Multi-level monitoring and rule-based reasoning in the
addpmtz'on of time-critical cloud applimtiom

A DISSERTATION PRESENTED
BY

Salman Taherizadeh

TO
TaE FAcUuLTY OF COMPUTER AND INFORMATION SCIENCE
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DocToRr oF PHILOSOPHY
IN THE SUBJECT OF
COMPUTER AND INFORMATION SCIENCE

L

T
2)b—

J
—|=2/=
EEEE

[—yp
|
—

Ljubljana, 2018

APPROVAL

1 hereby declare thart this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which to a substantial extent bas been accepted for the award of any

other degree or diploma of the university or other institute of higher learning, except
where due acknowledgement has been made in the rext.
— Salman Taherizadeh —

June 2018

THE SUBMISSION HAS BEEN APPROVED BY
prof. dr. Vlado Stankovski
Associate Professor of Computer and Information Science
SUPERVISOR
University of Ljubljana
prof. dr. Denis Tréek
Full Professor of Computer and Information Science
EXAMINER
University of Ljubljana
prof. dr. Matija Marolt
Associate Professor of Computer and Information Science
EXAMINER
University of Ljubljana
prof. dr. Radu Prodan
Associate Professor of Computer and Information Science

EXTERNAL EXAMINER
University of Klagenfurt

PREVIOUS PUBLICATION

I hereby declare that the research reported herein was previously published/submitted

for publication in peer reviewed journals or publicly presented at the following occa-

sions:

[1]

2]

(3]

(4]

(5]

6]

S. Taherizadeh and V. Stankovski. Dynamic Multi-level Auto-scaling Rules for Containerised
Applications. The Computer Journal, Oxford University Press, 2018.
doi: 10.1093/comjnl/bxyo43.

S. Taherizadeh, A.C. Jones, I. Taylor, Z. Zhao, and V. Stankovski. Monitoring self-adaptive
applications within edge computing frameworks: A state-of-the-art review. Journal of Systems
and Software, 136:19-38, 2018. doi: https://doi.org/10.1016/j.jss.2017.10.033.

S. Taherizadeh, V. Stankovski, and M. Grobelnik. A Capillary Computing Architecture for
Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog and
Cloud Providers. The Sensors Journal, 18(9), 2018. doi: https://doi.org/10.3390/518092938.

S. Taherizadeh and V. Stankovski. Auto-scaling applications in edge computing: Taxonomy
and challenges. In Proc. of the International Conference on Big Data and Internet of Thing,

pages 158-163, London, United Kingdom, 2017. ACM. doi: 10.1145/3175684.3175709.

S. Taherizadeh and V. Stankovski. Quality of service assurance for internet of things time-
critical cloud applications: Experience with the switch and entice projects. In Proc. of 2017
6™ ITAT International Congress on Advanced Applied Informatics (ITATAAI), pages 288293,
Hamamatsu, Japan, 2o0r7. IEEE. doi: 10.1109/IIAI-AAl2017.209.

S. Taherizadeh and V. Stankovski. Incremental learning from multi-level monitoring data and
its application to component based software engineering. In Proc. of 2017 IEEE 41* Annual
Computer Software and Applications Conference (COMPSAC), pages 378-383, Turin, Italy,
2017. IEEE. doi: 10.1109/COMPSAC.2017.148.

S. Taherizadeh

[7] S. Taherizadeh, L. Taylor, A. Jones, Z. Zhao, and V. Stankovski. A network edge monitoring
approach for real-time data streaming applications. In Proc. of the 13 International Confer-
ence on Economics of Grids, Clouds, Systems and Services (GECON 2016), pages 293-303,
Athens, Greece, 2016. Springer. doi: https://doi.org/10.1007/978-3-319-61920-0 2.1

[8] S.Taherizadeh, A. Jones, I. Taylor, Z. Zhao, P. Martin, and V. Stankovski. Runtime network-
level monitoring framework in the adaptation of distributed time-critical cloud applications.
In Proc. of the 22" International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’16), pages 78-83, Las Vegas, USA, 2016. doi: 10.5281/zen-
0do.53869.

I certify that I have obtained a written permission from the copyright owner(s) to
include the above published material(s) in my thesis. I certify that the above material
describes work completed during my registration as graduate student at the University

of Ljubljana.

Univerza v Ljubljani
Fakulteta za racunalnistvo in informatiko

Salman Taherizadeh
Vecnivojski nadzor in sklepanje na podlagi pravil z namenom prilagajanja casovno-kriticnib

aplikaciy

POVZETEK

Racunalni$tvo v oblaku se dandanes uporablja za postavitev razli¢nih programskih stori-
tev, saj omogoca najemanje racunskih virov po potrebi in enostavno nadgradljivost apli-
kacij. Sodobni pristopi programskega inzeniringa omogocajo razvoj ¢asovno-kriti¢nih
obla¢nih aplikacij na podlagi komponent, ki so names¢eni v vsebnikih. Tehnologije
vsebnikov, kot so na primer Docker, Kubernetes, CoreOS, Swarm, OpenShift Origin
in podobno, omogocajo razvoj zelo dinamicnih obla¢nih aplikacij, pod pogojih stalno
spreminjajocih obremenitev. Obla¢ne aplikacije, ki temeljijo na tehnologijah vsebni-
kov zahtevajo prefinjene metode samodejnega prilagajanja, z namenom delovanja pod
razli¢nimi pogoji delovnih obremenitev, na primer pod pogojih drasti¢nih sprememb
delovnih obremenitev.

Predstavljajmo si socialno omrezje, ki je obla¢na aplikacija in v katerem se dolo¢ena no-
vica zatne bliskovito Siriti. Po eni strani potrebuje obla¢na aplikacija zadosti racunskih
virov, $e pred nastankom delovne obremenitve. Po drugi strani je najem dragih obla¢nih
infrastruktur v daljSem ¢asovnem obdobju nepotreben in zato tudi nezazelen. Izbira
metode samodejnega prilagajanja obla¢ne aplikacije tako pomembno vpliva na parame-
tre kakovosti storitve, kot sta odzivni ¢as in stopnja uporabe ratunskih virov. Obstojeci
sistemi za orkestracijo vsebnikov, kot sta npr. Kubernetes in sistem Amazon ECz, upo-
rabljajo avtomatska pravila s staticno dolo¢enimi pragovi, ki se zanasajo predvsem na
infrastrukturne metrike, kot sta na primer uporaba procesorja in pomnilnika.

V tej doktorski disertaciji predstavljamo novo metodo dinami¢nega veéstopenjskega
(angl. Dynamic Multi-Level, DM) samodejnega prilagajanja obla¢nih aplikcij, ki upo-
rablja poleg infrastrukturnih metrik tudi aplikacijske metrike s spreminjajo¢imi se pra-
govi. Novo DM metodo smo vgradili v delujoco arhitekturo sistema za samoprilagajanje
aplikacij. Novo metodo DM primerjamo s sedmimi obstoje¢imi metodami samodejnega

prilagajanja pri razli¢nih scenarijih sinteti¢nih in realne delovne obremenitve. Primerljivi

i

Povzetek S. Taherizadeh

pristopi samodejnega prilagajanja vkljutujejo metode Kubernetes Horizontal Pod Auto-
scaling (HPA), Step Scaling 1in 2 (SS1, SS2), Target Tracking Scaling 1in 2 (T'TS1, TTS2)
ter Static Threshold Based Scaling 1in 2 (THRES1, THRES2). Vse obravnavane metode
samodejnega prilagajanja trenutno Stejejo kot zelo napredni pristopi, ki se uporabljajo v
proizvodnih sistemih, kot so sistemi temelje¢i na tehnologijah Kubernetes in Amazon
ECa. Scenariji delovnih obremenitev, ki jih uporabljamo v tem delu predstavljajo vzorce
vztrajno nara$¢ajocih/padajocih, drasticno spreminjajocih, rahlih sprememb ter dejan-
skih delovnih obremenitev.

Na podlagi rezultatov poskusov, opravljenih za vsak vzorec delovnih obremenitev
posebej, smo primerjali vseh osem izbranih metod samodejnega prilagajanja glede na
odzivni ¢as in Stevilo instanciranih vsebnikov. Rezultati kot celota kazejo, da ima pre-
dlagana nova metoda DM vegjo splosno samoprilagodljivost v primerjavi s preostalimi
metodami. Zaradi zadovoljivih rezultatov smo predlagano metodo DM vgradili v sis-
tem SWITCH za programski inZeniring ¢asovno-kriti¢nih obla¢nih aplikacij. Pravila za
samoprilagajanje aplikacij in druge informacije, kot so na primer lastnosti platform za
virtualizacijo, trenutne obremenitve aplikacije, ponavljajoce se zahteve po visji kakovosti
storitev in podobno, se nenehno shranjujejo v obliki Resource Description Framework
(RDF) trojk v bazi znanja, ki je tudi vklju¢ena v predlagani arhitekturi. Klju¢na zahteva
za razvoj baze znanja, je omogoditi vsem deleznikom programske platforme SWITCH,
kot so na primer ponudniki obla¢nih storitev, moznost integracije informacij, analizo

daljsih trendov in podporo strateSkemu planiranju.

Kljucne besede: tasovno-kriti¢ne aplikacije, racunalniStvo v oblaku, samoprilagajanje,

dinami¢ni pragovi, ve¢nivojski nadzor, virtualizacija z uporabo vsebnikov

University of Ljubljana
Faculty of Computer and Information Science

Salman Taherizadeh
Multi-level monitoring and rule-based reasoning in the adapration of time-critical cloud
applications

ABSTRACT

Nowadays, different types of online services are often deployed and operated on the
cloud since it offers a convenient on-demand model for renting resources and easy-to-use
elastic infrastructures. Moreover, the modern software engineering discipline provides
means to design time-critical services based on a set of components running in contain-
ers. Container technologies, such as Docker, Kubernetes, CoreOS, Swarm, OpenShift
Origin, etc. are enablers of highly dynamic cloud-based services capable to address con-
tinuously varying workloads. Due to their lightweight nature, they can be instantiated,
terminated and managed very dynamically. Container-based cloud applications require
sophisticated auto-scaling methods in order to operate under different workload condi-

tions, such as drastically changing workload scenarios.

Imagine a cloud-based social media network website in which a piece of news sud-
denly becomes viral. On the one hand, in order to ensure the users’ experience, it is nec-
essary to allocate enough computational resources before the workload intensity surges
atruntime. On the other hand, renting expensive cloud-based resources can be unafford-
able over a prolonged period of time. Therefore, the choice of an auto-scaling method
may significantly affect important service quality parameters, such as response time and
resource utilisation. Current cloud providers, such as Amazon ECz and container or-
chestration systems, such as Kubernetes employ auto-scaling rules with static thresholds
and rely mainly on infrastructure-related monitoring data, such as CPU and memory

utilisation.

ii

i

Abstract S. Taherizadeh

This thesis presents a new Dynamic Multi-Level (DM) auto-scaling method with
dynamically changing thresholds used in auto-scaling rules which exploit not only in-
frastructure, but also application-level monitoring data. The new DM method is im-
plemented to be employed according to our proposed innovative viable architecture
for auto-scaling containerised applications. The new DM method is compared with
seven existing auto-scaling methods in different synthetic and real-world workload sce-
narios. These auto-scaling approaches include Kubernetes Horizontal Pod Auto-scaling
(HPA), r** method of Step Scaling (SS1), 2" method of Step Scaling (SS2), ' method
of Target Tracking Scaling (T'TS1), 2™ method of Target Tracking Scaling (T'TS2), r*
method of static THRESHOLD-based scaling (THRES1), and 2™ method of static
Threshold-based scaling (THRES2). All investigated auto-scaling methods are currently
considered as advanced approaches, which are used in production systems such as Ku-
bernetes, Amazon ECz2, etc. Workload scenarios which are examined in this work also
consist of slowly rising/falling workload pattern, drastically changing workload pattern,
on-off workload pattern, gently shaking workload pattern, and real-world workload pat-

tern.

Based on experimental results achieved for each workload pattern, all eight auto-scaling
methods are compared according to the response time and the number of instantiated
containers. The results as a whole show that the proposed DM method has better overall
performance under varied amount of workloads than the other auto-scaling methods.
Due to satisfactory results, the proposed DM method is implemented in the SWITCH
software engineering system for time-critical cloud-based applications. Auto-scaling rules
along with other properties, such as characteristics of virtualisation platforms, current
workload, periodic QoS fluctuations and similar, are continuously stored as Resource
Description Framework (RDF) triples in a Knowledge Base (KB), which is included in
the proposed architecture. The primary reason to maintain the KB is to address differ-
ent requirements of the SWITCH solution stakeholders, such as those of cloud-based
service providers, allowing for seamless information integration, which can be used for

long-term trends analysis and support to strategic planning.

Key words: time-critical applications, cloud computing, self-adaptation, dynamic thresh-

olds, multi-level monitoring, container based virtualisation

ACKNOWLEDGEMENTS

First and foremost, I would like ro thank my supervisor, Assoc. Prof. Viado Stankovski,
who has provided me with invaluable guidance and advice throughout my PhD candida-
ture. I wish to express my sincere gratitude to him without whose support this dissertation
would not have been possible.

1 am grateful to Prof. Marko Grobelnik at the JoZef Stefan Institute for bis support, and
Dr. Danijel Skocaj, Dr. Tomaz Curk, and Dr. Zoran Bosnic for their continuous efforts
throughout the PhD programme at the Faculty of Computer and Information Science,
University of Ljubljana.

1 would like to thank all my colleagues at the SWITCH, ENTICE, DECENTER and
PrEstoCloud projects for their co-operation in doing my research work without interrup-
tion.

Finally, my appreciation also goes to my family and friends for their encouragement
throughout the period during which I worked on this thesis.

— Salman Taherizadeh, Ljubljana, June 2018.

CONTENTS

Pouvzetek
Abstract
Acknowledgements

Introduction

1 Researchproblems
12 Researchobjectives.
1.3 Contributionstoscience

.4 Thesisstructure

Background

21 Container-based virtualisation
2.2 Muld-level monitoring
221 Container-level monitoring
2.2.2 Application-level monitoring

2.3 Developed multi-level monitoring system . .

State-Of-The-Art Review

3.1 Experience research studies

3.2 Existing auto-scaling production solutions . .

321 Kubernetes - Horizontal Pod Auto-scaling (HPA)
322 Amazon EC2 AWS - Target Tracking Scaling (T'TS)

323 Amazon EC2 AWS - Step Scaling (SS)

vii

i

viii

Contents

3.2.4 Firstmethod of THRESHOLD (THRESi) and second method
of THRESHOLD (THRES2)
3.2.5 Google Cloud Platform - Multiple Policies (MP)

4 Method and Architecture

41 Load-Balancer
42 MonitoringAgent Lo Lo
43 MonitoringServer oL
4.4 Time Series Database (TSDB)
4.5 Web-based Interactive Development Environment (IDE)
4.6 Knowledge Base (KB) Engine and RDF-based KB
47 Alarm-Trigger L L
4.8 Self-Adapter
4.9 Using the DM method as a third partytool

Results

s Experimentaldesign o o L
s.2 Experimentalsetup L Lo
5.3 Significant performance properties L.
5.4 Slowly rising/falling workload scenario
5.5 Drastically changing workload scenario
5.6 On-off workload scenario
5.7 Gently shaking workload scenario
5.8 Real-world workload scenario

5.9 Summaryofresults L oL oL
Discussion
Conclusion

Razsirjeni povzetek

A1 Raziskovalnamotivacija L o oL
A2 Raziskovalniproblemi 0 oo
A3 Raziskovalnicilii Lo oo
A4 Znanstveniprispevki Lo Lo oL

S. Taherizadeh

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications x

As Rezultati. 11
A6 Zakljutek 12
B Abbreviations 115

Bibliography 19

LI

L.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.12

3.1
3.2
3.3
3.4
3.5
3.6

LIST OF FIGURES

Summary of the research problems. 3
Fine-grained auto-scaling during workload variations at runtime. . . . 5
Container versus VM-based virtualisation. 9
Docker Hub repository. 10
cAdvisor monitoring system. 3
Using InfluxDB and Grafana on top of cAdvisor. 14
Using Prometheus and Grafana on top of cAdvisor. 15
Zenoss monitoring solution’s architecture. 17
Ganglia architecture. oL oL 18
Hierarchical architecture of the Zabbix monitoring system. 18
Basic architecture of the Lattice monitoring system. 19
Basic architecture of the JCatascopia monitoring system. 20
Two different parts of containers co-located onone host. 21
Developed monitoring system. L. 22
Significant quality properties of cloud-based applications. 32
Kubernetes Horizontal Pod Auto-scaling (HPA) algorithm. 34

AWS auto-scaling example named SS1in order to increase the cluster size. 36
AWS auto-scaling example named SSr in order to decrease the cluster size. 36
AWS auto-scaling example named SS2 in order to increase the cluster size. 37
AWS auto-scaling example named SS2 in order to decrease the cluster

SIZE. . o e 37

Proposed architecture for adaptive containerised applications. 40

xi

xii

LIST OF FIGURES S. Taherizadeh

4.2
43

4.4
45
4.6
4.7
4.8
4.9
4.10

4.11

4.12

4.13

414

4.15

4.16
4.17

5.1

5.2

5-3

5.4

5:5

HAProxy Load-Balancer. 42
Two types of Monitoring Agents to monitor container-level and application-

level metrics. 42
Each container includes a container-level Monitoring Agent. 43
Upscaling principle defined in the Alarm-Trigger. 52
IFCI defined in Alarm-Trigger. 53
IFCT defined in Alarm-Trigger. 54
Waiting period and observing period considered by Alarm-Trigger. . . 54
Inputs of the Self-Adapter component. 55
Upscaling principle defined in the Self-Adapter. 56
CI defined in Self-Adapter. 56

Number of new containers allocated by three different auto-scaling meth-

ods in response to a drastic increase in the workload. 58
Response time provided by three different auto-scaling methods in re-
sponse to a drastic increase in the workload. 58

Avoiding frequent changes in the cluster size due to minor fluctuations

in the workload density. o 0L 6o
Downscaling principle defined in the Self-Adapter. 62
CT definedin Self-Adapter. 62
An example for on-off workload pattern. 63

Experiment design to compare the new DM method to existing auto-
scalingmethods. Lo Lo Lo oo 69
Number of containers allocated by three different auto-scaling meth-
ods using 15-second adaptation interval, 30-second adaptation interval
and 6o-second adaptationinterval. L0 70
Response time provided by three different auto-scaling methods using
15-second adaptation interval, 30-second adaptation interval and 6o-
second adaptationinterval.o Lo oo 71
Number of containers allocated by three different auto-scaling meth-
ods using 180 ms, 190 ms and 2so ms for Tres. 72,
Response time provided by three different auto-scaling methods using

18oms,19omsand2somsfor Tres. . o . . o oo oL 73

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications x7iZ

5.6 Number of containers allocated by three different auto-scaling meth-
odsusingaw=o,a=sanda=10. L. 7S
5.7 Response time provided by three different auto-scaling methods using
a=o,a=5and @ =10. 75
5.8 Dynamically changing number of container instances in response to a
slowly rising/falling workload pattern. 82
5.9 Average response time of the application in response to a slowly ris-
ing/falling workload pattern. 0L 82
s.0 Dynamically changing number of container instances in response to a
drastically changing workload pattern. 84
s.ar Average response time of the application in response to a drastically
changing workload pattern. oo 000 84
5.2 Dynamically changing number of container instances in response to an
on-offworkload pattern. L oL Lo L 85
5.3 Average response time of the application in response to an on-oft work-
loadpattern. Lo L Lo 86
5.4 Dynamically changing number of container instances in response to a
gently shaking workload pattern.00 87
5.5 Average response time of the application in response to a gently shaking
workload pattern. L L 88
5.16 Dynamically changing number of container instances in response to a
real-world workload pattern. Lo 89
s.17 Average response time of the application in response to a real-world
workload pattern.o Lo 89
518 CDF of service response time observed in the slowly rising/falling work-
load scenario. 91
5.19 CDF of service response time observed in the drastically changing work-
load scenario. 91
s.20 CDF of service response time observed in the on-off workload scenario. 92
.21 CDF of service response time observed in the gently shaking workload
SCENATIO. . . & v v v e e e e e e e e e e e e e e e e e e e 92
s.22 CDF of service response time observed in the real-world workload sce-

NACIO. v v v v e e e e e e e e e e e e e e e e e e e 93

X1V LIST OF FIGURES S. Taherizadeh

6.1 Edgecomputing framework. o000 100
6.2 Dynamic on/offloading action within edge computing frameworks. . . 101

6.3 Dynamic deployment scheme within edge computing frameworks. . . 102

2.2

2.3

4.1
4.2
43
4.4
45
4.6
4.7
4.8
4.9

5.1
5.2

53

54

LIST OF TABLES

Container-based vs VM-based virtualisation
Overview of container-level monitoringtools

Overview of application-level monitoringtools

Overview of existing auto-scaling methods used for cloud-based appli-

CALIONS & v v v v e o e

Service Clusterclass
Container Instanceclass
Container Imageclass
Host Machineclass
Monitoring Agentclass Lo Lo Lo
Monitoring Serverclass L L L L
Monitoring Metricclasso oo o000
Auto-scalingRuleclass oo oo oL

Alarm Notificationclass

Parameters and their values applied in our experiments
Characteristics of infrastructures applied in our experiments
P-values obtained by comparison of the DM method with other seven
auto-scaling methods using paired t-tests with respect to all response
time values over the experimental period for each workload pattern

The o5 percentile of the response time achieved by all investigated

auto-scaling methods in every workload pattern

XV

XUL

LIST OF TABLES S. Taherizadeh

5-5

5.6

57

5.8

59

5.10

The median response time achieved by all investigated auto-scaling meth-
odsinevery workload pattern 78
Comparing the new DM method with existing auto-scaling methods

with respect to resource utilisation for the slowly rising/falling work-
loadpattern Lo 79
Comparing the new DM method with existing auto-scaling methods

with respect to resource utilisation for the drastically changing work-
loadpattern Lo 79
Comparing the new DM method with existing auto-scaling methods

with respect to resource utilisation for the on-off workload pattern . . 8o
Comparing the new DM method with existing auto-scaling methods

with respect to resource utilisation for the gently shaking workload pat-

TEIN . . L v o o e e e e e e e e e e e e e 8o
Comparing the new DM method with existing auto-scaling methods

with respect to resource utilisation for the real-world workload pattern 81

Introduction

1 Introduction S. Taherizadeh

In recent years, a wide variety of time-critical software systems, such as Internet of Things
(IoT') solutions (e.g. vehicle tracking) and data analytics applications (e.g. finite element
analysis), for which the application response time is important, have emerged as cloud-
based services. This is because scalability is the key enabler of the cloud usage. It means
that cloud computing is capable of offering dynamic on-demand scalable resource allo-
cation to provide favourable Quality of Service (QoS) for users. It is able to dynamically
provision and de-provision cloud-based resources in response to the current demand in
real-time.

The change in the workload demands of cloud-based applications may happen in
different ways. For example, a broadcasting news channel unexpectedly receives a heavy
workload since a video or some news suddenly spreads in the social media world. An-
other example is a cloud-based batch processing system for which requests tend to be
accumulated around batch runs regularly over only short periods of time. These types
of systems generally have short active periods, between which the application can be
provided at the lowest service level.

Concrete examples of scalable cloud-based infrastructure providers are Amazon ECz
[1] and Microsoft Azure [2], which can manage situations if resources allocated to an ap-
plication should be dynamically increased or decreased when the workload varies over
time. However, scalability of such cloud-based infrastructures is not a panacea to achieve
high operational application performance. If auto-scaling technologies offered by cloud-
based infrastructure providers cannot sufficiently provision the resources needed, appli-
cation quality will be inappropriate and hence users will be turned away. Moreover if
they provision the resources more than what would be needed, the potential cost-saving

advantage of using the cloud will be compromised.
1.1 Research problems

The intention behind this work is to address the shortcomings of current auto-scaling
methods within cloud computing frameworks, as shown in Fig. 1.1.

Providing high-quality results under the conditions of dynamically changing work-
load intensity is necessary for time-critical cloud-based applications in order to make
them practical in a business context. Although, reactive auto-scaling methods as the fo-
cus of this thesis employ rules with fixed thresholds which are mainly based on infrastructure-
level parameters such as Central Processing Unit (CPU) and memory utilisation. This

includes reactive auto-scaling mechanisms used by commercial Virtual Machine (VM)-

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

[Auto-scaling applications within cloud computing frameworks ‘

— Proactive

Neural network

« Requiring enough historical
learning . monitoring data and some time

to converge towards a stable
Data mining driven model.

models

iy

l

~ Reactive « Using fixed thresholds.

+ Considering only
Rule based infrastructure-level metrics.

—

based cloud infrastructure providers such as Amazon ECa [1] and Microsoft Azure [2],
and also open-source container orchestrators such as Kubernetes [3] and OpenShift Ori-
gin [4]. Such rule-based auto-scaling methods may be useful for some basic types of
cloud-based applications. However, their resource utilisation and performance drops
when time-critical applications need to be used [5]. These static rule-based auto-scaling
mechanisms are not flexible enough to adjust themselves to the status of the execution
environment at runtime.

As an example, a CPU-based auto-scaling rule can be specified in a way that more
VMs/containers will be instantiated if the average utilisation of CPU reaches a fixed
threshold such as 80%; while some VMs/containers may be stopped if the average CPU
usage is less than 80%. Such settings cannot be very helpful for specific workload scenar-
ios e.g. drastically changing workload patterns. Furthermore, these auto-scaling rules
cause a stable system at 80% resource utilisation at the best case, which means 20% of
resources are wasted, that is not profitable. One of the significant challenges and main
technical issues in providing an auto-scaling method is to define to what extent the auto-
scaling mechanism can be self-adjustable to runtime variations in running conditions.

Moreover, proactive auto-scaling methods [6-9] are developed to predict the amount
of resources required in the near future based on collected historical monitoring data,
current intensity of workload, QoS of the application, etc. Proactive auto-scaling ap-

proaches use learning algorithms such as reinforcement learning [10, 11], neural network

Figure 1.1

Summary of the research
problems.

1 Introduction S. Taherizadeh

(12, 13], queuing theory [14, 15], data mining [16, 17] and regression models [18, 19] to
anticipate the amount of required resources. It should be noted that these methods re-
quire enough historical data to train a performance model and some time to converge
towards a stable driven model. Therefore, if proactive auto-scaling methods have a large
enough training data set reflecting characteristics of all different possible operational
situations, they are capable of generalising that means they can react to unseen chang-
ing workload scenarios. As a consequence, if the training data set is not comprehensive
enough, such proactive approaches may suffer from their imprecision limit which may

result in whether over-provisioning problem or serious performance drops.
1.2 Research objectives

Auto-scaling methodologies used by time-critical cloud-based applications still can be
significantly improved [20-25]. An auto-scaling method which is unable to address
changing workload intensity over time will result in either resource over-provisioning
situation where the usage of allocated resources is unacceptably low or resource under-
provisioning situation where the application suffers from poor performance. Therefore,
a fine-grained auto-scaling method is required in response to dynamic fluctuations in
workload at runtime.

During the execution time, a fine-grained auto-scaling method dynamically allocates
the optimal amount of resources required to support application performance with nei-
ther resource under-provisioning nor over-provisioning. Such an auto-scaling approach
should be capable of satisfying application performance requirements (such as response
time constraints), while optimising the utilisation of resources allocated to the applica-
tion (such as number of VMs/containers), as shown in Fig. 1.2.

Therefore, below two objectives which our proposed auto-scaling method should ful-

fil are outlined:

» Improving application performance of time-critical cloud-based applications: Adapt-
ing time-critical cloud-based applications to the changing execution environment
such as workload variations at runtime is essential in order to ensure applica-
tion performance requirements in terms of response time. Cloud-based appli-
cations need auto-scaling methods which are able to meet service response time

constraints under different workload conditions.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

1.3

Response time threshold

S O S

Response time

Allocated resources (e.g. number of VM/containers)

Workload variations at runtime

» Optimising resource utilisation in the cloud: An auto-scaling mechanism should

continuously adjust the optimal amount of resources needed to address the per-
formance objective of time-critical cloud-based applications. Releasing of idle re-
sources when they are not used anymore is advantageous for better resource util-
isation in the cloud. Low resource utilisation is still a serious problem in cloud
datacentres [26-29]. Resource utilisation should be maximised in order to save
resources in the cloud environment and reduce energy consumption in cloud

computing.

Contributions to science

The key contribution of this thesis can be summarised as follows:

u presenting a new multi-level monitoring framework to address the whole spectrum

of monitoring requirements for auto-scaling containerised time-critical applications
to be published under the Apache 2 license: One of the main contributions of
this research work is to address needs of containerised self-adaptive time-critical
cloud-based applications, with a newly designed monitoring approach, address-
ing the complete life-cycle of time-critical services, starting from their design, en-
gineering, deployment and operational stages. The monitoring framework has to
address various concerns, such as those of the end-users, the application and data-
centre operators. Therefore, a new multi-level monitoring framework is needed,
which would elaborate the needs and relationships between various QoS at these

levels: infrastructure-level, container-level and application-level. Over the recent

5

Figure 1.2

Fine-grained auto-scaling
during workload variations
at runtime.

6

1 Introduction S. Taherizadeh

years, a large number of widely used cloud monitoring tools have been provided
and applied in both the industry and academic research. However, none of these
monitoring tools address the complete software engineering life-cycle of adaptive

cloud-based applications.

= proposing innovative dynamic thresholds employed for upscaling and downscaling
actions in response to the changing workload over time: In recent years, many of
research works have provided different rule-based auto-scaling methods which
use only static, fixed thresholds. Although such rule-based methods may be use-
ful for some basic types of workloads, their performance and resource utilisation
drops in an environment with special workload patterns such as drastically chang-
ing scenarios. One of the main open challenges in proposing a rule-based auto-
scaling technique is to decide to what extent the adaptation approach should be
self-adjustable to changes in the execution environment. To come up with this
challenge, in our method, the focus is to extend this area of research by present-

ing auto-scaling rules that apply dynamic thresholds instead of fixed scaling rules.

» introducing a fine-grained auto-scaling method able to not only meet favourable
service quality, but also provide optimal resource utilisation: Fine-grained auto-
scaling mechanisms are needed to cope with highly dynamic workloads in the
cloud environment. Existing traditional application adaptation approaches un-
fortunately cannot accurately provide favourable service quality while offering
optimal resource utilisation. This thesis introduces a new auto-scaling method
which applies multi-level monitoring data used in dynamic rules to automatically
increase or decrease the total number of computing instances in order to accom-

modate varied workloads, while producing acceptable response time.
1.4 Thesis structure

The rest of this thesis is organized as follows. Chapter 2 describes the background rel-
evant to container-based virtualisation and multi-level monitoring. Chapter 3 presents
the state-of-the-art focusing on the auto-scaling of applications from viewpoints of both
experience studies and existing production solutions. Chapter 4 explains the architec-
ture of our proposed auto-scaling method in detail, while empirical results are presented
in Chapter 5. Chapter 6 contains a critical discussion of the proposed auto-scaling

method, which is followed by conclusions in Chapter 7.

Background

2 Background S. Taherizadeh

In this thesis, container-based virtualisation technology is used to deploy and run time-
critical cloud-based applications. In comparison to VMs, containers co-located on the
same host share the kernel of the host Operating System (OS), and hence each container
does notinclude an entire operating system. Because of this distinction, container-based
virtualisation is an alternative to VM-based virtualisation in order to wrap cloud-based
service instances into lightweight, portable containers. This fact makes this new tech-
nology an appropriate way to build scalable, rapidly deployable services in the cloud. It
means that containers can be quickly launched or terminated when necessary since they
do not need to start or stop operating system that can take significant amount of time.

If container-based virtualisation is used to scale services in the cloud, container-level
monitoring becomes mandatory, in addition to the application-level monitoring. There-
fore, it can be concluded that employing a multi-level monitoring system able to address
the whole spectrum of monitoring requirements is necessary for auto-scaling container-
ised time-critical applications.

This chapter has been divided into two sections in order to describe the adoption of
container-based virtualisation and the necessity of using multi-level monitoring respec-

tively.
2.1 Container-based virtualisation

Hypervisor-based virtualisation technologies are able to support standalone VMs which
are independent and isolated of the host machine. Each VM instance has its own operat-
ing system and a set of libraries, and operates within an emulated environment provided
by the hypervisor. If the system uses VM:s to run application services, VM-level monitor-
ing becomes mandatory. However nowadays, a modern software engineering discipline
provides an approach to design cloud-based applications based on a set of components
running in containers [30] rather than VMs, shown in Fig. 2.1.

Different from VMs, the utilisation of containers does not need an operating system
to boot up that has gained increasing popularity in the cloud computing frameworks.
Resource usage of VMs is extensive and thus typically they cannot be easily developed on
small servers or resource-constrained devices, in contrast to containers. Tab. 2.1 provides
a comparison between container-based and VM-based virtualisation [31].

Since their nature is lightweight, deployment of containerised time-critical services at
runtime can be accomplished faster than VMs, and hence they have the ability to allow

for quick scaling of cloud-based applications. The lightweight nature and portability of

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

a N [N

'd N\ 4 N/ N7 N\
- ~ - VM (VM | (VM
S B e
e e e App1 |l |[App2 || || App3
8 g 8
c c c Guest Guest Guest
]] 8 0s os 0s
\ J | VAN AN J
s ™ ' .
Container engine Hypervisor
\ J | J
g “ (N\
Operating system Host operating
\ J - v,

_ Host J _ Host J

Table 2.1

Container-based vs VM-based virtualisation

Feature Containers VMs

Requirement Container engine e.g. Docker [32] ~ Hypervisor e.g. Xvisor [33]

Weight Lightweight Heavyweight
Boot time Fast Slow
Footprint Smaller Bigger

containers make it easy to dynamically handle changing workloads, scaling up or scaling
down applications when the workload varies over time. In this way, various container-
based virtualisation platforms such as Google Container Engine (GKE) [34] and Ama-
zon EC2 Container Service (ECS) [35] have been offered as alternatives to hypervisor-
based virtualisation.

Experiments in this thesis are based on Docker which is a container technology for
Linux that allows a developer to package up an application with all of the parts needed
[36]. Among all container virtualisation platforms, Docker has been recently very pop-
ular and rapidly developing [37]. Docker offers a set of APIs exposed by the Docker
engine for creating, instantiating, terminating and managing containers, and also build-
ing images, sharing them through repositories and looking for images created and made
publically available by any other developer. Docker Engine is the core of Docker which

provides APIs for starting, stopping, resuming and removing containers.

9

Figure 2.1

Container versus VM-based
virtualisation.

I0

Figure 2.2

Docker Hub repository.

2 Background S. Taherizadeh

When a container instance is started, there is a possibility to specify how the container
interacts with the host system. To this end, ports can be configured by using a port map-
ping between internal and external port numbers. In this way, other hosts whether on
the same network or on the Internet can communicate with the container via the exter-
nal port, and the connection will be mapped to the internal port inside the container.

Size of container images is significantly smaller than the size of full VM images. There
is arepository named Docker Hub repository [38] by which all developers can share their
public container images provided for different purposes, shown in Fig. 2.2. The Docker
Hub repository is a database for storing and distributing Docker images. The Docker
hub repository exposes APIs which can be called to push (store) and pull (retrieve) con-
tainer images [39]. The Docker registry can be also installed locally to store Docker im-
ages. When a local registry is used, pulling container images will be faster, and hence
running container instances will be quick. Using a local Docker registry significantly
decreases deployment latency as well as network overhead across the network.

All Docker images stored in this registry are identified by their name, while different
versions of a container image can be stored under the same name. A Docker image is
generally described in a text file called Dockerfile [40]. Dockerfile consists of consecu-
tive steps on how to create a specific Docker image, what base image should be used,
which dependencies need to be downloaded, what commands have to run to execute
the containerised application, port numbers which the container listens for network
connections at runtime, and so on. In this thesis, all developed container images used
for experiments along with their associated Dockerfiles are publically released under an

Apache 2 license [41].

P

=/

______ Docker Hub

repository

Container 1

Container 2

Container 3
al

[Docker engine

[Operating system

I
J
_ Host J

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 1z

2.2 Multi-level monitoring

The significance of a monitoring system fully-fitted for auto-scaling cloud-based appli-
cations has been presented in many academic and commercial-purposed solutions [42—
52] in various contexts. The monitoring system should be able to address the whole
spectrum of requirements which are needed for cloud-based applications within auto-
scaling frameworks. These requirements for monitoring systems within auto-scaling

cloud-based frameworks are explained as follows:

= Open Source: An open source monitoring system is software with source code
which can be shared, inspected, modified and enhanced by anyone because its
design is publicly accessible. This requirement is a great opportunity for easier

customisation and integration possibilities into other systems.

= License: Open-source licenses affect the way how other developers can study, use,
modify and distribute software. The Apache 2 license is an open-source software
license released by the Apache Software Foundation (ASF) [53]. The utility of this
license is motivated in research works since it is a popular and widely deployed

license supported by a strong community.

= Scalability: A monitoring system should be scalable which means that it is able
handle a notable number of monitored entities such as resources and services
[54]. This monitoring characteristic is a very important requirement in auto-
scaling cloud-based applications due to the necessity of considering a wide variety

of parameters to be monitored across various levels of framework.

= Alerting: In cloud-based computing scenarios especially for auto-scaling appli-
cations, there is a significant requirement for monitoring systems allowing us to
define custom alert rules which meet particular criteria. For instance, a monitor-
ing system should be capable of triggering notifications if a given container or VM

instance starts behaving irregularly or if a metric violates its associated threshold.

» Time Series Database (TSDB): This requirement is a significant competency to
developing a monitoring system which needs to be optimised for the long-term
storage and retrieval of monitoring data. Therefore, the monitoring data can be

employed to specify future auto-scaling strategies.

12

2 Background S. Taherizadeh

» Graphical User Interface (GUI): A monitoring solution used for auto-scaling
cloud-based applications should be able to provide GUI as well as APIs to dis-
play and expose runtime monitoring statistics about resources and services being

monitored. The GUI and remote APIs need to be accessible by other entities.

To adapt containerised applications to the changing workload at runtime and satisfy
application QOoS, it is essential to apply a comprehensive monitoring system capable of
considering different monitoring levels including: (i) container-level monitoring and (ii)

application-level monitoring, described in the next two subsections.

2.2.1 Container-level monitoring

If containers are used to run time-critical applications, container-level monitoring be-
comes mandatory when designing an auto-scaling mechanism. A container-level mon-
itoring system should be able to monitor a container’s key attributes and display their
runtime values, such as CPU, memory, storage and network traffic usage of the container
instance. Tab. 2.2 shows a list of tools usable specifically for the purpose of monitoring

containers and exposing runtime value of their associated metrics.

Table 2.2

Overview of container-level monitoring tools

Tool Open Source License Scalability ~ Alerting TSDB GUI
cAdvisor Yes Apache2 No No No Yes
cAdvisor+InfluxDB+Grafana Yes Mixed” Yes No Yes Yes
Prometheus Yes Apache 2 No Yes Yes Yes
DUCP Yes Commercial Yes Yes No Yes
Scout Yes Commercial No Yes Yes Yes

“Using three tools together: cAdvisor (Apache 2) + InfluxDB (MIT) + Grafana (Apache 2)

cAdvisor [55] is a system specifically designed for measuring, aggregating and showing
monitoring data about running containers. It can be also employed to provide instant
visibility across all containers managed by any container orchestration system such as
Kubernetes [3], ECS [35], Mesos [56] and Docker Swarm [57]. cAdvisor runs in a con-
tainer and employs the Docker Remote API [58] to obtain the statistics associated to

containers, shown in Fig. 2.3.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Kkub. t Amazon .=,
ubernetes ECS i8gs MESOS

|
|

Container 2
cAdvisor
Container 2
cAdvisor

[Docker engine] Docker engine]

Operating system

[Operating system]

Host / \ Host /

Therefore, starting this monitoring system is easy since it is shipped in a single con-
tainer. Once cAdvisor is launched, it will hook itself into the Docker daemon operating
on the host machine and start collecting metrics from all running containers, including
the cAdvisor container instance itself. In order to use the cAdvisor Web-based interface,
the URL http://localhost:8080/ needs to be opened in a browser.

A minute’s worth of monitoring data can be used for awareness of real-time metrics
about running containers over time. cAdvisor only displays monitoring information
measured during the last 6o seconds. It means that it is not possible to view any features
further back with using only a standard installation of cAdvisor. However, cAdvisor
can store the monitoring data in an external TSDB such as InfluxDB [59], Elasticsearch
[60] or BigQuery [61] which allows long-term storage and analysis of measured values.
Moreover, Grafana [62] can be applied as Web-based interface to visualise time-series
monitoring data. In this way, one cAdvisor container is responsible for data collection
on each host, and then it sends the collected monitoring data to the TSDB for long-term
storage, and afterwards Grafana provides a custom display panel which is a graphical
display dashboard. This architecture is shown in Fig. 2.4.

Since the cAdvisor monitoring system is limited to the latest one-minute data of a
single host, use of InfluxDB and Grafana on top of cAdvisor significantly improves scal-
ability of the monitoring system and also visualising the monitored data in informative

charts and statistics for any time periods.

13

Figure 2.3

cAdvisor monitoring
system.

14

Figure 2.4

Using InfluxDB and
Grafana on top of cAdvi-
sor.

2 Background S. Taherizadeh

Prometheus [63] is an open-source monitoring solution which includes a TSDB. It
is able to gather monitoring metrics at various time intervals, and show the monitor-
ing measurements. The Prometheus alert-manager investigates alert conditions, and
triggers notifications when the system starts experiencing abnormal situation. How-
ever cAdvisor is the easier monitoring system to be employed for monitoring containers
in comparison to Prometheus, it has restrictions with alert management. It should be
noted that both may not be able to appropriately offer turnkey scalability to handle large
number of containers. Prometheus can be also used with cAdvisor and Grafana. In this
way, the monitoring data collected by cAdvisor can be stored in a Prometheus database,
and then can be visualised via a Grafana dashboard, shown in Fig. 2..5.

Use of Prometheus, instead of InfluxDB can be preferred because it stores a name and
additional labels for each monitoring metric effectively only once, whereas InfluxDB re-

dundantly stores them for every timestamp [64].

=
o)

Docker engine

—

£ InfluxDB {5 Grafana

N7

Operating system

' G
—

Host

/

=)

Docker engine

Operating system

\ Host /

Y G
—

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

-Q-Prometheus

e)
[.

Docker engine

19Grafana

Operating system

[)
[J
_ Host j

Docker Universal Control Plane (DUCP) [65] is a commercial tool to monitor, de-
ploy, configure and manage Docker containerised applications through a single graphi-
cal interface. High scalability and Web-based user interface are the substantial character-
istics of this container management solution. Scout [66] is also a commercial container
monitoring solution which includes a Web-based graphical interface management dash-
board. Itis capable of storing measured monitoring values taken from containers during
maximum 30 days. This monitoring solution also supports notification and alerting of

events specified by predetermined thresholds.

2.2.2 Application-level monitoring

An application-level monitoring system should be able to check the current status of the
application performance (such as response time or application throughput) and present
the monitoring information over the execution time [67]. Application-level monitoring
is essential to achieve a high-level reliability and availability of cloud-based applications,
and it is required for auto-scaling operations in terms of adaptive services to the varying
workload.

However there are many monitoring systems able to measure the situation of the
underlying cloud-based infrastructures, monitoring application-specific metrics is still
a challenge which needs to be improved by both academic and industry cloud commu-

nities. To this end, the monitoring system should be extensible enough since each appli-

s

Figure 2.5

Using Prometheus and
Grafana on top of cAdvi-

sor.

16

2 Background S. Taherizadeh

cation has its own definition of QoS. In this way, cloud-based application providers may
be able to provide a monitoring solution specifically prepared for their own services.

Tab. 2.3 presents a number of well-known monitoring platforms which are able to
measure cloud-based application-level metrics, in addition to infrastructure-level param-
eters.

Zenoss [68, 69] monitoring platform relies on agent-less data collection mainly based
on the Simple Network Management Protocol (SNMP) protocol. This monitoring so-
lution has an open architecture which allows customers to appropriately customise it
according to their monitoring needs. Zenoss is able to provide comprehensive real-time
models for managed applications as well as other resources such as VMs or networks. It
presents holistic performance and health insights. Zenoss also provides event manage-
ment and reporting. However, it has a limited open-source version and the full version
for this monitoring platform requires payment, hence its utility in research works would
be declined. The raw monitoring data is collected by collectors and then forwarded to
the Zenoss Core. This monitoring system supports as many entities (e.g. applications,
VMs, etc.) as customers choose to monitor. Currently, the largest deployment includes
over 32,000 entities being monitored. The basic architecture of Zenoss monitoring plat-
form is shown in Fig. 2.6.

Ganglia [70, 71] is a scalable monitoring system generally for high-performance com-
puting environments such as clusters and grids. This monitoring tool has been recently
extended to monitor private and public clouds (e.g. via sFlow [72]). Moreover, cloud-
based solutions such as Cassandra TSDB usable in many scaling scenarios are integrated

with Ganglia. However this tool is typically designed to monitor infrastructure-level

Table 2.3

Overview of application-level monitoring tools

Tool Open Source License Scalability ~ Alerting TSDB GUI
Zenoss Yes GPL Yes Yes Yes Yes
Ganglia Yes BSD Yes No Yes Yes
Zabbix Yes GPL Yes Yes Yes Yes
Lattice Yes Apache2 Yes No No No

JCatascopia Yes Apache 2 Yes No Yes Yes

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

g) S
Applications and other SNMP Collector
resources e.g. VMs
\ J \ —
r \ SEEE— (
Applications and other SNMP Zenoss core
Collector
resources e.g. VMs
Y > — S
("\
Applications and other SNMP Collector
resources e.g. VMs
Y J \ J ~————

Big Data Back End

metrics (such as CPU utilisation, load average, disk free, and so on) about machines
in clusters and display both runtime and historical monitoring data as a set of graphs
in a Web-based graphical interface, Ganglia’s metric libraries can be extended to moni-
tor application-level parameters. It applies widely used protocols such as External Data
Representation (XDR) and Extensible Markup Language (XML) to collect monitoring
states, and also it uses RRDtool [73] to store and visualise the time series data. Ganglia
consists of two main parts: Gmond and Gmetad. The Gmond is a daemon which sits
on every single node being monitored, and gathers monitoring statistics. The Gmetad
is a daemon which periodically polls Gmonds and stores their monitoring metrics into
an RRDrtool database. The basic architecture of Ganglia monitoring system is shown
in Fig. 2.7.

Zabbix [74,75] is designed to be an open-source agent-based monitoring system. The
Zabbix server runs on a standalone machine which collects and aggregates monitoring
data sent by the Zabbix agents. The Zabbix monitoring system supports the alerting
feature to trigger notification if any predefined situation occurs, such as when the CPU
utilisation is over 80%. Zabbix is mainly designed to monitor network parameters and
network services. SQL database is used to store monitoring data, and a Web-based front-
end and an API are provided to access the measured values. The native Zabbix agent is
implemented in the C language, and hence it has a relatively small footprint. However,
the auto-discovery feature of Zabbix may be inefhicient [76]. This is because sometimes
it may take around five minutes to discover that a monitored node is no longer running

in the environment. This limitation can be a significant problem for any cloud-based

17

Figure 2.6

Zenoss monitoring solu-
tion’s architecture.

Figure 2.7

Ganglia architecture.

Figure 2.8

8

Hierarchical architecture

of the Zabbix monitoring

system.

2 Background S. Taherizadeh

s
VM/Machine f)*
Gmond
P daemon
Application
\))
7
VM/Machine rlﬁ
fmond Gmetad Ganglia server
Application aemon daemon
_)

~
<—

VM/Machine
Gmond

Application daemon Q

RRDtool

time-critical auto-scaling scenario. The Zabbix monitoring servers can be hierarchically
arranged in a way that child Zabbix servers forward all monitoring data to a parent Zab-
bix server which stores the data in a database. The Zabbix monitoring system’s hierar-

chical architecture is shown in Fig. 2..8.

[VM h
icati ; Zabbix
Application | | Zabbix agent orver
~ J \,)
[VM
Zabbix Zabbix
Application | | Zabbix agent sorver .
> Y, .) l
(VM)
i y
Application | | Zabbix agent Zabbix J
server ~ >
) i —’

Zabbix database

Lattice [77] is an open-source, non-intrusive monitoring platform which is designed
for basically monitoring infrastructure-level parameters in highly dynamic cloud envi-
ronments, including a large number of resources. The main functionality of the Lattice

monitoring system is to collect and distribute the monitoring data through either UDP

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

protocol or multicast addresses. Therefore, this monitoring system does not directly
provide the monitoring data to cloud customers, and also it is not aimed at automated
alerting and visualisation [78]. The architecture of Lattice is implemented around the
concept of producers-consumers. Producers collect monitoring data from monitoring
probes which can be whether infrastructure-level probes or application-level probes.
Consumers read the monitoring data. The producers and consumers are connected
through a network to distribute the measurements collected. The distribution mech-
anism allows for multiple submitters (called producers) and multiple receivers (called
consumers) of monitoring data without having a huge number of network connections.
The distribution mechanism can be either IP multicast, Event Service Bus (ESB), or pub-
lish/subscribe technique. In each of these distribution mechanisms, a submitter of data
needs only to send one copy of a measured value onto the network, and each of the re-
ceivers is capable of concurrently collecting the same packet of monitoring data from the

network. The basic architecture of the Lattice monitoring system is shown in Fig. 2.9.

4 VM N\
. Monitoring - Data
Applicat
pplication Probes 17 producer
J/ Data
consumer
L Monitoring Data
Application
PP Probes 1+ producer
\- / Data
' ~N consumer
VM
Application Monitoring - Data
op Probes 1+ producer Figure 2.9
_) Basic architecture of the
Lattice monitoring system.

JCatascopia [79] isa scalable monitoring system capable of monitoring federated multi-
cloud environments. This open-source monitoring platform is written in Java and pub-
lished under the Apache 2 license. JCatascopia is designed for monitoring agent/monitoring
server architecture. Monitoring agents are capable of measuring whether infrastructure-

level metrics (e.g. CPU and memory) or application-specific parameters (e.g. response

20

Figure 2.10

Basic architecture of the
JCatascopia monitoring
system.

2 Background S. Taherizadeh

time and application throughput). Each monitoring agent located on a VM sends the
monitoring data to a central Monitoring Server. To this end, each message transmitted
to the monitoring server includes the IP address of the monitored resource. Therefore
when a change occurs such as live-migration of VMs, the monitoring server is notified,
hence and monitoring operations will be continued. Automated alerting capability of
JCatascopia has been developed, however this monitoring component s proprietary and
not released publically. The basic architecture of the JCatascopia monitoring system is

shown in Fig. 2.10.

e A
VM

Application ‘ ‘Monitoring agent

((———

|
|
y,
N

(VM
‘ JCatascopia
‘ Application | ’Monitoring agent‘ monitoring
_) l server
(VM N\
‘ Application | ‘Monitoring agent}
’ — n
Cassandra TSDB

2.3 Developed multi-level monitoring system

In this thesis, our aim was to develop a multi-level monitoring system capable of mon-
itoring different metrics at both container and application levels. Therefore, in order
to implement a monitoring platform used in this thesis for auto-scaling containerised
time-critical applications, the JCatascopia monitoring system was selected as the baseline
technology and then extended to be able to measure not only application-level metrics,
but also container-level metrics.

It should be noted that as a Monitoring Agent in JCatascopia is natively written in
Java, each container which includes a Monitoring Agent needs some specific Java pack-
ages and a remarkable amount of available memory for a Java Virtual Machine (JVM),
although the monitored application running alongside the Monitoring Agent in the
container may not be implemented in Java language. Therefore, in order to make the

monitoring system based upon a non-intrusive design in this thesis, Monitoring Agents

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 21

have been developed via the StatsD protocol [80] which can be implemented for many
programming languages such as Python and C/C++.

As a consequence, each container in this thesis consists of two parts: (i) an applica-
tion which represents a service instance and (ii) a Monitoring Agent which represents a
StatsD client. The application provides a cloud-based service which processes tasks re-
ceived from the end-users. The Monitoring Agent is the component which monitors
the status of key metrics whether infrastructure-level parameters such as CPU, memory,
bandwidth and storage use of the container or application-level metrics such as response

time and throughput. Fig. 2.11 shows two different parts of containers co-located on one
host.

|

- ~ o0

]]] Application | | Monitoring Agent
£ £ c Pp! g Ag

© © ©

g1 £ || € Contai

S S 5 ontainer

o o ()

Docker engine]

[Operating system]

\ Host /

The functioning of the developed monitoring system isillustrated in Fig. 2.12 in which
there are two service clusters, namely Cluster 1 and Cluster 2. Each cluster includes con-

tainers which provide the same service.

In Fig. 2.12, two container images (illustrated by @ and e) are pulled from a
local registry to different hosts. Each container images includes a specific application to
be scalable, for instance Service 1 and Service 2. Thus, two different service clusters are
shown in this ﬁgure. Instantiating a new container instance ofa given service means that
the service scales up, and terminating a container instance means that the service scales
down. Once a new container is started, it means that this container instance is allocated
to alogical cluster. The developed monitoring system should keep track of these clusters
for every provided service. As an example, Fig. 2.12 shows that Cluster 1 consists of three

instances of Service 1, and Cluster 2 hosts two instances of Service 2.

Figure 2.11

Two different parts of
containers co-located on
one host.

22

Figure 2.12

Developed monitoring
system.

2 Background

docker pull

Local Registery

N

docker ru

i
= i
O i
g i
@ :i |DOCKER_HOST
g i
"? [Docker daemon
= i
R
3 H Container Images } [Containers
j_ i docker ru
e d
-
a
2
&
+ i
i
L
ot
L
@ i
=
£
o= 1
-
S -
=
D=
£
S :
? t [DOCKER_HOST,
Il H [Docker daemon
ol
E Container Images]— [Containers

3

[

o

(Clucter 1)
Cluster 1

i

S. Taherizadeh

DOCKER_HOST

[Docker daemon |

Containers)—k Container Images
docker run,

& <}

DOCKER_HOST

[Docker daemon |

Containers]— Container Images

docker ru

DOCKER_HOST,

[Docker daemon |

Containers Container Images

OCKEr rumn

"Cluster 2)
Cluster 2

DOCKER_HOST

[Docker daemon |

Containers Container Images

ocKer ru

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 23

<>
In the developed monitoring system, a container image (illustrated by Oﬂ is built

that contains three different entities: (i) the Monitoring Server which is a StatsD server,
(ii) the Cassandra TSDB, and (iii) the Web-based GUI. This container image as an open-
source component is publically released on Docker Hub [81]. It must be said that having
particular container images built for each of these three entities is also possible. The de-
veloped monitoring system is freely accessible to both researchers and commercial com-
panies on GitHub [41] under an Apache 2 license.

In this thesis, a local Docker registry is employed to store and manage all Docker im-
ages. In this way by use of a local Docker registry, pulling container images and running
container instances of services are much faster across cluster nodes. A local Docker reg-
istry remarkably diminishes both network overhead and deployment latency while con-
tainers are running across the spread of hosts in a region. Furthermore, it is feasible to
specify deployment strategies which take advantage of cached container images, hence
further improvement in deployment time.

In order to propose a fine-grained auto-scaling method, our multi-level monitoring
system developed to collect information from different levels is more supportive of dy-
namic adaptation of containerised applications than single-level monitoring techniques.
To this end, in addition to monitoring virtualised resources (e.g. CPU, memory, disk,
etc.) used by container instances, considering application-level monitoring data is also
significant. In Chapter 3, all auto-scaling methods which are currently considered as ad-
vanced approaches are explained in detail with a clear rationale to employ monitoring

capabilities.

State-Of-The-Art Review

20

3 State-Of-The-Art Review S. Taherizadeh

This chapter aims at identifying open challenges and understanding limitations of exist-
ing methods in auto-scaling of cloud-based applications through a comprehensive liter-
ature review. The literature review presented in this chapter covers auto-scaling mech-
anisms provided by both experience studies and commercial solutions, as summarised
in Tab. 3.1. We respectively survey all methods listed in Tab. 3.1 and compare them to
identify their characteristics. The differences and similarities among the reviewed meth-
ods come up with an opportunity for a thorough conception of the term “auto-scaling”
within cloud-based applications. Our proposed method which is called Dynamic Multi-

level (DM) auto-scaling is also presented for completeness in the last row of Tab. 3.1.
3.1 Experience research stuclies

Lorido-Botran er al. [82] grouped auto-scaling techniques into five different categories

as follows:

u Control Theory: Auto-scaling methods which exploit control theory [83-85] cre-
ate an application performance model used by a component called controller.
The controller is able to adjust the necessary amount of resources (e.g. number
of application instances) to the application performance at runtime. The con-
troller should be continually improved using a feedback loop. In other words,
these methods continuously detect situations when the performance model re-
quires to be upgraded due to the changes in the whole environment and try to

accurately correct and adjust the derived performance model.

= Reinforcement Learning: Similar to the control theory, reinforcement learning
methods [86-88] tend to automate auto-scaling actions, but without leverag-
ing any a priori knowledge on the running cloud application such as predefined
performance model of the application. On the contrary, reinforcement learning
methodsaim atlearning the most suitable adaptation action with a trial-and-error
approach for each particular state on-the-fly. Therefore, such approaches require

a considerable time period in order to converge to optimal auto-scaling policies.

» Queuing Theory: Queuing Theory can be considered as a mathematical repre-
sentation of waiting lines. Auto-scaling methods which apply queuing theory

[89, 90] can adjust the resource capacity by making decisions based upon the size

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 27

of requests inside the queue. For example, service requests sent from the end-
users are queued at the load-balancer. Given the workload rate at runtime, such
methods try to achieve the optimal amount of required resources in order to serve

maximum requests in the queue with an acceptable response time.

» Time-series Analysis: Auto-scaling approaches which use time-series analysis meth-
ods try to detect patterns and forecast future values based on sequences of data
points. In order to achieve a great level of accuracy, a right time-series analysis
method has to be applied. Moreover, the prediction interval and history win-
dow should be correctly chosen. For example, the DT'W algorithm [91] can be
used to recognise patterns in time series of data points. A DT'W-based similar-
ity checking mechanism measures the difference between two time-series, namely
the incoming monitoring data and the reference patterns. DT'W is an algorithm
to provide a similarity measure between two signals that also allows for stretched
and compressed sections of two given sequences. In other words, the main advan-
tage of DTW is its ability to automatically cope with time deformations of two
signals corresponding to execution environments performed at two different ve-
locities. In this way, reference patterns as templates should be predetermined for
each adapration event such as scaling up or scaling down. Therefore, sufficient

data set needs be collected in advance before the system starts working.

w Threshold-based Rules: Threshold-based auto-scaling rules are generally offered
by commercial cloud-based infrastructure providers. These rules are considered
as purely static, reactive auto-scaling policies. In this way, adaptation actions are
commenced according to the value of some performance parameters based upon
a set of predefined thresholds. The most important advantage of such threshold-
based auto-scaling approaches are their simplicity since these rules are easy-to-
set-up for the scalability of underlying cloud-based infrastructures. Our new
threshold-based auto-scaling method proposed in this thesis is dynamic because
this method uses dynamic thresholds instead of fixed auto-scaling rules provided

by current commercial cloud-based infrastructure providers.

Al-Sharif et al. [92] proposed a framework named Autonomic Cloud Computing
Resource Scaling (ACCRS) in order to provision a sufficient number of VMs to address

the changing resource requirements of an application running on the cloud. The pro-

28

3 State-Of-The-Art Review S. Taherizadeh

posed adaptation method employs a set of fixed thresholds for infrastructure-level met-
rics. These thresholds are used for CPU, memory, and bandwidth utilisation to evaluate
runtime states of resources. In this approach, the workload can be identified as a light
or heavy weight if any of these attributes violate the associated thresholds. The pre-
sented resource scaling framework uses a single-level monitoring system able to measure
only infrastructure-level metrics. Therefore, the service response time and application
throughput do not have any role in specifying the necessary auto-scaling actions.

Islam ez al. [93] presented a proactive cloud resource management system in which
neural networks and linear regression have been used to predict and satisfy future re-
source demands. The developed performance prediction model is able to estimate up-
coming resource usage (such as an aggregated percentage of CPU utilisation of all run-
ning VM instances) at runtime and then launches additional VMs to maximise appli-
cation performance. In this work, only CPU usage is employed to train the prediction
model, and their method does not involve other types of resources, for example mem-
ory. This approach uses a 12-minute prediction interval, because the setup time of VM
instances is almost 5 to 15 minutes in general. This low rate of prediction is not satis-
factory for continuously changing workloads. Furthermore, in such proactive methods
[94—97], for each new change in the workload, it takes too long to converge towards a
stable driven performance model, and therefore the application may deliver poor service
quality to the end-users during the beginning stages of the learning period.

Jamshidi er al. [86] proposed a self-learning adaptation technique called FQL4KE
to perform auto-scaling operations in order to increase or decrease the number of ap-
plication instances built upon VM-based virtualisation. FQL4KE uses a fuzzy control
approach based on a reinforcement learning method. Although, there are real-world
environments in which the number of situations is enormous, and therefore the rein-
forcement learning method may take too long to converge for any new change in the
execution environment. Hence, applying reinforcement learning method may become
impractical due to the time constraints imposed by some time-critical applications such

as disaster early warning systems.

Table 3.1

Overview of existing auto-scaling methods used for cloud-based applications

Method Virtualisation technology Infrastructure-level metrics Application-level metrics Technique Adjustment ability
Al-Sharif et al. [92] VM CPU, memory, and bandwidth ~ Nothing Rule-based Static
Islam ez al. [93] VM CPU Response time Linear regression and neural networks Static
Jamshidi et al. [86] VM CPU, memory, etc. Response time and application throughput Reinforcement learning (Q-Learning) Dynamic
Arabnejad ez al. [87] VM Nothing Response time and application throughput Fuzzy logic control and reinforcement learning ~ Dynamic
Tsoumakos ez al. [88] VM CPU, memory, bandwidth, etc. Response time and application throughput Reinforcement learning (Q-Learning) Static
Gandhi er al. [89] VM CPU Response time and application throughput Queueing model and Kalman filtering Dynamic
Kukade and Kale [98] Container Memory Application throughput Rule-based Static
Kan [99] Container CPU and memory Application throughput Rule-based and ARMA Static
Baresi ez al. [83] Container CPU and memory Response time and application throughput Control theory Dynamic
Quet al. [100] VM CPU, memory, bandwidth, etc. Nothing Profiling Static
Horizontal Pod Auto-scaling (HPA) used by Kubernetes Container CPU Nothing Rule-based Static
Target Tracking Scaling (TTS) and Step Scaling (SS) used by Amazon VM and container CPU and bandwidth Application throughput Rule-based Static
THRESHOLD (THRES) [101] VM and container CPU Nothing Rule-based Static
Multiple Policies (MP) used by Google. VM CPU Application throughput Rule-based Static
Dynamic Multi-level (DM) Container CPU, memory and bandwidth ~ Response time and application throughput ~ Rule-based Dynamic

. . . g
suonearjdde pnop [eonin-swn jo uopeadepe oy U SUTUOSEII Paseq-d[NI PUE SULIOIUOW [2A3[-I[NJA

30

3 State-Of-The-Art Review S. Taherizadeh

Arabnejad er al. [87] developed a fuzzy auto-scaling controller which is combined
with two types of reinforcement learning approaches: (1) Fuzzy Q-learning Learning
(FQL) and (2) Fuzzy SARSA Learning (FSL). In this work, the monitoring system col-
lects different metrics required such as service response time, application throughput,
and the number of VMs in order to feed the proposed auto-scaling controller. The auto-
scaling controller is able to automatically scale the number of VMs for dynamic resource
allocations to react to workload variations. It should be noted that the presented archi-
tecture is operational only for a certain kind of virtualisation platform called OpenStack.
Besides, the controller needs to choose scaling operations among a limited number of
possible actions. In other words, if a drastic surge suddenly appears in the workload in-
tensity, the presented auto-scaling method can add only one or two VM instances that
probably cannot offer enough resources to maintain a favourable QoS.

Tsoumakos ez al. [88] presented a resource provisioning approach which is called
TIR AMOLA in order to identify the number of VM instances necessary to meet user-
defined objectives for a NoSQL database cluster. The proposed technique combines
Markov Decision Process (MDP) with Q-learning as a reinforcement learning method.
This resource provisioning approach continuously decides the most beneficial state that
can be achieved at runtime, and thus specifies possible actions in each state that can either
do nothing, or add/remove NoSQL nodes. The principle of TIRAMOLA is acting
in an expected style of operation when the regular workload scenario can be specified.
Accordingly, previously unobserved workloads are considered as the major obstacle to
the fastadaptation of the entire system to meet the performance objective of cloud-based
interactive services. Furthermore, TIRAMOLA is restricted to the elasticity of a specific
type of application such as NoSQL databases. Moreover, the monitoring part needs to
collect client-side statistics in addition to server-side metrics (e.g. CPU, memory and
bandwidth, query throughput, and so on). In this regard, clients of such applications
should be modified so that each one can report its own monitoring statistics, which is
not an operational solution for many real-world use cases.

Gandhi er al. [89] proposed a model-driven auto-scaler which is called Dependable
Compute Cloud (DCz). This auto-scaler proactively has a tendency to ensure the QoS
of the application in order to meet user-specified requirements. The presented method
uses a combination of the Kalman filter technique and a queueing model to provide esti-
mations of the average service time at runtime. The functionality of DCz is emphasised

on avoiding under-utilisation of resources, and thus it may resultin an over-provisioning

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 31

problem during execution time. Moreover, the Kalman filter process is repetitively con-
tinued at every 10-second monitoring interval, it requires some time (e.g. few minutes)
to calibrate the driven model based on the monitoring information for each new state.
Therefore, the challenge in this regard lies in the accuracy of the presented auto-scaling
approach which may shrink for special workload scenarios such as a new, drastically vary-
ing pattern over time.

Kukade and Kale [98] demonstrated a master-slave auto-scaling architecture for con-
tainerised applications. Slaves represent the nodes where container instances can be de-
ployed, while there is a master that is responsible for receiving arrival requests and rout-
ing them to running containers. The master also includes a self-adapter module that is
able to check two different single-level scaling rules in order to increase or decrease the
number of running containers. For example, if the request rate exceeds a pre-defined
fixed threshold, a new container instance will be started. If the memory load of con-
tainers reaches a threshold, then a new replica of container instance will be launched.
However, in a real-world auto-scaling platform, monitoring additional metrics usable
within adaptation rules is necessary. For example, CPU utilisation which is important
for computing-intensive applications has not been considered by the study. Kan [99] in-
troduced a container-based elastic cloud platform called DoCloud. This platform incor-
porates proactive and reactive models to calculate the number of containers to be added
for the scale-out, while only the proactive model is applied for the scale-in. DoCloud
exploits static thresholds for CPU and memory utilisation, and uses the Autoregressive-
Moving Average (ARMA) method to predict the number of incoming requests for the
application.

Baresi et al. [83] proposed an auto-scaling approach that employs an adaptive discrete-
time feedback controller which enables a container-based application to dynamically
scale necessary resources, both horizontally and vertically. Horizontal scaling means the
addition or removal of container instances, while vertical scaling represents increasing
or decreasing the amount of resources allocated to a running container. In this work, a
component called ECoWare agent needs to be deployed in each VM. An ECoWare agent
is in charge of the collection of container-specific monitoring data, such as containers’
usage of CPU, memory, etc. This component is also responsible for instantiating or ter-
minating a container in the VM, or changing the resources assigned to a container.

Qu et al. [100] proposed an auto-scaling method which exploits heterogeneous VM

instances in order to provision web applications. The intention of using heterogeneous

32 3 State-Of-The-Art Review S. Taherizadeh

VM instances in this work is improving the reliability of service clusters as well as re-
source cost. First of all, the proposed auto-scaling approach observes multiple infrastructure-
level metrics such as CPU, memory, etc. Then, the auto-scaler will profile the applica-
tion regarding its average resource consumption for different workload conditions. The
profiling step in this work should be performed offline, however the authors claim that
the proposed approach is open to be extended for dynamic online profiling. With the
profile driven from the previous step, the auto-scaling method is capable of estimating
the processing capability of each spot VM instance under varied amount of workload.
Therefore, it is possible to decide how to distribute incoming requests to heterogeneous
VMs in order to balance their loads. However, this work is restricted to mainly fault-

tolerant applications.
3.2 Existing auto-scaling production solutions

The current commercial cloud-based infrastructure providers (e.g. Google Cloud Plat-
form and Amazon EC2) as well as open-source container management platforms (e.g.
Kubernetes) offer static rule-based auto-scaling methods which are not flexible in or-
der to adjust themselves to dynamic changes of the operational environment. In this
section entitled “Existing auto-scaling production solutions”, some widely used rule-
based auto-scaling approaches are explained for the purpose of comparison to the pro-
posed Dynamic Multi-level (DM) auto-scaling method. These approaches are chosen
for comparison to our DM method because they are also rule-based and considered
as advanced auto-scaling solutions, which are used in the current production systems.
Fig. 3.1 presents two significant quality features which are inspected by this thesis and

result in the definition of a fine-grained auto-scaling method.

s N

Response @ 95 percentile of the response time
time o Median response time

N J

4 N\
@ Average number of containers

® Average CPU usage per container
® Average memory usage per container
N\ J

Figure 3.1

Significant quality prop-
erties of cloud-based
applications.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 33

An ordinary practice in the existing commercial cloud-based infrastructure is to em-
ploy fixed, infrastructure-level auto-scaling rules. For instance, a CPU-based auto-scaling
policy can be specified in a way that more VMs/containers should be instantiated if the
average CPU utilisation reaches a fixed threshold such as 80%; while some VMs / con-
tainers may be stopped if the average CPU utilisation is below 80%. These auto-scaling
configurations cannot be very helpful for certain workload scenarios for example dras-
tically changing patterns. Furthermore, these settings lead to a stable system at the best
case towards 80% resource utilisation that means 20% of resources are wasted, which is
not desired. An important challenge in providing an auto-scaling approach is to what
extent this mechanism can be self-adjustable to changing conditions in the operational
environment.

In the proposed new DM auto-scaling method, both infrastructure-level metrics (e.g.
CPU and memory) as well as application-level metrics (e.g. response time and applica-
tion throughput) are the factors which can dynamically influence the adjustable auto-
scaling rules. Our proposed method is dynamic because this method applies self-adaptive
auto-scaling rules which are used for instantiating and terminating container instances.
These auto-scaling rules are adjusted at runtime according to the workload intensity. In
other words, in our auto-scaling method, conditions when containers are launched or
terminated can be different and do not have to be predefined. In the following subsec-
tions, an analysis of existing widely used auto-scaling methods which serve as means for

comparison to our proposed DM method.

3.2.1 Kubernetes - Horizontal Pod Auto-scaling (HPA)

Kubernetes is a lightweight open-source container management platform which is ca-
pable of orchestrating containers and automatically providing horizontal scalability of
running applications. In Kubernetes, a group of one, or a small number of containers
which are tightly coupled together with a shared IP address and port space can be de-
fined as a pod. Therefore, a pod simply indicates one single instance of an application
which can be replicated, if more instances are helpful to handle the increasing workload.
In Kubernetes, an auto-scaling approach which is called Horizontal Pod Auto-scaling
(HPA) [102] is a control loop algorithm basically based upon only CPU utilisation; no
matter how workload is changing or application performance is behaving. HPA which
shown in Fig. 3.2 can increase or decrease the number of pods to keep the average CPU

utilisation across all pods at, or close to, a target value such as 80%.

34

Figure 3.2

Kubernetes Horizontal
Pod Auto-scaling (HPA)
algorithm.

3 State-Of-The-Art Review S. Taherizadeh

Kubernetes HPA algorithm

Inputs:

Targetq,.: Targeted per-pod CPU resource usage

CLTP: Control Loop Time Period in seconds, e.g. 30 seconds

Outputs:

NoP: Number of Pods to be running

do{
Cluster = [Poda,..., PodN];
SumCpu=SUM_Cluster(cpu_usage_of_poda,...,cpu_usage_of_podN);

NoP = [SumcPU]
Targetcpy
wait(CLTP);

} while(true);

In HPA, SUM _Cluster is the grouping function employed for calculating the total
sum of the CPU utilisation of the cluster. The auto-scaling period of the Kubernetes
auto-scaler is half a minute (30 seconds) by default that can be changed. At each auto-
scaling iteration, Kubernetes’ controller may add or remove the number of pods accord-

ing to Number of Pods (NoP) to be running that is the output of the HPA algorithm.

3.2.2 Amazon EC2 AWS - Target Tracking Scaling (T'TS)

The Amazon EC2 AWS platform provides an auto-scaling method called Target Track-
ing Scaling (T'TS) [103] mechanism, which is capable of offering dynamic adjustments
in the number of instances based on a target value for a specific metric. The T'TS mecha-
nism uses single-level auto-scaling rules considering either an infrastructure-level metric
(e.g. average CPU udilisation) or an application-level metric (e.g. application through-
put per instance). In this regard, a predetermined target value should be set for a metric
used in the auto-scaling rule. Moreover, the minimum and maximum number of in-
stances in the service cluster must be defined. The TTS method increases or decreases
application instances when it is necessary in order to keep the metric at, or close to, the
predefined target value.

The default settings in AWS are able to scale the application based on the value of a
metric with a s-minute frequency. This frequency can be changed to 6o seconds (one
minute) that is known as detailed auto-scaling option in the Amazon EC2 AWS plat-
form. TTS is able to increase the cluster size when the specified metric is above the tar-

get value, or decrease the cluster capacity when the specified metric is less than the tar-

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 35

get value for specified consecutive periods e.g. even one interval. For a large cluster, the
workload is spread over a large number of instances. Therefore in such situation, adding
anew instance to the cluster or removing a running instance from the cluster causes less
of a gap between the target value and the actual metric data points. On the contrary, for
a small cluster in which the number of instances is not big, adding or removing an in-
stance may result in a big gap between the predefined target value and the actual metric
data points. As a consequence, together with keeping the value of the metric close to
the target value, the TTS method must also adjust itself to reduce rapid changes in the
cluster size.

As an example, an auto-scaling rule predefined as “T'TS1 (CPU, 80%, +1)” can be
taken into account to keep the average CPU utilisation of the whole cluster at 80% by
instantiating or terminating one instance per scaling action. Furthermore, the Target
Tracking Scaling rule “T'TS” may also be specified to adjust the number of instances by
a percentage. In this way for example, an auto-scaling rule named “T'TS2 (CPU, 80%,
120%)” is able to add 20% more instances or terminate 20% fewer instances, if the con-
ditions are met. In order to give an example, if four instances are currently running in
the cluster, and the average CPU utilisation goes over 80% during the last minute, T'TS2
determines that 0.8 instance (that is 20% of four instances) should be added to the clus-
ter. In such a case, T'TS rounds up 0.8 and hence instantiates one new instance. Or, if
in a certain condition, TTS2 decides to remove 1.5 instances, TTS can round down and

remove only one instance from the cluster.

3.2.3 Amazon EC2 AWS - Step Scaling (SS)

Amazon EC2 AWS also provides another type of auto-scaling approach which is called
Step Scaling (SS) [104]. If the average CPU utilisation requires being below a threshold,
for example 80%, it can be possible to specify different scaling steps used for auto-scaling
application. Fig. 3.3 presents the first part of an AWS Step Scaling example called ‘SSr’ to
increase the capacity of the cluster, when the workload is growing. In this example, one
instance will be instantiated for a modest breach (from 80% to 85%), two more instances
will be added for somewhat bigger breaches (from 85% to 95%), and lastly four instances
will be instantiated for CPU utilisation that exceeds 95%. It should be noted that the
ranges of step adjustments should not overlap with each other or even have a gap be-
tween them. In this example of Step Scaling, SS1 periodically measures the one-minute

aggregated value of the average CPU utilisation from all instances. Subsequently, if this

30

Figure 3.3

AWS auto-scaling example
named SS1 in order to
increase the cluster size.

Figure 3.4

AWS auto-scaling example
named SS1 in order to
decrease the cluster size.

3 State-Of-The-Art Review S. Taherizadeh

value exceeds the threshold 80%, SS1 compares it against the lower and upper bounds
specified by different step adjustments to determine which auto-scaling action needs to
be executed.

In similar way, defining various steps to reduce the number of instances running in the
cluster is also possible, when the workload is decreasing. As an example, Fig. 3.4 shows
three different steps to stop unnecessary instances when the average CPU utilisation falls
below the threshold 50%.

Execute . cpyutilization >= 80 for 60 seconds
policy when

Take . ; W =CP
the action Add v |11 ||instances v | when |gp|<=CPUUtilization < |85
Add 2 |instances when 85 <=CPUUtilization < |95 g

Add 4 |instances when 95 <=CPUUtilization < +mﬂmty0

Execute . cpyutilization <= 50 for 60 seconds
policy when

Take . when [sg |>= CPUUtilization
the action’ Remover 1 | instances v V 50 | ization > 40
Remove 2 | instances when 40 >=CPUUltilization > (30 @

Remove 4 instances when 30 >=CPUUtilization > -|n(‘|mtyg

In Amazon EC2 AWS, Step Scaling policies can be also specified on a percentage basis.
That meansin order to handle an increasing workload at runtime, Step Scaling approach
is capable of increasing the number of instances by the percentage of the current cluster
size. Fig. 3.5 shows the first part of an AWS Step Scaling example called ‘SS2” that consists
of two step adjustments to increase the number of instances running in the cluster by
20% and 30% of the cluster size at the respective steps. If the resulting value is not an
integer, SS2 will round this value. In this case, values greater than 1 will be rounded
down. Resulting values between o and 1 will be rounded to 1. For example, if the current
number of instances in the cluster is four, adding 30% of the cluster will result in the
deployment of one more instance. Furthermore, 20% of four instances is 1.2 instances,
which is rounded down to one instance.

Determining an identical set of Step Scaling policies to decrease the number of in-
stances deployed in the cluster is also possible. In such a way, SS2 method is able to
decrease the current capacity of the cluster by the defined percentage at different step
adjustments. Fig. 3.6 shows a two-step auto-scaling approach to handle a decreasing

workload at runtime, and hence to dynamically reduce the number of instances in the

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

cluster by 20% and 30% of the cluster size. The resulting values between o and -1 will
be rounded to -1. Additionally, the values less than -1 will be rounded up. For example,

-3.78 is rounded to -3.

Execute . cpyutilization >= 80 for 60 seconds
policy when

Take . W <=CP
aacton Add | 20|/percent of groupv |when|gg <= CPUUtilization< 90

Add |30 percent of group when 90 <=CPUUtmzation<+|nrinnyg

psl’i(:;lxﬁenz CPUUtilization <= 50 for 60 seconds

th:%k;ioni Removev 20 percent of groupv| When 5p >= CPUULIlization > 30

Remove 30 percentof group when 30 >=CPUULtilization> -infinity €|

3.2.4 First method of THRESHOLD (THRESI) and second method of THRESH-
OLD (THRES:)

A static single-level auto-scaling method which is called THRESHOLD or THRES
(Metric, UP%, DOWN%) [101] can horizontally add a container instance if an aggre-
gated metric (such as the average CPU or memory utilisation of the cluster) reaches the
predetermined UP% threshold. Moreover, it is able to remove a container instance when
it falls below the predefined DOWN% threshold for a default number of consecutive
intervals, e.g. two intervals. The approach named “THRES: (CPU, 80%, 50%)” is an
example for such a static single-level auto-scaling method.

The “THRES2 (CPU, 80%, 50%, RT, 190 ms)” method also can be determined as
an example for a static multi-level provisioning approach which is capable of consider-
ing the average Response Time (RT), in addition to the average CPU utilisation of the
cluster. In order to add a new instance, both the average CPU resource utilisation and
response time thresholds (in this example, 80% and 190 ms, respectively) require to be
violated for two successive intervals. In order to remove a running instance from the
cluster, the average CPU utilisation of the cluster needs to be below 50% during the last

two consecutive periods.

37

Figure 3.5

AWS auto-scaling example
named SS2 in order to
increase the cluster size.

Figure 3.6

AWS auto-scaling example
named SS2 in order to
decrease the cluster size.

38

3 State-Of-The-Art Review S. Taherizadeh
3.2.5 Google Cloud Platform - Multiple Policies (MP)

The Google Cloud Platform offers an auto-scaling mechanism which is called ‘MP” us-
ing multiple auto-scaling policies individually at different levels of monitoring, such as
infrastructure and application-level metrics [105]. For example, the MP auto-scaler is ca-
pable of considering two policies. One policy can be on the basis of average CPU usage
of the cluster that is an infrastructure-level metric. Another policy can be on the basis
of Application Throughput of the Load-Balancer (ATLB) that is an application-level
metric. It means that, each of these two policies is a single-level rule that is defined and
based upon only one parameter. MP calculates the number of required instances recom-
mended by each policy, and afterwards selects the policy that defines the largest number
of instances in the cluster. This characteristic of the MP auto-scaling approach conser-
vatively ensures that the cluster always has enough capacity to handle the workload over
time.

In this manner, a target value needs to be specified for each metric. For instance,
“MP (CPU=80%, ATLB=80%)” is a two-policy auto-scaling method which continu-
ously monitors both the average CPU usage of the cluster, and also the load-balancing
serving capacity. In this example, setting a 0.8 target utilisation designates the MP auto-
scaler to keep the average CPU utilisation at 80% in the cluster. Furthermore, MP scales
the cluster to maintain 8o percent of the load-balancing serving capacity since ATLB is
80%. For example, if the maximum load-balancing serving capacity is defined as 100 Re-
quests Per Second (RPS) per instance, MP will add or remove instances from the cluster
to maintain 80% of the serving capacity, or in other words 8o RPS per instance.

Detailed explanation of auto-scaling approaches presented in this chapter offers a
meaningful interpretation and insight into our proposed new method called Dynamic
Multi-Level (DM) auto-scaling described in Chapter 4.

Method and Architecture

40

Figure 4.1

Proposed architecture for
adaptive containerised
applications.

4 Method and Architecture S. Taherizadeh

This thesis presents a new Dynamic Multi-level (DM) auto-scaling method which is im-
plemented to be used according to our proposed new architecture for auto-scaling con-
tainerised time-critical applications. The DM auto-scaling method exploits our devel-
oped multi-level monitoring system explained in Chapter 2. The use of the DM auto-
scaling method in an innovative functional architecture is shown in Fig. 4.1 for adaptive

containerised applications.

F-ba
KB
)
v

KnovledgeBase(| 7 7 7
Engine

Web-based
IDE

Primitive thresholds

mem: -

Monitoring data

Monitoring Server

Cluster
Container 1

o " Container-level >
Application-level Application Monitoring Agent
Monitoring Agent las N7 - Time Series Database
a TC
= Container 2 ¥ (TSDB)
g Reqye Container-level
3 als - —T » i i
g(- ¢ Load Balancer % Application —I |;mmm,i“g Agent || Alarm-Trigger <
& s, Checking_For_Container_Instantiation
s Container 3 Checking_For_Container_Termination

G

Sell-Adapter
Container _Instantiation
Container_Termination

Monitoring Agent

T‘App“un‘m—| Container-level

Load Balancer
Monitoring Agent, Monitoring Server, TSDB and the SWITCH Web-based IDE = Providing multi-level monitoring data
Alarm-Trigger
Self-Adapter

} Providing dynamicity of auto-scaling rules

In this thesis, it is considered that each host in a cluster can comprise at most one
container instance per service, while each host can belong to various clusters at the same
time. In other words, more than one container can be located on one host machine, but
nevertheless they have to provide different services. This condition is a realistic situation
for an operational environment where various types of services need to be scaled. Whena
particular service is launched at the host, it exposes its associated interfaces at certain port
numbers, which should not clash with the port numbers of other running services on

that host. In this way, it is meaningful to provide an internal, so-called vertical elasticity

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 41

technique for the allocation of CPU and memory resources to different services within
the same host, but, it makes no sense to launch additional container instances of the
same service on the same host machine.

In general term, if two or more container instances are co-located on one host, by
default all container instances will achieve the same proportion of CPU cycles. In this
case, if tasks in a container are idle, other containers are capable of using the leftover CPU
cycles. Besides this, it is feasible to modify identical proportions allocated to running
containers by using a relative weighting mechanism. In this way, when all containers
running on one host try to achieve all 100% of the CPU time, the relative weights give
each container access to an assigned proportion of the host machine’s CPU cycles (since
CPU cycles are limited).

In conditions when enough CPU cycles are available, all container instances running
onahost machine are able to use as much CPU as they require regardless of the dedicated
weights. Although, there is no guarantee that each container can use a specific amount
of CPU time at runtime. This is because the actual amount of CPU cycles assigned to
each container will vary depending on the number of container instances co-located on
the same host machine and also the relative CPU-share settings allocated to containers.
In order to make sure that no container can starve out other containers on a single host
machine, if a running container instance provides a CPU-intensive service, other con-
tainer instances that will be deployed on that host machine should not be identified as
computationally-intensive services. This concept has been employed also for memory-
intensive services. In this thesis, all containers have the same weight to gain access to the
CPU cycles and the same limit at the use of memory. This makes it a suitable case of
so-called horizontal scaling.

The proposed architecture using the DM auto-scaling method consists of various
components, namely: (1) Load-Balancer, (2) Monitoring Agent, (3) Monitoring Server,
(4) Time Series Database (TSDB), (5) Web-based Interactive Development Environ-
ment (IDE), (6) Knowledge Base (KB) Engine and Resource Description Framework
(RDEF)-based KB, (7) Alarm-Trigger and (8) Self-Adapter. These components are re-

spectively explained in detail in the next sections.
4.1 Load-Balancer

The Load-Balancer, such as HAProxy [106], provides high-availability support for cloud-

based applications by spreading requests across multiple instances. HAProxy, shown

42 4 Method and Architecture S. Taherizadeh

in Fig. 4.2, is a free, open-source, fast and reliable software which ofters load balancing
mechanism. In this thesis, the HAProxy is used to drive the actual load balancing of

requests among multiple container instances.

<
—
— ? J Server 1
—J
0 §
—— E
~—J
HAP
Load-B;?aercer s'
? J Server 3
Figure 4.2 —
HAProxy Load-Balancer.
HAProxy is widely used by a number of auto-scaling research works [107-117] and
also high-profile commercial solutions including GoDaddy [118], GitHub [119], Stack
Overflow [120], Reddit [121], Speedtest [122], Bitbucket [123], Twitter [124], W3C [125]
as well as the AWS OpsWorks [126] product from Amazon Web Services.
4.2 Monitoring Agent
The monitoring system is capable of measuring both container-level metrics (e.g. CPU
and memory usage of containers) and application-level parameters (e.g. average response
time and throughput of the application). Thus, two types of Monitoring Agents which
monitor container-level and application-level metrics are considered in the architecture
as shown in Fig. 4.3.
<
- “# Server 1
T I Container-level Monitoring Agent I
-
onitoring Agent
’ §@ Server 2
W . I Container-level Monitoring Agent |
HAProxy =
Fz;gure 4.3 Load-Balancer g@ Server 3
Two types of Monitor- ; | Container-level Monitoring Agent |

ing Agents to moni-
tor container-level and
application-level metrics.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

As mentioned before, every host can be determined to locate more than one container
in a way that each container provides different service, or in other words containers co-
located on one host belong to different cluster. Therefore as an example, if a host consists
of two containers, two container-level Monitoring Agents will be running on the host as
shown in Fig. 4.4. This is because every container includes a container-level Monitoring

Agent which measures CPU and memory utilisation of the container.

pa N

Application 1 [[rortemeriove
L Container 1)
Ve \
Application2 || rometerisve
L Container 2 Y,

e

In this thesis, the application-level Monitoring Agent is responsible for monitoring

the Load-Balancer. Application-level metrics which are measured in the context of the
proposed DM auto-scaling method are AygRT (average response time to reply to an
end-user’s request), A7 (application throughput which means the average number of
requests per second processed by one container instance), and cont (number of container
instances behind the Load-Balancer).

The distributed principle of our implemented agent-based monitoring platform sup-
ports an interoperable, lightweight architecture which can quench the runtime overhead
of the whole monitoring system only to a number of Monitoring Agents. A Monitoring
Agent which is running alongside the application in a container instance collects indi-
vidual metrics and aggregates the measured values in order to be sent to the Monitoring

Server.
4.3 Monitoring Server

The Monitoring Server represents a component which receives measured metrics from

the Monitoring Agents, whether container-level or application-level Monitoring Agents.

43

Figure 4.4

Each container includes a
container-level Monitoring
Agent.

44

4 Method and Architecture S. Taherizadeh

This monitoring system is capable of storing measured values in the Apache Cassandra
server as TSDB. It takes almost one minute to run the Monitoring Server. The Mon-
itoring Server should be running on a machine with enough memory, disk and CPU
resources. This machine should address the Cassandra hardware requirements. To this
end, the minimal requirements could be at least 2-core CPU with minimum 8/16 GB of
RAM and 60 GB of storage.

When a container instance is instantiated, the container-level Monitoring Agent will
automatically send the Monitoring Server a message in order to register itself as a new
metric stream, and afterwards it will start collecting monitoring metrics (e.g. CPU and
memory usage of the container) and continuously forward the measured values to the

Monitoring Server.
4.4 Time Series Database (TSDB)

In this thesis, Cassandra which is a free, open-source, column-oriented, NoSQL database
system is used to store the time series data. Cassandra database is designed to store and
handle large amount of data.

It has its own query language called the Cassandra Query Language (CQL). CQL
which is an alternative to the traditional Structured Query Language (SQL) can be con-
sidered as a simple interface in order to access Cassandra. CQL adds an abstraction layer
to hide implementation details and provides native syntaxes for collections and other
common encodings. Language drivers are available for Java (JDBC), Python (DBAPI2),
Node.JS (Helenus), Go (GOCQL) and C++.

4.5 Web-based Interactive Development Environment (IDE)

A Web-based IDE is used to set primitive thresholds which are needed for adaptation
policies. This component allows for all external entities to access the monitoring infor-
mation stored in Time Series Database in a unified way, via pre-prepared REST-based
APIs. It therefore represents an intermediate layer between information consumers and
information provider, and prevents security issues if APIs were accessed via external en-
tities.

Since the Web-based IDE shows runtime monitoring information, it is also a key tool
used by software engineers to analyse events in a dynamically changing cloud environ-

ment.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 45

4.6 Knowledge Base (KB) Engine and RDF-based KB

The Knowledge Base Engine component is in charge of all operations that control the
collection of various values (e.g. auto-scaling rules, characteristics of virtualisation plat-
forms, features of hosts, primitive thresholds, their unit, their data type, their range,
periodic application QoS, etc.) as RDF triples, along with actually storing and also re-
trieving these data on disk. The Knowledge Base Engine component continuously stores
information about the execution environment in a Knowledge Base (KB) which may be
used for interoperability, analysing, integration and optimisation purposes. Maintain-
ing such a KB allows analysis of long-term trends, supports capacity planning and en-
ables for a variety of strategic analysis for example year-over-year comparisons and usage
trends. The Knowledge Base is also aimed ataddressing information integration require-
ments of stakeholders, such as cloud-based service providers, allowing for flexible data
movement and seamless information management solution.

The Knowledge Base Engine component is implemented by using a Jena Fuseki [127]
server to load an RDF dataset and make it accessible via a REST API as a SPARQL
endpoint, in order to expose the CRUD operations for Creating, Retrieving, Updating
and Deleting RDF records. Jena Fuseki is an open-source, lightweight database server
which is easy to be installed, and it is capable of efficiently storing large numbers of RDF
triples on disk [128].

A key characteristic of the Knowledge Base design is the notion of interchangeability.
In order to ensure interchangeability, it is necessary that the interaction between infor-
mation objects be sufficiently well-defined so as to permit the creation of an interme-
diary interoperability layer by which concepts can be translated from one information
context to another without forcing rigid adherence to a specific technology stack. This

is desirable for a number of reasons:

w [nteroperability future-proofs the proposed DM method against changes in technol-
ogy—arguably an inevitability in the volatile cloud computing domain. Individ-
ual components defined in the proposed architecture for adaptive containerised
applications can be implemented differently from before without having to re-

design the whole system.

40 4 Method and Architecture

S. Taherizadeh

» [nteroperability permits the existence of alternative implementations of components

defined in the proposed architecture—for example, two different versions of the

Self-Adapter component might use different internal algorithms.

» [nteroperability allows components defined in the proposed architecture to be taken

out and reused in other, new contexts—hence increasing the payoff of develop-

ment.

Therefore, there needs to be a set of minimal formal specifications for information

objects used within the proposed auto-scaling method in this thesis. In other words,

an abstract formal description of concepts is required with which these formal specifi-

cations can be associated. To this end, an ontology has to be defined in this thesis to

unambiguously and formally specify the relevant notions of the proposed DM auto-

scaling method. The following tables shows all classes and their own properties to be

created in this ontology defined in the Knowledge Base.

A Service Cluster is a set of container instances providing a specific service to reply

to the end-users’ requests. Each Service Cluster offers an individual service. The Ser-

vice Cluster class along with its own properties defined in the ontology is presented in

Tab. 4.1.

Table 4.1

Service Cluster class

Property Name

Range (Type)

Rationale

Cluster_id

Cluster_Name

Cluster_Owner

Cluster_SLA

Cluster_PortNumber

Cluster_Metric

Cluster_Container

unsignedInt
string
User_id
SLA.id
unsignedInt

MonitoringMetric_id

Container_id

This property allows a unique number to be generated when a new individual
as a Service Cluster instance is inserted into the Knowledge Base.

This property implies the Service Cluster’s name. It is usually defined as the
service name.

This property implies the Service Cluster’s owner who offers cloud-based
application providing the service to the end-users.

Each Service Cluster has its own SLA (service level agreement) consisting

of such as “End Time”, “Start Time”, etc.

A port serves as an endpoint in an operating system for many types of
communications to provide multiplexing and identify services or processes.
Monitoring system at application level focuses on collecting data related to
the application execution. Each metric has some properties such as id, name,
data type (percentage, KBps, MBps, etc.), minimum, maximum, collecting
period, and so on.

Each Service Cluster includes one or more Container Instances providing the

service to reply to the end-users’ requests.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 47

A Container Instance performs a specific task to run a service. Each Service Cluster
includes one or more Container Instances providing the service to reply to the end-users’
requests. The Container Instance class along with its own properties defined in the on-

tology is presented in Tab. 4.2.

Table 4.2

Container Instance class

Property Name Range (Type) Rationale

Container_id unsignedInt This property allows a unique number to be generated when a new
individual as a Container Instance is inserted into the Knowledge Base.

Container_Image Image_id Each Container Instance is instantiated based on a Container Image
stored on a local repository or Docker hub.

Container_PortNumber unsignedInt The service provided by the Container Instance uses a set of ports
which need to be exposed.

Container_CPUProportion decimal Each Container Instance located on a host machine achieves a
proportion of CPU cycles (assigned relative weight).

Container_MemoryLimit decimal Each Container Instance located on a host machine has its own limit
at the use of memory.

Container_Host Host_id Each instantiated Container Instance is located on a Host Machine.

Container_Cluster Cluster_id Each Container Instance belongs to a Service Cluster to reply to the

end-users’ requests.

A Container Image consists of a pre-configured files and software. The purpose of a
Container Image is to simplify delivery and operation of a containerised application in-
stance. The Container Image class along with its own properties defined in the ontology
is presented in Tab. 4.3.

A Host Machine is a system that not only exhibits the behaviour of a separate com-
puter, but is also capable of performing tasks such as running container instances. The
Host Machine class along with its own properties defined in the ontology is presented
in Tab. 4.4.

A Monitoring Agent is a metric collector utilised to gather raw metrics and gener-
ate time-stamped monitoring events. It is installed in each Container Instance in the
initial deployment. Monitoring Agents run in the background, therefore there is no in-
terfering with the service’ execution. The Monitoring Agent class along with its own

properties defined in the ontology is presented in Tab. 4.s.

48 4 Method and Architecture

Table 4.3

Container Image class

S. Taherizadeh

Property Name Range (Type) ~ Rationale
Image_id unsignedInt This property allows a unique number to be generated when a new
individual as a Container Image is inserted into the Knowledge Base.
Image_Name string Each Container Image stored in a local repository or Docker hub
has its own name.
Image_Description string This property is used to display the description about Container Image.
Image_Title string Title is a short and keywords-relevant description of Container Image.
Image_Version string During the cloud-based application lifecycle, Container Images may

Image_GenerationTime dateTime

be upgraded several times.

This property specifies when a particular Container Image was

generated.
Image_FileFormat string This property is used to define the file format of Container Image.
Image_IRI anyURI Container Images need to be properly indexed. The semantic model
will contain information about the geographic location, the URI
(Uniform Resource Identifier), and other details for the search facility.
Image_Owner string This property implies the owner of Container Image that can be for
example the application developer and the service provider.
Image_Functionality string This property implies Functionality which is provided by the service
included in Container Image.
Table 4.4
Host Machine class
Property Name Range (Type) Rationale
Host_id unsignedInt This property allows a unique number to be generated when a new individual
as a Host Machine instance is inserted into the Knowledge Base.
Host_Container Container_id Each Host Machine performs one or more Container Instances at the same time.
All Container Instances running on a Host Machine provide different services.
Host_SLA SLA_id Each Host Machine has its own Service Level Agreement (SLA) consisting of
such as “End Time”, “Start Time” and so on.
Host_NetworkAdapter ~ string Each Host Machine has its own network adapter to transmit and receive data
such as etho.
Host_NetworkSpeed unsignedInt This property shows how much bandwidth is assigned to the Host Machine.
Host IP string Each Host Machine has its own IP address to use the Internet Protocol for
communication.
Host_SubnetMask string Each Host Machine has its own Subnet address in the network area.
Host_DefaultGateway string Default gateway is the node that is assumed to know how to forward packets

Host_OperatingSystem
Host_VirtualStorage
Host_CPUCount
Host_CPUClockRate

Host_MemorySize

OperatingSystem _id
decimal
unsignedInt

decimal

decimal

on to other networks.

Each Host Machine has an Operating System (OS).

Each Host Machine has its own virtual storage with a particular storage size.
This property implies the number of processors which Host Machine has.
This property implies the "Hertz” which is the measure of frequency in cycles
per second.

This is a parameter to define the size of an individual Host Machine’s memory.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Table 4.5

Monitoring Agent class

Property Name Range (Type) Rationale

MonitoringAgent_id unsignedInt This property allows a unique number to be generated when a new individual
as a Monitoring Agent instance is inserted into the knowledge base.

MonitoringAgent_Container Container_id Each Container Instance includes a Monitoring Agent. This property implies
the Container Instance to which the Monitoring Agent belongs.

MonitoringAgent_Logging boolean When this property is set to true, the Monitoring Agent will log abnormal
behaviours.

MonitoringAgent_ServerIP string Monitoring Agent uses this value defined in this property to determine the IP
address of the Monitoring Server to which metrics will be distributed.

MonitoringAgent_DistributorPort unsignedInt This is a port which the Monitoring Agent uses to distribute metrics to
Monitoring Server. It should be the same as the MonitoringServer_BindPort
defined for the Monitoring Server instance.

MonitoringAgent_Metric MonitoringMetric.id ~ Each Monitoring Agent measures different Monitoring Metrics which have

some properties such as metric name, metric unit, minimum value, maximum

value, etc.

A Monitoring Server receives measured value of Monitoring Metrics sent from Mon-

itoring Agents and also it stores such values in the TSDB database. The Monitoring

Server class along with its own properties defined in the ontology is presented in Tab. 4.6.

Table 4.6

Monitoring Server class

Property Name Range (Type) ~ Rationale

MonitoringServer_id unsignedInt This property allows a unique number to be generated when a new individual as
a Monitoring Server instance is inserted into the Knowledge Base.

MonitoringServer_IP string This property implies the Monitoring Server’s IP.

MonitoringServer_Logging boolean When this property is set to true, the Monitoring Server will log abnormal
behaviours.

MonitoringServer_BindIP string The network interface to which the Monitoring Server’s Lister will bind. The
default value is set to “*” indicating that it will bind
to all network interfaces. If it must be changed then it is suggested to use the etho interface.

MonitoringServer_BindPort unsignedInt The port which Monitoring Server will bind to and listen for metric messages
distributed by Monitoring Agents. This property should be the same as the
MonitoringAgent_DistributorPort of each underlying Monitoring Agent.

MonitoringServer_ DBHost string The IP address of the TSDB database backend. Default value defined for this
property is localhost.

MonitoringServer_DBUser string The username for the TSDB database utilisation.

MonitoringServer_DBPass string The password for the TSDB database utilisation.

MonitoringServer_DB string The name of the TSDB database which will be used.

MonitoringServer_HeartPeriod ~ unsignedInt The intensity in which the Monitoring Server HeartBeat should check for
Monitoring Agent’s availability.

MonitoringServer_HeartRetry ~ unsignedInt ~ The number of iterations that the Monitoring Server HeartBeat will allow

a Monitoring Agent to be DOWN until it is declared as DEAD.

49

4 Method and Architecture S. Taherizadeh

Monitoring Metrics are measured at different layers of the underlying cloud infras-
tructure, as well as possible performance parameters from deployed services. The Mon-
itoring Metric class along with its own properties defined in the ontology is presented

in Tab. 4.7.

Table 4.7

Monitoring Metric class

Property Name Range (Type) Rationale

MonitoringMetric_id unsignedInt This property allows a unique number to be generated when a new individual
as a Monitoring Metric instance is inserted into the Knowledge Base.

MonitoringMetric Name string This property implies the name of Monitoring Metric.

MonitoringMetric_Description string This is a longer, freestyle textual description of the Monitoring Metric.

MonitoringMetric_Group string For example, all metrics such as memTotal, memFree, memUsed and

memUsedPerecent are belonging to a group named "Memory”.
MonitoringMetric_Level unsignedInt Important Monitoring Metrics can be monitored in Iaa$ and in SaaS

scenarios which are respectively infrastructure-level and application-level.

MonitoringMetric_Unit string Monitoring Metric’s unit could be percentage (%), KBps, MBps, Bps,
Yes/No and so on.

MonitoringMetric_DataType string Monitoring Metric’s data type could be integer, double, etc.

MonitoringMetric_CollectingInterval unsignedInt The collecting period is an important parameter for the time-critical

environment. It means monitoring frequency, the interval between each

measurement for the metric.

MonitoringMetric_History unsignedInt How many days the monitoring system keeps the collected data.

MonitoringMetric_UperLimit decimal This property implies the maximum value of the metric that could be
observed.

MonitoringMetric_LowerLimit decimal This property implies the minimum value of the metric that could be
observed.

MonitoringMetric_Threshold decimal This property implies the threshold value of the metric that should be

continuously checked.

MonitoringMetric_Agent MonitoringAgent_id ~ Each Monitoring Metric instance is measured by a Monitoring Agent.

Dynamically specifying Auto-scaling Rules provides for fine-grained reaction to work-
load fluctuations, and thus it can improve application performance and a higher level of
resource utilisation. The Auto-scaling Rule class along with its own properties defined
in the ontology is presented in Tab. 4.8.

The Alarm-trigger component is able to alert if any threshold associated with a Mon-
itoring Metric is violated. The Alarm Notification class along with its own properties

defined in the ontology is presented in Tab. 4.9.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Table 4.8

Auto-scaling Rule class

Property Name Range (Type) ~ Rationale
Rule_id unsignedInt This property allows a unique number to be generated when a new individual as
an Auto-scaling Rule is inserted into the Knowledge Base.
Rule_Date datélime This property specifies the date when a particular Auto-scaling Rule is generated.
Rule_Time dateTime This property specifies the time when a particular Auto-scaling Rule is generated.
Rule_ThroughputTo decimal This property implies the value of application throughput in the current interval.
Rule_ThroughputTr decimal This property implies the value of application throughput in the previous interval.
Rule_ThroughputT2 decimal This property implies the value of application throughput in the second last interval.
Rule_Responsélime decimal This property implies the current value of response time provided.
Rule_CPU decimal This property implies the current value of average CPU utilisation of the whole cluster
Rule_Memory decimal This property implies the current value of average memory utilisation of the whole cluster
Rule_ClusterSize unsignedInt This property implies the current value of cluster size which is the current number of
container instances in the cluster.
Rule_Action Integer This property implies the adaptation action which is the number of container instances to
be instantiated or terminated.
Table 4.9
Alarm Notification class
Property Name Range (Type) Rationale
Notification_id unsignedInt This property allows a unique number to be generated when a new individual as
an Alarm Notification is inserted into the Knowledge Base.
Notification_Date dateTime This property specifies the date when a particular Alarm Notification is generated.
Notification_Time dateTime This property specifies the time when a particular Alarm Notification is generated.

Notification_Metric

Notification_Cluster

Notification_Value

Notification_Type

MonitoringMetric_id

Cluster_id

decimal

string

Each Alarm Notification belongs to a specific Monitoring Metric which has some
properties such as metric name, metric unit, minimum value, maximum value, etc.
Each Alarm Notification belongs to a specific Service Cluster.

This property implies the current value of the metric which violates the
Monitoring Metric’s threshold.

This property implies the message type of Alarm Notification that can be

“warning” or “critical”.

4.7 Alarm-Trigger

The Alarm-Trigger component is a rule-based entity which continuously checks the

incoming monitoring data and notifies the Self-Adapter component when the system

is going to experience abnormal situation. The Alarm-Trigger component constantly

processes two functions. A function named Investigating for Container Instantiation

({FCT) is defined in the Alarm-Trigger component to check if it is required to launch

new container instances. Furthermore, another function named Investigating for Con-

tainer Termination (/FCT') is defined in the Alarm-Trigger component in order to eval-

I

52 4 Method and Architecture S. Taherizadeh

uate if one of the running containers can be stopped without any application perfor-
mance deterioration.

A significant application-level metric which is adopted in the operation of the Alarm-
Trigger component is the service response time. In this regard, the threshold for the
service response time (77es) should be set. In order to make the system prevent any
performance degradation, the value of T’.cs needs to be set more than the usual time
period to perform a single job without any problem when the system is not overloaded.
In the case that T-¢ is set very close to the value of the usual time to process a single job,
the auto-scaling method may lead to unnecessary changes in the number of running
containers in the cluster, whereas the system is currently capable of providing end-users
asuitable performance without any threat. Moreover, if T’ s is set too much bigger than
the value of the usual time to perform a single job, the auto-scaling approach may be less
sensitive to application performance and more dependent on infrastructure usage.

In many cloud resource management systems [129-134], the primitive thresholds for
the CPU and memory utilisation (7¢py, and Trnem) are set to the value of 80%. If the
value of these two primitive thresholds is set closer to 100%, therefore the auto-scaling
method has no chance to timely react to runtime changes in the workload density before
a performance degradation arises. If the value of these two primitive thresholds used by
the Alarm-Trigger is set less than 80%, then this may cause an over-provisioning issue
which wastes costly resources. In the execution environment, if the workload trend is
very even and predictable, these two primitive thresholds for the utilisation of CPU and
memory can be pushed higher than 80%.

According to /FCI shown in Fig. 4.5, if one of the average CPU or memory utilisation
of the cluster (AvgCpu or AvgMem) surpasses the associated threshold (Tepu of Trnem,
80%) and the average response time (4vgRT") is more than T5.cs, the Self-Adapter will

be notified since the number of container instances in the cluster should increase on

demand.
Alarm-trigger
AvgCpu>=T
AvgMem>=T, o, OR
Figure 4.5 - AND H- ‘ Notifying the Self-Adapter
Upscaling principle defined AVGRT>Tres
in the Alarm-Trigger.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 53

Involving the average response time in /FFC7 shown in Fig. 4.6 tends to prevent 20%
(100-Tepu 0r 100-Tmem) resources waste. In other words, there is the possibility that
the system may work at even 100% resource utilisation without instantiating more new
containers. This is because the average response time is appropriately satisfying. Or in
essence, the average response time is below T'res. In IFCI, cpu_usage_of-container and
memory_usage_of _container which are numbered from 1 to N are the CPU and memory
utilisation of each individual container instance in the cluster. As an illustration, ¢pz._-
usage_of_containerr is the CPU utilisation of the first container instance, ¢pu_usage_of--
containerz is the CPU utilisation of the second container instance, and so on. AVG_-
Cluster is the grouping operator employed to calculate the average CPU and memory

utilisation of the cluster that are nominated as AvgCpu and AvgMem respectively.

Inputs:

Tepy: Threshold for the average CPU usage of the cluster

Tinem: Threshold for the average memory usage of the cluster

Tyes: Threshold for the average response time

Outputs:

If it is needed to notify the Self-Adapter in order to prevent under-provisioning
Cluster = [Containerz, ..., ContainerN]
AvgCpu=AVG_Cluster(cpu_usage_of_containerz,...,cpu_usage_of_containerN);
AvgMem=AVG_Cluster(memory_usage_of_containeri,..., memory_usage_of_containerN);
if (((AvgCpu>=T,p,,) or (AvgMem>=Ty,.p,)) and (AvgRT>T,.5)) then

call Containerinitiation(); /| call Cl() to start new containers

Figure 4.6

IFCI defined in Alarm-
Trigger.

IFCT (shown in Fig. 4.7) has been defined to investigate the feasibility of decreasing
the number of running containers in the cluster, without any QoS degradation per-
ceived by end-users. In order to enhance the stability of the system and to ensure that
the system provides an appropriate service quality to users, it is presumed that if a con-
tainer instance is launched and added to the cluster, any container termination should
not occur during the next two adaptation intervals, even if the average CPU or memory
usage of the cluster is quite low.

In some situations, the workload density instantly drops down only for a short pe-
riod of time; whereas after that, the number of requests will increase again very soon. In
such workload scenarios, avoiding any change in the cluster size (number of container

instances running in the service cluster) is beneficial to reach a greater level of opera-

54 4 Method and Architecture S. Taherizadeh

Inputs:
Tpu: Threshold for the average CPU usage of the cluster
Tmem: Threshold for the average memory usage of the cluster
Outputs:
If it is needed to notify the Self-Adapter in order to prevent over-provisioning
Cluster = [Containerz,..., ContainerN]
AvgCpu=AVG_Cluster(cpu_usage_of_containers,...,cpu_usage_of_containerN);
AvgMem=AVG_Cluster(memory_usage_of_containers,..., memory_usage_of_containerN);
) if ((AvgCpu<T,py,) or (AvgMem<T,,.,)) and (no container addition in the last 2 intervals)) then
Fzgure 47 call ContainerTermination(); /| call CT() to stop one of containers if possible

IFCT defined in Alarm-
Trigger.

tional environment’s stability. Therefore, the auto-scaling method should wait at least
one adaptation interval after any container instantiation to make sure there is not a short
drop in the workload. This time interval after any container instantiation is called wait-
ing period shown in Fig. 4.8.

After waiting period, in order to consider any possible container termination, the
auto-scaling method observes the status of execution environment during one whole
adaptation interval without any container instantiation. This time interval is called ob-

serving period shown in Fig. 4.8.

Any container
instantiation occurs
Any possible container
termination can occur

One adaptation interval One adaptation interval One adaptation interval

L | J
I |

Figure 4.8 [| [Time
s \)
- . ! T
Waiting penod and observ- Time period taken to
ing period considered by start up a container Waiting period Observing period
Alarm-Trigger. it N

Therefore, any possible container termination may happen if there is no container in-
stantiation during the last two intervals (the waiting period and the observing period),

as demonstrated in Fig. 4.7.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

The Alarm-Trigger component is capable of fetching a YAML file including all the
inputs mentioned in two functions called /FCI and /FCT. This YAML file is exposed by
the Web-based IDE via a prepared API. Instructions for the usage of the implemented
Alarm-Trigger component are described at GitHub [135] published under the Apache 2

license.

4.8 Self-Adapter

When predefined conditions are met (e.g. thresholds are violated), the Self-Adapter
component is called by the Alarm-Trigger component. Widely used static rule-based
auto-scaling approaches are adopted in the current production systems which mainly
employ fixed, single-level rules. In contrast to such approaches, the proposed DM auto-
scaling method uses both container-level metrics (e.g. CPU, memory, etc.) as well as
application-level metrics (e.g. response time and application throughput) which can
dynamically influence the adjustable auto-scaling rules. In other words, in our pro-
posed DM auto-scaling method, conditions when container instances are instantiated
or stopped are dynamic and are not predefined since it strongly depends on many factors

at runtime as shown in Fig. 4.9.

Container-level metrics

AvgCpu: Current average CPU usage of the cluster
AvgMem: Current average memory usage of the cluster

Application-level metrics
AvgRT: Current average response time of the cluster
AT,: Application throughput in the current interval per container
AT, ;: Application throughput in the last interval per container

\ppll F r) Launching or
AT, ,: Application throughput in the second last interval per container

Self—Adapter terminating

Current cluster size containers

cont: Current number of running container instances in the cluster

Primitive thresholds
Tres: Threshold for the average response time
Tepu: Threshold for the average CPU usage of the cluster
Timem: Threshold for the average memory usage of the cluster

The Self-Adapter includes two functions which are in charge of proposing adaptation
actions. One function called Container Instantiation (CI) is to initiate new containers
to enhance the performance of the application. The principle of CI function defined in

the Self-Adapter is shown in Fig. 4.10.

55

Figure 4.9
Inputs of the Self-Adapter

COmPOHth.

56 4 Method and Architecture S. Taherizadeh

>

Figure 4.10 P
Choose number of inc Self-Adapter Satisfy primitive
Upscaling principle defined containers to be added 1, 2, 3[7 CI function — thresholds
in the Self-Adapter.
As shown in Fig. 4.10, according to a set of infrastructure-level and application-level
metrics, the proposed C7 function chooses the minimum number of containers to be
added to the cluster in order to satisfy primitive thresholds. The pseudocode of the C/
function, defined in the Self-Adapter, is illustrated in Fig. 4.11.
Inputs:
Tepu: Threshold for the average CPU usage of the cluster
Timem: Threshold for the average memory usage of the cluster
AvgCpu: Current average CPU usage of the cluster
AvgMem: Current average memory usage of the cluster
AT Application throughput in the current interval per container
AT:..: Application throughput in the last interval per container
AT...: Application throughput in the second last interval per container
cont: Current number of running container instances in the cluster
Outputs:
Launching new container instance(s)
inc1 < o;
if (AvgCpu>T,,,,) then {
do{
inci++;
Popo ContXAngpuX[(ZX‘A‘;I.Z_‘:1+§:£:;)/3]);
cont+incl
}while (Ppu>Tepy);
1// end of if
inc2 «—o;
if (AvgMem>T,,0mm) then {
do{
inc2++;
contxAvgMemx[(2x-art_4ATt=1) 3]
Prmem cant+i::2t_1 A);
Y while (Pmem>Tmem);
1// end of if
Fl;gixﬂ”e 4.11 inc «<— max(incza, inc2);

initiate_new_containers(inc); // start ‘inc’ new container(s)
CT defined in Self-Adapter.

When CI function is called, it starts predicting the average CPU and memory utilisa-
tion of the cluster with respect to “current number of container instances in the cluster,”
“current average resource usage of the cluster,” and “the amount of increase in the rate

of throughput” if one or more new container would be launched and added to the clus-

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 57

ter. Based on these two predicted values (Pepy and Prem) for the average CPU and
memory utilisation of the cluster, the number of new container instances which need to
be added to the cluster is determined.

CI tunction (shown in Fig. 4.11) defined in the Self-Adapter component needs to esti-
mate the increasing rate of throughput in the next interval. In this regard, three possible

formulas can be used, as Formula (A), Formula (B) and Formula (C).

Formula (A) < AI;ZE -)

Formula (B) [(2 X A‘;ZEI %) + 3]

Formula (C) [(3 X A?jil +2x ﬁ;::; gg—z:;) =+ 6]

In order to estimate the increasing rate of throughput in the next interval, Formula

(A) considers only the rate of throughput in the current interval; whereas Formula (B)

takes into consideration notonly the rate of throughputin the currentinterval < A‘%?t -) ,

. . . ATy _ .
but also the rate of throughput in the previous interval (ATZ ;) However, in order

to estimate the increasing rate of throughput in the next interval, the importance of
throughput rate in the current interval is more than the importance of throughput rate
in the previous interval. This is because time intervals are consecutive, and the through-
put in the next interval probably would be closer to the throughput in the last interval
than the throughput in the second last interval. Consequently, the weight assigned to
the throughput rate in the current interval has been set to 2 which is more than the
weight assigned to the throughput rate in the previous interval. Along the same line,

Formula (C) takes into account also the throughput rate achieved before the previous

. AT, _
interval (Loto2) .

ATy 3
In order to choose the best formula to be used by the Self-Adapter to estimate the

increasing rate of throughput in the next interval, we analysed a set of experiments per-
formed based on the experimental setup which is explained in Chapter Results. To this
end, a drastic increase (from 100 requests to soo requests) in the workload density was
examined. Fig. 4.12 shows the number of new container instances allocated by three dif-

ferent auto-scaling methods using Formula (A), Formula (B) and Formula (C).

58

Figure 4.12

Number of new containers
allocated by three different
auto-scaling methods

in response to a drastic
increase in the workload.

Figure 4.13

Response time provided by
three different auto-scaling
methods in response to

a drastic increase in the
workload.

4 Method and Architecture S. Taherizadeh

: I T T T I T 800
7 F 1; _
ormula (A) T 500
6 - Formula (B) =—— :
1
g Formula (C) —— X | 400 "
£ 5 @
[: g ;
g 1 gl
S 4 ' 300 £
e} 1 =
3 1 P |
8 ! I,
E ; 200 5,
z : 3!
2+ 1
1
S - 100
1
: 1 | | | | | [S
0 20 40 60 80 100 120 140

Time (second)

Fig. 4.13 shows the response time provided by three different auto-scaling methods
using Formula (A), Formula (B) and Formula (C).

T T T T I T e
w0 /E
e m mmimm - mm == mem = = —e - - 500
Formula (A) —— :
_. 150 |— I
%) Formula (B) =—— 1 — 400
£ : z,
@ Formula (C) ——— i Q
: : g !
2 i —J300 £ i
3 100 |- ' s
[=4 1 o |
g : -
2 ; £
& f —200 S5 |
i b=
50 |- !
| sememions sim mns wish — 100
B 1 | 1 ! | | L g
0 20 40 60 80 100 120 140

Time (second)

When the workload density suddenly began to increase, the auto-scaling method
which exploits Formula (A) allocated more container instances than other two meth-
ods. However, both auto-scaling methods using Formula (A) and Formula (B) offer
almost the same response time, while allocating different number of new container in-

stances. Therefore, if the Self-Adapter which uses Formula (A) takes into account only

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 59

the rate of throughput in the current interval, the number of new instantiated contain-
ers will be more than what is needed when the system encounters a drastic increase in
the workload density. In order to prevent such resource waste, the Self-Adapter com-
ponent should consider not only the rate of throughput in the current interval, but
also the rate of throughput in the previous interval, as described in Formula (B). More-
over, the Self-Adapter which employs Formula (C) allocated less number of containers
in comparison with other two approaches. Hence, the response time provided by this
auto-scaling method using Formula (C) was inappropriately affected by the drastic in-
crease in the workload. This is because considering the throughput rate observed before
the previous interval can reduce the agility of the proposed auto-scaling method in or-
der to recognise the drastic increase which appears in the workload. As a consequence,
Formula (B) as the best option was used in C7 function defined in the Self-Adapter to
estimate the increasing rate of throughput in the next interval, demonstrated in Fig. 4.11.

If more than one container is required to be instantiated, the Self-Adapter compo-
nent runs all needed container instances concurrently. Accordingly, the adaptation in-
terval, which is the minimum period when the next adaptation event occurs, has to be
specified longer than the start-up time of a container instance. In such manner, if any
auto-scaling action happens, the whole system can continue operating properly without
losing control over containers running in the cluster.

Another function called Container Termination (CT) is responsible for possibly ter-
minating unnecessary containers to prevent resource over-provisioning. Here we de-
scribe how the termination of non-required container instances for a CPU-intensive ap-
plication takes place. Let us assume that the cluster size or the number of container
instances in the cluster is two. If the average CPU usage of the cluster which consists

Tepu

of these two running container instances is less than) — @, one of these two
containers should be stopped. In this formula, the constant cv can have a value between
0% and 10%, that helps the proposed DM auto-scaling method conservatively make sure
that the container termination will not cause an unstable situation.

Experimenting with equal computational requirements and workload density, an up
to 10% variation in the average CPU and memory utilisation of the cluster (.4vgCpx and
AvgMem) can still be seen. This difference is the effect of runtime variations in running
conditions that are out of the application providers’ control. With respect to this ratio-

nale, the maximum value for «v can be set to the value of 10%.

60

Figure 4.14

Avoiding frequent changes
in the cluster size due to
minor fluctuations in the
workload density.

4 Method and Architecture S. Taherizadeh

It should be noted that a value of c can closer to 0% may be unsuccessful in providing
the essential robustness of auto-scaling methodology. Since due to minor variations in

T, . .
the average CPU usage of around (o), the system may terminate a container at

that moment, and afterwards shortly would launch a new one again. A value o closer
to 10% may reduce the efficiency of the proposed adaptation method because, in such
a case, redundant containers have less possibility of being terminated from the cluster
in general. Therefore, a higher value of & would possibly cause longer periods of over-
provisioned resources. For the experimentation in this thesis, the value of o has been
set to 5%, which results in neither unnecessary over-provisioning of resources, nor too
frequent changes in the number of running container instances.

In order to achieve a stable operational environment while increasing the resource
utilisation, o used by the Self-Adapter componentisaimed atavoiding frequent changes
in the cluster size due to minor fluctuations in the workload density. Fig. 4.14 shows how
this constant tries to sustain the number of running containers providing the service at
the same level when fluctuations in the varied number of requests are not severe at run-
time. During the time period highlighted in blue, the constant @ provides the expected
robustness of auto-scaling method while there exists a trembling workload which does
not change drastically. Afterwards, when the workload density drops more, a running
container instance is terminated to improve the resource utilisation without any appli-

cation performance degradation.

Average CPU or mem
utilisation

Tepu or mem

Minor fluctuations in the
workload density

(cont — 1) X Tepy or mem
cont

‘ Container
termination occurs

Time

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 61

Consequently, assume that two container instances are running in the cluster, if the
average CPU utilisation of the cluster is less than (%) -5=35 percent, it is possible to ter-
minate one of the running container instances. The reason is that with the current work-
load density after stopping the container, the average CPU usage of the cluster would be
atmost 70%, which isless than Tt at 80%. Along the same line, given thatif three con-
tainer instances are running in the cluster and the average CPU utilisation of the cluster
is under (%) — @, one of the container instances could be terminated, since
in this manner there would not be any degradation in the QoS of the application.

Generally, it was assumed if the current number of container instances running in the
cluster is cont, and the average CPU usage of the cluster is below Bep specified by Eq.
(4.1), it is possible to stop one of the container instances running in the cluster without
compromising the application performance. Besides that, for a memory-bound service,
Bmem, which is thoroughly similar to Bcpw, allows to determine the possibility of re-
ducing the number of running containers in the cluster if required upon the memory

utilisation, as Eq. (4.2).

/Bt:;ﬂu = ((Cont — 1) a TCPU) -« (4-1)

cont

/Bmem = ((Cont — 1) - Tmem) -« <4-2)

cont

Therefore, the threshold (Bepw or Bmem) to terminate one of the running container
instances in the cluster dynamically depends on different parameters at runtime: the
primitive thresholds for the utilisation of CPU and memory (7¢py, and Them), the con-
stant v and the current number of running containers in the cluster (cont), as shown in
Fig. 4.15.

Fig. 4.16 presents the pseudocode of the CT function, proposed to be defined in the
Self-Adapter component, called by the Alarm-Trigger. Based on the average CPU and
memory utilisation of the cluster and other inputs such as Tt.pw, Timem, cont and o can,
this function specifies if it is needed to reduce the number of running container instances

in the cluster.

02

Figure 4.15

Downscaling principle
defined in the Self-Adapter.

Figure 4.16

CT defined in Self-
Adapter.

4 Method and Architecture S. Taherizadeh

Tcpx: Of Trem =80 —— I I I |
]u: 5% to conservatively
make sure that the
- container termination will
not result in an unstable
situation - it causes neither
too frequent changes in the
number of running
— container instances, nor
excessive over-provisioning
of resources.

Dynamic threshold

70 80 90 100

Cluster size

Inputs:

AvgCpu: Current average CPU usage of the cluster

AvgMem: Current average memory usage of the cluster

T,pu: Threshold for the average CPU usage of the cluster

Tymem: Threshold for the average memory usage of the cluster
cont: Current number of running container instances in the cluster
a: Conservative constant to avoid an unstable situation

Outputs:

Terminating an unnecessary container instance if it is possible

deci<«o;

Bepy + Calculate(Typy, cont, a);

if (AvgCpu<fcpy) then dec1 «— 1;

dec2 «o;

Bmem «— Calculate(Ty,em, cont, a);

if (AvgMem<fBem) then dec2 « 1;

dec « min(decz, dec2);

if (dec==1) then terminate_one_container(); // Stop one container

The proposed auto-scaling method ensures the QoS of the application by stopping at
most one container instance in each adaptation interval. In such a manner, after any ter-
mination of a container, the CT function assuredly provides acceptable service responses
within continuously changing, uncertain environments at runtime. For example, this
auto-scaling strategy can be adopted to handle on-oft workload patterns in which peak
spikes appear periodically in short time intervals. An instance of an on-off workload

pattern is depicted in Fig. 4.17.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Workload density

In such workload patterns, shown in Fig. 4.17, stopping most of the container in-
stances running in the cluster at once when the number of requests instantly drops down
alotisnota suitable adaptation action. This is because more containers running into the
pool of resources will be required very soon. This non-conservative strategy may cause
too many container terminations and instantiations with the consequent QoS degrada-
tion. It means that the shutdown and start-up times of container instances need to be

taken into consideration during these types of on/oft workload patterns.
4.9 Using the DM method as a third party tool

In order to use the proposed DM auto-scaling method as a third party tool, the following
subsections should be followed, respectively.

Using the Monitoring Server, TSDB and web-based IDE: The developed monitoring
system is freely accessible to both researchers and commercial companies on GitHub [41]
under an Apache 2 license. A container image which can be easily instantiated has been
already built to include three different entities: (i) Monitoring Server, (ii) TSDB and
(iii) the web-based IDE. This container image is open-source and publically released on
Docker Hub [81]. It takes almost one minute to run the Monitoring Server. The Mon-
itoring Server should be running on a machine with enough memory, disk and CPU re-
sources. This machine should address the Cassandra hardware requirements explained

in the following page:

https://wiki.apache.org/cassandra/CassandralHardware

03

Figure 4.17

An example for on-off
workload pattern.

04

4 Method and Architecture S. Taherizadeh

Using the Monitoring Agent: According to the proposed auto-scaling architecture
for adaptive container-based applications, each container consists of two entities: (i) an
application instance and (ii) a Monitoring Agent. The Monitoring Agent is the actual
component which collects individual metrics’ values. The development of the Moni-
toring Agent can follow three different approaches. Some applications such as Apache
Tomcat application server provide APIs for obtaining metrics value. In this situation,
the Monitoring Agent internally queries this APT and retrieves the values. On the other
hand, some applications such as Jena Fuseki provide only access to log files. The Moni-
toring Agent therefore needs to parse the log file and obtain the metric values. For the
applications that provide neither API nor log file, the application’s source code needs to
be modified in order to implement the Monitoring Agent.

To make the Monitoring Agent, the StatsD protocol is used in this work. Therefore,
Monitoring Agents have to be implemented through StatsD protocol available for many
programming languages such as C/C++ and Python. There are too many examples on

the Web to make a StatsD client:
github.com/etsy/statsd/wiki#client-implementations

Using the Alarm-Trigger: Instructions for the use of the developed Alarm-Trigger
component are explained at GitHub [135] published under the Apache 2 license. In or-
der to use the proposed Alarm-Trigger, a container which has been already built needs
to be simply instantiated. The Alarm-Trigger container image is open-source and pub-
lically released on Docker Hub [136]. It should be noted that before running the con-
tainerised Alarm-Trigger, two APIs should be prepared and accessible. The first API
should expose a YAML file which determines the inputs such as metrics to be checked,
their thresholds, their ranges of value, their checking periods, and so on. At the begin-
ning, the Alarm-Trigger component will fetch this input and then start working. The
template for the YAML file can be seen here:

github.com/salmant/ASAP/blob/master/SWITCH-Alarm-Trigger

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 65

Using the Self-Adapter: It should be noted that host machines allocated by the Self-
Adapter to run containers should include the Docker engine on which the Docker’s
Remote API needs to be enabled. The implementation of the proposed Self-Adapter
component is kept publically available at GitHub [137] published under the Apache 2

license:

github.com/salmant/ASAP/blob/master/SWITCH-Self-Adapter

Results

68

5 Results S. Taherizadeh

In this chapter, our proposed method called the Dynamic Multi-level (DM) auto-scaling
mechanism is compared experimentally with seven other rule-based provisioning ap-
proaches. Similar to our method, all investigated methods are also rule-based and are
currently considered as advanced auto-scaling approaches which are used in production
systems. The results are presented with respect to various experiments which are de-
signed and performed as a set of proof-of-concept implementations. The experiments
will then be analysed using different statistical methods and tools. To this end, we eval-
uate the results with regards to different workload scenarios in order to check the appli-
cation performance provided by our proposed auto-scaling method and the amount of

resources allocated during the experiments.
5.1 Experimental design

The hrtperf [138] tool has been employed in order to build aload generator which is able
to produce different workload patterns for various analyses in our empirical evaluation.
In this regard, five various workload scenarios have been inspected, as shown in Fig. s.1.

Each workload scenario investigated in this thesis implies various type of applications.
A slowly rising/falling workload scenario may represent incoming traffic sent to an e-
learning system in which daytime involves more task requests than at night. A drastically
changing scenario may imply a heavy workload to be accomplished by a broadcasting
news channel in which some news or a video rapidly spreads in the social media envi-
ronment. This type of application commonly has a short active period, after which the
provided service can be offered at the lowest service level. Systems such as batch process-
ing systems process workload patterns similar to the on-off workload scenario in which
task requests tend to be accumulated around batch runs regularly over short periods of
time. A gently shaking workload scenario shows predictable execution environments
such as household settings that enable application providers to define detailed require-
ments, and hence assign the accurate amount of resources to the system.

In this thesis, our proposed DM auto-scaling method has been compared with differ-
ent rule-based provisioning approaches described in Section 3.2. These policies consist
of HPA (Horizontal Pod Auto-scaling), TTS1 (1 method of Target Tracking Scaling),
TTS2 (2" method of Target Tracking Scaling), SS1 (1" method of Step Scaling), SS2
(2" method of Step Scaling), THRES: (1 method of THRESHOLD), and THRES>
(" method of THRESHOLD). The implementation of all these seven auto-scaling

approaches as well as experimental data are kept publically available at our GitHub ac-

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Empirical evaluation

v

Workload __Slowly_ Drastlc_ally O Gen_tly Faalworld
patterns | rising/falling changing shaking
h 4
I
Auto-scaling |5 | | W |W| = || o)
methods OI%%%%,’Z}Z
=
Y

Independently repeating each experiment five times to reach a greater validity of results

v

Significant properties

The 95th percentile
of the response time
The median
response time
Average number of
containers
Average CPU usage
Average memory
usage

Response
time

‘A Requests

Number of
containers

Time (seconds) Time (seconds)

count [137]. Although, we did not implement Multiple Policies (MP) approach, as this
provisioning method is not revealed clearly in terms of technical feasibility by the Google
Cloud Platform.

Each experiment was repeated for five iterations to achieve the average values of im-
portant properties and to verify the obtained results and thus to have a greater validity
of results. Accordingly, the results reported in this thesis are mean values over five runs
for each experiment.

In every experiment, the results are analysed to ensure that examined auto-scaling
methods are able to meet the core objectives from the perspective of application perfor-

mance requirements (e.g. response time), while optimising the resource allocation in

69

Figure 5.1

Experiment design to
compare the new DM
method to existing auto-
scaling methods.

70

Figure 5.2

Number of containers
allocated by three different
auto-scaling methods using
15-second adaptation inter-
val, 30-second adaptation
interval and 6o-second
adaptation interval.

5 Results S. Taherizadeh

terms of the number of container instances. In this context, each auto-scaling approach
is investigated primarily according to the 9 5 percentile of the response time, the median

response time, average number of containers, and average CPU and memory usage.

5.2 Experimental setup

A set of experiments was performed to evaluate the choices of mentioned parameters
(adaptation interval, T’.cs and), and the sensitivity of the DM auto-scaling method to
changes in the value of these parameters was analysed as follows:

Adaptation interval: The adaptation interval is the minimum duration between two
successive adaptation actions. The adaptation interval should be defined longer than
the time period taken to start up a container instance. This is because the auto-scaling
method needs to make adaptation decisions when the system is quite stable. Our prac-
tical experiments indicate that the period of time taken to start up a container instance
used in this thesis is around six seconds.

In order to choose the best time period for the adaptation interval to be used by the
Self-Adapter, we performed a set of experiments according to three different time length:
15 seconds, 30 seconds and 6o seconds. To this end, a workload scenario has been in-
spected that includes a slowly rising workload, an off workload, a drastically increasing
workload and a slowly falling workload, respectively by passage of time. Fig. 5.2 shows
the number of new container instances allocated by three different auto-scaling meth-
ods using 15-second adaptation interval, 30-second adaptation interval and 6o-second

adaptation interval.

4 : : 700
i 600
N
s
P N
RS 500
w 1 Y
] ' .
£ LN 2,
g : b Y — 400 % :
o s g
5 : 2
5) . 300 B
a ' b 2.
E . % -
= X — 200 2
i
.
- - 100
G | | | | | :
0 50 100 150 200 250 300

Time (second)

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Fig. 5.2 demonstrates that the auto-scaling approach using 15-second adaptation in-
terval is the fastest method since it was able to allocated a new container instance sooner
than other methods in response to slowly rising workload from 100 to 6oo requests.
It also terminated the container added to the cluster when the workload density sud-
denly decreases in the off period. However, this adaptation action is not appropriate
since there is the upcoming drastically increasing workload from 100 to suddenly 6oo
requests. That is why the response time provided by this method was slow in such a

situation, shown in Fig. 5.3.

500 700

| T
15-sec ‘ , — 600
’, ‘\\
400 30 sec ,' '] \\
VA .

% 60-sec / : ' \\\ =1 500

E / o . @,
- @
2 300 o/ : ! . Jao §1
= .7 ' ! AN g:
3 i) ! ' . P :
5 200 R ' ' ~, — 300 o
2 - P N : J &
g = T N g
K ¥ E —200 ="'
. 1
100 =" L
B i g
-. - — 100
o 1 | | | | o
0 50 100 150 200 250 300

Time (second)

Fig. 5.3 shows that the slowest response time oftered by the auto-scaling approach us-
ing 6o-second adaptation interval since it was not agile enough to recognise runtime
changes in the workload density over time. However, this method employed more con-
tainer instances (1.86) during the experiment compared with auto-scaling approaches
using 15-second adaptation interval (1.52) and 30-second adaptation interval (1.62). The
auto-scaling approach using 30-second adaptation interval was the method which pro-
vided the fastest response time almost steady over time (186.2 ms) on average in compar-
ison with auto-scaling approaches using 15-second adaptation interval (194.28 ms) and
30-second adaptation interval (229.56 ms). Therefore in the experiments, the adaptation
interval, which means the time period between two possible consecutive adaptation ac-
tions (increasing or reducing the cluster size), was specified as 30 seconds to ensure that
there would be no issue if any auto-scaling event takes place. While the monitoring inter-
val may be defined as very short in milliseconds, it was also set to 30 seconds to decrease

the communication traffic load and any monitoring overhead for the measurements.

71

Figure 5.3

Response time provided by
three different auto-scaling
methods using 15-second
adaptation interval, 30-
second adaptation interval
and 6o-second adaptation
interval.

72

Figure 5.4

Number of containers
allocated by three different
auto-scaling methods using
180 ms, 190 ms and 250 ms

for Thres.-

5 Results S. Taherizadeh

Threshold for the service response time (Ircs): A finite element analysis application
that is useful to solve mathematical physics and engineering problems has been devel-
oped and containerised to be employed in this thesis as a use case [139] for which the
response time perceived by the end-users is important. To this end, a polynomial finite
element method which has some computations is requested by the load generator. In
our use case, a single task request normally takes 180 ms with our used experimental
setup in conditions where the system is not overloaded. According to the explanation
of the Alarm-Trigger component presented in Section 4.7 about how to determine the
threshold for the service response time (7res), we performed a set of experiments ac-
cording to three different value: 180 ms, 190 ms and 250 ms. To this end, a slowly rising
workload scenario for which the value defined for T s is very significant has been inves-
tigated. During the experiment, the number of arrival requests smoothly rises from 100
to 600 task requests. Fig. 5.4 shows the number of new container instances allocated by

three different auto-scaling methods using 180 ms, 190 ms and 250 ms for T-cs.

700

I I
35
180 ms
A 190 ms
£
a 5
_% 25 |= 250 ms 2
= 5o
S g
o s - T
kS 2
3 - B
g 1.5 |- ’/,’ g :
=z ’,f’ g 1
1 2
s b — 100
o ! L 1 | L | [
0 20 40 60 80 100 120 140

Time (second)

Fig. 5.5 presents the response time offered by three different auto-scaling methods us-
ing 180 ms, 190 ms and 250 ms for 1.

The response time provided by auto-scaling methods using 180 ms and 190 ms for
T'es was nearly steady and identical. The average response time achieved by these two
approaches was 184.5 ms and 184.88 ms, respectively. However, the auto-scaling method

using 180 ms allocated more container instances on average (1.89) in comparison with

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

500 700

T T
—{ 600
400 |- 180ms L7
190 ms —— 5 500
N 250 ms Ve ’ 3
£ .
= 300 |- A @
9 g
c i - ey
2 200 |- e 300°°6 §
7] [}
j) | T 2
x P =]
i —200 3
100 - -7
’ — 100
0 I 1 L L ! ! L 1o
0 20 40 60 80 100 120 140
Time (second)

the approach using 180 ms (1.28) during the experiment. This is because the auto-scaling
method using 180 ms (value next to the ordinary duration taken to accomplish a single
task) was the first approach which reacted to the increasing workload. This method takes
into account only infrastructure-level metrics without considering the service response.
Therefore, the decision about adaptation actions depends mostly on how infrastructure-
level metrics are changing over time—in which case the resources may be wasted, and
hence the utilisation of allocated resources would be low.

In contrast, the auto-scaling method using 250 ms (much greater value than the ordi-
nary time taken to perform one request) provided the slowest response time on average
(250.52 ms). This is because this auto-scaling approach was the last method among all
examined approaches reacted to the increasing workload. This method considers only
the service response without paying attention to infrastructure-level metrics. As a con-
sequence, the auto-scaling method using 250 ms for T allocated inadequate number
of containers (1.17) during the experiment, and hence the application suffered from low
performance.

Therefore, for the DM method in this thesis, in order to prevent application per-
formance degradation, the service response time threshold (77.cs) has been set to 190
ms that is neither very close to the value of usual time to execute a single job (180 ms)
nor much bigger than this value. Consequently, the proposed DM auto-scaling method
will be responsive to variations in not only infrastructure utilisation, but also service re-
sponse time because T7.¢s is not much bigger than the usual time to accomplish a single

task request.

73

Figure 5.5

Response time provided by
three different auto-scaling
methods using 180 ms, 190
ms and 250 ms for The s.

74

5 Results S. Taherizadeh

Here we discuss how the threshold (7-¢s) for this metric should be set in general.
In order to make the system avoid any performance drop, the value of T} should be
set more than the usual time to process a single job without any issue when the system
is not overloaded. In the case that T.¢s is set very close to the value of the usual time
to process a single job, the auto-scaling method may lead to unnecessary changes in the
number of running container instances, whereas the system is currently able to provide
users an appropriate performance without any threat. Moreover, if Tr-¢s is set too much
bigger than the value of the usual time to process a single job, the auto-scaling method
will be less sensitive to application performance and more dependent on infrastructure
utilisation.

It should be noted that if we deal with an execution environment in which the usual
time to process a single job when the system is not overloaded is large, and the workload
trend is even and predictable, the auto-scaling method has more chance to timely react to
runtime changes in the workload density before a performance degradation occurs. In
contrast, if the usual service time is too small, and the workload trend is occasional and
unpredictable, the auto-scaling method may fail to provide the expected service quality
for a while till the application performance will be improved.

One of main contributions of this thesis is proposing a new auto-scaling method
which uses not only infrastructure, but also application-level monitoring data. There-
fore, the cloud-based service provider needs to develop a Monitoring Agent able to mea-
sure the service time at runtime. If this duration taken to provide the service is not
known, the auto-scaling method will be exclusively based on only infrastructure-level
metrics. Such a case is similar to the auto-scaling method which uses a threshold for the
service response time (77-¢s) close to the usual duration taken to execute a single request
that may lead to an over-provisioning problem which wastes costly resources.

Conservative constant to avoid an unstable situation (o): In the downscaling principle
defined in the Self-Adapter, « is a constant which helps the auto-scaling method con-
servatively prevent too frequent changes in the number of running containers due to
minor fluctuations in the workload density. According to the explanation of the Self-
Adapter component presented in Subsection 4.8 about how to define the value for the
conservative constant (o) in order to avoid an unstable operational environment, we
performed a set of experiments according to three different alpha: « =0, a =sand a =
10. To this end, a workload scenario has been examined that includes trembling number

of requests at the beginning. Fig. 5.6 shows the number of container instances allocated

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

at runtime by three different auto-scaling methods using o = 0, & = s and o = 10. More-

over, Fig. 5.7 depicts the response time offered by three different auto-scaling methods

using & = o, = sand a = 10.

Number of containers

Response time (ms)

Fig. 5.6 showed that the value of a = o failed to provide the expected robustness of
auto-scaling method. Since due to minor fluctuations in the workload, this auto-scaling

approach stopped a container instance, and afterwards shortly started a new one again.

¢ T T T
35 a=0—
Auto-scaling method using a =0 g=5— |
3 [—frequently changes the cluster size due s
to minor fluctuations in the workload ¢]
25 -
2
A
15 "
I~ Semm———— i cannot terminate the unnecessary
container instance timely —
0.5 |-
0 | | | | | |
0 50 100 150 200 250 300
Time (second)
250 T T I T
=0 —
a=5—_|
200 — =10 —
150 [~
.,V- - X
‘ \
. ; '\ —
A & 3
.
100 | s--C 5
50 -
0 | L | | | |
0 50 100 150 200 250 300

Time (second)

600

500

400

300

200

600

500

300

200

100

Number of requests

Number of requests

75

Figure 5.6

Number of containers
allocated by three different
auto-scaling methods using
a=o0,a=5and a =10.

Figure 5.7

Response time provided by
three different auto-scaling
methods using & = 0, a =

sand o = 10.

76

5 Results S. Taherizadeh

This fact, for a while, negatively affected the response time offered by the auto-scaling
methods using o = o, shown in Fig. 5.7. A value of o = 10 decreased the efficiency of the
auto-scaling method because, in this case, the unnecessary container instance was not
eliminated from the cluster at the right time. Consequently, a higher value of a would
result in longer periods of over-provisioned resources. Therefore, the constant o used
by the Self-Adapter component is set to the value of 5 which is able to prevent not only
too frequent changes in the number of running containers due to minor fluctuations in
the workload density, but also too much over-provisioning of resources.

Because the workload scenarios examined in our experiments are considered neither
predictable nor even, the thresholds 7% and Trem are set to 80%. Therefore, the DM
auto-scaling method has enough chance to react to runtime fluctuations in the workload
since these thresholds are not very close to 100%. Moreover, this fact prevents an over-
provisioning issue because these thresholds are not less than 80%.

Tab. 5.1 shows the summary of parameters and their values mentioned above used in
our experiments.

Tab. 5.2 shows the characteristics of all machines applied in our experiments. All these
machines belong to the Academic and Research Network of Slovenia (ARNES) which
is a non-profit cloud infrastructure provider. In our experiments, all host machines allo-
cated to the cluster which provides the finite element analysis application have the same
hardware characteristics. In addition to the machines assigned to the Load-Balancer and

Monitoring Server, twelve hosts have been used in the cluster during the experiments.

Table .1

Parameters and their values applied in our experiments

Parameters Description Value
Tepu Threshold for the average CPU usage of the cluster 80%
Trem Threshold for the average memory usage of the cluster ~ 80%

Tres Threshold for the average response time 190 ms

«a Conservative constant to avoid an unstable situation 5
Monitoring Time period between two observations of metrics 30 seconds
interval

Adaptation Time period between two possible successive adapta- 30 seconds
interval tion events (increasing or decreasing the number of

container instances in a cluster)

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Table s.2

Characteristics of infrastructures applied in our experiments

Feature Load-Balancer ~ Monitoring Server ~ Hosts in the cluster
(ON Ubuntui4.04 Ubuntu 14.04 Ubuntu 14.04
CPU(s) 4 2 4

CPUMHz 2397 2397 3100

Memory 16384 MB 4096 MB 4096 MB

Speed 1000 Mbps 1000 Mbps 1000 Mbps

5.3 Significant performance properties

When it comes to service response time guarantees, distinguishing the difference be-
p 8 g g

tween auto-scaling methods in capability of offering response time under various work-

load scenarios is considered informative. In this regard, as shown in Tab. 5.3, the pro-

posed DM auto-scaling method was compared with all other seven approaches using

paired Student’s t-tests with respect to all response time values over the experimental

period for each workload scenario (n=14s).

Table 5.3

P-values obtained by comparison of the DM method with other seven auto-scaling methods using paired t-tests with respect to all
response time values over the experimental period for each workload pattern

Workload scenario HPA THRES: THRES2 SSt SS2 TTS: TTS2

Slowly rising/falling ~ 0.18800 0.14650 0.75633 0.00568 0.00033 0.00118 0.00009
Drastically changing ~ 0.00055 ~ 0.00000 0.00000 0.00385 0.00000 0.00000 0.00000
On-off 0.00000 0.00191 0.00115 0.00000 0.00000 0.00000 0.00000
Gently shaking 0.00032 0.I5528 0.00004 0.00051 0.63366 0.00000 0.00000
Real-world 0.00014 0.00718 0.00001 0.00000 0.00005 0.00424 0.00000

The 95™ percentile value of response time, listed in Tab. 5.4, is an appropriate indi-
cator of the auto-scaling methods’ capability for delivering Quality of Service according
to a Service Level Agreement (SLA). Moreover, the median response time obtained by
all auto-scaling methods in every workload scenario is presented in Tab. s.5.

Tab. 5.6, Tab. 5.7, Tab. 5.8, Tab. 5.9 and Tab. 5.10 show the resource utilisation achieved
by all examined auto-scaling methods for each workload scenario with respect to average

number of container instances as well as average CPU and memory usage. In these tables,

77

78 s Results
Table 5.4

S. Taherizadeh

The 95 percentile of the response time achieved by all investigated auto-scaling methods in every workload pattern

Workload scenario HPA THRES: THRES2 SSi SS2 TTS: TTS2 DM
Slowly rising/falling 213.07 202.40 208.21 364.70 372.90 365.20 398.90 207.40
Drastically changing ~ 652.82 659.90 619.20 852.06 1623.14 1609.22 1270.98 410.28
On-off 47175 386.00 387.90 68370 493.60 §50.40 566.50 232.60
Gently shaking 201.83 196.04 195.89 194.80 195.00 268.69 240.47 194.85
Real-world 204.64 208.84 214.26 202.94 233.64 215.66 260.2 197.32
Table 5.5

The median response time achieved by all investigated auto-scaling methods in every workload pattern
Workload scenario HPA THRESt THRES2 SSi SS2 TTSt TTS2 DM
Slowly rising/falling ~ 190.6 189.6 188.7 190.7 192.9 189.6 1921 191.2
Drastically changing 185.6 193.0 199.1 190.5 197.9 199.4 20LO 190.1
On-off 199.6 1913 195.5 194.5 200.7 209.7 2IL4 190.5
Gently shaking 189.9 186.1 188.7 187.9 184.9 196.1 196.7 185.3
Real-world 193.4 192.0 194.4 1953 193.9 195.3 197.4 192.3

the column named resource utilisation function equals to the average number of con-

tainers multiplied by the o5™ percentile of the response time provided by auto-scaling

approaches for each workload scenario. In order to appropriately enhance the resource

utilisation of an auto-scaling method while providing acceptable service response time,

the value of this function needs to be reduced as much as feasible.

Tab. 5.6, which is explained in Section 5.4, shows the average number of container

instances as well as average CPU and memory usage of the new DM method compared

with seven other auto-scaling approaches for the slowly rising/falling workload pattern.

Tab. 5.7, which is explained in Section 5.5, shows the average number of container

instances as well as average CPU and memory usage of the new DM method compared

with seven other auto-scaling approaches for the drastically changing workload pattern.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 79

Table 5.6

Comparing the new DM method with existing auto-scaling methods with respect to resource utilisation for the slowly ris-
ing/falling workload pattern

Method Average number Average Average Resource
of containers CPUusage memory usage utilisation function
DM 3.47 64.36 3155 719.68
HPA 3.25 65.48 31.60 692.48
THRES: 3.65 62.24 3150 738.76
THRES2 3.52 64.84 31.64 732.90
SS1 436 55.85 3157 1590.09
SS2 3.84 61.86 3173 1431.94
TTS: 3.12 71.85 31.56 1139.42
TTS2 3.32 70.78 3158 1324.35
Table 5.7

Comparing the new DM method with existing auto-scaling methods with respect to resource utilisation for the drastically chang-
ing workload pattern

Method Average number Average Average Resource
of containers CPUusage memory usage utilisation function

DM 3.71 41.07 31.69 1522.14
HPA 2.50 50.77 31.68 1632.05
THRES: 3.31 40.72 31.58 2184.27
THRES2 3.31 40.92 3L.SI 2049.55
S8t 3.53 4154 31.43 3007.77
SS2 2.47 45.22 31.68 40009.15
TTSt 2.68 45.69 31.63 4312.71

TTS2 2.68 45.84 3171 3406.23

80 5 Results S. Taherizadeh

Tab. 5.8, which is explained in Section 5.6, shows the average number of container
instances as well as average CPU and memory usage of the new DM method compared

with seven other auto-scaling approaches for the on-off workload pattern.

Table 5.8
Comparing the new DM method with existing auto-scaling methods with respect to resource utilisation for the on-off workload
pattern
Average number Average Average Resource
Method 8) § § o)
of containers CPUusage memory usage utilisation function
DM 3.58 53.49 31.40 832.71
HPA 2.77 66.90 31.50 1306.75
THRES: 3.39 57.25 3L.55 1308.54
THRES2 3.40 58.27 3174 1318.86
SS1 3.23 5150 31.61 2208.35
SSa 2.71 58.53 3172 1337.66
TTS: 2.33 64.90 31.69 1282.43
TTS2 2.33 64.65 31.70 1319.94

Tab. 5.9, which is explained in Section 5.7, shows the average number of container
instances as well as average CPU and memory usage of the new DM method compared

with seven other auto-scaling approaches for the gently shaking workload pattern.

Table 5.9

Comparing the new DM method with existing auto-scaling methods with respect to resource utilisation for the gently shaking
workload pattern

Method Average number Average Average Resource
of containers CPUusage memory usage utilisation function

DM 4.00 66.67 3175 779.40
HPA 3.78 70.46 31.80 762.92
THRES: 4.00 66.94 31.58 784.16
THRES2 3.68 72.10 31.61 720.87
SS1 4.25 64.31 31.49 827.90
SS2 4.00 67.74 31.76 780.00
TTSt 3.41 79.25 31.62 916.23

TTS2 3.38 78.95 31.63 812.79

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Tab. s5.10, which is explained in Section 5.8, shows the average number of container
instances as well as average CPU and memory usage of the new DM method compared

with seven other auto-scaling approaches for the real-world workload pattern.

Table .10

Comparing the new DM method with existing auto-scaling methods with respect to resource utilisation for the real-world work-
load pattern

Method Average number Average Average Resource
of containers CPUusage memory usage utilisation function

DM 10.15 72.38 31.59 2002.80
HPA 9.20 75.81 3155 1882.69
THRES: 9.86 71.02 31.61 2059.16
THRES2 9.98 70.32 3156 2138.31
SS1 10.16 73.15 31.60 2061.87
SS2 9.38 74.23 31.59 2191.54
TTS: 7.27 79.09 31.60 1567.85
TTS2 7.64 75.44 31.62 1987.92

5.4 Slowly rising/falling workload scenario

In this pattern as depicted in Fig. 5.8, the workload consists of two steps. During the first
step of the workload pattern, the number of arrival requests smoothly rises from 100 to
1500 task requests per six seconds. Later on, in the second step, workload density drops
down slowly from 1500 to 100 requests. Fig. 5.8 demonstrates that the number of con-
tainer instances increases during the first step of the workload pattern, and it decreases
during the second step with respect to the number of incoming requests over time by all
eight auto-scaling methods.

For the slowly rising/falling workload pattern, the paired t-tests comparing DM with
HPA, THRES: and THRES2 show no statistically significant difference with p ¢ o.o1.
While all provisioning methods are capable of providing acceptable performance on av-
erage, the service response time provided by TTSrand TTSz2, SSrand SS2, is occasionally
low in comparison with DM, THRES1, THRES2 and HPA. Reason for this is that the
adaptation interval adopted in TT'S1, TTS2, SS1and SS2 is one minute versus 30 seconds
employed in DM, THRES:, THRES2 and HPA. Therefore, the service response time

may be unsuitable for a while in some situations if the adaptation interval is not short

81

82 5 Results S. Taherizadeh
enough, as depicted in Fig. 5.9. This fact caused relatively weaker application perfor-
mance provided by TTS1, TTS2, SS1 and §S2 compared with DM, THRES:, THRES:2

. h .
and HPA in terms of the 95™ percentile values.
" p— | T T T
HPA
7 1400
THRES 1|
¢ [l—— THRES2 1260
o [—— ssq @
g |l— ss2 g,
ER S 1000 2,
- R TT5] ol
=
o L}
S 4 1152 800 ‘5.
Y v Lt
I ’ @
@ 3 600 E*
£ =N
= =
= Ll
= 19 400
Figure 5.8
1] 200
Dynamically changing . 3
number Of container I I I I I I I I
instances in rCSPOnSC to L g
a slowly rising/falling] 160 2080 380 400 508 6O@ 700 86O
workload pattern. Time (second)
500 . . T . . T = 1660
P HPA 1400
N THRES]
. ——— THRESZ 1200
- — 551 £,
A Ly
= .| — SS2 1000 2.,
£ —— TSy e
v i TTs2H 800 =4
g -
c e o]
o3 2l 600 2
s . 2
& ; Ve '
- R T
. 100 - ,’ ;e
Figure 5.9 K ‘| 200
Average response time of | | | | | | | |
the application in response @]
100 200 386 400 500 660 700 80O

to a slowly rising/falling C
workload pattern.

Time (second)
The length of the adaptation interval, whether one minute or 30 seconds, adopted
by auto-scaling approaches influences the overall performance of the application. For

instance when time was 90 s and before the CPU run queue started filling up (96%),

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 83

the DM method decided to launch one new container instance due to the increase in
the workload density. Thus, the service response time provided by the DM method
was not inappropriately influenced by the increase in the workload. If we consider the
SSr auto-scaling method, in the situation when time was 120 s and after the system was
overloaded as a result of the growing workload, SS1added four new container instances
to the cluster. Although, at this time the CPU utilisation was already at almost 100%, and
thus the slow response time was offered by SS1 for a while. Currently, the service cluster
contains five containers. This cluster size (five container instances) is more than what is
required to process the current workload. Consequently, this decision was reverted after
a while when time was 240 s, and two container instances were stopped.

In this workload scenario, DM, THRES1, THRES:2 and HPA allocated almost the
same number of containers and hade nearly the same level of average resource utilisa-
tion in terms of CPU and memory usage. The SSradaptation approach employed more
container instances (4.36) compared to all other auto-scaling methods.

Furthermore, it can be simply concluded that the finite element analysis application is
not a memory-intensive service, as the average memory utilisation was nearly steady dur-
ing the whole conducted experiments, and the same for all auto-scaling methods—almost

31% of the entire memory.
5.5 Drastically changing workload scenario

In this scenario, a drastic increase appears in the workload intensity. During this exper-
iment, depicted in Fig. 5.10, the number of incoming requests rises suddenly from 100
to 1500, and after a while it instantly drops down back to 100 task requests again. For
this workload scenario, the paired t-tests indicated that there is a statistically significant
difference between the DM method and all other auto-scaling approaches. Fig. 5.10 illus-
trates that the proposed DM method suitably recognised the sudden fluctuation in the
workload density and then attempted to timely launch enough new containers at the be-
ginning of sudden workload surge faster than other provisioning mechanisms. Hence,
for this examined workload scenario, our proposed DM method is the only mechanism
capable of providing relatively acceptable application QoS in terms of the 95 percentile
of the response time distribution.

Afterwards, when the workload density suddenly drops down again to 100 task re-
quests per six seconds, all auto-scaling methods, except SS1 and HPA, do not stop un-

necessary containers running in the service cluster at once, and hence the number of

84 5 Results S. Taherizadeh

container instances slightly declines in consecutive intervals. The DM method was the
auto-scaling mechanism which provisioned more containers than other adaptation ap-

proaches. During this experiment, the average number of container instances allocated

by the DM method was 3.71.
s— T T T I [
VRPN T T L
Tl THRes1 <1
L}
~——— THRESZ
6| ' 1200
o C[— s p
L) - “w
S e 1000 2,
S |f——Trs1 g,
g il
g 1752 800 ‘£
Y Ll
: ji
a 3 660 E°
£ = !
=1 Ll
e 400
Figure s.10 .
1 4 200
Dynamically changing
number of container | | | | |
instances in response to o L
a drastically changing e 168 200 300 400 500
workload pattern. Time (second)

Fig. 5.1 displays that the service response time offered by the proposed DM method,

compared to other approaches, is less inappropriately affected by the drastic change in

the workload.
I 1600
OH] 1400
HPA
THRESY _| 1000
= - THRES2) 2
£ e
” 551 — 1600 2,
2 552 3.
= i
* 1151 — 880 %,
@
@ T2 Lt
2 — o0 2
w 2
& a,
| 400
Figure .11
g 5 — 200
Average response timeof pF=== . -ss-e----------
the application in response 1 2]
500

to a drastically changing
workload pattern. Time (second)

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

Once more, the amount of average memory utilisation was almost steady (31% of the
whole memory capacity), and the same for all auto-scaling methods during the entire
conducted experiment in this workload pattern, considered as additional confirmation
of a slowly rising/falling workload pattern’ result, indicating that the conducted service

(finite element analysis application) is not a memory-intensive benchmark.
5.6 On-off workload scenario

During this conducted experiment, the on-oft workload scenario includes three active
periods. The active periods consist of, respectively, 1500, 1200, and 700 task requests per
six seconds (shown in Fig. 5.12). Inactive periods between peak spikes are 30 seconds. In
the on-oft workload scenario, the paired t-tests implied a statistically significant differ-
ence in the means of response time metric provided by all auto-scaling methods. The
only method capable of timely provisioning an adequate number of containers to ad-
dress peak spikes is DM. This is because the proposed DM method is more agile than
other auto-scaling mechanisms in order to instantiate required containers at the com-
mencement of sudden workload surges, and also this method does not terminate most
of the container instances immediately when each peak spike disappears. Therefore, the
DM method allocated more containers on average (3.58) than other auto-scaling mech-

anisms in the on-off workload scenario.

—_— oM
7 HP 1408
—_— TH%{ESL

THRESZ|

—{ 1200

1000

500

600

Number of containers
Number of requests

400

200

i
1

(] 100 200 3e0 400 5600 6ee
Time (second)

85

Figure .12

Dynamically changing
number of container
instances in response to an
on-off workload pattern.

86

Figure 5.13

Average response time of
the application in response
to an on-off workload
pattern.

5 Results S. Taherizadeh

The benefit of using 30-second adaptation interval instead of 1-minute adaptation
interval can be recognised in Fig. 5.12. At the commencement of the first active period,
DM and SS1 made similar decision to launch new container instances because of the sud-
den increase in the workload density. The DM method allocated three extra container
instances starting from time=90 s whereas SS1 assigned four new container instances
when the system is already overloaded at time=120 s, that means 30 seconds later than
time=90 s. In such situation, the core competency of DM compared with SSt lies in its
agility to timely adapt the service performance to the unexpected increase in the work-
load density. Therefore in this workload pattern, the difference between DM and SS1
in terms of service response time can be taken into consideration enormous. That is
why the worst response times offered by DM and SS1 during the first active period were
225.04 ms versus 558.88 ms, respectively.

In the on-off workload scenario, the median and the 95 percentile of the response
time achieved by DM in this examined experiment were 191.2 ms and 232.60 ms, respec-
tively, that can be considered acceptable with respect to end-users’ satisfaction. Whereas
sudden active periods inappropriately result in an increase in the service time of the task
requests for the other seven auto-scaling approaches, as depicted in Fig. 5.13. Compared
to DM, the 95 percentile values of the response time provided by all other provisioning

approaches are very slow that can be considered unsuitable.

p— o
300 1400
T | | | I el
700 THRESY | oo
THRES2
600 551
s ssa 1000
-
£ see 1751 a
£ TTS2H 800 2
=1 | bl |
+~ 400 L I 1 : :.
5 \
2 v 600
2 300 : 3!
g { / 2\ ; 5.
280 \ V7 i) S ' 400 = |
1
100 \ = 200
L}
8 | L | | ! .
] 100 200 300 400 500 600

Time (second)

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

During this conducted experiment, the average memory utilisation was found to be
constant (31%) for all auto-scaling mechanisms, and it did not change significantly while

having sudden fluctuations in the number of requests over time.
5.7 Gently shaking workload scenario

In this experiment, the pattern is a trembling workload which does not vary drastically.
As depicted in Fig. 5.14, it frequently changes between 700 and 1000 task requests to
be accomplished by the application. Fig. 5.14 implies that if the workload density does
not vary drastically, there would be neither increment nor decrement in the number of
running container instances for DM, SS2 and THRES:. This is why, for this workload
scenario, the paired t-tests comparing DM with SS2 and THRES1 indicated that we can-
not reject the zero hypothesis (p>o.o1). Or in other words, the DM method behaves
the same way as the SS2 and THRES: methods. Moreover, the number of container

instances did not change to a great extent by other auto-scaling methods namely SSi,

THRES2, HPA, TTS1, and TTSa.

.) S S S T T B R T e
= ~ . . — 1000
(' i " W i ¥
i e . L4 . » o e
" b i
g 4 e 808 §:
{1+]
AN —_F N R
G 3 600 |
o HPA L
) 2,
8 ,[[=—— mHresY Lo 8"
3 THRESZ =
— 551
| C— 552 — 260
_ TT51
5 L - S I N (N NN SR NN N PN

2] 56 1ee 150 280 250 300 350 460 450

Time (second)

The SS1approach allocated more containers on average (4.25) than other auto-scaling
methods, whereas the average service response time offered by all adaptation mecha-

nisms was almost consistent and identical for this workload pattern, shown in Fig. 5.15.

&

Figure 5.14

Dynamically changing
number of container
instances in response to a
gently shaking workload
pattern.

88 s Results

300

250

1200

loee

— - o ————e . - w
i 290 o— P ——— {800
3 — g
e ’ g
- — —1]
E BaE o 600 « |
£ HPA o
2 THRES1 £
PR L] = —{ 400 5,
= = THRESZ] L]
. — 531
Flgurc‘ 3-15 50 = 552 — 200
. — TTS]
Average I'CSPOHSC time . TTe2
of the application in) i P] | 1 1 |]] °

response to a gently shaking

(2 50

100

150

200 250 360 350 400 450

S. Taherizadeh

workload pattern.

Time (second)

As a result, allocating more container instances by the SS1 auto-scaling method in
this workload pattern inappropriately caused resource under-utilisation, in terms of less
average CPU resource utilisation. The average CPU usage was reported 64.31% in com-
parison with what was obtained by other auto-scaling approaches. Although, all auto-

scaling methods has almost the same level of memory usage (31%) in this experiment.
5.8 Real-world workload scenario

Besides the previous workload scenarios, in order to validate the applicability of our
proposed DM auto-scaling method against real-world situations, FIFA World Cup 98
workload dataset [140] was applied in this thesis. This workload trace has been widely
adopted in various auto-scaling research works [87, 141-145] so far. For our experiment,
a 20-minute trace (shown in Fig. 5.16) on the ' of July 1998 starting at 20:30:00 was
used. The number of arrival requests is varied between 2112 and 2858 during this time
period that demonstrates a large variance (750) in the workload over time.

In order to adapt the application QoS to the varying workload density and provide a
favourable performance, the number of running containers provisioned by auto-scaling
approaches changes at runtime. DM and SSr1 allocated the same amount of resources
in terms of containers on average for the real-world workload scenario. For both DM
and SSi, the average number of container instances was equal to 10.1. Other approaches

assigned fewer containers compared with the DM and SS1 methods in this experiment.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications &9

3000
A 2500
) A"
Z
o 2000 ,
= w
s | 2
S 1500 &
e b HPA 5
3 —— THRES]] L
£ -H 1000 2
5 4 ——— THRES2 T
- E
551 .
Figure 5.16
2 = — 5524 500
—_— TT51 Dynamically changing
| | | | | 1752 number of container
e e instances in response to
6 208 400 660 868 1000 a real-world workload
Time (second) pattern.

Fig. 5s.17 presents the average service response time offered by all eight auto-scaling

methods during this real-world workload scenario.

300 3000
250 2560
g 208 2600 >
I
@ W
:
+ 150 |- 1568 g
b
T
g i
o 168 |- 1000 @
< €
=
=2
50 |- 500 Figure s.17
| | | Average response time of
e 8 the application in response
C 260 400 660 to a real-world workload

Time (second) pattern.

In the real-world workload scenario, the service response time provided by the pro-
posed DM method was not inappropriately influenced by the workload fluctuations,
since it was thoroughly constant in comparison with what was oftered by other mecha-
nisms. It means that there is no big difference between the 95 percentile of the response
time distribution (197.32 ms) and the median response time (192.3 ms) achieved by the
DM method.

90

5 Results S. Taherizadeh

Analogous to the result obtained in previous workload scenarios, the experiment in
this workload pattern also re-indicates that the memory resource usage of the cluster
does not have any effect on the finite element analysis application’s performance in spite
of the changing number of arrival task requests during execution. This is because the
average memory usage was 31% for all auto-scaling mechanisms at runtime. This fact
fortunately allows the cloud-based application provider to accomplish efficient memory

allocation allocated for running containers in advance.
5.9 Summary of results

As already explained, the resource utilisation function is defined as the average number
of containers multiplied by the 95 percentile of the response time. For every auto-
scaling mechanisms, all values of this function obtained in each workload scenario were
summed together to form an overall score. The calculated scores are: DM = 5856.73,
HPA = 6276.89, THRES1 =7074.89, THRES2 = 6960.49, SS1=9695.98, SS2 = 9750.29,
TTS1=9218.65 and TTS2 = 88s1.23. These results imply that the proposed DM method
is the best among eight examined mechanisms. This is because the DM method provided
the minimum overall score in comparison with the other auto-scaling mechanisms. In
other words, the proposed DM method is capable of avoiding over-provisioning of re-
sources while being able to offer optimal application performance in terms of the service
response time. Considering all workload patterns investigated in this thesis, the compe-
tence of DM is its ability to use a multi-level monitoring platform and timely adjust the
auto-scaling rules to changes in the workload at runtime.

The Cumulative Distribution Function (CDF) of service response time achieved by
all examined auto-scaling methods is shown in Fig. 5.18, Fig. 5.19, Fig. 5.20, Fig. 5.21and
Fig. 5.22 for each workload scenario. According to all these figures, it can be concluded
that the proposed DM method performs better than other auto-scaling approaches since
it has higher probability to provide desired service response time under varied amount
of workloads, and thus enhance the application performance. The probability that the
response time offered by the DM method would be slow is almost zero for all workload
patterns, except for the drastically changing scenario.

Fig. 5.19 indicates that the response time offered by the DM method was relatively
more acceptable than other seven provisioning approaches in the drastically changing
workload scenario. During this workload scenario, the probability of service response

time being fast provided by other auto-scaling mechanisms is significantly small.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications g1

i |
1T 1
9.8 |- —
-
oy
-
o
=
T 0.6 —
= —_— DM
[=8
q, —— HPA
=3
A 0.4 —— THRES]
B ——— THRESZ
=
£ — 551
o
0.2 |- — 552 |
— TTs1 .
TT52 Flg%?‘f §.18
9 ’ | | | CDF of service response
156 200 250 300 350 400 time observed in the slowly
: rising/falling workload
Response time (ms) .
scenario.
1
!
0.8 - | =
|
b
—
=
- .
E 0.6 ‘ .
[—_— DM
o
. ‘l ——— HPA
5 gl —— THRESY
.'_;; |- ~—— THRES2
E ' —— 551
o
0.2] — ss5q |
—_— 1751 Fi
ows igure 5.19
ol I | | | CDF of service response
8 500 1000 1500 2000 time observed in the dras-

tically changing workload

Response time (ms) scenario.

92

Figure 5.20

CDF of service response
time observed in the on-off
workload scenario.

Figure s.21

CDF of service response
time observed in the gently
shaking workload scenario.

5 Results S. Taherizadeh

Fig. 5.20 shows the CDF of service response time offered by all investigated auto-

scaling approaches in the on-oft workload scenario.

1 ’ -
8.8
-
(e
]
=
=
0
o 0.6
B J— i
(="
5 HPA
-
= 9.4 = THRES]|
= ~—— THRES2
=2
5 —_— 551
o
0.2} —— &8
— TTSY
TTS2
ol L |]
108 200 300 400 500 600 700 800

Response time (ms)

Fig. 5.21 shows the CDF of service response time offered by all investigated auto-

scaling approaches in the gently shaking workload scenario.

e T | o
0.8 |
Fn
=
= 0.6 -
[B — DM
o
o HPA
=
2 0.4 ——— THRES]]
.’g ———— THRESZ
H] — 551
(%)
aml. — 552
— 178
ey
0 | | | |
180 200 210 220 230

Response time (ms)

Fig. 5.22 shows the CDF of service response time offered by all investigated auto-

scaling approaches in the real-world workload scenario.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

L= 1 B
0.8
5
o
=
s 0.6
e E—
(=8
& HPA
2 0.4 —— THRES]
= THRESZ]
=2
g — 551
(=)
il — 552
— 771
1752
p L 1 1 1 _
180 220 240 260 280

Response time (ms)

A challenge in designing a monitoring framework in the cloud environment is ensur-
ing that the overhead of the monitoring system is kept to the minimum. The distributed
nature of proposed monitoring framework quenches the runtime overhead of system
to a number of Monitoring Agents running across container instances. Host machines
provisioned in order to run the containerised application in this thesis had hardware
characteristics as 4-core CPU with 4 GB of RAM and 8o GB of storage. A detailed view
on the resource consumption of the Monitoring Agent revealed that our approach is
lightweight in terms of CPU and memory overhead. To confirm this, we applied the
top tool which provides a dynamic real-time view of tasks currently being managed by
the Linux kernel. Our running Monitoring Agent used in this work consumes only 0.3
percent of the whole CPU time and 3.1 percent of the whole memory usage on average.

Furthermore, the developed Monitoring Agent used in this work consumes a small
fraction of network bandwidth. To this end, we parsed the output of nerhogs tool to
estimate the bandwidth overhead introduced by our Monitoring Agent. We found out
our Monitoring Agent transmits 1282944 bytes during 15 minutes, which means ~712

bytes per second on average.

93

Figure 5.22

CDF of service response
time observed in the real-
world workload scenario.

Discussion

90

6 Discussion S. Taherizadeh

The previous chapter (Chapter s) described the results obtained after empirical experi-
ments performed as a set of proof-of-concept tests. The current chapter provides a dis-
cussion behind the results explained in Chapter 5. The archived results can be used
for the analysis of the implemented auto-scaling DM method and its limitations, its ad-
vanced usability in the software engineering domain, comparison with other production
rule-based methods, and the substantial level of improvement in the effectiveness of the
auto-scaling process applied to handle different workload patterns.

As described before, there exist many auto-scaling methods being used by commercial
cloud providers, although they mainly use static, single-level auto-scaling rules which
cannot be flexible to adjust themselves to the status of the execution environment at
runtime. Moreover, such existing auto-scaling methods are not able to employ both
infrastructure and application-level policies for dynamically launching new container
instances or terminating unrequired container instances.

In this thesis, we proposed a new Dynamic Multi-level (DM) auto-scaling method
with dynamically changing thresholds. The proposed DM method uses not only in-
frastructure, but also application-level monitoring data in order to allocate the opti-
mal amount of resources (with regard to the necessary number of container instances)
needed to ensure application performance (with regard to the service response time)
with neither resource under-provisioning nor over-provisioning.

In Chapter s, our proposed DM method was compared with seven existing rule-
based auto-scaling approaches in different synthetic and real-world workload scenarios.
These approaches include HPA (Horizontal Pod Auto-scaling), THRES: (1 method
of THRESHOLD), THRES:2 (2" method of THRESHOLD), SS1 (1* method of Step
Scaling), SS2 (2"! method of Step Scaling), TTS1 (1" method of Target Tracking Scaling),
and TTS2 (2™ method of Target Tracking Scaling). In comparison to seven other ap-
proaches, the proposed DM method achieved the best overall score with regard to avoid-
ing over-provisioning of resources while providing optimal application performance in
terms of the response time. Regarding all workload scenarios examined in this work
(slowly rising/falling workload pattern, drastically changing workload pattern, on-off
workload pattern, gently shaking workload pattern, real-world workload pattern), the
core competency of the DM method is its ability to use a multi-level monitoring frame-

work and also dynamically adjust itself to changes in the workload density.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications g7

The monitoring interval is a significant part which has been scrutinised in this thesis.
Choosing an effective monitoring interval is needed to make sure the reliability of the
entire system, to prevent excessive overhead, and to avoid losing control over the exe-
cution environment during auto-scaling events. Setting up an applicable measurement
interval is a challenging subject. This is because a low level of measurement ratio may
result in missing dynamic changes in the running environment, and thus the system is
not able to adapt itself to a new situation in order to carry on its operation without any
application performance degradation.

In some operational scenarios, the difference between the average service response
time and the monitoring interval may lead to stability problems to the elasticity man-
agement, which is not the case for many applications such as finite element analysis.
As an example, for video streaming real-time services, any violation of application QoS
constraints should be monitored cautiously, because any violation should not be over-
looked. Hence, the monitoring interval needs to be short enough to sufficiently capture
all required characteristics of the application at runtime. Furthermore, self-adaptation
of such services also needs an acceptable level of agility, which has currently gained an
increasing range of attention as a research area that still required to be totally improved.

Moreover, the developed DM auto-scaling method can be extended to allow for ver-
tical scaling of container instances [146]. Vertical scaling function represents an adap-
tation operation to resize processing power, memory capacity, or bandwidth resource
allocated to running containers depending on runtime variations in the workload den-
sity. Although in this manner, the maximum amount of such resources available for
each container instance is restricted to the capacity of the host machine. Accordingly,
the combination of horizontal and vertical scaling mechanisms may be used to the same
service in order to benefit from both techniques. Although, some applications such as
Java/J2EE solutions [147] are not capable of dynamically managing the memory allo-
cation even if the memory capacity is resized at the Operating System (OS) or infras-
tructure level. In such solutions, the applications should be restarted with new resized
capacity of memory when vertical scaling happens that is not appropriate within many
real-world cases.

The conducted experiments in this thesis are based upon Docker technique, although
the presented auto-scaling architecture may be implemented in other container-based
virtualization technologies such as LXC [148], OpenVZ [149], and Imctfy [150]. The
reason is that all functionalities specified in both Self-Adapter and Alarm-Trigger, and

98

6 Discussion S. Taherizadeh

also the StatsD protocol used to transmit, collect and aggregate monitoring information
related to the infrastructure or application, are independent from not only providers of
underlying cloud infrastructure, but also containerisation technologies.

The developed multi-level monitoring platform implemented to be employed in this
thesis is able to monitor various container-level parameters including CPU, memory,
bandwidth, and disk [151]. This monitoring platform was used to measure disk and
bandwidth for a container-based file upload use case in our previous research work [150].

The main objective of an auto-scaling method is to meet the desired response time by
allocating the rightamount of resources. Along this line, while monitoring infrastructure-
level metrics such as CPU and memory, the proposed DM auto-scaling method consid-
ers the service response time to avoid both under-provisioning and over-provisioning
problems. Hence, for completeness, we consider both CPU and memory in the pro-
posed method. In this thesis, a finite element analysis application which isa CPU-intensive
service was employed as a use case examined in auto-scaling experiments. The DM method
can certainly specify scaling policies for memory resources that are similar to CPU re-
sources. However, in practice, for memory-intensive applications such as in-memory
databases (e.g. HSQLDB), such proposed auto-scaling may not be very useful for memory-

intensive applications because of some key reasons:

= In order to scale a memory-intensive application, the data in memory should be
shifted from one node to another one which is very time and bandwidth consum-

ing. Therefore, unlike CPU, scaling memory is much more expensive.

= A lot of applications are not designed for dynamic memory size. For example,
memory-intensive applications primarily determine the buffer cache size when
starting, which is then fixed for the rest of time, and hence changing memory size
does not make sense for them. We can certainly rely on swapping of the OS to

make it transparent, but performance will not be appropriate nevertheless.

= In order to run memory-intensive applications, using high-memory machines in
advance needs to be considered as a significant requirement to deliver fast perfor-

mance for workloads that process large data sets in memory.

Over the entire course of experimentation, different threats to the validity of the re-

sults have been analysed as follows:

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 99

= Variations observed in running conditions (e.g. time-varying processing delays,
CPU and I/0 load factors, etc.) may slightly influence the archived results pre-
sented in Chapter 5. To obtain a greater validity of results, each conducted exper-
iment on each workload scenario was repeated five times to prevent this threat.
Consequently, the presented results are reported as average values over indepen-

dent runs.

= QoS properties of cloud-based infrastructure such as availability, bandwidth qual-
ity, etc. may vary at runtime, independent from the workload characteristics.
Thus, when a container instance should be launched and deployed on a host
machine, the cloud-based application provider requires to ensure that the host
machine is capable of fulfilling the needed requirements of the container-based
time-critical application. In this regard the performance of running infrastruc-
tures also need be continuously characterised. This function is facilitated by our

developed multi-level monitoring platform at present.

= Different additional external factors (e.g. the mobility of the clients, unstable net-
work conditions at the side of end-users, and client’ network channel diversity,
and so forth) may influence the end-users’ experience. In fact, time-critical cloud-
based applications may be adopted by various users from all around the world.
This type of service quality issues due to connectivity problems are currently ad-

dressed by edge computing techniques [151, 152].

= Developing a container-based auto-scaling method which is able to avoid over-
provisioning of cloud-based resources is a significant challenge in the adaptation
of applications. The rationale which allows host machines to locate one container
instance per application type (e.g. CPU, memory, or bandwidth intensive), pre-
sented in Chapter 4, may lead to over-provisioning issue within some service clus-
ters when some applications experience a small number of task requests. In order
to overcome such a limitation, along with the container instances, host machines
may be also vertically self-adjusted dynamically [153]. Another solution may be
employing various host machines with respect to hardware characteristics used
for each service cluster according to types of applications. For instance, hardware
features of host machines which include a CPU-bound application may be differ-

ent from configurations of host machines which locate a memory-intensive ap-

100

Figure 6.1

Edge computing frame-
work.

6 Discussion S. Taherizadeh

plication. The former requires host machines with satisfactory processing power,

and the later needs host machines with sufficient memory capacity.

In recent years, a wide variety of software solutions, such as IoI applications, have
emerged as cloud-based systems. As a consequence, billions of users or devices get con-
nected to applications on the Internet, which results in trillions of gigabytes of data be-
ing generated and processed in cloud datacentres. However, the burden of thislarge data
volume, generated by end-users or devices, and transferred toward centralised cloud dat-
acentres, leads to inefficient utilisation of resources. To overcome above problem, edge
computing framework is aimed at increasing capabilities and responsibilities of resources
at the edge of the network compared to traditional centralised cloud architectures by not
only placing services in the proximity of end-users or devices, but also using new data
transfer protocols to improve the interaction with datacentre-based services. This also
provides a low-latency response time for the application.

As shown in Fig. 6.1, it is may be more efficient to process data close to the point of its
source by edge nodes such as Raspberry Pi 3 model B [154], instead of remote centralised
datacentres. Raspberry Pi 3 model B is a powerful credit-card sized single board com-
puter with hardware features such as Quad Core 1.2 GHz Broadcom BCM2837 64bit
CPU, 1GB RAM, 4 USB 2 ports, 4 Pole stereo output, etc.

Thousands of
datacentres

Centralised
cloud
Edge node
Edge node Edge node
<

Millions of edge
nodes

devices/users

NN Billions of
EXY

Container-based virtualisation technology can be seen as enablers of edge computing
scenarios. It is possible to deploy containerised services on edge nodes faster and more
efficiently than using VMs. In essence, what makes containers an appropriate fit for
edge computing scenarios is their lightweight nature. Containers provide a lightweight,
portable and high performance virtualization alternative to VM-based techniques which

are too heavyweight. The size of container image which is smaller than VM images

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 101

makes it suitable to launch services at the edge faster than VM-based appliances. How-
ever, edge nodes allocated to run containers usually have hardware resource limitations
in reality, and they are not strong enough in comparison with cloud-based hosts.

The proposed DM method can be used to run containerised services on edge nodes
since edge nodes similar to cloud-based resources can be considered as infrastructures
allocated to deploy containers. It should be noted that situations may arise in which an
edge node is no longer able to provide computing operations since for example there are
no more available computing cycles. This is because edge devices practically sufter from
resource restrictions such as limited amount of computation power. In such situations,
running containers deployed on the edge node should be terminated and started on the
cloud side. Along this line, Fig. 6.2 shows that dynamic on/offloading action needs to
occur when there is a limited amount of resources such as available computing power

on the edge node at runtime.

Devices/users . Edge node : Cloud

The proposed edge computing method continuously monitors different metrics of
infrastructures (e.g. CPU, memory, etc.), and hence determines if the application per-
formance needs to be improved at execution time. To this end, the containerised ser-
vice running on the edge node can be stopped before it goes down, and then it will be

launched on the cloud on-the-fly. Fig. 6.3 presents how this solution provides a dynamic

Figure 6.2

Dynamic on/offloading
action within edge comput-
ing frameworks.

102

Figure 6.3

Dynamic deployment
scheme within edge com-
puting frameworks.

6 Discussion S. Taherizadeh

deployment of containerised services—in which case each container instance is able to
be used in order to accomplish specific tasks and data analytics performed at the edge.
The deployment scheme to run the service on whether edge node or cloud resource can

be chosen at runtime based on the application requirements.

The DM
method

Edge node

Container

Edge node

Therefore, an objective of such a solution is to offer a new computing mechanism to
offload or onload varying workload during execution. Such a solution creates a substan-
tial contribution to the progress of providing a dynamic, distributed architecture for an

effective resource management.

Conclusion

104

7 Conclusion S. Taherizadeh

This chapter provides a summary of the research performed in this thesis, and also di-
rections for future work.

Cloud computing has become the prevalent method for providing many different
types of online services over the Internet. However, auto-scaling of time-critical cloud-
based applications has been a challenging issue due to runtime variations in the quantity
and computational requirements of arrival requests to be processed. In essence, the main
problem is that there are limited intelligent auto-scaling capabilities in these kinds of
cloud environments that can be used to maintain applications’ QoS requirements.

To this end, the use of a comprehensive monitoring system in the cloud is essential to
track the whole range of dynamic changes in operational environments and to evaluate
the performance of services offered to end-users. It helps the application provider pre-
vent over-provisioning of resources, €.g. computing power, to predict potential issues,
e.g. lack of adequate memory, and to adapt the application to avoid QoS degradation,
e.g. faults at service execution time.

Primarily, most of the existing monitoring solutions do not thoroughly support the
runtime auto-scaling of cloud-based applications, in order to ensure required QoS and
other benefits such as optimising the resource utilisation at any time. For the purpose of
bridging this gap, in our previous work [151], we focused on the comparison and anal-
ysis of the technical characteristics of cloud monitoring technologies to determine their
strengths and weaknesses precisely in the domain of adaptation needs. The results of this
study could also be used as a comprehensive overview of cloud monitoring approaches to
come up with various self-* (self-adaptation, self-configuration, self-optimization, self-
healing, self-protection, etc.) competencies needed for these applications.

Comparison of widely-used monitoring tools for cloud computing scenarios enabled
us to identify monitoring requirements which are needed to support auto-scaling con-
tainerised time-critical applications. The capability of monitoring containers in this
thesis is important since container-based technology was used as a new form of server
virtualisation that facilitates horizontal scaling of time-critical cloud-based applications.
Therefore, a monitoring system was developed to appropriately fulfil the requirements
of containerised time-critical applications.

On the other hand, a fine-grained auto-scaling method is required to appropriately
address highly dynamic workload scenarios in cloud-based environments. Present, tra-
ditional self-adaptation methods used for cloud-based application adopting a set of fixed

auto-scaling rules unfortunately are not able to meet QoS requirements while provid-

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 105

ing optimal resource utilisation. This thesis proposed a new Dynamic Multi-level (DM)
auto-scaling method which can employ dynamic rules in order to automatically whether
increase or decrease the necessary number of container instances capable of accommo-
dating varying workloads.

The presented new DM auto-scaling method innovatively employs our developed
multi-level monitoring platform as the self-adaption of container-based time-critical ap-
plications need to be tuned at different levels of cloud-based operational environments
thatinclude both application level and container level. The empirical experiments clearly
proved the key competence of our method which is considered as the best provisioning
mechanism among eight examined auto-scaling approaches. Remarkable advantages of
adopting our proposed DM method are that it properly prevents over-provisioning as
well as under-provisioning of resources, while it is able to avoid the application perfor-
mance issue and cost overruns at runtime.

Since we believe that our new proposed open-source DM auto-scaling method is
quite mature and well-documented, it can be used in the adaptation of cloud-based ser-
vices provided by giant-tech companies. This is because we, as the members of cloud
community, are aware that cloud-based infrastructures are expensive whereas a signifi-
cant portion of resources is not necessary to be used to address the runtime workloads. In
2017, RightScale, which is a large company selling Software as a Service (SaaS) for cloud
computing management for multiple providers, conducted its 6™ annual State of the
Cloud Survey [155] of the latest cloud computing trends, with a focus on Infrastructure-
as-a-Service (IaaS). As a result, respondents estimate 30 percent cloud-based infrastruc-
ture waste, while RightScale has measured actual waste between 30 and 45 percent. More-
over, optimizing cloud costs is the top initiative across all cloud users (53 percent) and

especially among mature cloud users (64 percent).

Razsirjeni povzetek

108 A Razsirjeni povzetek S. Taherizadeh

A.r Raziskovalna motivacija

V zadnjih letih so se kot obla¢ne storitve pojavili $tevilni ¢asovno kriti¢ni sistemi, kot so
reSitve interneta stvari (npr. sledenje vozil) in aplikacije za analizo podatkov (npr. anal-
iza z uporabo metode kon¢nih elementov). To je zato ker oblatne tehnologije prinasajo
prednosti, kot je na primer razsirljivost. Ra¢unalnistvo v oblaku ponuja dinami¢no uporabo
virov na zahtevo in s tem uporabnikom zagotavlja kakovost storitve (QoS). Omogoca di-
nami¢no zagotavljanje in odstranjevanje obla¢nih virov v odziv na trenutno povprasevanje
v ¢asu delovanja.

Sprememba zahtev glede delovne obremenitve aplikacij v oblaku se lahko izvede na
razlitne natine. Na primer, novinarski kanal za oddajanje nepritakovano prejme ve-
liko zahtevkov za obdelavo, saj se videoposnetek ali dolo¢ena novica nenadoma Siri v
svetu socialnih medijev. Drugi primer so sistemi za paketno obdelavo podatkov, kjer
se zahtevki obicajno kopicijo v dolo¢enih ¢asovnih obdobjih. Te vrste sistemov imajo
obicajno kratka ¢asovna obdobja, ko je kakovost storitve zagotovljena na najnizji ravni.

Konkretna primera skalabilnih ponudnikov infrastrukture v oblaku so Amazon EC2
(1] in Microsoft Azure [2]. Le-ti lahko dinami¢no povecujejo ali zmanjSujejo vire dodel-
jene aplikacijam glede na trenutno obremenitev. Vendar pa skalabilnost teh infrastruk-
tur ni refitev za doseganje visoke zmogljivosti. Ce tehnologije za samodejno prilagajanje,
ki jih ponujajo ponudniki infrastrukture v oblaku, ne morejo zagotoviti potrebnih vi-
rov, bo kakovost aplikacij neprimerna in s tem bodo uporabniki zavrnjeni. Poleg tega
bodo potencialni prihranki oziroma prednosti uporabe oblaka ogrozZeni, ¢e bi uporabili

ve¢ ratunskih virov, kot je to potrebno.
A.z Raziskovalni problemi

Namen tega dela je odpraviti pomanjkljivosti trenutnih metod za samodejno prilaga-
janje aplikacij v okvirih okolij racunalni$tva v oblaku. Zagotavljanje rezultatov visoke
kakovosti pod pogojih dinami¢no spreminjajocih delovnih obremenitev je nujno za ¢asovno
kriticne obla¢ne aplikacije, da bodo uporabne v poslovnem kontekstu.

éeprav obstojece reaktivne metode samodejnega prilagajanja uporabljajo pravila s fik-
snimi pragovi, ki ve¢inoma temeljijo na infrastrukturnih metrikah, kot sta CPU in izko-
ristek spomina. To vkljucuje reaktivne metode samodejnega prilagajanja, ki jih uporabl-
jajo komercialni ponudniki obla¢nih infrastrukeur, ki temeljijo na virtualnih strojih, kot

sta Microsoft Azure [2] in Amazon ECz [1] ter tudi orkestratorji odprtokodnih vseb-

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 109

nikov, kot sta Kubernetes [3] in OpenShift Origin [4]. Vendar lahko take metode za
samodejno prilagajanje na podlagi pravil delujejo za nekatere osnovne tipe obla¢nih ap-
likacij, v primeru ¢asovno kriti¢nih aplikacij pa beleZijo poslabsanje zmogljivosti in izko-
ristek virov. Ti stati¢ni mehanizmi za samodejno prilagajanje aplikacij na podlagi pravil
niso dovolj prozni, da se popolnoma prilagodijo obremenitvam.

Primer pravila za samodejno prilagajanje na podlagi metrike CPU, ki ga lahko doloc¢imo,
je da bo ve¢ virtualnih strojev oziroma vsebnikov instanciranih, ¢e povpretna poraba
CPU doseze fiksni prag, npr. 80%; medtem, ko je mogoce nekatere virtualne stroje /
vsebnike ustaviti, e je povpre¢na poraba CPU manj$a od 80%. Taksne nastavitve ne
morejo biti zelo koristne za specifi¢ne scenarije delovnih obremenitev, npr. drasti¢no
spreminjajocega vzorca. Poleg tega ta pravila za samodejno prilagajanje dosezejo v na-
jboljsem primeru stabilno delovanje pri 80% porabi virov, kar pomeni, da je 20% virov
neporabljenih, kar pa ni donosno. Eden od pomembnih izzivov in glavnih tehni¢nih
vprasanj pri zagotavljanju metode samodejnega prilagajanja je dolociti, v kolik$ni meri
je lahko taka metoda samodejno prilagodljiva glede na razli¢ice delovanja v obratovalnih
pogojih.

Proaktivne metode samodejnega prilagajanja [6-9] se razvijajo z namenom napove-
dovanjakoli¢ine potrebnih virov v bliznji prihodnosti na podlagi zbranih podatkov pretek-
lega spremljanja, trenutne intenzivnosti delovnih obremenitev, kakovosti storitev ap-
likacije in podobno. Proaktivni pristopi za samodejno prilagajanje aplikacij uporabl-
jajo algoritme za strojno ucenje [10, 11], nevronske mreZe [12, 13], teorijo ¢akalnih vrst
[14,15], metode podatkovnega rudarjenja [16, 17] in regresijske modele [18, 19] za napove-
dovanje kolitine potrebnih virov. Potrebno je opozoriti, da te metode zahtevajo do-
volj preteklih podatkov za ucenje ustreznih modelov in dovolj ¢asa za konvergenco k
stabilnemu modelu. Ce imajo proaktivni nacini samodejnega merjenja dovolj veliko
podatkov za ucenje, ki odrazajo znadilnosti vseh razlitnih moznih operativnih situacij,
so sposobni posplosevati in se lahko odzivajo na nove scenarije delovnih obremenitev.
Posleditno, ¢e ucni podatki niso dovolj iz¢rpni, lahko taki proaktivni pristopi trpijo
zaradi njihove meje nenatanénosti, ki lahko povzroti prekomerno izkoris¢anje virov ali

zmanj$ano zmogljivost aplikacije.
A3 Raziskovalni cilji

Se vedno je mogoce znatno izbolj$ati metode samodejnega prilagajanja tasovno kriti¢nih

obla¢nih aplikacij [20-25]. Metoda samodejnega prilagajanja ima za posledico stanja,

110 A Razsirjeni povzetek S. Taherizadeh

kjer je uporaba dodeljenih virov nesprejemljivo nizka ali stanja podhranjenosti z viri,
kjer aplikacija trpi zaradi poslabsane zmogljivosti. Zato je zahtevana dinamitna metoda
samodejnega prilagajanja kot odziv na dinami¢na nihanja delovnih obremenitev med iz-
vajanjem aplikacij.

V Casu izvajanja drobnozrnata metoda samodejnega prilagajanja dinami¢no razporedi
optimalno koli¢ino virov, potrebnih za zagotavljanje zmogljivosti aplikacije, pri ¢emer
zagotavlja balans med porabo in zmogljivostjo. Tak pristop pri samodejnem prilagajanju
mora biti sposoben izpolnjevati zahteve glede ucinkovitosti aplikacij (kot so ¢asovne
omejitve odziva) in hkrati optimizirati uporabo virov, dodeljenih aplikaciji (kot je $tevilo
virtualnih strojev / vsebnikov).

Iz opisanega sledijo cilji, ki jih bo morala dose¢i nasa nova metoda za samodejno pri-

lagajanje:

» [zboljsanje ucinkovitosti casovno kriticnib aplikaci: prilagoditev tasovno kriti¢nih
aplikacij v oblaku, pod pogojih dinami¢nega spreminjanja obremenitev med iz-
vajanjem, je bistvenega pomena za zagotavljanje zmogljivosti aplikacij v smislu
odziva na uporabniske zahteve. Oblatne aplikacije potrebujejo metode samod-
ejnega prilagajanja, ki lahko zagotavljajo odzivnost aplikacij ob spremembah de-

lovnih obremenitev.

= Optimiziranje izkoriscanja virov v oblakn: mehanizem samodejnega prilagajanja
mora nencehno prilagajati optimalno koli¢ino dodeljenih virov, potrebnih za doseganje
zmogljivosti ¢asovno kriticnih obla¢nih aplikacij. Sprostitev nedejavnih virov je
koristno za bolj$o izrabo virov v oblaku. Neizkori§¢enost virov je $e vedno resna
tezava v podatkovnih centrih [26-29]. Potrebno je povecati izkoristek virov in

tako prihraniti vire in zmanjsati porabo energije.
A4 Znanstveni prispevki
Kljutne prispevke te teze je mogoce povzeti takole:

= predstavitev novega vecnivojskega sistema za nadzor casovno kriticnib oblacnib ap-
likacij, ki smo ga objavili pod licenco Apache 2.0: eden od glavnih prispevkov
raziskovalnega dela je obravnavanje zahtev ¢asovno kriti¢nih obla¢nih aplikacij,
ki so pakirane v vsebnikih ali virtualnih strojih in na podlagi tega razvoj sistema

za nadzor aplikacij, ki sledi celotnemu Zivljenjskemu ciklu aplikacij, in sicer od

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 11z

njihovega nacrtovanja, inZeniringa, uvajanja in obratovalne faze. Sistem za nad-
zor mora odgovoriti razlitnim zahtevam konénih uporabnikov, operaterjev ap-
likacij, kot tudi podatkovnih centrov. Zato je potreben nov ve¢nivojski sistem za
nadzor, ki bi podrobneje opredelil potrebe in razmerja med razli¢nimi metrikami
kakovosti na vseh nivojih: infrastrukture, vsebnikov in virtualnih strojev ter na
ravni aplikacij. V zadnjih letih so razvili veliko razli¢nih orodij za nadzor, vendar
nobeno od obstojecih orodij za nadzor ne obravnava celotnega Zivljenjskega cikla

¢asovno kriti¢nih obla¢nih aplikacij.

w predlog metode inovativnib dinamicnib pragov, uporabljenih za prilagajanje, kot
odziv na spreminjajoco se delovno obremenitev v daljsem casovnem obdobju: v
zadnjih letih je veliko raziskovalnih del zagotavljalo razli¢ne natine samodejnih
pravil prilagajanja, ki uporabljajo samo stati¢ne, fiksne prage. éeprav so takine
metode, ki temeljijo na pravilih, lahko koristne za nekatere osnovne vrste delovnih
obremenitey, se njihova u¢inkovitost in izkoris¢enost virov zmanjsa, ko gre za di-
nami¢no spreminjajoce se scenarije delovnih obremenitev. Eden od glavnih odprtih
izzivov pri razvoju nove metode samodejnega prilagajanja z uporabo pravil je, da
odlotimo, v koliksni meri bi moral biti prilagoditveni pristop samoregulativen
glede na spremembe v izvajalnem okolju. Da bi naslovili ta izziv, na$a nova metoda

uporablja dinamicne prage.

= wuvajamo fino-zrnato metodo samodejnega prilagajanja, ki omogoca ne le doseganje
ugodne kakovosti storitev, temvec tudi optimalno izkoristanje virov: potrebujemo
natantne mehanizme samodejnega prilagajanja, ki se soo¢ajo z zelo dinamicnimi
delovnimi obremenitvami v oblaku. Obstoje¢i tradicionalni pristopi prilagajanja
aplikacij zal ne morejo natanéno zagotavljati ugodne kakovosti storitev in nuditi
optimalno izrabo virov. Ta teza uvaja novo metodo samodejnega skaliranja, ki
uporablja podatke iz ve¢nivojskega sistema za nadzor, in uporablja dinami¢na
pravila za samodejno skaliranje, da se lahko aplikacija prilagodi razli¢nim delovnim

obremenitvem in zagotovi sprejemljive odzivne Case.
As Rezultati

Obstajajo $tevilne metode samodejnega prilagajanja, kijih uporabljajo komercialni ponud-

niki oblakov, ¢eprav ve¢inoma uporabljajo stati¢na pravila za samodejno prilagajanje, ki

112

A Razsirjeni povzetek S. Taherizadeh

niso dovolj prozna. Poleg tega obstoje¢e metode samodejnega prilagajanja ne uporabl-
jajo sotasno infrastukturne metrike in metrike na ravni aplikacij za dinamicno dolo¢anje
Stevila instanc potrebnih vsebnikov ali za ustavitev delovanja nepotrebnih vsebnikov.

V tej diplomski nalogi smo predlagali novo dinamicno vetstopenjsko metodo (DM) z
dinami¢nim spreminjanjem pragov. Predlagana metoda DM uporablja ne le infrastruk-
turne, ampak tudi metrike na ravni aplikacij, da bi dodelila optimalno koli¢ino virov
(glede na potrebno Stevilo primerkov vsebnikov), ki so potrebni za zagotovitev uéinkovitosti
aplikacij (npr. glede na odzivni ¢as storitev) brez premalo ali preve¢ dodeljenih virov.

Novo DM metodo smo primerjali s sedmimi obstoje¢imi pristopi avtomatskega prila-
gajanja z uporabo pravil v razli¢nih scenarijih sinteti¢nih in realnih delovnih obremenitev.
Te metode so: Horizontal Pod Auto-scaling (HPA), Step Scaling rin 2 (SS1, $S2), Target
Tracking Scaling 1in 2 (T'T'S1, TTS2) ter Static Threshold Based Scaling rin 2 (THRES;,
THRES2). Predlagana metoda DM v primerjavi z drugimi metodami dosega najboljse
splosne rezultate glede na izkoristek virov in zagotavljanja odzivnih Casov. V zvezi z
vsemi scenariji delovnih obremenitev, preucevanimi v tem delu (predstavljajo vzorce vz-
trajno narascajo¢ih/padajocih, drasti¢no spreminjajocih, rahlih sprememb ter dejanskih
delovnih obremenitev), je temeljna prednost nove DM metode njena sposobnost upora-
biti ve¢nivojski sistem za nadzor nad izvajanjem aplikacij ter se dinami¢no prilagajati de-

lovnim obremenitvam.
A6 Zakljucek

RacunalniStvo v oblaku je postalo prevladujoci nacin za zagotavljanje $tevilnih spletnih
storitev prek medmrezja. Vendar pa predstavlja samodejno prilagajanje casovno kriti¢nih
aplikacij tezavo zaradi sprememb v koli¢ini in racunskih zahtevnosti prihajajocih zahtevkov,
ki jih je potrebno obdelati.

V tanamen je uporaba celovitega sistema za nadzor obla¢nih aplikacij bistvenega pom-
ena za sledenje celotnemu obsegu dinamic¢nih sprememb v izvajalnem okolju in za ocen-
jevanje kakovosti storitev, ponujenih konénim uporabnikom. Ponudniku aplikacij po-
maga prepreiti prevelik zajem virov, npr. ra¢unalnisko mo¢, predvidi morebitne tezave,
npr. pomanjkanja ustreznega pomnilnika in omogoca prilagajanje aplikacij, da se izogne
poslabsanju kakovosti, npr. prevelikih odzivnih ¢asov.

Primerjava$iroko uporabljenih orodij za nadzor nad izvajanjem aplikacij nam je omogocila
analizo osnovnih zahtev za nadzor, ki so zahtevane pri samodejnem prilagajanju ¢asovno

kriti¢nih aplikacij. Zmoznost spremljanja vsebnikov v tej diplomski nalogi je pomem-

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 113

bna, saj je tehnologija, ki temelji na vsebnikih, uporabljena kot nova oblika virtualizacije,
ki omogoca horizontalno skaliranje ¢asovno kriti¢nih obla¢nih aplikacij. Zato je bil razvit
vecnivojski sistem za nadzor, da bi zagotovili ustrezne pogoje za izvajanje casovno kriti¢nih
aplikacij.

Po drugi strani pa je potrebna natanéna metoda za nadzor, ki ustreza zelo dinami¢nim
scenarijem delovne obremenitve v obla¢nih okoljih. Sedanji tradicionalni nacini samod-
ejnega prilagajanja, uporabljeni za obla¢ne aplikacije, ki sprejme niz dolo¢enih pravil
samodejnega merjenja, na zalost ne morejo zadovoljiti zahtev QoS ob zagotavljanju op-
timalne uporabe virov. Ta teza predlaga novo metodo dinami¢nega ve¢nivojskega (DM)
samodejnega skaliranja, ki uporablja dinamitna pravila, samodejno povecuje ali zmanjsuje
potrebno $tevilo primerkov vsebnikov in tako zagotavlja ustrezno kakovost ob razli¢nih
delovnih obremenitvah.

Predstavljena nova metoda avtomatskega prilagajanja DM inovativno uporablja na$
razviti vecnivojski sistem za nadzor ¢asovno kriti¢nih aplikacij, ki temeljijo na vsebnikih,
z namenom prilagajanja razli¢nim nivojem v izvajalnem okolju, ki vklju¢ujejo raven ap-
likacije kot tudi raven vsebnika. Empiri¢ni poskusi so jasno pokazali kljuéne prednosti
nase metode, ki trenutno 3teje kot najboljsi mehanizem zagotavljanja virov med osmimi
preucenimi pristopi samodejnega prilagajanja z uporabo pravil. Izredne prednosti ob
uvajanju predlagane DM metode so, da pravilno preprecuje preveliko in premajhno do-
deljevanje virov, hkrati pa se izogiba tezavam pri izvajanju aplikacij in prekoraéitvi obra-

tovalnih stroskov.

Abbreviations

116

B Abbreviations

Abbreviations

ACCRS Autonomic Cloud Computing Resource Scaling
ARMA Autoregressive-Moving Average

ARNES Academic and Research Network of Slovenia
ASF Apache Software Foundation

ATLB Application Throughput of the Load-Balancer
CDF Cumulative Distribution Function

CPU Central Processing Unit

CQL Cassandra Query Language

DCz Dependable Compute Cloud

DA Dynamic Multi-Level

DUCP Docker Universal Control Plane

ECS Amazon EC2 Container Service

ESB Event Service Bus

FQL Fuzzy Q-learning Learning

FSL Fuzzy SARSA Learning

GKE Google Container Engine

GUI Graphical User Interface

HPA Horizontal Pod Auto-scaling

1aa$S Infrastructure-as-a-Service

IDE Interactive Development Environment

IoT Internet of Things

S. Taherizadeh

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 117

JVAM Java Virtual Machine

KB Knowledge Base

MDP Markov Decision Process

MP Multiple Policies

NoP Number of Pods

QoS Quality of Service

RDF Resource Description Framework
RPS Requests Per Second

RT Response Time

SaaS Software as a Service

SLA Service Level Agreement

SNMP Simple Network Management Protocol
SQL Structured Query Language

SS Step Scaling

TSDB Time Series Database

T'TS Target Tracking Scaling

VA Virtual Machine

XDR External Data Representation

XML Extensible Markup Language

(1]

BIBLIOGRAPHY

Amazon ECz,2018 (Accessed April 15, 2014). URL
https://aws.amazon.com/ec2.

Microsoft Azure, 2018 (Accessed April 15, 2014). URL
https://azure.microsoft.com/.

Kubernetes, 2018 (Accessed April 15, 2014). URL
https://kubernetes.io/.

OpenShift Origin, 2018 (Accessed April 15, 2014). URL
https://www.openshift.org/.

Z.Zhao, P. Martin, J. Wang, A. Taal, A. Jones, I. Tay-
lor, V. Stankovski, I.G. Vega, G. Suciu, A. Ulisses,
and C. de Laata. Developing and operating

time critical applications in clouds: the state of

the art and the switch approach. 68:17-28, 2015.
doi: https://doi.org/10.1016/j.procs.2015.09.220.

M. Ghobaei-Arani, S. Jabbehdari, and M.A. Pourmina.
An autonomic resource provisioning approach for
service-based cloud applications: a hybrid approach.
Future Generation Computer Systems, 78:191-210, 2018.
doi: https://doi.org/10.1016/j.future.2017.02.022.

M.S. Aslanpour and S.E. Dashti. Proactive auto-scaling
algorithm (pasa) for cloud application. International
Journal of Grid and High Performance Computing
(IJGHPC), 9(3):1-16, 2017.

Q. Zhang, H. Chen, and Z. Yin. Prmrap: A proactive
virtual resource management framework in cloud. In
Proc. of 2017 IEEE International Conference on Edge
Computing (EDGE), pages 120—127, Honolulu, HI,
USA, 2017. IEEE. doi: 10.1109/IEEE.EDGE.2017.24.

D. Tran, N. Tran, G. Nguyen, and B.M.
Nguyen. A proactive cloud scaling model based
on fuzzy time series and sla awareness. Pro-
cedia Computer Science, 108:365-374, 2017.

doi: https://doi.org/10.1016/j.procs.2017.05.121.

JV.B. Benifa and D. Dejey. Rlpas: Reinforce-
ment learning-based proactive auto-scaler for re-
source provisioning in cloud environment. Mo-
bile Networks and Applications, pages 1-16, 2018.
doi: https://doi.org/10.1007/511036-018-0996-0.

19

(]

(12]

[13]

[14]

[15]

(x6]

[17]

J. Rao, X. Bu, C.Z. Xu, and K. Wang. A distributed
self-learning approach for elastic provisioning of vir-
tualized cloud resources. In Proc. of 2011 IEEE 19th
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), pages 45—54, Singapore, Singapore,
2011 IEEE. doi: 10.1109/MASCOTS.2011.47.

J. Kumar and A.K. Singh. Workload predic-
tion in cloud using artificial neural network

and adaptive differential evolution. Future
Generation Computer Systems, 81:41-52, 2018.
doi: https://doi.org/10.1016/j.future.2017.10.047.

T. Chen and R. Bahsoon. Self-adaptive and sensitivity-
aware qos modeling for the cloud. In Proc. of

2013 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS),
pages 43-52, San Francisco, CA, USA, 2013. IEEE.

doi: 10.1109/SEAMS.2013.6595491.

B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile dynamic provisioning of multi-tier
internet applications. ACM Transactions on An-
tonomous and Adaptive Systems (TAAS), 3(1):1, 2008.
doi: 10.1145/1342171.1342172.

R. Han, M.M. Ghanem, L. Guo, Y. Guo, and

M. Osmond. Enabling cost-aware and adaptive
elasticity of multi-tier cloud applications. Fu-
ture Generation Computer Systems, 32:82-98, 2014.
doi: https://doi.org/10.1016/j.future.2012.05.018.

E. Yuan, N. Esfahani, and S. Malek. Automated mining
of software component interactions for self-adaptation.
In Proc. of the gth International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing
Systems, pages 27-36, Hyderabad, India, 2014. ACM.
doi: 10.1145/2593929.2593934.

K. Wac, AV. Halteren, and D. Konstantas. Qos-
predictions service: Infrastructural support for
proactive qos-and context-aware mobile services
(position paper). In Proc. of OTM 2006 Work-
shops On the Move to Meaningful Internet Systems,
pages 1924-1933, Berlin, Germany, 2006. Springer.
doi: http://dx.doi.org/10.1007/11915072.109.

120

(18]

(19]

[20]

(1]

[22]

[23]

[24]

[25]

(26]

[27]

Bibliography

A. Gambi and G. Toffetti. Modeling cloud perfor-
mance with kriging. In Proc. of 2012 34th Interna-
tional Conference on Software Engineering (ICSE),
pages 1439-1440, Zurich, Switzerland, 2012. IEEE.
doi: 10.1109/ICSE.2012.6227075.

Q. Zhu and G. Agrawal. Resource provisioning with
budget constraints for adaptive applications in cloud
environments. volume s, pages 497-s11. IEEE, 2012.
doi: 10.1109/TSC.2011.61.

N. Anwar and H. Deng. Elastic scheduling of scientific
workflows under deadline constraints in cloud com-
puting environments. Future Internet, 10(1):s, 2018.
doi: 10.3390/fi10010005.

P.C. Amogh, G. Veeramachaneni, A.K. Rangisetti, B.R.

Tamma, and A.A. Franklin. A cloud native solution
for dynamic auto scaling of mme in lte. In Proc. of
2017 IEEE 28th Annual International Symposinm on
Personal, Indoor, and Mobile Radio Communications
(PIMRC), pages 1-7, Montreal, QC, Canada, 2017.
IEEE. doi: 10.1109/PIMRC.2017.8292270.

A.S. Prasad, D. Koll, J.O. Iglesias, J.A. Aroca,

V. Hilt, and X. Fu. Reonf (pd): Automated re-
source configuration of complex services in the
cloud. Future Generation Computer Systems, 2018.
doi: https://doi.org/10.1016/j.future.2018.02.027.

Z. Cai, X. Li, and R. Ruiz. Resource provisioning for
task-batch based workflows with deadlines in public
clouds. IEEE Transactions on Cloud Computing, 20r7.
doi: 10.1109/TCC.2017.2663426.

G. Suciu, A. Scheianu, and M. Vochin. Disaster early
warning using time-critical iot on elastic cloud work-
bench. In Proc. of 2017 IEEE International Black
Sea Conference on Communications and Networking

(BlackSeaCom,), pages 1-s, Istanbul, Turkey, 2017. IEEE.

doi: 10.1109/BlackSeaCom.2017.8277712.

J. Wang, A. Taal, P. Martin, Y. Hu, H. Zhou,

J. Pang, C. de Laat, and Z. Zhao. Planning vir-
tual infrastructures for time critical applications
with multiple deadline constraints. Future
Generation Computer Systems, 75:365-375, 2017.
doi: https://doi.org/10.1016/j.future.2017.02.001.

M.S. Aslanpour, M. Ghobaei-Arani, and A.N. Toosi.
Auto-scaling web applications in clouds: a cost-aware
approach. journal of Network and Computer Applica-
tions, 95:26—41, 2017.

M.S. Aslanpour and S.E. Dashti. Sla-aware resource
allocation for application service providers in the
cloud. In Proc. of 2016 Second International Conference
on Web Research (ICWR), pages 31-42. IEEE, 2016.
doi: 10.1109/ICWR.2016.7498443.

[28]

[29]

[30]

(32]

[33]

[34]

[35]

(36]

[37]

[39]

[40]

S. Taherizadeh

A.A. Rahmanian, G.H. Dastghaibyfard, and H. Tahay-
ori. Penalty-aware and cost-efficient resource manage-
ment in cloud data centers. International Journal of
Commaunication Systems, 30(8), 2017.

D. Moldovan, H.L. Truong, and S. Dustdar. Cost-
aware scalability of applications in public clouds. In
Proc. of 2016 IEEE International Conference on Cloud
Engineering (IC2E), pages 79-88, Berlin, Germany,
2016. IEEE. doi: 10.1109/IC2E.2016.23.

V.V. Trofimov, V.I. Kiyaev, and S.M. Gazul. Use of
virtualization and container technology for infor-
mation infrastructure generation. In Proc. of 2017
IEEE International Conference on Soft Computing and
Measurements (SCM), pages 788—791, St. Petersburg,
Russia, 2017. IEEE. doi: 10.1109/SCM.2017.7970725.

S. Taherizadeh and V. Stankovski. Auto-scaling appli-
cations in edge computing: Taxonomy and challenges.
In Proc. of the International Conference on Big Data
and Internet of Thing, pages 158-163, London, United
Kingdom, 2017. ACM. doi: 10.1145/3175684.3175709.

Docker, 2018 (Accessed April 15, 2014). URL
https://www.docker.com/.

A. Patel, M. Daftedar, M. Shalan, and M.W. El-
Kharashi. Embedded hypervisor xvisor: A comparative
analysis. In Proc. of 2015 23rd Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 682—691, Turku, Finland, 2o015.
IEEE. doi: 10.1109/PDP.2015.108.

Google container engine, 2018 (Accessed April 1,
2014). URLhttps://cloud.google.com/
container-engine/.

Amazon ECz Container Service, 2018 (Accessed April
15,2014). URLhttps://aws.amazon.com/ecs/.

1. Emsley and D. De-Roure. A framework for the
preservation of a docker container. The International
Journal of Digital Curation (IJDC), 12(2):125-13s, 2017.
doi: https://doi.org/10.2218/ijdc.v12i2.509.

S.P. Polyakov, A.P. Kryukov, and A.P. Demichev.
Docker container manager: A simple toolkit for iso-
lated work with shared computational, storage, and
network resources. In Journal of Physics: Conference
Series, volume 955, pages 1—4. IOP Publishing, 2018.
doi: 10.1088/1742-6596/955/1/012039.

Docker Hub repository, 2018 (Accessed April 15, 2014).
URLhttps://hub.docker.com/.

Pushing and Pulling Docker Images, 2018 (Ac-
cessed April 15, 2014). URLhttps://cloud.
google.com/container-registry/docs/
pushing-and-pulling.

Dockerfile reference, 2018 (Accessed April 15, 2014).
URLhttps://docs.docker.com/engine/
reference/builder/.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications 121

[41] Developed monitoring system, 2018 (Accessed
April15,2014). URLhttps://github.
com/salmant/ASAP/tree/master/
SWITCH-Monitoring-System.

G. Aceto, A. Botta, W. De-Donato, and

A. DPescape. Cloud monitoring: A survey.
Computer Networks, 57(9):2093-2115, 2013.

doi: https://doi.org/10.1016/j.comnet.2013.04.001.

[42]

G. Aceto, A. Botta, W. De-Donato, and A. Pescape.
Cloud monitoring: definitions, issues and future
directions. In Proc. of 2012 IEEE 1st International Con-
ference on Cloud Networking (CLOUDNET), pages
63-67, Paris, France, 2012. IEEE. doi: 10.1109/Cloud-
Net.2012.6483656.

[43]

K. Fatema, V.C. Emeakaroha, P.D. Healy, J.P. Morrison,
and T. Lynn. A survey of cloud monitoring tools: Tax-
onomy, capabilities and objectives. Journal of Parallel
and Distributed Computing, 74(10):2918-2933, 2014.
doi: https://doi.org/10.1016/j.jpdc.2014.06.007.

[44]

[45] M. Garcia-Valls, T. Cucinotta, and C. Lu. Challenges in

real-time virtualization and predictable cloud comput-
ing. Journal of Systems Architecture, 60(9):726-740,
2014. doi: https://doi.org/10.1016/j.sysarc.2014.07.004.

M.H. Mohamaddiah, A. Abdullah, S. Subramaniam,
and M. Hussin. A survey on resource allocation and
monitoring in cloud computing. International Journal
of Machine Learning and Computing, 4(1):31, 2014.
doi: 10.7763/]JMLC.2014.V 4.382.

[46]

J.S. Ward and A. Barker. Observing the clouds:
a survey and taxonomy of cloud monitoring.
Journal of Clond Computing, 3(1):24, 2014.

doi: https://doi.org/10.1186/513677-014-0024-2.

[47]

B. Hazarika and T. Sing. Survey paper on cloud com-
puting and cloud monitoring: basics. SSRG Int. J.
Comput. Sci. Eng, 2(1):10-15, 2015.

J.M.A. Calero and].G. Aguado. Compar-

ative analysis of architectures for monitor-

ing cloud computing infrastructures. Fiture
Generation Computer Systems, 47:16-30, 2015,
doi: https://doi.org/10.1016/j.future.2014.12.008.

[49]

[so] K. Sugapriyaand].S.Jeya. A survey on enhanced
scheme for multiple cloud resource matchmaking us-
ing trust aware framework. International Journal of
Advanced Research in Computer Science and Software

Engineering, 5(11):1-4, 2015.

[s1] K. Alhamazani, R. Ranjan, K. Mitra, F. Rabhi, P.P.
Jayaraman, S.U. Khan, A. Guabtni, and V. Bhatnagar.
An overview of the commercial cloud monitoring tools:
research dimensions, design issues, and state-of-the-art.
Computing, 97(4):357-377, 2015. doi: 10.1007/500607-
014-0398-5.

[52]

[53]

[54]

[55]

(s6]

[s7]

(s8]

[59]

[6o]

(e1]

[62]

[63]

(64]

[65]

(e6]

S. Taherizadeh and V. Stankovski. Incremental learning
from multi-level monitoring data and its application to
component based software engineering. In Proc. of 2017
IEEE 415t Annual Computer Software and Applications
Conference (COMPSAC), pages 378-383, Turin, Italy,
2017. IEEE. doi: 10.1109/COMPSAC.2017.148.

Apache Software Foundation, 2018 (Accessed April 1,
2014). URL https://www.apache.org/.

S. Clayman, A. Galis, and L. Mamatas. Monitoring vir-
tual networks with lattice. In Proc. of 2010 IEEE/IFIP
Network operations and management symposium work-
shops (NOMS Whsps), pages 239-246, Osaka, Japan,
2010. [EEE. doi: 10.1109/NOMSW.2010.5486569.

cAdvisor (Container Advisor), 2018 (Accessed April
15,2014). URLhttps://github.com/google/
cadvisor.

Edward Campbell. Apache Mesos Basics. CreateSpace
Independent Publishing Platform, USA, 2017. ISBN
1548267635, 9781548267636.

Docker Swarm, 2018 (Accessed April 15, 2014). URL
https://docs.docker.com/swarm/.

Docker Remote API, 2018 (Accessed April 15, 2014).
URLhttps://docs.docker.com/engine/api/
vi.21/.

InfluxDB, 2018 (Accessed April 15, 2014). URLhttps:
//influxdata.com/time-series-platform/
influxdb/.

Elasticsearch, 2018 (Accessed April 15, 2014).
URLhttps://www.elastic.co/blog/
elasticsearch-as-a-time-series-data-store.

BigQuery, 2018 (Accessed April 15, 2014). URL
https://cloud.google.com/bigquery/.

Grafana, 2018 (Accessed April 15, 2014). URL
http://grafana.org/.

Prometheues, 2018 (Accessed April 15, 2014). URL
https://prometheus.io/.

R. Peinl, F. Holzschuher, and F. Pfitzer. Docker cluster
management for the cloud-survey results and own solu-
ton. Journal of Grid Computing, 14(2):265-282, 2016.
doi: 10.1007/510723-016-9366-y.

Docker Universal Control Plane (DUCP), 2018 (Ac-
cessed April 15, 2014). URL https://docs.docker.
com/ucp/.

Scont, 2018 (Accessed April 15, 2014). URL
https://scoutapp.com/.

122

Bibliography

[67]

(e8]

[69]

[70]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

S. Taherizadeh and V. Stankovski. Quality of service
assurance for internet of things time-critical cloud
applications: Experience with the switch and entice
projects. In Proc. of zo17 6th ILAI International
Congress on Advanced Applied Informatics (ILAI-
AAI), pages 288-293, Hamamatsu, Japan, 2017. IEEE.
doi: 10.1109/1TAI-AAl.2017.209.

Zenoss, 2018 (Accessed April 15, 2014). URL
http://www.zenoss.org/.

U. Gupta. Monitoring in iot enabled devices. arXiv
preprint arXiv:1507.03780, 2015.

Ganglia, 2018 (Accessed April 15, 2014). URL
http://ganglia.info/.

M.L. Massie, B.N. Chun, and D.E. Culler.

The ganglia distributed monitoring system:
design, implementation, and experience.

Parallel Computing, 30(7):817-840, 2004.

doi: https://doi.org/10.1016/j.parco.2004.04.001.

sFlow, 2018 (Accessed April 15, 2014). URLhttp:
//blog.sflow.com/2010/10/ganglia.html.

RRDrool, 2018 (Accessed April 15, 2014). URL
https://oss.oetiker.ch/rrdtool/.

Zabbix, 2018 (Accessed April 15, 2014). URL
http://www.zabbix.com/.

P. Tader. Server monitoring with zabbix. Linux
Journal, 2010(195):7, 2010.

JW. Murphy. SnoScan: An iterative functionality service
scanner for large scale networks. Iowa State University,
2008.

S. Clayman, A. Galis, C. Chapman, G. Toffetti,

L. Rodero-Merino, L.M. Vaquero, K. Nagin, and

B. Rochwerger. Monitoring service clouds in the future
internet. In Towards the Future Internet - Emerging
Trends from European Research, pages us-126.10S
Press, 2010. doi: 10.3233/978-1-60750-539-6-115.

G. Katsaros, R. Kubert, G. Gallizo, and T. Wang.
Monitoring: A fundamental process to provide qos
guarantees in cloud-based platforms. Cloud Computing,
pages 325-341, 201L

D. Trihinas, G. Pallis, and M.D. Dikaiakos. Jcatascopia:
Monitoring elastically adaptive applications in the
cloud. In Proc. of 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pages 226-235, Chicago, IL, USA, 2014.
IEEE. doi: 10.1109/CCGrid.2014.41.

StatsD protocol, 2018 (Accessed April 15, 2014). URL
https://github.com/etsy/statsd/wiki.

[81]

[82]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

S. Taherizadeh

Developed Monitoring Server container im-

age, 2018 (Accessed April 15, 2014). URL
https://hub.docker.com/r/salmant/ul_
monitoring_server_container_image/.

T. Lorido-Botran, J. Miguel-Alonso, and J.A. Lozano.
A review of auto-scaling techniques for elastic applica-
tions in cloud environments. Journal of grid computing,
12(4):559-592, 2014.

L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi. A
discrete-time feedback controller for containerized
cloud applications. In Proc. of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 217-228, Seattle, WA, USA,
2016. ACM. doi: 10.1145/2950290.2950328.

P. Padala, KY. Hou, K.G. Shin, X. Zhu, M. Uysal,
Z.Wang, S. Singhal, and A. Merchant. Automated
control of multiple virtualized resources. In Proceedings
of the 4th ACM European conference on Computer
systems, pages 13—26. ACM, 2009.

E. Kalyvianaki, T. Charalambous, and S. Hand. Self-
adaptive and self-configured cpu resource provisioning
for virtualized servers using kalman filters. In Proceed-
ings of the 6th international conference on Autonomic
computing, pages 117-126. ACM, 2009.

P. Jamshidi, A.M. Sharifloo, C. Pahl, A. Metzger, and
G. Estrada. Self-learning cloud controllers: Fuzzy
q-learning for knowledge evolution. In Proc. of Interna-
tional Conference on Clond and Autonomic Computing
(ICCAC), pages 208—211, Boston, USA, 201s. IEEE.

doi: 10.1109/ICCAC.2015.35.

H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada.
A comparison of reinforcement learning techniques
for fuzzy cloud auto-scaling. In Proc. of the 17th
IEEE/ACM International Symposium on Cluster,
Clond and Grid Computing, pages 64—73, Madrid,
Spain, 2017. IEEE. doi: 10.1109/CCGRID.2017.15.

D. Tsoumakos, I. Konstantinou, C. Boumpouka,

S. Sioutas, and N. Koziris. Automated, elastic resource
provisioning for nosql clusters using tiramola. In Proc.
of 2013 13th IEEE/ACM International Symposium on
Cluster, Clond and Grid Computing (CCGrid), pages
34—41, Delft, Netherlands, 2013. IEEE. doi: 10.1109/CC-
Grid.2013.45.

A. Gandhi, P. Dube, A. Karve, A. Kochut, and

L. Zhang. Adaptive, model-driven autoscaling for
cloud applications. In Proc. of the 11th International
Conference on Autonomic Computing (ICAC’14), vol-
ume 14, pages 5764, Philadelphia, PA, 2014. USENIX.

D. Jiang, G. Pierre, and C.H. Chi. Autonomous re-
source provisioning for multi-service web applications.
In Proceedings of the 19th international conference on
World wide web, pages 471-480. ACM, 2010.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

[o1]

[92]

(93]

[94]

[os]

[96]

[o7]

[98]

[99]

[100]

[101]

N.R. Herbst, S. Kounev, and R. Reussner. Elasticity
in cloud computing: What it is, and what it is not. In
Proceedings of the 10th International Conference on Au-
tonomic Computing (ICAC 13), pages 23—27. USENIX,

2013.

Z. Al-Sharif, Y. Jararweh, A. Al-Dahoud, and L.M.
Alawneh. Accrs: autonomic based cloud computing
resource scaling. Cluster Computing, 20(3):2479-2488,
2017. doi: 10.1007/510586-016-0682-6.

S.Islam, J. Keung, K. Lee, and A. Liu. Em-
pirical prediction models for adaptive resource
provisioning in the cloud. Future Gener-

ation Computer Systems, 28(1):155-162, 2012.

doi: https://doi.org/10.1016/j.future.2011.05.027.

A. Bauer, N. Herbst, and S. Kounev. Design and
evaluation of a proactive, application-aware auto-
scaler: Tutorial paper. In Proc. of the 8th ACM/SPEC
on International Conference on Performance Engi-
neering, pages 425—428, L-Aquila, Italy, 20r7. ACM.
doi: 10.1145/3030207.3053678.

AY. Nikravesh, S.A. Ajila, and C.H. Lung. Towards

an autonomic auto-scaling prediction system for cloud
resource provisioning. In Proc. of the 10th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 35— 45, Florence, Italy,
2015. IEEE Press. doi: 10.1109/SEAMS.2015.22.

L. Aniello, S. Bonomi, F. Lombardi, A. Zelli, and
R.Baldoni. An architecture for automatic scaling
of replicated services. In Networked Systems, pages
122-137. Springer, 2014.

J. Loffand J. Garcia. Vadara: Predictive elasticity for
cloud applications. In Proc. of 2014 IEEE 6th Interna-
tional Conference on Clond Computing Technology and
Science (CloudCom), pages 541-546, Singapore, Singa-
pore, 2014. IEEE. doi: 10.1109/CloudCom.2014.161.

P.P. Kukade and G. Kale. Auto-scaling of micro-services
using containerization. International Journal of Science
and Research (IJSR), 4(9):1960-1963, 2015.

C. Kan. Docloud: An elastic cloud platform for web ap-
plications based on docker. In Proc. of 2016 18th Inter-
national Conference on Advanced Communication Tech-
nology (ICACT), pages 478-483, Pyeongchang, South
Korea, 2016. IEEE. doi: 10.1109/ICACT 2016.7423439.

C. Qu, R.N. Calheiros, and R. Buyya. A reliable and
cost-efficient auto-scaling system for web applications
using heterogeneous spot instances. Journal of Network
and Computer Applications, 65:167-180, 2016.

P. Dube, A. Gandhi, A. Karve, A. Kochut, and
L.Zhang. Scaling a cloud infrastructure, 2016. US
Patent 9,300,553-

[102] Kubernetes Horizontal Pod Auto-scaling, 2018 (Ac-
cessed April 15, 2014). URLhttps://kubernetes.
io/docs/tasks/run-application/
horizontal-pod-autoscale/.

[103] Amazon Target Tracking Scaling, 2018 (Accessed April
15,2014). URLhttp://docs.aws.amazon.
com/autoscaling/latest/userguide/
as-scaling-target-tracking.html.

[104] Amazon Step Scaling, 2018 (Accessed April 15, 2014).
URL https://aws.amazon.com/blogs/aws/
auto-scaling-update-new-scaling-\
policies-for-more-responsive-scaling/.

Google Multiple Policies Scaling, 2018 (Accessed
April 15, 2014). URLhttps://cloud.
google. com/compute/docs/autoscaler/
multiple-policies.

105

[106] HAProxy, 2018 (Accessed April 15, 2014). URL
http://www.haproxy.org.

[107] C.Qu, R.N. Calheiros, and R. Buyya. Mitigating
impact of short-term overload on multi-cloud web
applications through geographical load balancing. Con-
currency and Computation: Practice and Experience, 29
(12), 2017. doi: https://doi.org/10.1002/cpe.4126.

[108] S.Nadgowda, S. Suneja, and C. Isci. Paracloud: bring-
ing application insight into cloud operations. In Proc.
of the gth USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 17), Santa Clara, California, 2017.
USENIX Association.

AN. Toosi, C. Qu, M.D. de Assungio, and R. Buyya.
Renewable-aware geographical load balancing of web
applications for sustainable data centers. Journal of
Network and Computer Applications, 83:155-168, 2017.
doi: https://doi.org/10.1016/j.jnca.2017.01.036.

[109

[t1o] N. Grozev and R. Buyya. Dynamic selection of virtual
machines for application servers in cloud environments.
In Research Advances in Cloud Computing, pages
187-210. Springer, 2017.

[m] H. Chen, Q. Wang, B. Palanisamy, and P. Xiong. Dem:
Dynamic concurrency management for scaling n-tier
applications in cloud. In Proc. of 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems
(ICDCS), pages 2097-2104, Atlanta, GA, USA, 2017.
IEEE. doi: 10.1109/ICDCS.2017.22.

[12] J. Kampars and K. Pinka. Auto-scaling and adjust-
ment platform for cloud-based systems. In Proc. of
the 11th International Scientific and Practical Confer-
ence, volume 2, pages 5257, Rezekne, Latvia, 2017.
doi: 10.17770/etr2017vo0l2.2591.

[13] A. Sangpetch, O. Sangpetch, N. Juangmarisakul, and
S. Warodom. Thoth: Automatic resource manage-
ment with machine learning for container-based cloud
platform. 2017. doi: 10.5220/0006254601030111.

123

124

Bibliography

[114]

[15]

[16]

[117]

[18]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

(127]

[128]

V. Singh and S.K. Peddoju. Container-based mi-
croservice architecture for cloud applications. In
Proc. of zo17 International Conference on Comput-
ing, Communication and Automation (ICCCA),
pages 847-8s2, Greater Noida, India, 2017. IEEE.
doi: 10.1109/CCAA.2017.8229914.

V. Nitu, B. Teabe, L. Fopa, A. Tchana, and D. Hagi-
mont. Stopgap: elastic vms to enhance server consolida-
tion. Soffware: Practice and Experience, 47(11):1501-1519,
2017. doi: https://doi.org/10.1002/spe.2482.

M. Wajahat, A. Karve, A. Kochut, and

A. Gandhi. Milscale: A machine learning based
application-agnostic autoscaler. Sustainable
Computing: Informatics and Systems, 2017.

doi: https://doi.org/10.1016/j.suscom.2017.10.003.

X. Xu, H. Jin, S. Wu, X. Wu, and Y. Li. Fama: A
middleware for fast deploying and auto scaling
towards multitier applications in clouds. Jour-
nal of Internet Technology, 16(6):987-997, 2015.
doi: 10.6138/J1T.2015.16.6.20130506.

GoDaddy, 2018 (Accessed April 15, 2014). URL
https://www.godaddy.com/.

GitHub, 2018 (Accessed April 15, 2014). URL
https://github.com/.

Stack Overflow, 2018 (Accessed April 15, 2014). URL
https://stackoverflow.com/.

Reddit, 2018 (Accessed April 15, 2014). URL
https://www.reddit.com/.

Speedtest, 2018 (Accessed April 15, 2014). URL
http://www.speedtest.net/.

Bitbucket, 2018 (Accessed April 15, 2014). URL
https://bitbucket.org/.

The Reliable, High Performance TCP/HTTP Load
Balancer, 2018 (Accessed April 15, 2014). URL
http://www.haproxy.org/they-use-it.html.

W3C, 2018 (Accessed April 15, 2014). URL
https://wuw.w3.org/.

AWS OpsWorks, 2018 (Accessed April 15, 2014). URL
https://aws.amazon.com/opsworks/.

Apache Jena Fuseki, 2018 (Accessed April 15,
2014). URLhttps://jena.apache.org/
documentation/fuseki2/index.html.

C. Roda, E. Navarro, and C.E. Cuesta. A comparative
analysis of linked data tools to support architectural
knowledge. pages 399-406, 2014.

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137

[138]

[139]

S. Taherizadeh

M.M. Ghanem R. Han, L. Guo and Y. Guo.
Lightweight resource scaling for cloud applications.

In Proc. of 2012 12th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid),
pages 644—6s1, Ottawa, ON, Canada, 2o12. IEEE.

doi: 10.1109/CCGrid.2012.52.

Zhihui Lu, Jie Wu, Jie Bao, and Patrick CK Hung.
Ocrem: Openstack-based cloud datacentre re-
source monitoring and management scheme. /n-
ternational Journal of High Performance Com-
puting and Networking, 9(1-2):31- 44, 2016.

doi: https://doi.org/10.1504/IJHPCN.2016.074656.

G. Singhi and D. Tiwari. A load balancing approach
for increasing the resource utilisation by minimizing
the number of active servers. International Journal of
Computer Security and Source Code Analysis, 3(1):11-15,
2017.

M.A.H. Monil and R.M. Rahman. Implementation
of modified overload detection technique with vm
selection strategies based on heuristics and migration
control. In Proc. of 2015 IEEE/ACIS 14th Interna-
tional Conference on Computer and Information Science
(ICIS), pages 223—227, Las Vegas, NV, USA, 2015. IEEE.
doi: 10.1109/ICIS.2015.7166597.

A. Alonso, I. Aguado, J. Salvachua, and P. Rodriguez.
A metric to estimate resource use in cloud-based video-
conferencing distributed systems. In Proc. of 2016
IEEE 4th International Conférence on Future Internet
of Things and Cloud (FiCloud), pages 25-32, Vienna,
Austria, 2016. IEEE. doi: 10.1109/FiCloud.2016.12.

A. Alonso, I. Aguado, J. Salvachua, and P. Rodriguez.
A methodology for designing and evaluating cloud
scheduling strategies in distributed videoconferencing
systems. [EEE Transactions on Multimedia, 19(10):
22822292, 2017. doi: 10.1109/ TMM.2017.2733301.

Developed Alarm-Trigger component, 2018

(Accessed April 15, 2014). URLhttps:
//github.com/salmant/ASAP/tree/master/
SWITCH-Alarm-Trigger.

The Alarm-Trigger container image, 2018 (Accessed
April 15, 2014). URLhttps://hub.docker.com/
r/salmant/ul_alarm_trigger_container_
image/.

Developed Self-Adapter component, 2018 (Ac-
cessed April 15, 2014). URLhttps://
github.com/salmant/ASAP/tree/master/
SWITCH-Self-Adapter.

brtperf, 2018 (Accessed April 15, 2014). URL
https://github.com/httperf/httperf.

J. Juzna, P. Cesarek, D. Petcu, and V. Stankovski. Solv-
ing solid and fluid mechanics problems in the cloud
with mosaic. Computing in Science and Engineering, 16
(3):68-77, 2014. doi: 10.1109/MCSE.2013.135.

Multi-level monitoring and rule-based reasoning in the adaptation of time-critical cloud applications

[140] 1998 World Cup Web Site Access Logs, 2018 (Accessed
April 15, 2014). URLhttp://ita.ee.1bl.gov/
html/contrib/WorldCup.html.

K. Rattanaopas and P. Tandayya. Adaptive workload
prediction for cloud-based server infrastructures. Jour-
nal of Telecommunication, Electronic and Computer
Engineering (JTEC), 9(2-4):129-134, 2017.

[141]

L. Jiao, A.M. Tulino, J. Llorca, Y. Jin, and A. Sala.
Smoothed online resource allocation in multi-tier
distributed cloud networks. IEEE/ACM Transac-
tions on Networking (TON), 25(4):2556-2570, 2017.
doi: 10.1109/TNET.2017.2707142.

[142

D. Tran, N. Tran, B.M. Nguyen, and H. Le. Pd-
gabp—a novel prediction model applying for elastic
applications in distributed environment. In Proc. of
2016 37d National Foundation for Science and Tech-
nology Development Conference on Information and
Computer Science (NICS), pages 240—24s, Danang,
Vietnam, 2016. IEEE. doi: 10.1109/NICS.2016.7725658.

[143]

L. Logeswaran, H.M.N. Dilum-Bandara, and H.S.
Bhathiya. Performance, resource, and cost aware re-
source provisioning in the cloud. In Proc. of 2016 IEEE
9th International Conference on Cloud Computing
(CLOUD), pages 913-916, San Francisco, CA, USA,
2016. IEEE. doi: 10.1109/CLOUD.2016.0135.

(144

L.R. Moore, K. Bean, and T. Ellahi. A coordinated
reactive and predictive approach to cloud elasticity.
2013.

[145]

[146] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle.
Autonomic vertical elasticity of docker containers with
elasticdocker. In Proc. of 2017 IEEE 10th Interna-
tional Conference on Cloud Computing (CLOUD),
pages 472—479, Honolulu, CA, USA, 2017. IEEE.

doi: 10.1109/CLOUD.2017.67.

S. Farokhi, P. Jamshidi, E.B. Lakew, L. Brandic, and
E. Elmroth. A hybrid cloud controller for vertical
memory elasticity: A control-theoretic approach. Fu-
ture Generation Computer Systems, 65:57-72, 2016.
doi: hteps://doi.org/10.1016/j.future.2016.05.028.

(147

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

LXC container technology, 2018 (Accessed
April1s,2014). URLhttp://wuw.ibm.
com/developerworks/linux/library/
1-1xc-containers.

OpenVZ Linux containers, 2018 (Accessed April 1s,
2014). URLhttp://openvz.org.

V. Stankovski, J. Trnkoczy, S. Taherizadeh, and

M. Cigale. Implementing time-critical functionali-
ties with a distributed adaptive container architecture.
In Proc. of the 18th International Conference on Infor-
mation Integration and Web-based Applications and
Services, pages 453—4s7, Singapore, Singapore, 2016.
ACM. doi: 10.1145/3011141.3011202.

S. Taherizadeh, A.C. Jones, I. Taylor, Z. Zhao, and

V. Stankovski. Monitoring self-adaptive applications
within edge computing frameworks: A state-of-the-art
review. Journal of Systems and Software, 136:19-38, 2018.
doi: https://doi.org/10.1016/j.jss.2017.10.033.

S. Taherizadeh, I. Taylor, A. Jones, Z. Zhao, and

V. Stankovski. A network edge monitoring approach
for real-time data streaming applications. In Proc.

of the 13th International Conference on Economics

of Grids, Clouds, Systems and Services (GECON
2016), pages 293—303, Athens, Greece, 2016. Springer.
doi: https://doi.org/10.1007/978-3-319-61920-0 21.

P. Hoenisch, 1. Weber, S. Schulte, L. Zhu, and

A. Fekete. Four-fold auto-scaling on a contempo-
rary deployment platform using docker containers. In
Proc. of International Conference on Service-Oriented
Computing, pages 316—323. Springer, 2015.

Raspberry Pi 3 model B, 2018 (Accessed April 15,
2014). URLhttps://www.raspberrypi.org/
products/raspberry-pi-3-model-b/.

2017 State of the Cloud Survey, 2018 (Accessed April
15,2014). URLhttps://wuw.rightscale.
com/blog/cloud-industry-insights/
cloud-computing-trends-2017-state-\
cloud-survey.

125

