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Abstract: The field electron emission of carbon nanotubes has been heavily studied over the past 

two decades for various applications, such as in display technologies, microwave amplifiers, and 

spacecraft propulsion. However, a commercializable lightweight and internally gated electron 

source has yet to be realized. This work presents the fabrication and testing of a novel internally 

gated carbon nanotube field electron emitter. Several specific methods are used to prevent 

electrical shorting of the gate layer, a common failure for internally gated devices. A unique design 

is explored where the etch pits extend into the Si substrate and isotropic etching is used to create a 

lateral buffer zone between the gate and carbon nanotubes. Carbon nanotubes are self-aligned to 

and within 10 microns from the gate, which creates large electric fields at low potential inputs. 

Initial tests confirm high field emission performance with an anode current density (based on total 

area of the device) of 293 µA cm-2 and a gate current density of 1.68 mA cm-2 at 250 V. 
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1. Introduction 

 The current technological age is embodied by a constant push for 

increased performance and efficiency of devices. This push is particularly 

observable for technologies that involve electron sources, such as spacecraft 

propulsion, electronic displays, and x-ray sources [1]. Efficiency of these systems 

can be increased by reducing weight and power consumption, but is often limited 

by a bulky and energy hungry electron source. This work explores the 

development of a low power, thin film electron source in a design that takes 

advantage of the unique material properties of carbon nanotubes (CNT).   

 Most electron sources utilize thermionic emission, which involves heating 

a metal filament to several thousand degrees Celsius in order to produce electrons 
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[1]. Thermionic emission sources possess inherent inefficiencies because they are 

relatively bulky and must be heated to very high temperatures, thus consuming 

more energy [2]. One alternative to thermionic emission is field electron emission 

(FE), which involves the application of electric fields at room temperatures to 

induce electron emission via tunnelling. Normally, large electric fields (100’s of 

V μm-1) are needed for FE [3], but this field is highly dependent on the electron 

source geometry, where sharp tips can reduce the macroscopic electric field 

needed. Since no heating is necessary, these sources can be much more efficient 

and reliable if emission can be achieved at a sufficiently low potential, providing 

marked improvement over current technologies [1, 2, 4].  

 Recently, the unique properties of conductive, high aspect ratio 

nanomaterials have been utilized to improve FE performance. One nanomaterial 

of interest is the CNT which has ideal properties for FE, including very high 

electrical conductivity, high temperature stability, chemical inertness, and a 

nanoscale geometry [5-7]. The first demonstration of the remarkable FE 

properties of CNTs was reported in 1994 [8], and thousands of papers have been 

published ever since [9]. Single CNT emitters are able to emit over a very large 

current range, roughly following Fowler-Nordheim behaviour and have a large 

maximum current of 0.2mA for a single CNT [10-12]. Some work has explored 

an internally gated CNT field emitter using a Spindt cathode-based design by 

separating a conductive substrate and gate with a dielectric layer [6, 13-15]. Even 

though this triode design has a lower emitter density, it is offset by higher field 

enhancement and less screening of the electrostatically isolated emission sites. In 

an ideal case, electron beam lithography can be used to create pits that have single 

or few CNTs within each pit [1, 13, 14, 16]. Even though CNT FE in this design 

is well studied, electrical shorting of the gate and non-scalable techniques have 

prevented the production of a commercializable internally gated CNT electron 

source. 

 This work develops an internally gated CNT field emitter using a Spindt 

cathode-based design specifically made to prevent shorting of the gate. A unique 

modification is explored where the etch pits extend into the Si substrate, which 

allows fabrication of a larger CNT-to-gate separation to prevent shorting while 

still allowing growth of longer CNTs, which are more uniform and reproducible 

than short (< 1μm) CNTs. In addition, isotropic etching is used to create a lateral 



3 

buffer zone between the gate and CNTs. The CNTs are self-aligned to and within 

10 microns from the gate, creating large electric fields at the CNT tips at relatively 

low potentials (~100 V). This field emitter design can have a very low operating 

voltage in a compact package that enables portable electron source devices [1, 

17]. 

2. Experimental 

 Arsenic doped silicon wafers with a resistivity of 0.001-0.005 Ω cm serve 

as the substrate and cathode contact. Thermally grown SiO2 synthesized at 

1,100°C for ~24 hours is used as the insulator and doped polycrystalline silicon 

(p-Si) is used as the gate. The 500 nm p-Si is deposited by low pressure chemical 

vapour deposition (LPCVD) at 588°C and 250 mTorr with a silane flow of 100 

sccm for 90 minutes. The p-Si is doped with Techneglas (Perrysburg, OH) 

PhosPlus TP-470 solid source dopant  by heating to 1,050°C for 1 hour followed 

by a drive-in anneal at 1,100°C for 30 minutes. These particular materials are 

chosen to maximize film quality while maintaining ease of fabrication. Thermal 

oxide deposits the best quality SiO2 in terms of density, uniformity, purity, and 

dielectric breakdown. It has a theoretical dielectric breakdown of about 1,000 V 

µm-1, which can be ten times higher than CVD SiO2 [18]. High dielectric 

breakdown prevents degradation of the device during operation. The p-Si is used 

for its robustness and high temperature stability with SiO2, preventing degradation 

during high temperature fabrication and operation. 

A schematic of the fabrication process is shown in figure 1. The backside 

p-Si is removed after deposition by a short SF6 plasma etch and the backside 

oxide is removed during wet etching of the front oxide. Standard ultraviolet 

lithography is used to pattern the substrate instead of higher resolution methods, 

such as electron beam lithography, in order to maintain scalable fabrication 

methods (figure 1(c)). AZ Electronic Materials (Stockley Park, UK) 3312 

photoresist is spin coated at 3,000 RPM and baked at 95°C for 10 minutes. 

Photoresist exposure is at 365 nm and is developed in 300 MIF developer solution 

followed by a hard bake at 110°C for 10-20 minutes. Arrays of 4 µm diameter 

features across a 6x6 mm square are patterned on each die with a pitch ranging 

from 25-400 µm in a hexagonal pattern. Depending on pitch, a die will have 217-

56,000 features.   
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initially pursued. However, PECVD caused arcing and shorting of the gate during 

the growth process due to the high potential (up to 700 V) of the plasma. Since the 

gate is electrically isolated from the substrate, it floats at the plasma potential, 

which causes arcing and damage across the sample electrode spacing.  Shorting is 

not due to CNT growth since it occurred even if no carbon source was used.  

To avoid arcing in the pits, LPCVD synthesis without plasma is used. It is 

much more difficult to uniformly synthesize short CNTs using LPCVD because 

the growth rate is normally much faster and there is no immediate removal of 

growth species. An LPCVD system with precisely controlled process parameters 

and recipe steps is used to produce uniform and consistent CNT growth. The 

LPCVD synthesis uses C2H2 and NH3 or H2 at 700°C and 10 mbar for 0.5-5 

minutes. Annealing at 650°C for 15 minutes in NH3 or H2 ensures catalyst particle 

formation is uniform across the sample.  A change in growth of as little as 15 

seconds can create a large change in CNT length, showing precision is required. 

Figure 3 shows that the CNT growth can be precisely controlled, remains aligned 

past the Si pit, and is uniform across many pits. Raman spectroscopy shows 

marginal CNT quality with a D/G ratio of ~1. 

 FE testing is conducted in a vacuum chamber at <1x10-6 torr in a triode 

design with the gate grounded, a negative bias on the cathode, and a +30 V bias 

on an anode 1.4 cm from the gate. Gate, cathode, and anode current are 

independently measured. 

3. Results & Discussion 

3.1. Electrical Shorting 

 Due to the nature of the integrated gate design, several methods are used to 

maintain the electrical isolation of the gate. First, it was found that the top gate 

layer can easily short to the substrate during wafer dicing, causing the gate to be 

electrically useless. A second lithography mask is used to expose the gate material 

around each die where dicing occurs. This allows the gate material in the dicing 

areas to be etched away before dicing, which prevents shorting of the gate.  

 Second, the catalyst is deposited such that the catalyst or subsequent CNT 

growth would not electrically short the gate. The catalyst is deposited by electron 

beam evaporation, which is a line-of-sight deposition process. Careful attention is 
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given to the angle of deposition because the angle correlates to a flux of material 

on the pit sidewalls. The angle is minimized by centering the sample over the 

source material and maximizing the distance between the source and substrate. In 

the tool used for this work, a 5 cm diameter sample has a variation of ±1.9°, 

which corresponds to a maximum 4% flux of material onto the sidewall. The pit 

geometry is carefully tuned such that the photoresist aperture is smaller than the 

gate, oxide, and Si pit apertures (figure 2). This resulting overhang ensures that 

the small angle of deposition is shadowed so that deposition only occurs in the 

bottom of the pit. For example, in the extreme case that a pit is 20 μm deep with a 

deposition angle of 1.9°, a 0.7 μm photoresist overhang is required to completely 

shadow the catalyst to the bottom of the pit. This overhang is achieved in the 

design described.  

 Finally, the pit geometry allows prevention of a short between the CNT 

and gate. The etch pits extend into the Si substrate, thus creating a larger electrode 

separation than would be possible by just using an oxide layer. This deeper pit 

allows for fabrication of a larger CNT-to-gate separation to prevent shorting while 

still allowing growth of longer, more reproducible CNTs. The lateral p-Si etch 

increases the diameter of the gate aperture without increasing the catalyst spot 

size. This etch essentially creates a buffer zone between the CNT growth and the 

gate sidewall, thus preventing a short between a CNT and the gate. This etch 

geometry is highly beneficial because the many thousands of features per sample 

increase the chances of having an abnormally long CNT that can short the entire 

sample by contacting the gate. 

3.2. Field Emission  

 An initial FE test, shown in figure 4, demonstrates anode turn on (defined 

as 10 µA cm-2) at 140 V and an electric field of 16 V µm-1. In order to prevent 

electrical shorting, this sample has far from ideal CNT growth that is ~2 μm long. 

The electric field is approximated by estimating the spacing between the CNT and 

gate to be 9 µm. The sample produced a maximum anode current density of 293 

µA cm-2 at 250 V with an active area of 0.347 cm2. The maximum current density 

at the gate is much higher with 1.68 mA cm-2 at 250 V.  
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μm-1 that is observed in the literature for other CNT FE devices [22-24]. This 

could be due to the very short CNT growth and electrostatic screening of the 

electric field by the walls of the Si pit.  

An example of constant voltage testing is shown in figure 5. A constant 

emission of < 50 μA cm-2 at the anode and 1-1.5 mA cm-2 at the cathode over 167 

minutes is achieved. Significant instability is observed which makes it difficult to 

discern any gradual degradation. However, no sudden degradation is observed at 

the anode. This data shows that the emission can be sustained over extended 

periods.  

Other CNT field emitters have a turn on potential that is normally much 

higher, ranging from ~150-2000V, due in part to larger electrode separations 

(such as in diode configurations) [22, 24-26]. The initial FE tests exhibit the 

capabilities of this triode design, demonstrating that a low voltage (140V) 

compared to other devices is needed for turn on. If electrical isolation can be 

maintained with longer CNT growth, a much lower turn on field and larger anode 

current should be achieved.  

4. Conclusion 

This work presents the fabrication process for an internally gated CNT 

field emitter using a Spindt cathode-based design. The fabrication process is 

thoroughly discussed, where several specific methods are used to prevent 

electrical shorting of the gate layer, a common failure for internally gated devices. 

A unique modification is explored where the etch pits extend into the Si substrate 

to allow fabrication of a larger CNT-to-gate separation to prevent shorting while 

still allowing growth of longer CNTs, which are more uniform and reproducible 

than short (< 1μm) CNTs. In addition, isotropic etching of the p-Si creates a 

buffer zone between the gate and CNT without increasing the CNT area, which 

helps prevent electrical shorting. CNTs that are self-aligned to and within 10 

microns from the gate are synthesized, which enables large electric fields at the 

CNT tips at relatively low potentials (~100V). FE performance is confirmed with 

a current density of 293 µA cm-2 at the anode and 1.68 mA cm-2 at the gate, where 

current density is calculated from total area of the device. These results show that 

the design can achieve a very low operating voltage (250V) in a compact package 

that enables portable electron source devices.  
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Fig. 1 Fabrication process flow for the internally gated CNT FE design 
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Fig 2 SEM cross section of etch geometry a) after Si Bosch etch, showing the slight over etch of 

SiO2, the undercut p-Si, and a Si aperture that is larger than the photoresist aperture. b) After the 

lateral Si etch, showing the Si pit and lateral etch of the p-Si causing an overhang of the 

photoresist over the Si pit.   

Fig 3 SEM of LPCVD CNT synthesis. Cross section image for (a) 20 sec and (b) 60 sec of CNT 

growth. 15° angle view of (c) a single pit showing CNT bundle and buffer zone between CNT and 

gate, and (d) relative uniformity of CNT growth across many pits 

Fig 4 Initial field emission data for 0-250 V from a sample with short CNT growth and a 100 μm 

feature pitch. Anode, gate, and cathode current density are shown. Maximum anode current 

density is 293 µA cm-2 at 249 V, based off of total device area. 

Fig 5 Constant voltage emission data for 75 μm pitch features with a constant potential of 220 V 

over 167 minutes shows unstable yet constant field emission over time. 

 


