
Robust 3D Pose Estimation and Efficient 2D
Region-Based Segmentation from a 3D Shape Prior

Samuel Dambreville, Romeil Sandhu, Anthony Yezzi, and Allen Tannenbaum

Georgia Institute of Technology

Abstract. In this work, we present an approach to jointly segment a rigid object
in a 2D image and estimate its 3D pose, using the knowledge of a 3D model. We
naturally couple the two processes together into a unique energy functional that
is minimized through a variational approach. Our methodology differs from the
standard monocular 3D pose estimation algorithms since it does not rely on local
image features. Instead, we use global image statistics to drive the pose estimation
process. This confers a satisfying level of robustness to noise and initialization for
our algorithm, and bypasses the need to establish correspondences between image
and object features. Moreover, our methodology possesses the typical qualities of
region-based active contour techniques with shape priors, such as robustness to
occlusions or missing information, without the need to evolve an infinite dimen-
sional curve. Another novelty of the proposed contribution is to use a unique 3D
model surface of the object, instead of learning a large collection of 2D shapes to
accommodate for the diverse aspects that a 3D object can take when imaged by
a camera. Experimental results on both synthetic and real images are provided,
which highlight the robust performance of the technique on challenging tracking
and segmentation applications.

1 Motivation and Related Work

2D image segmentation and 2D-3D pose estimation are ubiquitous tasks in computer
vision applications and have received a great deal of attention in the past few years.
These two fundamental techniques are usually studied separately in the literature. In
this work, we combine both approaches in a variational framework. To appreciate the
contribution of this work, we recall some of the results and specifics of both fields.

2D-3D pose estimation aims at determining the pose of a 3D object relative to a
calibrated camera from one unique or a collection of 2D images. By knowing the map-
ping between the world coordinates and image coordinates from the camera calibration
matrix, and after establishing correspondences between 2D features in the image and
their 3D counterparts on the model, it is then possible to solve the pose transformation
(from a set of equations that express these correspondences). The literature concerned
with 3D pose estimation is very large and a complete survey is beyond the scope of this
paper. However, most methods can be distinguished by the type of local image features
used to establish correspondences, such as points [1], lines or segments [2, 3], multi-part
curve segments [4], or complete contours [5, 6].

Segmentation consists of separating an object from the background in an image. The
geometric active contour (GAC) framework, in which a curve is evolved continuously to
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capture the boundaries of an object, has proven to be quite successful at performing this
task. Originally, the method focused on extracting local image features such as edges to
perform segmentation; see [7, 8] and the references therein. However, edge-based tech-
niques can suffer from the typical drawbacks that arise from using local image features:
high sensitivity to noise or missing information, and a multitude of local minima that
result in poor segmentations. Region-based approaches, which use global image statis-
tics inside and outside the contour, were shown to drastically improve the robustness
of segmentation results [9–12]. Region-based techniques are able to deal with various
statistics of the object and background such as distinct mean intensities [10], Gaussian
distributions [11, 12] or intensity histograms [13, 14] as well as a wide variety of photo-
metric descriptors such as grayscale values, color or texture [15]. Further improvement
of the GAC approach consists of learning the shape of objects and constrain the contour
evolution to adopt familiar shapes, to make up for poor segmentation results obtained
in the presence of noise, clutter, occlusion or when the statistics of the object and back-
ground are difficult to distinguish (see e.g., [16–19]).

Motivation/Contribution: Our goal is to combine the strengths of both techniques
and to avoid some of their typical weaknesses, to robustly both segment 2D images and
estimate the pose of an arbitrary 3D object which shape is known.

In particular, we use a region-based approach to continuously drive the pose es-
timation process. This global approach avoids using local image features and, hence,
addresses two shortcomings that typically arise from doing so in many 2D-3D pose es-
timation algorithms: Firstly, finding the correspondence between local features in the
image and on the model is a non-trivial task, due for instance to their viewpoint depen-
dency - no local correspondences need to be found in our global approach. Secondly,
local image features may not even exist or can be difficult to detect in a reliable and
robust fashion in the presence of noise clutter or occlusion. Furthermore, simplifying
assumptions usually need to be made on the class of shapes that a 2D-3D pose estima-
tion technique can handle. Many approaches are limited to simple shapes that can be
described using geometric primitives such as corners, lines, circles or cylinders. Recent
work focused on free-form objects, which admit a manageable parametric description
as in [5]. However, even this type of algebraic approaches can become unmanageable
for objects of arbitrary and complex shape. Our approach can deal with rigid object of
arbitrary shape, represented by a 3D level set [20] or a 3D cloud of points (Figure 1).

Conversely, a shortcoming of the GAC framework using shape priors is that 2D
shapes are usually learned to segment 2D images. Hence, a large collection of 2D
shapes needs to be learned to represent the wide variation in aspect that most natural 3D
objects take, when projected onto the 2D image plane. Our region-based approach ben-
efits from the knowledge of the object shape that is compactly described by a unique
3D model. Acquisition of 3D models can be readily accomplished using range scans
[21] or structure from motion approaches [22], notably. In addition, and in contrast to
the GAC framework, the proposed method does not involve the evolution of an infinite
dimensional contour to perform segmentation, but only solves for the finite dimensional
pose parameters (as is common for 2D-3D pose estimation approaches). This results in
a much simplified framework that avoids dealing with problems such as infinite dimen-
sional curve representation, evolution and regularization .
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Relation to Previous Work: In this paper, we exploit many ideas from recent varia-
tional approaches that address the problem of structure from motion and stereo recon-
struction from multiple cameras ([23, 22] or [24]). Originally, the authors in [23, 22]
presented a method to reconstruct the 3D shape of an object from multiple 2D views
obtained from calibrated cameras. The present contribution aims at performing a some-
what opposite task: given the 3D model of an object, perform the segmentation of 2D
images and recover the 3D pose of the object relative to a unique camera. This is the
first time that the framework in [23, 22] is adapted and employed in the specific context
of segmenting 2D images from a unique camera, using the knowledge of a 3D model.
The framework in [22] has also recently been extended in [25] to address the prob-
lem of multiple camera calibration. In the present work, the camera is assumed to be
calibrated. However, this assumption could easily be dropped by also solving for the
optimal camera calibration parameters as presented in [25].

We note that, although the use of 3D shape knowledge to perform the 2D segmen-
tation of regions presents obvious advantages, the literature dealing with this type of
approaches is strikingly thin. The pieces of work closest to the proposed contribution
are probably [26] and [27]. In [26], the authors evolve an (infinite dimensional) active
contour as well as 3D pose parameters to minimize a joint energy functional encoding
both image information and 3D shape knowledge. Our method differs from the afore-
mentioned approach in many crucial aspects: We optimize a unique energy functional,
which allows us to circumvent the need to determine ICP-like correspondences and to
perform costly back-projections between the segmenting contour and the shape model
at each iteration. Also, we perform optimization only in the finite dimensional space
of the Euclidean pose parameters. In addition to being computationally efficient, this
allows our technique to be less likely to be trapped in local minima, resulting in ro-
bust performances as demonstrated in the experimental part. In [27], the method of [26]
is successfully simplified by performing energy minimization only in the space of 3D
pose parameters. Thus, the method of [27] and our contribution present some similar-
ities. However, the energy minimization method and resulting algorithms are radically
different: In [27], an algebraic approach is used that involves establishing correspon-
dences and back-projections between the 3D and 2D world, as well as linearizing the
resulting system of equations. Consequently, important information about the geometry
of the 3D model is lost through the algebraic approach. In contrast, our approach re-
lies on surface differential geometry (see e.g., [28]) to link geometric properties of the
model surface and its projection in the image domain. This allows us to derive the par-
tial differential equations necessary to perform energy optimization, as well as exploit
the knowledge of the 3D object to its full extent.

Our technique uses a 3D shape prior in a region-based framework, and can thereby
be expected to be robust to noise or occlusion. Hence, an obvious application of the
proposed approach is the robust tracking of 3D rigid objects in 2D image sequences.
Our approach is, thus, also related to a wealth of methods concerned with the problem
of model-based monocular tracking (see [29] for a recent survey).
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Fig. 1. Left: Schema summarizing our segmentation/pose estimation approach from a 3D model,
in 4 steps. Right: Different views of the 3D models used (rendered surfaces or cloud of points).

2 Proposed Approach

We suppose we have at our disposal the 3D surface model of an object. Our goal is
to find the (Euclidean) transformation that needs to be applied to the model so that it
coincides with the object of interest in the referential attached to a calibrated camera.
We now describe the proposed approach in details, starting with our choice of notation.
An overview of the method can be found in Figure 1.

2.1 Notation

Let X = [X,Y, Z]T denote the coordinates of a point in R3, measured with respect to
a referential attached to the imaging camera. We denote by I the image, by Ω ⊂ R2

the image domain, and by dΩ its area element. We assume the camera is modeled
as an ideal perspective projection1: π : R3 7→ Ω;X 7→ x, where x = [x, y]T =
[X/Z, Y/Z]T denotes coordinates in Ω.

Let S be the smooth surface in R3 defining the shape of the object of interest. The
(outward) unit normal to S at each point X ∈ S will be denoted by N = [N1, N2, N3]T .
To determine the pose of S with respect to the camera, we define the identical reference
surface S0, whose pose is known.2 Denoting by X0 the coordinates of points on S0,
one can locate S in the camera referential via the transformation g ∈ SE(3), such that
S = g(S0), or written point-wise X = g(X0) = RX0 + T, with R ∈ SO(3) and
T ∈ R3. The parameters of the rigid motion g will be denoted by λ = [λ1, . . . , λ6]T =
[tx, ty, tz, ω1, ω2, ω3]T (rotations are represented in exponential coordinates [32]).

Let R = π(S) ⊂ Ω, be the region of the image on which the surface S projects
(i.e., the region of Ω corresponding to imaging S). Let Rc = Ω \R and ĉ = ∂R denote

1 More general models of cameras (see [30, 31]) can straightforwardly be handled. We make this
assumption here to simplify the presentation.

2 One can assume that the center of gravity of S0 coincides with the camera center and the
rotation is known.
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the complement and the boundary of R, respectively (Figure 1). The curve ĉ ⊂ Ω is
the projection of the curve C ⊂ S that delineates the visible part of S from the camera:
ĉ = π(C). The 2D curve ĉ and 3D curve C will be respectively referred to as the
“silhouette” and the “occluding curve”.

2.2 Energy functional

In [22], the authors used an image formation approach to define a cost functional mea-
suring the discrepancy between the photometric properties of the surface S (as well as
the 3D-background), and the pixel intensities of multiple images. The resulting energy
involved back-projections to the surface S to guarantee the coherence between the mea-
surements obtained from multiple cameras. In this present work, we are interested in
segmenting a unique image and adopt a somewhat different approach directly inspired
from region-based active contours techniques [10–13]. Most region-based approaches
assume that the pixels corresponding to the object of interest or the background are
distinct with respect to a certain grouping criterion. To perform segmentation, a closed
curve is evolved to increase the discrepancy between the statistics of the pixels located
in its interior and exterior. Accordingly, we define an energy of the form:

E =
∫

R

rO

(
I(x), ĉ

)
dΩ +

∫

Rc
rB

(
I(x), ĉ

)
dΩ, (1)

where rO : Z, Ω 7→ R and rB : Z, Ω 7→ R are two monotonically decreasing functions
measuring the matching quality of the image pixels with a statistical model over the re-
gions R and Rc, respectively. The space Z corresponds to the photometric variable
(such as gray-scale intensity, color or texture vector) chosen to perform segmentation.
Hence, depending on the choices for rO, rB , and Z a larger class of images than the
ones fitting the specific hypotheses made in [22] can be dealt with. The energy E mea-
sures the discrepancy between the statistical properties of the pixels located inside and
outside the curve ĉ, and does not involve any back-projections.

It is expected that E is minimal when R and Rc correspond to the object and back-
ground in I , respectively. Most region-based approaches evolve an infinite dimensional
curve, which amounts to exploring unconstrained shapes of the segmenting contour.
Since we assume that the 3D shape of the rigid object is known, we want to minimize
E by exploring only the possible regions R and Rc that result from projecting the sur-
face S onto the image plane. For a calibrated camera, these regions are functions of the
transformation g only. Solving for the transformation that minimize E can be under-
taken via gradient descent over the parameters λ, as described below.

2.3 Gradient flow

The partial differentials of E with respect to the pose parameters λi’s can be computed
using the chain-rule:

dE

dλi
=

∫

ĉ

(
rO

(
I(x)

)− rB

(
I(x)

))〈
∂ĉ

∂λi
, n̂

〉
dŝ +

∫

R

〈
∂rO

∂ĉ
,

∂ĉ

∂λi

〉
dΩ

+
∫

Rc

〈
∂rB

∂ĉ
,

∂ĉ

∂λi

〉
dΩ,

(2)
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where ŝ is the arc-length parametrization of the silhouette ĉ and n̂ the (outward) normal
to the curve at x.

Using the arc-length s of C and the direct π
2 -rotation matrix J , one has

〈
∂ĉ

∂λi
, n̂

〉
dŝ =

〈
∂ĉ

∂λi
, J

∂ĉ

∂ŝ

〉
dŝ =

〈
∂π(C)

∂λi
, J

∂π(C)

∂s

〉
ds

dŝ
dŝ =

〈
∂π(C)

∂λi
, J

∂π(C)

∂s

〉
ds.

(3)

Let J denote the Jacobian of π(X) with respect to the spatial coordinates, one has

J = 1
Z2

[
Z 0 −X
0 Z −Y

]
. From (3), one gets

〈
∂ĉ

∂λi
, n̂

〉
dŝ =

〈
J ∂X

∂λi
, JJ ∂X

∂s

〉
ds =

〈
∂X

∂λi
,J T JJ ∂X

∂s

〉
ds

=
1

Z3

〈
∂X

∂λi
,




0 Z −Y
−Z 0 X
Y −X 0


 ∂X

∂s

〉
ds =

1

Z3

〈
∂X

∂λi
,
∂X

∂s
×X

〉
ds.

(4)

In the equation above, the point X belongs to the occluding curve C. A necessary
condition for a point X to belong to the occluding curve is that 〈X,N〉 = 0 (since
the associated vector X, with origin at the center of the camera, corresponds to the
projection/viewing direction and is tangent to the surface S at X). The vector t = ∂X

∂s
is the tangent to the curve C at the point X. Since the vectors t and X belong to the
tangent plane to S at X, one has ∂X

∂s ×X = ‖X‖N sin(θ), with θ = (t̂,X) the angle
between t and X. For X ∈ C, one has

∂

∂s
〈X,N〉 =

〈
∂X
∂s

,N
〉

︸ ︷︷ ︸
=0

+
〈

∂N
∂s

,X
〉

= 0 = 〈dN(t),X〉 = II(t,X).

Hence, since the second fundamental form II(t,X) = 0, the vectors t and X are con-
jugate (see [28]). Hence, using the Euler formula, one can show that K sin2 θ = κXκt,
where K is the Gaussian curvature, and κX and κt denote the normal curvatures in the
directions X and t at X ∈ S, respectively. Plugging into Equation (4), one gets

〈
∂ĉ

∂λi
, n̂

〉
dŝ =

‖X‖
Z3

√
κXκt

K

〈
∂X
∂λi

,N
〉

ds. (5)

The energy in (1) is valid for most functions rO and rB used in the literature. How-
ever, in this paper, we chose

rO = − log(σO)− (I(x)− µO)2

ΣO
and rB = − log(σB)− (I(x)− µB)2

ΣB

(6)

as in the region-based active contour technique presented in [11]. Using these functions,

the two last terms in Equation (2) collapse for µO/B =
∫

R/Rc I(x̂)dΩ∫
R/Rc dΩ

and ΣO/B =
∫

R/Rc

(
I(x̂)−µO/B

)2
dΩ∫

R/Rc dΩ
.3

3 For gray-scale images µO/B and ΣO/B are scalars. For color images, µO/B ∈ R3 and ΣO/B ∈
R3×3. Texture can also be used, see [15].
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Thus, the flow becomes a simple line integral on C

dE

dλi
=

∫

C

(
rO

(
I(π(X))

)− rB

(
I(π(X))

)) · ‖X‖
Z3

√
κXκt

K

〈
∂X
∂λi

,N
〉

ds. (7)

For i = 1, 2, 3 (i.e., λi is a translation parameter)
〈

∂X
∂λi

,N
〉

=
〈

∂RX0 + T
∂λi

,N
〉

=
〈

∂T
∂λi

,N
〉

= Ni.

For i = 4, 5, 6 (i.e., λi is a rotation parameter), one can similarly show that
〈

∂X
∂λi

,N
〉

=

〈Mi,N〉, with Mi the ith column of M = R




0 Z0 −Y0

−Z0 0 X0

Y0 −X0 0


.

3 Experiments

We now report a few experimental results obtained for both synthetic and real datasets.
Four different 3D models of rigid objects (see Figure 1) were used to perform segmen-
tation and tracking tasks that highlight the robustness of our technique to initialization,
noise and missing or imperfect information. To save computational time, we used
the approximation

√
κXκt

K ' 1 in our implementation of Equation (7), which still de-
creased the energy E. Also, we note that the shape of the objects, notably the Horse and
the Van Gogh Bust, cannot readily be described in terms of geometric primitives (lines,
ellipses, etc.) or even algebraically, and thus do not satisfy the working hypotheses of
standard pose estimation techniques ([2, 3, 5, 6]).

3.1 Robustness to Initialization

Figure 2 shows segmentation results (and 3D coordinates recoveries) obtained using
our approach for a synthetic color image. Figure 3 shows results for diverse natural
color images. Despite initializations that are quite far from the truth (e.g., large errors
in translation or angular position) accurate segmentations are obtained.

Figure 4 shows tracking results obtained for a real sequence. The sequence is com-
posed of 32 images of a rigid toy Horse. The images were taken from discrete positions
of a calibrated camera that underwent a complete rotation around the object. The cam-
era “jumps” between successive images creating large changes in the pose of the object
that need to be recovered (e.g., changes in the angular position of the camera can exceed
15◦ between frames). Tracking this sequence would be challenging for many 3D pose
estimation techniques available in the literature: Many techniques using local features
such as points or edges (e.g., [1, 3]) are likely to be thrown off by the textured/noisy
background (false features) and get trapped in local minima. The sequence was tracked
with our technique, using a very simple scheme: For each image, initialization was
performed using the pose parameters corresponding to the minimum of the energy ob-
tained for the preceding image, and our approach was run until convergence. Despite
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(a) (b) (c)

Fig. 2. Robustness to initialization - Segmentation of a synthetic color image. (a): Initialization;
(b): Intermediate step of the evolution; (c): Final result.

the difficulties described above, very satisfying tracking performances were observed.
This highlights the robustness of the technique to initialization since the large cameras
jumps are accommodated and the method is not trapped in local minima. We note that
region-based active contour techniques such as [10], would lead to satisfying segmenta-
tions on this particular sequence. However, these approaches would not also determine
the pose of the object, which is valuable information for tracking applications.

(a1) (b1) (a2) (b2) (a3) (b3)

Fig. 3. Robustness to initialization - Segmentation of natural color images. (an)’s: Challenging
initializations (e.g., large error in translation or angular positions - green curve). (bn’s): Final
results with the proposed approach (green curve).

3.2 Robustness to Noise

To test the robustness of our technique to noise, a sequence of 200 images was con-
structed by continuously transforming the 3D model of the “2D3D” logo and project-
ing it into the image plane using the parameters of a simulated calibrated camera (e.g.,
focal length f=200). The translation parameters, rotation axis and angle were continu-
ously varied (e.g., the total angle variation over the sequence exceeded 160◦) to ensure
a large variation of the aspect and position of the object throughout the sequence. From
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Frame #1 Frame #4 Frame #5 Frame #6 Frame #9

Frame #10 Frame #15 Frame #19 Frame #26 Frame #29

Fig. 4. Robustness to initialization - Tracking a natural sequence Yellow contours: final results
after convergence; Red contours: Initializations from the result of the preceding image (see text
for our tracking scheme). The aspect of the object changes drastically throughout the sequence.
The position of the object undergoes large changes between successive images.

the basic sequence obtained, diverse level of Gaussian noise were added of standard
deviation ranging from σ = 10% to σ = 100% (See Figure 5).

Typical visual results obtained using our approach (and the tracking scheme above)
are reproduced in Figure 5. For all noise levels, which can be rather large (e.g., in the
case σ = 100% object and background are barely distinguishable), tracking was main-
tained throughout the whole sequence. Figure 6 reproduces the results of the pose esti-
mation procedure. For each image, percent absolute errors with respect to the ground-
truth were computed for both the translation and rotation as: Error = ‖vmeasured−vtruth‖

‖vtruth‖ ,
with v a translation or quaternion (see [32]) vector. From the pose estimation point of
view, the method appears to perform quite well: average error and standard deviation
computed over the 200 frames of each sequence rarely exceed 2% and 1%, respec-
tively, for both translation and rotation. This highlights the accuracy and reliability of
the method, and suggests that it is quite resilient to large amounts of noise (very little
deterioration of the results is observed with increasing noise levels).

3.3 Robustness to Missing/Imperfect Image Information

To test the robustness to missing information, we created two sequences by adding two
different occlusions in the basic sequence featuring the “2D3D” model (see Figure 7).
The first occlusion is a grey rectangle that can mask more than 2/3 of the “2D3D” logo.
The second occlusion is the word “SHAPE” written in black letters that can mask the
object at several places. Gaussian noise of standard deviation 30% was also added to
both resulting sequences. Figure 7 presents the results of tracking the sequences of 200
frames with our approach. One notes that despite the occlusions (and noise), accurate
segmentations are obtained: In particular, missing letters or parts are accurately local-
ized and reconstructed. Track was maintained throughout both sequences. For the first
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Frame ]1 Frame ]100 ]200

Frame ]25 Frame ]100 Frame ]175

Frame ]50 Frame ]100 Frame ]150

Fig. 5. Robustness to noise. Visual tracking results for the sequences involving the “2D3D” logo
(Green curves). First row: Tracked sequence with Gaussian noise of standard deviation σ = 10%.
Second row: Tracked sequence for σ = 30%. Third row: Tracked sequence for σ = 100%.

sequence mean %-absolute-error (over the 200 frames) in the transformation param-
eters was 1.08% for translation (T) and 1.57% for rotation (R) - standard deviation
0.45% for T and 0.75% for R. For the second sequence mean %-absolute-error was
0.87% for T and 1.19% for R (std. dev. 0.34% for T and 0.53% for R).

In Figure 8, we used images extracted from the Horse sequence and occluded dif-
ferent parts of the Horse body (e.g., the legs that have valuable information about its
angular position). Diverse pose parameters quite far from the truth were used as initial-
izations (e.g., angular position could be off by more than 30◦). Despite the occlusions
with various pixel intensities or texture (and poor initializations), very convincing seg-
mentations were obtained. Also, the positions of the object in the camera referential

Noise Level mean error (in %) std. dev. error (in %) max error (in %)
σ = 10% T: 0.85 ; R: 0.96 T: 0.23 ; R: 0.45 T: 1.43 ; R: 2.60

σ = 30% T: 0.97 ; R: 1.09 T: 0.21 ; R: 0.47 T: 1.50 ; R: 2.94

σ = 60% T: 0.95 ; R: 1.30 T: 0.30 ; R: 0.52 T: 2.39 ; R: 2.60

σ = 100% T: 1.02 ; R: 2.12 T: 0.39 ; R: 0.87 T: 2.18 ; R: 4.36

Fig. 6. Robustness to noise. Quantitative tracking results for the “2D3D” sequences with diverse
levels of noise. Table displaying %-absolute error statistics over the 200 images of the sequences.
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were accurately recovered. As can be noticed by comparing with Figure 4, the results
in the presence of occlusion are very comparable to the ones without occlusion.

In Figure 9, we present segmentation results where the background and object are
difficult to distinguish based on pixel statistics only (due to specularities on the ob-
ject and similar colors in object and background). The results obtained with the (infi-
nite dimensional) active contour flow of [11], which is the region-based segmentation
technique underlying our approach, are not satisfying since the contour leaks into the
background. Robust results are obtained using our approach.

The experiments of Figures 7, 8 and 9 would pose a major challenge to most region-
based active contour techniques, even using shape priors [16, 18, 19]: Statistics only are
not sufficient to segment the images, and the aspect of the object changes drastically
from one image to the other. Hence, a large catalogue of 2D shapes would need to be
learnt to achieve similar performances using the method in [16, 18, 19], for instance.

Frame ]50 Frame ]100 Frame ]150

Frame ]75 Frame ]100 Frame ]125

Fig. 7. Robustness to missing information. Tracking results (green curves) for the “2D3D” se-
quences with occlusions. First row: Rectangular occlusion. Second row: Word “SHAPE” as
occlusion. Gaussian noise with σ = 30% was added.

4 Conclusion and Future Work

In this work, we presented a region-based approach to the 3D pose estimation problem.
This approach differs from other 3D pose estimation algorithms since it does not rely
on local image features. Our method allows one to employ global image statistics to
drive the pose estimation process. This confers a satisfying level of robustness to noise
and initialization to our framework and bypasses the need to establish correspondences
between image and object features, contrary to most 3D pose estimation approaches.

Furthermore, the approach possesses the typical qualities of a region-based active
contour technique with shape prior, such as robustness to occlusion or missing informa-
tion, without the need to evolve an infinite dimensional contour. Also, the prior knowl-
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Frame #1 occluded (1) Frame #1 occluded (2) Frame #1 occluded (3)

Frame #4 occluded Frame #26 occluded Frame #29 occluded

Fig. 8. Robustness to missing information. Segmentation results with occlusions. Cyan contours:
Some of the initializations tested (note the large errors in angular position); Yellow contours:
Final results (almost identical to results in Figure 4 with no occlusion).

edge of the shape of the object is compactly represented by a unique 3D model, instead
of a dense catalogue of 2D shapes.

The main advantage of the proposed technique is that it enables to locate the object
not only in 2D images (a typical task handled by GAC approaches) but also in the world
(a typical task handled by 2D-3D pose estimation algorithms). This makes the method
particularly suitable for tracking applications involving a unique calibrated camera.

A possible direction for future research is to extend the proposed approach to in-
clude the knowledge of multiple 3D shapes. The method in [17] (where evolution of
parameters in the shape space is performed in addition to pose parameters) could be
adapted to the problem at hand. It is expected that the resulting framework will allow
to learn the possible deformations of the object and lead to robust performances for
non-rigid registration and tracking tasks.
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Fig. 9. Robustness to imperfect information. Comparative segmentation results. (an’s): Initial-
izations. (bn’s): Final results obtained with (infinite dimensional) active contour flow as in [11],
which is the region-based segmentation technique underlying our approach. (cn’s): Final results
with our approach. In these images, statistical distinction between object and background is dif-
ficult due to specularities on the object and similar colors in object and background.
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