
Live Streaming in P2P
and Hybrid P2P-Cloud

Environments for the
Open Internet

AMIR H. PAYBERAH

Doctoral Thesis in Information
and Communication Technology

Stockholm, Sweden 2013

Live Streaming in P2P and Hybrid P2P-Cloud
Environments for the Open Internet

AMIR H. PAYBERAH

Doctoral Thesis in
Information and Communication Technology

Stockholm, Sweden 2013

TRITA-ICT/ECS AVH 13:05
ISSN 1653-6363
ISRN KTH/ICT/ECS/AVH-13/05-SE
ISBN 978-91-7501-686-3

KTH School of Information and
Communication Technology

SE-164 40 Kista
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licentiatesexamen i datalogi
Torsdag den 13 Juni 2013 klockan 13:00 i sal E i Forum IT-Universitetet, Kungl
Tekniskahögskolan, Isajordsgatan 39, Kista.

Swedish Institute of Computer Science
SICS Dissertation Series 60
ISRN SICS-D–60–SE
ISSN 1101-1335.

© Amir H. Payberah, June 13, 2013

Tryck: Universitetsservice US AB

iii

Abstract

Peer-to-Peer (P2P) live media streaming is an emerging technology that
reduces the barrier to stream live events over the Internet. However, providing
a high quality media stream using P2P overlay networks is challenging and
gives raise to a number of issues: (i) how to guarantee quality of the service
(QoS) in the presence of dynamism, (ii) how to incentivize nodes to partici-
pate in media distribution, (iii) how to avoid bottlenecks in the overlay, and
(iv) how to deal with nodes that reside behind Network Address Translators
gateways (NATs).

In this thesis, we answer the above research questions in form of new algo-
rithms and systems. First of all, we address problems (i) and (ii) by presenting
our P2P live media streaming solutions: Sepidar, which is a multiple-tree
overlay, and Glive, which is a mesh overlay. In both models, nodes with
higher upload bandwidth are positioned closer to the media source. This
structure reduces the playback latency and increases the playback continuity
at nodes, and also incentivizes the nodes to provide more upload bandwidth.

We use a reputation model to improve participating nodes in media distri-
bution in Sepidar and Glive. In both systems, nodes audit the behaviour of
their directly connected nodes by getting feedback from other nodes. Nodes
who upload more of the stream get a relatively higher reputation, and pro-
portionally higher quality streams.

To construct our streaming overlay, we present a distributed market model
inspired by Bertsekas auction algorithm, although our model does not rely
on a central server with global knowledge. In our model, each node has
only partial information about the system. Nodes acquire knowledge of the
system by sampling nodes using the Gradient overlay, where it facilitates the
discovery of nodes with similar upload bandwidth.

We address the bottlenecks problem, problem (iii), by presenting Clive
that satisfies real-time constraints on delay between the generation of the
stream and its actual delivery to users. We resolve this problem by borrowing
some resources (helpers) from the cloud, upon need. In our approach, helpers
are added on demand to the overlay, to increase the amount of total available
bandwidth, thus increasing the probability of receiving the video on time.
As the use of cloud resources costs money, we model the problem as the
minimization of the economical cost, provided that a set of constraints on
QoS is satisfied.

Finally, we solve the NAT problem, problem (iv), by presenting two NAT-
aware peer sampling services (PSS): Gozar and Croupier. Traditional
gossip-based PSS breaks down, where a high percentage of nodes are be-
hind NATs. We overcome this problem in Gozar using one-hop relaying to
communicate with the nodes behind NATs. Croupier similarly implements
a gossip-based PSS, but without the use of relaying.

To Fatemeh, my beloved wife,
to Farzaneh and Ahmad, my parents, who I always adore,

and to Azadeh, Aram, and Kaveh my lovely sister and brothers.

vii

Acknowledgements

I am deeply grateful to Professor Seif Haridi, my advisor, for giving me the oppor-
tunity to work under his supervision. I appreciate his invaluable help and support
during my work. His deep knowledge in various fields of computer science, fruitful
discussions, and enthusiasm have been a tremendous source of inspiration for me.

I would like to express my deepest gratitude to Dr. Jim Dowling for his excellent
guidance and caring. I feel privileged to have worked with him and I am grateful
for his support. He worked with me side by side and helped me with every bit of
this research.

I would never have been able to finish my dissertation without the help and
support of Fatemeh Rahimian, who contributed to many of the algorithms and
papers in this thesis.

I would also like to thank Professor Alberto Montresor, Professor Vladimir
Vlassov, Dr. Sarunas Girdzijauskas, Dr. Ali Ghodsi, Professor Christian Schulte,
and Dr. Johan Montelius for their valuable feedbacks on my work during the course
of my graduate studies. I am also grateful to Dr. Sverker Janson for giving me the
chance to work as a member of CSL group at SICS. I acknowledge the help and
support by Thomas Sjöland, the head of software and computer systems unit at
KTH.

I would like to thank Cosmin Arad for providing KOMPICS, the simulation envi-
ronment that I used in my work. I also thank Hanna Kavalionak, Tallat Mahmood
Shafaat, Ahmad Al-Shishtawy, Roberto Roverso, Raul Jimenez, Flutra Osmani,
Niklas Ekström, Martin Neumann, and Alex Averbuch for the fruitful discussions
and the knowledge they shared with me. Besides, I am grateful to the people of
SICS that provided me with an excellent atmosphere for doing research.

Finally, I am most grateful to my parents for helping me to be where I am now.

Contents

Contents ix

1 Introduction 1
1.1 Contribution . 2
1.2 Publications . 4
1.3 Outline . 5

2 Background and Related Work 7
2.1 P2P media streaming . 7

2.1.1 P2P streaming overlays . 7
2.1.2 Incentive mechanisms . 12

2.2 Peer sampling service . 12
2.2.1 Gossip-based peer sampling service 13
2.2.2 NAT-aware peer sampling service 14

2.3 The assignment problem . 15

3 P2P Live Streaming 19
3.1 Problem description . 20
3.2 Centralized solution . 24
3.3 Distributed solution . 26

3.3.1 Multiple-tree overlay . 26
3.3.2 Mesh overlay . 29
3.3.3 The Gradient overlay . 32

3.4 Experiments . 35
3.4.1 Experimental setup . 35
3.4.2 System performance evaluation 36
3.4.3 Free-rider detection evaluation 38
3.4.4 Neighbour selection evaluation 39

4 Cloud-Assisted P2P Live Streaming 41
4.1 Problem description . 42
4.2 System architecture . 43

4.2.1 The baseline model . 44

ix

x CONTENTS

4.2.2 The enhanced model . 44
4.3 System management . 45

4.3.1 The swarm size and upload slot distribution estimation . . . 46
4.3.2 The number of infected peers estimation 48
4.3.3 The management model . 50
4.3.4 Discussion . 51

4.4 Gossip-based distribution estimation 53
4.5 Experiments . 54

4.5.1 Experimental setup . 54
4.5.2 System performance evaluation 57
4.5.3 Economic cost evaluation . 57
4.5.4 Accuracy evaluation . 60
4.5.5 Distribution estimation evaluation 63

5 NAT-Aware Peer Sampling 67
5.1 Problem description . 68
5.2 Distributed NAT type identification 70
5.3 NAT-aware peer sampling . 71

5.3.1 NAT-aware peer sampling with one-hop relaying 71
5.3.2 NAT-aware peer sampling without relaying 74
5.3.3 Discussion . 79

5.4 NAT traversal middleware . 79
5.4.1 Centralized solution . 80
5.4.2 Distributed solution . 82

5.5 Experiments . 84
5.5.1 Experimental setup . 84
5.5.2 Estimation algorithm evaluation 84
5.5.3 Peer sampling evaluation . 88
5.5.4 NAT traversal evaluation . 90

6 Conclusions 93

Bibliography 97

Chapter 1

Introduction

Live media streaming over the Internet is getting more popular every day. The
conventional solution to provide this service is the client-server model, which

allocates servers and network resources to each client request. However, providing
a scalable and robust client-server model, such as Youtube, with more than one
billion hits per day [1], is very expensive. There are few companies, who can afford
to provide such an expensive service at large scale. An alternative solution is to use
IP multicast, which is an efficient way to multicast a media stream over a network,
but it is not used in practice due to its limited network-level support by Internet
Service Providers.

Another approach is to use the application level multicast, which utilizes overlay
networks to distribute large-scale media streams to a large number of users (nodes).
A Peer-to-Peer (P2P) overlay is a type of overlay network in which each node si-
multaneously functions as both a client and a server. In this model, nodes that have
all or part of the requested media can forward it to the requesting nodes. Since each
node contributes its own resources, the capacity of the whole system grows when
the number of nodes increases. Hence, P2P overlays can provide media streaming
services at large scale, but with a relatively lower cost for the service provider than
that of the client-server model, as network traffic and data storage/processing costs
are pushed out to peer nodes.

The high scalability and low cost of P2P overlays, have lowered the barrier to
stream live events over the Internet, and thus, have revolutionized media streaming
technology. The question remains is how successful this new trend of technology is
at providing a good quality of service (QoS) to end users. The QoS is defined in
terms of two metrics in live streaming: playback continuity, and playback latency. To
have a high playback continuity, or smooth media playback, nodes should receive
data blocks of the stream with respect to certain timing constraints; otherwise,
either the quality of the playback is reduced or its continuity is disrupted. Likewise,
to have a low playback latency, nodes should receive points of the media that
are close in time to the most recent part of the media delivered by the provider.

1

2 CHAPTER 1. INTRODUCTION

For example, in a live football match, people do not like to hear their neighbours
celebrating a goal, several seconds before they see the goal happening.

Streaming live media with a high QoS, i.e., high playback continuity, and low
playback latency, over a P2P overlay raises a number of issues:

• How do we guarantee the QoS in the presence of dynamism? P2P overlays are
dynamic, meaning that nodes join/leave/fail continuously and concurrently
in a process knows as churn. The network capacity also changes over time.

• How do we incentivize nodes to participate in media distribution? Nodes
should be incentivized to contribute and share their resources in a P2P overlay.
Otherwise, opportunistic nodes, called free-riders, can take advantage of the
system without contributing to media distribution.

• How do we avoid bottlenecks in a P2P streaming overlay? Bottlenecks in
the available upload bandwidth inside the P2P overlay network may limit the
QoS experienced by users.

• How do we overcome the Network Address Translation gateways (NATs) prob-
lem? The presence of NATs in the Internet is a problem for P2P overlays.
Nodes that reside behind NATs do not support direct connectivity by default,
and other nodes cannot initiate connections to them.

1.1 Contribution

In this work, we answer the above questions in the form of new algorithms and
systems. Some of the systems we developed address more than one of our research
problems.

Sepidar and Glive. We address the two problems of the churn and free-riding
by presenting our P2P live media streaming solutions: Sepidar [2] and Glive [3].
In Sepidar, we build multiple approximately minimal height overlay trees for con-
tent delivery, whereas, in Glive, we build a mesh overlay, such that the average
path length between nodes and the media source is approximately minimum. In
these structures, i.e., multiple-tree and mesh, each node receives data from multiple
nodes, called its partners. If some partners of a node fail, the node can continue to
receive the stream, as long as it has other partners to get data from them.

In both models, the nodes with higher available upload bandwidth are posi-
tioned closer to the media source, for two main reasons: (i) these nodes can serve
relatively more nodes, thus reducing the average number of hops from nodes to
the media source, and (ii) this model incentivizes nodes to provide more upload
bandwidth, as nodes that contribute more upload bandwidth will be located closer
to the media source, and consequently have relatively higher playback continuity
and lower latency.

1.1. CONTRIBUTION 3

We use a reputation model to address the free-riding problem in Sepidar and
Glive. We solve this problem in Sepidar through nodes auditing the behaviour of
their child nodes in trees, while in Glive we implement a scoring mechanism that
ranks the nodes, based on the received feedback from other nodes. In both systems,
nodes who upload more of the stream get a relatively higher score or reputation.
Nodes with higher rank will receive relatively improved video streams.

To construct our streaming overlays, we present a distributed market model
inspired by the auction algorithm [4, 5]. Our distributed market model [6] differs
from the classical implementations of the auction algorithm, in that we do not rely
on a central server with a global knowledge of all participants. Instead, each node,
as an auction participant, has only partial information about the system. Nodes
continuously exchange their information, in order to collect more knowledge about
other participating nodes. In our systems, nodes acquire knowledge of the system
by sampling nodes using the gossip-generated Gradient overlay network [7, 8]. The
Gradient overlay facilitates the discovery of nodes with similar upload bandwidth.

Clive. We present Clive, to satisfy soft real-time constraints on delay between
the generation of the stream and its actual delivery to users, in case of bottlenecks
in the available upload bandwidth inside the P2P overlay network. Our solution
to this problem is assisting the P2P streaming network with a cloud computing
infrastructure to guarantee a certain level of the QoS. For this purpose, we borrow
some resources (helpers) from the cloud, upon need.

A helper could be an active computational node that participates in the stream-
ing protocol, or it could be a passive storage node that just provides content on
demand. The helpers increase the total upload bandwidth available in the sys-
tem, thus, potentially reduce the playback latency. Both types of helpers could be
rented on demand from an IaaS (Infrastructure as a Service) cloud provider, e.g.,
Amazon AWS. Considering the capacity and the cost of helpers, the problem to be
solved becomes minimizing the economical cost of helpers, provided that a set of
constraints on the QoS is satisfied.

Gozar and Croupier. We solve the NAT problem, by presenting two NAT-
aware peer sampling services (PSS): Gozar [9] and Croupier [10]. Gossip-based
PSS [11], which is a building block for our systems, provides a node with a uniform
random samples of live nodes, where the sample size is typically much smaller than
the system size.

In the Internet, where a high percentage of nodes are behind NATs, traditional
gossip-based PSS’ break down. We overcome this problem in Gozar by providing
a distributed NAT-traversal to enable connectivity to nodes behind NATs (private
nodes) using existing nodes not behind NATs (public nodes) as relay/rendezvous
servers. We, then, go further in Croupier by removing relay/rendezvous nodes
and building a gossip-based PSS without the use of relaying or hole-punching. As
a result, we decrease the complexity and overhead of our protocol and increase its
robustness to churn and failure.

4 CHAPTER 1. INTRODUCTION

However, this thesis does not cover the security issues and the problem of nodes
colluding to receive the video stream for free in this thesis. To summarize, our
contributions in this thesis include:

• a distributed market model to construct P2P streaming overlays, a tree-based
overlay, Sepidar, and a mesh-based overlay, Glive, and two reputation-
based solutions to overcome the free-riding problem in them,

• a cloud-assisted P2P live streaming system, Clive, that guarantees a higher
bound on playback latency, if there exists bottlenecks in the available upload
bandwidth inside the P2P overlay, by renting cloud resources,

• two NAT-aware gossip-based PSS’ that provide uniform random samples in
the presence of NATs using one-hop relaying in Gozar and without relaying
in Croupier.

1.2 Publications

The list of papers published in this work are:

1. Amir H. Payberah, Hanna Kavalionak, Alberto Montresor, Jim Dowling,
and Seif Haridi, Lightweight Gossip-based Distribution Estimation, The 15th
IEEE International Conference on Communications (ICC), Budapest, Hun-
gary, June 2013.

2. Amir H. Payberah, Jim Dowling, Fatemeh Rahimian and Seif Haridi, Dis-
tributed Optimization of P2P Live Streaming Overlays, Journal of Springer
Computing, Vol. 94, No. 8, pp. 621–647, June 2012.

3. Amir H. Payberah, Hanna Kavalionak, Vimalkumar Kumaresan, Alberto
Montresor, and Seif Haridi, CLive: Cloud-Assisted P2P Live Streaming, The
12th IEEE International Conference on Peer-to-Peer Computing (P2P), pp.
79–90, Tarragona, Spain, September 2012.

4. Jim Dowling and Amir H. Payberah, Shuffling with a Croupier: Nat-Aware
Peer-Sampling, The 32nd IEEE International Conference on Distributed Com-
puting Systems (ICDCS), pp. 102–111, Macau, China, June 2012.

5. Amir H. Payberah, Jim Dowling and Seif Haridi, GLive: The Gradient over-
lay as a market maker for mesh-based P2P live streaming, The 10th IEEE
International Symposium on Parallel and Distributed Computing (ISPDC),
pp. 153–162, Cluj-Napoca, Romania, July 2011.

6. Amir H. Payberah, Jim Dowling and Seif Haridi, Gozar: NAT-friendly Peer
Sampling with One-Hop Distributed NAT Traversal, The 11th IFIP Inter-
national Conference on Distributed Applications and Interoperable Systems
(DAIS), pp. 1–14, Reykjavik, Iceland, June 2011.

1.3. OUTLINE 5

7. Amir H. Payberah, Jim Dowling, Fatemeh Rahimian and Seif Haridi, Sepi-
dar: Incentivized Market-Based P2P Live Streaming on the Gradient Overlay
Network, The IEEE International Symposium on Multimedia (ISM), pp. 1–8,
Taichung, Taiwan, December 2010.

8. Amir H. Payberah, Jim Dowling, Fatemeh Rahimian and Seif Haridi, gra-
dienTv: Market-based P2P Live Media Streaming on the Gradient Overlay,
The 10th IFIP International Conference on Distributed Applications and In-
teroperable Systems (DAIS), pp. 212–225, Amsterdam, Netherlands, June
2010.

The list of publications of the same author but not related to this work are:

1. Fatemeh Rahimian, Sarunas Girdzijauskas, Amir H. Payberah and Seif Haridi,
Subscription Awareness Meets Rendezvous Routing, The 4th IARIA Interna-
tional Conference on Advances in P2P Systems (AP2PS), Barcelona, Spain,
September 2012.

2. Fatemeh Rahimian, Sarunas Girdzijauskas, Amir H. Payberah and Seif Haridi,
Vitis: A Gossip-based Hybrid Overlay for Internet-scale Publish/Subscribe,
The 25th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), pp. 746–757, Anchorage, Alaska, USA, May 2011.

3. Hakan Terelius, Guodong Shi, Jim Dowling, Amir H. Payberah, Ather Gat-
tami and Karl Henrik Johansson, Converging an Overlay Network to a Gra-
dient Topology, The 50th IEEE Conference on Decision and Control and Eu-
ropean Control Conference (CDC-ECC), pp. 7230–7235, Orlando, Florida,
USA, December 2011.

1.3 Outline

The rest of this document is organized as follows:

• In Chapter 2, we present the required background for this thesis project. We
review the main concepts of P2P media streaming and introduce a framework
for classifying and comparing different P2P streaming solutions. Moreover, we
go through the basic concepts behind peer sampling services and introduce the
Gradient overlay. Furthermore, we show the effects of NATs on the behaviour
of P2P applications, and explore existing NAT traversal solutions. Finally,
we present a short introduction on the auction algorithms.

• In Chapter 3, we present our P2P live streaming systems using our distributed
market model. In this chapter, we show how we use the Gradient overlay to
improve the convergence time of our systems. Additionally, we present our
free-rider detector mechanisms.

6 CHAPTER 1. INTRODUCTION

• In Chapter 4, we go through the details of our cloud-assisted P2P live stream-
ing, and explain how we can guarantee the QoS in term of playback latency,
when there are bottlenecks in the overlay network.

• In Chapter 5, we present our gossip-based PSS’ and show how they provide
uniform random samples of nodes at all nodes in a system, even when a high
percentage of them are behind NAT.

• In Chapter 6, we conclude the thesis.

Chapter 2

Background and Related Work

In this chapter we present the main background work that is relevant for this thesis.
First of all, we review the main concepts of P2P media streaming systems. Later,

we present the basics of peer sampling services and the Gradient overlay as the core
blocks of our systems. In addition, we show the connectivity problem among nodes
in the Internet and present the common NAT traversal solutions. Finally, we cover
the auction algorithm as a method we used in our systems to solve assignment
problems.

2.1 P2P media streaming

In this section, we present the main questions on designing P2P media streaming
systems and introduce a framework to organize existing P2P streaming systems.
We also review some of the solutions to incentivize nodes to contribute in data
dissemination.

2.1.1 P2P streaming overlays
There are two fundamental questions in building an overlay for P2P streaming:

1. How to construct and maintain a P2P streaming overlay?

2. How to distribute content to the nodes in a P2P streaming overlay?

Constructing and maintaining a P2P streaming overlay. The first question
in P2P streaming systems is how to construct and maintain a content distribution
overlay, or in other words, how nodes can discover other supplying nodes [12]. Some
possible answers to this question are:

• Centralized method

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

• Hierarchical method

• Flooding method

• DHT-based method

• Gossip-based method

The centralized method is a solution used mostly in early P2P streaming sys-
tems. In this method, the information about all nodes, e.g., their address or avail-
able bandwidth, is kept in a centralized directory and the centralized directory is
responsible to construct and maintain the overall topology. CoopNet [13] and Di-
rectStream [14] are two sample systems that use the central method. Since the
central server has a global view of the overlay network, it can handle nodes join-
ing and leaving very quickly. One of the arguments against this model is that the
server becomes a single point of failure, and if it crashes, no other node can join
the system. The scalability of this model, also, is another problem. However, these
problems can be resolved if the central server is replaced by a set of distributed
servers.

The next solution for locating supplying nodes is using a hierarchical method.
This approach is used in several systems, such as Nice [15], ZigZag [16], and Bulk-
Tree [17]. In Nice and ZigZag, for example, a number of layers are created over the
nodes, such that the lowest layer contains all the nodes. The nodes in this layer
are grouped into some clusters, according to a property defined in the algorithm,
e.g., the latency between nodes. One node in each cluster is selected as a head,
and the selected head for each cluster becomes a member of one higher layer. By
clustering the nodes in this layer and selecting a head in each cluster, they form the
next layer, and so on, until it ends up in a layer consisting of a single node. This
single node, which is a member of all layers is called the rendezvous point.

Whenever a new node comes into the system, it sends its join request to the
rendezvous point. The rendezvous node returns a list of all connected nodes on the
next down layer in the hierarchy. The new node probes the list of nodes, and finds
the most proper one and sends its join request to that node. The process repeats
until the new node finds a position in the structure where it receives its desired
content. Although this solution solves the scalability and the single point of failure
problems in the central method, it has a slow convergence time.

The third method to discover nodes is the controlled flooding, which is originally
proposed by Gnutella [18]. GnuStream [19] is a system that uses this idea to find
supplying nodes. In this system, each node has a neighbour set, which is a partial
list of nodes in the system. Whenever a node seeks a provider, it sends its query to
its neighbours. Each node forwards the request to all of its own neighbours except
the one who has sent the request. The query has a time-to-live (TTL) value,
which decreases after each rebroadcasting. The broadcasting continues until the
TTL becomes zero. If a node that receives the request satisfies the node selection
constraints, it will reply to the original sender node. This method has two main

2.1. P2P MEDIA STREAMING 9

drawbacks. First, it generates a significant amount of network traffic and second,
there is no guarantee for finding appropriate providers.

An alternative solution for discovering the supplying nodes is to use Distributed
Hash Tables (DHT), e.g., Chord [20] and Pastry [21]. SplitStream [22] and [23] are
two samples that work over a DHT. In these systems, each node keeps a routing
table including the address of some other nodes in the overlay network. The nodes,
then, can use these routing tables to find supplying nodes. This method is scalable
and it finds proper providers rather quickly. It guarantees that if proper providers
are in the system, the algorithm finds them. However, it requires extra effort to
manage and maintain the DHT.

The last approach to find supplying nodes is the gossip-based method. Many al-
gorithms are proposed based on this model, e.g., NewCoolstreaming [24], DONet/-
Coolstreaming [25], PULSE [26], gradienTv [27] and [28] use a gossip-generated
random overlay network to search for the supplying nodes. We use the gossip-
generated Gradient overlay [7, 8] for node discovery in Sepidar and Glive. In
the gossip-based method, each node periodically sends its data availability infor-
mation to its neighbours, a partial view of nodes in the system, to enable them
find appropriate suppliers, who possess data they are looking for. This method is
scalable and failure-tolerant, but because of the randomness property of neighbour
selection, sometimes the appropriate providers are not found in reasonable time.

Distributing contents in a P2P streaming overlay. In order to distribute
streaming contents in a P2P overlay, we should decide:

1. What overlay topology is built for data dissemination?

2. What algorithm is used for data dissemination?

Many different overlay topologies have been used for data dissemination in P2P
media streaming systems. The main topologies used for this purpose are:

• Tree-based topology

• Mesh-based topology

• Hybrid topology

The tree-based topology is divided to single-tree and multiple-tree structures.
Early data delivery overlays use a single-tree topology, where data blocks are pushed
over a tree-shaped overlay with a media source as the root of the tree. Nice [15],
ZigZag [16], Climber [29] and [30] are examples of such systems. The low latency
of data delivery is the main advantage of this approach. Disadvantages, however,
include the fragility of the tree structure upon the failure of interior nodes and the
fact that all the traffic is only forwarded by them.

The multiple-tree structure is an improvement on single-tree overlays, which
was proposed for the first time in SplitStream [22]. In this model, the stream is
split into substreams and each tree delivers one substream. Sepidar, CoopNet [13],

10 CHAPTER 2. BACKGROUND AND RELATED WORK

gradienTv [27], Orchard [31], and ChunkySpread [32] are some solutions belonging
to this class.

Although multiple-tree overlays improve some of the shortcomings of single-
tree structures, they are still vulnerable to the failure of interior nodes. Rajaee
et al. have shown in [33] that mesh overlays have consistently better performance
than tree-based approaches for scenarios where there is churn and packet loss. The
mesh structure is highly resilient to node failures, but it is subject to unpredictable
latencies due to the frequent exchange of notifications and requests [12]. Glive,
DONet/Coolstreaming [25], PULSE [26], Gossip++ [34], Chainsaw [35], and [28]
are the systems that use a mesh-based overlay for data dissemination.

Another solution for data dissemination is a hybrid model that combines the
benefits of the tree-based structure with the advantages of the mesh-based approach.
Example systems include NewCoolStreaming [24], CliqueStream [36], mTreebone [37],
Prime [38], and [23].

The second question in the content distribution is what algorithm should be
used for data dissemination. The two most common answers to this question are:

• Push-based method

• Pull-based method

The push-based content distribution is a solution mostly used in tree structures.
ZigZag [16] and SplitStream [22], as instances of single-tree and multiple-tree struc-
tures, respectively, use the push-based model for data dissemination. The push
model in mesh-based overlays may generate lots of redundant messages, since nodes
may receive the same data block from different neighbours. Although, Fortuna et
al. in [28] resolved the redundancy problem of the push model in mesh overlays, the
pull-based method is still the dominant data distribution model in mesh overlays.

In the pull-based model, nodes exchange their data block availability informa-
tion and request each required data block explicitly from a neighbour that possesses
that data block. Sepidar and Glive use push and pull data distribution models,
respectively. The systems that use hybrid tree-mesh topologies, e.g., NewCool-
Streaming [24], CliqueStream [36], and mTreebone [37], usually use both push and
pull model at the same time.

A classification framework. We classify the existing P2P media streaming sys-
tems in two dimensions, each representing one aspect of the problem. The result is
shown in Table 2.1. Each row in this table shows an approach to overlay construc-
tion, while each column shows a different data dissemination solution. Due to the
lack of space, we just show a few systems in each cell.

2.1. P2P MEDIA STREAMING 11

Si
ng

le
-t
re
e

(p
us
h)

M
ul
tip

le
-t
re
e

(p
us
h)

M
es
h

(p
us
h)

M
es
h

(p
ul
l)

Tr
ee
-M

es
h

(p
us
h-
pu

ll)

C
en
tr
al
iz
ed

D
ire

ct
St
re
am

[1
4]

C
oo

pN
et

[1
3]

H
yM

oN
et

[3
9]

H
ie
ra
rc
hi
ca
l

N
ic
e
[1
5]

B
ul
kT

re
e
[1
7]

Pr
im

e
[3
8]

Zi
gZ

ag
[1
6]

C
lim

be
r
[2
9]

Fl
oo

di
ng

G
nu

St
re
am

[1
9]

D
H
T

Sp
lit
St
re
am

[2
2]

C
ol
le
ct
C
as
t
[4
0]

Pu
lsa

r
[2
3]

Pr
om

ise
[4
1]

C
liq

ue
St
re
am

[3
6]

G
os
sip

Se
pi

da
r
[2
]

N
ap

a-
W

in
e
[2
8]

G
li

ve
[3
]

B
ul
le
t
[4
2]

gr
ad

ie
nT

v
[2
7]

C
oo

lst
re
am

in
g
[2
5]

m
Tr

ee
bo

ne
[3
7]

O
rc
ha

rd
[3
1]

PU
LS

E
[2
6]

G
rid

M
ed

ia
[4
3]

C
hu

nk
yS

pr
ea
d
[3
2]

C
ha

in
sa
w

[3
5]

B
ito

s
[4
4]

D
ag
St
re
am

t
[4
5]

Ta
bl
e
2.
1:

A
fr
am

ew
or
k
to

cl
as
si
fy

P
2P

m
ed

ia
st
re
am

in
g
sy
st
em

s.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.2 Incentive mechanisms
A common problem in P2P streaming systems is free-riding. In P2P content distri-
bution networks nodes should be incentivized to share their resources and contribute
to data dissemination; otherwise, opportunistic nodes, called free-riders, can use the
system without contributing any resources. This could have a serious impact on
the quality of service of the P2P streaming system, leading to scalability issues
and service degradation [46, 47]. The existing solutions to address the free-riding
problem can be categorized as follows:

• Monetary-based

• Reciprocity-based

• Reputation-based

In the monetary-based scheme, users pay virtual currency to get content from
other nodes. Each node plays a dual role of a content consumer and provider.
A node, as a rational player, wants to maximize its profit, i.e., the quality of its
received stream, but simultaneously reduces its costs, i.e., the amount of resources it
contributes to the system. A popular modeling tool to study strategic interactions
among such rational players is the game theory [46]. Some systems that use the
game theory to overcome free-riders are [48–50].

Reciprocity-based mechanisms are similar to the tit-for-tat strategy in BitTor-
rent [51]. Here, nodes measure the amount of received stream from their neighbors,
and keep the history of them. A node periodically decides to upload content to its
neighbours, based on the local information about which neighbours have uploaded
more to it in the past. PULSE [26], and Bitos [44] are two systems that use the
reciprocity-based mechanism.

Another mechanism to resolve the free-riding problem is the reputation-based
model. Nodes, in this model, receive scores based on their contribution to data
dissemination. The higher score a node has, the higher reputation it achieves,
and consequently the higher priority it has for receiving data. Nodes’ reputa-
tions are constructed based on feedbacks from other nodes in the system that have
interacted with them. Sepidar, Glive, BarterCast [52], EigenTrust [53], Give-to-
Get [54], and BAR gossip [55] are a number of P2P streaming systems that use the
reputation-based model.

2.2 Peer sampling service

Peer sampling services (PSS) have been widely used in large scale distributed appli-
cations, such as information dissemination [56], aggregation [57], and overlay topol-
ogy management [8, 58]. Gossiping algorithms are the most common approach to
implementing a PSS [9, 10, 59–63]. In gossip-based PSS’, the protocol execution at
each node is divided into periodic cycles. In each cycle, every node selects a node

2.2. PEER SAMPLING SERVICE 13

from its partial view and exchanges a subset of its partial view with the selected
node. Both nodes subsequently update their partial views using the received node
descriptors.

2.2.1 Gossip-based peer sampling service
Based on M. Jelasity et al. classification [11], implementations of gossip-based PSS’
vary based on a number of different policies:

1. Node selection: determines how a node selects another node to exchange
information with. It can be either selected randomly (rand), or based on the
node’s age (tail).

2. View propagation: determines how to exchange views with the selected node.
A node can send its view with or without expecting a reply, called push-pull
and push, respectively.

3. View selection: determines how a node updates its view after receiving the
nodes’ descriptors from another node. A node can either update its view
randomly (blind), or keep the youngest nodes (healer), or replace the subset
of nodes sent to the other node with the received descriptors (swapper).

In a gossip-based PSS, the sampled nodes should follow a uniform random dis-
tribution. Moreover, the overlay constructed by a PSS should preserve indegree
distribution, average shortest path and clustering coefficient, close to a random net-
work [11, 63]. The indegree distribution shows the distribution of the input links to
nodes. The path length for two nodes is measured as the minimum number of hops
between two nodes, and the average path length is the average of all path lengths
between all nodes in the system. The clustering coefficient of a node is the number
of links between the neighbors of a node divided by all possible links among them.

The Gradient overlay is a class of P2P overlays that uses a gossip-based PSS
to arrange nodes using a local utility function at each node [7, 8]. The nodes in
the Gradient overlay are ordered in descending utility values away from a core of
the highest utility nodes. In other words, the highest utility nodes are found at the
core of the Gradient overlay, and nodes with decreasing utility values are found at
increasing distance from the center.

To build our streaming systems, Sepidar and Glive, we acquire knowledge of
the network by sampling nodes from the Gradient overlay. The Gradient maintains
two sets of neighbours using gossiping algorithms: a similar-view and a random-
view. The similar-view of a node is a partial view of the nodes whose utility values
are close to, but slightly higher than the utility value of this node. Nodes period-
ically gossip with each other and exchange their similar-views. Upon receiving a
similar-view, a node updates its own similar-view by replacing its entries with those
nodes that have closer (but higher) utility value to its own utility value. In con-
trast, the random-view constitutes a random sample of nodes in the system, and it

14 CHAPTER 2. BACKGROUND AND RELATED WORK

is used both to discover new nodes for the similar-view and to prevent partitioning
of the overlay.

2.2.2 NAT-aware peer sampling service
In networks where all nodes can directly communicate with each other, a gossip-
based PSS’ can ensure that node descriptors are distributed uniformly at random
over all partial views [63]. However, in the Internet, where a high percentage of
nodes are behind NATs and firewalls, traditional gossip-based PSS’ become bi-
ased [64]. Nodes cannot establish direct connections to nodes behind NATs or
firewalls (private nodes), and as a result private nodes become under-represented in
partial views. Conversely, nodes that do support direct connectivity (public nodes)
become over-represented in partial views. Kermarrec et al. also evaluated the im-
pact of NATs on traditional gossip-based PSS’ in [64], and showed that the network
becomes partitioned when the number of private nodes exceeds a certain threshold.

There are two main techniques that are used to communicate with private nodes:
hole punching [65] and relaying [66]. Hole punching can be used to establish direct
connections that traverse the private node’s NAT, and relaying can be used to
send a message to a private node via a third party relay node that already has an
established connection with the private node. In general, hole punching is preferable
when large amounts of traffic will be sent between two nodes and when a slow
connection setup time is not a problem. Relaying is preferable when a connection
setup time should be short (less than one second) and small amounts of data will
be sent over the connection.

Traditionally, gossip-based PSS’ do not support connectivity to private nodes.
However, as nodes are typically sampled from a PSS in order to connect to them,
there are natural benefits to including NAT traversal as part of a PSS. The first
PSS that addresses the problem of NATs was ARRG [67]. In ARRG, each node
maintains an open list of nodes with whom it has had a successful gossip exchange
in the past. When a node view exchange fails, it selects a different node from this
open list. The open list, however, biases the PSS, since the nodes in the open list
are selected more frequently for gossiping.

Nylon [64], is another NAT-aware PSS that uses all existing nodes in the system
(both private and public nodes) as rendezvous servers (RVPs). A RVP provides
connectivity to private nodes by facilitating hole-punching the private node’s NAT.
In Nylon, two nodes become the RVP of each other whenever they exchange their
views. If a node selects a private node for gossip exchange, it hole-punches a
direct connection to the private node using a chain of RVPs until the chain reaches
the private node. The chains of RVPs in Nylon are unbounded in length, making
Nylon fragile in networks with churn, as well as increasing overhead at intermediary
nodes. Their chain of RVPs also performs poorly over high latency links, which are
frequently found on the Internet [68].

In other work on NAT-aware gossiping, Renesse et al. [69] presented an approach
to fairly distribute relay traffic over public nodes. In their system, each node

2.3. THE ASSIGNMENT PROBLEM 15

balances the number of gossip requests it accepts to the number of gossip exchanges
it has sent itself. Nodes that have already accepted enough gossip requests, forward
them in a manner similar to Nylon, using chains of nodes as relay servers.

In our system Gozar, we replaced RVP chains with one-hop relaying to all
private nodes. Private nodes discover and maintain a redundant set of public nodes
that act as relay nodes on their behalf. Nodes shuffled with private nodes by relaying
messages via at least one of the private node’s relay nodes, where the addresses of
the relay nodes are cached in node descriptors. Through redundant relay nodes
and quickly expiring node descriptors, connectivity to private nodes is maintained
and latency is kept low, even under churn. In Croupier, we introduce a novel
mechanism for exchanging partial views in NATed networks to build a PSS without
the use of relaying.

2.3 The assignment problem

We consider the following two problems as assignment problems [70]: (i) construct-
ing the streaming overlays in Sepidar and Glive, and (ii) building a distributed
NAT traversal. In this section, we shortly explain the assignment problem in gen-
eral, and sketch a possible solution based on the auction algorithm [4].

Suppose there are n persons and n objects, and we want to find a pairwise
matching among them. A matching between person i and object j is shown as a
pair (i, j), and is associated with a benefit aij . We want to assign all persons to
objects so as to maximize the total benefit. The set of persons and objects are
denoted by P and O, respectively.

We define an assignment S as a set of pairs (i, j) such that:

1. For all (i, j) ∈ S, i ∈ P and j ∈ O.

2. For each i ∈ P, there is at most one pair (i, j) ∈ S.

3. For each j ∈ O, there is at most one pair (i, j) ∈ S.

A complete assignment A is an assignment containing n pairs, such that each
i ∈ P is assigned to a different j ∈ O. Our goal is to find a complete assignment
A over all assignments S that maximizes the total benefit. We can formulate this
problem in the Integer Linear Programming (ILP) framework [5], as the following:

maximize
n∑
i=1

∑
{j|(i,j)∈A}

aijxij (2.1)

subject to

16 CHAPTER 2. BACKGROUND AND RELATED WORK

∑
{j|(i,j)∈A}

xij = 1, ∀i = 1, 2, · · · , n (2.2)

∑
{i|(i,j)∈A}

xij = 1, ∀j = 1, 2, · · · , n (2.3)

xij ∈ {0, 1}, ∀i = 1, 2, · · · , n,∀j = 1, 2, · · · , n (2.4)

where xij = 1 if a person i is assigned to an object j, and xij = 0, otherwise.
The Constraint 2.2 requires that every person i is assigned to one object, and the
Constraint 2.3 requires to ensure that each object is assigned to one person.

A popular solution to solve assignment problems is the auction algorithm [4, 5].
The auction algorithm models a real world auction, where people bid for the objects
that brings them the highest profit, and the highest bids win. In our problem, n
persons compete to be assigned to an abject among the set of n available objects.
Like ordinary auctions, the bidders progressively increase their bid for the objects
in a competitive process.

Each object j is associated with a price pj , which is zero in the beginning, and
is increased in auction iterations after accepting new bids from persons. A person
i measures the net profit, vij , of each object j as the following:

vij = aij − pj (2.5)

The auction algorithm proceeds in iterations, and in each iteration it creates
one assignment S, such that the net profit of each connection under the assignment
S is maximized. In each iteration, the algorithm updates the price of all objects
in the assignment S. If all persons of an assignment S are assigned, we have a
complete assignment A, and the algorithm terminates. Otherwise, the algorithm
starts the next iteration by finding objects that offer maximal net profit for unas-
signed persons. Note that in the beginning of each iteration, the net profit of each
assignment (Equation 2.5) under the assignment S should be maximum.

An iteration in the auction algorithm contains two phases: a bidding phase and
an assignment phase:

• Bidding phase: In the bidding phase, each unassigned person i under the
assignment S finds the object j∗ that has the highest net profit:

vij∗ = max
j∈O

vij (2.6)

To measure the amount of the bid, the person i finds the second best object
j′, and its net profit, wij′ :

wij′ = max
j∈O

vij (2.7)

Considering δij∗ = vij∗ −wij′ as the difference between the highest net profit
and the second one, the person i raises the price of a preferred object j∗ by
the bidding increment δij∗ , and sends its bid, bij∗ , to j∗:

bij∗ = pj∗ + δij∗ (2.8)

2.3. THE ASSIGNMENT PROBLEM 17

• Assignment phase: The object j, which receives the highest bid from i∗,
removes the connection to the person i′ (if there was any connection to i′ in
the beginning of the iteration), and assigns to i∗, i.e., the connection (i∗, j) is
added to the current assignment S. The object j also updates its own price
to the received bid from the person i∗, i.e., pj = bi∗j .

Lemma 1. If δij > 0, the auction process will terminate.

Proof. If an object j receives m bids during m iterations, its price pj increases by∑m
k=1 δ

(k)
ij , where δ(k)

ij represents the added price at the iteration k. Therefore, over
the iterations, the object j becomes more and more “expensive” and consequently
its net profit decreases. This implies that an object can receive bids only for a
limited number of iterations, while some other objects still have not received any
bids. Hence, after some iterations, n distinct objects will receive at least one bid.
Bertsekas shows in [5] that an auction algorithm with n persons, where the set of
person-object pair is limited, terminates once n distinct objects receive at least one
bid.

However, if δij = 0, it may happen that several persons compete for the same set
of objects without raising the price, thereby they may stuck in an infinite loop of
bidding and assignment phases. To solve this problem, each person that bids for
an object, should rise the price by a small value ε by biding bij∗ = pj∗ + δij∗ + ε.
The details of how ε is selected is out of the scope of our work and can be found
in [5].

Chapter 3

P2P Live Streaming

Live streaming using overlay networks on the Internet requires distributed algo-
rithms that strive to use the nodes’ resources efficiently in order to ensure that

the viewer quality is good. To improve user viewing experience, systems need to
maximize the playback continuity of the stream at nodes, and minimize the play-
back latency between nodes and the media source. Nodes should be incentivized
to contribute resources through improved relative performance, and nodes that at-
tempt to free-ride, by not contributing resources, should be detected and punished.
In order to improve system performance in the presence of asymmetric bandwidth
at nodes, it is also crucial that nodes can effectively utilize the extra resources
provided by the better nodes.

In this chapter, we present our P2P streaming systems, Sepidar [2] and Glive [3],
that meet these requirements. In Sepidar, we build multiple approximately min-
imal height streaming overlay trees, where the nodes with higher available upload
bandwidth are positioned higher in the tree as they can support relatively more
child nodes. Minimal height trees help reduce both the probability of streaming
disruptions and the average playback latency at nodes. In this system, the media
stream is split into a set of substreams, and each tree delivers one substream. Mul-
tiple substreams allow more nodes to contribute bandwidth and enable trees to be
more robust [22]. Likewise, in Glive, we build a mesh overlay, such that the aver-
age path length between nodes and the media source is approximately minimum.
In Glive, we divide the media stream into a sequence of blocks, and each node
pulls the required blocks of the stream from a set of nodes in the mesh.

To build our streaming overlays, we first describe an Integer Linear Program-
ming (ILP) formulation of the topology building problem and provide a centralized
solution for it based on the auction algorithm [4], and later we propose a distributed
market model to solve the problem at large scale. In our distributed market, we do
not rely on a central server with a global knowledge of all participants, and each
node has only partial information about the system.

To improve the speed of convergence of the streaming overlays, nodes execute

19

20 CHAPTER 3. P2P LIVE STREAMING

the market model in parallel using samples taken from the Gradient overlay [8].
The Gradient is a gossip-generated overlay network, where nodes are organized
into a gradient structure with the media source at the center of the Gradient and
nodes with decreasing relative upload bandwidth found at increasing distance from
the center. When nodes sample from their neighbours in the Gradient, they receive
nodes with similar upload bandwidths. In a converged overlay, the sampled nodes
will be located at similar distance, in terms of number of hops, from the media
source. Although we only consider upload bandwidth for constructing the Gradient
and our streaming overlays, the model can be easily extended to include other
characteristics such as node uptime, load and reputation.

We also address the free-riding problem, as one of the problems in P2P streaming
systems, in our systems. Nodes are not assumed to be cooperative; nodes may
execute protocols that attempt to download data blocks without forwarding it to
other nodes. We resolve this problem in Sepidar through parent nodes auditing
the behaviour of their child nodes in trees. We also address free-riding in Glive by
implementing a scoring mechanism that ranks the nodes. Nodes who upload more
of the stream have relatively higher score. In both solutions, nodes with higher
rank will receive a relatively improved quality. We do not, however, address the
problem of nodes colluding to receive the video stream for free.

3.1 Problem description

In this work, we want to build a P2P overlay for live media streaming and adaptively
optimize its topology to minimize the average playback latency and improve timely
delivery of the stream. Playback latency is the difference between the playback
time (playback point) at the media source and at a node.

Intuitively, nodes with higher upload bandwidth should be located closer to the
media source. Since, these nodes can serve relatively more nodes, such a structure
reduces the average distance from nodes to the media source, and consequently
decreases the playback latency. A similar overlay structure is used in a few other
systems. For example, LagOver [71] is an information dissemination overlay that
organizes nodes according to their resource constraints and the maximum accept-
able latency to receive the information from the source. In this section, we first
describe this problem in the tree-based approach, and then present the required
modification to apply it for the mesh-based approach.

In our tree-based model, the media stream is split into a number of substreams
or stripes, and each stripe is divided into blocks of equal size without any coding.
Every block has a sequence number that indicates its playback order in the stream.
A node retrieves the stripes independently, from any other node that can supply
them. We define the number of download-slots and upload-slots of a node as the
number of stripes that a node is able to simultaneously download and forward,
respectively. The set of all download-slots and upload-slots in an overlay are also
denoted by D and U , respectively. Similarly, the set of download-slots and upload-

3.1. PROBLEM DESCRIPTION 21

Figure 3.1: The connection between download-slots i and i′ and upload-slots j and j′ for strip k.
The white arrows are download-slots and the gray arrows are the upload-slots.

slots of a node p are shown by D(p) and U(p).
A node is called the owner of its slots (either upload-slots or download-slots),

and the function owner(i) returns the node that owns the slot i. Any two slots i
and j are similar, if they are owned by the same node, i.e., owner(i) = owner(j).
For each download-slot i, the set of all download-slots similar to i is the similarity
class of i, and denoted byMD(i). Likewise, the similarity class of an upload-slot j
is the set of upload-slots owned by the owner of j and is shown byMU (j).

Without loss of generality, we assume every node owns the same number of
download-slots, equal to the number of stripes, and a potentially different number
of upload-slots. In order to provide a full media to all the nodes, (i) every download-
slot needs to be assigned to an upload-slot, (ii) each upload-slot should be assigned
to at most one download-slot, (iii) similar download-slots, i.e., download-slots at
the same node, must download distinct stripes, and (iv) nodes should not have loop
back connections from their download-slots to their own upload-slots.

This problem can be defined as an assignment problem [70]. A connection
between a download-slot i and an upload-slot j for a stripe k is shown as a triple
(i, j, k), and it is associated with a cost cijk (Figure 3.1). The cost can be defined
based on different metrics, e.g., the latency to the source, the number of hops to the
source or the locality of the nodes, that is a connection between two nodes in the
same Autonomous System (AS) has lower cost compare to a connection between
two nodes in different ASs. Formally the cost is defined as the following:

cijk =

 ci′j′k + dij if owner(j) = owner(i′), i′ ∈ D, and j′ ∈ U
0 if owner(j) = source
∞ if there is no path from owner(i) to the source

(3.1)

where dij is the added cost in a connection between a download-slot i and an
upload-slot j. For example, if the cost is defined as the latency of the node to
the source, then dij will be the connection latency between the owner(i) and the
owner(j), and if the cost is the number of hops to the source, then dij = 1.

22 CHAPTER 3. P2P LIVE STREAMING

With V being the set of all stripes, we define an assignment S as a set of triples
(i, j, k), such that:

1. For all (i, j, k) ∈ S, i ∈ D and j ∈ U and k ∈ V.

2. For each i ∈ D, there is at most one triple (i, j, k) ∈ S.

3. For each j ∈ U , there is at most one triple (i, j, k) ∈ S.

4. For each k ∈ V, there is at most one triple (i, j, k) ∈ S for all i ∈MD(i).

The last constraint implies that the download-slots in one similarity class cannot
download the same stripe. In other words, each download-slot in a node should
download a distinct stripe. Note that with the above definition, it is possible to
have cyclic connections among nodes in an assignment.

A complete assignment A is an assignment with the above definition that con-
tains exactly |D| triples, i.e., all download-slots are assigned. To have a complete
assignment, the total number of download-slots should be less than or equal to
the total number of upload-slots, i.e., |D| ≤ |U|. The playback latency of a node
depends on the maximum latency of the node in different stripe trees. Therefore,
to improve the playback latency we should minimize the latency of a node for all
stripes simultaneously. Hence, we use the average distance of a node at all stripe
trees as the cost function. Considering a complete assignment A, the cost of a node
p is defined as:

CA(p) = 1
|V|

∑
i∈D(p)

∑
j∈U

∑
k∈V

cijk · xijk (3.2)

where xijk = 1 if a download-slot i is assigned to an upload-slot j for a stripe k,
and xijk = 0, otherwise. Since putting the nodes with higher upload-slots closer to
the source can reduce the average distances of all the nodes to the source [27, 28],
we bias the cost of each node p by the number of its upload-slots:

C′A(p) = 1
|V|

∑
i∈D(p)

∑
j∈U

∑
k∈V

cijk
mi
· xijk (3.3)

where mi = |U(owner(i))| = |U(p)| denotes the number of upload-slots that the
owner of i has. Then, the average cost of all the nodes in a complete assignment A
is measured as:

CA = 1
|N |

∑
p∈N
C′A(p)

= 1
|N | · |V|

∑
p∈N

∑
i∈D(p)

∑
j∈U

∑
k∈V

cijk
mi
· xijk

= 1
|N | · |V|

|D|∑
i=1

∑
j∈U

∑
k∈V

cijk
mi
· xijk

(3.4)

3.1. PROBLEM DESCRIPTION 23

where N is the set of all the nodes. Therefore, the problem to be solved turns out to
be finding a complete assignment A among all the possible complete assignments,
which minimizes the total cost CA. Since, the term 1

|N |·|V| is a constant we ignore
it in the optimization process.

Putting all the above constraints together, we formulate the problem in the ILP
framework [5], as the following:

minimize
|D|∑
i=1

∑
{j|(i,j,k)∈A}

∑
{k|(i,j,k)∈A}

cijk
mi
· xijk (3.5)

subject to

∑
{j|(i,j,k)∈A}

∑
{k|(i,j,k)∈A}

xijk = 1, ∀i ∈ D (3.6)

∑
{i|(i,j,k)∈A}

∑
{k|(i,j,k)∈A}

xijk ≤ 1, ∀j ∈ U (3.7)

∑
{i∈MD(i)|(i,j,k)∈A}

∑
{j|(i,j,k)∈A}

xijk = 1, ∀k ∈ V (3.8)

xijk ∈ {0, 1}, ∀i ∈ D, j ∈ U , k ∈ V (3.9)

The first constraint requires that every download-slot i is assigned to exactly
one upload-slot. The second constraint ensures that each upload-slot is assigned
to at most one download-slot. It also stated that if the number of upload-slots
are greater than the number of download-slots, some of the upload-slots remain
unassigned. The third constraint ensures that the download-slots in a similarity
class download distinct stripes.

Our model of the system should consider dynamism, while solving this assign-
ment problem. A good solution, therefore, should assign download-slots to upload-
slots as quickly as possible. Centralized solutions to this problem are possible for
small system sizes. For example, if all the nodes send the number of their upload-
slots to a central server, the server can use an algorithm that solves a linear sum
assignments, e.g., the auction algorithm [4], the Hungarian method [72], or more
recent high-performance parallel algorithms [70]. For large scale systems, however,
a centralized solution is not appropriate, since it can become a bottleneck. In the
next section, we briefly sketch a possible solution with the auction algorithm [4].
Later, in Section 3.3 we present a distributed model of the auction algorithm that
solves this problem at large scale.

24 CHAPTER 3. P2P LIVE STREAMING

3.2 Centralized solution

We use the auction algorithm for |D| download-slots that compete for being assigned
to some upload-slot among the set of |U| available upload-slots. A matching between
a download-slot i and an upload-slot j for stripe k is associated with a profit aijk,
and the goal of the auction is to maximize the total profit for all the matchings,
which is:

|D|∑
i=1

∑
j∈U

∑
k∈V

aijk · xijk (3.10)

where xijk is defined in Equation 3.2, and aijk is calculated as:

aijk = mi

cijk
(3.11)

Note that mi and cijk are already defined in Section 3.1. Hereafter, we refer
to mi as money. Equation 3.11 simply says that a connection with a lower cost is
more desirable, and the more money a download-slot has, the more profit it gets
by creating a connection to a lower cost upload-slot.

Each download-slot has a certain amount of money, with which it finds a match-
ing that maximizes its profit. Each upload-slot j is associated with a price pj . The
price of an unassigned upload-slot is zero, and is increased in auction iterations after
accepting new bids from download-slots (the bidding process will be described later
in this section). We define the net profit of an upload-slot as its profit minus its
current price. A download-slot i measures the net profit, vijk, of each upload-slot
j for a stripe k as the following:

vijk =aijk − pj
= mi

cijk
− pj

(3.12)

As mentioned in Section 2.3, the auction algorithm proceeds in iterations, and
it terminates when all the download-slots are assigned. The bidding phase and
assignment phase in each iteration is as follows:

• Bidding phase: In this phase each unassigned download-slot i under the
assignment S finds the upload-slot j∗ with highest net profit for a stripe k,
where k is not assigned to any other download-slots i ∈MD(i):

vij∗k = max
j∈U

vijk (3.13)

The download-slot i also finds the second best upload-slot j′ for stripe k, such
that j′ is not owned by the owner of j∗, i.e., j′ /∈ MU (j∗). The second best
net profit, wij′k, equals:

wij′k = max
j∈U−MU (j∗)

vijk (3.14)

3.2. CENTRALIZED SOLUTION 25

Considering δij∗k as the difference between the highest net profit and the
second one, i.e., δij∗k = vij∗k − wij′k, the download-slot i computes the bid,
bij∗k, for the upload-slot j∗:

bij∗k = pj∗ + δij∗k (3.15)

In this process at each iteration the download-slot i raises the price of a pre-
ferred upload-slot j∗ by the bidding increment δij∗k.

• Assignment phase: The upload-slot j, which received the highest bid from
i∗, removes the connection to the download-slot i′ (if there was any connection
to i′ at the beginning of the iteration), and assigns to i∗, i.e., the connection
(i∗, j, k) is added to the current assignment S. The upload-slot j also updates
its own price to the received bid from the download-slot i∗, i.e., pj = bi∗jk.

As shown in Section 2.3, the auction process terminates if δijk > 0. Although
the presented auction algorithm was shown for the multiple-tree approach, we can
easily use it to build a mesh overlay. In contrast to the multiple-tree approach, in
the mesh-based overlay, we do not split the stream into stripes. The video is divided
into a set of B blocks of equal size without any coding. Every block b ∈ B has a
sequence number that indicates its playback order in the stream. Nodes can pull
each block independently, from any other node that can supply it. Each node has
a partner list, which is a small subset of nodes in the system. A node can create
a bounded number of download connections, equals to its number of download-
slots, to partners and accept a bounded number of upload connections, equals to
its number of upload-slots, from partners over which blocks are downloaded and
uploaded, respectively.

Unlike the tree-based approach that assigns download-slots to upload-slots of
nodes for each stripe, here, we need to find the assignments for each block. Biskup-
ski et al. in [73] show that a block disseminated through a mesh overlay follows a
tree-based diffusion pattern for each block. Therefore, the objective is to minimize
the cost function for every block b, such that a shortest path tree is constructed
over the set of available connections for every block. We define the cost of connec-
tion cijb from a download-slot i to an upload-slot j for a block b as the minimum
distance, e.g., the number of hops, from the owner of upload-slot j to the media
source.

Since the auction algorithm is centralized, it does not scale to many thousands
of nodes, as both the computational overhead of solving the assignment problem
and communication requirements on the server become excessive, breaking our real-
time constraints [70]. In the next section, we present a distributed market model
as an approximate solution to this problem.

26 CHAPTER 3. P2P LIVE STREAMING

3.3 Distributed solution

In this section, we present a distributed market model to construct multiple-tree
and mesh overlays for media streaming.

3.3.1 Multiple-tree overlay
Our distributed market model is based on minimizing costs (Equation 3.5) through
nodes iteratively bidding for upload-slots. We define a node q as the parent of a
child p, if an upload-slot of q is bounded to a download-slot of p. Nodes in this
system compete to become children of nodes that are closer to the media source,
and parents prefer children nodes who offer to forward the highest number of copies
of the stripes. A child node explicitly requests and pulls the first block it requires
in a stripe from its parent, and the parent, then, pushes to the child subsequent
blocks in the stripe, as long as it remains the child’s parent. Children proactively
switch parents when they get more net benefit by changing their parents.

We use the following three properties, calculated at each node, to build the
multiple-tree overlay:

1. Money: the total number of upload-slots at a node. A node uses its money
to bid for a connection to another node’s upload-slot for each stripe.

2. Price: the minimum money that should be bid when trying to establish a
connection to an upload-slot. The price of a node that has an unused upload-
slot is zero, otherwise the node’s price equals the lowest money of its already
connected children. For example, if node p has three upload-slots and three
children with monies 2, 3 and 4, the price of p is 2. Moreover, the price of a
node that has a free-riding child, a node not contributing in data dissemina-
tion, is zero.

3. Cost: the cost of an upload-slot at a node for a particular stripe is the distance
between that node and the media source (root of the tree) for that stripe.
Since the media stream consists of several stripes, nodes may have different
costs for different stripes. The closer a node is to the media source for a
stripe, the more desirable parent it is for that stripe. However, other metrics,
such as the nodes’ locality, can be taken into account for measuring the cost.
For example, if two nodes have the same distance to the source, the cost of
choosing any of them by the nodes in the same Autonomous System (AS) is
lower than that of the nodes in a different AS. Nodes constantly try to reduce
their costs over all their parent connections by competing for connections to
the nodes closer to the media source.

Our market model can be best described as an approximate auction algorithm.
Similar to the centralized solution in Section 3.2, for each stripe, child nodes place
bids for upload-slots at the parent nodes with the highest net profit, e.g., closest

3.3. DISTRIBUTED SOLUTION 27

nodes to the media source. Note that the money of a node is not used up after
bidding and can be reused to bid for other connections. Therefore, if a node can
afford a high net profit parent for one stripe, it can also afford other good parents
for other stripes.

Nodes increase their price by receiving new bids, and the more expensive a
node is, the lower net profit it has. Thus, a parent node, which had a high net
profit in one iteration, turns out to be a low profit node after receiving a number
of bids. Hence, the seeking nodes will try to bid for other nodes with a higher
net profit. This implies that in an overlay with |D| download-slots, if there is no
churn in the system, eventually |D| distinct upload-slots receive at least one bid,
and consequently the algorithm terminates by assigning all the download-slots to
upload-slots. However, in a dynamic network, where nodes continuously join and
leave the system, our algorithm keeps running and optimizes the connections in the
overlay.

A parent node sets a price of zero for an upload-slot when at least one of its
upload-slots is unassigned. Therefore, the first bid for an upload-slot will always
win, enabling children to immediately connect to available upload-slots. When all
of a parent’s upload-slots are assigned, it sets the price for an upload-slot to the
money of its child with the lowest number of upload-slots, i.e., the lowest money.
If a child with more money than the current price for an upload-slot bids for an
upload-slot, it will win the upload-slot and the parent will replace its child with
the lowest money with the new child. A child that has lost an upload-slot has to
discover new nodes and bid for their upload-slots.

One crucial difference with the auction algorithm is that our market model
is decentralized; nodes have only a partial (changing) view of a small number of
nodes, called partners, in the system with whom they can bid for upload-slots.
Moreover, in contrast to the auction algorithm, the price of upload-slots does not
always increase - it can be reset to zero, if a child node is detected as a free-rider.
A node is free-rider if it is not correctly forwarding all the stripes it promises to
supply. As such, it is a restartable auction, where the auction is restarted because
a bidder did not have sufficient funds to complete the transaction.

To construct the overlay, nodes periodically send their money, cost, price, and
buffer map to their partners. The buffer map shows the last blocks that a node has
in its buffer for different stripes. For each stripe k, a node p periodically checks if
it has a node in its partners that has (i) a lower cost than its current parent, (ii)
a price less than its money and (iii) blocks ahead of its block in stripe k. As the
method FindParent shows in Algorithm 1, if such a node is found, it is added to a
list of candidate parents for stripe k. Next, the node p chooses a node q from the
candidates that provides the highest net profit for strip k, i.e., p.money

q.costk
− q.price.

If two nodes have the same net profit, it selects the one with higher money.
The handler AssignRequest shows, if a node q that receives a connection request

from node p for stripe k, has a free upload-slot, it accepts the request, otherwise,
if p’s money is greater than the price of q, q abandons its child that has the lowest
money, and accepts p as a new child. The disconnected node has to find a new

28 CHAPTER 3. P2P LIVE STREAMING

Algorithm 1 Parent selection methods.
1: // Find candidate parents for stripe k at node p.
2: procedure FindParent 〈k〉
3: candidates = ∅
4: if p.stripek.parent = null then
5: p.stripek.parent.cost←∞
6: end if
7: for all n in p.partners do
8: if n.stripek.cost < p.stripek.parent.cost
9: and n.price < p.money

10: and n.BM(stripek) ≥ p.BM(stripek) then . BM : Buffer Map
11: candidates.add(n)
12: end if
13: end for
14: return candidates
15: end procedure

16: // Handling the assign request from node p for stripe k at node q.
17: upon event 〈AssignRequest | k〉 from p
18: if q.uploadSlots has free entries then
19: assign a free upload slot to p
20: Send ParentResponse(AssignAccepted, k) to p
21: else
22: if q has freeridingChild then . q.price = 0
23: lowestMoneyChild← freeridingChild
24: else . q.price = the lowest money of the children
25: lowestMoneyChild← the child with the lowest money
26: end if
27: if p.money > q.price then
28: assign an uploadSlot to p
29: Send Release(k) to lowestMoneyChild
30: Send ParentResponse(AssignAccepted, k) to p
31: else
32: Send ParentResponse(AssignRejected, k) to p
33: end if
34: end if
35: end event

parent. If q’s price is greater than or equal to p’s money, q declines the request. If
q has a free-riding child, q abandons that node as the child with the lowest money.

Handling free-riders. Free-riders are nodes that supply less upload bandwidth
than claimed. To detect free-riders, we introduce the free-rider detector component
with eventual strong completeness property. By eventual strong completeness prop-
erty, we mean that, a node that does not have free upload-slots eventually detects all
its free-riding children. Nodes identify free-riders through transitive auditing using
their children’s children (grandchildren). To do this, a parent q periodically sends
an audit request, about its child p, to p’s claimed children. Whenever a grandchild
receives a message from q, it checks if p is its parent, and has properly forwarded
the stripe(s) it has promised to supply. The grandchild, then, sends back either a
positive or negative audit response to q that shows whether these conditions are
satisfied or not. However, this model does not solve the collusion problem, if a set
of nodes cooperate to cheat.

We now show how the eventual strong completeness property is satisfied for

3.3. DISTRIBUTED SOLUTION 29

the free-rider detector. Assume a node p claims it has u upload-slots, such that
m of them are assigned to other nodes and n of them are free upload-slots, i.e.,
u = m+ n. Then, p’s parent, q, periodically sends audit requests to p’s m claimed
children. Before the next iteration of sending audit requests, q calculates the sum
of (i) the number of audit responses not received before a timeout, (ii) the number
of negative audit responses, and (iii) the n free upload-slots. If the sum is more
than M% of u, p is suspected as a freerider, where M is a threshold for free-rider
suspicion. If p becomes suspected in N consecutive iterations, it is detected as a
free-rider. For example, if N equals 2, a node is detected as a free-rider if it is
suspected on two consecutive iterations of the free-rider detector. The higher is the
value of N , the more accurate but slower is the detection.

In a converged tree, for nodes not in the two bottom levels (the trees’ leaves),
we expect that at least M% of their upload-slots are meeting their contracted
obligation to correctly supply a stripe over that upload-slot. For example, if M is
90%, then node p is suspected as a free-rider, if 10% or more of its upload-slots are
either not connected to child nodes or connected to child nodes but do not supply
the stream at the requested rate.

After detecting a node as a free-rider, the parent node q, decreases its own price
(q’s price) to zero and as a punishment considers the free-rider node p as its child
with the lowest money. On the next bid from another node, q replaces the free-rider
node with the new node. Therefore, if a node claims it has more upload-slots than
it actually supplies, it will be detected and punished. In a converged tree, many
members of the two bottom levels may have no children, because they are the leaves
of the trees, thus, the nodes in these levels are not suspected as free-riders.

3.3.2 Mesh overlay

To build a mesh overlay, we keep the definition of the price as it is in Section 3.3.1,
but we redefine the money and cost as the following:

1. Money: the total number of blocks uploaded to children during the last 10
seconds.

2. Cost: the cost of a node is the average distance of the node to the media
source via its shortest path from each of its download-slot. We can also add
the locality property to the cost, as mentioned in the tree-based approach.

Like the multiple-tree approach, each node periodically sends its money, cost,
price and the buffer map to all its partners, which are its neighbours in the mesh.
The buffer map in the mesh approach shows the list of available blocks in a node
buffer. For each of its download-slots, a child node p sends a bid request to those
nodes that (i) have a lower cost than the existing parents assigned to download-slots
in p, (ii) their price is less than p’s money, and (iii) their blocks are ahead of blocks
of node p.

30 CHAPTER 3. P2P LIVE STREAMING

Algorithm 2 Handling the parent response message from node q at node p.
1: upon event 〈ParentResponse | msg〉 from q
2: if msg is AssignAccepted then
3: if p.downloadSlot has free entries then
4: p.parents.add(q) . add q to the parent list
5: else
6: z ← the lowest net profit parent . the worst parent
7: if (p.moneyq.cost − q.price) > (p.moneyz.cost − z.price) then
8: p.parents.remove(z)
9: p.parents.add(q)

10: Send RemoveMeFromY ourChildren to z
11: else
12: Send RemoveMeFromY ourChildren to q
13: end if
14: end if
15: end if
16: end event

A parent node, who receives a bid request, accepts it if (i) it has a free upload-
slot, or (ii) it has assigned an upload-slot to another node with a lower amount of
money. The pseudo-code is similar to the AssignRequest in Algorithm 1, with a
small difference that in the mesh approach there is no notion of stripes. If a parent
re-assigns a connection to a node with more money, it abandons the old child who
must then bid for a new upload connection. The parent behaviour in case of having
free-rider child is explained later in this section.

When a child node receives the acceptance message from another node, it assigns
one of its download-slots to an upload-slot of the parent. However, since a node
may send more connection requests than its number of download-slots, it might
receive more acceptance messages than it needs (Algorithm 2). In this case, if the
child has a free download-slot, it accepts the parent; otherwise, it checks all its
assigned parents and finds the one with the lowest net profit or the worst parent. If
the net profit of the connection to the worst parent is lower than the new parent,
the child node releases the connection to the worst parent and accepts the new one;
otherwise it ignores the received message.

Handling free-riders. Whenever a node assigns a download-slot to an upload-
slot of another node, it sends the address of its current children to its parent. It
subsequently informs its parents of any changes in its children. Thus, a parent node
knows about its grandchildren, i.e., children’s children.

We implement a scoring mechanism to detect free-riders, and thus motivate
nodes to forward blocks. Each child assigns a score to each of its parents that shows
the amount of blocks they have received from their parents in the last 10 seconds.
When a child requests and receives a non-duplicate block from a parent within the
last 10 seconds, it increments the score of that parent. Hence, the more blocks a
parent node sends to its children, the higher score it has among its children. We
chose 10 seconds as it is the same as the choking period in BitTorrent [51] and does
not unnecessarily punish nodes because of variance in the rate of block forwarding.

3.3. DISTRIBUTED SOLUTION 31

Each node periodically sends a score request to its grandchildren, and the grand-
children nodes send back a score response containing the scores of the original node’s
children. The node sums up the received scores for each child. Free-rider nodes
forward a lower number of blocks, thus they have lower scores compared to others.

When a node with no free upload-slots receives a connection request, it sorts
its children based on their latest scores. If an existing child has a score less than
a predefined threshold, s, then that child is identified as a free-rider. The parent
node abandons the free-rider nodes and accepts the new node as its child. If there
is more than one child with score less than s, then the lowest score is selected. If
all the node’s children have a score higher than s, then as explained in the previous
section, the parent accepts the connection, if the connecting node has more money
than the lowest money of its existing children. When the parent accepts such a
connection, it then abandons the child with the lowest money. The abandoned
child then has to search for and bid for a new connection to a new parent.

Data dissemination. Each parent node periodically sends its buffer map and its
load to all its assigned children. The load shows the ratio of the number of blocks
that a node has forwarded to the number of its upload connections. A child node,
uses the information received from its parents to schedule and pull the required
blocks in different iteration. We define a sliding window that shows the number of
blocks that a child node can request in each iteration. If the playback point of a
node is t, and the sliding window size is n, the node can request the blocks from t
to t+ n in each iteration.

One important question in pulling blocks is the order of requests. There are
a number of studies [74, 75] on block selection policies. The main constraint in
data dissemination in live media streaming is that the blocks should be received
before their playback time. Therefore, a node should pull the missing block with
the closest playback time first, that is, blocks should be pulled in-order. Another
potential strategy, as used by BitTorrent [51], is to pull the rarest blocks in the
system, as this is known to increase aggregate network throughput [44].

We have designed a download policy that attempts to marry the benefits for
playback latency of in-order downloading with the improved network throughput of
rarest-block policy. We divide the sliding window into two sets: an in-order set and
a rare set. The first m blocks in the sliding window are the blocks in the in-order
set and the rest of the blocks of the sliding window are the rare set blocks. As the
names of these sets imply, blocks from the in-order set are requested in order and
the least popular block (from among the node’s partners) is chosen from the rare
set. A node selects a block from the in-order set with probability h% and from the
rare set with (100 − h)%, where h is a system parameter. If multiple parents can
provide a block, the child node chooses the parent that has the lowest load.

32 CHAPTER 3. P2P LIVE STREAMING

Figure 3.2: Different market-levels of a system, and the similar-view and fingers of p.

3.3.3 The Gradient overlay
The problem with a decentralized implementation of the auction algorithm is the
communication overhead in nodes discovering the node with the upload-slot of
highest net profit. The centralized auction algorithm assumes that the cost of com-
municating with all nodes is close to zero. In a decentralized system, however,
communicating with all nodes requires flooding, which is not scalable. An alter-
native approach to compute an approximate solution is to find good upload-slots
based on random walks or sampling from a random overlay. However, such solutions
typically have slow convergence time, as we show in Section 3.4.

It is important that nodes’ partial views enable them to find good matching par-
ents quickly. We use the Gradient overlay [7, 8] to provide nodes with a constantly
changing partial view of other nodes that have a similar number of upload-slots.
Thus, rather than have nodes explore the whole system for better parent nodes,
the Gradient enables nodes to limit exploration to the set of nodes with a similar
number of upload-slots.

The Gradient overlay is an overlay network that arranges nodes using a local
utility function at each node, such that nodes are ordered in descending utility
values away from a core of the highest utility nodes [7, 8]. The highest utility nodes
are found at the center of the Gradient topology, while nodes with decreasing utility
values are found at increasing distance from the center. The Gradient is built by
both gossiping and sampling from a random overlay network. Each node maintains
a set of neighbours called a similar-view containing a small number of nodes whose
utility values are close to, but slightly higher than, the utility value of the node.
Nodes periodically gossip to exchange and update their similar-views.

Node references stored in the similar-view contain the utility value for the neigh-
bours. In our systems, the utility value of a node is calculated using two factors: (i)
a node’s upload bandwidth, i.e., node’s money and (ii) a disjoint set of discrete util-
ity values that we call market-levels. A market-level is defined as a range of network
upload bandwidths. For example, in Figure 3.2, we define 5 example market-levels:

3.3. DISTRIBUTED SOLUTION 33

mobile broadband (64-127 Kbps) with utility value 1, slow DSL (128-511 Kbps)
with utility value 2, DSL (512-1023 Kbps) with utility value 3, fiber (>1024 Kbps)
with utility value 4, and the media source with utility value 5. A node measures
its upload bandwidth, e.g., using a server or trusted neighbour, and calculates its
utility value as the market-level that its upload bandwidth falls into. For instance,
a node with 256 Kbps upload bandwidth falls into slow DSL market-level, so its
utility value is 2. Nodes may also choose to contribute less upload bandwidth than
they have available, causing them to join a lower market-level.

A node prefers to fill its similar-view with nodes from the same market-level
or one level higher. A feature of this preference function is that low-bandwidth
nodes only have connections to one another. However, low bandwidth nodes often
do not have enough upload bandwidth to simultaneously deliver all stripes/blocks
in a stream. Therefore, in order to enable low bandwidth nodes to utilize the spare
upload-slots of higher bandwidth nodes, nodes maintain a finger list, where each
finger points to a node in a higher market-level (if one is available). We illustrate
the market-levels and fingers in Figure 3.2. Each ring represents a market-level, the
black links show the links within the similar-view and the gray links are the fingers
to nodes in higher market-levels.

In order for nodes to be able to explore to find new nodes with which to execute
our market model, a node constantly updates its neighbours within its market-level.
Algorithm 3 is executed periodically by a node p to maintain its similar-view using
its random-view. The random-view of a node is a random sample of the nodes in
the system, which is updated by a peer sampling service, e.g., Cyclon [63].

Algorithm 3 describes how on every round, p increments the age of all the nodes
in its similar-view. It removes the oldest node, q, from its similar-view and sends
a subset of nodes in its similar-view to q. Node q responds by sending back a
subset of its own similar-view to p. Node p then merges the view received from q
with its existing similar-view by iterating through the received list of nodes, and
preferentially selecting those nodes in the same market-level as p or at most one
level higher. If the similar-view is not full, it adds the node, and if a reference to
the node to be merged already exists in p’s similar-view, p just refreshes the age
of its reference. If the similar-view is full, p replaces one of the nodes it had sent
to q with the selected node. Moreover, p also merges its similar-view with its own
local random-view, in the same way described above. Upon merging, when the
similar-view is full, p replaces a node whose utility value is higher than p’s utility
value plus one.

The fingers to higher market-levels are also updated periodically. Node p goes
through its random-view, and for each higher market-level, picks a node from that
market-level if there exists such a node in the random-view. If there is not, p keeps
the old finger. Using the Gradient overlay as the market maker, the partners of a
node are chosen from the similar-view and finger-list. In other words, in Algorithm 1
(line 7), we should replace partners with (similarView ∪ fingers).

34 CHAPTER 3. P2P LIVE STREAMING

Algorithm 3 The Gradient overlay construction algorithm.
1: // Run by each node p in each gossiping round.
2: procedure Round 〈〉
3: this.similarV iew.updateAge()
4: q ← this.similarV iew.selectOldest()
5: this.similarV iew.remove(q)
6: pSubV iew ← this.similarV iew.subset() . a random subset from p’s similarV iew
7: Send ShuffleRequest(pSubV iew) to q
8: end procedure

9: // Handling the shuffle request.
10: upon event 〈ShuffleRequest | pSubV iew〉 from p
11: qSubV iew ← this.similarV iew.subset() . a random subset from q’s similarV iew
12: UpdateV iew(this.simialrV iew, this.randomV iew, qSubV iew, pSubV iew)
13: Send ShuffleResponse(qSubV iew) to p
14: end event

15: // Handling the shuffle response.
16: upon event 〈ShuffleResponse | qSubV iew〉 from q
17: UpdateV iew(this.simialrV iew, this.randomV iew, pSubV iew, qSubV iew)
18: end event

19: // Updating the view.
20: procedure UpdateView 〈simialrV iew, randomV iew, sentV iew, receivedV iew〉
21: for all nodei in receivedV iew do
22: if U(nodei) = U(this) or U(nodei) = U(this) + 1 then
23: if similarV iew.contains(nodei) then
24: similarV iew.updateAge(nodei)
25: else if similarV iew has free entries then
26: simialrV iew.add(nodei)
27: else
28: nodej ← sentV iew.poll() . get and remove one entry from sentV iew
29: similarV iew.remove(nodej)
30: simialrV iew.add(nodei)
31: end if
32: end if
33: end for
34: for all nodei in randomV iew do
35: if U(nodei) = U(this) or U(nodei) = U(this) + 1 then
36: if similarV iew has free entries then
37: simialrV iew.add(nodei)
38: else
39: nodej ← (nodek ∈ similarV iew such that U(nodek) > U(this) + 1)
40: end if
41: if (nodej 6= null) then
42: similarV iew.remove(nodej)
43: simialrV iew.add(nodei)
44: end if
45: end if
46: end for
47: end procedure

3.4. EXPERIMENTS 35

3.4 Experiments

In this section, we compare the performance of Sepidar and Glive with the state-of-the-
art NewCoolstreaming [24] under simulation.

3.4.1 Experimental setup

We have used Kompics [76, 77] to implement Sepidar, Glive and NewCoolstreaming.
Kompics is a framework for building P2P protocols and it provides a discrete event simu-
lator for simulating them using different bandwidth, latency and churn models. We have
implemented NewCoolstreaming based on the system descriptions from [24].

In our experimental setup, we set the streaming rate to 512Kbps, which is divided into
blocks of 16Kb. Nodes start playing the media after buffering it for 15 seconds, which
compares favorably to the 60 seconds of buffering used by state-of-the-art (proprietary)
SopCast [78]. The size of similar-view in Sepidar and Glive and the partner list in
NewCoolstreaming is 15 nodes. We assume all the nodes have enough download bandwidth
to receive the stream with a full rate, and also all the nodes have the same number of
download-slots, which is set to 8. To model upload bandwidth, we assume that each
upload-slot has available bandwidth of 64Kbps and that the number of upload-slots for
nodes is set to 2i, where i is picked uniformly at random from the range 1 to 10. This
means that nodes have upload bandwidth between 128Kbps and 1.25Mbps. As the average
upload bandwidth of 640Kbps is not much higher than the streaming rate of 512Kbps,
nodes have to find good matches as parents in order for good streaming performance.
The media source is a single node with 40 upload-slots, providing five times the upload
bandwidth of the stream rate. This setting is based on SopCast’s requirement that the
media source has at least five times the upload capacity of the stream rate [78].

In our simulations, we assume 11 market-levels, such that the nodes with the the same
number of upload-slots are located at the same market-level. For example, nodes with
two upload-slots (128Kbps) are the members of the first market-level, nodes with four
upload-slots (256Kbps) are located in the second market-level, and the media source with
40 upload-slots (2.5Mbps) is the only member of the 11th market-level. Latencies between
nodes are modeled using a latency map based on the King data-set [68]. We use the hop
count in our experiments to measure the cost function.

In the mesh-based solution, we assume the size of sliding window for downloading is
32 blocks, such that the first 16 blocks are considered as the in-order set and the next 16
blocks are the blocks in the rare set. A block is chosen for download from the in-order
set with 90% probability, and from the rare set with 10% probability. In Sepidar, we set
N = 2 and M = 50% for the free-rider detector component, and in Glive, we set the
threshold of the score, s, to zero.

In this experiment, we measure playback continuity and playback latency, which com-
bined together reflect the QoS experienced by the overlay nodes. The playback continuity
show the percentage of blocks that a node received before their playback time. We consider
two metrics related to playback continuity: where nodes have a playback continuity of (i)
greater than 90% and (ii) greater than 99%. The playback latency shows the difference in
seconds between the playback point (the playback time) of a node and the playback point
at the media source.

36 CHAPTER 3. P2P LIVE STREAMING

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500
 0

 200

 400

 600

 800

 1000

 1200

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

N
u
m

b
e
r

o
f
N

o
d
e
s

Time (s)

glive 90%
sepidar 90%

newcoolstream 90%
glive 99%

sepidar 99%
newcoolstream 99%

number of nodes

(a) Flash crowd.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500
 0

 200

 400

 600

 800

 1000

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

N
u
m

b
e
r

o
f
N

o
d
e
s

Time (s)

glive 90%
sepidar 90%

newcoolstream 90%
glive 99%

sepidar 99%
newcoolstream 99%

number of nodes

(b) Catastrophic failure.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

 460

 480

 500

 520

 540
P

e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

N
u
m

b
e
r

o
f
n
o
d
e
s

Time (s)

glive 90%
sepidar 90%

newcoolstream 90%
glive 99%

sepidar 99%
newcoolstream 99%

number of nodes

(c) Churn.

Figure 3.3: Playback continuity of the systems in different scenarios.

3.4.2 System performance evaluation

In this section, we compare the playback continuity and playback latency of Sepidar,
Glive and NewCoolstreaming in the three scenarios: flash crowd, catastrophic failure, and
churn: (i) in the flash crowd, first, 100 nodes join the system following a Poisson distribu-
tion with an average inter-arrival time of 100 milliseconds. Then, 1000 nodes join following
the same distribution with a shortened average inter-arrival time of 10 milliseconds, (ii) in
the catastrophic failure 1000 nodes join the system following a Poisson distribution with
an average inter-arrival time of 100 milliseconds. Then, 500 existing nodes fail following
a Poisson distribution with an average inter-arrival time 10 milliseconds, and (iii) in the
churn scenario 500 nodes join the system following a Poisson distribution with an average
inter-arrival time of 100 milliseconds, and then till the end of the simulations nodes join
and fail continuously following the same distribution with an average inter-arrival time of
1000 milliseconds.

Figure 3.3 shows the percentage of the nodes that have playback continuity of at least
90% and 99%. We see that all the nodes in Glive receive at least 90% of all the blocks
very quickly in all scenarios, while it takes more time in Sepidar. That is because in
Sepidar, in the beginning, nodes spend time constructing the trees, while in Glive the
nodes pull blocks quickly as soon as at least one of their download-slots is assigned. As
we see in Figure 3.3, both Glive and Sepidar outperform NewCoolstreaming in playback

3.4. EXPERIMENTS 37

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500
 0

 200

 400

 600

 800

 1000

 1200

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

N
u
m

b
e
r

o
f
N

o
d
e
s

Time (s)

glive
sepidar

newcoolstream
number of nodes

(a) Flash crowd.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500
 0

 200

 400

 600

 800

 1000

P
la

y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

N
u
m

b
e
r

o
f
N

o
d
e
s

Time (s)

glive
sepidar

newcoolstream
number of nodes

(b) Catastrophic failure.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

 460

 480

 500

 520

 540
P

la
y
b
a
c
k
 L

a
te

n
c
y
 (

S
e
c
o
n
d
s
)

N
u
m

b
e
r

o
f
n
o
d
e
s

Time (s)

glive
sepidar

newcoolstream
number of nodes

(c) Churn.

Figure 3.4: Playback latency of the systems in different scenarios.

continuity for the whole duration of the experiment in all scenarios. Glive and Sepidar
use the Gradient overlay for node discovery. The Gradient overlay arranges nodes based
on their number upload bandwidth capacity, and so the neighbours of a node are those
with the same upload bandwidth capacity, or slightly higher. This helps the high capacity
nodes to quickly discover the media source. In contrast, NewCoolstreaming uses a random
overlay, and it takes more time for nodes to find appropriate parents. The result is a
higher number of changes in parent connections, causing lower playback continuity in
NewCoolstreaming compared to Glive and Sepidar.

As we see in Figure 3.3, the difference between Glive and Sepidar increases, when we
measured the percentage of the nodes that receive 99% of the blocks in time. Again, the
tree structure used in Sepidar causes this difference. Although, Sepidar has a multiple-
tree structure, which is resilient to the failures, it has a lower playback continuity than
Glive when nodes crash. In a multiple-tree structure, a node typically receives the blocks
of each stripe independently, but if a parent providing a stripe fails, then it loses the
blocks from that stripe, while the node is trying to find a new parent for that stripe.
However, this problem does not apply to the mesh overlay, because the nodes pull the
blocks independently of each other. Therefore, if a node loses one of its parents, it can
pull the required blocks from other parents.

Figure 3.4 shows the playback latency of the systems in different scenarios. As we can
see, Glive keeps its playback latency relatively constant, close to 15 seconds, which is

38 CHAPTER 3. P2P LIVE STREAMING

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

Time (s)

glive (all nodes)
glive (strong nodes)

glive (weak nodes & freeriders)
sepidar (all nodes)

sepidar (strong nodes)
sepidar (weak nodes & freeriders)

(a) Playback continuity in the free-rider scenario.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500

T
o
ta

l
N

u
m

.
o
f
S

u
s
p
e
c
te

d
 F

re
e
ri
d
e
rs

Time (s)

N=1, suspected
N=1, correct detected

N=2, suspected
N=2, correct detected

N=3, suspected
N=3, correct detected

N=4, suspected
N=4, correct detected

(b) Sepidar freerider detection settings.

Figure 3.5: The systems behaviour in the existence of freeriders.

the initial buffering time. The playback latency of Sepidar also converges to 15 seconds,
but it takes longer to converge than Glive. The reason for this delay is, again, the time
needed to construct the trees. The playback latency of Glive and Sepidar, are both less
than NewCoolstreaming. In NewCoolstreaming, the higher playback latency is a result
of nodes only reactively changing parents when their playback latency is greater than a
predefined threshold.

3.4.3 Free-rider detection evaluation
Here, we compare the playback continuity of Glive and Sepidar in the free-rider sce-
nario. In this scenario, 1000 nodes join the system following a Poisson distribution with
an average inter-arrival time of 100 milliseconds, such that 30% of the nodes are free-
riders, and the total number of upload-slots in the system is less than the total number of
download-slots, i.e., |U| < |D|. The free-riders can be found in any market-level. Figure
3.5a shows the percentage of the nodes that receive 99% of the blocks before their playback
time. It shows this value for all the nodes in the system, including the strong nodes (top
10% of upload bandwidth nodes), and the free-riders and the weak nodes (the bottom 10%
of upload bandwidth nodes).

Figure 3.5a shows that all the strong nodes in both systems receive all the blocks in
time, however, Glive converges faster than Sepidar. In Glive, we are using the scoring
mechanism to find the nodes who contribute less bandwidth than they claim when bidding
for connections, while Sepidar uses a free-rider detector module that identifies nodes that
do not meet their contractual requirement to forward the stream to their child nodes. In
Glive, in the beginning, a high percentage of weak nodes and free-riders receive all the
blocks in time, which shows that free-riders have not been detected yet. That is because
nodes need time to update and validate the scores of their parents, and, thus, identify free-
riders. Meanwhile, the free-riders use the resources of the system. However, after enough
time has passed and the nodes’ scores have been updated, the free-riders are detected.
Thus, after about 100 seconds the percentage of the free-riders who have a high playback
continuity decreases.

As Figure 3.5a shows, after about 600 seconds from the beginning of the experiment, in
both Glive and Sepidar the free-riders and weak nodes receive roughly the same quality

3.4. EXPERIMENTS 39

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

Time (s)

gradient overlay
random overlay

(a) 99% of playback continuity of Glive.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500

N
u

m
.

o
f

P
a

re
n

t
S

w
it
c
h

in
g

s

Time (s)

gradient overlay
random overlay

(b) Number of parent switches in Sepidar.

Figure 3.6: The systems behaviour in the Gradient overlay and random overlay.
of stream, that is, they have the same percentage of playback continuity. As the playback
continuity of the weak nodes and free-riders keeps decreasing in Glive, we can also see
that the playback continuity decreases for all nodes in Glive. After 500 seconds, playback
continuity even decreases below Sepidar.

Importantly, as we can see in Figure 3.5a, the existing free-riders in the system have
a very low effect on the playback continuity of the strong nodes in Sepidar and Glive.
Strong nodes have consistently higher playback continuity than weak nodes and free-riders.
This is due to the fact that weak nodes have a lower amount of money compared to strong
nodes, which makes them take longer to find good parents. Also, the punishment of free-
riders negatively affects their playback continuity. As such, nodes are strongly incentivized
to contribute more upload bandwidth through receiving improved relative performance.

Figure 3.5b shows the CDF of the total number of detected free-riders, and the number
of nodes that are correctly detected as a free-rider in Sepidar for different settings. As
we see, with smaller N , the fraction of nodes that are correctly detected as free-riders
decreases. There is a trade-off between accuracy and the speed of the detection. Smaller
N gives us faster detection but with less accuracy. In this experiment we assumeM = 50%.

3.4.4 Neighbour selection evaluation
In this experiment, we compare the convergence speed of our market model for the Gra-
dient overlay and random overlays. We use the churn scenario in this experiment, as this
is the most typical environment for P2P streaming systems on the Internet. Our market
model is run using (i) samples taken from the Gradient overlay, where the sampled nodes
have similar number of upload-slots, and (ii) samples taken from a random network, where
the sampled nodes have random number of upload-slots.

As nodes in the Gradient overlay receive bids from a set of nodes with almost the
same money, the difference between received bids is less than the expected difference for
the random network. Figure 3.6a shows that in Glive in the case of using the Gradient
overlay, more nodes can quickly receive high playback continuity. As such, the Gradient
overlay can be said to be a more efficient market maker for our distributed market model
than a random overlay. Figure 3.6b shows the CDF of number of parent switches in
Sepidar for both overlays against time, and we can see that in the Gradient overlay, the
system has a substantially lower number of parent switches.

Chapter 4

Cloud-Assisted P2P Live
Streaming

One of the main challenges in P2P live streaming is to provide a good quality of service
(QoS) in spite of the dynamic behavior of the network. For live streaming, QoS

means high playback continuity and low playback latency. There is a trade-off between
these two properties: it is possible to increase the playback continuity by adopting larger
stream buffers, but at the expense of delay. On the other hand, improving playback
latency requires that no bottlenecks are present in either the upload bandwidth of the
media source and the aggregated upload bandwidth of all nodes in the swarm, i.e., the
nodes forming the P2P streaming overlay [79, 80].

Increasing the bandwidth at the media source is not always an option, and even when
possible, bottlenecks in the swarm have proven to be much more disruptive [79]. An
interesting approach to solve this issue is the addition of auxiliary helpers to accelerate
the content propagation. A helper could be an active computational node that participates
in the streaming protocol, or it could be a passive service, e.g., a storage node, that just
provides content on demand. The helpers increase the total upload bandwidth available in
the system, thus, potentially reduce the playback latency. Both types of helpers could be
rented on demand from an IaaS (Infrastructure as a Service) cloud provider, e.g., Amazon
AWS. Considering the capacity and the cost of helpers, the problem consists in selecting
the right type of helpers (passive or active), and provisioning their number with respect to
the dynamic behavior of the users. If too few helpers are present, it could be impossible
to achieve the desired level of QoS. On the other hand, renting helpers is costly, and their
number should be minimized.

The P2P-cloud hybrid approach, termed cloud-assisted P2P computing, has already
been pursued by a number of P2P content distribution systems. For example, Angel-
cast [80, 81] is a system that dynamically places active helpers in the swarm to optimize
data delivery, where the servers cache and forward content to other nodes, and Cloud-
cast [82] employs a single passive helper and enforces strict limits on the number of (costly)
interactions with it that originate from nodes. In addition to these solutions, CloudMe-
dia [83] is another system that predicts the dynamic demands of the users of a P2P video
on demand (VoD) system and provides elastic amounts of computing and bandwidth re-
sources on fly with a minimum cost, and finally [84] presents a cloud-assisted system

41

42 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

architecture for P2P media streaming among mobile nodes to minimize energy consump-
tion. However, adapting the cloud-assisted approach to P2P live streaming is still an open
issue. Live streaming differs from the content distribution for its soft real-time constraints
and a higher dynamism in the network, as the users may be zapping between several
channels and start or stop to watch a video at anytime [85, 86].

In this chapter, we present Clive [87], a novel cloud-assisted P2P live streaming
system that guarantees a predefined QoS level by dynamically renting helpers from a cloud
infrastructure. We model our problem as an optimization problem, where the constraints
are given by the desired QoS level, while the objective function is to minimize the total
economic cost incurred in renting resources from the cloud. We provide an approximate,
on-line solution that is (i) adaptive to dynamic networks and (ii) decentralized.

Clive extends existing mesh-pull P2P overlay networks for video streaming [3, 25, 34],
in which each node in the swarm periodically sends its data availability to other nodes,
which in turn pulls the required chunks of video from the neighbors that have them. The
swarm is paired with a Clive manager (CM), which participates with other nodes in a
gossip-based aggregation protocol [57, 88] to find out the current state of the swarm. Using
the collected information in the aggregation protocol, the CM computes the number of
active helpers required to guarantee the desired QoS. Clive includes also a passive helper,
whose task is to provide a last resort for nodes that have not been able to obtain their
video chunks through the swarm.

A delicate balance between the amount of video chunks obtained from the passive
helper and the number of active helpers in the system must be found. Either approaches
are associated with an economical cost that depends on (i) the running time for active
helpers, (ii) the storage space and number of data requests for passive helpers, and (iii)
the consumed bandwidth for both.

4.1 Problem description

We consider a network consisting of a dynamic collection of nodes that communicate
through message exchanges. Nodes could be peers, i.e., edge computers belonging to
users watching the video stream, helpers, i.e., computational and storage resources rented
from an IaaS cloud, and the media source that generates the video stream and starts its
dissemination towards peers.

Each peer is uniquely identified by an ID, e.g., composed by an IP address and a port,
required to communicate with it. We use the term swarm to refer to the collection of all
peers. The swarm forms an overlay network, meaning that each peer connects to a subset
of nodes in the swarm (called neighbours). The swarm is highly dynamic: new peers may
join at any time, and existing peers may voluntarily leave or crash. Byzantine behavior is
not considered in this work.

There are two types of helpers: (i) an active helper (AH), which is an autonomous
virtual machine composed of one or more computing cores, volatile memory and permanent
storage, e.g., Amazon EC2, and (ii) a passive helper (PH), which is a simple storage service
that can be used to store (PUT) and retrieve (GET) arbitrary pieces of data, e.g., Amazon
S3. We assume that customers of the cloud service are required to pay for computing time
and bandwidth in the case of AHs, and for storage space, bandwidth and the number
of PUT/GET requests in the case of PHs. This model follows the Amazon’s pricing
model [89, 90].

4.2. SYSTEM ARCHITECTURE 43

We assume the source generates a constant-rate bitstream and divides it into a number
of blocks. A block b is uniquely identified by the real time t(b) at which it is generated. The
generation time is used to play blocks in the correct order, as they can be retrieved in any
order, independently from previous blocks that may or may not have been downloaded.
Peers, helpers and the source are characterized by different bounds on the amount of
available download and upload bandwidth. A peer can create a bounded number of
download connections and accept a bounded number of upload connections over which
blocks are downloaded and uploaded. We define the number of download-slots and upload-
slots of a peer p as its number of download and upload connections, respectively.

Thanks to the replication strategies between different data centers currently employed
in clouds [91], we assume that the PH has an unbounded number of upload-slots and can
serve as many requests as it receives. Preliminary experiments using PlanetLab and Ama-
zon Cloudfront show that this assumption holds in practice, as adding as many clients
as possible has not saturated the upload bandwidth. We assume that peers are approxi-
mately synchronized; this is a reasonable assumption, given that some cloud services, like
Amazon AWS, are already synchronized and sometimes require the client machines to be
synchronized as well.

The goal of Clive peers is to play the video with predefined playback latency, i.e., the
time between the generation of the video and its visualization at the peer, and playback
continuity, i.e., the percentage of blocks that are correctly streamed to users. To reach this
goal, Clive is allowed to rent a PH and/or AHs from the cloud. Deciding about which and
how much resources to rent from the cloud can be modeled as an optimization problem,
where the objective function is to minimize the economic cost and the constraints are the
following:

1. the maximum playback latency should be less than or equal to Tdelay, meaning that
if a block b is generated at time t(b) at the source, no peers will show it after time
t(b) + Tdelay;

2. the maximum percentage of missing blocks should be less than or equal to Ploss.
Note that different formulations of this problem are possible, such as fixing a limit on

the amount of money to be spent and trying to maximize the playback continuity. We
believe, however, that a company, willing to stream its videos, should not compromise
on the users’ experience, but rather exploit peers whenever possible and fall back to the
cloud when peers are not sufficient.

4.2 System architecture

The basic elements forming Clive have been already introduced: (i) the media source,
(ii) a swarm of peers, (iii) a single passive helper (PH), and (iv) a number of active helpers
(AH). Aim of this section is to discuss how a such diverse collection can be organized and
managed. We present two architectural models, illustrated in Figures 4.1a and 4.1b. The
baseline model (Figure 4.1a) can be described as a P2P streaming protocol, where peers
revert to the PH whenever a block cannot be retrieved from other peers. The enhanced
model (Figure 4.1b) builds upon the baseline, by considering AHs and by providing a
distributed mechanism to provision their number and appropriately organizing them.

In the rest of the section, we first discuss the baseline model, introducing the underlying
P2P video streaming protocol and showing how it can be modified to exploit a PH. Then,

44 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

(a) The baseline model. (b) The enhanced model.

Figure 4.1: Clive architecture.

we add the AHs into the picture and illustrate the diverse architectural options available
when including them.

4.2.1 The baseline model
The baseline model can be seen as a P2P streaming service associated with a media server.
We introduce this model as a baseline for comparison and validation of our enhanced ar-
chitectural model. Note that the idea of augmenting a P2P video streaming application by
renting cloud resources is general enough to be applied to several existing video stream-
ing applications. We adopt a mesh-pull approach for data dissemination [12], meaning
that peers are organized in an unstructured overlay and explicitly ask the missing blocks
from their neighbors. Peers discover each other using a gossip-based peer-sampling ser-
vice [9, 10, 62, 63]; then, the random partial views created by this service can be used by
any of the existing algorithms to build the streaming overlay [3, 24, 28, 35].

In this model, neighboring peers exchange their data availability with each other, and
the peers use this information to schedule and pull the required blocks. There are a
number of studies [74, 75] on block selection policies, but here we use the in-order policy,
as in Coolstreaming [25], where peers pull the missing blocks with the closest playback
time first. The baseline model builds upon this P2P video streaming protocol by adding
a PH (Figure 4.1a). The source, apart from pushing newly created video blocks to the
swarm, temporary stores them on the PH. In order to guarantee a given level of QoS,
each peer is required to have a predefined amount of blocks buffered ahead of its playback
time, called last chance window (LCW), corresponding to a time interval of length Tlcw. If
a given block has not been obtained from the swarm Tlcw time units before the playback
time, it is retrieved directly from the PH.

4.2.2 The enhanced model
If the P2P substrate does not suffice, the baseline model represents the easiest solution,
but as our experiments will show, this solution could be too expensive, as an excessive
number of blocks could end up being retrieved directly from the PH. However, even if the
aggregate bandwidth of the swarm may be theoretically sufficient to serve all blocks to all
peers, the soft real-time constraints on playback latency may prevent to exploit entirely
such bandwidth. No peer must lag behind beyond a specified threshold, meaning that
after a given time, blocks will not be disseminated any more. We need to increase the

4.3. SYSTEM MANAGEMENT 45

amount of peers that receive blocks in time, and this could be done by increasing the
amount of peers that are served as early as possible. The enhanced model pursues this
goal by adding a number of AHs to the swarm (Figure 4.1b).

AHs receive blocks from the source or from other AHs, and push them to other AHs
and/or to peers in the swarm. To discover such peers, AHs join the peer sampling protocol
and obtain a partial view of the whole system. To do so, we use a modified version of
Cyclon [63], such that peers exchange their number of upload-slots along with their ID.
AH chooses a subset of peers, called root peers (Figure 4.1b), from their partial view and
establish a connection to them, pushing blocks as soon as they become available. Root
peers of an AH are not changed over time, unless they fail or leave the system, or AH
finds a peer with more upload-slots than the existing root peers. A peer accepts to be a
root peer only for one AH, to avoid to receive multiple copies of the same block.

The net effect is an increase in the number of peers that receive the video stream early
in time. The root peers also participate in the P2P streaming protocol, serving a number
of peers directly or indirectly. PH still exists in the enhanced model to provide blocks
upon demand, but it will be used less frequently compared to the baseline model.

Architecturally speaking, an important issue is how to organize multiple AHs and how
to feed blocks to them. There are two possible models: (i) flat, where the AHs receive all
their blocks directly from the source and then push them to peers in the swarm, acting just
as bandwidth multipliers for the source, and (ii) hierarchical, where the AHs are organized
in a tree with one AH at the root; the source pushes blocks to the root, which pushes
them through the tree.

The advantage of the flat model is that few intermediary nodes cause a limited delay
between the source and the peers. However, the source bandwidth could end up being
entirely consumed to feed the AHs; and more importantly, any communication to the
cloud is billed, including the multiple ones from the source to the AHs. We, thus, decided
to adopt the hierarchical model, also considering that communication inside the cloud is
extremely fast, given the use of gigabit connections, and also free of charge [92].

4.3 System management

One important question in the enhanced model is: how many AHs to add? Finding the
right balance is difficult; too many AHs may reduce the PH load, but cost too much,
given that they are billed hourly and not only per bandwidth. Too few AHs also increases
the PH load, and as we show in the experiments, increases the cost. The correct balance
dynamically depends on the current number of peers in the swarm, and their upload
bandwidth.

The decision on the number of AHs to include in the system is taken by the Clive
manager (CM), a unit that is responsible for monitoring the state of the system and
organizing the AHs. By participating in a decentralized aggregation protocol [57], the
CM obtains information about the number of peers in the system and the distribution of
upload-slots among them. Based on this information, CM computes the number of AHs
that have to be active to minimize the economic cost. Then, depending on the current
number of AHs, new AHs may be booted or existing AHs may be shutdown. The CM
role can be played either directly by the source, or by one AH.

The theoretical number of AHs that minimize the cost is not so straightforward to
compute, because no peer has a global view of the system and its dynamics, e.g., which

46 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

peers are connected and how many upload-slots each peer has. Instead, we describe a
heuristic solution, where each peer runs a small collection of gossip-based protocols, with
the goal of obtaining approximate aggregate information about the system. CM joins
these gossip protocols as well, and collects the aggregated results. It exploits the collected
information to estimate a lower bound on the number of peers that can receive a block
either directly or indirectly from AHs and the source, but not from PH. We call this set
of peers as infected peers. CM, then, uses this information to detect whether the current
number of AHs is adequate to the current size of the swarm, or if correcting actions are
needed by adding/removing AHs.

In the rest of this section, we first explain how CM estimates the swarm size and the
upload-slot distribution, and then we show how it calculates the number of infected peers
using the collected information. We also present how CM manages the number of AHs,
based on the swarm size and the number of infected peers, and finally we discuss about
the impact of Tlcw on the system performance and the total cost.

4.3.1 The swarm size and upload slot distribution estimation
All peers in the system, including CM participate in the aggregate computation in Algo-
rithm 4. The procedure Round is called periodically by all peers, as well as CM to estimate
(i) the current size of the swarm, and (ii) the probability density function of upload-slots
available at peers in the swarm.

The size of the current swarm, Nswarm , is computed, with high precision, through the
aggregation protocol [57]. Nevertheless, knowing the number of upload-slots of all peers
is infeasible, due to the large scale of the system and its dynamism. However, we can
obtain a reasonable approximation of the probability density function of the number of
upload-slots available at all peers.

Assume ω is the actual upload slot distribution among all peers. We adopt Adam2 [93]
idea to compute Pω : N → R, an estimate probability density function of ω. Pω(i), then,
represents the proportion of peers that have i upload slots w.r.t. the total number of peers,
so that

∑
i
Pω(i) = 1. Adam2 is a gossip-based algorithm that provides an estimation of

the cumulative distribution function of a given attribute across all peers.
For our algorithm to work, we assume that each peer is able to estimate its own number

of upload-slots, and the extreme values of such distribution are known to all and static.
Otherwise, a simple mechanism proposed by Haridasan and van Renesse [94] can adjust
the set of entries for the case where the extreme values of a variable are unknown. The
maximum value is shown by maxSlot in Algorithm 4.

Our solution, summarized in Algorithm 4, is based on the gossip paradigm: execution
is organized in periodic rounds, performed at roughly the same rate by all peers, during
which a push-pull gossip exchange is executed [11]. During a round, each peer p sends a
ShuffleRequest message to a peer q, and waits for the corresponding ShuffleResponse
message from q. Information contained in the exchanged messages are used to update the
local knowledge about the entire system, which is composed by the following information:

• a partial view, or view for short, of the network that represents a small subset of the
entire population of peers,

• a slot vector (SV), which is used to obtain an approximate and up-to-date informa-
tion about the attribute distribution,

• a local value (LV), which is used by peers to estimate the network size.

4.3. SYSTEM MANAGEMENT 47

Algorithm 4 Estimating the swarm size and upload slot distribution
1: procedure Init 〈〉
2: maxSlot← the maximum value of slots in system
3: for i← 0 to maxSlot do
4: if i = this.slots then
5: this.SV [i]← 1
6: else
7: this.SV [i]← 0
8: end if
9: end for

10: if this = CM then
11: this.LV ← 1
12: else
13: this.LV ← 0
14: end if
15: end procedure

16: // Run by each peer p in each gossiping round.
17: procedure Round 〈〉
18: this.view.updateage()
19: q ← this.view.selectOldest()
20: this.view.remove(q)
21: pSubV iew ← this.view.subset()
22: pSubV iew.add(this)
23: Send ShuffleRequest(pSubV iew, this.SV, this.LV, this.Tlcw) to q
24: end procedure

25: // Handling the shuffle request.
26: upon event 〈shufflerequest | pSubV iew, pSV, pLV, pTlcw〉 from p
27: qSubV iew ← this.view.subset()
28: Send ShuffleResponse(qSubV iew, this.SV, this.LV, this.Tlcw) to p
29: for i← 0 to maxSlot do
30: this.SV [i]← this.SV [i]+pSV [i]

2
31: end for
32: this.LV ← this.LV+pLV

2
33: this.Tlcw ←

this.Tlcw +pTlcw
2

34: UpdateV iew(this.view, qSubV iew, pSubV iew)
35: end event

36: // Handling the shuffle response.
37: upon event 〈shuffleresponse | qSubV iew, qSV, qLV, qTlcw〉 from q
38: for i← 0 to maxSlot do
39: this.SV [i]← this.SV [i]+qSV [i]

2
40: end for
41: this.LV ← this.LV+qLV

2
42: this.Tlcw ←

this.Tlcw +qTlcw
2

43: UpdateV iew(this.view, pSubV iew, qSubV iew)
44: end event

45: // Updating the view.
46: procedure UpdateView 〈view, sentV iew, receivedV iew〉
47: for all nodei in receivedV iew do
48: if view.contains(nodei) then
49: view.updateAge(nodei)
50: else if view has free space then
51: view.add(nodei)
52: else
53: nodej ← sentV iew.poll()
54: view.remove(nodej)
55: view.add(nodei)
56: end if
57: end for
58: end procedure

48 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

Partial views are needed to maintain a connected, random overlay topology over the
population of all peers to allow the exchange of information. We manage the views through
the Cyclon peer sampling service [63]. Each view contains a fixed number of descriptors,
composed by a peer ID and a timestamps. During each round, a peer p identifies the node
q with the oldest descriptor in its view, based on the timestamps through selectOldest in
Algorithm 4. The corresponding descriptor is removed, and a subset of p’s view is extracted
through procedure randomSubset. This subset is sent to q through a ShuffleRequest
message. The peer that receives the ShuffleRequest responses with a ShuffleResponse
message, that similarly contain a number of descriptors randomly selected from the local
view.

Whenever peer p receives a view from q, it merges its own view with the q’view through
procedure UpdateView. Peer p iterates through the received view, and adds the descriptors
to its own view. If its view is not full, it adds the peer, and if a peer descriptor to be merged
already exists in p’s view, p updates its age, if it is newer. If p’s view is full, p replaces
one of the peers it had sent to q with the peer in received list. The poll method returns
and removes the last peer from the list. The net effect of this process is the continuous
shuffling of views, removing old descriptors belonging to crashed peers and epidemically
disseminating new descriptors generated by active ones. The resulting overlay network,
where the neighbors of a peer are the peers included in the partial view, closely resembles
a random graph, characterized by extreme robustness and small diameter [63].

LV is a local float value at peers and CM. Initially, it equals zero in all peers, and
equals one in CM. In addition to LV, each peer also maintains SV, which is a vector with
maxSlot+1 entries, such that the index of each entry shows the number of slots, i.e., from
0 to maxSlot. Initially, all entries of SV at peer p are set to zero, except the entry that
equals the number of p’s slots, which is set to one. For example, if maxSlot = 5 and the
number of p’s slots is 2, then the SV of p would be [0, 0, 1, 0, 0, 0].

In each shuffle request, peer p sends its LV and SV, along with its view. When q
receives a ShuffleRequest message from p, it replies with a message containing a subset
of its views, SV, and LV. Peer q, then, goes through the received SV and updates its
own SV entries to the average of the values for each entry in both SVs, i.e., q.SV [i] ←
(q.SV [i] + p.SV [i])/2. Peer q also updates its LV to (q.LV + p.LV)/2. Likewise, peer p
updates its SV and LV, when it receives ShuffleResponse from q. After a few exchanges,
all peers and CM find the distribution of slots in their own SV, such that entry i in the
SV shows the probability of peers with i slots. They also compute the swarm size locally
as:

Nswarm = 1/LV (4.1)

4.3.2 The number of infected peers estimation
The number of peers that can receive a block from either the swarm, the source or one of
the AHs is bounded by the time available to the dissemination process. This time depends
on a collection of system and application parameters:

• Tdelay: No more than Tdelay time units must pass between the generation of a block
at the source and its playback at any of the peers.

• Tlatency: The maximum time needed for a newly generated block to reach the root
peers, i.e., the peers directly receive blocks from AHs or the source, is equal to
Tlatency. While this value may depend on whether a particular root peer is connected

4.3. SYSTEM MANAGEMENT 49

Figure 4.2: Live streaming time model.

to the source or to an AH, we consider it as an upper bound and we assume that
the latency added by AHs is negligible.

• Tlcw: If a block is not available at a peer Tlcw time units before its playback time,
it will be retrieved from the PH.

Therefore, a block b generated at time t(b) at the source must be played at peers no
later than t(b) + Tdelay, otherwise the QoS contract will be violated. Moreover, the block
b becomes available at a root peer at time t(b) + Tlatency, and it should be available in the
local buffer of any peer in the swarm by time t(b) + Tdelay − Tlcw, otherwise the block will
be downloaded from the PH (Figure 4.2). This means that the lifetime Tlife of a block
from the root peer on is equal to:

Tlife = (Tdelay − Tlatency)− Tlcw (4.2)

Whenever a root peer r receives a block b for the first time, it starts disseminating it
in the swarm. Biskupski et al. in [73] show that a block disseminated by a pull mechanism
through a mesh overlay follows a tree-based diffusion pattern. We define the diffusion tree
DT (r, b) rooted at a root peer r of a block b as the set of peers, such that a peer q belongs
to DT (r, b) if it has received b from a peer p ∈ DT (r, b).

Learning the exact diffusion tree for all blocks is difficult, because this would imply a
global knowledge of the overlay network and its dynamics, and each block may follow a
different tree. Fortunately, such precise knowledge is not needed. What we would like to
know is an estimate of the number of peers that can be theoretically reached through the
source or the current population of AHs.

The block generation execution is divided into rounds of length Tround . A block up-
loaded at round i becomes available for upload to other peers at round i + 1. The
maximum depth, depth, of any diffusion tree of a block over its Tlife is computed as:
depth = bTlife/Troundc. We assume that Tround is bigger than the average latency among
the peers in the swarm. Given depth and the probability density function Pω, we define
the procedure size(Pω, depth) that executes locally at CM and provides an estimate of
the number of peers of a single diffusion tree (Algorithm 5). This algorithm emulates a
large number of diffusion trees, based on the probability density function Pω, and returns
the smallest value obtained in this way.

Emulation of a diffusion tree is obtained by the recursive procedure recSize(Pω, depth).
In this procedure, variable n is initialized to 1, meaning that this peer belongs to the tree.
If the depth of the tree is larger than 0, another round of dissemination can be completed.
The number of upload-slots is drawn randomly by function random from the probability
density function Pω. Variable n is then increased by adding the number of peers that can
be reached by recursive call to recSize, where the depth is decremented by 1 at each step
before the next recursion.

50 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

Algorithm 5 Lower bound for the diffusion tree size.
1: procedure size 〈Pω, depth〉
2: min← +∞
3: for i = 1 to k do
4: min ← min(min, recSize(Pω, depth))
5: end for
6: return min
7: end procedure

8: procedure recSize 〈Pω, depth〉
9: n← 1

10: if depth > 0 then
11: slots← random(Pω)
12: for i = 1 to slots do
13: n← recSize(Pω, depth − 1)
14: end for
15: end if
16: return n
17: end procedure

At this point, the expected number of infected peers, i.e., the total peers that can
receive a block directly or indirectly from AHs and the source, but not from PH, Nexp, is
given by the total number of root peers times the estimated diffusion tree size, Ntree =
size(Pω, depth). The number of root peers is calculated by the sum of the upload slots
at the source, shown by Up(s), and AHs, Up(h), minus the number of slots used to push
blocks to the AHs themselves, as well as to the PH, which is equal to the number of AHs
plus one. Formally,

Nexp =

(
Up(s) +

∑
h∈AH

Up(h)− (|AH|+ 1)

)
·Ntree (4.3)

where AH is the set of all AHs.

4.3.3 The management model
We define the cost Cah of one AH in one round (Tround) as the following:

Cah = Cvm +m · Cblock (4.4)

where Cvm is the cost of running one AH (virtual machine) in a round, Cblock is the cost
of transferring one block from an AH to a peer, and m in the number of blocks that one
AH uploads per round. Since we utilize all the available upload slots of an AH, we can
assume that m = Up(h). Similarly, the cost Cph of pulling blocks from PH per round is:

Cph = Cstorage + r · (Cblock + Creq) (4.5)

where Cstorage is the storage cost, Creq is the cost of retrieving (GET) one block from PH
and r is the number of blocks retrieved from PH per round. Cblock of PH is the same as in
AH. Moreover, since we store only a few minutes of the live stream in the storage, Cstorage
is negligible.

4.3. SYSTEM MANAGEMENT 51

Figure 4.3: Calculating the number of peers that is economically reasonable to serve with PH uti-
lization instead to run an additional AH.

Figure 4.3 shows how Cah and Cph (depicted in Formulas 4.4 and 4.5) changes in one
round (Tround), when the number of peers increases. We observe that Cph increases linearly
with the number of peers (number of requests), while Cah is constant and independent
of the number of peers in the swarm. Therefore, if we find the intersection of the cost
functions, i.e., the point δ in Figure 4.3, we will know when is economically reasonable to
add a new AH, instead of putting more load on PH.

δ ≈ Cvm +m · Cblock

Cblock + Creq
(4.6)

CM considers the following thresholds and regulation behavior:
• Nswarm > Nexp + δ: This means that the number of peers in the swarm is larger

than the maximum size that can be served with a given configuration, thus, more
AHs should be added to the system.

• Nswarm < Nexp + δ−Up(h) ·Ntree: Current configuration is able to serve more peers
than the current network size, thus, extra AHs can be removed. Up(h) ·Ntree shows
the number of peers served by one AH.

• Nexp +δ−Up(h)·Ntree ≤ Nswarm ≤ Nexp +δ: In this interval the system has adequate
resource and no change in the configuration is required.

CM periodically checks the above conditions, and takes the necessary actions, if any.
In order to prevent temporary fluctuation, it adds/removes only single AH in each step.

4.3.4 Discussion
Tlcw is a system parameter that has an important impact on the quality of the received
media at end users, as well as on the total cost. Finding an appropriate value for Tlcw
is challenging. With a too small Tlcw peers may fail to fetch blocks from PH in time for
playback, while a too large Tlcw increases the number requests to PH, thus, increases the
cost. Therefore, the question is how to choose a value for Tlcw to achieve (i) the best QoS
with a (ii) minimum cost.

Impact of Tlcw on the QoS. As we mentioned in Section 4.3.2, each peer buffers a
number of blocks ahead of its playback time, to guarantee a given level of QoS. The
number of buffered blocks corresponds to a time interval of length Tlcw. The length of
Tlcw should be chosen big enough, such that if a block is not received through other peers,
there is enough time to send a request to PH and retrieve the missing block from it in
time for playback.

52 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

The required time for fetching a block from the PH depends on the round trip time
(Trtt) between a peer and the PH, and thus it is not the same for all peers. Therefore,
each peer measures Trtt locally, which consists of the latency to send a request to the PH,
plus the latency to receive a block at the peer’s buffer. A peer should send a request for
a missing block to PH no later than Trtt time units before the playback time, otherwise,
the retrieved block is useless. Therefore, each peer sets the minimum value of Tlcw to Trtt .

While Tlcw is a local value at each peer, Tlife, which is used by the CM to calculate the
number of infected peers, depends on the Tlcw value (Equation 4.2). Therefore, the CM
should be aware of the average Tlcw among peers. To provide this information to the CM,
all peers, including the CM, participate in an aggregation protocol to get the average of
Tlcw among all peers. Algorithm 4 shows that in each shuffle, a peer sends its local Tlcw to
other peers, and upon receiving a reply it updates its Tlcw to the average of its own Tlcw
and the received one.

Impact of Tlcw on the cost. Equation 4.5 shows that the cost of PH increases linearly
with the number of requests in each round. On the other hand, increasing Tlcw increases the
PH cost in a round, as peers send more requests to PH. To have a more precise definition
of PH cost in Equation 4.5, we replace r, which is the number of received requests at
PH, with δ × l, where l is the normalized value of the system Tlcw at CM by the average
Tlcw (achieved in the aggregation protocol), i.e., l = Tlcw

avgTlcw
, and δ is the number of peers

sending requests to PH in a round. Therefore, Equation 4.6 can be rewritten as follows:

δ ≈ Cvm +m · Cblock

l × (Cblock + Creq) (4.7)

CM uses the average Tlcw to tune Tlcw of the system. If CM finds out that changing
Tlcw can decrease the cost, without violating the QoS, it floods the new value of Tlcw to
the peers. To do that, it sends the new Tlcw to the directly connected peers, and each
peer forwards it to all its neighbors, expect the one that it receives the message from. In
the flooding path, the peers with smaller Tlcw than the received one update their local
Tlcw. However, if Tlcw at a peer is bigger than the received value, it does not change it,
as its current Tlcw is the minimum required time to get a block from PH. Note that in
Equation 4.6, we assumed the local CM Tlcw equals the aggregated average of Tlcw, thus,
l = 1.

Figure 4.3 shows the relation between Tlcw and PH cost. The higher Tlcw is, the steeper
the PH cost line is. This means that the cost of PH increases faster with the bigger Tlcw,
since PH receives more requests in a shorter time. Moreover, smaller values for Tlcw push
the PH cost line toward the x-axis. For example, if Tlcw is zero, i.e., peers never use PH,
the PH cost is zero and the line overlaps the x-axis. However, we cannot set Tlcw to zero,
since we use PH as a backup of the blocks to guarantee the promised QoS.

Increasing the Tlcw not only increases the PH cost, but also increases the total system
cost. We see in Section 4.3.3, that CM uses two parameters to manage the AHs, (i) the
value of δ, and (ii) the number of infected peers. As Equation 4.7 shows, the higher Tlcw is,
the smaller δ is. On the other hand, according to Equation 4.2, increasing Tlcw decreases
Tlife, and consequently, decreases the number of infected peers. Hence, increasing Tlcw,
decreases both δ, and number of infected peers, and as a result CM adds more AHs to the
system, according to the management model in Section 4.3.3, which increases the total
cost.

4.4. GOSSIP-BASED DISTRIBUTION ESTIMATION 53

To summarize, we can say that the best value for the system Tlcw is the aggregated
average Tlcw, where l = 1. Decreasing the system Tlcw below the average Tlcw, i.e., l < 1,
decreases the QoS at peers, as they may fail to fetch blocks from PH before their playback
time. On the other hand, although increasing Tlcw may increase QoS, it also increases the
cost (l > 1). Hence, CM never broadcasts new value of Tlcw to the system.

4.4 Gossip-based distribution estimation

Monitoring the components of distributed systems is necessary if they are to become self-
managing. For example, Clive needs an estimate of upload-slot distribution across all
peers to compute the number of peers that can be served in a live video streaming service.
To the best of our knowledge, Adam2 [93] and Equi-Depth [94] are the only available
gossip-based solutions for the distribution estimation problem. In this section, we present a
practical gossip-based distribution estimation protocol that has an order of magnitude less
overhead than Adam2 [93] and Equi-Depth [94], while obtaining a comparable accuracy.

We consider a network consisting of a collection of nodes that communicate through
message exchanges. Each node is uniquely identified by a logical ID. The network is highly
dynamic and subject to churn, i.e., new nodes may join at any time, and existing nodes
may voluntarily leave or crash. We use N (t) to denote the population of the network at
time t. Byzantine behavior is not considered in this work. We assume that each node in
the network has a single local attribute attr that represents a local property, e.g., CPU
load or disk space. Let V be the set of all possible values for attr , and let n(v, t) be
the number of nodes whose attribute is equal to v ∈ V at time t. The global frequency,
freq(v, t), of value v at time t is defined as the fraction of nodes with value v at that time:

freq(v, t) = n(v, t)∑
w∈V n(w, t)

(4.8)

Our goal is to provide each node with an estimate of freq(v, t), for each value v in V, in
a completely decentralized way. Algorithm 6 shows our solution. Similar to Algorithm 4,
this algorithm is based on the gossip paradigm, and because of similar event handlers, we
do not repeat them here, and only explain how it estimates a distribution of a value. In
each message exchange, a node sends its attribute value, in addition to its partial view.
Nodes store the number of received values in count, which is a map that counts the number
of times a given value in V has been received during each of the rounds executed so far.
The map count is indexed by values in V and by round number, so that count[v, r] counts
the number of received messages containing v during round r. We assume that V is static
and known in advance.

At the beginning of round r, count[v, r] is initialized to zero for all values v ∈ V and the
local attribute value is inserted in the ShuffleRequest message. Whenever an attribute
value v is received in round r, count[v, r] is incremented by one. To estimate the global
frequency, we consider a small time window into the past (history), given by the last α
complete rounds. α is a system parameter that is characterized by a trade-off between
the accuracy (the larger α, the better) and up-to-datedness (the smaller α, the better) of
our estimation. We count in variable countα[v, r] the total number of times that a node

54 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

has received value v during such period of time:

countα[v, r] =
α∑
j=1

count[v, r − j] (4.9)

Our estimate of global frequency of v at round r over the previous α rounds can thus
be computed locally at p as the ratio between the number of received messages by p with
value v to the total number of messages received by p:

est[v, r] = countα[v, r]∑
w∈V countα[w, r]

(4.10)

If there is no bias between the average gossip round-time of all nodes and in the message
loss between them, est[v, r] can be considered a good approximation of freq(v, t(r)), where
t(r) is the approximate time when round r has started:

est[v, r] ≈ freq(v, t(r)) (4.11)

Note that Algorithm 6 has been designed just to illustrate the main characteristics of
the algorithm, and many important optimizations are missing. For example, storing the
number of messages received more than α rounds ago is not necessary, and the current
value of countα can be obtained by the previous value by adding the counters of the
current round r and removing those of round r − α.

Improvement. The more values a node receives in a round, the faster it converges to
the correct estimate. In the explained model, (baseline-gossip solution), nodes attach only
their single local value to each message exchange. However, as we see in Algorithm 6,
in each message exchange, together with this value, a small number of node descriptors
are sent in subView as well. In the enhanced-gossip solution, a node descriptor is a triple
(q, t, v) composed by a node ID q, a timestamp t and an attribute value v. In this way,
a larger number of values are disseminated around and can be used to obtain a more
accurate estimate of the distribution in less time. However, we should notice that this
improvement is achieved at the cost of a slight increase in the traffic overhead.

4.5 Experiments

In this section, we evaluate the performance of Clive using Kompics [76], a framework for
building P2P protocols that provides a discrete event simulator for testing the protocols
using different bandwidth, latency and churn scenarios.

4.5.1 Experimental setup
In our experimental setup, we set the streaming rate to 500kbps, which is divided into
blocks of 20kb; each block, thus, corresponds to 0.04s of video stream. Peers start playing
the media after buffering it for 15 seconds, and Tdelay equals 25 seconds. We set the
bandwidth of an upload-slot and download-slot to 100kbps. Without loss of generality, we
assume all peers have enough download bandwidth to receive the stream with the correct
rate. In these experiments, all peers have 8 download-slots, and we consider three classes
of upload slot distributions: (i) homogeneous, where all peers have 8 upload-slots, (ii)

4.5. EXPERIMENTS 55

Algorithm 6 Shuffling and estimation algorithm.
1: // Run by each node p in each gossiping round.
2: procedure Round 〈〉
3: // . Distribution estimation
4: round ← round + 1
5: ComputeEstimate(round)
6: for all v ∈ V do
7: count[v, round]← 0
8: end for
9: // . Partial view shuffling

10: q ← this.view.selectOldest()
11: this.view.remove(q)
12: pSubV iew ← this.view.subset()
13: pSubV iew.add(this)
14: Send ShuffleRequest(pSubV iew, this.attr) to q
15: end procedure

16: // Handling the shuffle request.
17: upon event 〈shufflerequest | pSubV iew, pv〉 from p
18: count[pv, round]← count[pv, round] + 1
19: qSubV iew ← this.view.subset()
20: Send ShuffleRequest(qSubV iew, this.attr) to p
21: UpdateV iew(this.view, qSubV iew, pSubV iew)
22: end event

23: // Handling the shuffle response.
24: upon event 〈shuffleresponse | qSubV iew, qv〉 from q
25: count[v, round]← count[v, round] + 1
26: UpdateV iew(this.view, pSubV iew, qSubV iew)
27: end event

28: // Updating the view.
29: procedure UpdateView 〈view, sentV iew, receivedV iew〉
30: for all nodei in receivedV iew do
31: if view.contains(nodei) then
32: view.updateAge(nodei)
33: else if view has free space then
34: view.add(nodei)
35: else
36: nodej ← sentV iew.poll()
37: view.remove(nodej)
38: view.add(nodei)
39: end if
40: end for
41: end procedure

42: // Calculating the distribution of the received values.
43: procedure ComputeEstimate 〈r〉
44: tot ← 0
45: for all v ∈ V do
46: countα[v, r]← 0
47: for j ← 1 to α do
48: countα[v, r]← countα[v, r] + count[v, r − j]
49: end for
50: tot ← tot + countα[v, r]
51: end for
52: for all v ∈ V do
53: est[v, r]← countα[v, r]/tot
54: end for
55: end procedure

56 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

Table 4.1: Slot distribution in freerider overlay.

Number of slots Percentage of peers
0 49.3%
1 18.7%
2 8.4%

3-19 5.2%
20 6.8%

Unknown 11.6%

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 o

f
th

e
 n

o
d
e
s
 (

%
)

Time (s)

LCW=40
LCW=30
LCW=20
LCW=10
LCW=0

(a) Join-only.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
 o

f
th

e
 n

o
d
e
s
 (

%
)

Time (s)

LCW=40
LCW=30
LCW=20
LCW=10
LCW=0

(b) Churn (1% churn rate).

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

A
v
g
.
p
la

y
b
a
c
k
 l
a
te

n
c
y
 (

s
)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(c) Join-only.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

A
v
g
.
p
la

y
b
a
c
k
 l
a
te

n
c
y
 (

s
)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(d) Churn (1% churn rate).

Figure 4.4: The percentage of the peers receiving 99% playback continuity, and the average playback
latency with different values of Tlcw (measured in number of blocks).

heterogeneous, where the number of upload-slots in peers is picked uniformly at random
from 4 to 13, and (iii) real trace, based on a study of large scale streaming systems, shown
in Table 4.1 [85]. In this model, around 50% of the peers do not contribute in the data
distribution. The media source is a single node that pushes blocks to 10 other peers. We
assume PH has infinite upload bandwidth, and each AH can push blocks to 20 other peers.
Latencies between peers are modeled using a latency map based on the King data-set [68].

4.5. EXPERIMENTS 57

In our experiments, we used two failure scenarios: join-only and churn: (i) in the join-
only scenario, 1000 peers join the system following a Poisson distribution with an average
inter-arrival time of 10 milliseconds, and after joining the system they will remain till
the end of the simulation, and (ii) in the churn scenario, approximately 0.01%, 0.1% and
1% of the peers leave the system per second and rejoin immediately as newly initialized
peers [95]. However, unless stated otherwise, we did the experiments with 1% churn rate
to show how the system performs in presence of high dynamism.

4.5.2 System performance evaluation
In the first experiment, we evaluate the system behavior with different values for Tlcw,
measured in number of blocks. In this experiment, we measure playback continuity and
playback latency, which combined together reflect the QoS experienced by the overlay
peers. Playback continuity shows the percentage of blocks received on time by peers, and
playback latency represents the difference, in seconds, between the playback point of a
peer and the source.

For a cleaner observation of the effect of Tlcw, we use the homogeneous slot distribution
in this experiment. Figures 4.4a and 4.4b show the fraction of peers that received 99%
of the blocks before their timeout with different Tlcw in the join-only and churn scenarios
(1% churn rate). We changed Tlcw between 0 to 40 blocks, where zero means peers never
use PH, and 40 means that a peer retrieves up to block b + 40 from PH, if the peer is
currently playing block b. As we see, the bigger Tlcw is, the more peers receive blocks in
time. Although for any value of Tlcw > 0 peers try to retrieve the missing blocks from PH,
the network latency may not allow to obtain the missing block in time. As Figures 4.4a
and 4.4b show, all the peers retrieve 99% of the blocks on time when Tlcw = 40. Given
that each block corresponds to 0.04 seconds, Tlcw = 40 implies 1.6 seconds. The average
playback latency of peers is shown in Figures 4.4c and 4.4d. In the join-only scenario,
playback latency does not depend on Tlcw, while in the churn scenario we can see a sharp
increase when Tlcw is small.

We also measured PH load or the amount of fetched blocks from PH with different
Tlcw values and churn rates. Figures 4.5b and 4.5c show the cumulative load of PH in the
join-only and churn scenarios, respectively. As we see in these figures, by increasing Tlcw,
more requests are sent to PH, thus, increasing its load. Figure 4.5a depicts the cumulative
PH load over time for four different churn rates and Tlcw equals 40 blocks. As the figure
shows, there is no big change in PH load under low churn scenarios (0.01% and 0.1%),
which are deemed realistic in deployed P2P systems [95]. However, it sharply increases
in the presence of higher churn rates (1%), because peers lose their neighbors more often,
thus, they cannot pull blocks from the swarm in time, and consequently they have to fetch
them from PH.

4.5.3 Economic cost evaluation
In this experiment, we measure the effect of adding/removing AHs on total cost. Note, in
these experiments we set Tlcw to 40 blocks, therefore, regardless of the number of AHs, all
the peers receive 99% of the blocks before their playback time. In fact, AHs only affect
the total cost of the service. In Section 4.3.2, we showed how CM estimates the required
number of AHs. Figure 4.6 depicts how the number of AHs changes over time. In the

58 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

P
a
s
s
iv

e
 h

e
lp

e
r

lo
a
d
 (

G
B

)

Time (S)

0%
0.1%

1%
10%

(a) Different churn rates.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

P
a
s
s
iv

e
 h

e
lp

e
r

lo
a
d
 (

G
B

)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(b) Join-only.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

P
a
s
s
iv

e
 h

e
lp

e
r

lo
a
d
 (

G
B

)

Time (s)

LCW=0
LCW=10
LCW=20
LCW=30
LCW=40

(c) Churn (1% churn rate).

Figure 4.5: The cumulative PH load with different values of Tlcw and churn rates.

join-only scenario and the homogeneous slot distribution (Figure 4.6a), the CM estimates
the exact value of the peers that receive the blocks on time using the existing resources in
the system, and consequently the exact number of required AHs. Hence, as it is shown, the
number of AHs will be fixed during the simulation time. However, in the heterogeneous
and real trace slot distributions (Figures 4.6b and 4.6c), CM estimation changes over time,
and based on this, it adds and removes AHs. In the churn scenario (1% churn rate), CM
estimation also changes over the time, thus, the number of AHs fluctuates.

Relatively, we see how PH load changes in different scenarios in the baseline and
enhanced models (Figure 4.7). Figure 4.6a shows that three AHs are added to the system
in the join-only scenario and the homogeneous slot distribution. On the other hand,
we see in Figure 4.7a, in the join-only scenario, with the help of these three AHs (the
enhanced model), the load of PH goes down nearly to zero. It implies that three AHs in
the system are enough to minimize PH load, while preserving the promised level of QoS.
Hence, adding more than three AHs in this setting does not have any benefit and only
increases the total cost. Moreover, we can see in the join-only scenario, if there is no AH
in the system (the baseline model), PH load is much higher than the enhanced model,
e.g., around 90mb, 40mb, and 130mb per second in the homogeneous, heterogeneous, and
real trace, respectively. The same difference appears in the churn scenario.

Figure 4.8 shows the cumulative total cost over the time in different scenarios and slot

4.5. EXPERIMENTS 59

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

N
u
m

b
e
r

o
f
a
c
ti
v
e
 h

e
lp

e
rs

Time (s)

join only
churn

(a) Homogeneous.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

N
u
m

b
e
r

o
f
a
c
ti
v
e
 h

e
lp

e
rs

Time (s)

join only
churn

(b) Heterogeneous.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

N
u
m

b
e
r

o
f
a
c
ti
v
e
 h

e
lp

e
rs

Time (s)

join only
churn

(c) Real trace.

Figure 4.6: Number of AHs in different settings and scenarios.

distributions. In this measurement, we use Amazon S3 as PH and Amazon EC2 as AHs.
According to the price list of Amazon [89, 90], the data transfer price of S3 is 0.12$ per
GB, for up to 10 TB in a month. The cost of GET requests are 0.01$ per 10000 requests.
Similarly, the cost of data transfer in EC2 is 0.12$ per GB, for up to 10 TB in a month,
but since the AHs actively push blocks, there is no GET requests cost. The cost of a large
instance of EC2 is 0.34$ per hour.

Considering the block size of 20kb (0.02mb) in our settings, we can measure the cost
of PH in Amazon S3 per round (second) according to the Formula 4.5:

Cph ≈ r · (Cblock + Creq)

≈ r × 0.02× 0.12
1000 + r × 0.01

10000 (4.12)

where r is the the number of received requests by PH in one round (second). The cost
of storage is negligible. Given that each AH pushes blocks to 20 peers with the rate of
500kbps (0.5mbps), then the cost of running one AHs in Amazon EC2 per second according
to Formula 4.4 is:

Cah = Cvm +m · Cblock

= 0.34
3600 + 20× 0.5× 0.12

1000 (4.13)

60 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

P
a
s
s
iv

e
 h

e
lp

e
r

lo
a
d
 (

M
B

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(a) Homogeneous.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

P
a
s
s
iv

e
 h

e
lp

e
r

lo
a
d
 (

M
B

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(b) Heterogeneous.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

P
a
s
s
iv

e
 h

e
lp

e
r

lo
a
d
 (

M
B

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(c) Real trace.

Figure 4.7: PH load in different scenarios with dynamic changes of the number of AHs.

As Figure 4.8 shows, it is clear that adding AHs to the system reduces the total cost,
while keeping the QoS as promised. For example, in the high churn scenario (1% churn
rate) and the real trace slot distribution the total cost of system after 600 seconds is 24$
in the absence of AHs (baseline model), while it is close to 13$ if AHs are added (enhanced
model), which saves around 45% of the cost.

4.5.4 Accuracy evaluation
In this experiment, we evaluate the accuracy of our estimations in form of evaluating the
accuracy of upload slot distribution, and the accuracy of estimating the number of infected
peers.

Upload slot distribution estimation. Here, we evaluate the estimation of upload
slots distribution in the system. We adopt the Kolmogorov-Smirnov (KS) distance [96],
to define the upper bound on the approximation error of any peer in the system. The
KS distance is given by the maximum difference between the actual slot distribution, ω,
and the estimated slot distribution, E(ω). We compute E(ω) based on Pω for different
number of slots. In addition to the maximum error, which is determined by a single point
(slot) difference between ω and E(ω), we also measure the average error at each peer as

4.5. EXPERIMENTS 61

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

C
o
s
t
($

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(a) Homogeneous.

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

C
o
s
t
($

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(b) Heterogeneous.

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

C
o
s
t
($

)

Time (s)

join only - baseline
join only - enhanced

churn - baseline
churn - enhanced

(c) Real trace.

Figure 4.8: The cumulative total cost for different setting and scenarios.

 0

 0.005

 0.01

 0.015

 0.02

 10 20 30 40 50 60 70 80 90 100

A
v
g
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

uniform
exponential

pareto

(a) Avg. error in different slot distributions.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

0 0.001 0.01 0.1

A
v
g
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Churn rate

(b) Avg. error in different churn rates.

Figure 4.9: Avg. estimation error.

the average error contributed by all points (slots) in ω and E(ω). The total average error
is then computed as the average of these local average errors.

We consider three slot distributions in this experiment: (i) the uniform distribution, (ii)
the exponential distribution (λ = 1.5), and (iii) the Pareto distribution (k = 5, xm = 1).
Figure 4.9a shows the average error in three slot distributions, and Figure 4.9b shows how
the accuracy of the estimation changes in different churn rates.

62 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(a) Join (Homogeneous).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(b) Churn (Homogeneous).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(c) Join (Heterogeneous).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(d) Churn (Heterogeneous).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(e) Join (Real trace).

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

N
u
m

.
o
f
N

o
d
e
s

Time (s)

real
estimated

(f) Churn (Real trace).

Figure 4.10: The real number of infected peers vs. the estimated ones.

Number of infected peers estimation. Here, we evaluate the accuracy of estimating
the number of infected peers. Figure 4.10 shows the real number of infected peers and
the estimated ones in three upload-slot distributions and in the join and churn scenarios.
As shown in the homogeneous and heterogeneous slot distributions, our estimation of the
number of infected peers closely fits the real number of such peers. However, in the real
trace slot distribution, it may happen that a peer without upload-slot connects directly
to the source and prevents other peers to join the system, or on the other hand, a very
high upload bandwidth peer joins close to the source and serves many other peers. That

4.5. EXPERIMENTS 63

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 10 20 30 40 50 60 70 80 90 100

M
a
x
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

baseline
enhanced

adam2
equi-depth

(a) Uniform distribution.

 0

 0.005

 0.01

 0.015

 0.02

 10 20 30 40 50 60 70 80 90 100

M
a
x
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

baseline
enhanced

adam2
equi-depth

(b) Exponential distribution.

 0

 0.005

 0.01

 0.015

 0.02

 10 20 30 40 50 60 70 80 90 100

M
a
x
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

baseline
enhanced

adam2
equi-depth

(c) Pareto distribution.

Figure 4.11: Maximum estimation error with different distributions.

is why we see more difference between the real and estimated number of infected peers in
the real trace slot distribution.

4.5.5 Distribution estimation evaluation
In this section, we evaluate the accuracy of distribution estimation of the baseline-gossip
and enhanced-gossip solutions, and compare them with the existing gossip-based solutions
Equi-Depth [94] and Adam2 [93].

Here, again we use the KS distance [96] as the maximum difference between an es-
timated distribution and the original distribution. For each node p and for all values
v ∈ V, we measure the maximum error at round r and at node p as the distance between
freq(v, t(r)) and the estimate estp[v, r], where t(r) is the approximate time when round r
has started:

maxErrp(r) = max
v∈V
|freq(v, t(r))− estp[v, r]| (4.14)

We measure, then, the maximum error at round r as the maximum error over all

64 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

 0

 0.005

 0.01

 0.015

 0.02

 10 20 30 40 50 60 70 80 90 100

A
v
g
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

baseline
enhanced

adam2
equi-depth

(a) Uniform distribution.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 10 20 30 40 50 60 70 80 90 100

A
v
g
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

baseline
enhanced

adam2
equi-depth

(b) Exponential distribution.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 10 20 30 40 50 60 70 80 90 100

A
v
g
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

baseline
enhanced

adam2
equi-depth

(c) Pareto distribution.

Figure 4.12: Average estimation error with different distributions.

nodes:
maxErr(r) = max

p∈N (r)
maxErrp(r) (4.15)

Since the maximum error is determined by a single point difference between freq(v, t(r))
and estp[v, r], it is sensitive to noise, thus, we also measure the average error at each node:

avgErrp(r) = 1
|V|
∑
v∈V

|freq(v, t(r))− estp[v, r]| (4.16)

Our total average error is then calculated as the average of these local average errors:

avgErr(r) = 1
|N (r)|

∑
p∈N (r)

avgErrp(r) (4.17)

In our experiments, 10,000 nodes participate in the distribution estimation. The nodes
join the system following a Poisson distribution with an inter-arrival time of one millisec-
ond. In the experimental setup, for all four protocols, i.e., the baseline-gossip model, the
enhanced-gossip model, Equi-Depth and Adam2, the size of partial view is c = 10, and
the size of the subset views sent in each view exchange is 5. The gossiping round period

4.5. EXPERIMENTS 65

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 10 20 30 40 50 60 70 80 90 100

A
v
g
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Round

δ=10
δ=25
δ=50

δ=100

(a) Accuracy of the baseline solution.

 100

 1000

 10000

 100000

 1e+06

 10 20 30 40 50 60 70 80 90 100

N
e
tw

o
rk

 L
o
a
d
 (

K
B

)

Round

baseline
enhanced

adam2
equi-depth

(b) Traffic overhead.

 0

 0.005

 0.01

 0.015

 0.02

0 0.001 0.01 0.1

A
v
g
.
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Churn rate

baseline
enhanced

adam2
equi-depth

(c) Average estimation error.

Figure 4.13: The accuracy, traffic overhead and average estimation error of the systems.

for view exchange is set to one second. Unless stated otherwise, we set the history size α
equal to 100 in both models. We consider three value distributions in the experiments: the
uniform distribution, the exponential distribution (λ = 1.5), and the Pareto distribution
(k = 5, xm = 1). We assume that the size of V is equal to 100.

Error. We compare the error and the convergence time of the four solutions in the three
test distributions in Figures 4.11 and 4.12. As we see Adam2 converges faster than the
other solutions with smaller average error. However, Figure 4.11 shows that maximum
error of the enhanced-gossip model and Adam2 are very close and better than Equi-Depth
and the baseline-gossip. Additionally, we see in Figure 4.12 that the accuracy of the
baseline-gossip model increases over time and after a number of rounds its estimation
converges to the estimation of Equi-Depth.

The local history size. The local history size α has an important effect on the accuracy
of the estimated distribution of the values. If α equals the system life time, the estimated
distribution is approximately equivalent to the real distribution. However, in reality nodes
need to bound the size of their history. Figure 4.13a shows the average error of the baseline-
gossip model for different values of α. In this experiment, the values are distributed
uniformly among the nodes. As we see, the bigger α is, the more accurate the results are.

66 CHAPTER 4. CLOUD-ASSISTED P2P LIVE STREAMING

The traffic overhead. Figure 4.13b shows the overhead traffic of the four protocols. In
this figure the Y-axis shows the cumulative traffic of 10,000 nodes in logarithmic scale.
Given that in the baseline-gossip model nodes only send their own value, the generated
traffic is much smaller than the enhanced-gossip model and the two other solutions. In
the enhanced-gossip model, the nodes add their values to their descriptors. Therefore,
the overhead increases proportionally to the exchanged view size. However, as we see in
Figure 4.13b, the enhanced-gossip model traffic overhead is much smaller than Equi-Depth
and Adam2, which send the whole vector of values.

Churn. Finally, we compare the average error of the four systems in different churn
scenarios. In this experiment, we assume three churn rates, such that approximately
0.1%, 1% and 10% of nodes leave the system per second and rejoin immediately as newly
initialized nodes [95]. Figure 4.13c shows that by increasing the churn rate the average
error also increases. The figure shows that the enhanced-gossip model and Adam2 compare
to Equi-Depth have lower average error in 0.1% and 1% churn rates, however, Equi-Depth
shows a better performance in high churn scenarios.

Chapter 5

NAT-Aware Peer Sampling

Peer sampling services (PSS) have been widely used in large scale distributed applica-
tions, such as information dissemination [56], aggregation [57], and overlay topology

management [7, 58]. A PSS periodically provides a node with a uniform random small
sample of live nodes in the system, called partial view, where the sample size is typically
much smaller than the system size.

PSS’ can be implemented using gossip protocols [11, 63] or random walks [61], although
random walks are only suitable for static networks with low levels of churn [64]. Gossip-
based PSS’ can ensure that node descriptors are distributed uniformly at random over
all partial views [11]. However, in the Internet, where a high percentage of nodes are
behind NATs, these traditional gossip-based PSS’ become biased. Nodes cannot establish
direct connections to nodes behind NATs (private nodes), and private nodes become under-
represented in partial views, while nodes that do support direct connectivity (public nodes)
become over-represented in partial views [64].

Nylon [64] is the state-of-the-art system to present a distributed solution to NAT
traversal that uses existing nodes in the PSS to help in NAT traversal. Nylon uses nodes
that have successfully established a connection to a private node as partners who will both
route messages to the private node and coordinate NAT hole punching algorithms [64, 97].
As node descriptors spread in the system through gossiping in Nylon, this creates routing
table entries for paths that forward packets to private nodes. However, long routing
paths increase both network traffic at intermediary nodes and the routing latency to
private nodes. Also, routing paths become fragile when nodes frequently join and leave
the system. Finally, hole punching is slow and can take up to a few seconds over the
Internet [98].

We address these problems by introduction two solutions: Gozar [9] and Croupier [10].
Gozar is a gossip-based PSS that (i) provides uniform random samples in the presence
of NATs, and (ii) enables direct connectivity to sampled nodes by providing a distributed
NAT traversal service that requires only a single intermediary hop to connect to a private
node. In Gozar, relaying and hole punching are enabled by private nodes finding public
nodes who will act as both relay and rendezvous server for them. We call these public
nodes the parents of the private nodes. For load balancing and fairness, public nodes ac-
cept only a small bounded number of private nodes. When references to private nodes are
gossiped in the PSS or sampled using the PSS, they include the addresses of their parents

67

68 CHAPTER 5. NAT-AWARE PEER SAMPLING

nodes. Other nodes, then, can use these parents to communicate with private nodes.
Although relaying can resolve the mentioned problems, it introduces other complexity

into PSS protocols: relaying nodes have to maintain routing tables for private nodes, and
private nodes have to maintain open mappings in their NAT to relay nodes. Moreover,
where the system is distributed, nodes have to discover the relay node(s) responsible for
the private node they wish to communicate with. In Croupier we introduce a novel
mechanism for exchanging partial views in NATed networks to build a PSS without the
use of relaying.

Our main intuition in Croupier is to use two partial views in each node, one for public
nodes and one for private nodes, and to have public nodes act as croupiers, exchanging
public and private views on behalf of private nodes. View exchanges are initiated by
all nodes, but only sent to public nodes (the croupiers) who shuffle the views. In order
to generate a random sample from the two partial views, our protocol requires that we
estimate the ratio of public to private nodes in the system. Public nodes collectively
estimate the ratio of public to private nodes by sampling the recent rate of view exchange
requests from public and private nodes, respectively. As all nodes send a single view
exchange request per round to a random public node and the round time is equal at all
nodes (subject to clock skew), we estimate the ratio of public to private nodes using a
distributed averaging algorithm based on sampled request rates.

Distributed NAT traversal is embedded in Gozar, and although Croupier is a pure
PSS, it can be complemented with a distributed NAT traversal middleware to provide
connectivity to private nodes. To reduce the connection latency to private nodes in both
systems, we propose an algorithm to minimize private-parent connection delay. We model
this problem with an Integer Linear Programming (ILP) framework and present a dis-
tributed auction algorithm to solve it.

5.1 Problem description

In this section, we describe the problem of Gozar and Croupier separately, and then
explain the NAT traversal problem in both systems. We model a distributed system as a
network of autonomous nodes that exchange messages. There is no central point of control
in the system and all nodes execute the PSS algorithm. Each node knows its own NAT
type, which is either public or private (we present a distributed algorithm to detect the
NAT type in Section 5.2). A public node can be communicated with using an IP address
that is globally reachable from any other node, while a private node resides behind at
least one NAT or firewall, and is not reachable from outside its private network unless it
is the private node that initiates contact.

Gozar problem description. The problem Gozar addresses is how to design a gossip-
based NAT-friendly PSS that also supports distributed NAT traversal using a system
composed of both public and private nodes. The challenge with gossiping is that it assumes
a node can communicate with any node selected from its partial view. To communicate
with a private node, there are three existing options:

1. Relay communications to the private node using a public relay node,
2. Use a NAT hole-punching algorithm to establish a direct connection to the private

node using a public rendezvous node,
3. Route the request to the private node using chains of existing open connections.

5.1. PROBLEM DESCRIPTION 69

For the first two options, we assume that private nodes are assigned to different public
nodes that act as relay or rendezvous servers. This leads to the problem of discovering
which public nodes act as partners for the private nodes. A similar problem arises for
the third option – if we are to route a request to a private node along a chain of open
connections, how do we maintain routing tables with entries for all reachable private nodes.
When designing a gossiping system, we have to decide on which option(s) to support for
communicating with private nodes. There are several factors to consider. How much data
will be sent over the connection? How long lived will the connection be? How sensitive is
the system to high and variable latencies in establishing connections? How fairly should
the gossiping load be distributed over public versus private nodes?

For large amounts of data traffic, the second option of hole-punching is the only really
viable option, if one is to preserve fairness. However, if a system is sensitive to long
connection establishment times, then hole-punching may not be suitable. If the amount
of data being sent is small, and fast connection setup times are important, as in PSS’,
then relaying is considered an acceptable solution. Hence, Gozar uses relaying. If it is
important to distribute load as fairly as possible between public and private nodes, then
the third option is attractive. In Section 5.3.1, we show how Gozar PSS works and how
private nodes discover public nodes, as their relay servers.

Croupier problem description. The goal of Croupier is to provide a PSS that makes
samples of nodes drawn uniformly at random from the set of all nodes in the system,
without using relaying or hole-punching. In Croupier, all nodes shuffle only with public
nodes, and public nodes, called croupiers, exchange nodes views on behalf of private nodes.

In Croupier, we partition the partial view in each node into two separate bounded-size
views: public view and private view. This prevents over-representation of public nodes in
partial views, but it introduces the problem of how to generate a uniform random sample
from the two views; we cannot just pick a random neighbor from one of either the public
or private views, as we need to know the correct proportion of public to private nodes in
the system when generating a sample.

That is, we need a distributed algorithm that estimates the ratio of public to private
nodes in the system. This ratio may vary both between different systems and over the
lifetime of a system, but when a good estimation is available locally at every node, we can
use it to sample the correct proportion of nodes from either the public or private view. In
Section 5.3.2, we present the Croupier PSS algorithm and explain our distributed ratio
estimation solution.

Distributed NAT traversal problem. NAT traversal is implicitly built in Gozar, but
not in Croupier. Instead Croupier can be augmented with a distributed NAT traversal
middleware that provides connectivity to private nodes using existing public nodes in the
system. To make NAT traversal possible, we need to assign one or more public nodes
(parent) as relay nodes for each private node. Selecting good relay nodes for private
nodes is challenging. Nodes may maintain routing tables to nodes that have recently been
communicated with [64, 69], or using a distributed-hash table [99].

In Gozar, private nodes choose their parents randomly from the available public
nodes in the system. The private nodes, then, cache the addresses of relay nodes in their
descriptor. Hence, as node descriptors spread in the system through gossiping, other
nodes can initiate connection to private nodes using their parent addresses in their node
descriptor. In Croupier, we can also build a distributed NAT traversal on top of the

70 CHAPTER 5. NAT-AWARE PEER SAMPLING

PSS, by assigning parents to each private node. A question here is that if we can reduce
the private-parent delay, or in other words, how private nodes should select their parents
to minimize their connection latency. In Section 5.4 we present a distributed auction
algorithm to minimize connection latency to private nodes.

5.2 Distributed NAT type identification

Gozar and Croupier require that a node knows its correct NAT type as either public or
private. A node’s NAT type could be determined by a centralized service, such as a Session
Traversal Utilities for NAT (STUN) server [65], but instead we introduce a distributed,
minimal NAT type identification protocol that identifies a node as being either public or
private. Our protocol can, in principle, be run at any time during system operation, but
is typically run once at bootstrap time, as the vast majority of nodes stay either public or
private for the duration of their session. When a node’s NAT type does not change, the
protocol does not need to be run for every session, as the NAT type can be cached across
sessions.

The protocol is defined in Algorithm 7, and is run over UDP. Several instances of the
protocol can be run in parallel against different public nodes to improve its robustness
and reduce its expected completion time. It identifies a node as a public node if (i) it
has a globally reachable IP address and is not behind a NAT or firewall, or (ii) if the
node’s NAT supports the UPnP Internet Gateway Device Protocol (that is, the node can
explicitly map a local port to a port on the public interface of its UPnP-enabled NAT,
where the NAT has a public IP address). If neither of these two conditions are matched,
the node is a private node.

To realize these properties, the protocol executes two tests: (i) a MatchingIpTest
compares the node-under-test’s local IP address with the IP address seen by a public
node, and (ii) a ForwardTest checks to make sure the node-under-test can receive a packet
from a public node to which it has not sent a packet in the last five minutes, where five
minutes is assumed higher than the NAT UDP mapping timeout. The tests are executed
in parallel over a number of public nodes returned by a bootstrap server.

The protocol requires three network messages per run: (i) a MatchingIpTest is sent
from the node-under-test to a public node returned by the bootstrap server, (ii) this node
then inserts the public IP address from which it received the event into a ForwardTest
event that is sent to a different public node, and (iii) the node that receives the ForwardTest
event, then, sends that event back to the node-under-test’s public IP address. The
ForwardTest event cannot be sent to any of the public nodes returned by the bootstrap
server as the node-under-test’s NAT may have an entry in its NATs mapping table to that
node’s IP address, and the ForwardTest event would erroneously pass through the NAT.

If the client receives the ForwardTest event and its local IP address matches the IP
address seen in MatchingIpTest, then the node’s NAT type is public. If the IP addresses
do not match, then the node is set to private. This case can happen if the node is behind
a NAT that has an Endpoint-Independent filtering policy [98]. If the node’s NAT has a
more restrictive packet filtering policy or the node is behind a firewall, it will not receive
the ForwardTest event, and its Timeout event handler will return that the node is private.
The length of the timeout needs to be long enough to prevent false positives, but it can be
adjusted upwards if a late ForwardTest event is received after the timeout has expired.

5.3. NAT-AWARE PEER SAMPLING 71

Algorithm 7 Distributed NAT type identification.
1: // Executed at client on joining system.
2: procedure NatTypeIdentificationClient 〈〉
3: publicNodes← doBootstrap()
4: if supportsUpnpIGD() = true then
5: this.nodeType← public
6: else
7: for all nodei in publicNodes do
8: Send MatchingIpTest(publicNodes) to nodei
9: end for

10: After timeToWait Send Timeout(publicNodes) to this
11: end if
12: end procedure

13: // Event handler at first public node.
14: upon event 〈MatchingIpTest | publicNodes〉 from client
15: secondPublicNode←last good public node seen not in client.publicNodes
16: Send ForwardTest(client) to secondPublicNode
17: end event

18: // Event handler at second public node.
19: upon event 〈ForwardTest | client〉 from firstPublicNode
20: Send ForwardTest(client) to client
21: end event

22: // Event handler at client node.
23: upon event 〈ForwardTest | client〉 from secondPublicNode
24: Send CancelT imeout to this
25: if this.localIp = client.Ip then
26: this.nodeType← public
27: else
28: this.nodeType← private
29: end if
30: end event

31: // Timeout event triggered if no ForwardResp event is received in time.
32: upon event 〈Timeout | publicNodes〉 from this
33: this.nodeType← private

34: end event

5.3 NAT-aware peer sampling

In this section we present our works on NAT-aware peer sampling in form of two systems:
(i) Gozar: NAT-aware peer sampling with one-hop relaying, and (ii) Croupier: NAT-
aware peer sampling without relaying.

5.3.1 NAT-aware peer sampling with one-hop relaying
Our implementation of Gozar is based on the tail, push-pull and swapper policies for
node selection, view exchange and view selection, respectively (Section 2.2.1). In Gozar,
node descriptors are augmented with the node’s NAT type (private or public), and each
private node connects to one or more public nodes, called parents. Private nodes discover
potential parents using the PSS, that is, private nodes select public nodes from their
partial view and send partnering requests to them. When a private node successfully
partners with a public node, it adds its parent address to its own node descriptor. As

72 CHAPTER 5. NAT-AWARE PEER SAMPLING

node descriptors spread in the system through gossiping, a node that subsequently selects
the private node from its partial view communicates with the private node using one of
its parent as a relay server.

Relaying enables faster connection establishment than hole punching, allowing for
shorter periodic cycles for gossiping. Short gossiping cycles are necessary in dynamic
networks, as they improve convergence time, helping keep partial views updated in a
timely manner. However, for distributed applications that use a PSS, such as online
gaming, video streaming, and P2P file sharing, relaying is not acceptable due to the
extra load on public nodes. To support these applications, the private nodes’ parents also
provide a rendezvous service to enable applications that sample nodes using the PSS to
connect to them using a hole punching algorithm.

Whenever a new node joins the system, it contacts the bootstrap server and asks
for a list of nodes from the system, and also runs the modified STUN protocol or the
protocol explained in Section 5.2 to determine its NAT type. If the node is public, it
can immediately add the returned nodes to its partial view and start gossiping with the
returned nodes. If the node is private, it needs to find a parent before it can start gossiping.
It selects m public nodes from the returned nodes and sends each of them a partnering
request. Public nodes only partner a bounded number of private nodes to ensure the
partnering load is balanced over the public nodes. Therefore, if a public node cannot act
as a parent, it returns a NACK. The private node continues sending partnering requests to
public nodes until it finds a parent, upon which the private node can now start gossiping.

Each node in Gozar maintains a partial view of the nodes in the system. A node
descriptor, stored in a partial view, contains the address of the node, NAT type, and
the addresses of the node’s parents, which are initially empty. When a node descriptor
is gossiped or sampled, other nodes learn about the node’s NAT type and any parents.
Later on, a node can gossip with a private node by relaying messages through the private
node’s parents. Private nodes proactively keep their connections to their parents open by
sending ping messages to them periodically. Authors in [100] showed that unused NAT
mapping rules remain valid for more than 120 seconds for 70% of connections. In our
implementation, the private nodes send the ping messages every 50 seconds to refresh a
higher percentage of mapping rules. Moreover, private nodes use the ping replies to detect
the failure of their parents. If a private node detects a failed parent, it restarts the parent
discovery process.

Each node p periodically executes Algorithm 8 to exchange and update its view. The
method Round shows that in each iteration, node p first updates the age of all nodes in
its view, and then chooses a node to exchange its view with. After selecting a node q, p
removes that node from its view. Node p, then, selects a subset of random nodes from
its view, and appends to the subset its own node descriptor (the node, its NAT type, and
its parents). If the selected node q is a public node, then p sends the ShuffleRequest
message directly to q, otherwise it sends the ShuffleRequest as a relay message to one of
q’s parents, selected uniformly at random.

Method SelectANodeToShuffleWith shows how a node p selects another node to ex-
change its view with. Node p selects the oldest node in its view (the tail policy), which
is either a public node, or a private node that has at least one parent. Once node q
receives the ShuffleRequest, it selects a random subset of node descriptors from its view
and sends the subset back to the requester node p. If p is a public node, q sends the
ShuffleResponse back directly to it, otherwise it uses one of p’s parents to relay the re-

5.3. NAT-AWARE PEER SAMPLING 73

Algorithm 8 Gozar shuffling algorithm.
1: // Run by each node p in each gossiping round.
2: procedure Round 〈〉
3: this.view.updateAge()
4: q ← SelectANodeToShuffleWith()
5: this.view.remove(q)
6: pSubV iew ← this.view.subset() . a random subset from p’s view
7: pSubV iew.add(this, this.natType, this.parents)
8: if q.natType is public then
9: Send ShuffleRequest(pSubV iew, this) to q

10: else
11: qParent← q.parents.random(1)
12: Send Relay(ShuffleRequest, pSubV iew, q) to qParent
13: end if
14: end procedure

15: // Select a node to shuffle with.
16: procedure SelectANodeToShuffleWith 〈〉
17: for all nodei in this.view do
18: if nodei.natType = public or (nodei.natType = private and nodei.parents 6= ∅) then
19: candidates← nodei
20: end if
21: end for
22: q ← candidates.selectOldest()
23: Return q
24: end procedure

25: // Handling the shuffle request.
26: upon event 〈ShuffleRequest | pSubV iew, p〉 from m . m can be p or this.parent
27: qSubV iew ← this.view.subset() . a random subset from q’s view
28: if p.natType is public then
29: Send ShuffleResponse(qSubV iew, this) to p
30: else
31: pParent← p.parents.random(1)
32: Send Relay(ShuffleResponse, qSubV iew, p) to pParent
33: end if
34: UpdateV iew(this.view, qSubV iew, pSubV iew)
35: end event

36: // Handling the shuffle response.
37: upon event 〈ShuffleResponse | qSubV iew, q〉 from n . n can be q or this.parent
38: UpdateV iew(this.view, pSubV iew, qSubV iew)
39: end event

40: // Updating the view.
41: procedure UpdateView 〈view, sentV iew, receivedV iew〉
42: for all nodei in receivedV iew do
43: if view.contains(nodei) then
44: view.updateAge(nodei)
45: else if view has free entries then
46: view.add(nodei)
47: else
48: nodej ← sentV iew.poll() . get and remove one entry from sentV iew
49: view.remove(nodej)
50: view.add(nodei)
51: end if
52: end for
53: end procedure

74 CHAPTER 5. NAT-AWARE PEER SAMPLING

Algorithm 9 Handling the relay message.
1: upon event 〈Relay | msg, view, y〉 from x
2: if msg is shuffleRequest then
3: Send ShuffleRequest(view, x) to y
4: else
5: Send ShuffleResponse(view, x) to y
6: end if
7: end event

Algorithm 10 NAT Traversal at node p to private node q.
1: procedure SendData 〈q, data〉
2: if q.natType is public then
3: Send data to q
4: else
5: RV P ← q.parents.random(1)
6: . Determine hole punching algorithm for the combination of NAT types
7: hp← hpAlgorithm(p.natType, q.natType)
8: . Start hole punching at RV P using the hole punching algorithm hp.
9: HolePunching(hp, p, q, RV P)

10: Send data to q
11: end if
12: end procedure

sponse. Node q selects p’s relaying node uniformly at random from the list of p’s parents.
It also updates its view. Node p updates its view when it receives a ShuffleResponse.

Method UpdateView shows how a node updates its view using the received list of node
descriptors. Node p merges the node descriptors received from q with its current view by
iterating through the received list, and adding the descriptors to its own view. If its view
is not full, it adds the node, and if a node descriptor to be merged already exists in p’s
view, p updates its age (if more recent). If the view is full, p replaces one of the nodes it
had sent to q with the node in received list (the swapper policy).

Algorithm 9 is triggered whenever a parent node receives a Relay message from an-
other node. The node extracts the embedded message that can be a ShuffleRequest
or ShuffleResponse, and forwards it to the destination private node. If a client of the
PSS, node p, wants to establish a direct connection to a node q, it uses Algorithm 10
that implements the hole punching service. The algorithm shows that if q is a public
node, then p sends data directly to q. Otherwise, p selects uniformly at random one of q’s
parents as a rendezvous node (RV P), and determines the hole punching algorithm using
the combination of its own NAT type and q’s NAT type RV P [98], and starts the hole
punching process through the RV P . After successfully establishing a direct connection,
node p sends data directly to q. See [98] for the details of HolePunching algorithm.

5.3.2 NAT-aware peer sampling without relaying
Croupier peer sampling algorithm is based on periodic gossip rounds, executed at roughly
the same rate by all nodes (subject to clock skew), where neighboring nodes exchange
local state. Our shuffling algorithm is based on the tail, push-pull and swapper policies
for node selection, view exchange and view selection (Section 2.2.1). The tail policy

5.3. NAT-AWARE PEER SAMPLING 75

Algorithm 11 Croupier shuffling algorithm.
1: // Run by each node p in each gossiping round.
2: procedure Round 〈〉
3: this.viewu.updateAge()
4: this.viewv.updateAge()
5: this.M.updateAge() . estimations received from public nodes
6: this.M.removeOld(γ) . remove estimations older than γ
7: if this.natType is public then
8: this.E ← CalcHitsRatio() . see Algorithm 12
9: this.cu = 0, this.cv = 0 . initialize new estimations for current round

10: end if
11: q ← this.viewu.selectOldest() . oldest node in the public view
12: this.viewu.remove(q)
13: pPub← this.viewu.subset()
14: pPri← this.viewv.subset()
15: pSubM ← this.M.subset()
16: if this.natType is public then
17: pPub.add(this)
18: else
19: pPri.add(this)
20: end if
21: Send ShuffleRequest(pPub, pPri, pSubM, this.E) to q
22: end procedure

23: // Handling the shuffle request.
24: upon event 〈ShuffleRequest | pPub, pPri, pSubM, pE〉 from p
25: if p.natType is public then
26: this.cu ← this.cu + 1
27: else
28: this.cv ← this.cv + 1
29: end if
30: qPub← this.viewu.subset()
31: qPri← this.viewv.subset()
32: qSubM ← this.M.subset()
33: UpdateV iew(this.viewu, qPub, pPub)
34: UpdateV iew(this.viewv, qPri, pPri)
35: this.M ← this.M ∪ pSubM ∪ {pE}
36: Send ShuffleResponse(qPub, qPri, qSubM, this.E) to p
37: end event

38: // Handling the shuffle response.
39: upon event 〈ShuffleResponse | qPub, qPri, qSubM, qE〉 from q
40: UpdateV iew(this.viewu, pPub, qPub)
41: UpdateV iew(this.viewv, pPri, qPri)
42: this.M ← this.M ∪ qSubM ∪ {qE}
43: end event

44: // Updating the public/private views.
45: procedure UpdateView 〈view, sentV iew, receivedV iew〉
46: for all nodei in receivedV iew do
47: if view contains nodei then
48: view.updateAge(nodei)
49: else if view has free space then
50: view.add(nodei)
51: else
52: nodej ← sentV iew.poll()
53: view.remove(nodej)
54: view.add(nodei)
55: end if
56: end for
57: end procedure

76 CHAPTER 5. NAT-AWARE PEER SAMPLING

Algorithm 12 Calculates the hits ratio
1: procedure CalcHitsRatio 〈〉
2: this.Cu ← this.Cu ∪ this.{cu} . keep a local history of public hits
3: this.Cv ← this.Cv ∪ this.{cv} . keep a local history of private hits
4: this.Cu.removeOld(α) . remove hits older than α from Cu
5: this.Cv.removeOld(α) . remove hits older than α from Cv
6: pubCnt = 0
7: priCnt = 0
8: for all u in this.Cu do
9: pubCnt← pubCnt + u

10: end for
11: for all v in this.Cv do
12: priCnt← priCnt + v
13: end for
14: return pubCnt

pubCnt+priCnt . calculates the local estimation
15: end procedure

involves selecting the oldest node descriptor for shuffling, while the swapper policy involves
replacing the node descriptors sent to the other node with the received node descriptors.

Each node p maintains a public view, viewu(p), and a private view, viewv(p), both
bounded in size, consisting of a set of node descriptors of public and private nodes, respec-
tively. A node descriptor contains the node’s address, its NAT type, and a timestamps
storing the number of rounds since the descriptor was created. A node p (either public
or private) periodically executes the procedure Round in Algorithm 11 to exchange and
update both p’s views and its ratio estimations in Ep (ω) (Equations 5.8 and 5.9). Round
firstly updates the age of both the descriptors in p’s views and the estimations in its
neighbour history, M , which are the estimations that p received from its neighbors in
previous gossip rounds. If p is a public node, then, it updates its local ratio estimation
Ep (ω) (Algorithm 12). Finally, the oldest descriptor q (the tail policy) is selected from
the public view, viewu(p), and a ShuffleRequest is sent to it.

The public node q receives the ShuffleRequest containing the following state: (i)
a random, bounded subset of the sender p’s public and private views, (ii) a random,
bounded subset of p’s neighbour history, Mp, and (iii) an p’s local estimation, Ep (ω). If
p is a private node, Ep (ω) is empty. The public node q, then, does the following actions:
(i) depending on whether the sender of the request is public or private, it increments the
public or private shuffle counters, i.e., cu or cv, (ii) it updates its private and public views,
and (iii) it adds the received estimations to its neighbour history, Mq.

The private and public views are updated in UpdateView procedure. A node q merges
the received view from p with its existing view by iterating through the received list of
nodes. If its view is not full, it adds the node, and if a reference to the node to be
merged already exists in its view, q just refreshes the age of its reference. If the view
is full, q replaces one of the nodes it sent to p with the selected node (the swapper
policy). A ShuffleResponse is subsequently sent back to p. Similar to the request, the
response includes a bounded, random subset from its public and private views and its
ratio estimations. When p receives the ShuffleResponse, similar to the ShuffleRequest
event handler, it updates its private and public views and its estimations.

Sampling and ratio estimation. The procedure GenerateRandomSample in Algo-
rithm 13 is called to generate a uniform random sample of nodes from either a public

5.3. NAT-AWARE PEER SAMPLING 77

Algorithm 13 Sampling and ratio estimation at node p.
1: // Generates a random estimation of nodes using the ratio estimation.
2: procedure GenerateRandomSample 〈〉
3: viewChoice← random real number between 0 and 1.0
4: if viewChoice < estimatePublicPrivateRatio() then
5: return random entry from this.viewu
6: else
7: return random entry from this.viewv
8: end if
9: end procedure

10: // Returns the estimation of the ratio of public/private nodes.
11: procedure EstimatePublicPrivateRatio 〈〉
12: cnt = 0
13: for all m in this.M do
14: cnt← cnt + m
15: end for
16: if this.natType is public then
17: result = cnt+this.E

this.M.size+1 . see Algorithm 11, line 8 for this.E
18: else
19: result = cnt

this.M.size
20: end if
21: return result
22: end procedure

or private node. In the following, we assume both a static ratio of public to private nodes
and a fixed number of nodes, although, as shown in our evaluation, our estimation al-
gorithm gives good estimations for dynamic ratios. Public nodes U and private nodes V
make up the set of all nodes N in the system: N = U ∪V. The ratio ω of public to private
nodes in the system is defined as:

ω = |U|
|U|+ |V| . (5.1)

We estimate ω using a decentralized algorithm that is based on three basic assump-
tions: (i) there should be no bias between the average gossip round-time of public nodes
and private nodes, (ii) there should be no bias in message loss between public and private
nodes, and (iii) the target of shuffle requests should be chosen uniformly at random among
public nodes. Our first and second assumptions imply that the rate of shuffle requests
coming from public nodes compared to private nodes is roughly the same as ω. Our third
assumption is grounded on the equivalence of our node selection algorithm to Cyclon’s [63],
which has previously shown that nodes are selected almost uniformly at random.

The estimation of ω uses the relative number of shuffle requests received by Croupiers
(public nodes) from other public nodes or private nodes, within a small time window α
into the past, called the local history. If we assume α is equal to the system lifetime, we
can define the number of shuffle requests that all Croupiers in the system receive from
public nodes as Cu, and the number of shuffle requests all Croupiers receive from private
nodes as Cv. For each Croupier i, its local public and private shuffle request counts are
defined as Cui and Cvi, respectively. That is the system-wide shuffle request counts are

78 CHAPTER 5. NAT-AWARE PEER SAMPLING

defined as the sum of local shuffle counts:

Cu =
∑
i∈U

Cui and Cv =
∑
i∈U

Cvi (5.2)

The estimation of the ratio of public to private nodes, E (ω), can now be calculated
as the ratio of the number of shuffle requests from public nodes to the number of shuffle
requests from all nodes:

E (ω) = Cu
Cu + Cv

(5.3)

Assuming our first and second assumptions hold, over all public nodes in the system,
ω is roughly equal to E (ω):

ω ≈ E (ω) (5.4)
As E (ω) is not available at any individual node, each public node i maintains its local

part of the estimation Ei by updating its local counts Cui and Cvi within the last time
window α:

Cui =
α∑
t=0

cui(t) and Cvi =
α∑
t=0

cvi(t) (5.5)

where cui and cvi are the number of received requests from public and private nodes in
each shuffle round, respectively. A public node i, then, calculates the local estimation Ei
as:

Ei = Cui
Cui + Cvi

(5.6)

As α approaches the system lifetime, the average of the local estimations is approxi-
mately equivalent to our global estimation:

E (ω) ≈

∑
i∈U

Ei

|U| (5.7)

Each public node i stores its own local estimation Ei, and its neighbour history Mi,
which is a set of local estimations shared by other public nodes. All local estimations by
public nodes should be independent of each other as shuffle requests should be uniformly
distributed among public nodes. Public nodes disseminate to their neighbours (public and
private) both their own local estimation Ei, as well as a subset of their local neighbor his-
tory Mi. All estimations can be shared in a simple dissemination protocol to both private
and public nodes, but, for efficiency, we piggy-back these estimations on ShuffleRequest
and ShuffleResponse messages (Algorithm 11, lines 21 and 36).

Estimates in neighbour histories,M , contain timestamps that are incremented at every
gossip round. When two estimations for the same node are available, the older estimation
is replaced by the newer estimation, and old estimations with a timestamps higher than a
configurable parameter γ are removed every gossip round. For every shuffle request and
shuffle response, we bound the number of estimations that are shared to a subset of M to
prevent the size of messages growing for increasing system size.

Given local and neighbour estimations, a public node i estimates ω as the average of
both its local estimation Ei and its neighbour history Mi:

Ei (ω) =

∑
n∈Mi

En + Ei

|Mi|+ 1 (5.8)

5.4. NAT TRAVERSAL MIDDLEWARE 79

In contrast, a private node i has no local estimation Ei (as it does not receive shuffle
requests), so it estimates ω as the average of its cached estimations from public nodes Mi:

Ei (ω) =

∑
n∈Mi

En

|Mi|
(5.9)

Both Equations 5.8 and 5.9 are defined in the method EstimatePublicPrivateRatio
of Algorithm 13. In Section 5.5, we show how the quality of the estimations depends on
how stable the public/private ratio is, and how well tuned α and γ are to the rate of
change of the ratio.

5.3.3 Discussion
Table 5.1 summarizes the similarities and differences between Gozar and Croupier. As
shown, both systems use the same policies for node selection, view propagation, and view
selection. On the other hand, the main difference between the two systems is the built-
in NAT traversal capability in Gozar, which is missing in Croupier. However, as we
present in Section 5.4, Croupier can also be complemented with NAT traversal. The two
systems can be used interchangeably. However, in applications that require connectivity
to private nodes, Gozar is a better choice; otherwise, Croupier is more performant, in
particular, in highly dynamic systems, where the churn rate is high. Moreover, Croupier
produces less traffic in the network, as compared to Gozar.

Table 5.1: Gozar vs. Croupier.

System PSS Policies Services Robustness in Churn
Gozar (tail, push-pull, swapper) PSS + NAT traversal weak

Croupier (tail, push-pull, swapper) PSS strong

5.4 NAT traversal middleware

To provide connectivity with private nodes in Gozar and Croupier, each private node
connects to one or more public nodes, as their parents, and parent nodes play as re-
lay/rendezvous nodes for the assigned private nodes. To have a short connection latency
to private nodes, the private nodes try to improve the connection delay to their parents
over time, by switching from their existing parents to closer public nodes, if they find any.

Each private node has a number of child-slots that defines the number of parents that
the private node is willing to have, and the number of children that a public node is able
to accept is mentioned with its parent-slots. We show the set of all child-slots with C, and
the set of all parent-slots with P. We say that two child-slots i and i′ are similar, if they
both belong to the same private node. For each child-slot i, the set of all child-slots similar
to i is called the similarity class of i, and is denoted byMC(i). Likewise, two parent-slots
j and j′ are similar, if they belong to the same public node. MP(j) shows the similarity
class of parent-slot j.

80 CHAPTER 5. NAT-AWARE PEER SAMPLING

A connection between a child-slot i and a parent-slot j is shown as a pair (i, j), and it
is associated with a communication delay dij . We assume the connections are symmetric,
i.e., dij = dji, ∀i ∈ C, j ∈ P. We want to assign all the child-slots to different parent-slots.
This problem can be represented as an assignment problem [70].

We define an assignment S as a set of pairs (i, j) such that:

1. For all (i, j) ∈ S, i ∈ C and j ∈ P.

2. For each i ∈ C, there is at most one pair (i, j) ∈ S.

3. For each j ∈ P, there is at most one pair (i, j) ∈ S.

A complete assignment A is an assignment containing |C| pairs, such that each i ∈ C
is assigned to a different j ∈ P. Our goal is to find a complete assignment A over all
assignments S that minimizes the total delay. We can formulate this problem in the
Integer Linear Programming (ILP) framework [5], as the following:

minimize
|C|∑
i=1

∑
{j|(i,j)∈A}

dijxij (5.10)

subject to

∑
{j|(i,j)∈A}

xij = 1, ∀i = 1, 2, · · · , |C| (5.11)

∑
{i|(i,j)∈A}

xij ≤ 1, ∀j = 1, 2, · · · , |P| (5.12)

xij ∈ {0, 1}, ∀i = 1, 2, · · · , |C|, ∀j = 1, 2, · · · , |P| (5.13)
∀(i, j), (i′, j′) ∈ A, i′ ∈MC(i)⇒ j′ /∈MP(j) (5.14)
∀(i, j), (i′, j′) ∈ A, j′ ∈MP(j)⇒ i′ /∈MC(i) (5.15)

where xij = 1 if a child-slot i is assigned to a parent-slot j, and xij = 0, otherwise. Con-
straint 5.11 requires that every child-slot i is assigned to one parent-slot, and Constraint
5.12 requires to ensure that each parent-slot can be assigned to at most one child-slot.
Constraint 5.14 mentions that if i and i′ are similar, i′ ∈ MC(i), and if i has already
assigned to a parent-slot j, then i′ cannot be assigned to a parent-slot j′, where j and j′
are similar. The last constraint is the same as Constraint 5.14, but from the parent-slots
perspective. In another word, these two last constraints say that we cannot create more
than one connection between a private node and a public node.

In the rest of this section, we first briefly sketch a possible centralized solution with the
auction algorithm [4, 5], and then we present a distributed model of the auction algorithm
to solve this problem at large scale.

5.4.1 Centralized solution
In our problem, |C| child-slots compete to be assigned to some parent-slots among the
set of |P| available parent-slots. Like ordinary auctions, the bidders, i.e., the child-slots,
progressively increase their bid for the objects, i.e., parent-slots, in a competitive process.

5.4. NAT TRAVERSAL MIDDLEWARE 81

A matching between a child-slot i and a parent-slot j is associated with a profit aij ,
and the goal of the auction is to maximize the total profit for all the matchings:

|C|∑
i=1

∑
j∈P

aijxij (5.16)

where xij = 1, if i is assigned to j, otherwise xij = 0, and aij is calculated as:

aij = 1
dij

(5.17)

As Equation 5.17 mentions, by decreasing the connection delay between i and j, dij ,
we achieve more profit, aij . Each parent-slot j is associated with a price pj , which is
zero in the beginning (while it is unassigned), and is increased in auction iterations after
accepting new bids from child-slots. A child-slot i measures the net profit, vij , of each
parent-slot j as the following:

vij = aij − pj (5.18)
The auction algorithm proceeds in iterations, and in each iteration it creates one

assignment S, such that the net profit of each connection under the assignment S is
maximized. In each iteration, the algorithm updates the price of all parent-slots in the
assignment S. If all the child-slots of an assignment S are assigned, we have a complete
assignment A, and the algorithm terminates. Otherwise, the algorithm starts the next
iteration by finding parent-slots that offers maximal net profit for unassigned child-slots.
Note that at the beginning of each iteration, the net profit of each connection (Equation
5.18) under the assignment S should be maximum.

The bidding and assignment phases of our auction algorithm are as follows:
• Bidding phase: In the bidding phase, each unassigned child-slot i under the as-

signment S finds the parent-slot j∗ that has the highest net profit:

vij∗ = max
j∈P−Q

vij (5.19)

where Q denotes the set of parent-slots that has been assigned to child-slots in the
similarity class of i, MC(i). It means that child-slot i cannot connect to parent-
slot j, where there has been another connection between child-slot a ∈ MC(i) and
parent-slot b ∈ MP(j). To measure the amount of the bid, the child-slot i finds
the second best parent-slot j′, such that j′ is not owned by the owner of j∗, i.e.,
j′ /∈MP(j∗). The second best net profit, wij′ , equals:

wij′ = max
j∈P−Q−MP (j∗)

vij (5.20)

Considering δij∗ = vij∗ − wij′ as the difference between the highest net profit and
the second one, the child-slot i raises the price of a preferred parent-slot j∗ by the
bidding increment δij∗ , and sends its bid, bij∗ , to j∗:

bij∗ = pj∗ + δij∗ (5.21)

82 CHAPTER 5. NAT-AWARE PEER SAMPLING

• Assignment phase: The parent-slot j, which receives the highest bid from i∗,
removes the connection to the child-slot i′ (if there was any connection to i′ in the
beginning of the iteration), and assigns to i∗, i.e., the connection (i∗, j) is added
to the current assignment S. The parent-slot j also updates its own price to the
received bid from the child-slot i∗, i.e., pj = bi∗j .

As we show in Section 2.3 the auction process will terminate, if δij > 0.

5.4.2 Distributed solution
Since the auction algorithm is centralized, it does not scale to many thousands of nodes.
In our distributed model, unlike the centralized implementations, we do not rely on a
central server with a global knowledge of all participants, and each node, as an auction
participant, has only partial information about the system.

Private nodes in this system compete to become children of public nodes that are closer
to them, and parents prefer close children nodes. Children proactively switch parents
when they get lower connection delay by changing their parents. Each private node q
calculates the connection delay to each public node p, (qp).delay, locally by measuring
the round trip time of a message exchange in each shuffling. As in Equation 5.17, we have
(qp).profit = 1

(qp).delay .
If a public node has an unused parent-slot, its price is zero, otherwise it is equal the

lowest profit it gains over its already connected children. For example, if public node p
has three parent-slots and three children with delays 2ms, 3ms and 4ms, the price of p is
1
4 = 0.25. Private nodes constantly try to increase their connection profits over all their
parent connections by competing for connections to the public nodes with a lower delay.

Private nodes place bids for parent-slots at the public nodes in their public views with
the highest net profit, e.g., closest nodes to them. Public nodes increase their price by
receiving new bids, and the more expensive a node is, the lower net profit it has. Thus,
a parent node, which had a high net profit in one iteration, turns out to be a low profit
node after receiving a number of bids. Hence, the seeking nodes will try to bid for other
nodes with a higher net profit. This implies that in an overlay with |C| child-slots, if there
is no churn in the system, eventually |C| distinct parent-slots receive at least one bid,
and consequently the algorithm terminates by assigning all the child-slots to parent-slots.
However, in a dynamic network, where nodes continuously join and leave the system, our
algorithm keeps running and optimizes the connections in the overlay.

Since the price of a public node with unassigned parent-slot is zero, the first bid for
a parent-slot will always win. It enables children to immediately connect to available
parent-slots. However, when all of a parent’s parent-slots are assigned, a bidding private
node with lower delay than the existing connection will win the parent-slot and the parent
will replace its child with the lower delay node. A child that has lost the parent-slot has
to discover new nodes and bid for their parent-slots.

To establish the parent-child connections, a private node q periodically checks through
FindParent (Algorithm 14), if it has a node p in its public view that (i) has a higher profit
(lower delay) than its existing parents, and (ii) the profit of connecting to p is more than
p’s price. For example, assume the delay between node q and its worst parent is 5ms,
and q finds two nodes a and b in its public view that have lower delays, for example 4ms,
which means that (qa).profit = (qb).profit = 1

4 = 0.25. Assume the price of a is 0.2,

5.4. NAT TRAVERSAL MIDDLEWARE 83

Algorithm 14 NAT traversal handlers
1: //Find better parents at private node q.
2: procedure FindParent 〈〉
3: z ← the lowest profit parent among this.parents
4: if this.childSlots has free entries then
5: (qz).profit← 0
6: end if
7: for all p in this.publicV iew do
8: if (qp).profit > (qz).profit and (qp).profit > p.price then
9: Send ParentRequest(qp.profit) to p

10: end if
11: end for
12: end procedure

13: // Handling the parent request from private node q at public node p.
14: upon event 〈ParentRequest | (qp).profit〉 from q
15: if this.parentSlots has free entries then
16: assign a parentSlot to q
17: Send ParentResponse(AssignAccepted) to q
18: else
19: if (qp).profit > p.price then
20: z ← the lowest profit child among this.children
21: assign a parentSlot to q
22: Send Release to z
23: Send ParentResponse(AssignAccepted) to q
24: else
25: Send ParentResponse(AssignRejected) to q
26: end if
27: end if
28: end event

29: // Handling the parent response from public node p at private node q.
30: upon event 〈ParentResponse | msg〉 from p
31: if msg is AssignAccepted then
32: if q.childSlot has free entries then
33: q.parents.add(p) . add p to the parent list
34: else
35: z ← the lowest net profit parent . the worst parent
36: if ((qp).profit− p.price) > ((qz).profit− z.price) then
37: q.parents.remove(z)
38: q.parents.add(p)
39: Send RemoveMeFromY ourChildren to z
40: else
41: Send RemoveMeFromY ourChildren to p
42: end if
43: end if
44: end if
45: end event

while the price of b is 0.5, thus, q sends its request only to a, since (qa).profit > a.price
and (qb).profit < b.price.

If q finds such a node, it sends a parenting request to it. When a public node p
receives a parenting request from node q, accepts it if has free parent-slots, otherwise, if
(qp).profit is greater than the price of p, p abandons its child that has the lowest profit
(highest delay), and accepts q as a new child. The disconnected node has to find a new
parent. If p’s price is greater than or equal to (qp).profit, p declines the request.

When a child node receives the acceptance message from a public node, it assigns one
of its child-slots to a parent-slot of the parent. However, since a private node may send

84 CHAPTER 5. NAT-AWARE PEER SAMPLING

more connection requests than its number of child-slots, it might receive more acceptance
messages than it needs. In this case, if the child has a free child-slot, it accepts the parent,
otherwise, it checks all its assigned parents and finds the one with the lowest profit or the
worst parent. If the profit of the connection to the worst parent is lower than the new
parent, the child node releases the connection to the worst parent and accepts the new
one, otherwise it ignores the received message.

5.5 Experiments

In this section, we evaluate the accuracy of our public-private estimation algorithm in
simulation and compare the performance of the Croupier and Gozar with Nylon [64],
the state-of-the-art performing NAT-friendly gossip-based PSS we found in the literature.
We use also Cyclon [63] as a baseline for comparison, where Cyclon experiments are exe-
cuted using only public nodes. Moreover, we show how our distributed auction algorithm
improves the connection latency to private nodes and compare it to random assignment.

5.5.1 Experimental setup
We implemented Croupier, Gozar, Nylon, and Cyclon on the Kompics platform [76].
Kompics provides a framework for building P2P protocols and a discrete event simulator
for simulating them using different bandwidth, latency and churn models. Our imple-
mentations of Cyclon and Nylon are based on the system descriptions in [63] and [64],
respectively. For a cleaner comparison with Nylon, all protocols use the same tail and
swapper policies for node selection and view merging, respectively.

In our experimental setup, for all four systems, the size of a node’s partial view is 10
entries, and the size of subset of the partial view sent in each view exchange is 5. The
gossiping round period for view exchange is set to one second. Latencies between nodes
are modeled on Internet latencies, using a latency map based on the King data-set [68].
Unless stated otherwise, we use a public-private ratio of 0.2, similar to that seen in existing
P2P systems [24, 100]. All experiments results are averaged over 5 runs. The evaluation
metrics for new nodes that join the system are not included until they have executed 2
rounds, giving them enough time to initialize their estimates.

5.5.2 Estimation algorithm evaluation
We measure the accuracy of our ratio estimation protocol using two error metrics: the
maximum approximation error and the average approximation error. Firstly, we define the
upper bound on the approximation error of any nodes in the system using the Kolmogorov-
Smirnov [96] metric. At each node i, the distance between the real ratio ω and the
estimated ratio E (ωi) is:

Err (i) = ‖ω − E (ωi) ‖ (5.22)

We measure the maximum error as the maximum error over the set of all nodes, N ,
in the system:

Errmax = arg max
i∈N

Err (i) (5.23)

5.5. EXPERIMENTS 85

 0.001

 0.01

 0 50 100 150 200 250

A
v
g

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

Time

α=10, χ=25
α=25, χ=50

α=100, χ=250

(a) Static ratio: average error.

 0.001

 0.01

 0.1

 0 50 100 150 200 250

M
a

x
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

Time

α=10,χ=25
α=25, χ=50

α=100, χ=250

(b) Static ratio: maximum error.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

A
v
g

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

Time

Public/Private Ratio
α=10, χ=25
α=25, χ=50

α=100, χ=250

(c) Dynamic ratio: average error.

 0.01

 0.1

 1

 0 50 100 150 200 250 300

M
a

x
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

Time

Public/Private Ratio
α=10,χ=25

α=25, χ=50
α=100, χ=250

(d) Dynamic ratio: maximum error.

Figure 5.1: Convergence to a static/dynamic public/private ratio for different values of α and γ.

We also measure the average error over all the nodes, which is:

Erravg =

∑
i∈N

Err (i)

|N | (5.24)

History window. In this experiment, we evaluate the accuracy of our public-private
ratio estimation using both a stable ratio and a dynamic ratio (where the ratio of public
to private nodes changes over time). Both experiments have 1000 public nodes and 4000
private nodes join the system following a Poisson distribution with an inter-arrival time of
50 and 12.5 milliseconds, respectively. We measure the average error and maximum error
while varying the size of the local history (α) and the neighbour history (γ).

Our experiments use three pairs of history window sizes: (i) small: α = 10 and γ = 25,
(ii) medium: α = 25 and γ = 50, and (iii) large: α = 100 and γ = 250. For the stable ratio,
in Figures 5.1a and 5.1b, we can see clearly that larger values of α and γ have a slower
convergence rate, but more accurate estimations. All 5000 nodes have joined the system
by time t = 51, and it takes roughly 100 rounds longer for the largest history windows
(α = 100, γ = 250) to converge on good estimates compared to the smallest history

86 CHAPTER 5. NAT-AWARE PEER SAMPLING

 0.001

 0.01

 0.1

 0 50 100 150 200

A
v
g

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

Time

50
100
500

1000
5000

(a) Average errors.

 0.01

 0.1

 1

 0 50 100 150 200

M
a

x
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

Time

50
100
500

1000
5000

(b) Maximum errors.

Figure 5.2: The effect of system size on the estimation algorithm for a stable ratio of 0.2 (α=25, and
γ=50).

windows (α = 10, γ = 25). The largest history window run converges to an average
error of 0.07% with a maximum error of 0.2%, while the smallest window converges to an
average error of 0.25% with a maximum error of 1.8%.

In Figures 5.1c and 5.1d, we observe the convergence rate and estimation accuracy for
a public-private ratio that grows slowly in size. We use the same scenario of joining 1000
public nodes and 4000 private nodes over the first 51 rounds, then waited 7 rounds, and
then added a new public node every 42ms. The actual ratio is 0.3 until time t = 58, then
the ratio rises at a constant rate to t = 72 to reach 0.33, whereupon the ratio remains at
0.33 until the end of the experiment run.

We can see here that for a dynamic public-private ratio the largest history windows
take a lot longer to converge on the new ratio, while the smallest history windows converge
quicker, but eventually with less accurate estimations when the ratio stabilizes again. From
t = 58 to t = 180, the smallest window has the lowest average error, while from t = 180
to t = 260 the medium-sized window has the lowest average error, then after t = 260,
the largest window converges closer to the real ratio. For a ratio that changes frequently
and by a large amount, we would need window sizes closer to our smaller window sizes,
but for more stable ratios medium or large-sized windows would have lower average error
and lower maximum errors. Unless stated otherwise, further experiments use the medium
history window sizes, α = 25 and γ = 50, as, for a real system, it would provide a
reasonable balance of good estimations and adaptability to a dynamic ratio.

Network size. In this experiment, we vary the number of nodes in the system to see
its effect on the estimation accuracy. We measure systems with 50, 100, 500, 1000, and
5000 nodes. In these experiments, public and private nodes public nodes join the system
following a Poisson distribution with an inter-arrival time of 50 and 12.5 milliseconds,
respectively.

In Figure 5.2, we can see that there is an increase in estimation accuracy with in-
creasing system size. For systems with 5000 nodes, average estimation error is only 0.2%,
while for systems with only 100 nodes it rises to 2.5%, rising again to 5% for systems with
only 50 nodes. Similarly, the maximum estimation error rises from 0.7% for 5000 nodes to
5.5% for 100 nodes, and to 9% for 50 nodes. In general, we can say that estimation accu-

5.5. EXPERIMENTS 87

 0.01

 0 50 100 150 200

A
v
g

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

Time

0.05
0.1
0.2

0.33
0.5
0.9

(a) Average errors.

 0.01

 0.1

 0 50 100 150 200

M
a

x
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

Time

0.05
0.1
0.2

0.33
0.5
0.9

(b) Maximum errors.

Figure 5.3: Estimation accuracy for different ratios of public to private nodes.

 0.001

 0.008

 0 50 100 150 200 250

A
v
g

 E
s
ti
m

a
ti
o

n
 E

rr
o

r

Time

0.1%
1.0%
2.5%
5.0%

(a) Average error.

 0.01

 0 50 100 150 200 250

M
a

x
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

Time

0.1%
1.0%
2.5%
5.0%

(b) Maximum error.

Figure 5.4: Effect of churn on the estimation algorithm for a stable ratio (α=25, and γ=50). Churn
started at time t = 61.

racy improves rapidly up to systems with several hundred nodes, and then only becomes
gradually better thereafter. For example, the change in estimation accuracy from 1000 to
5000 nodes is negligible - an improvement in average estimation error of only 0.15% and
no difference in maximum estimation error.

Different ratios. Different P2P systems will have different ratios of public to private
nodes, so here we investigate the accuracy of estimations for different stable ratios of
public to private nodes, with experiments of 1000 nodes. We measure the average and
maximum estimation errors for ratios of 5%, 10%, 20%, 33%, 50%, 80%. We concentrate
our measurements more on systems with smaller relative numbers of public nodes, as this
is commonly the case in real-world systems.

As we can see in Figure 5.3, there is no significant difference in the average estimation
error for all ratios. We do notice, however, for only 5% public nodes that the maximum
error becomes significantly higher (5%) and constant. This is the result of an outlier private
node that happens not to receive enough different estimates from public to improve its

88 CHAPTER 5. NAT-AWARE PEER SAMPLING

 0

 50

 100

 150

 200

 0 5 10 15 20 25

#
 o

f
n

o
d

e
s

Indegree

croupier
gozar
nylon

cyclon

(a) In-degree distribution.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

A
v
g

.
p

a
th

 l
e

n
g

th

Time (s)

croupier
gozar
nylon

cyclon

(b) Avg. path length.

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250

C
lu

s
te

ri
n

g
 c

o
e

ff
ic

e
in

t

Time (s)

croupier
gozar
nylon

cyclon

(c) Clustering co-efficient.

Figure 5.5: Randomness properties.

local estimation. So, for systems with fewer than 5% public nodes, we can expect that a
few private nodes may have poor ratio estimates.

Churn. Node membership in large-scale distributed systems is typically subject to con-
tinuous change, in a process called churn. We model churn by replacing a fixed fraction
of randomly selected public and private nodes with new nodes at each gossiping round,
but keeping the ratio of public to private nodes stable. The churn rate is set to a level
common for P2P systems [95]: assuming a gossip round-time of one second and a mean
session duration of 15 minutes, approximately 0.1% of nodes leave the system per second
and rejoin immediately as newly initialized nodes. Figure 5.4 shows the average error and
maximum error, respectively, for ratio estimation under churn. As can be seen, there is
no significant effect of churn of up to 5% on the estimation algorithm. This rate of churn
is 50 times higher than rates measured in [95].

5.5.3 Peer sampling evaluation
In this subsection, we evaluate the performance of the PSS, which builds on the estimation
protocol for its correct functioning.

5.5. EXPERIMENTS 89

 0

 50

 100

 150

 200

 250

 300

 350

 400

public nodes private nodes

a
v
g

 l
o

a
d

 p
e

r
n

o
d

e
 (

B
/s

)

croupier
gozar
nylon

(a) Protocol overhead relative to Cyclon.

 50

 60

 70

 80

 90

 100

40 50 60 70 80 90

B
ig

g
e

s
t

c
lu

s
te

r
s
iz

e
 (

%
)

Percentage of node failure (%)

croupier
gozar
nylon

cyclon

(b) Connectivity after catastrophic failure.

Figure 5.6: Protocol overhead.

PSS randomness. Here, we compare the randomness of the PSS’ of Croupier with
Gozar and Nylon. Cyclon is used as a baseline for true randomness. In the first ex-
periment we measure the in-degree distribution over the nodes in the all four systems.
Figure 5.5a shows the in-degree distribution of nodes after 250 rounds (the out-degree of
all nodes is 10). In a uniformly random system, we expect that the in-degree is distributed
uniformly among all nodes. Cyclon shows this behaviour as the node in-degree is almost
distributed uniformly among nodes [63]. We can see the same distribution in Croupier,
as well as, in Gozar and Nylon - their in-degree distributions are very close to Cyclon.

In Figure 5.5b, we compare the average path length of the three systems, with Cyclon
as a baseline. The path length for two nodes is measured as the minimum number of hops
between two nodes, and the average path length is the average of all path lengths between
all nodes in the system. Figure 5.5b also shows the average path length for the system
in different rounds. Here, we can see the average path length of Croupier, Gozar and
Nylon track Cyclon very closely. As we can see, in the first few rounds, the path length of
Gozar is high, as this is the time that nodes need to find their partners used for relaying.

Finally, we compare the clustering coefficient of the systems. A node’s clustering
coefficient shows at what level the neighbours of a node are also neighbours of each other.
For a complete graph, it is 1, and for a tree, where there is the no connection between
any two neighbours of a node, it is 0. We calculate the average clustering coefficient
as the average across all nodes in the system. Figure 5.5c shows the evolution of the
clustering coefficient of the constructed overlay by each system. We can see that Croupier
has smaller clustering coefficient than Gozar, Nylon and Cyclon. Our understanding of
why Croupier has a smaller clustering coefficient is as follows. Since a private node
in Croupier exchanges its view only with a public node, two private nodes never have
a chance to exchange their neighbour list directly. Therefore, the probability that two
private node establish a connection with each other’s neighbours decreases. Since in our
experiments 80% of nodes are private nodes, the average clustering coefficient in the
overlay also decreases.

Protocol overhead. An important objective for any PSS is to minimize communication
costs and to bound the extra overhead on public nodes (and achieve fairness). The network
traffic exchanged by a node in Croupier is proportional to the rate of gossiping, as

90 CHAPTER 5. NAT-AWARE PEER SAMPLING

message sizes are bounded. Every node, both public and private, send one message per
round. Private nodes receive one message per round (the response to the message they
sent). On average, every public node receives one message from a public node per round,
one response to a message they sent per round, and n messages from private nodes per
round (where n is the ratio of private nodes to public nodes).

In this experiment, we set the local history α to 25, and the neighbour history length γ
to 100. As in the other experiments, we bounded the number of estimations piggybacked
on shuffle requests to 10. Each estimation required 5 bytes: two bytes for the node
identifier, one byte each for the public and private counts, and one for the timestamps.
The steady-state overhead is shown in Figure 5.6a. As we can see in Figure 5.6a, the
public node overhead in Croupier is less than that of Gozar and Nylon. Interestingly,
the overhead of private nodes, which are 80% of the nodes, is less than half compared
to Gozar, and less than one fourth compared to Nylon. As such, we conclude that the
overhead on public nodes is not excessive, and our goal of fairness to public nodes has
been achieved.

Connectivity. We finally evaluate the behaviour of Croupier and Gozar if high num-
bers of nodes leave the system or crash at a single instant in time. We measure the size
of biggest cluster after a catastrophic failure. Figure 5.6b shows the size of biggest cluster
for Croupier, Gozar and Nylon for varying percentages of private nodes, when varying
numbers of nodes fail. We can see that Croupier is more resilient to node failure than
both Gozar and Nylon. For example, in the case of 80% private nodes, when 90% of the
nodes fail, the biggest cluster still covers more than 85% of the nodes, while it covers 57%
and 53% of nodes in Gozar and Nylon, respectively.

5.5.4 NAT traversal evaluation
Here, we compare the performance of our auction algorithm in establishing parental con-
nection between public and private nodes with random assignment. There are 5000 nodes
in the system, such that 20% of nodes are public. We have done this experiment in two
scenarios: (i) join only scenario, where the nodes join the system with an inter-arrival
time of 10 milliseconds, and (ii) the churn scenario, where 2000 public nodes join and
leave with an inter-arrival time of 10 milliseconds from time t = 150, and afterwards no
more changes happen in the system. Each public node can accept up to 25 private nodes
as children, and for private nodes we consider two cases, where they connect to one parent,
and four parents.

In this experiment, we first evaluate the parent-child round trip time (RTT) over time.
Figure 5.7 shows that how RTT between public and private nodes decreases, when we use
the auction algorithm in the system, while when the private nodes choose their parents at
random, no improvement happens in RTT. As we see, when private nodes have only one
parent, their RTT is less than when they have four parents. What we show as RTT for
private nodes with four parents is the average of RTT to all four parents. That is why it
is a bit higher compare to the case when private nodes have only one parent.

We see the total connection latency to private nodes in Figure 5.8. The connection
latency is the time to make a connection to all the private nodes in the system. To measure
it, each node finds the average time to establish connection to all the nodes in its private
view, and then we sum up all these averages. We do not count unreachable node in this
value. We see that after finding a stable parental relation (t = 125 in join, and t = 200

5.5. EXPERIMENTS 91

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

P
a

re
n

t-
C

h
ild

 R
T

T
 (

m
s
)

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(a) Join.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

P
a

re
n

t-
C

h
ild

 R
T

T
 (

m
s
)

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(b) Churn.

Figure 5.7: The private-parent RTT latency in the auction algorithm and random assignment.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

A
v
g

.
la

te
n

c
y
 (

s
)

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(a) Join.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

A
v
g

.
la

te
n

c
y
 (

s
)

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(b) Churn.

Figure 5.8: The connection latency to private nodes in the auction algorithm and random assignment.

in churn), the latency becomes constant. In the churn scenario we see that the latency
decreases during the churn period. That is why in this period the number of unreachable
private nodes increases (Figure 5.10b), and therefore smaller number of nodes are used in
our measurement. Again, here we see that the latency in the auction model is much less
than the random assignment.

We see in Figure 5.9a, there is a high number of parent switching happens in the
beginning, but while private nodes find appropriate parents, the system converges to a
more stable situation and the number of changes drops to zero. In the churn scenario
(Figure 5.9b) we see almost the same behaviour, because in this scenario, after a while
public nodes stop joining/leaving and therefore private nodes can find their parents prop-
erly. As we expect, the number of parent switching in random assignment is much less
than the auction model, since private nodes do not change their parents. Since we count
all the parent assignments (not only switching), the value seen in Figures 5.9a and 5.9b
are greater than zero in the random assignment.

Finally, Figure 5.10 shows the number of unreachable private nodes. Unreachable

92 CHAPTER 5. NAT-AWARE PEER SAMPLING

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500

#
 o

f
p

a
re

n
t

c
h

a
n

g
e

s

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(a) Join.

 0

 2000

 4000

 6000

 8000

 10000

 0 100 200 300 400 500

#
 o

f
p

a
re

n
t

c
h

a
n

g
e

s

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(b) Churn.

Figure 5.9: The number of parent switching in the auction algorithm and random assignment.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500

U
n

re
a

c
h

a
b

le
 n

o
d

e
s

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(a) Join.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500

U
n

re
a

c
h

a
b

le
 n

o
d

e
s

Time (s)

auction - 1 parent
random - 1 parent

auction - 4 parents
random - 4 parents

(b) Churn.

Figure 5.10: The total number of unreachable private nodes in the auction algorithm and random
assignment.

private nodes are those private nodes that other nodes cannot establish connection to them
using the parent address in their node descriptors. The reason behind it is that a node p
may have an old node descriptor of a private node q and q’parents in its private view, while
q has updated its parents. Hence, p fails to make a connection using q’s old descriptor. In
both join and churn scenarios, we see the number of unsuccessful connections decreases
over time. However, Figure 5.10b shows that during the churn period, the number of
unreachable nodes increases, because the known parents for a number of private nodes
may have failed. Here, we see that the number of unreachable private nodes in the random
assignment is less than the auction algorithm. That is because in the auction model,
private nodes change their parents more often, and it increases the probability that nodes
use their old parents to make connection to them.

Chapter 6

Conclusions

In this thesis, we focused on four problems in P2P live streaming systems: (i) designing
and implementing a P2P live streaming system that guarantees the quality of service
(QoS) in the presence of dynamism in the network, (ii) resolving the free-riding problem
and incentivizing nodes to participate in media distribution, (iii) guaranteeing QoS at end
users in case of bottlenecks in the available resources in the overlay, and (iv) overcoming
the NAT problem in the Internet. We answered to these questions by presenting a number
of algorithms and systems:

Sepidar and Glive. Within our streaming systems, we have proposed a distributed mar-
ket model to construct a content distribution overlay, such that (i) nodes with increasing
upload bandwidth are located closer to the media source, and (ii) nodes with similar up-
load bandwidth become neighbours. We use this model to build a multiple-tree overlay
in Sepidar, as well as a mesh overlay in Glive. In the former solutions the data blocks
are pushed through the trees, while in the latter, nodes pull data from their neighbours
in the mesh.

We assume each node can have a number upload connections and a number of down-
load connections. To be able to distribute data blocks to all the nodes, the download
connections of nodes should be assigned to other nodes’ upload connections. We model
this problem as an assignment problem. There exist centralized solutions for this prob-
lem, e.g., the auction algorithm, which are not feasible in large and dynamic networks
with real-time constraints. An alternative decentralized implementation of the auction
algorithm is based on sampling from a random overlay, but it has a slow convergence
time. Therefore, we address the problem by using the gossip-generated Gradient overlay
to provide nodes with a partial view of other nodes that have a similar upload bandwidth
or slightly higher.

We evaluate Sepidar and Glive in simulation, and compare their performance with
the state-of-the-art NewCoolstreaming. We show that our solutions provide better play-
back continuity and lower playback latency than that of NewCoolstreaming in different
scenarios. In addition, we compare Sepidar with Glive to highlight the differences of the
multiple-tree and the mesh overlays. We observe that the mesh-based overlay outperforms
the multiple-tree overlay in all the scenarios. Moreover, we compare the convergence time
of our systems, Sepidar and Glive, when the node samples are given by the Gradient

93

94 CHAPTER 6. CONCLUSIONS

overlay rather than a random network. The experiment results show that the overlays
converge faster when our market model works on top of the Gradient overlay. Finally, we
evaluate Sepidar and Glive performance in different free-rider settings, and examine the
effectiveness of our mechanism for addressing the free-riding problem.

Clive. The main contribution of Clive is a P2P live streaming system that integrates
cloud resources (helpers) whenever the nodes resources are not sufficient to guarantee a
predefined QoS. Two types of helpers are used in Clive, (i) active helper (AH), which
is an autonomous virtual machine, e.g., Amazon EC2, that participates in the streaming
protocol, and (ii) passive helper (PH), which is a storage service, e.g., Amazon S3, that
provides content on demand. Clive estimates the available capacity in the system through
a gossip-based aggregation protocol and provisions the required resources from the cloud
to guarantee a given level of QoS at low cost.

We implemented a prototype Clive system based on Amazon’s services like EC2, and
S3. In such approach, rented cloud resources (helpers) are added on demand to the overlay,
to increase the amount of total available bandwidth and the probability of receiving the
video on time. Hence, the problem to be solved becomes minimizing the economical cost,
provided that a set of constraints on QoS is satisfied. To demonstrate the feasibility
of Clive, we performed extensive simulations and evaluate our system using large scale
experiments under dynamic realistic settings. We show that we can save up to 45% of the
cost by choosing the right number of AHs compared to only using a PH to guarantee the
predefined QoS.

Croupier and Gozar. The main contribution of Croupier and Gozar is a gossip-
based peer sampling service (PSS) provides each node with a small list of live nodes in
a system. In the Internet, however, most of existing gossiping protocols break down,
as nodes cannot establish direct connections to nodes behind NATs. Moreover, existing
NAT traversal algorithms for establishing connectivity to private nodes rely on third party
servers running at well-known, public IP addresses.

Gozar is a NAT-friendly gossip-based peer sampling service that also provides a
distributed NAT traversal service to clients of the PSS. Public nodes are leveraged to
provide both the relaying and hole punching services. Relaying is only used for gossiping
to private nodes, and is preferred to hole punching or routing through existing open
connections (as done in Nylon), as relaying has lower connection latency, enabling a faster
gossiping cycle, and the messages relayed are small, thus, adding only low overhead to
public nodes. Relaying and hole punching services provided by public nodes are enabled
by every private node partnering with a small number of (redundant) public nodes and
keeping a connection open to them. We extended node descriptors for private nodes to
include the addresses of their partners, so when a node wishes to send a message to a
private node (through relaying) or establish a direct connection with the private node
through hole punching, it sends a relay or connection message to one (or more) of the
private node’s partners.

Our second contribution in this problem area is Croupier, a NAT-friendly gossip-
based peer sampling service that is built without relaying. Public nodes act as Croupiers,
shuffling views amongst one another as well as on behalf on private nodes. Our main
insight was to partition a node’s view into two parts: a public view and a private view.
This decision, however, necessitated that we could identify a node as being either public
or private, and that nodes have a local estimation of the ratio of public to private nodes

95

in the system. To solve these problems, we presented a minimal, distributed algorithm for
the identification of a node’s NAT type, as well a protocol to estimate the public/private
ratio that piggybacks on existing Croupier shuffle messages.

Finally, we presented a NAT traversal middleware on top of Croupier PSS that enable
nodes to establish connections to private nodes. We also explained how our distributed
auction algorithm can reduce the connection latency to private nodes in our NAT traversal
middleware. We showed in simulation that Gozar and Croupier preserve the random-
ness properties of a gossip-based peer sampling service. We showed the robustness of both
systems when a large fraction of nodes reside behind NATs and also in catastrophic failure
scenarios. Moreover, we showed that Croupier’s overhead is less than Gozar and both
are an improvement on existing NAT-aware PSS’. We also showed that the extra overhead
incurred by public nodes in Croupier is acceptable for the most applications.

Future work
In the current implementation of our streaming overlays, we consider upload bandwidth of
nodes as the only influencing parameter in the overlay construction. We believe this model
can be extended to include other important node characteristics, such as node uptime,
load, reputation, and locality. Furthermore, in our streaming systems, we did not address
the problem of nodes colluding to receive the video stream for free. It would be interesting
to solve the free-rider problem, where a group of nodes collude to receive data without
helping in distributing it.

Another future research direction is to integrate our existing streaming applications
with Gozar and Croupier and deploy them in the open Internet. Moreover, we are
currently implementing a prototype of Clive system based on Amazon’s services like
EC2, and S3. It would also be interesting to have a real implementation of Clive in the
Internet, and evaluate how the AH/PH combination affects the total cost.

Bibliography

[1] A. Oreskovic, “Youtube video views hit 4 billion per day.”
http://www.reuters.com/article/2012/01/23/us-google-youtube-
idUSTRE80M0TS20120123, [Online; accessed 20-Nov-2012].

[2] A. Payberah, J. Dowling, F. Rahimian, and H. Haridi, “Sepidar: Incentivized
market-based p2p live-streaming on the gradient overlay network,” in Proc. of
ISM’10, pp. 1–8, IEEE, 2010.

[3] A. Payberah, J. Dowling, and S. Haridi, “Glive: The gradient overlay as a market
maker for mesh-based p2p live streaming,” in Proc. of ISPDC’11, pp. 153–162,
IEEE, 2011.

[4] D. Bertsekas, “The auction algorithm: a distributed relaxation method for the as-
signment problem,” Annals of Operations Research, vol. 14, no. 1, pp. 105–123,
1988.

[5] D. Bertsekas, Network optimization: continuous and discrete models. Athena Sci-
entific Belmont, 1998.

[6] A. Payberah, J. Dowling, F. Rahimian, and S. Haridi, “Distributed optimization of
p2p live streaming overlays,” Springer Computing, Special Issue on Extreme Dis-
tributed Systems: From Large Scale to Complexity, vol. 94, no. 8, pp. 621–647, 2012.

[7] J. Sacha, B. Biskupski, D. Dahlem, R. Cunningham, R. Meier, J. Dowling, and
M. Haahr, “Decentralizing a service-oriented architecture,” Peer-to-Peer Networking
and Applications (PPNA), vol. 3, no. 4, pp. 323–350, 2010.

[8] J. Sacha, J. Dowling, R. Cunningham, and R. Meier, “Discovery of stable peers in
a self-organizing peer-to-peer gradient topology.,” in Proc. of DAIS’06, pp. 70–83,
Springer, 2006.

[9] A. Payberah, J. Dowling, and S. Haridi, “Gozar: Nat-friendly peer sampling with
one-hop distributed nat traversal,” in Proc. of DAIS’11, pp. 1–14, Springer, 2011.

[10] J. Dowling and A. Payberah, “Shuffling with a croupier: Nat-aware peer-sampling,”
in Proc. of ICDCS’12, pp. 102–111, IEEE, 2012.

[11] M. Jelasity, S. Voulgaris, R. Guerraoui, A. Kermarrec, and M. van Steen, “Gossip-
based peer sampling,” ACM Transaction on Computer System (TOCS), vol. 25,
no. 3, 2007.

97

98 BIBLIOGRAPHY

[12] W. Yiu, X. Jin, and S. Chan, “Challenges and approaches in large-scale p2p media
streaming,” MultiMedia, vol. 14, no. 2, pp. 50–59, 2007.

[13] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distributing stream-
ing media content using cooperative networking,” in Proc. of NOSSDAV’02, pp. 177–
186, ACM, 2002.

[14] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “Directstream: A directory-based
peer-to-peer video streaming service,” Computer Communications, vol. 31, no. 3,
pp. 520–536, 2008.

[15] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer
multicast,” in Proc. of SIGCOMM’02, pp. 205–217, ACM, 2002.

[16] D. Tran, K. Hua, and T. Do, “Zigzag: An efficient peer-to-peer scheme for media
streaming,” in Proc. of INFOCOM’03, pp. 1283–1292, IEEE, 2003.

[17] A. Gong, G. Ding, Q. Dai, and C. Lin, “Bulktree: An overlay network architecture
for live media streaming,” Journal of Zhejiang University-Science A, vol. 7, pp. 125–
130, 2006.

[18] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in Proc. of
P2P’01, pp. 99–100, IEEE, 2001.

[19] X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “Gnustream: a p2p media streaming
system prototype,” in Proc. of ICME’03, pp. II–325, IEEE, 2003.

[20] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” ACM SIGCOMM
Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[21] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems,” in Proc. of Middleware’01, pp. 329–
350, Springer, 2001.

[22] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Split-
stream: high-bandwidth multicast in cooperative environments,” in ACM SIGOPS
Operating Systems Review, pp. 298–313, ACM, 2003.

[23] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Push-to-pull peer-to-peer live
streaming,” Distributed Computing, pp. 388–402, 2007.

[24] B. Li, S. Xie, Y. Qu, G. Keung, C. Lin, J. Liu, and X. Zhang, “Inside the new
coolstreaming: Principles, measurements and performance implications,” in Proc.
of INFOCOM’08, pp. 1031–1039, IEEE, 2008.

[25] X. Zhang, J. Liu, B. Li, and Y. Yum, “Coolstreaming/donet: a data-driven overlay
network for peer-to-peer live media streaming,” in Proc. of INFOCOM’05, pp. 2102–
2111, IEEE, 2005.

[26] F. Pianese, D. Perino, J. Keller, and E. Biersack, “Pulse: an adaptive, incentive-
based, unstruct@inproceedingsured p2p live streaming system,” IEEE Transaction
on Multimedia, vol. 9, no. 8, pp. 1645–1660, 2007.

BIBLIOGRAPHY 99

[27] A. Payberah, J. Dowling, F. Rahimian, and S. Haridi, “gradientv: Market-based p2p
live media streaming on the gradient overlay,” in Proc. of DAIS’10, pp. 212–225,
Springer, 2010.

[28] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, and S. Traverso, “Qoe in pull based
p2p-tv systems: Overlay topology design tradeoffs,” in Proc. of P2P’10, pp. 1–10,
IEEE, 2010.

[29] K. Park, S. Pack, and T. Kwon, “Climber: An incentive-based resilient peer-to-peer
system for live streaming services,” in Proc. of IPTPS’08, 2008.

[30] S. Jarvis, G. Tan, D. Spooner, and G. Nudd, “Constructing reliable and efficient
overlays for p2p live media streaming,” International Journal of Simulation and
Process Modelling (IJSPM), vol. 7, no. 2, pp. 54–62, 2006.

[31] J. Mol, D. Epema, and H. Sips, “The orchard algorithm: Building multicast trees
for p2p video multicasting without free-riding,” IEEE Transaction on Multimedia,
vol. 9, no. 8, pp. 1593–1604, 2007.

[32] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous un-
structured tree-based peer-to-peer multicast,” in Proc. of ICNP’06, pp. 2–11, IEEE,
2006.

[33] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A comparative study
of live p2p streaming approaches,” in Proc. of INFOCOM’07, pp. 1424–1432, IEEE,
2007.

[34] D. Frey, R. Guerraoui, A. Kermarrec, and M. Monod, “Boosting gossip for live
streaming,” in Proc. of P2P’10, pp. 1–10, IEEE, 2010.

[35] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr, “Chainsaw:
Eliminating trees from overlay multicast,” Peer-to-peer systems IV, pp. 127–140,
2005.

[36] S. Asaduzzaman, Y. Qiao, and G. Bochmann, “Cliquestream: an efficient and fault-
resilient live streaming network on a clustered peer-to-peer overlay,” in Proc. of
P2P’08, pp. 269–278, IEEE, 2008.

[37] F. Wang, Y. Xiong, and J. Liu, “mtreebone: A collaborative tree-mesh overlay net-
work for multicast video streaming,” IEEE Transaction on Parallel and Distributed
Systems (TPDS), vol. 21, no. 3, pp. 379–392, 2010.

[38] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-based
streaming,” IEEE/ACM Transaction on Networking, vol. 17, no. 4, pp. 1052–1065,
2009.

[39] B. Chang, Y. Shi, and N. Zhang, “Hymonet: a peer-to-peer hybrid multicast overlay
network for efficient live media streaming,” in Proc. of AINA’06, vol. 1, pp. 6–pp,
IEEE, 2006.

[40] M. Hefeeda, A. Habib, D. Xu, B. Bhargava, and B. Botev, “Collectcast: A peer-to-
peer service for media streaming,” Multimedia Systems, vol. 11, no. 1, pp. 68–81,
2005.

100 BIBLIOGRAPHY

[41] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “Promise: peer-to-peer
media streaming using collectcast,” in Proc. of ICMR’03, pp. 45–54, ACM, 2003.

[42] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High bandwidth data
dissemination using an overlay mesh,” in Proc. of SOSP’03, pp. 282–297, ACM,
2003.

[43] M. Zhang, Y. Tang, L. Zhao, J. Luo, and S. Yang, “Gridmedia: A multi-sender
based peer-to-peer multicast system for video streaming,” in Proc. of ICME’05,
pp. 614–617, IEEE, 2005.

[44] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: Enhancing bittorrent for
supporting streaming applications,” in Proc. of INFOCOM’06, pp. 1–6, IEEE, 2006.

[45] J. Liang and K. Nahrstedt, “Dagstream: Locality aware and failure resilient peer-to-
peer streaming,” in Proc. of Electronic Imaging, pp. 60710L–60710L, International
Society for Optics and Photonics, 2006.

[46] X. Su and S. Dhaliwal, “Incentive mechanisms in p2p media streaming systems,”
Internet Computing, vol. 14, no. 5, pp. 74–81, 2010.

[47] M. Karakaya, I. Korpeoglu, and O. Ulusoy, “Free riding in peer-to-peer networks,”
Internet Computing, vol. 13, no. 2, pp. 92–98, 2009.

[48] G. Tan and S. Jarvis, “A payment-based incentive and service differentiation scheme
for peer-to-peer streaming broadcast,” IEEE Transaction on Parallel and Distributed
Systems (TPDS), vol. 19, no. 7, pp. 940–953, 2008.

[49] C. Buragohain, D. Agrawal, and S. Suri, “A game theoretic framework for incentives
in p2p systems,” in Proc. of P2P’03, pp. 48–56, IEEE, 2003.

[50] R. Ma, S. Lee, J. Lui, and D. Yau, “Incentive and service differentiation in p2p net-
works: a game theoretic approach,” IEEE/ACM Transaction on Networking (TON),
vol. 14, no. 5, pp. 978–991, 2006.

[51] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. of Economics of
Peer-to-Peer systems, vol. 6, pp. 68–72, 2003.

[52] M. Meulpolder, J. Pouwelse, D. Epema, and H. Sips, “Bartercast: A practical ap-
proach to prevent lazy freeriding in p2p networks,” in Proc. of IPDPS’09, pp. 1–8,
IEEE, 2009.

[53] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for rep-
utation management in p2p networks,” in Proc. of WWW’03, pp. 640–651, ACM,
2003.

[54] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sips, “Give-to-get: free-
riding resilient video-on-demand in p2p systems,” in Electronic Imaging, pp. 681804–
681804, International Society for Optics and Photonics, 2008.

[55] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin, “Bar
gossip,” in Proc. of OSDI’06, pp. 191–204, USENIX Association, 2006.

[56] P. Eugster, R. Guerraoui, S. Handurukande, P. Kouznetsov, and A. Kermarrec,
“Lightweight probabilistic broadcast,” ACM Transaction on Computer Systems
(TOCS), vol. 21, no. 4, pp. 341–374, 2003.

BIBLIOGRAPHY 101

[57] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation in large
dynamic networks,” ACM Transaction on Computer Systems (TOCS), vol. 23, no. 3,
pp. 219–252, 2005.

[58] M. Jelasity, A. Montresor, and O. Babaoglu, “T-man: Gossip-based fast overlay
topology construction,” Computer Networks, vol. 53, no. 13, pp. 2321–2339, 2009.

[59] R. Baldoni, M. Platania, L. Querzoni, and S. Scipioni, “Practical uniform peer
sampling under churn,” in Proc. of ISPDC’10, pp. 93–100, IEEE, 2010.

[60] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms: Byzan-
tine resilient random membership sampling,” Computer Networks, vol. 53, no. 13,
pp. 2340–2359, 2009.

[61] A. Ganesh, A. Kermarrec, and L. Massoulié, “Peer-to-peer membership management
for gossip-based protocols,” IEEE Transactions on Computers (TC), vol. 52, no. 2,
pp. 139–149, 2003.

[62] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation in large overlay
networks,” in Proc. of ICDCS’04, pp. 102–109, IEEE, 2004.

[63] S. Voulgaris, D. Gavidia, and M. Van Steen, “Cyclon: Inexpensive membership
management for unstructured p2p overlays,” Journal of Network and Systems Man-
agement (JNSM), vol. 13, no. 2, pp. 197–217, 2005.

[64] A. Kermarrec, A. Pace, V. Quema, and V. Schiavoni, “Nat-resilient gossip peer
sampling,” in Proc. of ICDCS’09, pp. 360–367, IEEE, 2009.

[65] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal utilities for
nat (stun),” 2008.

[66] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal using relays around nat (turn):
Relay extensions to session traversal utilities for nat (stun),” 2010.

[67] N. Drost, E. Ogston, R. van Nieuwpoort, and H. Bal, “Arrg: real-world gossiping,”
in Proc. of HPDC’07, pp. 147–158, ACM, 2007.

[68] K. Gummadi, S. Saroiu, and S. Gribble, “King: Estimating latency between arbi-
trary internet end hosts,” in Proc. of IMC’02, pp. 5–18, ACM, 2002.

[69] J. Leitão, R. van Renesse, and L. Rodrigues, “Balancing gossip exchanges in net-
works with firewalls,” in Proc. of IPTPS’10, pp. 7–7, USENIX, 2010.

[70] C. Vasconcelos and B. Rosenhahn, “Bipartite graph matching computation on gpu,”
in Proc. of EMMCVPR’09, pp. 42–55, Springer, 2009.

[71] A. Datta, I. Stoica, and M. Franklin, “Lagover: latency gradated overlays,” in Proc.
of ICDCS’07, pp. 13–13, IEEE, 2007.

[72] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research
Logistic Quarterly,, vol. 2, no. 1-2, pp. 83–97, 1955.

[73] B. Biskupski, M. Schiely, P. Felber, and R. Meier, “Tree-based analysis of mesh
overlays for peer-to-peer streaming,” in Proc. of DAIS’08, pp. 126–139, Springer,
2008.

102 BIBLIOGRAPHY

[74] N. Carlsson and D. Eager, “Peer-assisted on-demand streaming of stored media using
bittorrent-like protocols,” in Proc. of NETWORKING’07, pp. 570–581, Springer,
2007.

[75] B. Zhao, J. Lui, and D. Chiu, “Exploring the optimal chunk selection policy for
data-driven p2p streaming systems,” in Proc. of P2P’09, pp. 271–280, IEEE, 2009.

[76] C. Arad, J. Dowling, and S. Haridi, “Developing, simulating, and deploying peer-
to-peer systems using the kompics component model,” in Proc. of COMSWARE’09,
p. 16, ACM, 2009.

[77] C. Arad, J. Dowling, and S. Haridi, “Message-passing concurrency for scalable,
stateful, reconfigurable middleware,” Proc. of Middleware’12, pp. 208–228, 2012.

[78] Y. Lu, B. Fallica, F. Kuipers, R. Kooij, and P. Mieghem, “Assessing the quality of
experience of sopcast,” International Journal of Internet Protocol Technology, vol. 4,
no. 1, pp. 11–23, 2009.

[79] R. Kumar and K. Ross, “Peer-assisted file distribution: The minimum distribution
time,” in Proc. of HOTWEB’06, pp. 1–11, IEEE, 2006.

[80] R. Sweha, V. Ishakian, and A. Bestavros, “Angels in the cloud: A peer-assisted
bulk-synchronous content distribution service,” in Proc. of CLOUD’11, pp. 97–104,
IEEE, 2011.

[81] R. Sweha, V. Ishakian, and A. Bestavros, “Angelcast: cloud-based peer-assisted live
streaming using optimized multi-tree construction,” in Proc. of MMsys’12, pp. 191–
202, ACM, 2012.

[82] A. Montresor and L. Abeni, “Cloudy weather for p2p, with a chance of gossip,” in
Proc. of P2P’11, pp. 250–259, IEEE, 2011.

[83] Y. Wu, C. Wu, B. Li, X. Qiu, and F. Lau, “Cloudmedia: When cloud on demand
meets video on demand,” in Proc. of ICDCS’11, pp. 268–277, IEEE, 2011.

[84] X. Jin and Y. Kwok, “Cloud assisted p2p media streaming for bandwidth constrained
mobile subscribers,” in Proc. of ICPADS’10, pp. 800–805, IEEE, 2010.

[85] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibility of sup-
porting large-scale live streaming applications with dynamic application end-points,”
in Proc. of SIGCOMM’04, pp. 107–120, ACM, 2004.

[86] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live streaming work-
loads on the internet,” in Proc. of IMC’04, pp. 41–54, ACM, 2004.

[87] A. Payberah, H. Kavalionak, V. Kumaresan, A. Montresor, and S. Haridi, “Clive:
Cloud-assisted p2p live streaming,” in Proc. of P2P’12, pp. 79–90, IEEE, 2012.

[88] A. Montresor and A. Ghodsi, “Towards robust peer counting,” in Proc. of P2P’09,
pp. 143–146, IEEE, 2009.

[89] “Amazon elastic compute cloud (Amazon EC2).” http://aws.amazon.com/ec2/,
[Online; accessed 20-Nov-2012].

[90] “Amazon simple storage service (Amazon S3).” http://aws.amazon.com/s3/, [On-
line; accessed 20-Nov-2012].

BIBLIOGRAPHY 103

[91] S. Goel and R. Buyya, “Data replication strategies in wide area distributed systems,”
tech. rep., 2006.

[92] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica, et al., “A view of cloud computing,” Communications
of the ACM, vol. 53, no. 4, 2010.

[93] J. Sacha, J. Napper, C. Stratan, and G. Pierre, “Adam2: Reliable distribution esti-
mation in decentralised environments,” in Proc. of ICDCS’10, pp. 697–707, IEEE,
2010.

[94] M. Haridasan and R. van Renesse, “Gossip-based distribution estimation in peer-
to-peer networks,” in Proc. of IPTPS’08, USENIX, 2008.

[95] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer networks,” in
Proc. of IMC’06, pp. 189–202, ACM, 2006.

[96] G. Schay, Introduction to probability with statistical applications. Birkhäuser, 2007.

[97] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across network
address translators,” in Annual Technical Conference, USENIX, 2005.

[98] R. Roverso, S. El-Ansary, and S. Haridi, “Natcracker: Nat combinations matter,”
in Proc. of ICCCN’09, pp. 1–7, IEEE, 2009.

[99] S. Niazi and J. Dowling, “Usurp: Distributed nat traversal for overlay networks.,”
in Proc. of DAIS’11, pp. 29–42, Springer, 2011.

[100] L. D’Acunto, J. Pouwelse, and H. Sips, “A measurement of nat and firewall char-
acteristics in peer-to-peer systems,” in Proc. of ASCI’09, pp. 1–5, Advanced School
for Computing and Imaging (ASCI), 2009.

Swedish Institute of Computer
Science

SICS Dissertation Series

1. Bogumil Hausman, Pruning and Speculative Work in OR-Parallel PROLOG, 1990.
2. Mats Carlsson, Design and Implementation of an OR-Parallel Prolog Engine, 1990.
3. Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SANDRA, 1990.
4. Dan Sahlin, An Automatic Partial Evaluator for Full Prolog, 1991.
5. Hans A. Hansson, Time and Probability in Formal Design of Distributed Systems,

1991.
6. Peter Sjödin, From LOTOS Specifications to Distributed Implementations, 1991.
7. Roland Karlsson, A High Performance OR-parallel Prolog System, 1992.
8. Erik Hagersten, Toward Scalable Cache Only Memory Architectures, 1992.
9. Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and General Logic,

1993.
10. Mats Björkman, Architectures for High Performance Communication, 1993.
11. Stephen Pink, Measurement, Implementation, and Optimization of Internet Proto-

cols, 1993.
12. Martin Aronsson, GCLA. The Design, Use, and Implementation of a Program De-

velopment System, 1993.
13. Christer Samuelsson, Fast Natural-Language Parsing Using Explanation-Based Learn-

ing, 1994.
14. Sverker Jansson, AKL - - A Multiparadigm Programming Language, 1994.
15. Fredrik Orava, On the Formal Analysis of Telecommunication Protocols, 1994.
16. Torbjörn Keisu, Tree Constraints, 1994.
17. Olof Hagsand, Computer and Communication Support for Interactive Distributed

Applications, 1995.
18. Björn Carlsson, Compiling and Executing Finite Domain Constraints, 1995.
19. Per Kreuger, Computational Issues in Calculi of Partial Inductive Definitions, 1995.

105

106 BIBLIOGRAPHY

20. Annika Waern, Recognising Human Plans: Issues for Plan Recognition in Human-
Computer Interaction, 1996.

21. Björn Gambäck, Processing Swedish Sentences: A Unification-Based Grammar and
Some Applications, 1997.

22. Klas Orsvärn, Knowledge Modelling with Libraries of Task Decomposition Methods,
1996.

23. Kia Höök, A Glass Box Approach to Adaptive Hypermedia, 1996.
24. Bengt Ahlgren, Improving Computer Communication Performance by Reducing

Memory Bandwidth Consumption, 1997.
25. Johan Montelius, Exploiting Fine-grain Parallelism in Concurrent Constraint Lan-

guages, 1997.
26. Jussi Karlgren, Stylistic experiments in information retrieval, 2000.
27. Ashley Saulsbury, Attacking Latency Bottlenecks in Distributed Shared Memory

Systems, 1999.
28. Kristian Simsarian, Toward Human Robot Collaboration, 2000.
29. Lars-åke Fredlund, A Framework for Reasoning about Erlang Code, 2001.
30. Thiemo Voigt, Architectures for Service Differentiation in Overloaded Internet Servers,

2002.
31. Fredrik Espinoza, Individual Service Provisioning, 2003.
32. Lars Rasmusson, Network capacity sharing with QoS as a financial derivative pricing

problem: algorithms and network design, 2002.
33. Martin Svensson, Defining, Designing and Evaluating Social Navigation, 2003.
34. Joe Armstrong, Making reliable distributed systems in the presence of software

errors, 2003.
35. Emmanuel Frécon, DIVE on the Internet, 2004.
36. Rickard Cöster, Algorithms and Representations for Personalised Information Ac-

cess, 2005.
37. Per Brand, The Design Philosophy of Distributed Programming Systems: the Mozart

Experience, 2005.
38. Sameh El-Ansary, Designs and Analyses in Structured Peer-to-Peer Systems, 2005.
39. Erik Klintskog, Generic Distribution Support for Programming Systems, 2005.
40. Markus Bylund, A Design Rationale for Pervasive Computing - User Experience,

Contextual Change, and Technical Requirements, 2005.
41. Åsa Rudström, Co-Construction of hybrid spaces, 2005.
42. Babak Sadighi Firozabadi, Decentralised Privilege Management for Access Control,

2005.
43. Marie Sjölinder, Age-related Cognitive Decline and Navigation in Electronic Envi-

ronments, 2006.

BIBLIOGRAPHY 107

44. Magnus Sahlgren, The Word-Space Model: Using Distributional Analysis to Repre-
sent Syntagmatic and Paradigmatic Relations between Words in High-dimensional
Vector Spaces, 2006.

45. Ali Ghodsi, Distributed k-ary System: Algorithms for Distributed Hash Tables,
2006.

46. Stina Nylander, Design and Implementation of Multi-Device Services, 2007
47. Adam Dunkels, Programming Memory-Constrained Networked Embedded Systems,

2007
48. Jarmo Laaksolahti, Plot, Spectacle, and Experience: Contributions to the Design

and Evaluation of Interactive Storytelling, 2008
49. Daniel Gillblad, On Practical Machine Learning and Data Analysis, 2008
50. Fredrik Olsson, Bootstrapping Named Entity Annotation by Means of Active Ma-

chine Learning: a Method for Creating Corpora, 2008
51. Ian Marsh, Quality Aspects of Internet Telephony, 2009
52. Markus Bohlin, A Study of Combinatorial Optimization Problems in Industrial

Computer Systems, 2009
53. Petra Sundström, Designing Affective Loop Experiences, 2010
54. Anders Gunnar, Aspects of Proactive Traffic Engineering in IP Networks, 2011
55. Preben Hansen, Task-based Information Seeking and Retrieval in the Patent Do-

main: Process and Relationships, 2011
56. Fredrik Österlind, Improving low-power wireless protocols with timing-accurate sim-

ulation, 2011
57. Ahmad Al-Shishtawy, Self-Management for Large-Scale Distributed Systems, 2012
58. Henrik Abrahamsson, Network overload avoidance by traffic engineering and content

caching, 2012
59. Mattias Rost, Mobility is the Message: Experiment with Mobile Media Sharing,

2013

	Contents
	Introduction
	Contribution
	Publications
	Outline

	Background and Related Work
	P2P media streaming
	P2P streaming overlays
	Incentive mechanisms

	Peer sampling service
	Gossip-based peer sampling service
	NAT-aware peer sampling service

	The assignment problem

	P2P Live Streaming
	Problem description
	Centralized solution
	Distributed solution
	Multiple-tree overlay
	Mesh overlay
	The Gradient overlay

	Experiments
	Experimental setup
	System performance evaluation
	Free-rider detection evaluation
	Neighbour selection evaluation

	Cloud-Assisted P2P Live Streaming
	Problem description
	System architecture
	The baseline model
	The enhanced model

	System management
	The swarm size and upload slot distribution estimation
	The number of infected peers estimation
	The management model
	Discussion

	Gossip-based distribution estimation
	Experiments
	Experimental setup
	System performance evaluation
	Economic cost evaluation
	Accuracy evaluation
	Distribution estimation evaluation

	NAT-Aware Peer Sampling
	Problem description
	Distributed NAT type identification
	NAT-aware peer sampling
	NAT-aware peer sampling with one-hop relaying
	NAT-aware peer sampling without relaying
	Discussion

	NAT traversal middleware
	Centralized solution
	Distributed solution

	Experiments
	Experimental setup
	Estimation algorithm evaluation
	Peer sampling evaluation
	NAT traversal evaluation

	Conclusions
	Bibliography

