
Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Tadej Ciglarič

Vzporedno generiranje naključnih

števil

MAGISTRSKO DELO

ŠTUDIJSKI PROGRAM DRUGE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: izr. prof. dr. Erik Štrumbelj

Somentor: as. Rok Češnovar, univ. dipl. inž. rač. in inf.

Ljubljana, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Ljubljana Computer and Information Science ePrints.fri

https://core.ac.uk/display/162764133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Ljubljana

Faculty of Computer and Information Science

Tadej Ciglarič

Parallel Random Number Generation

MASTER’S THESIS

SECOND-CYCLE STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Supervisor: Assoc. Prof. Dr. Erik Štrumbelj

Co-supervisor: Asst. Rok Češnovar, B. Sc.

Ljubljana, 2018

Povzetek

Predstavljamo knjižnico devetnajstih generatorjev psevdonaključnih števil.

Generatorji so implementirani v programskem jeziku OpenCL in so name-

njeni uporabi na grafičnih procesnih enotah. Večina implementiranih gene-

ratorjev prestane statistične teste kvalitete naključnosti generiranih števil

iz knjižnice TestU01. Hitrost generiranja števil smo ovrednotili na petih

različnih računskih napravah. Skupno najbolǰse rezultate dosega generator

Tyche-i, vendar so za nekatere izmed naprav drugi generatorji bolǰsi.

Abstract

We present a library of 19 pseudo-random number generators, implemented

for graphical processing units. The library is implemented in the OpenCL

framework and empirically evaluated using the TestU01 library. Most of the

presented generators pass the tests. The generators’ performance is evaluated

on five different devices. The Tyche-i generator is the best choice overall,

while on some specific devices other generators are better.

Copyright. This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by/4.0/.

c©2018 Tadej Ciglarič

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

I would like thank to supervisor Erik Štrumbelj and co-supervisor Rok Češnovar

for their insights, patience and guidance during the creation of this thesis. They

have also lent me the hardware I needed for running the tests.

I would also like to thank my family and friends for their support during my

studies.

Contents

1 Introduction 1

1.1 GPUs and OpenCL Framework . 2

1.2 Random Number Generators . 2

2 RandomCL Library 5

2.1 Implemented RNGs . 6

2.2 Parallelization . 10

2.3 An Example of Using a RandomCL RNG 13

3 Empirical Evaluation 17

3.1 Testing Quality . 18

3.2 Testing Speed . 21

3.3 Results . 22

4 Discussion and Conclusion 27

List of Used Acronyms and

Translations

acronym English slovensko

CPU central processing unit centralna procesna enota

GPU graphics processing unit grafična procesna enota

ISAAC indirection, shift, accumulate,

add and count (random number

generator)

posrednost, pomik, kopičenje,

seštevanje in štetje (generator

naključnih števil)

KISS keep it simple, stupid (random

number generator)

pusti preprosto, neumnež (gen-

erator naključnih števil)

LCG linear congruential generator linearni kongruenčni generator

MRG multiple recursive generator večkratni rekurzivni generator

MT Mersenne Twister (random num-

ber generator)

Mersenne Twister (generator

naključnih števil)

OpenCL open computing language

(framework for programming

various compute devices, in-

cluding graphics processing

units)

odprt računski jezik (ogrodje

za programiranje različnih

računskih naprav, med drugim

grafičnih kartic)

PCG permutated congruential gener-

ator

permutiran kongruenčni genera-

tor

Phylox product high low xorshift (ran-

dom number generator)

produkt zgornji spodnji xorshift

(generator naključnih števil)

acronym English slovensko

RNG random number generator generator naključnih števil

WELL well-equidistributed, long-

period, linear (random number

generator)

dobro enakomerno porazdeljen,

linearen z dolgo periodo (gener-

ator naključnih števil)

/ kernel (function that is executed

on compute device)

ščepec (funkcija, ki se izvaja na

računski napravi)

/ compute device računska naprava

/ compute unit računska enota

/ host (computer that controls ex-

ecution of kernels on a compute

device)

gostitelj (računalnik, ki nadzira

izvajanje ščepcev na računski

napravi)

/ lagged Fibonacci generator zamaknjen Fibonaccijev genera-

tor

/ tiny Mersenne Twister (random

number generator)

majhni Mersenne Twister (gen-

erator naključnih števil)

/ middle square Weyl sequence

(random number generator)

metoda sredine kvadrata z

Weylovim zaporedjem (genera-

tor naključnih števil)

Razširjeni povzetek

Uvod

Če želimo učinkovito vzporedno implementirati stohastični algoritem, potrebu-

jemo tudi vzporedno implementacijo generatorja naključnih števil. Primeri takih

algoritmov so metode Monte Carlo, genetski algoritmi in simulacije stohastičnih

procesov.

Žal ni veliko vzporednih implementacij generatorjev naključnih števil, še manj

pa jih omogoča izvajanje na grafičnih procesnih enotah [1, 2, 3, 4] . Primerjava

učinkovitosti generatorjev naključnih števil pa je bila v preteklosti izvedena le na

manǰsem številu generatorjev in samo eni računski napravi [2].

Uporabnik, ki v svojem vzporednem algoritmu potrebuje naključna števila,

mora v večini primerov generator implementirati sam ali pa je prisiljen, da v svojo

rešitev vključi celotno knjižnico, ki generator implementira. Še več, ni niti jasno,

kateri vzporedni generator je najbolj smiselna izbira z vidika učinkovitosti in kateri

generatorji so preslabi za praktično rabo.

Glavni cilj te magistrske naloge je bil pripraviti knjižnico z naborom različnih

vzporednih implementacij generatorjev, ki jih lahko uporabniki enostavno vključijo

v svoj algoritem. Obenem smo želeli s poskusi na različnih napravah ponuditi

vpogled v njihovo učinkovitost in praktično uporabnost nizov naključnih števil, ki

jih generirajo.

Knjižnica RandomCL

Knjižnico generatorjev naključnih števil, ki jo imenujemo RandomCL, smo imple-

mentirali v ogrodju OpenCL. Ta omogoča, da vzporedni del programa, t.i. ščepec

(angl. kernel), napǐsemo v programskem jeziku, ki je podoben jeziku C. Ščepec se

lahko vzporedno izvaja na katerikoli računski napravi, ki podpira ogrodje OpenCL,

kar vključuje večino procesorjev in sodobnih grafičnih kartic.

Tipična uporaba knjižnice RandomCL je sestavljena iz več korakov. Najprej

je potrebno generirati naključna semena (angl. random seed) s sekvenčnim gene-

ratorjem. Ta se kopira v pomnilnik računske naprave, na kateri se nato požene

ščepec. Slednji uporabi semena za inicializacijo generatorjev – običajno za vsako

nit svoj generator. Ščepec izvaja stohastični algoritem. Ko ta potrebuje naključna

števila, kliče ustrezno funkcijo iz knjižnice RandomCL. Primer ščepca, ki generira

naključna števila in jih shrani v pomnilnik računske naprave, je na izpisu kode 2.3.

V knjižnici RandomCL so implementirani generatorji iz naslednjih družin:

• linearni kongruenčni generatorji (angl. Linear Congruential Generators,

LCG) [5]: 64-bitni lcg6432 in 128-bitni lcg12864

• permutirani kongruenčni generatorji (angl. Permutated Congruential Gene-

rators, PCG) [6]: pcg6432

• večkratni rekurzivni generatorji (angl. Multiple Recurential Generators,

MRG) [7, 8]: mrg63k3a in mrg31k3p

• zamaknjeni Fibonaccijevi generatorji (angl. Lagged Fibonacci Generators)

[9]: lfib

• xorshift [10]: xorshift1024

• xorshift* [11]: xorshift6432star

• Mersenne Twister (MT) [12]: mt19937

• majhni Mersenne Twister [3]: tinymt32 in tinymt64

• dobro enakomerno porazdeljen, linearen z dolgo periodo (angl. Well-Equi-

distributed Long-period Linear, WELL) [13]: well512

• metoda sredine kvadrata z Weylovim zaporedjem (angl. Middle Square Weyl

Sequence) [14]: msws

• Philox (angl. Product HIgh LOw Xorshift) [15]: philox2x32 10

• Tyche [16]: tyche in tyche i

• ISAAC (angl. Indirection, Shift, Accumulate, Add, and Count) [17]: isaac

• KISS (angl. Keep It Simple, Stupid) [18, 19]: kiss99 in kiss09

Obstaja več načinov, kako z enim algoritmom vzporedno generirati več zaporedij

naključnih števil. V knjižnici RandomCL uporabljamo naključno inicializacijo.

Vse niti uporabljajo isti algoritem za generiranje naključnih števil. Vsaka nit ga

na začetku izvajanja programa inicializira z naključno začetno vrednostjo. Ker

imajo vsi implementirani generatorji periodo vsaj 264, je verjetnost, da bi več niti

generiralo prekrivajoče se nize naključnih števil, majhna. Ta pristop smo izbrali,

ker ga je mogoče učinkovito implementirati za poljuben generator.

Testiranje

Pri uporabi generatorjev v vzporednem algoritmu se lahko naključna števila po-

rabljajo v drugačnem zaporedju, kot bi se v zaporednem. To je enako, kot da

bi generirana števila premešali z določeno permutacijo, kar bi lahko vplivalo na

kvaliteto generiranega zaporedja števil. Zato je potrebno testiranje kvalitete vzpo-

rednih implementacij generatorjev. Dober generator bi moral prestati teste tako v

zaporedni, kot vzporedni implementaciji.

Za empirično testiranje kvalitete generatorjev smo uporabili knjižnico TestU01

[20]. Ta uporablja statistične teste, s katerimi ǐsče vzorce v zaporedju generiranih

števil. Če vzorcev ni mogoče zaznati, generator test prestane. Knjižnica TestU01

vsebuje 3 skupine testov: SmallCrush, Crush in BigCrush. Prva je najhitreǰsa,

zadnja pa sposobna odkrivati tudi manj izrazite vzorce. Večina implementiranih

generatorjev v zaporedni različici teste prestane (izjeme so generatorji lcg6432,

mt19937, tinymt32, tinymt64 in well).

Hitrost generatorjev smo testirali na 5 računskih napravah – dveh centralnih

procesorjih in treh grafičnih karticah.

Rezultati

V tabeli 3.1 so rezultati testiranja kvalitete generatorjev. Generatorji isaac,

mt19937, kiss09, msws in lfib padejo na vsaj enem izmed testov. Prva dva

zato nista primerna za splošno uporabo. Generatorja kiss09 in msws bi lahko

prilagodili tako, da vračata le spodnjih 32 bitov in generator lfib zgornjih 32.

Tako prirejeni generatorji prestanejo teste, a generirajo naključna števila s polovično

učinkovitostjo.

Da lahko primerjamo generatorje prek različnih naprav, definiramo relativno

hitrost generatorja (enačba (3.1)), povprečno relativno hitrost (enačba (3.2)) in

najslabšo relativno hitrost (enačba (3.3)). V formulah je D število testiranih naprav,

sgd hitrost generatorja g na napravi d, srgd relativna hitrost, sd povprečna relativna

hitrost in min sd najslabša relativna hitrost generatorja g.

V tabelah 3.2 in 3.3 so rezultati testiranja hitrosti generatorjev. Vsebujeta

povprečno hitrost in standardni odklon hitrosti generiranja, ki sta izračunana iz

100 ponovitev meritve, ter povprečno relativno hitrost in najslabšo relativno hitrost

vsakega generatorja. Generatorji so urejeni padajoče po povprečni relativni hitrosti.

Za vsak stolpec je najbolǰsi rezultat generatorjev, ki prestanejo teste, napisan

krepko.

Razprava in zaključek

Generatorji lcg6432, mt19937, tinymt32, tinymt64, well, isaac, kiss09,

lfib in msws niso splošno uporabni, ker padejo na vsaj enem testu v zaporedni

ali vzporedni implementaciji.

Generator tyche i je v povprečju najhitreǰsi. Le na Intelovem procesorju je

generator pcg6432 občutno hitreǰsi. Najbolj robusten je msws. To pomeni, da

dosega največjo najslabšo relativno hitrost – na vseh testiranih napravah deluje re-

lativno hitro. To velja tudi, če uporabljamo le spodnjih 32 bitov izhoda generatorja,

ki teste kvalitete prestanejo.

Generator naključnih števil je običajno del večjega algoritma. Skupna hitrost

algoritma je lahko odvisna od generatorja na netrivialen način. Zato je pri opti-

mizaciji algoritma smiselno testirati več izmed hitrih generatorjev. Na ta način

lahko ugotovimo, kateri deluje najhitreje znotraj konkretnega algoritma. Možno je

uporabiti tudi generator, ki ne prestane vseh testov, a je v tem primeru potrebno

preveriti, da ne vpliva na pravilnost algoritma.

V nadaljnjem delu je možno implementirati in testirati še druge generatorje.

Samo testiranje kvalitete generatorjev bi bilo veliko hitreǰse, če bi obstajale vzpore-

dne implementacije statističnih testov iz knjižnice TestU01.

Chapter 1

Introduction

Parallelization is an effective option for reducing the running time of computationally

intensive algorithms. However, to effectively parallelize stochastic computationally-

intensive algorithms, such as Monte Carlo [21] methods, genetic algorithms [22] or

simulations of stochastic processes, we need to be able to generate random numbers

in parallel. Consequently we need a parallel implementation of a random number

generator (RNG).

A RNG of poor quality can affect the performance of such an algorithm or even

cause it to produce incorrect results. Most programming languages already imple-

ment an efficient and sufficiently good RNG in their standard libraries. However,

these implementations are sequential. Some libraries with parallel implementations

exist, but only a few can be run on a graphics processing unit (GPU) [1, 2, 3, 4] .

Furthermore, each library implements at most a few RNGs.

Quality and performance of sequential RNGs has been extensively evaluated

[20]. The only evaluation of GPU implementations we have found compares a small

number of RNGs on a single GPU [2]. Most of those RNGs have known flaws [20].

We are not aware of any comparison of RNGs across different GPUs and CPUs.

Therefore, a user that requires a parallel RNG in his algorithm has to, in most

cases, implement that RNG or is forced to include an entire RNG library that

implements it. To make things worse, it is also not clear which parallel RNG is the

most efficient or which RNGs are too flawed for practical use.

The main goal of this thesis was to prepare a library with a set of different

parallel RNG implementations, which users can easily include in their algorithms.

1

2 CHAPTER 1. INTRODUCTION

Additionally, we performed several experiments that provide insight into the

effectiveness of the RNGs and the practical usefulness of the sequences of numbers

that they generate.

1.1 GPUs and OpenCL Framework

GPUs are powerful parallel processing units. If an algorithm can be effectively

parallelized, it will usually run significantly faster on a GPU compared to a CPU,

especially if the algorithm is computationally complex.

The OpenCL framework allows the use of the same application on a multi-core

CPU as well as on a many-core GPU. It allows to implement functions that can be

run on hundreds or thousands of threads in parallel on a GPU. These functions are

termed kernels. The host (CPU) runs the host program; these can be written in C,

C++, Python, etc... This host program initializes the compute device, copies data

to its memory (if needed) and sets parameters of execution. The most important

parameters are the number of created threads and their organization in work groups.

A work group is a group of threads that is executed on a single compute unit. For

a CPU a compute unit is the same as a core. The threads of a work group can

execute mathematical operation at the same time in a vector unit.

GPUs are organized in a similar way. However for GPUs the term core is not

used for compute units.

GPUs commonly have three levels of memory. Global memory is the slowest

but largest level of GPU memory. It is equivalent to what RAM is to the CPU.

Local memory is faster but much smaller. It has the same function as cache on

CPU. Private memory is the fastest but also the smallest. It consists of registers.

Compared to CPU cache hierarchy all levels of GPU memory are directly addressable

by code.

1.2 Random Number Generators

Random is the opposite of deterministic. An event is random if it can not be

predicted with certainty. In computers, random numbers are typically generated

as independent samples from a uniform distribution. Computers are inherently

1.2. RANDOM NUMBER GENERATORS 3

deterministic. That means they can not algorithmically generate true random

numbers. For generating true random numbers, an external source of randomness

is required. As we do not deal with true random number generators, we use the

term RNG or generator to describe pseudo-random number generators.

In stochastic algorithms, pseudo-random numbers are typically used. A pseudo-

random number generator is an algorithm that outputs a sequence of numbers that

appears random. However, for all pseudo-random number generators this sequence

is periodic. While being deterministic, good pseudo-RNGs generate a sequence

of seemingly unpredictable numbers that has a long period and can be used to

simulate a random process.

This definition is quite vague. In fact, good definitions of randomness and RNGs

are either vague, such as ”Conceptually, these RNGs are designed to produce se-

quences of real numbers that behave approximately as the realizations of independent

random variables uniformly distributed over the interval (0, 1), or i.i.d. U(0, 1)”

[23, p.3] or even claimed not to exist: ”... there is no satisfactory definition of

randomness feasible for PRNG.” [24, p.2]. Some authors even make the definition of

randomness depend on the tests applied to the RNG: ”... using a (pseudo-)random

number generator, one can deterministically generate a sequence of numbers that

looks just like a truly random sequence in terms of specified statistical tests.” [25,

p.1].

In this work, we adopt the last definition - we consider a RNG to be random (that

is, good) enough, if it passes all the statistical tests that are aimed at identifying

discrepancies between the generated sequences and what we would expected from

a theoretical uniform random variable (or, if the RNG is used to generate another

distribution, discrepancies from that distribution).

In general, a RNG consists of a state xn, a state transition function f and an

output function g. To generate the n-th random number yn, the state of generator is

first advanced according to xn = f(xn−1), before outputting a number yn = g(xn).

In practice, the output function is usually simple, sometimes even the identity. In

generators with a large state, it often returns just a part of the generator state.

If the state size of a RNG is b bits, it is a b-bit RNG. A b-bit RNG can be in at

most 2b different states, which is also an upper bound on its period.

Before generating any numbers, state x0 is initialized using a random seed. If

4 CHAPTER 1. INTRODUCTION

generating a repeatable sequence of numbers is desired, a predetermined value

can be used as the seed. Otherwise, a true random number or the current time is

commonly used.

Compared to true random numbers, generating pseudo-random numbers is

often faster. Any algorithm involving RNGs can be executed with repeatable results

as many times as is required by using the same random seed. This is useful for

debugging and reproducing the results of scientific experiments.

RNGs have a large number of uses. Trivial use cases include playing shuffled

music and randomizing events in computer games. When recording audio with a

computer a random dithering [26] is used to reduce audibility of the quantization

noise. Randomness is needed if one wants to simulate any system with some random

inputs, such as weather or Brownian motion [27]. In fact it is needed to generate

random samples from any statistical distribution [28]. In cryptography [29], good

random numbers are very important for guarantees of security, for example when

generating cryptographic keys. A large field that uses RNGs are randomized

algorithms [30], including Monte Carlo Simulations [21] and genetic algorithms

[22].

In this thesis the focus is on RNGs for use in algorithms. This is the field where

the speedup by parallelization is the most important. RNGs, used in algorithms

must be fast and produce numbers of reasonable quality. Implemented RNGs could

also be used for any other mentioned field, except cryptography.

The requirements for cryptographically secure RNGs are even more strict [31].

Knowing a sequence of numbers it should be practically impossible to predict any

previous or next number numbers. Knowing the generator state it should also be

practically impossible to predict any previously generated numbers. This is the

reason cryptographic RNGs tend to be significantly slower.

Chapter 2

RandomCL Library

We implemented a library named RandomCL that contains 19 random number

generators. The library is header-only and can be used on any operating system

that supports the OpenCL framework. The generators from library can be executed

on any OpenCL-enabled CPU or GPU, regardless of device vendor. The library is

available at https://github.com/bstatcomp/RandomCL under the BSD-3

license.

All our generators can generate random numbers in the following formats:

unsigned 32-bit integers, unsigned 64-bit integers, 32-bit floating-point numbers or

64-bit double precision floating-point numbers. Integers are generated between 0

and a generator-dependent upper bound. Floating-point numbers are generated

between 0 and 1.

By default the RNGs generate either 32- or 64-bit unsigned integers. To generate

a 32-bit number with a 64-bit output generator, we drop half of the RNG output.

To generate a 64-bit number with a 32-bit output generator, we use two consecutive

numbers. Conversion to floating point numbers is done by multiplication of the

integer output by a precomputed constant c = 1
max output number . The value of this

constant depends on the RNG.

A typical use of the library consists of multiple steps:

• First, random seeds are generated for each thread using a sequential generator

- from a standard library.

• Seeds are then copied to the compute device’s global memory.

5

https://github.com/bstatcomp/RandomCL

6 CHAPTER 2. RANDOMCL LIBRARY

• Next, the stochastic application’s OpenCL kernel (implemented by the user

of the RandomCL library) is run on the device. It first calls the seeding

function of RNG in use, to initialize a generator for each thread using the

previously generated seeds.

• Finally, the kernel calls the RNG function that generates the next random

number, whenever random values are needed.

This way random numbers are generated during the execution of the stochastic

algorithm/application.

The library also supports generating random numbers in batches beforehand.

In this case the steps are:

• First, random seeds are generated for each thread using a sequential generator

- from a standard library.

• Seeds are then copied to the compute device’s global memory.

• Next, the OpenCL kernel that is part of the library is run on the device. It

first initializes a generator for each thread using the previously generated

seeds.

• The kernel calls the RNG function to generate random numbers and saves

them to the device’s global memory.

• Finally, the stochastic application’s kernel is run. As it needs random numbers

it reads them from the device’s global memory.

However, if the algorithm requires many random numbers, we expect this option to

be slower since generating random numbers can be significantly faster than loading

them from the slow global memory on most devices.

2.1 Implemented RNGs

When choosing which RNGs to implement, we first opted for some well-known

ones, such as the linear congruential generator and the Mersenne Twister. Other

RNGs were chosen because their sequential implementations are known to pass the

tests from TestU01 library [20] and are relatively fast.

2.1. IMPLEMENTED RNGS 7

We implemented several variations of the RNGs with small differences that

could affect performance, but not the quality of the generator. However, after

preliminary testing, we determined that for most RNGs differences in speed were

very small. Where it actually makes a difference, the RandomCL library contains

the fastest variation. This is also the variation we report the results for.

We implemented the following RNGs:

• Linear Congruential Generator (LCG) [5] generates random numbers

according to equation xn = (xn−1a + b) modm, where a, b and m are pa-

rameters. If m is a power of 2, the implementation is very simple and

fast. LCGs are known as poor generators, especially for m that is a

power of 2, but they can still pass the BigCrush test battery (described

in Chapter 3.1) if only a part of state is returned [6]. We have imple-

mented 128-bit LCG, that returns the upper 64 bits (lcg12864) and 64-bit

LCG, that returns the upper 32 bits (lcg6432). The lcg6432 generator

has the following parameters: m = 264, a = 6364136223846793005 and

b = 15726070495360670683. The lcg12864 generator has the following

parameters: m = 2128, a = 47026247687942121848144207491837523525 and

b = 117397592171526113268558934119004209487. The lcg6432 generator

does not pass the BigCrush test battery [6].

• Permutated Congruential Generator (PCG) [6] combines a LCG and

a non-trivial output function. Multiple versions with different output func-

tions exist. We implemented 64-bit generator that returns 32-bit numbers

pcg6432. It uses the same LCG parameters as generator lcg6432. To gen-

erate a random number LCG is advanced, the state is shifted and xor-ed with

the unshifted state. Then the uppermost four bits of the result determine

which 32 bits are returned.

• Multiple Recursive Generator (MRG) [7] of order k generates random

numbers according to function yn = (a1yn−1 + ...+ akyn−k) modm, where ai

and m are parameters. The state of this RNG consists of the last k generated

numbers. We implemented two MRGs, mrg31k3p [8] and mrg63k3a [7].

8 CHAPTER 2. RANDOMCL LIBRARY

• Lagged Fibonacci Generator [9], defined by lags r, s, and a binary oper-

ation ∗ generates numbers according to equation yn = yn−r ∗ yn−s. Its state

consists of the last max(r, s) generated numbers. If ∗ is addition, subtraction

or exclusive-or, resulting generators are known to have poor quality [20].

We implemented lagged Fibonacci generator lfib using multiplication and

r = 17, s = 5.

• Xorshift [10] generates a random number from the previous number by

shifting it and xor-ing it with the unshifted version three times, using a

different shift each time. Xorshift has been shown to be mathematically

equivalent to a linear feedback shift register (LFSR) generator [32]. The

64-bit xorshift does not pass the BigCrush test battery on its own [20].

We implemented 1024-bit xorshift generator xorshift1024 that uses the

following shifts: 329 to the left, 347 to the right and 344 to the left [2]. Its

state is advanced jointly by 32 threads.

• Xorshift* [11] is an xorshift generator with a non-trivial output func-

tion - a multiplication with an constant. We implemented 64-bit gener-

ator xorshift6432star that returns 32 bits of its state. That makes

it pass BigCrush test battery [6]. It uses the multiplication constant of

2685821657736338717 and following shifts: 12 to the right, 25 to the left and

27 to the right.

• Mersenne Twister [12] is one of most popular RNGs. It is based on a large

linear feedback shift register (LFSR) and a linear output function. However,

it does not pass the BigCrush test battery. We implemented Mersenne

Twister mt19937.

• Tiny Mersenne Twister [3] is a smaller version intended for situations

where not much memory can be used for storing generator state, for example,

on GPUs. The original implementation is already compatible with the

OpenCL programming language. We only modified the interface to make it

similar to other generators in the RandomCL library. There is 32-bit version

tinymt32 and 64-bit version tinymt64.

2.1. IMPLEMENTED RNGS 9

• WELL (Well-Equidistributed Long-period Linear) [13] was created

as an improvement to Mersenne Twister. While it has some nice theoret-

ical properties it still fails some tests in the BigCrush test battery. We

implemented the smallest, 512-bit version of the generator well512.

• Middle Square Weyl Sequence [14] generates the next number by squar-

ing the previous one before swapping the lower and upper bits of the residue

modulo 264. Lastly, a number generated by a Weyl sequence [10] is added.

Weyl sequence produces the next number by adding a constant to the previ-

ous one and taking the residue modulo 264. We implemented 64-bit middle

square Weyl sequence msws that uses an increment of 13091206342165455529

for the Weyl sequence part.

• Philox (Product HIgh LOw Xorshift) [15] is a counter-based RNG.

That means its state transition function is just an increment, while the

output function is more complex. It can be even used without storing a

state, just by applying its output function to some other variable in the

algorithm it is used in, such as a loop counter. It is based on ideas of

cryptographic block cyphers – using multiple rounds of a bit-scrambling

operation. We implemented 10-round Phylox RNG that works on two 32-bit

numbers philox2x32 10.

• Tyche [16] is a random number generator based on a quarter round function

of the ChaCha cypher. Tyche-i uses state transition function that is the

inverse of Tyche’s. This allows it to exploit instruction level parallelism of

modern processors to be slightly faster. We implemented both tyche and

tyche i.

• ISAAC (Indirection, Shift, Accumulate, Add, and Count) [17] is

a RNG originally intended for cryptographic purposes. We implemented

isaac, but it does not work on graphics cards, because it requires unaligned

memory access.

• KISS (Keep It Simple, Stupid) [18, 19] is a common name for three

compound RNGs by the same author. We implemented the second, kiss99,

10 CHAPTER 2. RANDOMCL LIBRARY

proposed in 1999, and third - kiss09, proposed in 2009. Their components

are LCG, xorshift and multiply-with-carry (MWC) generators. Kiss99 uses

32-bit component RNGs, while kiss09 uses 64-bit components. Both pass

the BigCrush test battery, even though none of their components do.

Sequential pseudocode for all implemented generators is in the appendix A.

They all contain the declaration of generator state and functions for seeding the

RNG and generating a random number. Seeding a generator can be done in an

almost arbitrary way. However, one must be careful to assign a valid value to its

state. For simplicity the pseudocode shows generator implementations that save

their states in a global variable so there can only be one instance of each generator

at once.

2.2 Parallelization

We are using random initialization to generate random numbers in a parallel. Each

thread has its own instance of a generator, initialized to a random state. Seeds

for each thread must not be generated with the same generator. If they were,

threads would output the same sequence of numbers, shifted by one number. While

random initialization is efficient and doable for any generator, it is possible that the

generated streams overlap. The probability of overlap can be reduced by using a

generator with a longer period. If a generator has period p and we use T threads to

generate ` random numbers per thread, the probability that any generated streams

overlap can be calculated with equation (2.1) [23].

1 −
(

1 − T`

p

)T−1

(2.1)

Some example probabilities are calculated in table 2.1. All implemented gener-

ators have a period in order of magnitude of at least 264, so the probability of an

overlap is small for all but the largest use cases. For generators with the period of

2128 or more the probability of overlap is negligible. Generators with the period of

232 or less almost guarantee overlap even in relatively small use cases. That is one

of the reasons why we did not implement any generators with such short period.

There are several possible alternatives to our approach [23]. A trivial alternative

would be to generate a sequence of random numbers sequentially - possibly in

2.2. PARALLELIZATION 11

Table 2.1: Probability of random stream overlap. Listed are a few example

thread numbers and typical devices, on which such number of threads would be

used. All example cases assume 107 numbers are generated per thread.

probability of overlap

example number of for typical RNG periods

device threads 232 264 2128

CPU 200 1 10−8 10−27

mid-range GPU 4000 1 10−6 10−25

high-end GPU 250000 1 0.03 10−21

30 GPUs 7.5 · 106 1 1 10−18

1000 GPUs 2.5 · 108 1 1 10−15

106 GPUs 2.5 · 1011 1 1 10−9

advance. However, this approach is slow as it does not scale with the number of

threads.

Next, we could use a different generator for each thread. Same algorithm with

different parameter sets would suffice. However, many parameter sets that produce

streams of good quality exist only for a few RNGs. Even if the quality of each

stream is good, that does not imply that the numbers from different streams are

independent. The independence must be tested [23].

If we have T threads, each with a single instance of a generator, we can initialize

generators with T sequential states. Before using the output function to generate

a number, the generator is advanced not for 1, but for T states. However, for

most generators jumping ahead by multiple states is significantly slower than just

advancing the state by one.

We could also split the stream of numbers into T substreams of (almost) equal

length and initialize each generator to the first state in different substreams. This

is realized by initializing all generators to the same state before advancing them

for an appropriate number of steps. However, efficient jumping for many steps is

possible only for a few RNGs, while advancing one step at a time would be too

time consuming to be practically feasible. It has been shown at least for LCGs that

12 CHAPTER 2. RANDOMCL LIBRARY

Listing 2.1: Using a LCG to generate 1000 random numbers sequentially

1 uint64 a = 6364136223846793005

2 uint64 b = 15726070495360670683

3 uint64 seed = 12345

4 uint32 result[1000]

5

6 uint64 state = seed

7

8 for(uint32 i = 0; i < 1000; i++){

9 state = a * state + b

10 result[i] = (uint32)state

11 }

random initialization gives better quality of the generated numbers than equally

spaced substreams [2].

2.2.1 An Example of Parallelization

We can take for example linear congruential generator lcg6432 (described in

section 2.1). Listing 2.1 shows the pseudo-code of how we generate 1000 random

numbers sequentially. The first two lines define parameters of the generator. The

third line declares the variable holding the initial seed of generator. The fourth line

declares an array holding the results. Next the generator is initialized using the

provided seed. Finally the numbers are generated in a loop and saved in the array.

Alternatively, we can generate random numbers in parallel using the same

generator. Listing 2.2 shows pseudo-code how to do that. The first four lines are

the same as in the sequential example. The fifth line declares a variable that holds

the number of threads that will be run in parallel. The sixth line declares an array

of generator states - one state per thread. First a sequential RNG is initialized using

provided seed. It can be any RNG except the one used for parallel generation. It

is used to generate one random seed for each thread. Finally, T threads are started

to generate numbers. Each thread queries for its index id and then generates every

2.3. AN EXAMPLE OF USING A RANDOMCL RNG 13

T-th number in the result array starting at index id.

2.3 An Example of Using a RandomCL RNG

Listing 2.3 shows how to fill an array in OpenCL kernel with random numbers

using a RandomCL RNG. It uses the tyche i RNG to generate 32-bit unsigned

integers. Other RandomCL RNGs could be used in similar way.

Line 1 includes the header file with the implementation of the RNG.

Lines 3-5 contain the kernel function header. This is the function that can

be called from the host and executes in parallel on the device. It accepts three

arguments. First argument num sets the number of random values to generate.

Second argument seed is a pointer to the array in global memory that contains

seeds for initialization of generators. Since this example uses one generator per

thread, the seed array must contain (at least) as many seeds. Last argument res

is a pointer to an array in global memory, where the generated numbers will be

stored.

Lines 6 and 7 determine the execution parameters: total number of threads

gsize and index of the thread gid. Line 8 declares variable state that stores

the state of the RNG. Line 9 initializes the RNG of each thread with one of the

seeds. Lines 10-12 generate random numbers and save them in the res array.

14 CHAPTER 2. RANDOMCL LIBRARY

Listing 2.2: Using LCG to generate 1000 random numbers in parallel using

random initialization

1 uint64 a = 6364136223846793005

2 uint64 b = 15726070495360670683

3 uint64 seed = 12345

4 uint32 result[1000]

5 int32 T = 128

6 uint64 state[T]

7

8 uint64 seq_state = seed

9 for(int i = 0; i < T; i++){

10 seq_state = sequential_RNG(seq_state)

11 state[i] = seq_state

12 }

13

14 execute in parallel using T threads{

15 int32 id = get_index_of_current_thread()

16 for(int32 i = id; i < 1000; i += T){

17 state[id] = a * state[id] + b

18 result[i] = (uint32)state[id]

19 }

20 }

2.3. AN EXAMPLE OF USING A RANDOMCL RNG 15

Listing 2.3: An example of how to use a RandomCL RNG

1 #include <tyche_i.cl>

2

3 kernel void array(uint num,

4 global ulong* seed,

5 global uint* res){

6 uint gid = get_global_id(0);

7 uint gsize = get_global_size(0);

8 tyche_i_state state;

9 tyche_i_seed(&state, seed[gid]);

10 for(uint i = gid; i < num; i += gsize){

11 res[i] = tyche_i_uint(state);

12 }

13 }

16 CHAPTER 2. RANDOMCL LIBRARY

Chapter 3

Empirical Evaluation

Since pseudo-random number generators produce numbers in a deterministic way,

it is clear that the generated numbers are not equivalent to theoretical observations

of random variables. Deciding which list of properties a good RNG should have is

hard, as even the definition of what random in pseudo-RNG means is not agreed

upon.

Some deficiencies and desirable properties of RNGs can be proven theoretically.

Further evaluation of RNGs can be done by empirical testing. While it can not

prove a generator is good, statistical tests can be used to check a RNG for common

deficiencies. A sequence of numbers produced by a good RNG should be difficult

to distinguish from true random numbers.

A good RNG should also be efficient (that is, fast). This is even more important

for parallel implementations, as the purpose of parallelization is reduction of the

running time.

In cryptography, it is common to test correctness of implementations for

algorithms, such as cryptographic RNGs using test vectors. That means the

original author of the RNG publishes a seed and a sequence of numbers that is

generated for that seed (a test vector). This way any other implementation can be

checked that it produces the same numbers while initialized with the same seed.

The testing using test vectors can only prove two implementations of the RNG are

different. It can not show which one, if any, is the correct one.

However, publishing test vectors for the non-cryptographic RNGs is not common.

We have not found test vectors for any of the implemented RNGs. This might be

17

18 CHAPTER 3. EMPIRICAL EVALUATION

because the cryptographic RNGs tend to be more complex, which makes mistakes

in the implementation more likely.

3.1 Testing Quality

The TestU01 library [20, 33] is the most commonly used suite for empirically testing

the quality of RNGs. It extends the DIEHARD suite with more tests. TestU01

defines three batteries that specify the tests and their parameters. From fastest

to most discriminative they are SmallCrush, Crush and BigCrush. SmallCrush

includes 10 tests, requiring approximately 51 million 32-bit random numbers to

be generated. Crush includes 96 tests, requiring approximately 34 billion 32-bit

numbers. BigCrush includes 106 tests, requiring approximately 274 billion 32-bit

numbers.

Tests work in the following way. First, the random numbers are generated using

the tested RNG. Optionally, they are transformed in some way to result in samples

from another distribution. Lastly, these samples are compared to what would be

expected of a theoretically determined distribution using a statistical test. This

entire process is based on the fact that a true RNG can be used, with appropriate

transformations, to generate samples from other distributions. If it fails to do so,

the RNG is flawed.

The test fails if the probability (p-value) that the expected distribution generates

the numbers obtained using tested RNG is too small or too large. Too small a

p-value means that a RNG exhibits noticeable patterns, which would not occur

in a true random sequence. Too large a p-value means the RNG produces results

that are too regular. A relatively small threshold on p-value (significance) must be

chosen to reduce probability of test failures by chance as many tests are used on

each generator. We used the default TestU01 significance value of 0.0001. That

means a test fails if it produces a p-value smaller than 0.0001 or larger than 0.9999.

A mathematical description of all tests and their parameters, as they are used in

test batteries from TestU01 library, is out of scope of this thesis, as there are simply

too many of them. The complete list of tests, their parameters, brief descriptions

and citations of further mathematical background can be found in TestU01 User’s

Guide [33]. To give the reader an idea of how exactly the tests work, we describe

3.1. TESTING QUALITY 19

two of them: theWeightDistrib test and the HammingWeight test.

The WeightDistrib test with parameters n, k, α and β uses the tested RNG to

generate n groups of k floating-point numbers between 0 and 1. In each group the

numbers that are between α and β are counted. Counts C should be distributed

according to binomial distribution C ∼ Binom(k, β − α). The actual distribution

is compared to the expected one with a chi-square test.

The HammingWeight test groups numbers into L groups containing n bits.

L and n are parameters of the test. In each block the number of bits equal to

1 is counted. Counts C are expected to be distributed according to binomial

distribution C ∼ Binom(L, 0.5). A chi-square test is used to compare expected and

actual distribution.

Among others, the following properties of RNGs are tested:

• Multidimensional equidistribution [34].

• Entropy [35].

• Pairwise distances between generated points in multidimensional space.

• Number of permutations required to sort generated numbers.

• Fraction of generated numbers that are within specified interval.

• Count of distinct numbers in groups of generated small integers.

• Count of small integers to generate before all distinct values are generated.

• Lengths of increasing and decreasing runs in a generated sequence of numbers.

• Distribution of maximal numbers from groups of generated numbers.

• Linear independence [36] of generated bits.

• Autocorrelation [37] of generated sequences.

• Distribution of mean values and products of generated sequences.

• Spectra obtained by Fourier transform of generated sequences.

• Lengths of runs of ones and zeros in generated sequence of bits.

20 CHAPTER 3. EMPIRICAL EVALUATION

• Distribution of Hamming weights [38] in generated numbers.

• Distances between consecutive sorted numbers.

Sequential implementations of most generators we implemented are known to

pass the BigCrush test battery (the exceptions are lcg6432, mt19937, tinymt32,

tinymt64, and well).

Depending on how they are used, random numbers generated in parallel may

or may not be consumed in the same order as they have been generated. If they

are, the quality of the RNG is exactly the same as the quality of the sequential

implementation of the same RNG. If they are not, this is effectively the same as

permuting the order in which the numbers are generated. If each thread works on

an independent part of the problem, numbers are consumed in the same order as

generated, resulting in no permutation. However, if threads work jointly on the

same part of the problem, one number from each thread is consumed before the

next number from first thread is consumed. Which of those options is used in a

parallel algorithm depends on the way the algorithm is parallelized.

For example, we can take a simple case of generating random numbers and

saving them in an array in memory. If this task is done with a sequential program

there is only one obvious way of ordering numbers. The i-th generated number is

saved to the i-th place in the array. In parallel, however, there are two reasonable

options. If we have T threads, each generating N numbers (for a total of NT

numbers), the i-th number generated by thread t can be saved at the index Nt+ i

or Ti + t. The first option is similar to sequential generation of numbers. Each

thread stores numbers generated in sequence in a contiguous part of array. In

the second option the consecutive numbers of the resulting array are generated by

different threads.

These permutations could affect the quality of the generated stream of numbers.

This is why we have tested the quality of parallel implementations of generators,

which effectively return permuted sequences. It is impossible to test permutations

for all possible numbers of threads. We wanted to choose a number that would

be representative of a typical usage of a GPU. So it must be a multiple of 64 as

GPUs run threads either in multiples of 32 or 64. Nowadays a mid-range GPU has

around 1000 cores, so we selected 1024 as a representative number and executed

the tests on as many threads.

3.2. TESTING SPEED 21

The TestU01 library can only test 32-bit numbers. So we have tested 64-bit

output generators three times: the lower 32 bits of each number, the upper 32 bits

and both the lower and the upper 32 bits as two consecutive 32-bit numbers.

3.2 Testing Speed

We tested the speed of the implemented RNGs on several different devices. We

used one CPU and one GPU from each major vendor. This way we obtained the

following list: AMD Radeon R7 260X (2013 mid-end, gaming GPU), AMD Ryzen

Threadripper 1950X (2017 high-end CPU), Intel Core i5-4690 (2014 mid-end CPU),

Intel HD Graphics 4000 (2012 low-end, integrated GPU) and NVIDIA GeForce

GTX 1070 (2016 high-end, gaming GPU). Tests on all the devices were carried out

on computers with Windows 10 operating system.

The performance of a particular generator on a particular device can vary

greatly with the number of threads used and how they are divided into work groups.

We have made no attempt at finding optimal configurations. Instead, we used a

simple heuristic to determine the number of threads that worked relatively well for

all generators and devices. We set the number of threads per work group to 256

and number of work groups to 4 times the number of compute units on the device.

In practice, RNGs are usually part of a larger program and it makes no sense to

expect the number of threads to be optimized for performance of the RNG.

Some RNGs generate 32-bit numbers and some generate 64-bit numbers. To

avoid the overhead of converting all numbers to either 64 or 32 bits, we tested

32- and 64-bit generators separately and report measured speed in gigabytes per

second.

To time an OpenCL kernel function, we simply measured wall-clock time as a

difference between start time and end time. We did not want to use device-specific

measurement methods and the OpenCL framework only supports measurement of

wall-clock time.

The amount of numbers to generate with each generator on each device was

automatically selected as a power of 2 (for efficiency of the generation) that resulted

in running time between 0.1 and 0.2 seconds. This way tests ran for long enough

that the latency of starting the kernel is negligible. If we used a fixed amount of

22 CHAPTER 3. EMPIRICAL EVALUATION

generated numbers, the running times on slower devices would be considerably

larger. Performance testing of every generator was run 100 times on each device.

This number of repetitions was selected because it is large enough to provide stable

results and small enough for a practical test duration.

The amount of numbers to generate was determined dynamically, just before

the start of testing on each device. First, one number is generated and execution is

timed. The amount of numbers is than repeatedly doubled until an appropriate

running time is reached. This also serves to ”warm-up” the device, which makes

sure the device is not in a power-saving or idle state.

3.3 Results

From Table 3.1 we can see that the parallel implementations of generators isaac

and mt19937 fail at least one of the tests. That makes them unsuitable for general

purpose parallel RNGs. Generators kiss09, msws and lfib also fail some, but

could still be used. We can see that the lower 32 bits of generators kiss09 and

msws and upper 32 bits of generator lfib pass all tests, so we could modify those

RNGs to only return half of their current output. However, that would effectively

halve the speed at which they generate numbers.

To compare speeds of a generator across devices we define relative speed of a

particular generator on a particular device as quotient of the speed of the generator

on that device and the speed of the fastest generator implementation on the same

device. Let sgd be the speed of generator g on device d. Its relative speed srgd is

srgd =
sgd

max
i

(sgi)
. (3.1)

Using the relative speed we can report the average and the worst speed across

devices. Let sgd be the speed of generator g on device d and D the number of

devices. We can define average relative speed sd and worst relative speed min sd:

sd =
1

D

D∑
d=1

sgd
max

i
(sgi)

. (3.2)

min sd = min
d

sgd
max

i
(sgi)

. (3.3)

3.3. RESULTS 23

Table 3.1: Quality Tests Results. For each generator, we report the number of

failures on each test battery. 64-bit generators have three results for every battery

of tests - for lower 32 bits, upper 32 bits and both as two 32-bit numbers.

output generator SmallCrush Crush BigCrush

isaac 0 1 0

kiss99 0 0 0

lcg6432 0 0 0

mrg31k3p 0 0 0

32-bit mt19937 1 1 0

pcg6432 0 0 0

tinymt32 0 0 0

well512 0 0 0

xorshift1024 0 0 0

xorshift6432star 0 0 0

kiss09 0 0 0 0 1 0 0 0 0

lcg12864 0 0 0 0 0 0 0 0 0

lfib 8 0 6 70 0 53 52 0 40

mrg63k3a 0 0 0 0 0 0 0 0 0

64-bit msws 0 0 0 0 10 4 0 26 10

philox2x32 10 0 0 0 0 0 0 0 0 0

tinymt64 0 0 0 0 0 0 0 0 0

tyche 0 0 0 0 0 0 0 0 0

tyche i 0 0 0 0 0 0 0 0 0

24 CHAPTER 3. EMPIRICAL EVALUATION

The average relative speed is the average performance of a generator across

tested devices. It can also be understood as expected speed on a random or

unknown device.

The worst relative speed represents the robustness of a generator. A generator

can achieve a high average relative speed by being particularly fast on one or a few

devices and slow on the others. To have a high worst relative speed a generator

must perform reasonably well on all tested devices.

Tables 3.2 and 3.3 contain measurements of speed as the average value and

standard deviation for each pair of generator and device. They also contain the

average and the worst relative speed across devices for each generator.

3.3. RESULTS 25

Table 3.2: Performance Tests Results 1/2. Generators are ordered by their

average relative speed. Absolute measurements are presented as the average value

and the standard deviation in gigabytes per second. For each column the speed of

the fastest generator that passes the BigCrush test battery is in bold.

AMD

Ryzen NVIDIA

average worst AMD Thread- Intel Intel HD GeForce

relative relative Radeon ripper Core Graphics GTX

generator speed speed R7 260X 1950X i5-4690 4000 1070

msws 0.857 0.583 327.37 140.44 128.23 29.51 1621.94

±0.06 ±4.22 ±8.26 ±0.44 ±13.92

tyche i 0.722 0.158 545.87 112.20 20.39 22.81 1967.44

±0.33 ±3.81 ±1.50 ±0.44 ±16.95

lcg6432 0.636 0.312 175.46 111.24 99.27 33.16 617.70

±0.03 ±4.73 ±5.65 ±0.92 ±5.26

tyche 0.567 0.109 561.48 69.70 14.09 20.69 1196.88

±0.31 ±2.58 ±0.94 ±0.41 ±32.91

kiss09 0.516 0.054 353.20 96.80 108.90 1.81 717.65

±0.20 ±2.78 ±7.08 ±0.02 ±8.40

xorshift- 0.440 0.240 278.89 61.37 63.81 17.77 471.88

6432star ±0.05 ±1.82 ±4.08 ±0.38 ±3.99

tinymt64 0.438 0.323 234.80 53.99 44.56 24.01 635.35

±0.06 ±1.52 ±3.27 ±0.45 ±5.25

pcg6432 0.402 0.165 92.93 62.66 86.18 17.51 402.79

±0.02 ±2.05 ±6.75 ±0.41 ±3.30

tinymt32 0.291 0.179 152.42 26.72 23.05 19.15 474.96

±0.03 ±0.76 ±1.60 ±0.51 ±4.01

lcg12864 0.290 0.132 78.65 78.32 51.52 7.30 259.94

±0.01 ±2.19 ±3.51 ±0.12 ±2.30

26 CHAPTER 3. EMPIRICAL EVALUATION

Table 3.3: Performance Tests Results 2/2. Generators are ordered by their

average relative speed. Absolute measurements are presented as the average value

and the standard deviation in gigabytes per second. Our implementation of the

isaac generator does not work on GPUs as it requires unaligned memory access.

AMD

Ryzen NVIDIA

average worst AMD Thread- Intel Intel HD GeForce

relative relative Radeon ripper Core Graphics GTX

generator speed speed R7 260X 1950X i5-4690 4000 1070

kiss99 0.289 0.066 238.29 33.35 46.78 2.20 701.94

±0.04 ±0.94 ±3.38 ±0.03 ±5.95

lfib 0.164 0.034 72.29 77.64 4.42 1.69 104.27

±0.05 ±2.57 ±0.32 ±0.03 ±1.21

isaac 0.139 0.033 / 34.43 4.20 / /

±1.15 ±0.31

philox2- 0.116 0.067 82.83 14.21 8.63 5.90 173.76

x32 10 ±0.13 ±0.40 ±0.42 ±0.23 ±1.42

xorshift- 0.083 0.002 112.44 0.21 2.69 3.67 164.05

1024 ±0.03 ±0.01 ±0.18 ±0.07 ±1.38

mrg31k3p 0.079 0.033 18.68 13.98 17.17 1.66 154.37

±0.00 ±0.37 ±1.09 ±0.03 ±1.31

well512 0.066 0.028 40.88 16.23 3.65 2.17 97.93

±0.01 ±0.63 ±0.23 ±0.05 ±0.74

mrg63k3a 0.060 0.003 14.81 13.48 19.40 0.11 49.23

±0.10 ±0.30 ±1.25 ±0.00 ±0.51

mt19937 0.033 0.005 16.68 13.22 2.02 0.18 44.01

±0.07 ±0.43 ±0.13 ±0.01 ±1.64

Chapter 4

Discussion and Conclusion

For a parallel RNG to be as general as possible, it should pass statistical tests

both when run in a single thread and in parallel - as explained in Section 3.1.

Generators lcg6432, mt19937, tinymt32, tinymt64, well, isaac, kiss09,

lfib and msws fail the testing either when run sequentially or in parallel. Among

the remaining RNGs, we are most interested in the ones that can generate numbers

quickly on a variety of devices.

We can see that in general different generators produce numbers at very diverse

speeds. The generator tyche i is on average the fastest among the ones that pass

the BigCrush test battery (the generator msws does not, unless we only use half of

its output, which would make it slower on average than the generator tyche i).

It is also the fastest on the Intel and the NVIDIA GPU, the AMD CPU and a close

second on the AMD GPU (we again disregard generators that fail the BigCrush test

battery). However, its worst relative speed is quite low due to poor performance on

the Intel CPU. The best generator on the AMD GPU is tyche. On the Intel CPU

generator pcg6432 is the fastest among those that pass the tests. The best worst

relative speed is achieved by generator msws. While it does not pass the BigCrush

test battery, we can use only the lower half of its output, which does pass. This

way we obtain half of its worst relative speed, which is still more than any other

generator that passes the BigCrush test battery.

As a general purpose RNG that can run very fast on almost any device, generator

tyche i is a good choice. If we target only a specific device, we can instead select

the generator with the best performance on the most similar device. If it is really

27

28 CHAPTER 4. DISCUSSION AND CONCLUSION

important that the generator does not run slowly on any device, the lower 32 bits

of generator msws should be used.

Usually, however, the RNG is a part of a larger algorithm. Its speed depends

on many factors that are affected by both RNG and the rest of the algorithm

in a non-trivial way. To achieve the best possible performance, the speed of the

algorithm should be measured while using some of the fastest generators in order

to find which one works best for a particular case.

One could also try the generators that fail some of the tests, as the algorithm

might not be sensitive to deficiencies of a particular generator. In that case, however,

the algorithm should be tested for correctness while using each of the candidate

generators. Such testing may also be beneficial in general, as the algorithm could

be sensitive to a deficiency that is not tested for in the TestU01 library.

As part of future work, one could extend the list of tested generators. It would

be interesting to add implementations that can be split into substreams of equal

length or that use different parameter sets for each thread. It might also be possible

to tweak the Middle Square Weyl Sequence RNG to make its whole state pass

the BigCrush test battery without affecting its speed, which would make by far

the most robust generator. Finally, for the research of parallel RNGs, it would

be convenient to have a parallel implementation of the computationally intensive

statistical tests of generator quality.

Bibliography

[1] P. L’Ecuyer, D. Munger, and N. Kemerchou, “clRNG: A random num-

ber API with multiple streams for OpenCL,” report,, 2015. [On-

line] Available: http://www.iro.umontreal.ca/˜lecuyer/myftp/

papers/clrng-api.pdf [Accessed: 20 September 2018].

[2] M. Manssen, M. Weigel, and A. K. Hartmann, “Random number generators

for massively parallel simulations on GPU,” The European Physical Journal-

Special Topics, vol. 210, no. 1, pp. 53–71, 2012.

[3] M. Matsumoto and T. Nishimura, “Tiny Mersenne twister,” 2011. [Online]

Available: http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/

TINYMT/index.html [Accessed: 20 September 2018].

[4] NVIDIA technical staff, “cuRAND,” 2010. [Online] Available: https://

developer.nvidia.com/curand [Accessed: 20 September 2018].

[5] P. L’ecuyer, “Tables of linear congruential generators of different sizes and good

lattice structure,” Mathematics of Computation of the American Mathematical

Society, vol. 68, no. 225, pp. 249–260, 1999.

[6] M. E. O’Neill, “PCG: A family of simple fast space-efficient statistically

good algorithms for random number generation,” ACM Transactions on

Mathematical Software, 2014.

[7] P. L’ecuyer, “Good parameters and implementations for combined multiple

recursive random number generators,” Operations Research, vol. 47, no. 1,

pp. 159–164, 1999.

29

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/clrng-api.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/clrng-api.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index.html
https://developer.nvidia.com/curand
https://developer.nvidia.com/curand

30 BIBLIOGRAPHY

[8] P. L’Ecuyer and R. Touzin, “Fast combined multiple recursive generators with

multipliers of the form a=±2 q±2 r,” in Proceedings of the 32nd conference on

Winter simulation (J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick,

eds.), pp. 683–689, Society for Computer Simulation International, 2000.

[9] G. Marsaglia and L.-H. Tsay, “Matrices and the structure of random number

sequences,” Linear algebra and its applications, vol. 67, pp. 147–156, 1985.

[10] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software, vol. 8, no. 14,

pp. 1–6, 2003.

[11] S. Vigna, “An experimental exploration of Marsaglia’s xorshift generators,

scrambled,” ACM Transactions on Mathematical Software (TOMS), vol. 42,

no. 4, p. 30, 2016.

[12] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator,” ACM Transac-

tions on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3–30,

1998.

[13] F. Panneton, P. L’ecuyer, and M. Matsumoto, “Improved long-period genera-

tors based on linear recurrences modulo 2,” ACM Transactions on Mathemat-

ical Software (TOMS), vol. 32, no. 1, pp. 1–16, 2006.

[14] B. Widynski, “Middle square Weyl sequence RNG,” arXiv preprint

arXiv:1704.00358, 2017.

[15] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel random

numbers: as easy as 1, 2, 3,” in High Performance Computing, Networking,

Storage and Analysis (SC), 2011 International Conference for (S. Lathrop,

J. Costa, and W. Kramer, eds.), pp. 1–12, IEEE, 2011.

[16] S. Neves and F. Araujo, “Fast and small nonlinear pseudorandom number

generators for computer simulation,” in International Conference on Par-

allel Processing and Applied Mathematics (R. Wyrzykowski, J. Dongarra,

K. Karczewski, and J. Waśniewski, eds.), pp. 92–101, Springer, 2011.

[17] R. J. Jenkins, “ISAAC,” in International Workshop on Fast Software Encryp-

tion (D. Gollmann, ed.), pp. 41–49, Springer, 1996.

BIBLIOGRAPHY 31

[18] G. Marsaglia, “Random numbers for C: End, at last?,” 1999. [Online] Avail-

able: http://www.cse.yorku.ca/˜oz/marsaglia-rng.html [Ac-

cessed: 20 September 2018].

[19] G. Marsaglia, “64-bit KISS RNGs,” 2009. [Online] Available: https://

www.thecodingforums.com/threads/64-bit-kiss-rngs.673657

[Accessed: 20 September 2018].

[20] P. L’Ecuyer and R. Simard, “TestU01: A C library for empirical testing of

random number generators,” ACM Transactions on Mathematical Software

(TOMS), vol. 33, no. 4, p. 22, 2007.

[21] C. Z. Mooney, Monte carlo simulation, vol. 116. Sage Publications, 1997.

[22] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4,

no. 2, pp. 65–85, 1994.

[23] P. L’Ecuyer, D. Munger, B. Oreshkin, and R. Simard, “Random numbers for

parallel computers: Requirements and methods, with emphasis on GPUs,”

Mathematics and Computers in Simulation, vol. 135, pp. 3–17, 2017.

[24] M. Matsumoto, “Randomness in computation,” in Japanese German Frontiers

of Science Symposium (H. Arimura and J. Rothe, eds.), p. 2, Japan Society

for the Promotion of Science (JSPS), 2005.

[25] H. Arimura and J. Rothe, “Randomness in computation,” in Japanese German

Frontiers of Science Symposium (H. Arimura and J. Rothe, eds.), p. 1, Japan

Society for the Promotion of Science (JSPS), 2005.

[26] S. P. Lipshitz, R. A. Wannamaker, and J. Vanderkooy, “Quantization and

dither: A theoretical survey,” Journal of the audio engineering society, vol. 40,

no. 5, pp. 355–375, 1992.

[27] T. Hida, “Brownian motion,” in Brownian Motion, pp. 44–113, Springer, 1980.

[28] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical distributions.

John Wiley & Sons, 2011.

http://www.cse.yorku.ca/~oz/marsaglia-rng.html
https://www.thecodingforums.com/threads/64-bit-kiss-rngs.673657
https://www.thecodingforums.com/threads/64-bit-kiss-rngs.673657

32 BIBLIOGRAPHY

[29] K. Marton, A. Suciu, and I. Ignat, “Randomness in digital cryptography: A

survey,” Romanian Journal of Information Science and Technology, vol. 13,

no. 3, pp. 219–240, 2010.

[30] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge university

press, 1995.

[31] F. Özkaynak, “Cryptographically secure random number generator with chaotic

additional input,” Nonlinear Dynamics, vol. 78, no. 3, pp. 2015–2020, 2014.

[32] R. P. Brent, “Note on Marsaglia’s xorshift random number generators,” Journal

of Statistical Software, vol. 11, no. 5, pp. 1–4, 2004.

[33] P. L’Ecuyer and R. Simard, “TestU01: A Software Library in ANSI C for

Empirical Testing of Random Number Generators, User’s guide, compact

version,” 2013. [Online] Available: http://simul.iro.umontreal.ca/

testu01/guideshorttestu01.pdf [Accessed: 20 September 2018].

[34] R. P. Brent, “The myth of equidistribution for high-dimensional simulation,”

arXiv preprint arXiv:1005.1320, 2010.

[35] P. L’Écuyer, A. Compagner, and J.-f. Cordeau, Entropy tests for random

number generators. École des hautes études commerciales, Groupe d’études et

de recherche en analyse des décisions, 1996.

[36] “Linear independance.” [Online] Available: https://en.wikipedia.org/

wiki/Linear_independence [Accessed: 23 October 2018].

[37] “Autocorrelation.” [Online] Available: https://en.wikipedia.org/

wiki/Autocorrelation [Accessed: 23 October 2018].

[38] “Hamming weight.” [Online] Available: https://en.wikipedia.org/

wiki/Hamming_weight [Accessed: 23 October 2018].

http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf
http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf
https://en.wikipedia.org/wiki/Linear_independence
https://en.wikipedia.org/wiki/Linear_independence
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Hamming_weight
https://en.wikipedia.org/wiki/Hamming_weight

Appendix A

Pseudocode of the Implemented Generators

Listing 1: lcg6432 pseudocode

uint64 state

lcg6432_seed(uint64 seed){

state = seed

}

uint32 lcg6432_next_int32(){

state = state * 6364136223846793005 +

15726070495360670683

return (uint32) state

}

Listing 2: lcg12864 pseudocode

uint64 state_low, state_high

lcg12864_seed(int64 seed){

state_low = seed

state_high = seed ˆ 15726070495360670683

}

33

34 APPENDIX . A

uint64 lcg12864_next_uint64(){

state_high = state_high * 4865540595714422341 +

state_low * 2549297995355413924 +

mul_hi(state_low, 4865540595714422341)

state_low = state_low * 4865540595714422341

state_low += 1442695040888963407

state_high += state_low < 1442695040888963407

state_high += 6364136223846793005

return state_high

}

Listing 3: pcg6432 pseudocode

uint64 state

pcg6432_seed(uint64 seed){

state = seed

}

uint32 pcg6432_next_uint32(){

uint64 oldstate = state

state = oldstate * 6364136223846793005 +

15726070495360670683

uint32 xorshifted = ((oldstate >> 18) ˆ

oldstate) >> 27

uint32 rot = oldstate >> 59

return (xorshifted >> rot) |

(xorshifted << ((-rot) & 31))

}

Listing 4: mrg63k3a pseudocode

uint64 state10, state11, state12

uint64 state20, state21, state22

35

mrg63k3a_seed(uint64 seed){

state10 = seed

state11 = seed

state12 = seed

state20 = seed

state21 = seed

state22 = seed

if(seed == 0){

state10++

state21++

}

}

uint64 mrg63k3a_next_uint64(){

uint64 h, p12, p13, p21, p23

h = state10 / 2898513661

p13 = 3182104042 * (state10 - h * 2898513661) -

h * 394451401

h = state11 / 5256471877

p12 = 1754669720 * (state11 - h * 5256471877) -

h * 251304723

if (p13 < 0)

p13 += 9223372036854769163

if (p12 < 0)

p12 += 9223372036854769163 - p13

else

p12 -= p13

if (p12 < 0)

p12 += 9223372036854769163

state10 = state11

state11 = state12

state12 = p12

36 APPENDIX . A

h = state20 / 1487847900

p23 = 6199136374 * (state20 - h * 1487847900) -

h * 985240079

h = state22 / 293855150

p21 = 31387477935 * (state22 - h * 293855150) -

h * 143639429

if (p23 < 0)

p23 += 9223372036854754679

if (p21 < 0)

p21 += 9223372036854754679 - p23

else

p21 -= p23

if (p21 < 0)

p21 += 9223372036854754679

state20 = state21

state21 = state22

state22 = p21

if (p12 > p21)

return p12 - p21

else

return p12 - p21 + 9223372036854769163

}

Listing 5: mrg31k3p pseudocode

uint64 state10, state11, state12

uint64 state20, state21, state22

mrg31k3p_seed(uint64 seed){

state10 = seed

state11 = seed

state12 = seed

37

state20 = seed

state21 = seed

state22 = seed

if(seed == 0){

state10++

state21++

}

if (state10 > 2147483647) state10 -= 2147483647

if (state11 > 2147483647) state11 -= 2147483647

if (state12 > 2147483647) state12 -= 2147483647

if (state20 > 2147462579) state20 -= 2147462579

if (state21 > 2147462579) state21 -= 2147462579

if (state22 > 2147462579) state22 -= 2147462579

}

uint32 mrg31k3p_next_uint32(){

ulong y1, y2

y1 = (((state11 & 511) << 22) + (state11 >> 9)) +

(((state12 & 16777215) << 7) + (state12 >> 24))

if (y1 > 2147483647){

y1 -= 2147483647

}

y1 += state12

if (y1 > 2147483647){

y1 -= 2147483647

}

state12 = state11

state11 = state10

state10 = y1

y1 = ((state20 & 65535) << 15) + 21069 * (state20 >> 16)

if (y1 > 2147462579){

38 APPENDIX . A

y1 -= 2147462579

}

y2 = ((state22 & 65535) << 15) + 21069 * (state22 >> 16)

if (y2 > 2147462579){

y2 -= 2147462579

}

y2 += state22

if (y2 > 2147462579){

y2 -= 2147462579

}

y2 += y1

if (y2 > 2147462579){

y2 -= 2147462579

}

state22 = state21

state21 = state20

state20 = y2

if (state10 <= state20){

return state10 - state20 + 2147483647

}

else{

return state10 - state20

}

}

Listing 6: lfib pseudocode

uint64 state[17]

uint32 state_p1, state_p2

void lfib_seed(uint64 seed){

state_p1 = 17

state_p2 = 5

39

for (int i = 0; i < 17; i++){

seed=6906969069 * seed + 1234567

state[i] = seed | 1

}

}

uint64 lfib_next_uint64(){

state_p1--

if(state_p1 < 0){

state_p1=16

}

state_p2--

if(state_p2 < 0){

state_p2 = 16

}

state[state_p1] *= state[state_p2]

return state[state_p1]

}

Listing 7: xorshift1024 pseudocode

uint32 state[54]

uint32 state_i

xorshift1024_seed(uint64 seed){

state_i = 0

if (seed == 0) {

seed++

}

for (int i = 0; i < 54; i++){

state[i] = 0

if (11 <= i && i < 43) {

state[i] = seed

}

40 APPENDIX . A

}

}

uint32 xorshift1024_next_uint32(){

state_i++

if(state_i < 43){

return state[state_i]

}

state_i=11

for (i = 11:43){

state[i] ˆ= (state[i - 10] << 9) ˆ state[i - 9] >> 23

}

for (i = 11:43){

state[i] ˆ= (state[i + 10] << 5) ˆ state[i + 9] >> 27

}

for (i = 11:43){

state[i] ˆ= (state[i - 10] << 24) ˆ state[i - 9] >> 8

}

return state[state_i]

}

Listing 8: xorshift6432star pseudocode

uint64 state

xorshift6432star_seed(uint64 seed){

if(seed == 0){

seed++

}

stat e =seed

}

uint32 xorshift6432star_next_uint32(){

state ˆ= state >> 12

41

state ˆ= state << 25

state ˆ= state >> 27

return (uint32)((state * 2685821657736338717) >> 32)

}

Listing 9: mt19937 pseudocode

uint32 state[624]

uint32 state_i

void mt19937_seed(uint32 s){

state[0] = s

for (i = 1; i < 624; i++) {

state[i] = 1812433253 *

(state[i-1] ˆ (state[i-1] >> 30)) + i

}

state_1 = i

}

uint32 mt19937_next_uint32(){

uint32 y

uint32 mag01[2] = {0, 2567483615}

if(state_i < 624 - 397){

y = (state[state_i] & 2147483648) |

(state[state_i + 1] & 2147483647)

state[state_i] = state[state_i + 397] ˆ (y >> 1) ˆ

mag01[y & 1]

}

else if(state_i < 624 - 1){

y = (state[state_i] & 2147483648) |

(state[state_i + 1] & 2147483647)

state[state_i] = state[state_i + (397 - 624)] ˆ (y >> 1)

ˆ mag01[y & 1]

42 APPENDIX . A

}

else{

y = (state[624 - 1] & 2147483648) |

(state[0] & 2147483647)

state[624 - 1] = state[397 - 1] ˆ (y >> 1) ˆ

mag01[y & 1]

}

y = state[state_i++]

state_i %= 624

y ˆ= (y >> 11)

y ˆ= (y << 7) & 2636928640

y ˆ= (y << 15) & 4022730752

y ˆ= (y >> 18)

return y

}

Listing 10: tinymt64 pseudocode

uint64 state0, state1

tinymt64_seed(uint64 seed){

uint64 status[2]

status[0] = seed ˆ ((uint64)4194639680 << 32)

status[1] = 4291887092 ˆ 6399667842752446396

for (int i = 1; i < 8; i++) {

status[i & 1] ˆ= i + 6364136223846793005 *

(status[(i - 1) & 1] ˆ

(status[(i - 1) & 1] >> 62))

}

state0 = status[0]

state1 = status[1]

43

if ((state0 & 9223372036854775807) == 0 &&

state1 == 0) {

state0 = 84

state1 = 77

}

}

uint64 tinymt64_next_uint64(){

uint64 x

state0 &= 9223372036854775807

x = state0 ˆ state1

x ˆ= x << 12

x ˆ= x >> 32

x ˆ= x << 32

x ˆ= x << 11

state0 = state1

state1 = x

if (x & 1) {

state0 ˆ= 4194639680

state1 ˆ= 4291887092 << 32

}

x = state0 + state1

x ˆ= state0 >> 8

if (x & 1) {

x ˆ= 6399667842752446396

}

return x

}

Listing 11: tinymt32 pseudocode

uint32 state0, state1, state2, state3

44 APPENDIX . A

tinymt32_seed(uint64 seed){

uint32 status[4]

status[0] = seed

status[1] = 2406486510

status[2] = 4235788063

status[3] = 932445695

for (int i = 1; i < 8; i++) {

status[i & 3] ˆ= i + 1812433253

* (status[(i - 1) & 3]

ˆ (status[(i - 1) & 3] >> 30))

}

state0 = status[0]

state1 = status[1]

state2 = status[2]

state3 = status[3]

if ((state0 & 2147483647) == 0 &&

state1 == 0 &&

state2 == 0 &&

state3 == 0) {

state0 = 84

state1 = 73

state2 = 78

state3 = 89

}

for (int i = 0; i < 8; i++) {

tinymt32_next_int()

}

}

uint32 tinymt32_next_uint32(){

uint32 x = (state0 & 2147483647) ˆ state1 ˆ state2

uint32 y = state3

uint32 t0, t1

45

x ˆ= x << 1

y ˆ= (y >> 1) ˆ x

state0 = state1

state1 = state2

state2 = x ˆ (y << 10)

state3 = y

if (y & 1) {

state1 ˆ= 2406486510

state2 ˆ= 4235788063

}

t0 = state3

t1 = state0 + (state2 >> 8)

t0 ˆ= t1

if (t1 & 1) {

t0 ˆ= 932445695

}

return t0

}

Listing 12: well512 pseudocode

uint32 state[16]

uint32 state_i

well512_seed(uint64 seed){

state_i = 0

for (int i = 0; i < 16; i+=2){

seed = 6906969069 * seed + 1234567

state[i] = seed

state[i + 1] = seed >> 32

}

}

uint32 well512_next_uint32(){

46 APPENDIX . A

uint32 z0, z1, z2

z0 = state[(state_i+15) & 15]

z1 = state[state_i] ˆ (state[state_i] << 16) ˆ

state[(state_i+13) & 15] ˆ

(state[(state_i+13) & 15] << 15)

z2 = state[(state_i + 9) & 15] ˆ

(state[(state_i + 9) & 15] >> 11)

state[state_i] = z1 ˆ z2

state[(state_i + 15) & 15] = z0 ˆ (z0 << 2) ˆ z1 ˆ

(z1 << 18) ˆ (z2 << 28) ˆ state[state_i] ˆ

((state[state_i] << 5) & 3661901092)

state_i = (state_i + 15) & 15

return state[state_i]

}

Listing 13: msws pseudocode

uint64 state_x, state_w

msws_seed(uint64 seed){

state_x = seed

state_w = seed

}

uint32 msws_next_uint32(){

state_x *= state_x

state_w += 13091206342165455529

state_x += state_w

return state_x = (state_x >> 32) | (state_x << 32)

}

Listing 14: philox2x32 10 pseudocode

uint32 state_l, state_r

47

philox2x32_10_seed(uint64 seed){

state_l = seed

state_r = seed >> 32

}

uint32 philox2x32_10_next_uint32(){

state_r++

if(state_r == 0){

state_l++

}

uint32 l=state_l

uint32 r=state_r

uint32 key = 12345

for(uint32 i = 0; i < 10; i++){

uint32 tmp = r * 3528905107

r = mul_hi(r, 3528905107) ˆ l ˆ key

l = tmp

key += 2654435769

}

return ((uint64)l) << 32 | r

}

Listing 15: tyche pseudocode

uint64 state

tyche_seed(uint64 seed){

state_a = seed >> 32

state_b = seed

state_c = 2654435769

state_d = 1367130551

for(uint32 i = 0; i < 20; i++){

tyche_next_uint64()

48 APPENDIX . A

}

}

uint64 tyche_next_uint64(){

state_a += state_b

uint32 tmp

tmp = state_d ˆ state_a

state_d = tmp << 16 | tmp >> 16

state_c += state_d

tmp = state_b ˆ state_c

state_b = tmp << 12 | tmp >> 20

state_a += state_b

tmp = state_d ˆ state_a

state_d = tmp << 8 | tmp >> 24

state_c += state_d

tmp = state_d ˆ state_a

state_b = tmp << 7 | tmp >> 25

return ((uint64)state_a) << 32 | state_b

}

Listing 16: tyche i pseudocode

uint64 state

tyche_i_seed(uint64 seed){

state_a = seed >> 32

state_b = seed

state_c = 2654435769

state_d = 1367130551

for(uint32 i = 0; i < 20; i++){

tyche_i_next_uint64()

}

}

49

uint64 tyche_i_next_uint64(){

state_b = (state_b << 7 | state_b >> 25) ˆ state_c

state_c -= state_d

state_d = (state_b << 8 | state_b >> 24) ˆ state_a

state_a -= state_b

state_b = (state_b << 12 | state_b >> 20) ˆ state_c

state_c -= state_d

state_d = (state_b << 16 | state_b >> 16) ˆ state_a

state_a -= state_b

return ((uint64)state_a) << 32 | state_b

}

Listing 17: isaac pseudocode

uint32 state_rr[256]

uint32 state_mm[256]

uint32 state_aa

uint32 state_bb

uint32 state_cc

uint32 state_i

isaac_seed(uint64 seed){

state_aa = seed

state_bb = seed ˆ 123456789

state_cc = seed + 123456789

state_i = 256

for(int i = 0; i < 256; i++){

seed = 6906969069 * seed + 1234567

state_mm[i] = seed

}

}

uint32 isaac_next_uint32(){

if(state_i == 256){

50 APPENDIX . A

uint32 a, b, x, y, *m, *m2, *r, *mend

m = state_mm

r = state_rr

a = state_aa

b = state_bb + (++state_cc)

for (m = state_mm, mend = m2 = m+128; m < mend;){

x = *m

a = (a ˆ (a << 13)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

x = *m

a = (a ˆ (a >> 6)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

x = *m

a = (a ˆ (a << 2)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

x = *m

a = (a ˆ (a >> 16)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

}

for (m2 = state_mm; m2 < mend;){

x = *m

51

a = (a ˆ (a << 13)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

x = *m

a = (a ˆ (a >> 6)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

x = *m

a = (a ˆ (a << 2)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

x = *m

a = (a ˆ (a >> 16)) + *(m2++)

*(m++) = y = *(uint32 *)((uint8 *)state_mm +

(x & 1020)) + a + b

*(r++) = b = *(uint32 *)((uint8 *)state_mm +

((y >> 8) & 1020)) + x

}

state_bb = b

state_aa = a

state_i = 0

}

return state_rr[state_i++]

}

52 APPENDIX . A

Listing 18: kiss99 pseudocode

uint32 state_z, state_w, state_jsr, state_jcong

kiss99_seed(uint64 seed){

state_z = 362436069 ˆ seed

if(state_z == 0){

state_z = 1

}

state_w = 521288629 ˆ (seed >> 32)

if(state_w == 0){

state_w = 1

}

state_jsr = 123456789 ˆ seed

if(state_jsr == 0){

state_jsr = 1

}

state_jcong = 380116160 ˆ (seed >> 32)

}

uint32 kiss99_next_uint32(){

state_z = 36969 * (state_z & 65535) + (state_z >> 16)

state_w = 18000 * (state_w & 65535) + (state_w >> 16)

state_jsr ˆ= state_jsr << 17

state_jsr ˆ= state_jsr >> 13

state_jsr ˆ= state_jsr << 5

state_jcong = 69069 * state_jcong + 1234567

return (((state_z << 16) + state_w) ˆ state_jcong) +

state_jsr

}

53

Listing 19: kiss09 pseudocode

uint64 state_x, state_c, state_y, state_z

kiss09_seed(uint64 seed){

state_x = 1234567890987654321 ˆ j

state_c = 123456123456123456 ˆ j

state_y = 362436362436362436 ˆ j

if(state_y == 0){

state_y = 1

}

state_z = 1066149217761810 ˆ j

}

uint64 kiss09_next_uint64(){

uint64 t = (state_x << 58) + state_c

state_c = state_ x >> 6

state_x += t

state_c += state_x < t

state_y ˆ= state_y << 13

state_y ˆ= state_y >> 17

state_y ˆ= state_y << 43

state_z = 6906969069 * state_z + 1234567

return state_x + state_y + z

}

	Introduction
	GPUs and OpenCL Framework
	Random Number Generators

	RandomCL Library
	Implemented RNGs
	Parallelization
	An Example of Using a RandomCL RNG

	Empirical Evaluation
	Testing Quality
	Testing Speed
	Results

	Discussion and Conclusion

