λ = 0.95, α = 1.0, β = 1.0. The BCO algorithms were run 10

times on each instance, and the worst and best results found by the algorithm with

each centrality measure tested are presented in the table below.

Each centrality measure was tested with all 3 local searches, however the results are

not shown here as they did not improve the solutions found.
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Problem Size Minimum/Median/Maximum number of nodes saved (η set to column title) Nodes Saved

Nodes Edges None Degree Closeness
Single

Betweeness
PageRank

Lv Uv

Ant Colony

Betweeness Betweeness Optimization

10 17 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 3 4 4

14 26 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 4/4/4 4 4 3

27 35 10/15/16 15/16/16 16/16/16 16/16/16 15/16/16 16/16/16 15 15 10

33 59 9/11/13 11/13/13 9/11/13 13/13/13 13/13/13 11/13/13 6 9 4

42 61 13/40/40 40/40/40 40/40/40 40/40/40 40/40/40 40/40/40 14 40 9

46 56 44/44/44 44/44/44 44/44/44 44/44/44 44/44/44 44/44/44 44 44 14

48 74 47/47/47 47/47/47 47/47/47 47/47/47 47/47/47 47/47/47 47 47 47

55 104 9/10/13 13/13/15 12/13/15 14/15/15 13/14/15 13/14/15 11 12 7

60 81 59/59/59 59/59/59 59/59/59 59/59/59 59/59/59 59/59/59 59 59 11

61 78 57/57/57 57/57/57 57/57/57 57/57/57 57/57/57 57/57/57 57 57 14

62 80 61/61/61 61/61/61 61/61/61 61/61/61 61/61/61 61/61/61 61 61 16

63 106 11/12/15 13/13/15 11/12/15 13/16/17 14/15/17 13/14/14 10 12 8

72 135 8/8/8 8/8/10 8/8/8 9/10/10 9/9/10 8/8/9 8 7 5

84 116 18/83/83 83/83/83 83/83/83 83/83/83 83/83/83 83/83/83 83 83 12

92 138 17/19/21 19/19/20 16/17/19 21/21/22 20/21/21 18/19/20 14 18 10

102 175 13/15/16 14/15/16 12/13/15 15/16/16 16/16/16 14/15/16 16 13 8

113 199 14/16/17 18/19/20 14/15/16 19/20/21 19/20/21 16/18/18 16 20 7

122 217 11/12/14 15/17/17 13/13/15 15/17/18 16/17/19 15/16/16 14 12 6

129 182 16/16/127 126/127/127 127/127/127 127/127/127 126/127/127 126/127/127 24 127 16

139 272 12/13/14 13/14/14 11/12/13 14/15/16 14/14/15 13/13/14 15 13 6

143 183 26/27/141 141/141/141 24/141/141 141/141/141 141/141/141 141/141/141 30 141 11

145 269 10/11/13 11/12/13 10/11/11 12/13/13 13/13/13 11/11/12 11 9 6

147 209 13/14/21 20/23/25 16/17/21 25/27/28 26/27/28 20/21/22 20 17 13

157 217 20/21/30 32/34/36 21/24/29 35/38/39 38/39/40 29/30/33 35 41 16

400 607 19/19/21 23/24/25 18/20/23 397/397/397 25/27/29 21/22/26 29 397 14

407 770 11/12/13 11/12/14 11/11/12 13/13/13 13/14/14 11/12/13 14 11 7

423 806 9/12/14 12/13/14 12/12/14 13/14/15 14/14/15 12/13/13 23 11 9

800 1178 21/23/27 25/26/28 22/23/24 27/30/33 29/31/33 24/25/28 35 24 13

Table 3.1.: Algorithmic results on randomly generated FireFighting instances.
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The remaining examples are on a selection of problems which had good variation on
results found.
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Figure 3.4.: A graph that shows the median result found by each Bee Colony Al-
gorithm as a percentage of the best known on selected instances. These instances
are available in the appendix, excluding the size 423 instance.

Nodes Edges Mean iterations to find best result
Betweeness Single Betweeness

27 35 71.2 10.8
33 59 46 67.2
55 104 211 87.6
63 106 184.2 357.8
102 175 118.8 152.2
113 199 146 178.6
139 272 69.6 168.2
157 217 209.6 308
423 806 87.2 169.4

Table 3.2.: Iterations required to find best solutions on a selection of FireFighting
instances
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3.8. Conclusions and Further Work

In this chapter we have introduced the FireFighting problem as an optimization

problem, and attacked it with both Bee Colony and Ant Colony Optimization al-

gorithms. We have also attempted to produce some local search algorithms for the

problems based on methods known to be effective for other optimization problems.

Finally we introduced simple greedy algorithms for the problem.

The results of the algorithm show that the goodness measure does have a substan-

tial impact on the results found for the Bee Colony Optimization algorithms, as the

results with no centrality are on average worse than those with a centrality measure.

The results showed that either betweeness centrality or single betweeness central-

ity gives the best results of any centrality measure on almost all problems under

size 400, and generally obtains better results than the greedy algorithms on these

problems. On large problems (400+ nodes), the algorithm seems to perform worse,

possibly due to the methods we used. These problems have higher diameter from

the root (9-11 on average as opposed to 6-8 for problems of size 100-200 or 3-5 on

problems of under 100 nodes), and our algorithms didn’t explicitly attempt to select

nodes near the root, though it would be expected single betweeness will favour such

nodes. However, on most of these larger problems single betweeness appears to per-

form worse than betweeness, so it seems further investigation is needed, as neither

perform as well as a greedy algorithm using Lv to build its solutions. Another idea

to attempt to improve such measures could be to reintroduce a variant on PageR-

ank’s transportation matrix for the PageRank centrality measure, except set this

transportation vector to exclusively favour links connected to the root very slightly.

So for example, our power iteration now calculates νi+1 = α·(GN ·νi)+(1−α)·x
sum(α(GN ·νi)+(1−α)·x) where

α is some constant between 0 and 1, and x is our transportation vector, which could

be contain values of 1
d
where d is the depth of each node from the root, normalised
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3.8 Conclusions and Further Work

so the sum of the elements of x is 1, and x is a column vector.

The Bee Colony Optimization algorithms often find a good solution in the first few

iterations and will stagnate for a period, and then improve again after a large num-

ber more iterations. This improvement appears after long periods waiting for the

memory weakening criteria to be met, and so it seems likely this runtime could per-

haps be improved by reducing (and normalising) dance duration, so larger problems

don’t have solutions advertised for as many iterations, and by reducing the num-

ber of iterations before applying the memory weakening criteria from 50 to around

10-20.

The results of the greedy algorithm seem to suggest a change in effectiveness of

the algorithms as the size of the problem instances increase. The results indicate

that the U v algorithm performs better on smaller problems, or on problems where

the optimal solution size is small. On larger problems, the Lv algorithm seems

more effective, however more experimentation on large problems would be needed

to confirm this.

The Ant Colony Optimization algorithm performed worse than was expected, though

the lack of a strong local search algorithm perhaps hindered it more than the Bee

Colony algorithms. Swarm Intelligence algorithms are strongest when you can com-

bine their constructive search methods with many short runs of a strong local search

algorithm. Bee Colony found reasonable solutions without the local search algo-

rithm, likely due to the fact the centrality measures employed seem to be effective

indicators of good selections in the problem, whereas Ant Colony was created to

work without these measures. The ACO algorithm performed worse than BCO

without any measure on most problems. It is reasonable to assume that if we added

these centrality measure to Ant Colony it could perform as well or better than Bee

Colony for the FireFighting problem, and this is a potential area for further work.
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3.8 Conclusions and Further Work

One issue with the centrality measures tested was due to the way the graph was

morphed after each selection, these values couldn’t be recalculated due to the ex-

pense of computing them. An area to investigate with these measures is finding a

cheaper way to recalculate these based upon changes to the graph, ie. if we remove

a vertex and know previous information about centrality values, can we cheaply

compute changes to centrality values, or even approximate these changes?

Another important development would be a local search algorithm that is effective

at improving solutions. None of the ideas we tested in this study worked, so it seems

likely a different style of local search than a simple switch might be required.
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4. Bee Colony Optimization for the

Quadratic Assignment Problem

4.1. The Quadratic Assignment Problem

The QAP is an optimization problem that can be defined as follows. We have two

sets, a set of n locations L with distance matrix l and a set of n facilities F with

flow matrix f . Our aim is to find an assignment φ that minimizes the equation:

zQAP = min
n∑
i=1

n∑
j=1

li,jfφ(i),φ(j)

This definition is discussed in more detail in Section 2.4.

4.2. BCO for the QAP

The BCO algorithm we have implemented does not use the Gilmore-Lawler bound

([Gil62]) due to the computational time required, despite this being commonly used

in many constructive algorithms for the QAP. Instead we used a much simpler
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4.2 BCO for the QAP

measure of η. The general structure of the algorithm is discussed in detail in section

2.1, and we highlight changes to the algorithm to use it on the QAP in this section.

In the solution construction step, each individual creates a solution probabilistically

according to Equation 4.1. Pi,j is the probability that element j is added to the

solution as the nth element where element i was the (n − 1)th element. We also

let θ denote the element that followed i in S∗, λ is a predefined constant in the

range [0, 1], and Ai,n is the set of available choices from i (the choice made at time

n − 1 during this solution construction phase by this bee, so in QAP Ai,n is every

unassigned facility (or location) remaining) at time n. At time 0 we say the bee is

at the hive, and so the set Ai,n is the set of all possible choices. We then define Pi,j

as:

Pi,j = [pi,j]α[ηi,j]β∑
j∈Ai,n

[pi,j]α[ηi,j]β
(4.1)

where η is some problem specific value and pi,j =



0, j /∈ Ai,n,

λ, j = θ, θ ∈ Ai,n,

1−λ
|Ai,n|−1 , j 6= θ, θ ∈ Ai,n

1
|Ai,n| , θ /∈ Ai,n.

„

We use the values of α, β to encourage bees to either follow previous iteration results

more closely (by increasing the value of α
β
) or to pay more attention to the problem

specific values (by decreasing the value of α
β
).

The first thing to note for QAP is that we have to either assign either facilities to

locations or locations to facilities. There is no strict way to say which is better,

our results showed that for some problems facilities to locations works best, and
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for others, the opposite. Let us assume we are assigning facilities to locations, we

first need to somehow pick an order of assignment for the locations. Most past

work on constructive algorithms has shown that having some rule to decide this is

much better than doing it at random. I used a simple idea known as location/flow

potential: Assign to the locations (or facilities in the reverse) with the highest

centrality first (ie. those locations i such that ∑
j∈L,j 6=i li,j is smallest are assigned

to first).

The next step was to decide on an easily computable value for η. The value of η

in this algorithm uses a a simple idea based on flow and location potentials. Let us

define 2 subsets of L and F , the already assigned locations and facilities, L1 and F1

, and the unassigned locations and facilities L2 and F 2. Now we can define a new

Πi to be the flow potential for some facility (or location) i ∈ F2(or L2) to be

Πi =
∑

k∈F2,k 6=i
fi,k

Then we can define:

ηi,j =
∑
x∈L1

(lx,jfφ(x),i + lj,xfi,φ(x)) + Πi (4.2)

where i is our facility we are calculating for and j is the next location to be assigned

to.

4.3. Local Search Algorithms

We tested a few different local search techniques with the BCO algorithm. The first

is a simple 2-opt switch, where we take any pair of assignments in the solution and
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switch the assigned nodes (for example [1, 3, 4, 2] could switch 1 and 4 to become

[4, 3, 1, 2]) if the switch would improve the solution. We used both methods of doing

this switch, either finding an improvement and immediately switching (first-find

improvement) or calculating all switches for the whole neighbourhood and making

the best switch (best-find improvement)

The other local search technique used was the Robust-Tabu Search algorithms

(RoTS) ([Tai91]) which I have converted to Java.

4.4. Experimental Results

We ran each algorithm 5 times on each problem instance, and the best results

are shown in the tables below. Problems where a * follows the given optimal are

problems that have not been solved to optimality and so the best known result

has been shown instead where possible. The results with Bee Colony Optimization

use Robust-Tabu Search as the local search algorithm. This algorithm performed

significantly better than the simple 2-opt local search algorithm. We used runs of

300 iterations on each solution found.

All 3 algorithms were implemented in Java 7. The Fast Ant algorithm is found

in [Tai98] and uses Taillard’s implementation converted to Java. Both the Ant and

Bee algorithms run until 1000 iterations have been performed without improving the

solution. The Robust-Tabu Search runs 100000 iterations. The tbest times shown

are the quickest times the algorithm required to find its best solution.
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Problem Instance Optimal
BCO Fast Ant Ro-TS

Result tbest Result tbest Result tbest

bur26a 5426670 5426670 0.1 5431633 0.1 5426670 0.2
bur26b 3817852 3817852 0.3 3824777 0.2 3817852 0.1
bur26c 5426795 5426795 0.1 5427564 0.1 5426795 0.2
bur26d 3821225 3821225 0.1 3822307 0.2 3821225 0.2
bur26e 5386879 5386879 0.1 5387620 0.1 5386879 0.0
bur26f 3782044 3782044 0.1 3782713 0.3 3782044 0.2
bur26g 10117172 10117172 0.1 10119734 0.3 10117172 0.1
bur26h 7098658 7098658 0.0 7098905 0.2 7098658 0.2
chr12a 9552 9552 0.0 11514 0.0 9552 0.0
chr12b 9742 9742 0.0 10596 0.0 9742 0.0
chr12c 11156 11156 0.0 11974 0.0 11156 0.0
chr15a 9896 9896 0.0 10890 0.0 9896 0.0
chr15b 7990 7990 0.0 10784 0.0 7990 0.0
chr15c 9504 9504 0.0 14082 0.0 9504 0.0
chr18a 11098 11098 0.0 17068 0.0 11098 0.0
chr18b 1534 1534 0.0 1740 0.0 1534 0.0
chr20a 2192 2192 2.3 3028 0.0 2192 0.6
chr20b 2298 2298 0.5 2880 0.1 2298 0.5
chr20c 14142 14142 0.3 17942 0.0 14142 0.1
chr22a 6156 6156 0.1 6730 0.1 6156 0.4
chr22b 6194 6194 1.7 7034 0.1 6194 0.4
chr25a 3796 3796 3.3 5594 0.2 3874 0.8
els19 17212548 17212548 0.0 18080088 0.0 17212548 0.0

esc16a 68 68 0.0 68 0.0 68 0.0
esc16b 292 292 0.0 292 0.0 292 0.0
esc16c 160 160 0.0 160 0.0 160 0.0
esc16d 16 16 0.0 16 0.0 16 0.0
esc16e 28 28 0.0 30 0.0 28 0.0
esc16f 0 0 0.0 0 0.0 0 0.0
esc16g 26 26 0.0 28 0.0 26 0.0
esc16h 996 996 0.0 996 0.0 996 0.0
esc16i 14 14 0.0 14 0.0 14 0.0
esc16j 8 8 0.0 8 0.0 8 0.0
esc32a 130 130 0.5 156 0.9 130 0.3
esc32b 168 168 0.0 196 0.5 168 0.1
esc32c 642 642 0.0 642 0.3 642 0.0
esc32d 200* 200 0.0 204 0.3 200 0.0
esc32e 2 2 0.0 2 0.0 2 0.0
esc32g 6 6 0.0 6 0.0 6 0.0
esc32h 438 438 0.0 438 0.6 438 0.1
esc64a 116 116 0.0 124 1.7 116 0.0
esc128 64 64 0.2 94 68.3 64 34.4
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Problem Instance Optimal
BCO Fast Ant Ro-TS

Result tbest Result tbest Result tbest

had12 1652 1652 0.0 1652 0.0 1652 0.0
had14 2724 2724 0.0 2724 0.0 2724 0.0
had16 3720 3720 0.0 3720 0.0 3720 0.0
had18 5358 5358 0.0 5374 0.0 5358 0.0
had20 6922 6922 0.0 6928 0.1 6922 0.0
kra30a 88900 88900 0.0 91890 0.7 88900 0.0
kra30b 91420 91420 6.8 94200 0.4 91420 0.2
lipa20a 3683 3683 0.0 3781 0.0 3683 0.0
lipa20b 27076 27076 0.0 30910 0.1 27076 0.0
lipa30a 13178 13178 0.0 13444 0.6 13178 0.0
lipa30b 151426 151426 0.0 174094 0.5 151426 0.0
lipa40a 31538 31538 0.5 32044 1.4 31538 0.2
lipa40b 476581 476581 0.0 569498 1.8 476581 0.0
lipa50a 62093 62093 8.4 63173 1.2 62093 0.5
lipa50b 1210244 1210244 0.0 1463854 2.1 1210244 0.1
lipa60a 107218 107218 55.7 108833 4.3 107218 0.5
lipa60b 2520135 2520135 0.3 3111756 7.6 2520135 0.2
lipa70a 169755 169755 154.4 172209 5.0 169755 3.1
lipa70b 4603200 4603200 0.1 5743941 9.5 4603200 0.1
lipa80a 253195 253195 1933.2 256653 9.7 254407 2.5
lipa80b 7763962 7763962 0.8 9760832 17.0 7763962 0.0
lipa90a 360630 360630 784.1 365333 19.6 360630 22.1
lipa90b 12490441 12490441 3.0 15647060 26.6 12490441 0.4
nug12 578 578 0.0 586 0.0 578 0.0
nug14 1014 1014 0.0 1048 0.0 1014 0.0
nug15 1150 1150 0.0 1182 0.0 1150 0.0
nug16a 1610 1610 0.0 1610 0.0 1610 0.0
nug16b 1240 1240 0.0 1280 0.0 1240 0.0
nug17 1732 1732 0.0 1770 0.0 1732 0.0
nug18 1930 1930 0.0 1962 0.1 1930 0.0
nug20 2570 2570 0.0 2632 0.1 2570 0.0
nug21 2438 2438 0.0 2498 0.0 2438 0.0
nug22 3596 3596 0.0 3656 0.1 3596 0.0
nug24 3488 3488 0.0 3566 0.1 3488 0.0
nug25 3744 3744 0.0 3814 0.2 3744 0.0
nug27 5234 5234 0.0 5304 0.2 5234 0.0
nug28 5166 5166 0.0 5300 0.3 5166 0.0
nug30 6124 6124 0.0 6224 0.6 6124 0.2
rou12 235528 235528 0.0 249852 0.0 235528 0.0
rou15 354210 354210 0.0 374428 0.0 354210 0.0
rou20 725522 725522 0.1 745782 0.0 725522 0.2
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Problem Instance Optimal
BCO Fast Ant Ro-TS

Result tbest Result tbest Result tbest

scr12 31410 31410 0.0 32768 0.0 31410 0.0
scr15 51140 51140 0.0 54666 0.0 51140 0.0
scr20 110030 110030 0.0 117482 0.0 110030 0.0
sko42 15812* 15812 0.9 16090 1.7 15812 0.1
sko49 23386* 23386 1.3 24018 4.1 23394 0.5
sko56 34458* 34458 82.1 35540 4.9 34478 0.5
sko64 48498 48498 185.9 49546 13.4 48512 1.0
sko72 66256* 66256 411.1 67876 26.6 66306 2.5
sko81 90998* 90998 2696.2 93838 20.4 91038 17.1
sko90 115534* 115534 1262.7 118970 44.1 115610 2.5

sko100a 152002* 152026 533.8 156144 55.3 152114 10.0
sko100b 153890* 153890 3157.4 158124 78.5 154060 27.7
sko100c 147862* 147862 1240.9 151412 75.9 147890 20.1
sko100d 149576* 149576 982.6 154316 25.8 149746 23.2
sko100e 149150* 149150 3018.3 153766 72.5 149270 18.8
sko100f 149036* 149036 6259.9 154190 60.2 149218 20.5
ste36a 9526 9526 0.4 9888 1.5 9526 0.1
ste36b 15852 15852 0.1 16528 1.1 15852 0.3
ste36c 8239110 8239110 25.1 8425518 1.0 8239110 0.3
tai10a * 135028 0.0 135028 0.0 135028 0.0
tai10b * 1183760 0.0 1183760 0.0 1183760 0.0
tai12a 224416 224416 0.0 229092 0.0 224416 0.0
tai12b 39464925 39464925 0.0 40376360 0.0 39464925 0.0
tai15a 388214 388214 0.0 391744 0.0 388214 0.0
tai15b 51765268 51765268 0.0 51983343 0.0 51765268 0.0
tai17a 491812 491812 0.0 508078 0.0 491812 0.0
tai20a 703482 703482 0.0 725536 0.0 703482 0.0
tai20b 122455319 122455319 0.0 123727842 0.0 122455319 0.0
tai25a * 1167256 0.1 1206174 0.2 1167256 1.1
tai25b 344355646 344355646 0.0 345221478 0.2 344355646 0.1
tai30a * 1818146 1.0 1884472 0.7 1818146 0.5
tai30b 637117113 637117113 2.5 6418335531 0.3 637117113 0.1
tai35a * 2422002 18.1 2539314 0.6 2426164 0.0
tai35b 283315445 283315445 4.1 286717437 1.5 283315445 0.5
tai40a * 3141702 194.2 3331068 1.9 3154696 3.3
tai40b 637250948 637250948 1.0 638061679 1.6 637250948 1.0
tai50a * 4956824 807.1 5392710 5.7 4985686 0.4
tai50b 458821517 458821517 36.6 464193360 2.4 458821517 6.6
tai60a 7208572 7238844 100.0 7929858 5.8 7272336 9.0
tai60b 608215054 608215054 281.7 611817881 12.2 608590490 1.5
tai64c 1855928 1855928 0.3 1863794 2.7 1855928 2.0
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Problem Instance Optimal
BCO Fast Ant Ro-TS

Result tbest Result tbest Result tbest

tai80a 13557864 13574000 3837.3 14773678 11.3 13656426 17.3
tai80b 818415043 818415043 2545.1 853009972 25.1 820396926 15.5
tai100a 21125314* 21145560 2348.6 23013322 18.6 21273006 17.9
tai100b 1185996137* 1186800864 10546.5 1238862965 57.6 1190084262 30.2
tho30 149936 149936 0.0 153244 0.4 149936 0.0
tho40 * 240516 2.9 251064 1.9 240516 1.4
tho150 8133398* 8137158 7906.3 8413890 226.1 8144742 29.9
wil50 * 48816 53.3 49070 3.4 48824 3.4
wil100 273038* 273046 8786.8 277702 70.6 273316 4.3

Table 4.1.: Results of the 3 algorithms on QAPLIB problems.

One thing that is immediately obvious in Table 4.1 is the runtime for Bee Colony Op-

timization is higher than for either of the other two algorithms. Table 4.2 shows the

results found by BCO when only allowed the runtime used by the other algorithms.

Problem Instance RoTS BCO Fast Ant BCO
Best solution Best in RoTS time Best Solution Best in Fast ant time

sko100a 152114 152820 156144 152310
sko100b 154060 154752 158124 154676
sko100c 147890 148842 151412 148368
sko100d 149746 150392 154316 150334
sko100e 149270 150238 153766 149708
sko100f 149218 149716 154190 149702
tai100a 21273006 21295918 23013322 21295918
tai100b 1190084262 1196144831 1238862965 1196144831
tho150 8144742 8176752 8413890 8157830
wil100 273316 273958 277702 273596

Table 4.2.: A comparison of results attained by Bee Colony Optimization when
allowed the runtime used by the best runs of Fast Ant System and Robust Tabu-
Search.
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4.5. Conclusions and Further Work

We have presented a Bee Colony Algorithm for the Quadratic Assignment Problem

and compared it with well known and effective algorithms for the problem, running

on almost all problems in the QAPLIB. The results showed the algorithm was ca-

pable of finding the optimal or best known solution on almost all of the problems

we tested on and produced better solutions than Fast Ant System or Robust Tabu

Search on most problems. One obvious downside with the algorithm is the runtime

used on local search as problem size increases, simple profiling on runs shows the

share of the runtime decreases from 99% local search and 1% construction on small

problems, to 95% local search on larger problems (this is for the problem instance

esc128, though on average over 8 problems of size 90 or above the local search usage

was still 98% according to Java VisualVM sampler). However this does not account

for the difference in runtime growth between BCO and RoTS, since the majority

of runtime is still the RoTS runs. The main reason therefore is likely the number

of RoTS iterations used in the algorithms. The RoTS algorithm was set to run a

fixed 100000 iterations on each problem. By comparison, the BCO algorithm runs

300 * number of bees (set to 50 in the above results), which is already 15000 iter-

ations of RoTS per iteration of bee construction. On smaller problems, BCO finds

the optimal solution often in the first iteration of bee construction, so the runtime

is very fast. For larger problems, it can find good results in a couple of iterations

(within 1% of the optimal solution), but the best result isn’t found until the 200th

iteration of bee construction (or later), which means it has already run 3-4.5 million

iterations of RoTS in total (an example is for tho150 it took 667 iterations to find

the best result, which means 10005000 iterations of RoTS).

Table 4.2 shows direct comparisons between RoTS and BCO, and Fast Ant and

BCO after the same runtime. BCO seems to be a much stronger algorithm than
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Fast Ant, however the difference in runtime between RoTS and BCO to get similar

results shows that despite its ability to find good solutions, these solutions perhaps

take too long to find to be useful.

As a first attempt to reduce runtime of the algorithm, we explored changing the

colony size in the hope we can get the same results in similar numbers of iterations.

Reducing the colony size from 50 to 20 means we reduce the number of iterations of

RoTS by 60%. However, results on some large problems suggested that the result

quality worsened and the runtime did not improve significantly with these changes.

Due to this apparently loss of solution quality with this smaller colony size, we

increased the number of iterations of local search per solution from 300 to 1000, and

reduced the maximum number of BCO iterations that would occur. The result of

this change was better results earlier in the runtime of the algorithm (so the results

found in the same time as RoTS runs were closer) but overall little change from the

best results found using 50 bees, or tbest.

Table 4.3 highlights exactly what proportion of runtime is used by the RoTS local

search during a BCO run. It shows that the proportion used by RoTS local search

is high on all instances, though it appears the percentage decreases slightly as the

size of the instance increases.

Problem Instance % Local search % Construction % Other
sko100a 98.2 1.7 0.1
sko100b 98.5 1.4 0.1
tho150 97.7 2.2 0.1
wil50 99.1 0.7 0.2

Table 4.3.: Percentage runtime used in various sections of the BCO algorithm ac-
cording to Java VisualVM’s sampler

I tested a very simple idea to attempt to reduce this by only allowing bees that

find a solution within a factor of x of the best solution found so far run local search
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after solution construction, using x values of 1.1 and 1.2. However, neither of these

significantly affected the runtimes, so further work could focus on finding a method

that can reduce the runs of local search on bad quality solutions, similar to the

Frequency Based Pruning Strategy for the TSP, and consequently improve runtimes

for BCO on the QAP.
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A. A selection of graphs used in the
FireFighting experiments

A.1. Introduction

These graphs are represented by adjacency lists, and the root node is node number
0 in each case.

27 nodes 35 edges
0:1,4,17

1:0,2,14,20,23,24

2:1,5,13,16

3:11

4:0,8

5:2,15

6:16,20

7:9,20

8:4,9,21,22

9:7,8,17,20

10:21

11:3,15,17,22

12:23

13:2

14:1,15,25

15:5,11,14,16

16:2,6,15

17:0,9,11,19,22,26

18:26

19:17

20:1,6,7,9

21:8,10

22:8,11,17

23:1,12

24:1

25:14

26:17,18
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33 nodes 59 edges
0:3,23

1:11,16,20

2:11,17,22,25

3:0,18,29,30,32

4:5,23

5:4,8,16

6:16,17,20

7:9,13,23,30

8:5,19,20

9:7,16,31

10:16,23,25

11:1,2,15,18,21

12:18,21

13:7,17,23,31

14:16,26

15:11,24

16:1,5,6,9,10,14,20,28,32

17:2,6,13,25,32

18:3,11,12,22,23

19:8,23,29

20:1,6,8,16,21,29

21:11,12,20

22:2,18

23:0,4,7,10,13,18,19

24:15,28,29

25:2,10,17,26

26:14,25

27:29,32

28:16,24

29:3,19,20,24,27

30:3,7

31:9,13,32

32:3,16,17,27,31

55 nodes 104 edges
0:8,19,42,46

1:5,27

2:13,45

3:7,39,47

4:11,27,51

5:1

6:23,37,48

7:3,24,25,29,33,43

8:0,9,12,19

9:8,15,36,40,45
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10:14,18,32

11:4,32

12:8,15,24,30,35,43,51,53

13:2,21,48

14:10

15:9,12,31,34,46

16:19,38,40,42,49,51

17:33,51

18:10

19:0,8,16

20:24,38,51,54

21:13,25,26,27,37,54

22:39,41,52

23:6,39

24:7,12,20,31,45,46

25:7,21,27,30,44,49

26:21,28,30,37,38

27:1,4,21,25,32,45,50

28:26,37,41

29:7,36,43,51

30:12,25,26,41

31:15,24,34,52

32:10,11,27,35,37,43

33:7,17,38

34:15,31,40,49

35:12,32,40,43

36:9,29

37:6,21,26,28,32,50

38:16,20,26,33

39:3,22,23,48

40:9,16,34,35,52

41:22,28,30,46,52

42:0,16

43:7,12,29,32,35

44:25,47

45:2,9,24,27

46:0,15,24,41

47:3,44

48:6,13,39,53

49:16,25,34,51

50:27,37

51:4,12,16,17,20,29,49

52:22,31,40,41

53:12,48

54:20,21
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63 nodes 106 edges
0:9,45,56

1:60

2:11,14,20,40

3:46,56

4:5,38,47,55

5:4,12,23,35

6:9,44

7:11,28

8:10,26,59

9:0,6,16,53

10:8,20,43,46,49,52

11:2,7,30,45,58

12:5,32,50,60

13:20,26,36,38

14:2,15

15:14

16:9,56,59

17:20

18:19,20,35

19:18,39

20:2,10,13,17,18,34,51,58

21:23,39,60

22:33,59

23:5,21

24:25,28,56

25:24,26,31,44,45,52,58

26:8,13,25

27:35

28:7,24,44,60

29:49,53

30:11,34,51,60

31:25

32:12,45

33:22,38,57,59

34:20,30

35:5,18,27,36,49,58

36:13,35,42,53

37:39,59

38:4,13,33,47,48

39:19,21,37

40:2,42

41:50,58

42:36,40,54,61

43:10,51,57,60

44:6,25,28

45:0,11,25,32,48,61

46:3,10,48,54

47:4,38
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48:38,45,46,56

49:10,29,35,56

50:12,41,60

51:20,30,43

52:10,25

53:9,29,36,62

54:42,46,58,59

55:4

56:0,3,16,24,48,49

57:33,43

58:11,20,25,35,41,54

59:8,16,22,33,37,54

60:1,12,21,28,30,43,50

61:42,45,62

62:53,61

102 nodes 175 edges
0:11,36,38,67

1:80,90

2:41,74

3:70,76

4:48,52,60,66,89,97

5:38,66,81

6:35,53,69

7:38

8:38,82,85,98

9:30,44,48,54,71

10:47,49,54,68

11:0,46,70

12:16,52,59,63,64,67,101

13:34,77

14:47,60

15:29,51,79,83,87

16:12

17:23,30,35,77

18:38,83,88,92

19:37,43,61

20:32,63,68

21:24,54,55

22:49,76,81

23:17,47

24:21,34,46,81,91

25:69,94

26:29,37,40,61,95

27:28,55,60,70

28:27

29:15,26,48,76
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30:9,17

31:41,72

32:20,43,56

33:53,62,70,85,87

34:13,24,56,81

35:6,17,57,59,90

36:0,47

37:19,26,41,83

38:0,5,7,8,18,75,82

39:56

40:26,45,58,64,101

41:2,31,37,51,55

42:88,91,101

43:19,32,46,68,69,76,94,96

44:9,49,100

45:40,60,64,86,93
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