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Abstract—Low cost depth sensors could potentially allow for 

home-based care and rehabilitation using virtual systems. 
Currently, no publicly available and peer-reviewed assessment 
has been made on the accuracy of joint position data determined 
by the Microsoft KinectTM for assessment of upper extremity 
movements. We devised and validated clinically-based angle 
classifications for random arm movements in 3D-space, 
specifically, the shoulder joint flexion/extension angle, shoulder 
joint abduction/adduction angle, and 3-dimensional shoulder 
joint angle of 19 subjects at a distance of 2.0m using an eight 
camera Vicon Motion Capture system. Results show an average 
absolute error of these angle measurements not exceeding 10.0%. 

Keywords— Kinect; virtual; rehabilitation; evaluation; upper 
extremity; cerebral palsy; range of motion 

I. INTRODUCTION 
Rehabilitation after injury is crucial to recovery and to 

maintaining an adequate quality of life. Once a patient leaves 
clinical therapy, there remains a need for continuation of 
rehabilitation in the home [1], [2]. Many have also recognized 
the need for home-based rehabilitation programs to increase 
the quality of life in patients with other musculoskeletal 
conditions [1], [3], [4]. Engagement is key to an effective 
rehabilitation program and virtual systems are becoming more 
apparent as an effective means to this end [5], [6]. To decrease 
the load and increase the efficiency of physical or occupational 
therapists, home-based assessment shows promise. Inexpensive 
solutions in position determination such as the Microsoft (MS) 
Kinect TM could be used by therapists to gain accurate and 
useful data on patient progress [7–9].  

Virtual systems can be used to provide, not only the 
therapist with useful data, but also to give the patient much 
needed feedback on performance and encourage activity [6], 
[10–12]. Patients are able to immediately see feedback in a 
virtual environment. Virtual systems are also proving to be an 
effective means of functional recovery in upper limb 
rehabilitation [5], [6], [13]. Feedback on performance is crucial 
to motor learning and it is also an effective means of allowing 
for the patient to feel productive during the intervention [5]. 

Currently, very expensive motion capture systems have 
been used in rehabilitation and other motion capture studies 
[7], [14], [15]. One such system is the Vicon camera system. 
The user must wear a non-infrared reflective suit with passive 
infrared (IR) reflective balls, or nodes, attached to it. The 
Vicon system uses multiple cameras to gain an accurate 
determination of the position of the nodes in 3D-space.  

For home-based care, it would be extremely cost-
prohibitive to utilize the Vicon system. On the other hand, the 
Kinect, a 3D depth camera, has the advantage of being 
relatively inexpensive and requires no special clothing or 
equipment to use. If proven to be accurate enough for use in 
therapeutic assessment, the Kinect could allow for a dramatic 
increase in the efficiency of therapists and the number of 
patients they can treat simultaneously, engagement of patients 
during home-based care, and quality of life for patients through 
its use in virtual rehabilitation. 

II. PREVIOUS WORK 
There have been some limited prior studies that have 

evaluated the accuracy of the Kinect with respect to 
rehabilitation scenarios. In  [9], a very promising study was 
performed to demonstrate the accuracy of the Kinect sensor 
versus the Vicon, however, this study was limited to 
determining the position of stationary blocks. Previous work 
[8] determined human motion by comparing Kinect with 
Vicon, but was limited to only determining stride length. 
Although an assessment of the Kinect hardware versus another 
motion capture technology [7] has been performed (using the 
OptiTrack Optical Motion Capture System), it was recognized 
that a larger sample size and a larger variety of motion was still 
needed. Beyond these samples, to the best of our knowledge, 
there is currently no publicly available study that gives an 
assessment on the accuracy of the data provided by the Kinect 
sensor in upper extremity movements. Neither have we 
observed an existing markerless objective method of 
assessment for home-based rehabilitation. This paper attempts 
to fill in the gap by providing such an assessment. 
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III. EQUIPMENT 

A. Kinect 
The Kinect (or the underlying PrimeSenseTM sensor [16]) 

consists of an infrared (IR) emitter (or projector), an IR depth 
sensor (IR camera), and an RGB sensor (camera) in addition to 
other unrelated hardware components (See Fig. 1). The emitter 
projects a speckle pattern of IR waves that are reflected off of 
objects which are then received by the IR depth sensor. These 
reflected waves create a new speckle pattern from which 
distances to objects may be determined by assessing the 
deformity of the new speckle pattern compared to the original. 
The technical specifications and details of the operation of the 
Kinect sensor can be found in observing the patents filed by 
PrimeSense [17–19]. The distances are used to form a depth 
image [20]. The Kinect for Windows SDK v.1.0.3.191 
determines skeleton position information from the provided 
depth image. The result is Cartesian coordinates of joint 
positions related in meters with the Kinect depth sensor center 
as the origin (See Fig. 2). These skeletons can be acquired at a 
rate of about 20 to 26 samples per second which has been 
deemed more than adequate in determination of postures in 
industrial settings [21]. 

B. Vicon 
The Vicon system used for this protocol consists of eight 

Vicon MX40 cameras (See Fig. 3) whose data are analyzed 
using the software ViconiQ v2.5 Build 275. Each camera has 
an array of IR lights that emit IR waves. These waves are 
reflected by the passive reflectors the subject is wearing at 
specific points on the body. The camera data is compiled in the 
Vicon 612 vR511 data station and then sent to a separate 
workstation with the ViconiQ software. The data from all 8 
cameras is utilized to determine 3-dimensional positions of the 
reflectors. Once a capture session has been run, each passive 
IR reflector node must be labeled throughout the entire session. 
From this, the ViconiQ software generates a skeleton to fit 
within the nodes (See Fig. 4). After filtering the acquired data 
with a weighted average filter and a low pass Butterworth filter 
with an 8Hz cutoff and fitting the skeleton to each trial data, 
the result is position data of each joint in meters. The Vicon-
generated skeleton joints do not all correspond exactly to the 
joints determined by the Kinect. For example, the Head joint 
compiled by the Vicon corresponds to the top of the head, 
while on the Kinect it is meant to represent the center of the 
head. Fortunately, in our study, we are only concerned with the 
shoulder flexion, shoulder abduction/adduction, and 3-
dimensional shoulder angles. For this we only require the 

positions of the Center Shoulder, Shoulder, and Elbow joints 
(See Fig. 2). Since we know the origins of the Kinect skeleton 
and the Vicon skeleton coordinate systems we are able to 
perform a coordinate transformation so that we can compare 
the data from each sensor. 

IV. PROCEDURE 
In order to confirm that the Kinect would be suitable for 

use with the SuperPop game, we assess its performance during 
game-play. For the evaluation, 19 participants (13 male and 6 
female) were instructed to play the Super Pop VRTM game [22] 
wherein virtual bubbles are projected onto a screen in 
randomly dispersed locations (See Fig. 5). On the same screen, 
the participant sees a video stream of themselves in real time. 
The subjects are instructed to pop as many bubbles as they can 
in a 40 second time span. This procedure is repeated where the 
back of a stool on which the subject sits is placed at a distance 
of 2.0m from the Kinect. 

V. DATA 
The joint position determination algorithm provided by the 

Kinect was able to provide between 20 and 26 positions for 
each joint per second for a total of around 1,000 sample frames 
for each approximately 40 second timed  trial. The Vicon 
yields exactly 100 joint positions per second for a total of 
usually 4,000 sample frames.  

A. Filtering Method 
For occluded or untracked joint positions, the Kinect 

algorithm must make an inference. Oftentimes the inference 
leads to what is characterized as spike noise in the data set. 
This spike noise, quantization noise, and other white noise 
associated with the sensor electronics must be filtered out 

 
Figure 2. Kinect skeleton and joints (in meters) 

 
Figure 1. Microsoft KinectTM and pertinent components 



before post-processing the data and determining joint angles 
since all subsequent calculations will amplify the noise.  

We utilize what is typically used in the field for joint 
tracking data: a Butterworth filter [5], [23]. Particularly, a 6th 
order with a cutoff frequency of 3Hz. We choose 3 Hz through 
observation of the frequency content of our motion signal (Fig. 
6). From the figure, some of the noise looks to be above 6 Hz, 
however, we achieve optimal results with the cutoff at 3 Hz. 
The Butterworth filter is an infinite impulse response (IIR) 
lowpass filter (LPF) [24]. Due to its recursive nature, this 
filter’s impulse response extends for an infinite period of time. 
Butterworth filters are characterized as maximally flat, or with 
no ripple, in the passband [24]. As a 6th order Butterworth, our 
filter has a response with roll off of -36 dB per octave (-120 
dB/decade) attenuation in the stopband. 

B. Filtering Results 
As seen in Fig. 7, our filter implementation is shown to 

have eliminated the high frequency noise components. The 
filtered Kinect data is much more correlated to the Vicon 
sensor data. Quantitative data associated with this error is 
provided in the results section. 

C. Angle Characterization 
We use the clinical definitions of arm motion to describe 

different types of arm ranges of motion we will measure in our 
study. Range of motion (ROM) is clinically defined based on 
the type of joint being measured. The shoulder joints are under 

the classification of a synovial joint, which are joints in which 
the articulating bone ends are separated by a joint cavity 
containing synovial fluid [25]. Synovial joints are further sub-
classified into other types based on the types of movements 
that are allowed by the joint. The shoulder is a part of the sub-
class ball-and-socket joint which is a multiaxial joint wherein 
movement is allowed in all directions and pivotal rotation [25]. 
Flexion is a movement, typically in the sagittal plane (See Fig. 
8), that decreases the angle of a joint and reduces the distance 
between the two bones of the joint. In contrast to this, 
extension is a movement that increases the angle of a joint and 
the distance between the bones [25]. Abduction is a movement 
of a limb away from the midline or median plane (a sagittal 
plane through the midline of the body), generally on the 
frontal, or coronal plane (See Fig. 8). In contrast, what is 
sometimes referred to as the opposite of abduction, adduction 
is movement toward the midline of the body [25]. The shoulder 
abduction/adduction ROM (which we will summarily refer to 
as just shoulder abduction) is defined as the point at which 
there is maximum abduction to the point at which there is 
maximum adduction (See Fig. 9). This can be thought of the 
arm motion used to make a snow angel. Shoulder 
flexion/extension ROM (again, summarily referred to as 
simply shoulder flexion) is defined as the point at which there 
is maximum flexion to the point where there is maximum 
extension of the arm at the shoulder joint (See Fig. 9). This can 
be thought of as the motion of the arm from rest in a standing 
position to straight up in the air, with the palm of the hand 
facing forward, as if to give a high five.  

Since these clinical definitions of motion are restricted to 
motion on a fixed plane, we must derive our own classification 

 
Figure 3. Vicon MX camera 

 
Figure 4. Vicon skeleton in ViconiQ v2.5 

 
Figure 5. Screen capture of Super Pop VRTM game-play with yellow 

square bubbles 

 
Figure 6. Power Spectrum of Shoulder Depth 



for the unique motion that occurs in normal random reaching. 
We define our shoulder flexion angle as the angle of the 
shoulder made by projecting the upper arm onto a sagittal 
plane (perpendicular to the line made by the shoulder joint to 
the center shoulder joint) versus the coronal plane. Similarly, 
the shoulder abduction/adduction angle is defined as the angle 
formed by the upper arm projected onto the coronal plane 
versus the same sagittal plane used for flexion.  

D. Angle Calculation 
To calculate the 3-dimensional left and right shoulder 

angles, we simply determine the angle between the vector s 
created by the elbow joint and the shoulder joint and the vector 
u created by the shoulder joint and the center shoulder joint 
(See Fig. 2). Since we have the 3 Cartesian coordinates of the 
joints in 3D-space, we can create the vectors s and u and then 
compute the 3D angle, θ3D, between the two vectors as seen in 
(1) [26].  

 Θ3D = cos−1(s·u / |s|·|u|) (1) 

Forming the clinical angles requires additional 

computation. The shoulder abduction angle is created by 
projecting the upper arm onto a plane, D (which has a normal 
m), created by the cross product of shoulder vector u and upper 
spine vector g (See Fig. 2, Fig. 10 and (2)). The projection will 
be called vector v. The plane can be thought of a pseudo-
coronal plane. After making the projection, we shift the upper 
spine to connect with the shoulder joint and call the shifted 
spine, vector p. The abduction angle can then be found by 
determining the angle between v and p using (1). 
Programmatically, we are solving the problem of intersecting a 
circle, C (whose radius is the upper arm with length d and has 
normal n: See (3)), and the plane D. If the point of intersection 
is P, then we are essentially solving for P as in (4). Since this 
will have 2 solutions, we choose the one closest to the elbow 
joint. 

 m = u × g  (2) 

 
Figure 7. A Comparison of Raw Kinect (Top), Filtered Kinect (Middle), 

and Vicon data (Bottom) 

 
Figure 9. A demonstration of the range of motion of shoulder 
flexion/extension (a) and shoulder abduction/adduction (b) 

 
Figure 10. The abduction angle calculation visualization (in meters) 

 
Figure 8. The planes used to describe parts and actions of the body [28] 



 C = dcos(t)∙c + dsin(t) (n × c) + S, (3) 

where S is the circle’s centroid and c is an arbitrarily 
defined vector from S to the edge of circle C. 

 (C – P) · m = 0 (4) 

In a similar fashion as the abduction angle, we are able to 
determine the flexion angle. Here we are measuring the 
projection, vector w, against the same vector of the shifted 
spine, p. Vector w is formed by the point of the intersection of 
the circle with radius formed by the upper arm and with a 
normal perpendicular to n and the plane that is perpendicular to 
D and passes through the shoulder joint. 

VI. RESULTS 
Since the two data sets between the Vicon and Kinect are 

not sampled at precisely the same time, to make a comparison 
we must design a method for correlating the data. To this 
effect, each subject was instructed to remain still until a 
countdown had completed. We use this time with a very low 
frequency of motion to line up the two data sets so that we may 
form a comparison. Since sample times also do not match up, 
we use the following metric (5) for determining the error 
between each arm trajectory, where a trajectory is defined as 
motion during the time between bubble pops in the virtual 
reality game. 

We determine the average absolute error and the average 
absolute deviation for the shoulder angle range of motion 
(ROM) which is the difference of the maximum and minimum 
observed angles in a trajectory. We define absolute error (AE) 
as the percentage determined by the ratio of the difference in 
observed angles (Kinect: ROMK, Vicon: ROMV) and the 
theoretical maximum of the angles, which is 180 degrees (5). 
AE is averaged for each subject’s trial and all subjects are then 
averaged (Reported as the solid bars in Fig. 11). The average 
absolute deviation is a measure of dispersion from the mean. It 
is found by finding the square root of the average of the 
variances. 

 AE = (|ROMV − ROMK| / 180) ∙ 100 (5) 

Table 1 shows the average absolute error of all trajectories 
of each subject for all 6 of our calculated angles. Fig. 11 
represents a summary of Table 1 as well as the deviations from 
the means. From Fig. 11 we observe that the average absolute 
error does not exceed 10.0% for any of our angles. The Left 
Shoulder Abduction (LSA) angle error is 10.0%.The Right 
Shoulder Flexion (RSF) angle is 9.96%. The 3D Right (RS) 
and Left Shoulder (LS) angles are 6.81% and 7.64%, 
respectively. Right Shoulder Abduction (RSA) is 8.18% and 
Left Shoulder Flexion (LSF) is 9.31%. The average absolute 
deviations are highest on the LSA (10.6%) and RSF (11.2%) 
and lowest on LS (7.28%) and RS (6.33%). The LSF and RSA 
were 10.3% and 9.33%, respectively. Our highest deviations 
were observed in trajectories where we note occlusions of joint 
positions in the Vicon data. The error was higher for the angles 
which were determined from the original positions using many 

calculations such as LSA, LSF, RSA, and RSF. This fits our 
intuition since we propagate the error in the position 
measurements when performing further calculations. 

TABLE I.  SUMMARY OF AVERAGE ABSOLUTE ERROR OF ALL 
TRAJECTORIES 

 LSA 
(%) 

LSF 
(%) 

RSA 
(%) 

RSF 
(%) 

LS 
(%) 

RS 
(%) 

Subject1 7.11 8.74 5.24 14.88 6.22 8.86 
Subject2 8.63 6.21 3.50 5.92 7.15 6.26 
Subject3 10.78 6.38 11.24 8.69 9.67 6.29 
Subject4 3.96 3.49 3.88 4.58 2.89 3.53 
Subject5 4.75 5.51 7.10 8.22 6.43 7.13 
Subject6 6.89 8.16 5.29 6.25 7.05 6.12 
Subject7 7.43 8.56 7.77 14.79 5.89 5.67 
Subject8 12.47 14.00 8.09 20.43 10.51 9.46 
Subject9 8.65 16.78 12.30 9.81 6.10 9.26 
Subject10 9.06 10.02 12.69 7.48 10.26 8.18 
Subject11 8.10 7.07 6.30 8.77 6.40 5.78 
Subject12 15.51 12.12 4.06 6.81 7.01 7.08 
Subject13 12.47 9.36 8.36 6.20 10.29 5.11 
Subject14 8.19 10.35 10.49 8.74 6.65 6.43 
Subject15 9.23 11.93 9.23 8.30 9.91 7.07 
Subject16 10.96 9.18 11.38 11.63 10.74 7.25 
Subject17 15.01 7.21 10.29 8.29 5.47 5.82 
Subject18 9.43 7.85 6.01 15.79 6.18 5.76 
Subject19 22.17 14.00 12.18 13.68 10.39 8.31 

VII. DISCUSSION 
We have termed and validated clinical angle measurements 

that can be used to classify motion of the arm. Using these 
angle definitions, everyday arm motion may more easily be 
quantitatively defined and assessed for therapeutic purposes.  

When assessing the results, one must also consider the 
method of angle determination as a source of error. Although 
the Kinect and Vicon skeletons both are formed through 
estimation of the centroid of joint positions, they have not been 
determined to be precisely identical (See Fig. 2 & Fig. 4) and 
so one source of error may also be in the difference in joint 
coordinates. 

 
Figure 11. The plot shows the average percent absolute error comparison 

at 2.0m of 6th order Butterworth filter with a 3 Hz cutoff frequency 
(leftmost bars) and the raw Kinect data (rightmost bars) each versus the 

Vicon data for all 19 subjects. The vertical line bars represent +/- the 
average absolute deviation. 



Currently, to the best of our knowledge, there is no 
markerless method for quantitative assessment in the home 
environment. Furthermore, most practicing (non-research) 
clinical assessments are based on subjective measures (PDMS-
2, Fugl-Meyer, GMFM, etc.) [27]. In this research, we have 
shown preliminary results that validate the utilization of an 
objective assessment method to be used in home-based and 
non-research based rehabilitation. These results are believed to 
be indicative of the potential usage of the Kinect in a virtual 
rehabilitation system. As a direct result, home-based therapy 
can then be used to provide quantitative feedback to patients 
and therapists in an inexpensive way. We believe that in-home 
clinical systems that can measure kinematics without 
specialized markers or gloves open the field to a new domain. 
By using such systems, therapists could treat many more 
patients and increase their overall efficiency. Through more 
meaningful feedback, patients can not only gain functional 
recovery much more expeditiously, but also increase their 
aptitude for motor learning and perhaps see an increase in 
engagement. All this ultimately leads to a better patient quality 
of life. 

VIII. CONCLUSIONS & FUTURE WORK 
From this assessment, we have formed a quantitative 

measure of the accuracy of the MS Kinect for the shoulder 
flexion angle, shoulder abduction/adduction angle, and the 3-
dimensional shoulder angle observed in random reaching 
activities. We have also created a method for translating reach 
into measurable clinically-based shoulder angles. 

We recognize that improvements can be made in the 
filtering of the data. Further exploration should be made in 
filtering methods. We also recognize that many other 
parameters could be evaluated from the acquired data from our 
assessments. This will form the basis of our future work in this 
area. 
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