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Abstract

Inflation has been suggested as a solution to cosmological problems but it ul-
timately needs to be derived from a fundamental theory such as string theory. In
this thesis we study the embedding of inflation into string theory using the D-brane
inflation scenario as case study. We first review the relevant aspects of string com-
pactifications and D-branes and construct the effective action of the inflationary
D3-brane. We then study multifield D-brane inflation including compactification
corrections to the inflaton action that arise from UV deformations of a warped
throat geometry emerging from the ISD supergravity solution. One particular issue
here is to investigate in detail the cosmological consequences of realistic angular
dependent potentials in the D-brane inflation scenario in a fully UV/IR consistent
way. Embedding a warped throat into a compact Calabi-Yau space with all mod-
uli stabilized breaks the no-scale structure and induces angular dependence in the
potential of the probe D3-brane. We solve the D3-brane equations of motion from
the DBI action in the warped deformed conifold including linearized as well as non-
linear perturbations around the ISD supergravity solution. Our numerical solutions
show that angular dependence is a next to leading order correction to the domi-
nant radial motion of the brane, however, just as angular motion typically increases
the amount of inflation (spinflation), having additional angular dependence from

linearized perturbations also increases the amount of inflation.
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Chapter 1

Introduction

The standard big bang theory is a widely accepted theory that describes the struc-
ture and evolution of the universe following an initial singularity or “a bang”. The
underlying assumption of this theory is the possibility to jump from nothingness,
i.e., no space, no radiation, no matter and energy, into somethingness followed by
the successive periods of radiation, matter, and vacuum energy dominance. This
immediately poses a problem: When the universe begins from such a violent rapid
event, we might expect it to be initially be very inhomogeneous, nonuniform, and
highly curved, and the present universe would still have some trace of a very inho-
mogeneous and highly curved universe that it began with. But as we shall discuss in
Section 1.1, following the standard text books [3-6] and also some of their original
references [7-17], the universe that we see today is remarkably flat, homogeneous,
and isotropic, in contradiction with the very inhomogeneous and highly curved uni-
verse that we expect to see after the big bang. In order to solve this problem another
assumption is added to the standard big bang theory, which is the assumption of
inflation discussed in Section 1.2, following again [3-6] and some of their original
references [18-24]. The assumption is that before the radiation era, the universe
was dominated by a period of slowly varying vacuum energy, called inflation, during
which the universe underwent a nearly exponential expansion. This exponential in-
flation would have smoothed any curvature and inhomogenity of space, so that the
universe we see today would make sense. Despite its success in solving the problems

of the standard big bang theory, inflation ultimately needs to be derived from a

1
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fundamental theory such as string theory, which we briefly discuss in Section 1.3

and analyse in more technical detail in the subsequent chapters.

1.1 Cosmological problems

1.1.1 The flatness problem

The homogenity and isotropy of the universe requires its spacetime metric to be the

Friedman-Robertson-Walker (FRW) metric given by! [3, 4, 6-9]

dr?

2 2 2
dS —dt —a(t) m

+ 72(d6* + sin 0*d¢?) |, (1.1.1)

where K denotes the curvature of the universe and a(t) is the scale factor, which
feeds into the proper distance.

The proper distance between any two co-moving objects in the universe is [3]:

(

sin~lr K =+1

9 a(t) x < r K=0 (1.1.2)

(r, 1) = a(t) /0 ' e i{ﬂ _

\sinh_lr K=-1
with r being the relative time-independent radial coordinate of co-moving objects.
For a ray of light we have ds* = 0, and hence the maximum radial distance r,, (o)
from which an observer at time ty will be able to receive light signals at t = 0 is
constrained and therefore puts a limit on distances at which past events can be

observed. These are called particle horizons. The proper distance of the horizon

size is given as

rm(to) r to
Fulto) = alty) | \/%W:a(to)/o %. (1.1.3)

The Einstein equations for the FRW ansatz give the fundamental Friedmann equa-

tion [3, 4, 6]

!Throughout this thesis we take the flat spacetime metric to be exactly the FRW metric and

thereby consider the fields to be homogeneous.
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8t Gpa?
2+ K=" 3“‘ , (1.1.4)
and the conservation law
) 3a
p=——(p+p) (1.1.5)

For any value of the Hubble constant? Hy = a(to)/a(ty), we may define a critical

present density

_3H;
pU,cnt - 87TG

for which K = 0in Eq. (1.1.4) and hence the universe is flat. Given p as a function of

= 1.878 x 107*h* g/cm?, (1.1.6)

p, we can solve Eq. (1.1.5) to find p as a function of a, and then use this in Eq. (1.1.4)

to find a as a function of ¢. Making the ansatz p = wp, we obtain [3]:

poca P, (1.1.7)

e Matter dominated expansion: Here p = 0, giving p = po(a/ag) 3, and there-
fore Eq. (1.1.4) reduces to a®> + K ~ a~'. In the very early universe a — 0, so that

we may neglect K in Eq.(1.1.4) and obtain:

a(t) oc /3, (1.1.8)
In this case a simple relation between the age of the universe and the Hubble constant
is given as ty = 2/3Hy = 6.52 x 10°h~! yr. According to Eq. (1.1.8), Eq. (1.1.4) and
Eq. (1.1.5) the energy density at time ¢ is p = 1/67Gt>.

e Radiation dominated expansion: Here p = p/3, giving p = po(a/ap) ™, and
therefore Eq. (1.1.4) reduces to a*> + K ~ a~2. Again, in the very early times we

may neglect K in Eq. (1.1.4) and obtain:

a(t) oc t1/2, (1.1.9)

2The current best direct measurement of the Hubble constant is 73.8km /sec/Mpc, corresponding

to a 3 percent uncertainty; the Hubble constant with uncertainty is denoted h.
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The relation between the age of the universe and the Hubble constant is given by

to = 1/2H,y. The energy density at time ¢ is p = 3/327Gt2.

e Vacuum dominated expansion: According to Lorenz invariance, for the energy-
momentum tensor in a general coordinate system we must have 77" oc g*”. Com-

paring this with the energy-momentum tensor of a perfect fluid

" =pg" + (p+plutv”,  guu'u’ = -1 (1.1.10)

shows that the vacuum has py = —py, so that T}" = —py¢"”. In the absence of any
other form of energy this would satisfy the conservation law T = 9" Opy JOzt =
0, so that py would be constant, independence of spacetime position, known as
cosmological constant or vacuum energy. For K = 0, Eq. (1.1.4) requires that py >

0, and has the solution

a(t) o< exp(Ht), (1.1.11)

where H is the Hubble constant given by

H= ,/@. (1.1.12)

The above solutions have a puzzling property: for a matter and radiation dominated
universe at very early times we could neglect the the curvature constant K and
obtain the solutions of the Friedmann equation (1.1.4) in the form of Eq. (1.1.8) and
Eq. (1.1.9) consistent with a flat universe. But as we mentioned at the beginning of
this chapter, at sufficiently early times we expect the universe to be highly warped
and curved, in contradiction with a flat universe described by the above solutions.
This therefore poses a problem known as the flatness problem [3]. As we shall see in
Section 1.2, this problem can be solved if the radiation dominated era was preceded
by a sufficient period of inflation, which can explain why the curvature was so small

in the early universe.



1.1. Cosmological problems 5

1.1.2 The horizon problem

We can obtain important information about the structure and evolution of the uni-
verse from the radiation that was left after the big bang. This radiation is called the
cosmic microwave background radiation and its origin can be understood as follows.
Thus, at some early time, the temperature will have been high enough that atoms
would have been ionized, and matter and radiation would have been in thermal
equilibrium. Then, as the universe expanded and temperature dropped, the elec-
trons would combine with nuclei, the photons decouple, and radiation began a free
expansion.

In 1965 Arno Penzias and Robert Wilson discovered this radiation in a study of
noise backgrounds in a radio telescope [10]. Subsequent studies confirmed that this
radiation has the form of black-body radiation, and contains very small nonunifor-
mities that provide us with important information about the structure and evolution
of the universe. The original observation of the nonuniformities in the cosmic mi-
crowave radiation background was made by the COBE satellite in 1992 [11], and
subsequently in 1996 [12-16], using the same instruments. The accuracy of the re-
sults were then greatly improved by the observations of the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite launched in 2001, which confirmed a nonuni-
formity in the microwave background at a relative magnitude of 107° [17]. This high
degree of isotropy of the cosmic microwave radiation background poses a problem.
We can see this by comparing the angular diameter distance® at the time of last

scattering with the acoustic horizon distance* which, respectively, read as [3, 4]

3Inspection of the FRW metric (1.1.1) shows that a source of co-moving radial coordinate r;
that emits light at the time t; and is observed at present to subtend a small angle 6 will extend over
a proper distance s (normal to the line of sight) equal to a(¢1)r16. The angular diameter distance
is 24 is defined such that 0 is given by the familiar relation of Euclidean geometry § = s/%24 and

one can see that 24 = a(t1)r;. By computing r; one can obtain the full relation for Z4.
4The dominant perturbations to the plasma of nucleons, electrons and photons that are relevant

to the nonuniformities of the cosmic microwave background are sound waves. The full acoustic

horizon distance can be obtained from Eq. (2.2.142) taking into account the speed of sound.
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Dy~ OHT' R, Da~ OHT %Y, (1.1.13)

where Z;, = 1 + zy. Thus the horizon at the time of last scattering now subtends

an angle

Du|Da =~ O%, ). (1.1.14)

According to this, for the redshift z;, ~ 1100, points of the same temperature subtend
an angle of about 1.6 degrees. This reveals an appreciable anisotropy, in contradic-
tion with the nearly perfect isotropy observed in the cosmic microwave radiation

background. This is called the horizon problem [3, 4].

1.1.3 The monopole problem

In the early times after the big bang when the temperature dropped, the universe
went through a phase transition in which the putative grand unified symmetry broke
down spontaneously to the gauge symmetry SU(3) x SU(2) x U(1) of the standard
model. As a consequence of this symmetry breaking, extended spacetime-dependent
field configurations such as monopoles were produced [3, 5]. This gives rise to an-
other problem: before the phase transition occurred, the scalar fields which account
for the symmetry breaking would have inevitably been unrelated at distances larger
than the horizon distance corresponding to the maximum distance that light could
have travelled since the very beginning of the big bang. During the early times when
the universe was presumably radiation dominated, the scale factor grew according to
Eq.(1.1.9), and by Eq. (1.1.3), Z,,(t) = 2t = 1/H. During the radiation dominated
era the expansion rate is H ~ (G(kgT)*)"/2, which gives the horizon distance of
order t =~ (G(kgT)*)~'/2. Thus the number density of monopoles produced when
the temperature drops to M /kp would have been of order =3 ~ (GM*)%2. Com-
pared to the number density of photons which is roughly M3 at T' ~ M /kg, the
number density of monopoles is suppressed by a factor (GM?)%/2. If the grand uni-
fied symmetry is broken at an energy M =~ 10 GeV, then for the Newton constant
G ~ (10 GeV)~2 the number density of monopoles is suppressed by a factor 1079
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compared to the number density of photons M? at T~ M /kg. But natural sources
show that the number density of monopoles is 1072 times less than the number
density of photons, a discrepancy by a factor 1073°. This is known as the monopole
problem [3, 5]. As we shall see in the next section, inflation can explain this dis-
crepancy provided that the era of radiation dominance proceeded by the period of

inflation before as well as after the production of monopoles.

1.2 The period of inflation

In the previous sections we saw that at sufficiently early times the curvature of
space is negligible or vanishing, in contradiction with a highly curved universe that
we expect to see after the big bang. In 1980 Alan Guth realized that this flatness
problem could be solved if another assumption is put in the standard big bang
theory, which is the assumption of inflation [18]. The assumption is that before
the radiation dominated era, during which the scale factor a(t) grew according to
Eq. (1.1.9), the universe was dominated by a period of slowly rolling vacuum energy
called inflation, so that a(t) evolved exponentially as in Eq.(1.1.11). As we shall
show below, this inflation not only solves the flatness problem but also the horizon
and monopole problems. Before going into technical details showing how inflation
solves these problems, we discuss the history of inflation and make clear how inflation

really works.

1.2.1 A brief history of inflation
“0ld inflation”

In order to have inflation, we have to assume that there is a form of energy (other
than matter and radiation) that causes the universe to inflate. This form of energy
is unstable and has to decay, so that we can end inflation and turn this inflation-
ary energy into something that produces matter and radiation that composes the
galaxies and stars and ourselves. The form of energy that has this property is called
“false vacuum” state [5]. For this energy, the scalar field expectation values are at

a local minimum that is higher than the true minimum of the effective potential.
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Figure 1.1: The False vacuum state (left), almost all of which has decayed into the
true vacuum state (right) forming an inflationary bubble, but small regions were left

behind.

Figure 1.2: The small regions of false vacuum state that were left behind continued
to inflate while the bubble stopped to inflate (left). After a certain period of time,
other inflationary bubbles formed (right) and our universe is supposed to take place

in one of such bubbles (which are not all the same).

This “false vacuum” state corresponding to a local minimum is not a permanent
state of being and will decay into the “true vacuum” state corresponding to the true
minimum [5]. This decay occurs by quantum mechanical barrier penetration. It is
very likely, though not observed, that this process took place several times in the
history of the universe since various symmetries have become spontaneously broken.
Because the decay happens through a quantum process, and that a quantum pro-
cess is by nature random, the decay does not occur by a change in the scalar field
simultaneously everywhere in space, but by the formation of bubbles of true vacuum
in false vacuum background. When quantum mechanical barrier penetration ends,
the bubbles of true vacuum will enlarge at the speed of light and at last collide with
other bubbles until the entire space is in the state of lowest energy [5].

In his original work [18], Guth considered a model of Grand unification and
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noted that in such models scalar fields could get trapped in a local minimum of some
potential corresponding to an unbroken grand unified symmetry. When a scalar field
gets trapped in a local minimum, the energy of empty space would stay constant
for a certain period of time during which the universe continues to expand. This
would then result a constant rate of expansion requiring the scale factor to evolve
exponentially. This exponential inflation would be ended by quantum-mechanical
barrier penetration, after which the scalar field would start rolling down the potential
toward a global minimum, corresponding to the present universe. The flatness of
the universe was then explained by Guth as a result of a very large exponential
expansion which makes the curvature parameter Qx = |K|/a? H* very small.
Despite its success in solving the problems of the standard big bang theory, it
became clear to Guth and others that his model of inflation had a fatal problem
because of the way it ends: the graceful exit problem. To see how this problem comes
about, note that in Guth’s original work the exponential inflation occurs as a result
of a delayed first-order phase transition where a scalar field was first trapped in a
local minimum of some potential, and then penetrated through the potential barrier
and rolled toward a true minimum of the potential. Because the transition from
the initial supercooled false vacuum phase to the lowest energy true vacuum phase
(corresponding to the present universe) occurs through a quantum process, and that
a quantum process is inherently unpredictable and has some degree of randomness,
the transition could not take place everywhere at the same time. It could have
occurred here and there in some bubble of true vacuum state which formed when
almost all of the inflationary energy decayed (see Fig.1.1 (right)). The smaller
fractions of energy that were left behind as false vacuum state continued to inflate
while the bubble being true vacuum state stopped to inflate (see Fig.1.2 (left)). In
this way the background of false vacuum would in the end dominate the volume of
the universe, and the scalar field would have been still trapped in its local minimum.
As the time passed, more and more bubbles formed (see Fig. 1.2 (right)) and the
universe would be reheated by collisions between bubble walls. But if inflation
lasted long enough (as a result of a high tunneling amplitude), collisions between

bubble walls would be exceedingly rare, resulting in no radiation, and therefore not
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reheating the universe properly.

“New inflation”

Guth’s model of “old inflation” was then replaced by “new inflation” due to the
work of Linde [19, 20], Albrecht and Steinhardt [21]. New inflation was originally
introduced in a model of grand unification in which the grand unified symmetry is
no longer restored. In this model, the grand unified symmetry is broken down by
applying the Coleman-Weinberg symmetry breaking mechanism [22]. The potential

for the scalar field ¢ obtained within this formalism takes the form

V(¢)=¢'ln (%) + 1%, (1.2.15)

The first term in this potential comes from one-loop radiative corrections to Viy—g
which is assumed to have vanishing second derivative at ¢ = 0. This term has an
unstable stationary point at ¢ = 0 and a minimum at ¢, = A/e!/?, where \ is a
constant.. The second quadratic term includes finite temperature contributions and
takes the stationary point ¢ = 0 into a local minimum. Like in old inflation, in
this set up phase the transition takes place by the formation of bubbles, but the
difference is that for low temperature the potential barrier is very small and hence
the field inside the bubble starts with ¢ close to zero. The field then rolls slowly
down the potential whereas the universe experiences exponential inflation. Finally,
the scalar field undergoes damped oscillations about the minimum of its potential
and the scalar field energy gets converted into ordinary particles that fill the bubble,
reheating the universe.

The basic element of new inflation was a more-or-less exponential expansion
during the slow-roll of one or more scalar fields with the effects depending on the
slow-roll of the scalar field after bubble formation and not on the process of bubble
formation itself. In fact all that really matters does not depend on grand unification
or the Coleman-Weinberg mechanism but instead on the existence of a scalar field
¢ called the inflaton which at some early times has a value at which the potential
V' (¢) is large but quite flat. The flatness of the potential guarantees the slow-roll of
the scalar field during which the Hubble constant decreases only slowly making the
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universe expand nearly exponentially. In this scenario reheating occurs not because
of bubble wall collisions but due to damped oscillations of the scalar field about the

minimum of the potential where the potential steepens and inflation ends.

1.2.2 Slow-roll formalism

To see how new inflation works qualitatively, we may start with simplest scalar field

theory Lagrangian [3]

L(¢) = —/—detg %g““@uqﬁa,,(b “ve). (1.2.16)

Using this Lagrangian, the equation of motion for a spatial homogeneous field, ¢ =

¢(t), in the FRW coordinate system takes the form

b+3Hp+V'(¢) =0, (1.2.17)

where as before H = a/a is the expansion rate. The field energy density and pressure

take the form

pZ%&+V@% (1.2.18)

pz%&—VWy (1.2.19)

During the period of scalar field energy dominance the expansion rate is

o /87TG,0 \/87TG ¢2—|—V(¢)) (1.2.20)

The time derivative of this together with Eq. (1.2.17) gives

2HH=§%g@d+V@Mo:—&GH&, (1.2.21)

and hence

H = —4nG ¢, (1.2.22)

According to H + H? = ii/a, a evolves like exp(Ht) if we have
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|H| < H?. (1.2.23)

From Eq.(1.2.20) and Eq.(1.2.22), we have H/H? ~ ¢*/V(¢), so the condition
(1.2.23) requires

¢* < |[V(9)]. (1.2.24)

From Eq. (1.2.19) and (1.2.24) we can see that the effective pressure of the material
driving the expansion has to be negative, p ~ —p. The scalar fields that have this
property are called inflatons. Thus, according to Eq. (1.1.4) and Eq. (1.1.5), during

inflation we have

i > 0. (1.2.25)

This relation tells us what inflation is: It describes a period of accelerated expansion.

The condition (1.2.24) also reduces Eq. (1.2.20) to

8rGV
H= WT@ (1.2.26)
In addition to the condition, we may also assume that
o] < H|d). (1.2.27)
According to this, from Eq. (1.2.17) we obtain the following relation
. V/ V/

3H 247GV (9)

Thus the condition for having prolonged exponential inflation is

IHI \/;‘V?’/? ‘ 16;G<“///((5)))2<<1, (1.2.29)

Taking the derivatives of both sides of Eq. (1.2.28) with respect to time gives

b=—

V'(9)o  VIO)H _V'(@V'(e) 1 (V'<¢>)2V'<¢>
3H 3H2 ~ 9H? 167G\ V(¢) 3
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By ¢ < 1 the last term of (1.2.30) is much less than V’(¢), so in order to have |¢|
much less than V'(¢), according to Eq. (1.2.27), we have to have V" (¢) < 9H?, or

equivalently

! ‘VW) < 1. (1.2.31)

1= 2G| V(g)

The parameters 7 and ¢ are know as slow-roll parameters and the conditions (1.2.29)

and (1.2.31) are called slow-roll conditions®. Potentials that satisfy these conditions
are classified as flat potentials and produce a large number of e-foldings. To see this,

consider the scale factor

o) = oo [Tna] e [T u2m

and note that the number of e-foldings is defined by

12 2
/\/:/ Hdt:/ Hdp (1.2.33)
¢ ¢ O

1 1

By inserting H and ¢ by their values given by Eq. (1.2.26) and Eq. (1.2.28), we can
rewrite (1.2.32) in the form

o[ (5o ol [ ) 0]

According to the slow-roll condition (1.2.29), the absolute value of the term in
the square brackets of Eq.(1.2.34) is much less than unity. This means that the
argument of the exponential in Eq. (1.2.34) is much greater than v4wG|p; — bsl.
Thus when the slow-roll condition is satisfied, a large number of e-foldings can be
produced in any time interval during which |¢; — ¢| has the minimum amount of

1/V47G = 3.4 x 108 GeV.

5As we shall see below, meeting these conditions in string theory is highly non-trivial because
corrections from moduli stabilization generically ruin the flatness of the potential. Slow-roll infla-
tion is then possible only if, there exists a fine-tuned cancellation by additional corrections that
can flatten the potential. However, as we shall see below, in string theory it is possible to drive

inflation even when the potential remains steep.
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1.2.3 Solving the flatness and horizon problems

According to the above discussion, inflation is a period of slowly rolling vacuum
energy during which the scale factor evolves exponentially, a ~ exp(N). This means
that if inflation started with the curvature density parameter Qx = |K|/a*H? of
order unity, then inflation ended with Qx = |K|/a?H? of order exp(—2N). This

implies Qf for the present time to be

| = K :exp(—QN)(aIHI>. (1.2.35)

alH? aoHo
In order to explain why the curvature of space was so small in the early universe,

we have to have the condition

a ]H T
Cl()H 0 )
Thus the flatness problem can be solved if the above condition is satisfied [3]. The

exp(N) > (1.2.36)

above condition also solves the horizon problem. To see this, recall that the proper

horizon distance at the time of last scattering is

Du(t) = alt) [L . (1.2.37)

,oa(t)’
where t, is the time when inflation starts and ¢; is the time when inflation ends,

as before. As already mentioned, during inflation a(t) evolves exponentially and we

may take

a(t) = a(t,) exp (HI(t - t*)> — arexp ( ~ Hy(ty — t)). (1.2.38)

By taking N = H(t; — t.) to be the number of e-foldings we obtain

- 18

In the above relation we may only consider the first term since a sufficient amount

[exp(N) —1]. (1.2.39)

of inflation requires exp(N) > 1. The angular diameter distance at the time of last

scattering is

a(tr)

-@A(tL) ~ HOCLO .

(1.2.40)
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The high degree of isotropy in the cosmic microwave background requires Py > Za,

and this can accounted followed by having the (same) condition

exp(N) > (1.2.41)

Thus the horizon problem can be solved if the above condition holds [3]. In order to
estimate the number of e-foldings required to solve the flatness and horizon problems,
we need to evaluate this bound. To do so, recall that the period of inflation is
succeeded by the radiation dominated era, so for the transition between these eras
we may assume

a]H] :alHl, (1242)

where a; and H; denote the scale factor and the expansion rate of the radiation
dominated era, respectively. The expansion rate over the whole periods of radiation

and matter dominance takes the form

H 3 4

H= =22, [(22)7 4 (222 (1.2.43)
V2 a a

where apq = aoQr/Qy and Hpq = \/QQMHO(oto/aEQ)?’/2 are the scale factor and

expansion rate at matter-radiation equality. By putting a = a1 < agq we obtain

Hgq (apq
H=—7(—|. 1.2.44
Y ( ay ) ( )

We can use this relation to get eliminate a; and obtain the bound (1.2.36) as

QMCEEQ A H,y 1/4 H,y £1 A [Pl] 14
N)> | ——= A\ =0 \/—=1(Q =t
exp( ) < Qo ) H() R HO Rpo,crit 0.037 h eV’
(1.2.45)
where po oy = [3 X 107%eV]*h? and p; denote the critical density (1.1.6) and the

energy density at the beginning of the radiation-dominated era, respectively. From
this relation we can estimate the number of e-foldings by noting that p; should
not be greater than Planck energy density G2 = [1.22 x 10* GeV]*, so that for
h = 0.7 we obtain 5 x 10°, or about 60 e-foldings. Thus in order to solve the flatness

and horizon problems about 60 e-foldings need to be produced during the period of
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inflation® [3].

1.2.4 Solving the monopole problem

As discussed in the previous section, the number density of monopoles is 1073 times
less than the number density of photons, a discrepancy by a factor 1072°. Inflation
can explain this discrepancy: if the era of radiation dominance proceeded by the
period of inflation before as well as after the production of monopoles, then the
exponential expansion before the production of monopoles would have increased the
horizon distance, and the exponential expansion after the production of monopoles
would have decreased the photon to monopole ratio [3] . To solve the monopole
problem, the photon to monopole ratio has to be reduced by inflation by a factor
1073°. This requires an exponential inflation that increases the horizon distance
by a factor 10'°, which means that the horizon distance after inflation exp(N)/H,
must be 10'° times greater than the estimated horizon distance (GM*)~%/2. The
expansion rate during the radiation dominated era is H;, ~ (G(kgT)*)*/2, which
for T ~ M/kp gives H, ~ (GM*)'/2. According to this, the number of e-foldings
needed to solve the monopole problem has to be greater than In 10! = 23 [3]. Thus
if inflation can solve the flatness and horizon problems, for which the number of

e-foldings has to be about 60, then it can also solve the monopole problem”.

1.2.5 Shortcomings of inflation

In the inflationary picture discussed in the previous sections, we had to make a
number of assumptions. We had to assume a big bang, and we had to assume
a special form of energy that decays in certain way. In principle, the idea was
that once we have inflation we can set up the large scale structure of the universe
and explain everything else that happens in the universe from that point onwards

without making any further assumptions. But this does not work quite that way.

6As we shall see in Chapter 4, this amount of e-foldings can be produced in D-brane inflation.
"This is probably the reason why in the literature one mostly talks about inflation as the solution

to the flatness and horizon problems.
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In 1998, two research groups, the Supernova Cosmology Project [23] and the High-z
Supernova Search [24] groups, measured the luminosity distances versus redshift of
various Type Ia supernovae. They found that their curve of measured luminosity
distances versus redshift is consistent with an accelerating universe whose large part
of energy density is of the form unlike ordinary matter or radiation, called dark
energy, that was unexpected and not predicted by the inflationary picture.
Although the inflationary picture agrees with the data, it agrees at a certain price.
Firstly, it is definitely finely tuned. To get inflation to give really the right statis-
tical distribution of anisotropies that we see in the cosmic microwave background
radiation in the WMAP satellite, the energy has to have very specific properties; it
has to have a very specific amount, strength, concentration and it has to decay in
a very specific way, otherwise we get the wrong pattern. When we add dark energy
it also works but we have to add that by hand by the cost of fine tuning. Secondly,
it is a kind of patchwork of disconnected elements, including ordinary matter, dark
matter and dark energy that have been added one by one to fit the observations.
To match the universe as it is seen today, all three components must exist in a
particular precise combination. Thirdly, as we saw in Section 1.2, inflation amplifies
rare quantum events which amplify randomness, so instead of having a very ordered
universe we will have a disordered universe. In this way the formed pockets in one
of which our universe is supposed to take place are not all the same. An infinite
number of them will have the physical laws like our universe and an infinite number
of them will not. The question that arises is that which case is more probable, which
cannot be answered when the distribution is so uneven. Fourthly, inflation has to
be derived from a fundamental theory such as string theory which can verify the

origin of the inflaton field and its potential.

1.3 Inflation in string theory

1.3.1 Motivation

In the previous section we saw that the very early universe underwent a period of

rapid expansion, known as inflation, resulting in a very nearly flat, homogeneous
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and isotropic initial state. While a simple scalar field model of inflation with a
suitable potential satisfies many of the cosmological requirements, such models are
rather ad hoc from the high energy particle theory point of view. The challenge
is to find a theory which has a clear derivation from a fundamental high energy
theory incorporating gravity at the quantum level. String theory as a finite theory
of quantum gravity naturally is the prime candidate for such a fundamental theory.
In particular, string theory can tell us which field plays the role of the inflaton
(e.g. the field parameterizing the distance between two branes as described below),
where does its potential come from (e.g. from supersymmetry breaking between
two branes as described below) and how does it couple to the Standard Model
sector. Furthermore, as we saw in the previous section, the flatness of the inflaton
potential in Planck units is guaranteed by two nontrivial constraints, the slow-roll
conditions (1.2.29) and (1.2.31). In effective field theories, four-dimensional Planck-
suppressed operators with vacuum expectation values comparable to the inflationary
energy density produce mass terms in the inflaton potential, which violate the slow-
roll conditions (see Subsection 1.3.3.). In order to determine whether despite such
corrections inflation can still take place, one has to have detailed information about
Planck-suppressed corrections to the inflaton potential. This requires microphysical
knowledge about physics at Planck-scale, which can be obtained from string theory.
In string theory, such corrections can be computed from first principles and the
complete shape of the inflaton potential including all degrees of freedom can be
determined (see Subsection 1.3.5). These provide enough motivation for embedding

inflation into string theory.

1.3.2 Moduli and inflatons

It is well known that in string theory the dimension of spacetime is ten, and four-
dimensional physics related to our universe emerges upon compactification. In par-
ticular, one is interested in string vacua for which only four dimensions are non-
compact and the other six extra dimensions are compact. The four non-compact
dimensions span our universe and the other six extra dimensions form a compact

internal space. The relevant metric is the sum of the four-dimensional (Minkowski)
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and the six-dimensional metric

ds® = g datda” + gmndy"dy™. (1.3.46)

If these solutions preserve at least one supersymmetry, then g,,, is Ricci-flat, Kéhler,
and the internal space is a compact Calabi-Yau manifold [25] (see Appendix A).
There is generically a many-parameter family of the metrics of these manifolds,
which all share the same topology. This means that upon small variations in the

metric on the internal manifold

Gmn = Gmn + 0Gmn (1.3.47)

the new background still satisfies the Calabi-Yau conditions given by

Ron(g.) =0,  Ryn(g.+3g.)=0. (1.3.48)

There are metric deformations which only account for coordinate changes and are

uninteresting. In order to eliminate them, one fixes the gauge [26]

1
V"0 — 5 Vadgy = 0. (1.3.49)

where 6g)" = ¢"Pdg,. Expanding the second equation in (1.3.48) to linear order in

dg and using the Ricci-flatness of ¢ leads to the Lichnerowicz equation given as [26]

VAV k0 Gmn + 2RE15g,, = 0. (1.3.50)

The latter equation in (1.3.48) introduces the differential equations for dg whose
number of solutions counts the number of ways the background metric can be de-
formed while preserving supersymmetry and topology. The coefficients of these in-
dependent solutions are moduli. They are the expectation values of massless scalar
fields, called the moduli fields. These moduli parameterize changes of the size and
shape of the internal Calabi-Yau manifold but not its topology. Due to the special
properties of Kéhler manifolds (see Appendix A) the zero modes of Eq. (1.3.50) of
mixed type, dg,», and those of pure type, g,,, 0gus, satisfy Eq.(1.3.50), respec-
tively [26]. These two types of variations imply that the moduli space of Calabi-Yau
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manifolds decomposes, at least locally, into a product with the space of parameters
of the complex structure as one factor and a complex extension of the parameter
space of the Kahler class as the other [26] (see Appendix A). The moduli space of
a (topological class of a) Calabi-Yau three-fold is smooth at its generic points but
there exist special regions, called “boundary”, where the moduli spaces of topo-
logically distinct Calabi-Yau spaces meet. These ‘interface’ regions correspond to
certain singular limits of the respective Calabi-Yau three-folds, called conifolds [27]
(see Appendix A). By including these limit points the moduli spaces of a large num-
ber of Calabi-Yau spaces piece together into a “connected web”. It has been shown
that the distances between two topologically distinct Calabi-Yau three-folds in this
web is finite [28] (see Appendix A) and the explicit form of the unique Ricci-flat
Kéhler metric on conifolds is known [27] (see Appendix A) :

Grmndy™dy™ = dr® + r’ds%, (1.3.51)

which describes the geometry of a cone, the base of which is a five-dimensional
Einstein manifold parameterized by five angular directions.

For embedding inflation into string theory, one has to specify a string compact-
ification whose low-energy effective theory contains a suitable inflaton, so that the
relating potential satisfies slow-roll conditions (1.2.29) and (1.2.31). The many mod-
uli fields that arise from Calabi-Yau compactifications as the solutions of Eq. (1.3.48)
can provide a large number of candidate scalar fields in the four dimensional theory
and any of these scalar fields may play the role of the inflaton field. However, moduli
fields have non-universal couplings to matter and make different types of matter get
different acceleration, which leads to the violation of the equivalence principle of
general relativity. Moreover, these moduli fields are generically either massless, or
have a potential with runaway behavior, which makes their interpretation as infla-
tons rather difficult. In addition to this, the computation of the effective potential
in terms of all these scalar fields and degrees of freedom is a highly nontrivial task.
Nevertheless, by considering the systematics of flux compactifications [29] and non-
perturbative effects [30] in string theory (see Chapter 2), it is possible to reduce the

degrees of freedom and stabilize all the moduli fields, as required for constructing
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a successful cosmology from string theory®. In the presence of fluxes a much richer
Calabi-Yau geometry is produced and the background gets modified by warping
through the gravitational fields created by fluxes. The metric (1.3.46) is modified

to a warped metric of the form [29, 30]

ds?® = eQA(y)gu,,dx“dw” + e AW g dytdy™, (1.3.52)

where ¢4 is the warp factor depending on the internal coordinates, v, of the warped
background. The resulting geometry corresponds to a configuration containing
warped throats that (according to gauge/gravity duality) smoothly close off at the
infrared (IR) and attached to the compact Calabi-Yau space in the ultraviolet (UV)
(e.g.see Fig1.3). In the UV the six-dimensional metric in Eq. (1.3.52) is (asymp-
totically) the same as the metric given by Eq. (1.3.51) but in general it has a more
complicated form due to differential wrapping (see Chapter 2). In Calabi-Yau flux
compactifications many vacua and various such throat solutions are produced since
fluxes can take many different discrete values. Currently, there is no known criterion

for choosing among these vacua.

1.3.3 Moduli stabilization obstacles to inflation

The most severe problem that arises in embedding inflation into string theory (ac-
cording to the above set up) is that moduli stabilization generically induces an
inflaton mass term that spoils the flatness of the inflaton potential (see the reviews
[34-40]). To see this, note that in N = 1 supergravity a key term in the scalar
potential is the F-term potential [30] (see also Chapters 2 and 5),

3
Vi = /Mo | K92 D WD, W — M—|W|2 . (1.3.53)

pl

Here K(¢, ) and W(yp) are the Kéhler potential and the superpotential, respec-

tively; ¢ is a complex scalar field which is taken to be the inflaton; and we have

8As an aside, we would like to remark that the inclusion of nonperturbative effects in quantum
field theories alleviate the problems of perturbative field theories, which arise from the masslessness

of gauge modes [31-33].
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defined D,W = 0,W + M *(0,K)W.

The Kéhler potential determines the inflaton kinetic term, K ,;000p, while
the superpotential determines the interactions. To derive the inflaton mass, we
expand K around some chosen origin, which is denoted here by ¢ = 0 without loss
of generality, i.e., K(¢,9) = Ko+ K ozlop@ + --- . This yields the inflationary

Lagrangian of the form

L m —K,p0000 |1+ K plott + -
M2,

—0¢0p — Vjy (1 + %) + - (1.3.54)

where we have defined the canonical inflaton field ¢¢ ~ Kyzlope and Vy = Vip|p=.
We have retained the leading correction to the potential originating in the expan-
sion of /M1 in Eq. (1.3.53), which could plausibly be called a universal correction
in F-term scenarios. The omitted terms, some of which can be of the same order
as the terms we keep, arise from expanding the term inside the square brackets of
Eq. (1.3.53) and clearly depend on the model-dependent structure of the Kéhler po-
tential and the superpotential. According to Eq. (1.2.31), the potential term on the
RHS of Eq. (1.3.54) contributes to the slow-roll parameter by (see also Eqgs.(1.3.56) -
(1.3.57))

An=1. (1.3.55)

This makes slow-roll inflation impossible. To evade this problem, one of the major
challenges has been to show that in a non-vanishing fraction of the vast number
of string vacua the inclusion of various compactification effects in the effective field
theory induce correction terms in the inflaton potential that can cancel to high
precision with the inflaton mass term, so that a suitable inflationary model can be

obtained [38, 40] (see also Subsection 1.3.5.).
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1.3.4 Classification of string inflationary models

To construct inflationary models in string theory (see the reviews [34-40)), it is
natural to identify the inflaton either with closed string moduli or with open string
moduli, as in string theory strings are either closed or open. Since open strings end
on hypersurfaces called D-branes [41] (see Chapter 3), the string inflationary sce-
nario in which the inflaton is identified with open string moduli is called (warped)
D-brane inflation. As the moduli are the most promising closed string modes, the
inflationary scenario in which the inflaton is identified with closed string moduli is
called moduli inflation. Apart from these string inflationary scenarios, there is also
a string inflationary scenario called landscape inflation which is based on the gen-
eral properties of the ‘string landscape’ (e.g. high dimensionality) instead of direct
specification of the inflaton. In the string theory landscape, flux compactifications
typically give very many possible vacua, since the fluxes can take many different
discrete values, and there is no known criterion for choosing among them. The
number of solutions from fluxes comes about 10°°° and these vacua can be regarded
as extrema of some potential, which describes the string theory landscape. The
large number of solutions would indicate that a few of these universes will have the
properties of our observable inflationary universe, and we happen to live in one of
those (in the same way that there are many galaxies and planets in the universe and
we just happen to live in one).

In the last decade there has been a great progress towards the embedding of
inflation into string theory using these classifications. In this thesis we focus on a

particular model called warped D-brane inflation, which is both natural and testable.

1.3.5 Case study: D-brane inflation

In D-brane inflation our universe is identified with a spacetime filling mobile D3-
brane whose location in the compactification is given by the inflaton field. The
D3-brane is pointlike in the extra dimensions and inflation is supposed to take place
due to the existence of a flat inflaton potential corresponding to a weak force between

the D3-brane brane and a distant anti-D3-brane fixed in the Calabi-Yau compact-
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warped throat

Figure 1.3: A mobile D3-brane moving towards an anti-D3-brane fixed at IR location
at the bottom of the warped throat region of a flux compactification. The throat is
smoothly glued to a Calabi-Yau three-fold in the UV region where moduli stabilizing
D7-branes enter the throat. In principle, our universe may exist in various parts of
compactification, including other warped throats not shown in the diagram. This

figure is from [54].

ification [42-45]. In this set up inflation ends as the branes collide and annihilate
each other by which the inflationary energy density ultimately gets transformed to
heat for the later hot big bang. The problem that arises is that in Calabi-Yau com-
pactifications the size of the internal manifold is a modulus making the potential
too steep for inflation. One of the major challenges has been to stabilize all the
moduli and show that in a non-vanishing fraction of the vast number of string vacua
the inclusion of various compactification effects in the effective field theory leaves a
suitable inflationary model.

In recent years there has been significant progress within the ‘KKLT” framework,
[30], in which the older idea of brane inflation [42-45] is realised via the motion of
a brane in internal, hidden, extra dimensions [46] (see also [47-61] and the reviews
[34-40]). In these scenarios volume modulus stabilization obstacles to inflation (see
subsection 1.3.3), but the inflaton potential (of the position of a probe D3-brane) is
flattened by fine-tuned cancellation of correction terms from further moduli stabiliza-
tion from wrapped branes and bulk effects so that inflation can occur (see Fig1.3).
In more detail, the most general inflaton potential and its relating contribution to

the slow-roll parameter take the form [55]
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V) = V) + S + AV() (1.3.56)
W6) = m(6) + 5+ Agg) = ? (1.357)

In Eq. (1.3.56), the first term on the RHS defines terms in the potential that have
negligible contributions to 7, 7y < 1, the second term is the inflaton mass term that
has a large (order unity) contribution to 1 given by 2/3, which spoils the flatness
of the inflaton potential, and the last term contains all other corrections to the
inflaton potential whose associated contribution to 7 is given by An. In order to
flatten the inflaton potential, one has to compute AV and show that under fine
tuning its associated An compensates against the problematic (order unity) term
2/3, so that the inflaton potential becomes flat (see below). However, whether or
not the potential can be made flat to meet the slow-roll conditions, DBI inflation,
(62, 63], is also possible, even when the potential is steep. In this case, while the
motion of the brane can be strongly relativistic (in the sense of a large 7-factor)
strong warping of the local throat region renders their contribution to the local
energy density subdominant to that of the inflaton potential terms. To see this,
note that in the (type IIB) supergravity background with metric ansatz (1.3.52) the
effective action takes the form [62, 63] (see Chapter 3)

S = %/dd‘az\/—gR
g / d'aer/=5 {Tge—%gél “04vem],  (1358)

YDBI = \/1 — e GG 0 ™0y " | Ts.

Here T3 is the D3-brane tension, g, is the string coupling, and M, is the Planck
mass. The first term in this action is the ordinary four-dimensional Einstein-Hilbert
action, which arises from dimensional reduction of the closed string sector of the ten
dimensional action. The second part contains the action that controls the dynamics
of the fields, parameterizing the position of the brane along the internal coordinates,
#™. In a strongly warped region, e*4 >> 1, the kinetic energy’s pre-factor of e=#4 in

Eq. (1.3.58) suppresses it relative to V(¢™) even when the motion is relativistic.
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In either case (whether slow-roll or DBI), the approach taken is to consider a D3-
brane moving in a warped throat region of a Calabi-Yau flux compactification of type
IIB theory with ISD conditions [29]. However, when the UV end of the warped throat
is attached to the compact Calabi-Yau space with all moduli stabilized, violations of
ISD conditions with important implications for the action of the brane are expected.
The perturbations around the ISD solution satisfy the supergravity equation of

motion [55-57] (see Chapter 2)

D@ = AP +Ra. (1.3.59)
Here R4 denotes the Ricci-scalar, A is the (IASD) flux, A is the Laplace operator
with respect to the leading order Calabi-Yau metric gﬁ,%, and ®_ = e* — o with

e*4 being the warp factor in the metric (1.3.52) and « a potential for the five-form

on this background given by [29]

Fy = (1 +%10) |[da(y) A da® A dat A da® A da?|. (1.3.60)

In an ISD background a = e*4 and ®_ is vanishing. In the presence of perturbations
around the ISD solution ®_ is nonvanishing and the potential of the mobile D3-brane

in such a background receives corrections in the form [55-57]

AV = Ty(e* — o) = Tyd_. (1.3.61)

Hence the corrections to the D3-brane potential are computed from the solution of

Eq. (1.3.59), which takes the form [55-57] (see also Chapter 2)

_(r, V) = Z Prarfrar(r)You(V), (1.3.62)

where @y, are constants, fra(r) and Yz (W) denote the radial and angular eigen-
functions on the conical geometry that is approximately described by the metric
(1.3.51). The solution (1.3.62) implies in particular that the potential of a mobile
D3-brane in the compactified throat geometry receives angular dependent correc-
tions, [52-57], which until recently, have been largely neglected (although see [58-

60, 64]). In slow roll inflation, it was presumed that the angular directions would
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stabilise rapidly, with the radial (slow-roll) direction dominating the inflationary tra-
jectory. In this case the chief motivation of computing supergravity perturbations in
the form of Eq. (1.3.62) is to obtain inflaton corrections in the form of Eq. (1.3.61),
which (upon minimization of the angular eigenfunction) may lead to a fine tuned
cancellation against the inflaton mass term in Eq. (1.3.56), so that slow-roll inflation
can occur. However, for generic brane motion the effect of angular motion is less
clear, particularly in the presence of angular terms in the potential.

Angular motion of branes was initially explored in the probe limit, i.e. where the
brane does not back-react at all on either the internal or external dimensions. Unsur-
prisingly, the angular motion has a conserved momentum, which can give interesting
brane universes (see e.g. [65-69]), however the mirage style, [70], interpretation of
the cosmology of these universes leads to a rather unsatisfactory picture. Based on
the probe understanding, it was conjectured that angular motion would not affect
a more realistic inflationary scenario to any great extent, an expectation largely
borne out by the “spinflation” study, [71-74], which found a marginal increase of a
couple of e-foldings due to angular motion, coming mainly from the initial stages
of inflation before the angular momentum becomes redshifted away. This increase
is however parameter sensitive, a point not noted in this original study. In [71-
74], a general DBI-inflationary universe was considered near the tip of the warped
deformed conifold throat, the Klebanov-Strassler (KS) solution [75], with a simple
radial brane potential; with a more realistic potential including angular terms, the
spinflationary picture could potentially be rather different.

In this thesis therefore, we investigate the cosmological implications of including
angular dependence in the DBI brane inflation scenario. Building on the results of
Baumann et al. [52-57], we consider D3-brane motion in the warped throat region
of the compact Calabi-Yau subject to UV deformations of the geometry that induce
angular dependent corrections in the potential of the probe D3-brane. Taking into
account perturbations around the ISD solution, we solve the D3-brane equations
of motion from the DBI action with angular dependence induced by the leading
correction to the potential allowed by the symmetries of the compactification. Our

aim is to consider angular momentum in a fully UV/IR consistent fashion, and to
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account for angular momentum in a more general potential. As with the simpler
radial spinflation potential, our numerical solutions show that angular dependence
tends to increase the inflationary capacity of a trajectory, increasing the number
of e-foldings, albeit at a subdominant level. To a large extent, the trajectories are
still predominantly radial, however, do exhibit rotational motion due to the angular
potential.

An important question is how generic such trajectories are. In general, as the
brane arrives in the throat, one expects a range of initial conditions in terms of
angular values and velocities. We find that the D brane trajectories and number of
e-foldings are dependent more on model parameters than on the initial condition of
the brane motion, thus indicating that the results of our investigation are reasonably
robust.

The thesis is organized as follows. In Chapter 2, we discuss the supergravity back-
ground that we use to study of brane inflation in subsequent chapters. In Chapter 3,
we first review some of the relevant aspects of D-branes and construct the multifield
D-brane action. We then derive the equations of motion from the action and review
a multifield DBI brane inflation model known as Spinflation. In Chapter 4, we study
Spinflation in the presence of linearized (first order) perturbations around the ISD
supergravity solution, which induce angular dependence in brane motion. In Chap-
ter 5, we extend our study of Chapter 4 by taking into account non-linear (second
order) perturbations around the ISD solution including further angular corrections
from the effects of backreaction sourced by moduli stabilizing wrapped D7-branes.

In Chapter 6, we briefly comment on future directions for further investigations.



Chapter 2

The supergravity model

In this chapter, we discuss the supergravity background used for the study of brane
inflation in the subsequent chapters. We first outline the general type IIB su-
pergravity background, following [29, 76], and consider as a specific example the
warped deformed conifold with known metric and known background fluxes, fol-
lowing [75, 77, 78]. We then discuss perturbations around such backgrounds from
compactification effects sourced by UV deformations of the ten-dimensional super-

gravity solution including the effects of moduli stabilization, following [30, 57].

2.1 Calabi-Yau flux compactification of type IIB
superstring theory

In brane inflation, a mobile D3-brane (or anti-brane) is embedded in the internal
manifold, with its four infinite dimensions parallel to the four-dimensional noncom-
pact universe. The position of the brane on the internal manifold then provides an
effective four-dimensional scalar field - the inflaton. The ten-dimensional set-up is
assumed to be a flux compactification of type IIB string theory on an orientifold of
a Calabi-Yau threefold (or an F-theory compactification on a Calabi-Yau fourfold)
[29]. We are interested in the situation where fluxes have generated a warped throat

in the internal space, and will be examining primarily the deep throat region.

29
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2.1.1 Type 1IB superstring spectrum

The most popular approach to superstring theory is to consider 1 + 1-dimensional
superconformal invariant quantum field theories over the world sheet. The starting

point to analyse the spectrum of the superstring is to put superconformal field theory

(SCFT) on a circle. The full SCFT action takes the form [76]:

S = ﬁ d2w <§3X/‘5Xﬂ + 1/;/*8@1/)# + 1/;“(91,]1;#), (2'1'1)

where w = o' + i0? is the cylinder coordinate. Here the first part of the action
depending on X describes the bosonic degrees of freedom and is known as the
Polyakov action. The second part is the matter fermion action with the fields ¢ and
¢ are holomorphic (left-moving) and antiholomorphic (right-moving). This action
must be invariant under periodic identification of the cylinder, w ~ w + 27. This

together with Lorentz invariance will allow the following two periodicity conditions:

Ramond (R) : " (w +27) = +¢*(w), (2.1.2)

Neveu-Schwarz (NS) : *(w + 27) = —¢H(w). (2.1.3)

Here the sign being the same for all u. In the same way one has two possible
periodicities for ¢*. Hence there are four ways to put the theory on a circle and
there are four different kinds of closed superstring, which will be denoted by NS-NS,
NS-R, R-NS, and R-R.

To analyze the massless particle spectrum, we first note that in D-dimensional
spacetime for the massless states there is no rest frame and one chooses the frame
p* = (E,FE,0,...,0). The SO(D — 2) acting on the transverse directions leaves the
momenta p invariant and is a subgroup of the Lorentz group called the little group!.
Thus the massless particle states arising from the lowest string states in D = 10 are
classified by their behavior under SO(8) rotations that leave the momentum invari-

ant. In the NS sector, the physical state conditions imply that the massless physical

!The massive case is different in that one considers the rest frame p* = (m,0,0,0) and the

states form then a representation of the spatial rotation group SO(D — 1).
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states are the eight transverse polarisations forming the vector representation 8y
of SO(8). In the R sector, the physical state conditions for the lowest states lead
to the massless Dirac equation by which the massless lowest states form a repre-
sentation of the Dirac algebra; in ten dimensions this representation has dimension
32. The Dirac representation 32 decomposes into two Weyl representations 16 and
16, differing by their chirality. Upon SO(9,1) — SO(1,1) x SO(8) each of these
two decompose into a sum of 85 and 8.. Each state of combinations 8, @ 8. then
describes the massless degrees of freedom on each side of the closed superstring. The
consistent chiral closed superstring theory, known as type IIB string theory, has the

following massless sector under SO(8) [76]:

Type IIB: (8, ® 8;) ® (8, ® 8). (2.1.4)

The products in the NS-NS and R-R sectors are given as

NS-NS: 8, ®8, = ¢0® B, ®Gu=1028035 (2.1.5)

RR: 8®8 = [0]®[2 ®[4,=1028035,. (2.1.6)

Here [n] denotes an antisymmetric rank n tensor of the representation SO(8), with

[4]+ being self-dual. In the NS-R and R-NS sectors the products are

NSR: 8,8 = 8,® 56, (2.1.7)

The 564 includes two massless vector—spinor gravitinos of the same chirality. The
physical state conditions for the NS-R gravitino state imply local spacetime su-
persymmetry and associated with it there are two supercharges each transforming
under the 16 of the SO(9,1).

To this end, we note that type IIB supergravity has two supercharges of the same
chirality, both tranforming under 16. Its graviton multiplet contains two scalars,
the traceless symmetric graviton, two antisymmetric 2-forms, and a 4-form with

self-dual field strength giving 2 + 35 + 28 4+ 28 + 35 = 128 bosonic states in all.
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This is the same as the massless content of the type IIB superstring in NS-NS and
R-R sector discussed above. Thus the NS-NS and R-R spectra together form the

bosonic components of the type IIB (chiral) supergravity [76].

2.1.2 Type IIB action and equations of motion

In the previous section we saw that the field content of the massless spectrum of type
IIB superstring theory consists of the R-R and NS-NS forms. For the R-R fields
we may use C, and Fj,; for the potential and field strength, and for the NS-NS
fields By and Hs. One can construct an action using these forms. But it should be
noted from the previous section that the massless spectrum of type IIB theory also
contains a self-dual 5-form field strength, F, 5 = I, 5. There is no covariant action for

such a field but the following action comes close [76]:

S = Sns + Sr + Scs, (2.1.8)
1 1
Sns = —2/d10x(—g)1/262¢(R+48H<I>8“®——|H3|2>, (2.1.9)
2K7, 2
1 - 1 -
Su = g [0 (IEE4IRR+RR), @10)
Ko 2
1
SCS == 9 C4/\H3/\F3, (2111)
4K,
where
Fy = F3—CyA Hs, (2.1.12)
. 1 1
F5 == F5_§CQ/\H3+§BQ/\F3 (2113)

Also, k3%, is the ten-dimensional gravitational coupling given by

, _ (2m)7a"g]

The equations of motion and Bianchi identity for Fy are:
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The spectrum of the type 1IB string includes degrees of freedom of a self-dual five-
form field strength and the field equations (2.1.8)-(2.1.11) are consistent with:

«Fy = Fy. (2.1.16)

The supergravity action can be put in a SL(2,R) symmetric form. Consider

Gew =€ g, T=Co+ie®, (2.1.17)
1 I7T|>  —Rer 4 H;
Im7 | _Rer 1 F

In (2.1.17) we transformed the metric to the Einstein frame. The action then takes

the form [76]:

1 0, TO*T
S - = le . 1/2 R — |
1IB 2“%0 x( QE) E 2(Im7')2
M;;

A y ‘ .
5 F§~F§—Z!F5!2) S /C4AF3‘/\F§ (2.1.19)

2
8K1o

Here 7 in (2.1.17) is the axion-dilaton field, and in (2.1.18) F3 = dCy and Hs = dBs
are the R—R and NS—-NS three-form fluxes, as before. This action is invariant under

SL(2,R) symmetry by:

, at +b
= 2.1.20
T ct+d’ ( )
, o , d c
Fy = MNF, A= , (2.1.21)
b a
FS’ = F57 g],ﬂuy - gEMV (2122)

with a, b, ¢, d € R and det A = 1. The SL(2,R) invariance of the 7 kinetic term
is clear, and that of Fj kinetic term follows from M’ = (A"HTMA~. Tt should
be noted that the global SL(2, R) symmetry of type IIB supergravity is not shared
by the full type IIB superstring theory. In fact, it is broken by a variety of stringy
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and quantum effects to the infinite discrete subgroup SL(2,Z). To see this, consider
stable strings in this background. As there are two two-form gauge fields By (NS-NS
two-form) and Cy (R-R two-form) there are two types of charge that a string can
carry. The F-string (or fundamental string) has charge (1,0), which means that it
has one unit of the charge that couples to B, and none of the charge that couples
to Cy . In similar fashion, the D-string couples to Cy and has charge (0,1). As the
two-forms form a doublet of SL(2,R), it follows that these strings also transform
as a doublet. Generally, they transform into (p, q) strings, which carry both kinds
of charge. The restriction to the SL(2,Z) subgroup is essential to make sure that
these charges are integers, as is required by the Dirac quantization conditions. The
low-energy IIB supergravity action in the Einstein frame can be put in an SL(2,Z)

invariant form as [76]:

1
Sug=— [ d*° R —
1IB 2%0 x \g\ [ 9

1 / Cy NG3 NG
Im(7)

o 1Gs* | B
(Im7)?2  12Im7 4-5!

S'ocs 2.1.23
8ir2, t o ( )

where

G3 == F3 - TH3. (2124)

Here the term Sy, is the action of localized sources including contributions from
wrapped D7-branes and mobile D3-branes [29]. These are Bogomolnyi-Prasad—
Sommerfield (BPS) states, meaning that they are invariant under a nontrivial sub-
algebra of the full supersymmetry algebra. These states always carry conserved
charges, and the supersymmetry algebra determines the mass of the state exactly
in terms of its charges and the mass is subject to the BPS bound.

In a flux compactification to four dimensions we are assuming a block diagonal

Ansatz for the metric [29]:

9
dsTy = Z gundzMda™ = 4 Wg, datda” — e AW g0 dymdyn,  (2.1.25)
M,N=0
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in which the warp factor, e**® depends only on the internal coordinates y™, the
internal metric g,,, is independent of the spacetime coordinates (and will be taken to
be a known supergravity solution) and the four-dimensional metric, g,,, is taken as
Minkowski for the computation of the supergravity flux background, but ultimately
will be assumed to have an FRW form once the general cosmological solution is
sought.

Following [29], we take the self-dual five-form to be given by

Fy = (14 %10) |da(y) A dz® A dat A da® A da®|, (2.1.26)

in the Poincare invariant case, where «(y) is a function of the internal coordinates,
and %o is the ten-dimensional Hodge star operator (see appendix A).

The Einstein equations take the form

1
RMN = KJ%O (TMN - ggMNT), (2127)
where
-2 45

Ty = ——— 2.1.28
M =g oghN (21.28)

is the energy-momentum tensor, and 7' is the trace. The noncompact components

take the form

GG e oc L. o
'RW:—QW( 481;1117‘ + 1 Opmad Oz)—l—li%()(Tllw —ggm,T1 ) (2.1.29)

According to the metric (2.1.25), the Ricci components can be computed as

1
R = —guye4AA(0)A = —ZguV(A(O)eA‘A - 674A8me4‘46me4‘4). (2.1.30)

This together with the trace of (2.1.29) gives [29]

—mnp
— 62A Gman

2
—6A m 4A qm 4A K10 24 /m _ ploc
o T e [Omad™ o + Ope™ 0™ e™ | + ¢ (T —TH) .

(2.1.31)

A(O) 64A
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The five-form Bianchi identity takes the form [29]

dﬁg) :HgAFg—i—Qlﬁ}%OTgpg, (2132)

where p3 is the D-brane charge density from localized sources and includes contri-
butions from the D7-branes and mobile D3-branes. Integrating this Bianchi identity
over the internal manifold gives the type IIB tadpole-cancellation condition [29]

1

m/]\;Hg/\F{g‘f“Qlﬁ?C:O. (2133)
10

This states that the total D3-brane charge from supergravity backgrounds and lo-

calized sources vanishes. In terms of the potential o the Bianchi identity (2.1.32)

becomes [29]

—~mnp

124Gy 46G

1207 )4 26-040,00me 4 22 Typl. (2.1.34)

A(O)Oé

The Einstein equations (2.1.31) and five-form Bianchi identity (2.1.34) imply [29]

e8A+<I>

1
AP = — |G_|> + e 54 VD_|> + 2K%e24 Z(Tg—le)bcal—Tgpg@ , (2.1.35)

where A (o) is the Laplacian with respect to the six-dimensional unperturbed Calabi-

Yau metric gq(fl),)l, and we have defined:

Gi=(i+tx)Gs, Pi=eta (2.1.36)

The equation of motion for the three-form flux is [29]

1 dr -
dA + 5 Tm(7) ANA+A)=0, (2.1.37)
where by definition

The LHS of Eq. (2.1.35) integrates to zero, so the global constrains for the super-
gravity solution are [29]:

e The three-form flux is imaginary self-dual,
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*6G3 = ZG3 (2139)

e The warp factor and four-form potential are related,

et =a. (2.1.40)

e The localized sources saturate a ‘BPS-like’ bound

1
Z(T;}j — Th)° = Typy*. (2.1.41)

A compactification satisfying the conditions (2.1.39)-(2.1.41) is called ISD.

2.1.3 Type IIB theory on Calabi-Yau manifolds

In this subsection, we follow closely [76] (and Appendix A) and discuss the moduli
fields of Calabi-Yau compactification of type IIB superstring theory that form the
massless field content of N = 2 spacetime supersymmetry.

The massless fields in four dimensions arise from those modes of the ten-dimensional
massless fields that are annihilated by the internal part of the Laplace operator. For
the type IIB string on a Calabi-Yau manifold the massless fields come from the NS—
NS fluctuations gy n, barn, ¢ (bosonic supergravity fields) and the R-R fluctuations
¢, cpn and ey pg. Here the ten-dimensional indices separate as M — (u, 1, 5). Thus
these will include the four-dimensional metric g, dilaton ¢, and axion b,, < a,
and also the scalar ¢, and a second axion c,, <+ a’. These components with all
indices noncompact each have a single zero mode (the constant function) giving the
corresponding field in four dimensions.

Every Calabi-Yau manifold has exactly one (3, 0)-form (see Appendix A) and the
relevant Laplace operator is Ay (see Appendix A). The zero modes of ¢, satisfy
Aqgcuijr = 0 and therefore define harmonic forms. The space of harmonic forms

is isomorphic to the cohomology groups (see Appendix A). Thus according to the
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Hodge numbers of Calabi-Yau three-folds (see Appendix A) this gives h*? = 1 zero
modes. This is a vector.

The components g;; correspond to changes in the complex structure because a
coordinate change would be needed to bring the metric back to Hermitian form.
This field is symmetric and therefore not a (p,q)-form. But by using the metric
and antisymmetric three-form we can produce g;j;, = gijgj’_“ﬂ,;;m, which is a (2,1)-
form. The relevant Laplace operator is A; and the zero modes or moduli satisfy
the operator equation Ayg;;7, = 0 and therefore define harmonic (2, 1)-forms. Hence
according to the Hodge numbers of Calabi-Yau three-folds this gives h%! zero modes
or complex structure moduli. These are complex fields with g;; being the conjugate.
These fields are scalars. The component ¢, can also be regarded as a (2,1)-form
the zero modes of which give h*! vectors. It should be noted that there are no
additional scalars from ¢,z because the five-form field strength of the type IIB
background is self-dual meaning that these give the same vector states.

The component g;; is a (1,1)-form and the relevant Laplace operator is again
Ag4. The zero modes or moduli satisfy the operator equation A;g;; = 0 and therefore
define harmonic (1, 1)-forms. Thus according to the Hodge numbers of Calabi-Yau

= are also

three-folds it gives h'! zero modes or real moduli. The fields b;; and c;;

(1,1)-forms and give rise to h''! zero modes or real moduli. These combine to
form h! complex fields. These fields are scalars. The component Cuij can also be
regarded as a (1, 1)-form the zero mode of which gives h!! scalars from its Poincare

dual. It should be noted that there are no scalars from c;

& with A%? harmonic
(2, 2)-forms due to the Hodge numbers of Calabi-Yau three-folds since the five-form
field strength of the type IIB background is self-dual and in fact these are identical
to the states form c,,,;.

The components g,;, b,; and ¢,; are (1,0)-forms, and the relevant Laplace opera-
tor is Ay, giving according to the Hodge numbers of Calabi-Yau three-folds, h'? = 0
zero modes. The components b;; and ¢;; are (2,0)-forms and the relevant wave op-
erator is A4 giving again by the Hodge numbers of Calabi-Yau three-folds h*? = 0

zero modes.

In summary, we have the following fields: for each harmonic (1, 1)-form there is
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a scalar from g;; and one from b;;, and also one from c¢;; and a fourth one from the

Poincare dual of ¢ For each harmonic (2, 1)-form there are scalars from g;; and

pviy -
g7 and a vector from c,; ;.

Now let us see how the above fields fit into multiplets of N = 2 spacetime
supersymmetry. The metric g,, plus vector c,;j; comprise the bosonic content of
the supergravity multiplet. The remaining model independent fields are four real
scalars: ¢, ¢, a and a’. This is the bosonic content of one hypermultiplet. For each
harmonic (1, 1)-form there are three scalars plus an additional one again forming a
hypermultiplet. For each harmonic (2, 1)-form there are two scalars and a vector,

the bosonic content of the vector multiplet. In total, the massless type IIB states

form a N = 2 supergravity multiplet plus:

IIB: h*! vector multiplet, A + 1 hypermultiplet. (2.1.42)

In summary, the Calabi-Yau moduli and supersymmetry multiplets in type IIB
theory are related as: the Kéhler (1,1) moduli are related to hypermultiplets and
the complex structure moduli to vector multiplets.

In low energy N = 2 supergravity the potential is determined completely by
gauge interactions. In Calabi-Yau compactification of type IIB theory the gauge
fields all come from the R-R sector. Hence all strings are neutral and so the potential
vanishes. It is therefore conclusive that all the scalars found above are moduli. This
is a consequence of symmetry and thereby valid in all orders of string perturbation
theory, even in the nonperturbative regime. However, as we shall see in the next
sections, in N = 1 supergravity this is no longer the case and nonperturbative effects
can produce a potential (see section 2.2). Since here the potential is vanishing the
low energy action is fully determined by supersymmetry in terms of the kinetic
terms for the moduli — the metric on moduli space. By supersymmetry the kinetic
terms of the hypermultiplet scalars are independent of the vector multiplet scalars
and the kinetic terms for the vectors and their scalar partners are independent of
the hypermultiplet scalars. This means that the moduli space is a product (see
also Appendix A). The vector multiplet space is a special Kéhler manifold and the

hypermultiplet moduli space a quaternionic manifold.
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2.1.4 Moduli and effective actions

The global constraints of warped compactification discussed in the previous section

. . 0
are invariant under g,(n)

n — >\2g7(n07)1. Thus a warped compactification has a radial
modulus, but there is no dilaton modulus as the dilaton couples to the NS-NS and
R-R fluxes differently giving a nontrivial potential, and, as discussed below, fluxes
also stabilize the complex structure moduli [29].

Let us now consider the effective four-dimensional action. To be concrete, con-
sider a Calabi-Yau manifold with a single Kahler modulus characterizing its size.
In the absence of fluxes, there are massless fields describing the complex-structure
moduli 2%, for o = 1, ..., h*!, the axion-dilaton 7 and the superfield p containing the

Kahler modulus.

The Kahler potential for the complex structure moduli takes the form [26] (see

Appendix A)

K*' = —log (z/ QA Q) : (2.1.43)
M

In addition to this, we need to compute the Kéahler potential for the radial modulus
and for the axion-dilaton modulus. In order to do so, we consider dimensional
reduction of the ten-dimensional type IIB action by taking the Calabi-Yau manifold

large. We consider the action on a background of the form [29]
ds* = c_GU(I)gMVd:E“dx” — 2@ g dy™dy", (2.1.44)

where u(z) parameterizes the volume of the Calabi-Yau three-fold. The power of
e*®) in the first term has been chosen to give a canonically normalized Einstein term
in four-dimensions.

The supersymmetric partner of the radial modulus is another axion IS, which

descends from the four-form according to

Cuupq = d;,tl/‘]pq7 (2145)

where J is the Kéhler form [29] (see Appendix A). In four dimensions the two-form

i can be dualized to a scalar b according to [29]
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da = ¢ 3@ x db. (2.1.46)

Setting

~

p= % + ie*, (2.1.47)

the resulting low-energy effective action is [29]

19,70"7 30, pf)“p) (2.1.48)

$= 5 [ 105 (R 5 3 Ty

Here the four-dimensional gravitational coupling constant is given by x% = x3,/v,
where v is the volume of the Calabi-Yau three-fold computed using the metric g,,,.
The kinetic terms for 7 and p correspond to the first two terms in the Kahler

potential

K = —3log[—i(p — p)| — log[—i(T — T)]. (2.1.49)

Thus the complete Kéhler potential takes the form [29]

K:—M%}ﬂp—M]l%[(T—ﬂ}J%(a@QAQ). (2.1.50)

The presence of fluxes generate a superpotential of the form [79]

W@:/QAG& (2.1.51)

where 2 is the holomorphic three-form of the Calabi-Yau three-fold. This superpo-
tential is independent of p. The ISD constraint xsG'3 = iG3 can be derived from this
superpotential. Note that a solution to the ISD condition is a harmonic form of type
(2,1) + (0,3), but in supersymmetric solutions only the primitive part of the (2, 1)
component is allowed, meaning that the index structure is ijk and the contraction
with the Kahler form J¥ vanishes.

The condition for unbroken supersymmetry is [29]

DW = 0,W + 8,KW = 0. (2.1.52)
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Here a = p, 7, label all the supermoduli fields and hence the following three con-

ditions follow

3
D,W = 8§,KkW = — <—_)W =0, (2.1.53)
p—p
1 _
DW= —— /Q/\ Gs =0, (2.1.54)
T—T
DWW = /% AGs =0, (2.1.55)

where ¢, is a basis of harmonic (2, 1)-forms (see Appendix A). The first condition
is derived from observing the fact that the superpotential (2.1.51) is independent
of the radial modulus. This condition implies that for a supersymmetric solution
W = 0, so that the (0,3) component of G5 has to vanish. The second condition
implies that the (3,0) component of G also has to vanish. The third condition is

satisfied by all harmonic (2, 1)-forms and so supersymmetry is unbroken if [29]

Gs € HZD(M). (2.1.56)

We should remark that for compact Calabi-Yau manifolds h'° = 0 (see Appendix
A). In such a case any harmonic (2, 1)-form is primitive, again meaning that the
index structure is ijk and the contraction with the Kahler form J% vanishes, and

so we have [29]
G3 S H;()firlli)itive(M)' (2157)
We also note that in addition to being primitive, the ¢, are also ISD. Then Eq. (2.1.56)

is in agreemen