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ABSTRACT Protein structural information can be uncovered using an information-theory-based entropy and auxiliary
functions by taking advantage of high-quality correlation plots between the dihedral angles around a residue and those between
sequential residues. A standard information entropy for a primary sequence has been defined using the values of the proba-
bilities of the most likely dihedral angles along the sequence. The distribution of entropy differences relative to the standard for
each protein in a reference set—a sublibrary of the Protein Data Bank at the 90% sequence redundancy level—appears to be
nearly Gaussian. It gives rise to an auxiliary checking function whose value signals the extent to which the dihedral angle
propensities differ from typical structures. Such deviations can arise either because of incorrect dihedral angle assignments or
secondary structural propensities that are atypical of the structures in the reference set. This auxiliary checking function can be
readily calculated at the public website, http://www.d2check.gatech.edu. Its utility is demonstrated here in an analysis displaying
differences between experimentally and theoretically derived structures, and in the analysis of structures derived by homology
modeling. A comparison of the new measure, D2Check, to other checking functions based on backbone conformation—namely,
PROCHECK and WHAT_CHECK—is also provided.

INTRODUCTION

The number of structures in the Protein Data Bank (PDB) (1)

has increased dramatically during the past decade. More than

28,000 structures had been deposited as of October 2004

when the results were first collected for this study and the

count stands at a little more than 37,000 as of July 2006. The

accuracy of any new structure is of obvious importance

because any error makes predictive methods more difficult to

validate and creates problems for structural data-mining

efforts (2–4). As the various computational methods mature,

it becomes increasingly important to derive a varied set of

scores or checking functions that assess and validate protein

structures. Existing and new checking functions are also vital

in the area of de novo structure prediction for validation. The

Ramachandran plot (5) has provided a useful framework for

discerning patterns in the dihedral angle correlations and has

been successfully used as a guide during structure refine-

ment. However, it is the work of Thornton and co-workers

(6–10) that pioneered the field of structure validation (11–

18) using scores based upon known statistical properties of

the existing database. Although such checks are not fool-

proof as they rely on the working hypothesis that a new

structure will interpolate within the known database, they at

least raise the question of whether a new structure is atypical

or is merely extrapolating outside of the database. In par-

ticular, Thornton and co-workers have proposed simple and

effective ways to test the stereochemical quality of a pro-

posed structure. Such approaches, based only on coordinates

rather than on free energies or dynamical considerations, are

easy to code and quick to process while still having sig-

nificant merit, especially when used in conjunction with

new measures.

In this study, an information-theory entropy is proposed

based on the backbone dihedral angle distributions of the

protein structure. It underlies an auxiliary robust checking

function for evaluating the compatibility of a given protein

structure with the experimentally derived structures in the

PDB with respect to its dihedral angles. The 20 Ramachandran

plots—i.e., fi-ci distributions—for each of the naturally oc-

curring amino acids are reconstructed using all of the non-

redundant experimental protein structures available in the

October 2004 PDB using a 90% sequence identity cutoff.

In addition, the 400 ci-fi11 distributions accounting for the

statistics in the two dihedral angles between specified

adjacent amino acids have also been constructed and are

presented. The latter distributions have been seen to contain

nontrivial structure and the present results—over the existing

larger database—serve to validate prior conclusions (19–22).

The information-theory entropy, S, is defined in terms of the

probabilities (or likelihood) of particular pairs of dihedral

angles along the protein given its primary structure. A stan-

dard entropy is defined using an ideal (but likely unattain-

able) structure in which every angle pair, fi-ci and ci-fi11,

takes on the value with maximum probability, where the

index i labels a residue along a chain. The entropy difference,

DS, is defined relative to the standard entropy of this

structure, and has been calculated for all nonredundant pro-

tein structures in the PDB. A histogram of these entropy
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differences leads to a nontrivial distribution. As a simple test

of whether such a distribution is sensitive to differences be-

tween the theoretically and experimentally generated struc-

tures in the PDB, this distribution has been obtained for each

cohort. The deviations in these distributions will be seen to

emerge primarily from those theoretical structures that have

been obtained using statistical information that ignores long-

range correlation due to, for example, secondary structural

elements.

Furthermore, the distribution in DS can be used to define

auxiliary checking functions, herein called D1 and D2, which

characterize the degree to which the dihedral angles of a

given structure are compatible with the existing database (23).

The DS distribution is peaked at a nonzero value because a

typical structure contains a certain degree of correlation be-

tween distant residues due to secondary structural interac-

tions. The use of the statistical distributions in the calculation

of DS implies that this information is included in an aver-

aged, or mean-field-like, sense. Thus D2 can signal the exis-

tence of atypical structures whose unusual behavior is due

to specific interactions between distant residues. Of course,

deviations may also be due to incorrectly obtained structures,

though such a determination is not available simply from the

knowledge of D2. It therefore complements the scores

available in PROCHECK (6,7) and WHAT_CHECK (3) in

that it includes the ci-fi11 correlations, and it provides a

simple check of the deviation from non-mean-field-like

structure. Hence this measure can be used to guide modeling

studies and to validate experimentally derived structures,

while bolstering the tools that are available to guide the

formation of de novo and engineered protein structures. In

fact, D2 provides an information-rich tool to guide experi-

ments involving the replacement or redesign of large sec-

tions of protein structure (e.g., loop modeling). These new

measures also complement the work of Shortle and co-

workers (24–27), who focus on the propensities of a given

residue’s dihedral angles due to the nearby structure (through

an energy-based scoring function) rather than on the mutual

probability of given residue pairs. These subtle distinctions

give rise to differences in the information that the respective

checking functions or scores report. Thus the central result

of this work is the construction of a new checking function

D2 that complements the existing checking functions by

reporting on the extent to which the propensity of the di-

hedral angle deviations differ in a given protein from those of

the reference database.

METHODS

fi-ci and ci-fi11 distributions

Dihedral angle analysis (28–31) of protein backbones is helpful in structure

validation and modeling (6–11,13–18,32–40). Conventional Ramachandran

plots PR(fi, ci) characterize the probability distribution for angles fi and ci

for each R of the 20 natural amino acids, where the two dihedral angles are

defined by the backbone atom sequences, C(i – 1)-N(i)-CA(i)-C(i) and N(i)-

CA(i)-C(i)-N(i 1 1), respectively, as shown in Fig. 1. An extensive analysis

of the Ramachandran plots using a fairly recent edition of the PDB has been

reported by Hovmöller et al. (28).

Although useful, the information contained in a Ramachandran plot is not

sufficient to construct a scoring function for high-accuracy protein structure

validation. For example, flanking residues are known to affect the proba-

bility distribution in the dihedral angles of a given residue (24–27,41–47).

As previously suggested, one defines the PRi ;Ri11
ðci;fi11Þ distributions—in

which the angles are associated with the sequential residues—to comple-

ment the information in the Ramachandran plot (19–22). Since the ci-fi11

plot accounts for the correlation between two adjacent residues, its use in

structure assessment provides a nontrivial sequence-dependent measure of

the likelihood that a given pair of residues will be connected by the specified

dihedral angles. In principle, one could also account for the explicit cor-

relations present between additional structural observables such as in the

recent study by Esposito et al. (48) on the correlation between c and

the angle v describing the rotation of the peptide bond. However, only the

correlation between f and c around a residue and between bonded residues

will be addressed, because, as shown below, this suffices to provide a

different first-order estimate of protein structure than other scores presently

available.

Data-mining the ci-fi11 distributions

To obtain the 400 possible ci-fi11 distributions labeled by each of the pairs

of naturally occurring amino acids, a statistically representative sample of all

possible proteins needs to be available. In this work (as with other similar

studies), the sublibrary of deposited structures in the PDB are assumed to be

representative of the protein space once it has been systematically pruned:

DNA, RNA and complexes of proteins with DNA or RNA are removed.

Model structures are discarded because of the unknown possibility that such

theoretically derived structures may be of a different level of accuracy or

representation. Additionally, structures with missing residues or containing

unified atoms have been removed. (Although more aggressive pruning could

have been done by discarding structures according to a more rigorous

standard for its resolution, this was not done in this investigation.) After

pruning the PDB subject to these criteria, the resulting library (called

‘‘EXP’’ throughout this work) includes a total of 24,444 experimentally

derived structures.

The NR50, NR70, and NR90 sublibraries result from the intersection of

the EXP library of October 2004 PDB structures with the nonredundant

sequence databases posted in the PDB—as listed in the April 2005

update—at the 50%, 70%, and 90% sequence identity levels, respectively

(49). The NR100 sublibrary is a subset of the EXP library in which a single

arbitrarily-chosen structure is retained for each redundant sequence at 100%

sequence identity. Note that, by definition, no two structures in a given

database share a sequence identity greater than or equal to that of the

database’s defining percentage level. Hence, for example, the NR100

sublibrary will be smaller than the EXP library as the former includes only

one structure for a given sequence. The subset, NR100T, of theoretically

derived—that is, model—protein structures in the PDB at 100% sequence

identity will also be investigated for confirmation of the relative level of

FIGURE 1 The backbone dihedral angles in a tripeptide ALA-ALA-ALA.

(Blue, nitrogen; black, carbon; red, oxygen.)
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information contained therein. The number of structures in each library is

shown in Table 1.

All 400 ci-fi11 and 20 Ramachandran plots have been generated for each

of the five sublibraries, NR50, NR70, NR90, NR100, and EXP. Their

construction is described explicitly in Supplement A in the Supplementary

Material, and the results for the NR90 sublibrary are provided in Supplement

B in the Supplementary Material. Typical one-dimensional distributions of

the projections of the fi-ci Ramachandran plots and the ci-fi11 plots are

displayed in Fig. 2 (for the procedure, see Supplement A, Supplementary

Material). These results demonstrate the sequence dependence of the ci-fi11

distribution, in accordance with the previous reports (19,21,50). Importantly,

the dependence of ci on the second residue and fi11 on the first residue

obviously illustrates the impact of the distant residue identity on the absolute

value of the maximum probability. The effects on glycine are particularly

pronounced as the peak position of the distribution changes with the distant

residue identity (Fig. 2 b). The torsion angles were extracted using a tool

kit written in FORTRAN and verified within our group (S. Zhong and

R. Hernandez, 2005. SiFiScore Toolkit, unpublished code). The 420 histo-

grammed distributions for NR90 have been saved into a single database

which can, in turn, be used to calculate the dihedral-angle information

entropy difference, DS, defined in Eq. 6 below.

The dihedral-angle information entropy

Given a proposed protein structure for a particular primary sequence, and the

distribution functions described above, one can calculate an information-

theory-based entropy for the angle pairs around and between the residues of

the chain. In particular, for a given structure q~, the dihedral angle pairs across

its n residues consist of the (n � 2) fi-ci pairs and associated probabilities

PRi
ðfi;ciÞ at each site i for i ranging across 2 and n � 1. Similarly, q~ gives

rise to the (n � 1) ci-fi11 pairs and associated probabilities PRi ;Ri11

ðci;fi11Þ between successive residues at i and i 1 1 for i ranging across

1 and n � 1. For convenience, these two sets are interlaced into a single

vector ~YY whose 2n � 3 entries are defined as

Y2i�1 [ ðci;fi11Þ for 1 # i # n� 1; (1a)

Y2i [ ðfi11;ci11Þ for 1 # i # n� 2: (1b)

A Shannon entropy rooted in information theory (51) can now be

rewritten as

Sðq~Þ ¼ � +
2n�3

k¼1

Pjk
ðYkðq~ÞÞ ln Pjk

ðYkðq~ÞÞ; (2)

where the argument in ~YY specifies the angles according to the particular

structure q~, and the residues are paired according to

j2i�1 [ ðRi;Ri11Þ for 1 # i # n� 1; (3a)

j2i [ Ri11 for 1 # i # n� 2; (3b)

corresponding to the structure of ~YY. A standard information entropy for a

given structure can be defined in terms of the most probable dihedral angles

for a given primary sequence,

S
+ðq~Þ ¼ � +

2n�3

k¼1

�PPjk
ln �PPjk

; (4)

in which the maximal values are defined simply as

�PPjk
ðq~Þ[ max

Yk

Pjkðq~ÞðYkÞ; (5)

and depend on q~ only with respect to the specification of its primary

sequence, ~jjðq~Þ. The averaged entropy difference for a given structure

relative to the standard can be written simply as

DSðq~Þ ¼ ðS+ðq~Þ � Sðq~ÞÞ=ð2n� 3Þ; (6)

where (2n � 3) is the normalization factor.

Solis and Rackovsky (52,53) defined a similar information entropy to that

of Eq. 2 for protein structure prediction. However, none of their measures

emphasized the use of the ci-fi11 distributions, and the possible correlation

between neighboring amino acids that such distributions may display.

Meanwhile, the GOR algorithm (54,55) uses the statistics of the multiple

sequence alignment of segments of 17 or more residues in length to predict

secondary structure assignments. The approach in this article is complemen-

tary to the GOR algorithm in that both recognize the need for studying mul-

tiple residue correlations: the latter emphasizes a larger segment while limiting

the number of possibilities to the secondary structural motifs whereas the

former—that is, the present approach—emphasizes segments limited to re-

sidue pairs while extending the accessible space to that of a discretization of

the two-angle space with more than 5000 bins—that is, possible configurations.

Given the coordinates of a protein structure, the series of dihedral angles

fYkg can readily be computed. The probabilities entering in the sum of the

structural entropy each depend on the relative probability that the measured

dihedral angles are compatible with the corresponding residue(s) they

connect. That is, the probabilities entering in Eq. 2 are fPRi
ðwkðiÞ; vlðiÞÞ;

PRi ;Ri11
ðvlðiÞ;wkði11ÞÞg, where fi 2 wk(i) and ci 2 vl(i), given that fwkg and

fvlg are the partitions in the angle space used to construct the histogrammed

distributions. This procedure, while direct, discretizes the possible results.

Smoother estimates of the dihedral-angle information entropy could be

obtained using standard interpolating techniques. But this is not done here

because the simpler discrete approach provides estimates of the structural

entropy with sufficient accuracy to test the proposed checking functions.

A checking function for secondary
structure propensity

Given the normalized probability distribution, P(DS), and a putative struc-

ture with well-defined dihedral angles, f(fi, ci), (ci, fi11)g, an integrated

probability function for the entropy difference can be defined by merging the

left and right cumulative distribution functions as

Iðq~Þ ¼
R DSðq~Þ

0
PðD9ÞdD9 if DS , DSRN

DSðq~Þ PðD9ÞdD9 if DS $ DS
;

(
(7)

where DS is the median value of DS. The integral I will, by definition, take

the value of 1
2

when evaluated at the median. The deviation relative to the

median can thus be characterized by

D1ðq~Þ ¼ lnð2IÞ if DSðq~Þ, DS
�lnð2IÞ if DSðq~Þ$ DS

;

�
(8)

which takes the value of 0 for the median structure, and otherwise measures

the distance away from the median structure in the distribution. When D1 is

negative (positive), it signals that the deviation is below (above) the median.

TABLE 1 The protein sublibraries in this work

Sublibrary Structures Peak/10�3 Width/10�4

EXP 24,444 4.17 0.96

NR100 11,157 4.24 0.92

NR90 2,762 4.37 0.98

NR70 2,176 4.74 1.03

NR50 1,768 4.85 1.04

NR100T 644 4.44 0.79

The name and number of proteins in the sublibraries used in this work are

listed in the first and second columns, respectively. The peak and width of

the DS(90) distributions shown in panel c of Fig. 3 and evaluated using the

dihedral angle distributions from NR90, are also listed.

4016 Zhong et al.
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To make the D1 checking function even more intuitive, a new checking

function D2 is defined to roughly describe the number of standard deviations

away from the median structure through the expression

D2ðq~Þ ¼
ffiffiffi
2
p

erf
�1ð2I � 1Þ if DSðq~Þ, DSffiffiffi

2
p

erf
�1ð1� 2IÞ if DSðq~Þ$ DS

:

�
(9)

As described in Supplement C in the Supplementary Material, the D2

checking function evaluated for a Gaussian distribution with zero mean and

unit standard deviation is exactly equal to the number of standard deviations

away from the median structure. Thus D2 may be interpreted as a measure

of the relative likelihood for DS in terms of deviations from the mean. It

effectively uniformizes the distribution in the sense that it maps the original

distribution precisely to the normal curve. In particular, values of jD2j .3

suggest that the specified structure in a group of structures whose cumulative

likelihood, while possible, is ,0.13%. To check the effectiveness of these

new scores, D1 and D2 are calculated separately for the EXP and the

NR100T libraries below.

RESULTS AND DISCUSSION

Dihedral angle distributions

The ci-fi and fi-ci11 dihedral angle distributions for all five

libraries outlined in the section on Data-Mining the ci-fi11

Distributions are presented and described in Supplements A
and B in the Supplementary Material. In addition to their role

in this work, they may be of use in homology-based methods

for constructing proteins. For example, Srinivasan and co-

workers (19–21) have used such distributions to predict

backbone conformations of short polypeptides.

On the choice of the sequence database

To implement the checks presented in the section on A

Checking Function for Secondary Structure Propensity, an

underlying database must be selected. The EXP library would

be a poor choice because it necessarily includes multiple

copies of the same structure. Theoretically derived structures

should also be ignored because they may differ from the

experimental database. To choose which of the experimental

subsets of the nonredundant sublibraries—NR50, NR70,

NR90, or NR100—would be optimal, it is helpful to construct

the corresponding dihedral-angle information entropy and

their relative properties. In particular, the distributions of

DS(X)—based on the NRX sublibrary—have been evaluated

across all the structures in each of the five sublibraries: NR50,

NR70, NR90, NR100, and EXP. The statistical error in DS(X)

decreases with increasing X because the size of the sublibrary

increases with X. But at the same time, the bias due to

redundancy is also increasing with X.

The distributions of DS(X) are shown in Fig. 3. The EXP

library and NR100 sublibrary contain several sets of struc-

tures with considerable sequence identity resulting in skewed

distributions regardless of the choice of the checking func-

tion. As expected, the relatively small size of the sublibraries

underlying the DS(50) and DS(70) measures leads to noisy dis-

tributions. Meanwhile, the distributions in DS(100) appear to

be broadened by the underlying redundancy in the NR100

sublibrary. The differences between the five sublibraries ap-

pear to be revealed—and perhaps converged—most sharply

by panel c, which displays the distributions for DS(90). One

might be tempted to choose DS(70) instead of DS(90) because

both scores reveal that the NR90 distribution is more like that

of the redundant libraries. However, the better statistics of

DS(90) in light of the relatively small redundancy error, and

the similarity in the peak positions between NR100 and

NR90 as listed in Table 1, suggests that NR90 is an optimal

choice. In light of this heuristic argument, NR90 is used in

the remainder of this article as the underlying distribution in

calculating DS and the associated checking functions; the

superscript in DS(90) is henceforth omitted.

FIGURE 2 One-dimensional distributions of c and f

projected from fi-ci and ci-fi11 plots. (a) P9ALAðcÞ,
P$ALA;SERðcÞ, P$ALA;GLUðcÞ; (b) P9ARGðcÞ, P$ARG;GLYðcÞ,
P$ARG;GLUðcÞ; (c) P9ALAðfÞ, P$SER;ALAðfÞ, P$GLU;ALAðfÞ;
and (d) and P9ARGðfÞ, P$GLY;ARGðfÞ, P$GLU;ARGðfÞ.
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The distributions of DS for experimental and theoretical

structures in NR90 and NR100T, respectively, are shown in

Fig. 4. The mean value and standard deviation s of DS of

experimental structures are 4.38 3 10�3 and 5.74 3 10�4, re-

spectively, indicating that roughly 71% of the total structures

have a DS between 3.81 3 10�3 and 4.95 3 10�3, i.e., be-

tween ÆDSæ� s and ÆDSæ 1 s. The mean value and standard

deviation for the theoretical structures are 4.35 3 10�3 and

6.82 3 10�4, respectively, and ;64% of the theoretical

models have a DS within one standard deviation of the mean

of the experimental models. The two distributions are sur-

prisingly similar, particularly since the difference seen be-

tween the NR90 and NR100 distributions does not appear to

persist for NR100T. The origin of this likely lies in the fact

that the NR100T sublibrary does not have NR100’s degree

of sampling bias, because the latter contains many similar

single-point mutants. However, on average, fewer theoret-

ically determined structures are within a s of the mean and

this is a notable difference between the experimental and

theoretical structures. This result is likely a consequence of

the fact that many theoretical structures use rule sets for

their construction which do not reflect the degree of cor-

relation between distant residues present in nature. These

observations indicate the insight that DS provides on the

relative compatibility of a given structure with respect to the

experimental NR90 sublibrary of the PDB.

One possible concern here is that the only standard for

inclusion of a protein within any of these libraries with

respect to the accuracy of the structure lies in the fact that

the reported structure provides sufficient information to

obtain all of its dihedral angles. One could use more rigorous

criteria employing R-factors or other self-reported position

error bars. Indeed several studies that have developed

checking functions have used such rigorous criteria (3,6,7).

However, we found that implementation of these criteria in

constructing libraries nearly requires a file-by-file assess-

ment since the requisite information is not coded uniformly

through the PDB. Meanwhile our preliminary constructions

of such libraries, while modifying the dihedral-angle distri-

butions slightly, do not lead to appreciably distinct distribu-

tions in the information theory entropies or the various

checking functions. Hence all the results reported here have

been obtained using the simple rule for structure identifica-

tion described above.

FIGURE 3 The distributions of DS(50), DS(70), DS(90), and DS(100) eval-

uated across several sublibraries are displayed in panels a, b, c, and d, respec-

tively. In each panel the information entropy difference DS is evaluated

across the NR50, NR70, NR90, and NR100 sublibraries, and the EXP

library.

FIGURE 4 Distributions of DS evaluated across the 2762 experimental

structures in the NR90 sublibrary (circles) and 644 theoretical structures in

the NR100T sublibrary (squares). Note that, to make the results comparable,

the distributions have been normalized by the bin size, i.e., 4 3 10�5 and

8 3 10�4, respectively.
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D1 and D2 checks

The distributions of D1 calculated using Eq. 8 across the

NR90 and NR100T sublibraries are shown in Fig. 5. The

distributions are nearly Gaussian as suggested above. How-

ever, features seen above in Fig. 4 in assessing the relative

compatibility between the NR90 and NR100T sublibraries

are still visible in Fig. 5. The distributions in D2 displayed in

Fig. 6 retain these features as well, but the uniformizing

procedure outlined in Supplement C (see Supplementary

Material) now leads to a normal Gaussian distribution for the

NR90 structures. Interestingly, the lack of correlation in

some of the NR100T structures is exhibited by a shoulder on

the left side of the NR100T distribution.

Although the definitions of D1 and D2 may appear

cumbersome, their generalized forms are helpful so as to

account for the fact that the probability distribution in DS is

not symmetric. If it were symmetric, then the simpler argu-

ments at the end of the previous section using a single char-

acteristic s would suffice. As remarked previously (and shown

explicitly in Supplement C in the Supplementary Material),

in the limit that the distribution in DS is Gaussian, the

definition of D2 reduces precisely to the number of standard

deviations that a given structure differs from the median. In

summary, Eqs. 8 and 9 define equivalent new checks, D1 and

D2, for the compatibility of the dihedral angles of a given

structure with the existing PDB set of nonredundant experi-

mental structures, although D2 is preferred because it takes

on nontrivial values even for exponentially unlikely structures.

To illustrate the values of the D1 and D2 checks, it is

helpful to examine a few representative structures arbitrarily

chosen from the PDB. The HIV envelope glycoprotein

(1g9nG) (56), the p53 DNA binding domain (1tupA) (57),

and the G-protein a-1 chain (1gg2A) (58) are fairly common

proteins whose structures have been resolved and deposited

in the PDB. The D1 values for these structures are �0.06,

�0.25, and 0.23, respectively, which alone might not seem

to provide a simple score of the structural quality. However,

the D2 values are �0.08, �0.32, and 0.33. These values are

easily interpreted as they indicate that all three structures are

within one standard deviation of the PDB database. That is,

their dihedral angles with respect to correlation around a

residue and between residues are typical of the structures in

the NR90 sublibrary. But recall that their information en-

tropy is consequently greater than their corresponding stan-

dard entropies. Thus, they evidently exhibit propensities for

secondary structural interactions that are typical of the struc-

tures in the NR90 sublibrary.

Alternatively, the D2 check can be used to identify protein

structures whose angles are atypical with respect to the dis-

tribution of correlated angles in the PDB. Such atypical struc-

tures are not necessarily incorrect structures. Indeed, when

D2 is large and negative, the structures could be correct, but

for whatever reason contain dihedral angles in the most

probable positions independent of the sequence beyond their

nearest neighbors. Alternatively when D2 is large and pos-

itive, particularly strong correlations of distant residues may

give rise to angles that adopt low probability configurations.

Although correct structures exist that satisfy such limits, they

are still atypical relative to the distribution because, as shown

in Fig. 4, most of the experimental structures in the NR90

sublibrary have a structural entropy difference near the

mean, DS. This raises the intriguing possibility that D2 can be

used to highlight atypical regions in proteins that are atypical

due to some functional constraint. These regions could arise

for reasons related to active site architectures or regions

critical to forming protein-protein interactions. Hence the D2

measure may serve a role in highlighting regions of interest

when structures of unknown function or physiological role

are solved as part of ongoing high throughput structural pro-

teomics efforts. Long-range interactions through a protein

structure are of course important to understanding catalysis,

concerted movements, and even when seeking to understand

FIGURE 6 Distributions of D2 evaluated across the NR90 (circles) and

NR100T (squares) sublibraries. The median value of DS of experimental

structures has been used. The solid line is the same Gaussian distribution as

in Fig. 5.

FIGURE 5 Distributions of D1 evaluated across the NR90 (circles) and

NR100T (squares) sublibraries. In all cases, D1 is determined using Eq. 8

with DS equal to the corresponding median value (¼ 4.38 3 10�3) of the

experimental structures in the NR90 sublibrary. The solid line is a Gaussian

distribution with zero mean value and unit standard deviation.
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the evolutionary history of proteins within a conserved fam-

ily of proteins. Thus D2 can highlight these potential regions

within a structure too.

The role of D2 in checking theoretical structures

All structures in the NR90 and NR100T sublibraries with a

value of jD2j $ 3 are listed in Table 2. The number of such

structures is 17 (0.6%) and 11 (1.7%) for the experimentally

and theoretically derived structures, respectively. The struc-

tures in the larger EXP and model protein libraries have also

been assessed according to the D2 check. It was found that

264 (1.1%) and 66 (6.7%) structures are atypical out of the

24,444 experimental and 981 theoretical structures available,

respectively. (All of the atypical structures and their D1 and

D2 values are listed in Supplement C in the Supplementary

Material.) The fact that in these sublibraries, the theoretical

structures are much more likely to be atypical than the experi-

mental structures, is a possible indicator that the former is

somehow different from naturally occurring structures. More

importantly, the primary difference manifests as a shoulder

in the distributions in the negative D2 region. This is the

region that signals structures that are near to the structures

with standard entropy. Thus the dihedral angles deviate little

from the most likely angles, indicating that they have not

been altered by secondary interactions. It should come as

no surprise that some fraction of the theoretically derived

structures contain dihedral angles that lack such information.

However, the important result here is that D2 is a reporter of

such propensities.

This can be further illustrated through a study of the D2

check on a series of structures constructed by homology

modeling. The success of the homology modeling package,

MODELLER (37,59), has previously been shown using

several template structures (TS) to construct model structures

(MS) for the protein with PDB ID, 1fdx. This study has been

reproduced here with the additional construction of the

model structure based on the known 1fdx target structure as a

template. The sequence identities (SI) and root mean-square

deviations (RMSDs) are shown in Table 3, and illustrate the

previously reported success. Namely, the greater the se-

quence identity between primary structures of the TS and

target, the smaller the RMSD between the MS and the target.

Although it should be noted that the RMSD is not zero even

when the target structure is used as the TS. As also reported

in Table 3, the D2 check of the target structure (¼ �0.73) is

far from zero, as is the value of this checking function for

most of the TS values. However, the D2 checks of all five

predicted MS values are nearly zero, and all are evidently

different from that of the corresponding TS and of the target

structure. The D2 check does not differentiate between these

five MS values in terms of their relative fidelity to the target

structure. Other scores or checking functions are needed for

(and indeed some satisfy) this property. However, the con-

sistently zero value in the D2 checks of the MS values

illustrates the fact that structures predicted by MODELLER,

while often containing high fidelity to the target structure,

leave out some property that would make them atypical of

the PDB in the sense that is measured by the D2 check. This

property is the long-range correlation in the dihedral angles

between non-neighbor residues. Although perhaps not

surprising that MODELLER removes this propensity, it is

nevertheless useful that D2 check provides a quick verifica-

tion of this removal and it evidently provides an independent

check for what could be done to expand the functionality of

programs such as MODELLER.

D2 and other checking functions

A comparison between D2 check, the torsion angle G-factor

in PROCHECK (6,7), and the Ramachandran Z-score of

WHAT_CHECK (3) has been made for several example

TABLE 2 Atypical protein structures

Experimental Theoretical

PDB ID D1 D2 PDB ID D1 D2

1a2xB 7.0 3.9 1clgA �7.9 �4.4

1a92A �7.0 �3.9 1l1uT 7.0 3.9

1bb1B 7.9 4.4 1lh8A �6.1 �3.1

1czqA �6.7 �3.3 1llkA �6.7 �3.3

1g6uA �7.0 �3.9 1lp0A �6.7 �3.3

1jekA �7.0 �3.9 1m5gT 7.0 3.9

1jekB 7.0 3.9 1n1rA �6.1 �3.1

1jrjA �6.7 �3.3 1opvA �6.1 �3.1

1l2pA �7.0 �3.9 1sewA �7.9 �4.4

1l2yA �6.4 �3.1 1sr1 �6.7 �3.3

1motA �6.7 �3.3 2clgA �6.0 �3.0

1mz9A �6.1 �3.1

1n7sA �7.0 �3.9

1nyjA �7.0 �3.3

1pd7B 7.9 4.4

1qr9A �7.0 �3.9

1sb0B 7.0 3.9

The atypical structures—namely those structures whose jD2j value is

$3.0—are listed according to their PDB ID, augmented by the chain ID.

The corresponding D1 and D2 values are also provided. Note that there are

17 experimental (left) and 11 theoretical (right) structures. Perhaps note-

worthy is the fact that the sequence identity between 1jekA and 1jekB is

only 17.6%, and hence can lead to rather different values of these measures.

TABLE 3 Assessing templated model structures

Template SI(%) D2(TS) D2(MS) RMSD(Å)

1fdx 100.0 �0.73 �0.03 0.26

1fdn 66.7 �1.05 �0.08 0.69

5fd1 42.6 �0.48 �0.04 1.67

1fxd 35.2 �0.34 �0.04 5.27

2fxb 20.4 �0.12 �0.06 8.15

The values of D2 for series of template structures (TS) and the

corresponding model structures (MS) derived from them are shown for

the 1fdx target. The sequence identity (SI), and the RMSD between the MS

and target are also provided. Note that the use of the target as the TS results

in a different MS than the target as indicated by a nonzero value in their

RMSD.
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structures in the PDB. The torsion angle G-factor is a log-odds

score of the observed distributions of the fi-ci combination.

A low G-factor often indicates an unusual structure (6,7).

The Ramachandran Z-score is the number of standard

deviations that the score deviates from the expected value. It

shows how ‘‘normal’’ the fi-ci angles in a protein structure

are. Z-scores above 4.0 and below �4.0 are very uncommon

(3). The results are shown in Table 4 for six experimental

structures—1tupA, 1g9nG, 1gg2A, 1stn, 1jekA, 1jekB, and

1n7sA—and three theoretical structures—1lluT, 1lp0, and

1lh8A—which have been chosen because they provide a

range of D2 values. Except for two structures, 1g9nG and

1gg2A, the Z-scores are compatible with the D2 values in

terms of the assessment that the structures are typical or not

typical. However, most of the structures contain G-factors

that are not compatible with their D2 checks in terms of this

assessment. (Note that, to run PROCHECK, a resolution for

a structure must be specified. Although this is readily avail-

able for experimental structures, it is evidently not available

for the theoretical structures. Nevertheless, the theoretical

structures were run with varying resolutions—2.0, 2.5, and

3.0 Å—all resulting in the same values for the G-factors.) In

summary, D2 check differs from PROCHECK and WHAT_

CHECK in their assessments of these protein structures, and

evidently provides distinct information about the structures.

In particular, as seen above, the use of the dihedral-angle

correlation between neighboring residues in the D2 checking

function allows one to obtain a signal of the presence for

propensities between residues beyond the nearest neighbor.

It thereby complements the information from PROCHECK

and WHAT_CHECK.

CONCLUSION

A dihedral-angle information entropy describing how a

particular model protein is similar to naturally occurring

proteins has been discussed in this work. Based on this

entropy, new checking functions, D1 and D2, are proposed as

a check of the likelihood of the compatibility of the dihedral

angles of a given structure to the experimental structures in

the PDB. The results for both experimentally and theoret-

ically derived structures in the PDB indicate that this method

is simple and effective.

Generally speaking, the D1 and D2 checks signal the pro-

pensity for a protein to contain secondary structural inter-

actions in comparison with the PDB. The overall structures

found to be atypical by these checking functions may be

classified as:

1. Weakly correlated (or mean-field-like) in the sense that

residues beyond the nearest residue do not affect the

dihedral angles; or

2. Strongly correlated in the sense that distant residues lead

to large deviations in the dihedral angles away from the

typical values; or

3. Incorrect in the sense that some of the angles may have

been incorrectly assigned.

In particular, large negative values of D2 check indicate

structures that are perhaps too likely, while large positive

values indicate structures that are perhaps too unlikely in

comparison with the typical structures of the PDB database.

The use of D2 check at the residue level has been developed

and will be discussed separately (S. Zhong, S. Quirk, and

R. Hernandez, unpublished). D2 check is complementary to

existing scoring functions used in assessing structure pre-

dictions but provides a different form of stereochemical

information. For example, it can be used in concert with

other functions to identify important or unusual parts of a

structure.

One criticism that could be levied against this work—and

indeed against many bioinformatic tools based on a reference

set—centers on the question of whether the chosen reference

sublibrary of the PDB is representative of the protein uni-

verse. The recent work of Zhang et al. (60) suggests that the

diversity of single-domain structures available in the PDB

database is indeed representative of the protein universe. But

there may be a danger that the distribution of such structures

is skewed in some way. To reduce the presence of such bias-

ing, the reference sublibrary selected in this work excluded

structures that had .90% sequence redundancy. Meanwhile,

the statistical information available from the current size of

the database was sufficient only for bins with 5� windows.

While both the coverage of the protein space and the ac-

curacy of the distributions appear to be sufficient in the

treatment performed here, one would expect that both would

improve in the future as the PDB grows.

One additional result of this work is the confirmation that

the ci-fi11 plots contain correlation between dihedral angles

of a given residue and the identity of the neighboring residue.

This result validates previous observations (19–21,44,46,

47,50). It is seemingly in contradiction of the Flory isolated-

pair hypothesis (61) in which it was assumed that the fi-ci

distribution of each residue in a protein backbone is in-

dependent of the neighbors’ identities. However, the differ-

ences found here are sufficiently small that violations of the

isolated-pair hypothesis are subtle. For this same reason, it is

TABLE 4 The D2 check, G-factor, and Z-score values for 10

different protein structures available in the PDB

PDBID D2 G-factor Z-score

1tupA �0.32 �0.02 0.41

1g9nG �0.08 �0.14 �4.47

1gg2A 0.33 0.07 �3.56

1stn �0.8 0.06 �0.04

1jekA �3.9 0.75 4.23

1jekB 3.9 0.67 5.41

1n7sA �3.9 0.62 3.77

1l1uT 3.9 0.05 �6.53

1lp0A �3.3 0.12 3.36

1lh8A �3.1 0.31 4.09
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not surprising that Brooks and co-workers (62) found that the

isolated-pair hypothesis holds very well upon averaging over

the ensemble to obtain conformational entropies.

In summary, this work serves to increase the awareness of

the effect of nearest-neighbor frequency on the pairwise dihe-

dral distributions and introduces a useful series of checking

functions that can be used to interpret both experimental and

theoretical protein structures.

SUPPLEMENTARY MATERIAL

Supplements A–C can be found by visiting BJ Online at

http://www.biophysj.org. Supplement A provides the detailed

method and analysis of the construction of the distributions.

Supplement B provides figures for all 420 distributions

generated from the NR90 sublibrary. Supplement C provides

an analysis of the uniformizing procedure discussed above,

and a listing of the D1 and D2 scores of all atypical structures

in the PDB.
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11. Brünger, A. T. 1992. Free R value: a novel statistical quantity for
assessing the accuracy of crystal structures. Nature. 355:472–475.

12. Kleywegt, G. J., and T. A. Jones. 1996. Phi/psi-chology: Ramachandran
revisited. Structure. 4:1395–1400.

13. Kleywegt, G. J. 1997. Validation of protein models from Ca

coordinates alone. J. Mol. Biol. 273:371–376.

14. Kleywegt, G. J., and T. A. Jones. 1997. Model building and refinement
practice. Methods Enzymol. 277:208–230.

15. Kleywegt, G. J. 2000. Validation of protein crystal structures. Acta
Crystallogr. D56:249–265.

16. Hooft, R. W. W., C. Sander, and G. Vriend. 1997. Objectively judging
the quality of a protein structure from a Ramachandran plot. CABIOS.
13:425–430.

17. Lovell, S. C., I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M.
Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson. 2003.
Structure validation by Ca geometry: f, c, and Cb deviation. Proteins.
50:437–450.

18. Willard, L., A. Ranjan, H. Y. Zhang, H. Monzavi, R. F. Boyko, B. D.
Sykes, and D. S. Wishart. 2003. VADAR: a web server for quantitative
evaluation of protein structure quality. Nucleic Acids Res. 31:3316–3319.

19. Sudarsanam, S., R. F. DuBose, C. J. March, and S. Srinivasan. 1995.
Modeling protein loops using a fi11,ci dimer database. Protein Sci.
4:1412–1420.

20. Sudarsanam, S., and S. Srinivasan. 1995. Searching for protein loops in
parallel. CABIOS. 11:591–593.

21. Sudarsanam, S., and S. Srinivasan. 1997. Sequence-dependent confor-
mational sampling using a database of fi11 and ci angles for predicting
polypeptide backbone conformations. Protein Eng. 10:1155–1162.

22. Parker, J. M. R. 1999. The relationship between peptide plane rotation
(PPR) and similar conformations. J. Comput. Chem. 20:947–955.

23. Ozer, G., J. Foley, S. Zhong, J. M. Moix, S. Quirk, and R. Hernandez.
2006. http://www.d2check.gatech.edu/.

24. Shortle, D. 2002. Composite of local structure propensities: evidence
for local encoding of long-range structure. Protein Sci. 11:18–26.

25. Shortle, D. 2003. Propensities, probabilities, and the Boltzmann hypo-
thesis. Protein Sci. 12:1298–1302.

26. Fang, Q. J., and D. Shortle. 2005. A consistent set of statistical poten-
tials for quantifying local side-chain and backbone interactions.
Proteins. 60:90–96.

27. Fang, Q. J., and D. Shortle. 2005. Enhanced sampling near the native
conformation using statistical potentials for local side-chain and back-
bone interactions. Proteins. 60:97–102.
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