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1. Executive Summary 
 

The purpose of this seedling research project was to investigate the feasibility of using 

multiferroic materials for advanced RF applications. The project was divided into three parallel 

tasks: 

1) Materials growth 

2) Device design 

3) Circuit design 

 

The materials growth effort was specifically aimed at epitaxial quality Terfenol-D, an 

alloy of Terbium, Dysprosium, and Iron (TbxDy1-xFe2-y) that exhibits large magnetostriction at 

room temperature and relatively small applied magnetic fields. The use of a piezoelectric 

substrate was proposed to provide the mechanical coupling necessary to achieve electric-field 

tunable materials. An initial approach using one MBE chamber was explored. However, 

mechanical issues prevented this approach from yielding any usable materials. A secondary 

approach was attempted using separate MBE chambers and vacuum-locked wafer transport. 

Some results were obtained using this technique. However, oxidation of the metal layers, 

particularly Tb, prevented any successful alloyed-layer growth of Terfenol-D. 

 

The device design task consisted of electromagnetic simulation of transmission line 

structures, specifically coplanar waveguide (CPW), using Terfenol-D layers on Lithium Niobate 

(LiNbO3) substrates. Simulations of phase velocity change were conducted to assess the extent 

to which the magnetic properties (permeability) of Terfenol-D would change the phase velocity. 

Of course, the phase velocity change was also due to the change in permittivity of the 

piezoelectric substrate. Simulations indicated approximately a 1.4:1 change in phase velocity 

could result from the shifts in permittivity and permeability due to an applied bias voltage. Such 

phase velocity changes could result in usuable devices for various tunable RF applications. 

 

The circuit design aspect of this project consisted entirely of a study of parametric 

amplifiers (paramps). Such amplifiers result from a change in reactive impedance (i.e. 

associated with a phase velocity change) due to applied RF voltages. In this manner, 

high-efficieciency, and potentially wideband RF power amplifiers could be achieved. Because 

this task was executed in parallel with the materials growth and device design, no circuit 

designs using multiferroic materials was possible. Instead, conventional semiconductor varactor 

devices were used to assess the feasibility of RF power paramps. Extensive circuit modelling 

was performed, and prototype circuits were constructed. Some successes were achieved in the 

development of wideband amplifiers based on double-balanced mixer circuit topologies. In 

addition, efficiencies approaching 50% were achieve for narrow band parametric amplifiers. 



In conclusion, it is clear that significantly more research must be performed on 

multiferroic materials growth in order to achieve any successes at the device or circuit level. If 

sufficient improvement in materials quality is obtained, the device and circuit simulations and 

prototypes indicate some feasibility of the approach of using multiferroic materials for 

advanced RF applications.  



2. Multiferroic Materials Development 
A. History of Magnetostrictive Materials 

Magnetostrictive materials undergo a change in shape, at roughly constant 
volume, due to a change in magnetization. Conversely, these materials also exhibit the 
inverse effect, known as the Villari effect, where in a change in shape induces a change 
in magnetization.  Most ferromagnetic materials are magnetostrictive and result in the 
audible transformer “humming” commonly heard. For simple ferromagnetic materials 
such as iron, and cobalt, the changes in dimensions are small due to the Joule 
magnetostriction mechanism, typically on the order of 10 parts per million.  This Joule 
magnetostriction has been known for more than ~120 years.  However, recent 
discoveries of iron/gallium alloys, termed Galfenol, show magnetostriction on the order 
of 400 ppm, ~20-40X greater than simple Joule type magnetostriction.  While the 
mechanism for which these materials operate is still controversial, many now feel that 
these materials operate based on an extreme version of the Joule mechanism. 
 

During the 1960’s, a form of gigantic magnetostriction was discovered by Navy 
researchers lead by A. E. Clarke.  These magnetostrictive materials exhibit 1000’s of 
ppm magnetostriction and have only been found in rare earth alloys. The undisputed 
king of these giant magnetostriction alloys is Terfenol-D, an alloy of Terbium, 
Dysprosium, and Iron (TbxDy1-xFe2-y) that exhibits large magnetostriction at room 
temperature and relatively small applied magnetic fields. Other combinations of rare 
earth alloys had application restricting problems centered on the large magnetostriction 
only appearing at very large magnetic fields, or cryogenic temperatures.  Terfenol-D is 
somewhat unique in that its curie temperature is above room temperature (>350 °C) 
making it viable for real world applications. By carefully controlling the ratio of Terbium 
and Dysprosium the “effective anisotropy” can be controlled to ~zero at room 
temperature making it sensitive to small applied magnetic fields common in power RF 
applications as proposed herein. 
 

It should be noted that materials do exist that have even higher 
magnetostriction than Terfonol-D.  Most notably the NiMnGa ferromagnetic shape 
change alloys can exhibit several percent magnetostriction.  However, for the purposes 
proposed herein, the fundamental mechanism for this enormous magnetostriction 
make the inverse effect, the Villari effect, smaller than in Terfenol-D and thus not 
relevant to the proposed devices and circuits.  Specifically, in these materials, a 
crystalline twin boundary is “unzipped” under application of a magnetic field causing a 
large lattice distortion.  Unfortunately, this is not driven by strain effects and thus, the 
Villari effect is smaller in these materials.  Much discussion is given in the literature to 
the magnetostriction effect, largely because most previous applications were in 
actuators or sensors.  However, the primary mode of operation in the devices and 
circuits proposed herein is from the Villari effect making materials with large Villari 
coefficients of more interest.  Terfenol-D is the champion material for this application. 
 

There are two categories of magneto-electric materials to be considered: 



Ceramic composites, and epitaxial materials. The former have been shown to exhibit 
considerable magnetostrictive behavior, as well as the inverse effect when bonded to a 
piezoelectric layer [Nan, et al.]. However, due to mechanical losses and other 
mechanisms, dynamic ferroelectric responses are limited to below 1 MHz for 
polymer-based composites, thus rendering them useless for microwave application. 
Ceramic composites have been shown to work at microwave frequencies, albeit with 
very limited tunability. For these reasons, we will restrict our attention to epitaxial 
multiferroic materials that do not exhibit such shortcomings. 
 
B. Magnetostrictive Materials Behavior and Impact on Devices and Circuits 

Gigantic magnetostrictive materials like Terfenol-D possess magnetic domains 
that can be realigned with application of an external applied magnetic field.  The 
realignment results is a shape distortion which changes the dimensions of the material 
along a given direction- magnetostriction.  Conversely, if strain is applied, either by 
mechanical loading, epitaxial lattice mismatch or applied through a piezoelectric 
transducer, the domains can also re-align changing in turn, the magnetization– the 
Villari effect.  The direction and magnitude of the magnetic field depends on the 
crystalline orientation and the applied strain.  Thus, all properties must be considered 
as tensor quantities, complicating device design and optimization.  Bulk materials have 
shown a clear advantage of “preloading” where in the material is mechanically clamped 
so as to exhibit increased magnetostriction. Figure 2.1 shows the strong effect of strain 

 

Fig. 2.1: Magnetization vs. magnetic field and strain for bulk Terfenol-D after [M. Wun-Fogle, et al.] Note the 

large strain induced changes in permeability and the large saturation magnetism which is approximately 

constant with strain. 



on the magnetostriction and more importantly for this application the permeability 
(slope of bottom curve in Figure 5).  However, the epitaxial methods can achieve this 
“preload” by more flexible means including choice of substrate and thus lattice match, 
or even by growth temperature so as to achieve differing strain from differences in 
thermal expansion between film and substrate upon cooling to room temperature.  
Thus, not only can epitaxial Terfenol-D materials produce the highest quality films with 
minimal RF dispersion, but the process can also tune the strain in order to reach an 
optimal Villari coefficient.  
 
C. Important Properties of Terfenol-D 

Terfenol-D is brittle metal with hexagonal lattice constants, a≈5.189 and 
c≈12.821 Å (variations occur as the composition of Dy and Tb change – even slightly). 
These lattice constant values will be of paramount importance for the proposed 
implementations as we will demonstrate that Terfenol-D may be grown in single 
crystalline thin film form on a commonly available piezoelectric material which itself has 
one of the highest mechanical coupling coefficients.  Another key feature critical for 
our proposed application is the very large saturation magnetization, ~1 Tesla, at room 
temperature and the strain independence of this saturation magnetism (see figure 1 for 
example).  For applications where RF power is considered or where devices will 
operate in resonance where stored energy density is high, saturation magnetism acts as 
an upper limit to the electromagnetic power capabilities of the device and thus should 
be as high as possible.  If RF power causes internal fields to exceed the saturation limit, 
the device begins to act as a saturable absorber or effectively as a limiter.  While this 
may be desirable for other RF applications, it is an undesirable feature in the present 
device proposal.  Additionally, all previous applications where large magnetostriction 
coefficients were obtained (Vieland et al for example) required highly deformable 
composite materials which are too soft (acoustically) for high frequency operation.  
Terfenol-D is a rigid material with an elastic modulus ranging in the 10-80 Gigapascal 
range, affording it the ability to be used at high frequencies where acoustic losses must 
be minimized.  This last point comes about with some complication.  The modulus is 
dependent on the initial strain state (i.e. is non-linear) and the applied magnetic field.  
While this might be viewed as a negative for a linear circuit, it enhances the 
non-linearity at the core of operation in the parametric amplifier, possibly amplifying 
the parametric effect.  For large fields (high RF Power) the modulus will continuously 
change as the magnetic field increases during the RF cycle.  Furthermore, when grown 
on a piezoelectric material which is being strained by the RF electric field, the modulus 
will also be strained.  The complexity of this situation results in the possibility of 
multiple resonances that can be exploited in the parametric amplifier design. 

 

Georgia Tech proposed to advance the state to the art in multiferroic thin films by 
epitaxially growing Terfenol-D on a near perfectly lattice matched substrate, LiNbO3 and LiTaO3.  
Georgia Tech’s previous experience with the growth on these substrates includes a patented 
application for growth of GaN based transistor structures for direct electrical drive of 
optoelectronic modulators (US patent 7,173,286, Semiconductor devices formed of III-nitride 



compounds, lithium-niobate-tantalate, and silicon carbide).  Furthermore, Georgia Tech will 
explore a stack of epitaxially sandwiched piezoelectric/magnetostrictive layers in an attempt to 
create a low loss RF multiferroic that maintains rigidity necessary for high frequency operation 
while minimizing eddy current loses in a manner akin to laminated transformer housings 
commonly performed at lower frequencies and larger dimensions.  The technology will have 
the following specific advantages: 

 Strongest predicted high frequency piezoelectric/magnetostriction coupling coefficients 

 Very high (highest practical) mechanical coupling coefficients through the use of LiNbO3 

and/or LiTaO3 

 High frequency mechanical compatibility by using the most rigid available 

magnetostrictive material, Terfenol-D 

 Single crystalline design will amplify material properties including: 

o Highest domain order possible via a-axis lattice matched substrate/Terfenol 

 Terfenol a≈5.189 and c≈12.82 Å  

 LiNbO3 has a≈5.15 and c≈13.86 Å 

 LiTaO3 has a≈5.154 and c≈13.73 Å 

 Above choices insure compressive strain “preload” necessary for optimal 

magnetostrictive/piezoelectric coupling. 

o Strain and magnetostriction tunability through use of varying substrate lattice 

constants and thermal expansion mismatch. 

 Both bulk substrates and epitaxial LiNbO3 will be explored.  The use of 

epitaxial LiNbO3 expands available thermal mismatch materials to include 

substrates of sapphire (Al2O3) and SiC and offers lower substrate dielectric 

constants useful for RF applications and better power handling capabilities 

(SiC). 

 The developed materials will be examined via RF transmission line measurements as a 

function of growth substrate and growth condition to optimize the high frequency 

operation of the multiferroic materials. 

 The developed materials will be used in parametric amplifiers. 

 

  



The original approach for Terfenol-D film growth showed serious implementation Flaws: 
  Approach:  

 4-simultaneous Electron Beam Evaporators added to MBE system 
 Would have added doped Terfenol-D capability to existing piezoelectric 

MBE system 
 Advantages:   

 Nearly unlimited growth rate allowing both thin and thick films 
 All materials deposited in the same chamber 

 Disadvantages:  
 Stoichiometry control would have been difficult 

 Road Block:  
 Dry runs before ordering indicated the potential for melting the vacuum 

system walls due to insufficient e-beam to chamber clearance. 
 Action: 

 Vendor could not miniaturize system enough to avoid melting the 
vacuum system so alternative implementation developed. 

 
Figure 2.2: Original materials growth system 

  



As a result of the issues just described a new approach was attempted: 
  Convert a “Reserve MBE” to Dedicated Metals Epitaxy.   

 Represents an additional unplanned ~$500K investment by Ga Tech 
 Piezoelectric Materials to be deposited in separate Chamber. 
 Requires Vacuum transfer between layers 
 Advantages:  

 Significantly higher control of stoichiometry including use of an in situ 
Auger chemical analysis tool exclusive to Ga Tech and newly acquired 
(different program) surface characterization toolsets 

 Faster delivery of parts 
 Faster overall development time 

 
 Disadvantages:  

 Limited to thinner films due to limited deposition rate (still sufficient) 
 Slower structure rates due to the slower deposition rates and need for 

interlayer vacuum transfer. 
  

 

 

Figure 2.3: New materials growth system.  



Materials –Problems with Tb deposition–Problem with O2contamination improving, but still 

there–Al cap to prevent post-growth Fe oxidation works well 

 

Demonstrated growth of Terfenol-D 
•Previously (Oct 2010) plagued by post-growth oxidation 
•Saw small hysteresis in B-H measurements 
•Found traditional composition control difficult due to lack of SIMS standards and previously 
unexplained anomalies in the flux measurements (perhaps now understood –see later details) 
•Improvements Relative to October 2010 Review 
•Added an Aluminum cell to cap samples to prevent post growth oxidation 
•SIMS analysis shows capping greatly reduced oxygen content in Fe, and Dybut not in Tb 
•TbO(and slight DyO) impurities are clearly from the effusion cell NOT post growth. This 
contamination is found to be the reason for minimal magnetic properties 
•Future work includes: 
•Eliminate TbOcontamination 
•Growth under closed loop feedback control using SAP chemical probe 
•Growth on lattice matched LiTaO3piezoelectric 
•Testing of magnetic properties of proper stoichiometry films 
•B-H measurements under applied electrical bias 

 

 

Figure 2.4: Iron depth profile with aluminum cap.  



Al cap eliminated Fe oxidation. Generally proves that any oxygen detected no longer 
comes from post growth atmosphere exposure 
 

 

Figure 2.5: Dysprosium showing minimal “during growth” oxygen contamination and no 
“postgrowth” oxidation due to Al Cap 
 
 

 
Figure 2.5: Terbium shows enormous “during growth” oxygen contamination. 



 

After loading, Tb was found to catalyze the decomposition of H2O resulting in an enormous 
gaseous oxygen out gassing and resulted in substantial TbO source contamination 
•Presently this TbO is also thought to be the reason for : 
•…the erratic flux measurements (due to deposition of an insulator , TbO, on the ion gauge 
collector) 
•… the drift in deposition rates as the TbO cap evaporates exposing underlying pure Tb 
•Suggested solution to the TbO contamination is: 
•H fetch source material in a dry box and load under dry conditions to avoid moisture 
introduction 
•If contamination continues attempt a vacuum re-melt of Tb 
•Potentially could damage the effusion cell since molten Tb “may” react with the crucible 
resulting in a potential punch through of molten Tb that could flow into the electrical part of 
the cell causing catastrophic damage. 
 
D. In situ Auger Electron Analyzer System Employed for MBE Trace Element Analysis of 
Terfenol-D 
 

Auger Electron Spectroscopy (AES) is a surface sensitive analysis technique used to 
identify elemental composition and determine chemical bonding. Typically AES is an ex situ 
technique with the exception of a few custom implementation.  A prototype Staib In situ 
Auger Probe’s (SIAP) surface sensitivity is quantified by depositing Tb onto a layer of Dy and Dy 
onto a layer of Tb in 0.01 monolayer increments.  The prototype is able to distinguish surface 
coverage changes as small as 2% of a monolayer when elements with similar Auger spectra are 
used.  The SIAP also allowed the identification of three different contributors to residual 
oxygen contamination in the system including the Tb source itself. 
 

The SIAP was installed to characterize and monitor the stoichiometry of films grown  in 
an MBE system configured to grow Terfenol-D, TbxDy1-xFe2, the most magnetostrictive material 
known .  This is a challenge for any Auger probe since AES is less sensitive to heavier elements 
[Error! Bookmark not defined.] and Tb and Dy are neighbors in the lanthanide series.  
Furthermore, to maximize the magnetostrictive properties of Terfenol, a completely miscible 
alloy of TbFe2 and DyFe2, a ratio of 28% Tb to 72% Dy must be maintained.  Any deviation from 
that ratio results in a sharp reduction in the Terfenol’s magnetostrictive properties. Initially the 
probe’s surface sensitivity was quantified by depositing Tb on a Dy layer and Dy on a Tb layer in 
0.01 monolayer increments.  It was determined by XPS that the first Terfenol growth attempts 
in this system showed substantial oxygen contamination, so the SIAP was used to determine 
the sources of the oxygen.   
 



The ASE spectra were taken in a Varian Gen 
II MBE system during or after film growth.  The 
Auger probe was positioned normal to the sample 
with a working distance between 50 and 82 mm 
and used two separate sources of primary 
electrons.  A Near-Normal Electron-gun (NNE) in 
one of the cell ports was used to provide 
near-normal incidence electrons and a RHEED gun 
was used as a grazing incidence electron source.  
Tb, Dy, and Fe were delivered by high temperature 
MBE Komponenten effusion cells and Al was 
delivered by a cold-lipped 40cc Veeco effusion cell, 
for capping the films.  Figure 2.6 shows a diagram 
of the chamber and the position of the critical 
components.  All growth materials were loaded 
under atmosphere and all growths were performed on Si (1 1 1) substrates near room 
temperature after RCA cleaning.  Ex situ characterization included thickness measurements 
with a Tencor Alpha-Step Profilometer for growth rate calibration.  A Thermo K-Alpha XPS was 
used to characterize the initial Terfenol growths.   An IonTOF ToF-SIMS was used to obtain 
depth profiles on latter growths to investigate the oxygen contamination in the films.  In all 
SIMS measurements the Cs sputter beam was employed to prevent oxygen contamination 
when obtaining depth profiles.  COMPRO was used for Auger reference lines and comparison 
spectra and the Thermo Scientific Avantage Data System was used in peak identification of XPS 
data. 
Results and Discussion 

The probe was initially calibrated by depositing a thin layer of each Terfenol growth 
component separately.  Tb, Dy, and Fe were deposited at Beam Equivalent Pressures (BEP) of 
3.6x10-9, 4.2x10-9, and 2.0x10-8 Torr respectively.  Figure 2.7 shows the measured spectra after 
deposition. 

In order to quantify the SIAP’s sensitivity to surface changes the Tb and Dy sources were 
used.  These elements were chosen since Auger is less sensitive to heavier elements and 
because their most distinguishable Auger lines, MNN, partially overlap.  Initially a layer of pure 
Dy was deposited.  Then, using a Tb flux of 1.2x10-9 Torr BEP, Tb was deposited in 0.01 

Figure 2.6.  A diagram of the 
experimental setup on the GEN II 
MBE system. 
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Figure 2.7. Initial spectra of each Terfenol component, from left to right Tb, Dy, and Fe. 
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monolayer doses.  Later a layer of Tb was deposited and, using a flux of 1.1x10-9 Torr BEP, Dy 
was deposited in 0.01 monolayer doses. The percent monolayer coverage was calculated by a 
standard impingement rate equation.  Figure 2.8 shows the transition in the Auger spectra as 
the Dy surface is covered with Tb (left) and the Tb surface is covered with Dy (right) in 2% of a 
monolayer increments, up to 10% coverage.  As Tb is deposited the peak shifts left towards 
the Tb MNN peak while Dy deposited on a Tb layer results in an increase in signal near the Dy 
MNN peak position.  This demonstrates the SIAP’s ability to detect changes in surface 
chemistry even when elements have similar Auger spectra. The SIAP was then used to identify 
the sources of oxygen contamination present in the system.  

XPS analysis of films grown in the test system 
revealed an abundance of oxygen in initial terfenol 
growth attempts shown in Figure 2.9 below.  The 
SIAP was employed to determine the sources of 
oxygen.  Three sources of oxygen were identified. 
The chamber had a high enough partial pressure of 
oxygen to oxidize the Tb.  Initially Tb was 
deposited and immediately AES spectra was taken 
using each electron source.  The spectra were then 
retaken after 30 hours.  Figure 2.10 shows the 
resulting spectra.  The initial spectrum generated 
with the NNE gun only shows Tb lines while the 
initial spectrum taken with the RHEED gun also 
shows a small oxygen line.  This increase in 
sensitivity is due to higher surface and near-surface 
Auger generation resulting in more Auger electrons 
that can escape the surface and be captured.  
After 30 hours both spectra exhibited an oxygen line  

 
Figure 2.8. Auger spectra of a Dy layer transitioning to 10% of a monolayer of Tb coverage 
(left) and a Tb layer covered to 10% of a monolayer with Dy (right) at 2% increments.  Data 
is normalized just to the right of the Dy peak (left) and at the Tb peak (right).  The black bar 
indicates the expected location of the Auger peak of the material being deposited. 
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Figure 2.9.  Terbium grown at 1220 
°C does not show a noticeable level 
oxygen contamination (bottom) but 
oxygen is detected in the film grown 
at 1300 °C (top). 
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and the RHEED generated spectra exhibits a decrease in the Tb to O ration from 6:1 to 2:1 
proving the partial pressure of oxygen in the chamber is oxidizing the Tb.  Further analysis of 
the NNE gun generated spectrum after 30 hours shows a Tb to O ratio of 5:1 due to deeper film 
penetration, resulting in a higher Auger electron generation rate below the surface when the 
NNE gun is employed, further confirming a concentration of oxygen at the surface.  However, 
since the post growth RHEED generated spectrum showed oxygen it was likely there were other 
sources of oxygen.   

The Tb charge was also a source of oxygen.  
When each component of Terfenol was deposited 
at growth level fluxes, 3.9x10-8 Tb, 8.3x10-8 Dy, 
7.9x10-8 Fe, only Tb exhibited an oxygen line.  
Figure 2.10 shows Tb grown at 2 different fluxes, 
7.2e-9 and 3.9e-8 Torr BEP.  The higher flux, 
resulting from higher cell temperature, shows a 
strong oxygen line.  The presence of oxygen was 
confirmed with SIMS.  Figure 2.11 shows each 
material deposited at growth level fluxes and 
capped with Al to prevent ex situ oxidation.  The 
SIMS data shows a high oxygen concentration in the 
Tb while Dy and Fe exhibit little to no oxygen.  
However, the SiO2 layer on the Si substrate is also a 
source of oxygen in all the films, as demonstrated 
by an increase in the oxide signal at the Si/metal 
interface in all 3 SIMS plots. 

  

Figure 2.10. Auger spectra of the Tb 
before and after 30 hours in the 
growth chamber taken with both 
e-guns.  From top to bottom: RHEED 
post 30 hours and post growth, near 
normal e-gun post 30 hours and post 
growth. 

 
Figure 2.9. XPS spectra of a Terfenol-D 
growth exhibiting a high concentration 
of oxygen. 
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Figure 2.11. Auger spectra of the 
Tb/Dy alloy before growth is initiated 
until capped with Al from bottom to 
top.   



 
 

The SIAP was then employed to determine if oxygen from the SiO2 interface was 
intermixing with the films.  A target alloy of Tb 29% and Dy 71% was grown at 490 Å/hr and 
monitored by the SIAP during growth (Figure 2.12).  Initially two surface contaminates are 
detected prior to growth, C and O, since the sample was not outgassed.  While the carbon line 
is not detected after 40 Å of growth the oxygen line is detected after 200 Å of deposition 
indicating intermixing with the oxygen at the SiO2 interface.  The results are shown in Figure 
2.12 
  In conclusion, The SIAP is an MBE compatible Auger probe that can detect trace 
elements to 2% of a monolayer coverage even in the case of neighboring elements with 
partially overlapping Auger peaks, a challenge for any Auger system.  The prototype is a 
quantitative growth monitoring tool for MBE.  This is especially useful when working with 
films without line compositions.  The SIAP was also an invaluable resource in detecting sources 
of contamination in this MBE system.  In the future, the SIAP, coupled with a future closed 
loop control system, may enhance growth of films with multiple oxidation states or other 
similar phase/chemical transitions.  MBE growers have long relied on qualitative data from 
RHEED to monitor changes in the surface crystal structure of growing films.  Now the SIAP can 
add real time quantitative chemical analysis to MBE, complimenting RHEED. 

  

Oxide 
Interface 

 
Figure 2.12. A SIMS depth profile of each Terfenol component grown on Si and capped in Al, 
from left to right: Tb, Dy, Fe. 
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3. Tunable Transmission Line Device Development 

 

A) Transmission Line Test Structure 

In order to evaluate the relative change due to permeability change, simulations were 

performed on a coplanar waveguide (CPW) stucture on a Lithium Niobate substrate as shown 

below.  

  Figure 3.1: Tunable transmission line device model 

 

  



B) Simulation Studies 

We used aluminum as a test case and compared the variation to Terfenol-D. As shown in the 

figure below, the relative shift in phase velocity at 3 GHz of alumimum was shown to be zero, as 

its permeability does not change. In contrast, the Terfenol-D CPW transmission line showed 

shifts of 1.44:1 as r ranged from 2 to 10 (our best estimate of the material response). A second 

simulation was performed at 5 GHz which showed a similar change in phase velocity. In both 

cases, the change in phase velocity attributed to the shift in permeability (i.e. keeping 

permitivity constant) was typically about 10% of the total 44% change. More of the change was 

attritubuted to the change in permitivity of the piezoelectric lithium niobate.  

 

Figure 3.2: Phase velocity change of Terfenol-D CPW line. 



 

Figure 3.3: Terfenol-D CPW at 5 GHz.  



4. Parametric Amplifier Circuit Development 
 

A) Theory of Parametric Amplifiers 

       Parametric amplification is a process of RF-RF power conversion that operates by 
pumping a nonlinear reactance with a large-signal RF pumping source to either produce mixing 
products with gain or to generate a negative resistance. Parametric amplifiers (paramps) were 
traditionally grouped into two types: the phase-incoherent upconverting parametric amplifier 
and the negative-resistance parametric amplifier. With phase-incoherent upconverting 
parametric amplifiers, a fixed-frequency phase-incoherent incommensurate pump, at 

frequency pf , mixes with an RF small-signal source input, at frequency sf , to produce an 

upconverted output with gain that can be predicted by the Manley-Rowe relations. 
Negative-resistance parametric amplifiers are also mixers, but differ from phase-incoherent 

upconverting paramps in that the frequency relationship spi fff =  must be satisfied, where 

if  is the so-called ``idler'' frequency. The Manley-Rowe relations show that 

negative-resistance parametric amplifiers present a regenerative condition with the possibility 
of oscillation at both the source and idler frequencies. 

 

B) The Manley-Rowe Relations 

In 1956, J. M. Manley and H. E. Rowe published a manuscript that analyzed the power 
flow into and out of a nonlinear reactive element under excitation at its different harmonic 
frequencies. The results of this analysis were two simple mathematical expressions quantifying 
how the total outgoing power flow would distribute itself among the harmonic terms. These 
two mathematical relationships, which will now be referred to as the Manley-Rowe relations, 
have the following important properties: 

  

    1.  They are independent of the particular shape of the capacitance-voltage or 
inductance-current curve for a nonlinear capacitance or nonlinear inductance, respectively. 

 

    2.  The power levels of the various driving sources are irrelevant. 
 

    3.  The external circuitry connected to the nonlinear reactance will not affect how 
the power is distributed to the harmonic frequencies.  

 

 These two expressions provide information pertaining to the ideal performance 
metrics (such as gain and stability) of nonlinear reactance mixers and amplifiers without prior 
knowledge of the reactive devices or their surrounding circuitry.  Because of the impact of the 
Manley-Rowe relations to parametric amplifiers, a shortened derivation will be presented here 
with an analysis of their applications to parametric amplifiers and mixers. 

Manley and Rowe began their analysis by considering a circuit similar to that in Fig. 4.1. 

Figure 4.1 contains two voltage sources, 1V  and 2V , at frequencies 1f  and 2f , with their 

associated generator impedance, oZ . These two voltage sources are electrically isolated from 

one another through ideal bandpass filters that are assumed to pass their indicated 



frequencies, and provide an open-circuit out-of-band. The two sources are placed across a 
nonlinear capacitance (though Manley and Rowe state that their derivation could have 
proceeded using a nonlinear inductance instead) whose capacitance, )(VC , is a function of its 

own terminal voltage V . In addition to the two voltage sources, an infinite number of resistive 
loads have been connected across the nonlinear capacitor, each electrically isolated from the 
rest of the circuit by an ideal bandpass filter. The passband frequency of each load bandpass 
filter has been selected to correspond to a specific harmonic combination of the two driving 

frequencies, 1f  and 2f , that occur because of the nonlinear mixing action of the nonlinear 

capacitance. Manley and Rowe made the assumption that the driving frequencies were 
incommensurate such that the ratio of the two will always satisfy 
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Figure 4.1: Simplified circuit model that Manley and Rowe considered for their derivation. 

  

  

To begin the derivation, consider that the total charge, q , flowing into and out of the 

nonlinear capacitor in Fig. 2 can be expressed as a two-dimensional Fourier series as 
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where the charge series coefficients, nmq , , are expressed as 
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with tx 1=  and ty 2= . The total current, nmI , , through )(VC  is the total time derivative 

of the charge series coefficients, 
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However, the incommensurability of 1  and 2  causes 0==
2

,

1

,
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 nmnm qq
. As a result, (3.5) 

reduces to the partial time derivative of the charge series terms 
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The voltage across the nonlinear capacitor, V , may also be expressed as a two-dimensional 
Fourier series, just as was done with the charge, 
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where the voltage series coefficients can be expressed as 
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It is at this point in their derivation that Manley and Rowe performed some 

mathematical “sleight-of-hand” in order to form products of nmI ,  and nmV ,  to obtain power 

series coefficients, nmP , . The tricks employed by Manley and Rowe involves separating the 

problem into two parts, dealing first with frequencies at 1f  corresponding to index m , then 

next with frequencies at 2f  corresponding to index n , and do not need to be reproduced 

here; what is important is the result of this mathematical manipulation, 
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where mnP ,  is the power flowing either into or out of the nonlinear capacitor at frequency 

21 mfnf  . The desired result for the power flow through a nonlinear reactance is thus, by 

Conservation of Energy, 
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When concerned with the evaluation of the power flow in a nonlinear reactance with respect to 
index n , a second result can be obtained. 
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Equations (4.10) and (4.11) are known as the Manley-Rowe relations. 
As discussed above, the Manley-Rowe relations are independent of the shape of the 

capacitance-voltage or inductance-current curve of the nonlinear reactance and the nature of 
the surrounding circuitry, assuming proper isolation of driving and harmonic currents. As a 
result, the Manley-Rowe relations provide a way to quantify the idealized metrics of parametric 
systems, such as gain and stability, and thus a figure of merit to evaluate the performance of 
circuit designs. 

To illustrate this concept, let the voltage generator 1V  in Fig. 2 be a small-signal input 
source, and 2V  be a large-signal pumping source that is required to drive the nonlinear action 
of the nonlinear capacitor. Consider that power is allowed to flow out of the nonlinear 

reactance at a frequency 213 = fff  . Then (4.10) and (4.11) reduce to 
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To satisfy Conservation of Energy, we will define power flowing into the nonlinear capacitance 
as positive, and power flowing out of the nonlinear capacitance as negative. By rearranging 
(4.12) and (4.13), a gain expression can be obtained that is the ratio of output power to input 

power when power extracted at 3f  is considered to be the desired output term. 
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Equation (4.14) demonstrates that given both lossless components and ideal harmonic isolation 
and terminations the maximum gain that is achievable when using a parametric circuit to 

upconvert a signal from a frequency 1f  to a frequency 3f  is the ratio of the upconverted 

frequency to the input frequency. 
Conversely, let the signal frequency be equal to the sum of the desired output harmonic 

and the pumping frequency, such that now the signal frequency is 3f , the desired output 

frequency is 1f , and the pumping frequency remains at 2f . In this case, the parametric circuit 

is downconverting the input signal to a lower frequency and the Manley-Rowe relations predict 
the maximum achievable gain will be 
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which will always be less than one, or a loss. 
The constraint of incommensurate frequencies imposed by Manley and Rowe in their 

derivation was challenged by Anderson and Someda. Their claim stems from reports of 
physically realized parametric circuits properly acting as upconverting parametric amplifiers 
when the ratio of the input to upconverted frequencies does not satisfy (4.1). When the driving 

generators are modeled as ideal, such that their driving voltage can be expressed as tj

oeVV = , 

then the constraint of incommensurate frequencies is necessary. However, nonideal physical 
generators cannot produce a discrete line spectrum. That is to say, the instantaneous output 
frequency of a physical generator is approximately  , and will average out to   over a 
sufficiently long time interval. The voltage of this physical generator could then be modeled as 

  tj

oeVV = , where   is some arbitrary phase that varies slowly over time with a mean value 

of zero. It is then arguable that the Manley-Rowe relations should be clarified to state that the 
instantaneous frequencies should be `almost always' incommensurate. Anderson demonstrated 
that in the statistical case when the frequencies become commensurate, ensuring phase 
incoherence of the driving sources maintains the validity of the Manley-Rowe relations. 

 

C) Phase-Incoherent Upconverting Parametric Amplifiers 

 Three general properties define the operation of phase-incoherent upconverting 
parametric amplifiers: the output frequency is equal to the sum of the input source frequency 
and the pump frequency, power is allowed to flow only at the source, pump, and output 
frequencies, and the source and pump waveforms must maintain phase incoherence. As (4.14) 
demonstrated, the maximum upconverting gain is the ratio of the output frequency to the 
input frequency, and is achievable only when harmonic isolation is perfect and circuit 
components are ideal. In any physically realizable upconverting parametric amplifier, circuit 
component losses and leakage currents due to nonideal filters introduce mechanisms that limit 
approaching the ideal Manley-Rowe gain. 

In an effort to better understand the operating characteristics of the phase-incoherent 
upconverting parametric amplifier, and to determine the primary circuit parameters 
responsible for decreasing the gain from the Manley-Rowe limit, Blackwell and Kotzebue 
considered a quasi-idealized circuit and developed an expression for the transducer gain of 
phase-incoherent upconverting parametric amplifiers based on the quality factor of the 
nonlinear reactance, frequencies of operation, and resistive terminations. To continue their 
work in identifying gain-limiting circuit and component characteristics, a similar circuit was 
explored, taking into account the capacitance range of the nonlinear capacitor. 

Consider the circuit in Fig. 3 that contains an input small-signal source at frequency sf  

and a large-signal pumping source at frequency pf  interacting with a voltage-dependent 

nonlinear capacitor, )(vC . Filters are in place to electrically isolate currents at the source and 

pump frequencies from the desired output mixing product spo fff = . 

 



 

   
Figure 4.2: A phase-incoherent upconverting parametric amplifier. 

  

  

Assuming that the pump voltage is several orders in magnitude larger than the source, 
the voltage across the reactive nonlinearity is dominated by the pump such that the 
voltage-dependent nonlinear capacitor can be considered a time-varying capacitance with 

frequency p , 

 

  ,cos21=)( tMCtC po   (4.16) 

  

where M  is proportional to the pump voltage and gives the coupling between the voltages at 

the two angular frequencies s  and p , and oC  is the large-signal average capacitance of 

the nonlinear capacitor. Performing a derivation similar to Manley and Rowe, the power series 
coefficients can be expressed as 
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where mnI ,  and mnZ ,  are the current and impedance Fourier series coefficients of the 

nonlinear capacitance, respectively, and can mathematically be represented by 
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where mnq ,  are the charge series coefficients, ty p=  and tx s= . For a phase-incoherent 

upconverting parametric amplifier, the power terms of interest are 1,1P , the power in the 

upconverted output signal, and 1,0P , the power in the source signal. Evaluation of (4.17) results 

in 
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As we approach ideal conditions, M  approaches unity, and we obtain the optimal gain 
predicted by Manley and Rowe. 

Let us now assume that the time-dependent capacitance described by (4.16) is 
piecewise-linear, such that a sinusoidal excitation results in a sinusoidal change in capacitance. 
Let us also assume that the nonlinear capacitor's quality factor is sufficiently large such that its 
effects on the gain are negligible. Under these two assumptions, the coupling factor M  can 
be treated as a constant and written as a direct function of the reactive nonlinearity's maximum 

and minimum capacitance, respectively maxC  and minC . 
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Substitution of (4.22) into (4.21) results in 
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Equation (4.23) represents the maximum obtainable small-signal gain given the available 
change in the reactive nonlinearities capacitance. This expression is limited to predicting only 
small-signal gain because of the assumption of a piecewise-linear capacitance-voltage curve. 
Term 1 in (4.23) can be considered a gain-degradation factor. Figure 4 shows the change in this 
gain-degradation factor with changing maximum-to-minimum capacitance ratio. 

 

 



   
Figure 4.3: Change in term 1 in (4.23) with changing maximum-to-minimum nonlinear 
capacitance ratio. 

  

  

From Fig. 4 it is clear that when assuming negligible circuit and component losses the gain of 
phase-incoherent upconverting parametric amplifiers approaches the Manley-Rowe limit as the 
nonlinear capacitor's available maximum-to-minimum capacitance ratio increases. 

The bandwidth of phase-incoherent upconverting parametric amplifiers can be 
discussed if a couple of assumptions are first made. With respect to Fig. 3, the construction of 
the source, pump, and output filters was never specified. To determine a general expression for 
the bandwidth, these filters will each be comprised of high-Q series L-C resonant circuits. While 
single-tuned resonant circuits do not yield the maximum bandwidth, they do reduce the overall 
complexity of both the analysis and the corresponding mathematics. 

Blackwell and Kotzbue approached the bandwidth of phase-incoherent upconverting 
parametric amplifiers in a similar manner. Their derivation showed that when a 
phase-incoherent upconverting parametric amplifier is optimized for maximum gain, the 
operating bandwidth, b , will be limited by 
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where sQ  is the loaded quality factor of the source L-C series resonant filter. 

 

D) Negative-Resistance Parametric Amplifiers 

 Consider now the situation where power flows into the nonlinear reactance at both 
the small-signal source frequency and the large-signal pump frequency, and power flows out of 
the nonlinear reactance at the desired output, which is the difference between the pump and 

source frequency, spo fff = . In this case, the Manley-Rowe relations reduce to 
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Maintaining the power flow convention that positive power flows into the nonlinear 

reactance and negative power flows out, pP  must be positive. Therefore, to satisfy the 

equalities in (4.25) and (4.26), both sP  and oP  must be negative. That is, the nonlinear 

reactance is delivering power to the source signal generator at frequency sf  instead of 

absorbing power from it. If the gain of this system were to be defined as the ratio of power 
delivered to the source input from the nonlinear reactance to that being provided to the 
nonlinear reactance from the source input, then it is possible for infinite gain to occur, as (4.25) 
and (4.26) demonstrate that the nonlinear reactance is capable of delivering power to the 

source at frequency sf  whether or not the source input is active. The possibility of infinite 

gain suggests the potential for system instability at both sf  and of , however, when stable, 

this type of parametric amplifier has properties which differentiates it from the 
phase-incoherent upconverting parametric amplifier, and is known as a negative-resistance 
parametric amplifier. There are two modes of operation for negative-resistance parametric 
amplifiers: nondegenerate and degenerate. 

Both degenerate and nondegenerate negative-resistance parametric amplifiers are 

considered single-frequency amplifiers since the input and output frequencies both occur at sf . 

In addition, both modes satisfy the equality 

 

 ,= spo fff   (4.27) 

  

but since the output frequency is identical to the source frequency, two possibilities exist to 
fulfill (4.27). The first is when power flow is allowed to occur at a third frequency known as the 

“idler,” if , such that spi fff = . In this case, the amplifier is designed so that the idler 

current is contained within the nonlinear reactance and is never delivered to a real load. By 
doing so, (4.27) is satisfied without the idler affecting the gain or efficiency of the amplifier. The 
second case is when the pump frequency is exactly twice that of the source, such that 

sssspi ffffff =2==  . In the second case, the source and pump frequencies are 

harmonically related and the phase relationship between them directly affects amplifier 
performance. 

 

a) Nondegenerate Negative-Resistance Parametric Amplifiers 

 Parametric amplifiers that satisfy (4.27) and sio fff =  are known as 

nondegenerate negative-resistance parametric amplifiers. The gain of these amplifiers is a 
function of the negative resistance that is created through the interaction of the source and 
pumping waves within the nonlinear reactance. Therefore, by determining an expression for 
the negative resistance of nondegenerate parametric amplifiers, an expression for the gain 
follows. 

To begin the derivation, consider the nondegenerate parametric amplifier in Fig. 4. 



Figure 5 contains a small-signal current source, )(tis , and a large-signal pumping source, )(tip , 

each with their respective generator conductances sG  and pG . The load conductance, LG , is 

located within the source circuit. Each independent source is electrically isolated from the other 

through the use of the high-Q resonant traps ss CL   and pp CL  . The idler current is limited 

to circulate within the nonlinear capacitor, )(vC , through the use of the high-Q resonant trap 

ii CL   such that no power is dissipated at that frequency. 

 

 

   
Figure 4.3: An equivalent circuit of a nondegenerate negative-resistance parametric amplifier. 

  

  

Under the assumption that the sum of the source and pump voltage amplitudes are 
much smaller than the DC operating point, the charge, q , stored on the plates of the nonlinear 

capacitor can be expanded in a Taylor series about the DC operating point. If only the linear and 
quadratic terms of are sufficient size to consider in the expansion, then q  can be written as 
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where )(tv represents the total voltage across the nonlinear capacitor at frequencies sf , pf , and 

if , 
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and 1a  and 2a  are the Taylor series coefficients. sV , iV , and pV  in (4.29) are the peak 

values of the harmonic voltages making up the total voltage waveform )(tv . The linear term 

1a  in the expansion in (4.28) must be well-defined, for to ensure high electrical isolation 

between source, idler, and pump currents, each resonant trap must satisfy 
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With knowledge of the total charge stored on the plates of the nonlinear capacitor, the 

current passing through the nonlinear capacitor, )(tiNLC , can be found from the nonlinear 

capacitor's C-V characteristics and the total voltage across its terminals. 
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By substituting (4.29) into (4.33), expanding the result and grouping terms of similar frequency, 
the total current passing through the nonlinear capacitor can be expressed as 
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where 
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Equations (4.35), (4.36), and (4.37) can now be rewritten as 
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Taking the Fourier transform of (4.38), (4.39), and (4.40) and dividing each by their respective 

transformed voltage 
sV

~
, iV

~
, and pV

~
, the admittance of the nonlinear capacitor is obtained 

at the source, idler, and pump frequencies, 
sY

~
, iY

~
, and pY

~
, respectively. 
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With the aid of (4.41), (4.42), and (4.43) and the circuit in Fig. 5, the current-voltage 
relationships for the source, idler, and pump circuits can be expressed as 

 

 (jωjV(jωjI ss

~
=

~
2 

















 

sip
j

s

pi

sT e
V

VV
ajG



  (4.44) 

 (jωjVi

~
=0 22 

















 

sip
j

i

ps

i e
V

VV
ajG



  (4.45) 

 ,
~

=
~

23 (jωjV(jωjI pp 



















 

sip
j

p

is
p e

V

VV
ajG



  (4.46) 

  

where 1= GGGG LsT  . Applying the resonance conditions of (4.30), (4.31), and (4.32) and 

substituting (4.45) and (4.46) into (4.44) to eliminate iV  and pV  allows the admittance 

looking into the source current driver, 
sourceY

~
, to be expressed in the following manner. 
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The small-signal transducer gain, tg , of the circuit in Fig. 5 can now be determined as 
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By truncating the Taylor series expansion of the charge stored on the plates of the nonlinear 
capacitor in (4.28), (4.48) will be unable to accurately predict the gain of the amplifier under 
large-signal operating conditions. 

 

b) Phase-Coherent Degenerate Negative-Resistance Parametric Amplifiers 

 With degenerate negative-resistance parametric amplifiers, the pump frequency is 

exactly twice that of the source such that the condition of (4.27) reduces to si ff = . Thus, in 

degenerate mode of operation, there is no need for a separate high-Q resonant trap to contain 
the idler, reducing the complexity of the circuit model of Fig. 5 to that of Fig. 6. 

 

 



   
Figure 4.4: An equivalent circuit of a degenerate negative-resistance parametric amplifier. 
The pump circuit has been omitted, however, its effects have been included in the definition 
of )(tC  in (4.49). The parallel resonant traps have also been omitted by assuming 

on-resonance operating conditions. 
  

  

 The pump circuit has been omitted from Fig. 6. This is because the nonlinear 
capacitor's change in capacitance is dominated by the pump voltage swing, therefore the pump 
circuit can be absorbed into the nonlinear capacitor's model, such that it is now a time-varying 

capacitance with frequency sp  2= . 
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where M  denotes the coupling between the source and pump voltages, and oC  is the 

large-signal average capacitance of the nonlinear capacitor. Defining 

 

  sss tVv  sin=  (4.50) 

  

and substituting (4.49) and (4.50) into the definition of the current passing through a nonlinear 
capacitor from (4.33), the total current can be expressed as 
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Applying Kirchoff's Current Law, the source generator current, )(tis , is 
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The small-signal transducer gain, tg , is then given by 
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where 
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is the Fourier transform of (4.52), and 
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Equation (4.53) will be unable to predict large-signal gain because of the linear approximation 
of the change in nonlinear capacitance in (4.49). Term 1 in (4.53) acts to increase the transducer 
gain and is phase-dependent. This is a consequence of the harmonic relationship between the 

pump and source frequencies, namely, sp  2= . The maximum transducer gain occurs when 

ps  =2  and will then take on the value 
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Similar to parametric upconverters, the operating bandwidth of negative-resistance 
parametric amplifiers will depend on the form of the filtering necessary to isolate the pump, 
source, and idler currents. Both Figs. 5 and 6 make use of high-Q parallel resonant L-C filters 
and as a result the bandwidth will be primarily limited by the loaded quality factor of these 
circuits. Blackwell and Kotzbue approached the problem of the bandwidth of 
negative-resistance parametric amplifiers by assuming single-tuned resonant structures, and 
determined that the gain-bandwidth product can be written approximately as 
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where lQ  is the loaded quality factor of the amplifier resonant circuit.  

 

E) Analytical Modeling of Parametric Amplifiers 
The theory above focused on the gain and bandwidth of parametric amplifiers from a 
quasi-idealistic circuit standpoint. Because of the use of quasi-idealistic circuit models used 
above, the derived expressions offer little aid in the design process of physical parametric 
systems. By considering more complex, nonidealized circuits, analytical models can be 
developed that describe power gain, gain-compression, and RF-RF conversion efficiency. These 
analytical models provide not only a more in-depth understanding of the mechanisms that limit 
gain, efficiency, and bandwidth of parametric amplifiers, but also contribute a design tool for 
error correction and optimization of parametric systems. 
 

 
a) Phase-Incoherent Parametric Upconverting Amplifiers 

 The derivation performed by Manley and Rowe demonstrated the ideal mathematical 



relationship that exists between the mixing products of a nonlinear reactive element under 
excitation. Their relationships came as a result of the assumptions of incommensurable and 
periodic excitation signals. Under these two assumptions, it was never necessary for Manley 
and Rowe to solve the two-dimensional Fourier integrals for the mixing term coefficients. In 
doing so, and with a proper circuit model for the nonlinear reactance, analytical models can be 
developed describing the non-ideal achievable gain and efficiency of a parametric upconverter. 

Varactor diodes, when operating well below their self-resonance frequency, can be 

modeled as a series variable resistance, )(vRs , and nonlinear capacitance, )(vC , both a 

function of the varactor's terminal voltage. In the following derivation, it will be assumed that 

the change in )(vRs  with respect to the terminal voltage is minimal (assuming reverse bias 

operation) and can be treated as a constant to a first-order approximation.  The capacitive 
change in the varactor can be approximated as a linear function of the terminal voltage, 

vccvC 10=)(  , where 0c  is dependent on the bias voltage, and 1c  is some constant of units 

Farads per volt. In the particular instance of high gain parametric amplifiers, the pump voltage 
is several orders of magnitude greater than the source, and dominates the terminal voltage 

such that )(vC  can be expressed as a time-varying sinusoidal function with frequency p , 
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where M  is proportional to the pump voltage and gives the coupling between the voltages at 

the two angular frequencies s  and p , and oC  is the average large-signal capacitance.  

Let the charge, q , stored on )(tC  be a single-valued function of the terminal voltage 

tVtVVv ppssDC  coscos=  . The charge can be expressed as a Taylor series in v  to obtain 
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where all derivatives are evaluated at DCVv = . Since all powers of v  exist in (4.59), the 

frequencies of the charge coefficients will span sf{ , }pf . Thus, the frequencies of the current 

coefficients also spans sf{ , }pf , and the voltage developed across )(tC  contains 

information on all possible mixing products. Consequently, the charge can be represented as a 
two-dimensional Fourier series, 
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where the charge series coefficients, mnq , , are expressed as 
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with tx s=  and ty p= . The total current, mnI , , through )(tC  is the total time derivative 

of the charge series coefficients, 
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However, the initial assumption of the incommensurability of s  and p  causes 
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. As a result, (4.62) reduces to the partial time derivative of the charge series 

terms 
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The frequencies of the impedance coefficients mnZ , , as with the current coefficients, will span 

sf{ , }pf  in the Fourier domain. The representation of )(tC  in (4.58), while a good 

mathematical model for the time-dependent change in capacitance, is a result of large-signal 

excitation. Thus, (3.1) must be linearized about DCV  and can be accurately approximated by 

oC  to obtain the varactor impedance series terms 
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Two-dimensional Fourier synthesis can now be used to express the complex power, P , of the 
varactor, 
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Evaluation of (4.67) for the ratio of 1,1P  to 1,0P  results in 
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We are interested in both the real and reactive power being provided by the varactor, 

such that (4.68) can be written as     irooo jGGGjGG  == . Separating the real and 

reactive terms in (4.68) yields 
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where 
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In (4.58) it was assumed that the varactor's capacitance was piecewise-linear, as in Fig. 7, to 
describe )(tC  as sinusoidal. Making the same assumption, the coupling factor M  in term 2 

in (4.69) can be treated as a constant and written as a direct function of the change in 
capacitance experienced under RF excitation at a specified amplitude. 

 

 



   
Figure 4.5: Piecewise-linear approximation of the square-law region of the varactor junction 
capacitance, as normalized to its maximum value at 0V bias, versus ideal characteristics. This 
figure demonstrates the difference between the varactors maximum available change in 
capacitance, as opposed to that observed under RF drive. 

  

  

 

 (0,1)=
,

,,



M

C

CC
M

RFmax

RFminRFmax  (4.73) 

  

Substitution of (4.73) into (4.71) and (4.72) provides a complete description of the achievable 
real and reactive gain of a phase-incoherent upconverting parametric amplifier. 
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Manley and Rowe predict the maximum achievable real power gain of any 

phase-incoherent upconverting parametric amplifier to be 
s

o




. Therefore, term 2 in (4.75) can 



be considered a gain-degradation factor, and 
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as predicted by Manley and Rowe under ideal conditions. Conversely, 
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For any appreciable value of sQ  and oQ , the last term in (4.77) is approximately equal to 1. 

Gain-degradation is therefore dominated by the change in capacitance in the varactor. Let 
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Then, 
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(4.77) with =  0.1, 0.5 and 1. 

 

 

   
Figure 4.6: Plot of the change in the gain-degradation factor versus varactor capacitance ratio 
with =  0.1, 0.5 and 1. 

  

  

The reactive power gain gives a measure of the mismatch between the varactor and the 
load. An ideal varactor will deliver all available real power to the load and all reactive power 



should be reflected back to the varactor; the reactive gain iG  should be zero. Let 
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Equations (4.79) and (4.80) do not include higher order terms that would account for the strong 
nonlinear effects of gain compression. Therefore, predicting gain-degradation is limited to the 
linear region of the AM-AM distortion curve and will begin to deviate from measured results as 
the output power begins to saturate. 

The derivation of the achievable efficiency of a phase-incoherent upconverting 
parametric amplifier proceeds similar to that just performed for the gain and will not be 
presented with as much detail. There are multiple ways to define system efficiency of 
phase-incoherent upconverting parametric amplifiers, however one should avoid solving the 
Manley-Rowe relations for the ratio of the power in the upconverted output to that of the 
pump, as it results in an equation that predicts an efficiency greater than 100%. The power in 

the upconverted output must be the sum of the source and pump powers sP  and pP , 

respectively, as required by Conservation of Power for a lossless reactance. 
 

 pso PPP =  (4.81) 

  

For this reason, an accurate way to represent the system efficiency,  , is 
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that guarantees the maximum obtainable efficiency under ideal conditions is 100%; this is 
effectively equivalent to power-added efficiency for transconductance amplifiers. For system 
efficiency, the power series coefficients given in (4.82) are still valid. In the definition of 
efficiency presented in (3.25), it can be shown that 
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As with gain, both the real and imaginary components of (3.26) are of interest. Equation (4.83) 
shows the real component of the efficiency, and (3.28) the imaginary component, such that 
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Equations (4.84) and (4.85) cannot be simplified in such a way to contain an 
efficiency-degradation term as was done with the maximum gain. However, functional analysis 
of (4.84) and (4.85) can be used to confirm the correctness of the derivation. Under ideal 

conditions, spo QQQ ,,  and 1M . As a result, 
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In (4.58) it was assumed that sp VV  . Consequently, let 0=sV  and equate (34.86) to 1 

being the maximum obtainable efficiency. Then, 
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There is only one solution to the quadratic in (3.30): DCp VV 2=  . With reference to Fig. 7, 

selecting a bias point in the middle of the linear approximation to the square-law region and 

allowing a symmetric swing in pV  equal to twice the bias voltage ensures that the varactor will 

experience its available maxC  to minC  ratio. In addition, the terminal voltage of the varactor 

will exceed its built-in potential, forcing saturated operating conditions. This confirms the 
derivational necessity of the varactor experiencing its maximum change in terminal capacitance 
and suggests that driving the phase-incoherent upconverting parametric amplifier into 
saturation may maximize the efficiency. Conversely, 
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The reactive component of the efficiency provides a measure of the reflective mismatch 
between the varactor and the load. In the ideal case, the parasitic self-resistance of the varactor 
goes to zero and the quality factor at all frequencies of operation is infinite. 
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It is difficult to determine the dominant terms in (4.86) with uncertainty in its independent 
variables using a graphical means as was performed with the gain analytical model. Instead, 
first-order variable sensitivity analysis can be employed to examine the uncertainty of the 
efficiency analytical model. The first-order sensitivity of a dependent function f  with respect 

to independent variable x  is defined as 
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Evaluation of f

xS  at a typical operating point demonstrated the general sensitivity of the 

efficiency analytical model showing the per unit change in   with a per unit change in oQ , 

pQ , sQ , and M  was insignificant if all are sufficiently large. The sensitivity of   is 

dominated by the uncertainty in sV , DCV , and pV  as expected with the choice of initial 

assumptions. A practical efficiency analytical model is thus described in (4.91). 
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Similar to the gain analytical model, the efficiency analytical model is limited to predicting 
system efficiency in backed-off operating conditions only. Equation (3.34) does not include 
higher order terms and as a result cannot compensate for saturated operating conditions. 

 

b) Phase-Coherent Degenerate Parametric Amplifiers 

  

 

   
Figure 4.7: A degenerate parametric amplifier utilizing a nonlinear capacitance. The circulator, 

ss CL  , and pp CL   electrically isolate the output, source, and pump currents, 

respectively, from one another. 
  

  

Consider the circuit in Fig. 9 that shows the basic architecture of degenerate parametric 



amplifiers. The circuit contains a nonlinear capacitance (NLC) whose junction capacitance is a 

function of its own terminal voltage, 
NL

CV . Source and pump currents are electrically isolated 

from one another through the high-Q parallel resonant combinations ss CL   and pp CL   

that resonate at s  and p , respectively. It is assumed that the circulator's ideal scattering 

matrix is 
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for any impedance combination presented to the circulator allowing it to direct incident and 
reflected waves without affecting their magnitude and phase. This assumption provides for an 

exploration of the effect of impedance mismatch between only the NLC and sG , pG , and LG  

in degenerate paramps. 
The NLC can be modeled in a Taylor series about some neighborhood of its DC operating 

point, DCV , as 
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where a  and b  are the Taylor series coefficients with units F and F/V, respectively. In a 

degenerate parametric amplifier, voltage potentials at only frequencies s  and p  need to 

be present across the terminals of the NLC to generate the negative resistance responsible for 
power amplification. Therefore, if all unwanted harmonic voltages across the terminals of the 
NLC are properly shorted, 
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where sV  and pV  are the peak amplitude values of the voltage waveforms at s  and p , 

respectively, across the terminals of the NLC. It is necessary to consider an initial phase 
displacement of 90 degrees lagging in (4.94) if the NLC is to properly present a negative 
resistance.  The time-varying currents through a NLC can be determined from the time-varying 
voltage applied to its terminals by 
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By substituting (4.93) and (4.94) into (4.95) and expanding, collecting terms at s  and p , 

bringing the solution over to the positive frequency spectrum, and dividing the terms at s  by 

s
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 and the terms at p  by p
t

s
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 2

, equivalent admittances for the NLC are 

obtained at both s  and p . 
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Using (4.96) and (4.97), and applying Euler's formula to each complex exponential, the total 

admittance seen by the source and pump generators, 
sY

~
 and pY

~
, can be expressed as 
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Equations (4.98) and (4.99) reveal that the phase relationship sp  2=  must exist if both the 

negative conductance is to be maximized and the excess nonlinear reactance (which results 
from pumping the NLC) is to be minimized. 

To ensure that the phase condition stated above is satisfied, the linear susceptance 

terms aj s  and aj s2  in 
sY

~
 and pY

~
, respectively, must be properly eliminated through 

resonance. This can be accomplished if the values for sL  and pL  in Fig. 9 fulfill 
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Then, (4.99) and (4.100) can be substituted into the other such that each is now a function of its 

own peak terminal voltage sV  or pV . 
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Equations (4.101) and (4.102) show that the circuit in Fig. 9 can be modeled as two separate 
equivalent circuits from the viewpoints of the source current generator and the pump current 
generator. 

 

 

   
Figure 4.8: Equivalent circuits of the degenerate parametric amplifier in Fig. 9 as seen by (a) 
the source current generator, and (b) the pump current generator. 

  

  

Now, from (4.102) and Fig. 10, an expression for the transducer gain, tg , can be derived. 

 

 

 

 

2

4

2

3

2

2

2

1

22

22
8

=)(









































  

  

L

pL

s

p

ps

sL

L

pL

s

p

ps

s

Lt

P
GG

b

G

bI
GG

P
GG

b

G

bI
G

Pg





 (4.103) 

  



Equation (4.103) reveals the mechanism of gain compression in phase-coherent degenerate 

parametric amplifiers. If the available source power level, 
s

s
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2

,
, is increased, and all 

other variables in (4.103) remain constant, then terms 2 and 4 increase in magnitude and 
eventually become comparable in magnitude to terms 1 and 3. This results in a nonlinear 
decrease in the power delivered to the load causing amplitude modulation distortion of the 
output. When considering backoff operating conditions, terms 2 and 4 in (4.103) can be ignored 

and the linear transducer gain, lintg , , can be determined to be 
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The RF-RF conversion efficiency of phase-coherent degenerate parametric amplifiers 
can also be explored. Consider the expression for the total admittance seen by the pump 

current generator, pY
~

, in (4.104). By applying the phase condition sp  2= , pY
~

 can be 

simplified to a useful expression involving both the source and pump voltage amplitudes sV  

and pV . 
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This new expression for pY
~

 provides an equivalent circuit from the perspective of the pump 

current generator, as seen in Fig. 4.9. 
 

 

   
Figure 4.9: Equivalent circuit as seen by the pump current generator according to (4.105). 

  

  

If it is assumed that pG  is close in value to 
sp

ss

GV

bV

2

2
 then the peak voltage pV  can be 



approximated as 
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From (3.48) and (3.49), the available pump power can be expressed as 
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. By defining the RF-RF conversion efficiency as the ratio of output power 

to available pump power, the efficiency of negative-resistance parametric amplifiers can be 
expressed as 
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c) Phase-Coherent Upconverting Parametric Amplifiers 

 Phase-coherent upconverting parametric amplifiers combine traits from both 
phase-incoherent upconverting parametric amplifiers and phase-coherent negative-resistance 
parametric amplifiers. With phase-coherent upconverting parametric amplifiers, the source and 
pump frequencies are commensurate (as with degenerate parametric amplifiers), but the 
output is taken at a harmonic (greater than the first) of the source frequency. In this way, 
phase-coherent upconverting parametric amplifiers mix the source input up to a higher 
harmonic with gain through the action of a negative resistance. 

In the development of the Manley-Rowe relations, the authors explicitly maintained the 

incommensurability of the two mixing frequencies 1f  and 2f . The validity of the 

Manley-Rowe relations when dealing with commensurate frequencies 1f  and 2f  was 

investigated and concluded that they are still valid when the two frequencies are 
commensurate, however, the two signals must maintain phase incoherence. The imposition of 
phase incoherence in no way restricts a new mathematical exploration of the possibility of a 
phase-coherent upconverting parametric amplifier. 

 

 



   
Figure 4.10: Idealized equivalent circuit for a phase-coherent upconverting parametric 

amplifier utilizing a nonlinear capacitance. The circulator, ss CL  , pp CL  , and fsfs CL 33   

electrically isolate the source, pump, and output currents, respectively, from one another. 
  

  

Consider the circuit in Fig. 12 that shows the basic architecture of a phase-coherent 
upconverting parametric amplifier designed to upconvert to three times the source frequency 

when sp  2= . The circuit contains a nonlinear capacitor whose capacitance is a function of 

its own terminal voltage, 
NL

CV . Source, pump, and upconverted output currents are electrically 

isolated from one another through the high-Q parallel resonant combinations ss CL  , 

pp CL  , and fsfs CL 33   that resonate at s , p , and fs3 , respectively. It is assumed that 

the circulator's ideal scattering matrix is 
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for any impedance combination presented to the circulator allowing it to direct incident and 
reflected waves without affecting their magnitude and phase. This assumption provides for an 

exploration of the effect of impedance mismatch between only the NLC and sG , pG , and LG  

in phase-coherent upconverting parametric amplifiers. 
The NLC can be modeled in a Taylor series about some neighborhood of its DC operating 

point, DCV , as 
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where a  and b  are the Taylor series coefficients with units F and F/V, respectively. In a 

phase-coherent upconverting parametric amplifier, voltage potentials at only frequencies s , 



p , and fs3  need to be present across the terminals of the NLC to generate the negative 

resistance responsible for power amplification at the third harmonic. Therefore, if all unwanted 
harmonic voltages across the terminals of the NLC are properly shorted, 
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where sV , pV , and fsV3  are the peak amplitude values of the voltage waveforms at s , p , 

and fs3 , respectively, across the terminals of the NLC. It is necessary to consider an initial 

phase displacement of 90 degrees lagging in (4.111) if the NLC is to properly present a negative 
resistance.  The time-varying currents through a NLC can be determined from the time-varying 
voltage applied to its terminals by 
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By substituting (4.110) and (4.111) into (4.112) and expanding, collecting terms at s , p , 

and fs3 , bringing the solution over to the positive frequency spectrum, and dividing the terms 

at s  by s
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, 

equivalent admittances for the NLC are obtained at s , p , and fs3 . 
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Using (4.113), (4.114), and (4.115), imposing the phase relationships sp  2=  and sfs  3=3 , 



and selecting the resonance combinations ss CL  , pp CL  , and fsfs CL 33   such that 
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to eliminate the linear suscptance terms aj s , aj s2 , and aj s3  from (4.117), (4.117), 

and (4.118), respectively, the total admittance seen by the source and pump generators, 
sY

~
, 

pY
~

, and 
3fsY

~
 can be expressed as 
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Assuming that term 1 in (4.119) is matched to pG , pV  can be approximated as 
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Using (3.62) and the approximation of pV  to eliminate sV  and pV  from (4.121), the peak 

current passing through the nonlinear capacitor in Fig. 12 at the third harmonic is 

 

 
 

.
16

43
=

2

3

3

sp

fspsspps

fs
GG

VbIIGbI
I

 
 (4.122) 

  

From (3.65), it can then be shown that the transducer gain, tg , from s  to s3  is 
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It is clear from (3.66) that the parameters sG , pG , and LG  may be selected to provide any 

amount of gain for a given NLC. 
The RF-RF conversion efficiency of phase-coherent upconverting parametric amplifiers 

can also be explored using (3.65) when defining conversion efficiency as the ratio of output 

power at fs3  to the available pump power at p . 
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F) Design and Performance of Upconverting and Negative-Resistance Parametric 
Amplifiers 
     The analytical models derived above provide a set of design equations for developing 
parametric upconverters and negative-resistance parametric amplifiers.  However, by 
themselves, the analytical models are not sufficient to construct an entire parametric system. 
The parametric amplifier must be embedded in an architecture that not only supports the 
necessary conditions outlined in previous chapters for achieving high gain and broad 
bandwidth, but must also provide isolation between the source, pump, and/or output/idler 
circuits, and properly transform impedances to their optimal values. 

 
a) VHF and RF Phase-Incoherent Upconverting Parametric Amplifiers 

Two phase-incoherent upconverting parametric amplifiers were constructed. Both 
upconverting amplifiers were similarly designed following the topology of Fig. 13. The first 
amplifier upconverted a 30 MHz signal to 300 MHz through parametric mixing with a 270 MHz 
pump. Varactor diodes were used to act at the nonlinear capacitive mechanism. The varactor 
diode chosen was the 1S2208 (characteristically similar to the BB833) that has a junction 
capacitance range of approximately 5 pF at maximum reverse bias to 50 pF at zero bias with a 
minimum quality factor of 130 at 50 MHz. The varactors were placed in anti-parallel such that 
the upconverted output currents were in anti-phase to create a virtual ground between the two 
varactors at the upconverted frequency. This balanced operation allowed for the pump and 
source circuits to be introduced at the virtual ground without shorting the upconverted output 
current. Electrical isolation between the pump and source was accomplished using high-Q 
resonant traps that also assisted in transforming the varactor impedance to its optimal value at 
the pump and source frequencies. The balanced upconverted currents were then combined 
using a coaxial balun that also acted as the output match to transform a standard 50 Ohm load 
to 100 Ohms differential. The DC bias voltages were introduced through transmission lines a 
quarter-wavelength long at the upconverted output frequency and connected to the balun's 
balanced inputs. These transmission lines prevented leakage currents at the upconverted 
frequency. 

 

 



   
Figure 4.11: Circuit topology for both the VHF and RF phase-incoherent upconverting 
parametric amplifiers. 

  

  

The VHF upconverting parametric amplifier was first simulated in a harmonic-balance 
simulator using standard SPICE models for all components. Simulations predicted a linear 
power gain of approximately 8 dB at a pump power level of 20 dBm when practical losses were 
included in all circuit components. Using the definition of efficiency in (3.25), a maximum RF-RF 
conversion efficiency of 50.7% was achieved in saturated conditions. Simulations estimated the 
3 dB bandwidth to be approximately 29.48 MHz to 31.2 MHz, or 4.73% fractional bandwidth. 

The breadboard shown in Fig. 14 was fabricated to compare measured performance to 
simulated results. 

 

 

   
Figure 4.12: Hardware implementation of the VHF upconverting parametric amplifier. 



  

  

By increasing the source power level, the 1-dB compression point was measured to be 16.87 

dBm at 10.86=sP  dBm and 20=pP  dBm. This translated to an efficiency in saturated 

conditions of 48.6%. At that signal drive level, the varactor became forward biased and created 
a hard saturation where the output power remained at 16.87 dBm regardless of any increase in 

sP . As a result, dBP3  was also measured to be approximately 16.87 dBm. The 3-dB bandwidth 

was next determined. Because of the tuned circuits on the source, pump, and output side, the 
3-dB bandwidth is narrow and was measured to be 28.28 MHz to 31.3 MHz, or a 10.1% 
bandwidth. Figure 15 shows the agreement between simulated and breadboard measurements 
for gain compression and efficiency at the optimal pump power level and DC bias point. 

 

 

   
Figure 4.12: Simulated and measured gain and efficiency versus source power for the VHF 
upconverting parametric amplifier. 

  

  

The analytical model in (4.117) predicts that the parametric amplifier will maximize its 
gain when the change in varactor junction capacitance is at its maximum. Care must be taken to 
limit the voltage swing across the varactor's terminals to prevent the diode from entering 
forward conduction. The differential design and optimal bias point establish a voltage swing 

across the varactor causing a capacitive change from 7.40 pF to 49.95 pF at 20=pP  dBm. This 

results in a maximum-to-minimum capacitance ratio of 6.74. The quality factor of the varactor 
at the source, pump, and upconverted frequencies can be found by derating the varactor 
quality factor from 130 as measured at 50 MHz, however,   in (3.21) will approximately be 1 

since the quality factor is high for these frequencies. Therefore, gain degradation will be 
dominated by the experienced change in varactor capacitance under large-signal excitation. 
Application of (3.17) under optimal bias conditions and pump drive power results in 
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The maximum measured gain at 20=pP  dBm and optimal bias point, 9= biasV  V, is 8.16 

dB. Thus, the discrepancy between measured and calculated gain is 0.45 dB. The use of a 
piecewise-linear model for the reactive nonlinearity accounts for the small error between 
measured and calculated power gain. 

The analytical model is not limited to predicting gain degradation under optimal 
operating conditions; it can also predict the change in gain as the capacitance ratio deviates 
from its maximum. Reducing the pump input power decreases the voltage swing across the 

varactor and limits the achievable capacitive ratio. At 15=pP  dBm, the varactor junction 

capacitance changes from 11.1 pF to 49.95 pF resulting in a capacitance ratio of 4.4. Equation 
(3.17) then predicts a maximum power gain of 
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Breadboard measurements under identical non-optimal conditions show a maximum 
obtainable power gain of 7.71 dB, which is a 0.11 dB discrepancy from the analytical model 
prediction. 

The VHF parametric upconverter was then tested over a broad range of operating 
conditions and the measured data was compared to values predicted by (4.117) and (4.127). 
Figure 16 compares measured and predicted values for the linear gain against changing pump 
and source power levels for a constant bias voltage, and Fig. 17 compares measured and 
predicted values for the linear efficiency against changing bias levels and source power levels at 
a constant pump power level. 

 

 

   
Figure 4.13: Comparison of surface plots of the measured gain of the VHF breadboard 
upconverting parametric amplifier against predicted by the analytical model of (4.117). 



  

  

 

 

   
Figure 4.14: Comparison of surface plots of the measured system efficiency of the VHF 
breadboard upconverting parametric amplifier against predicted by the analytical model of 
(4.134). 

  

  

The small error between the analytical prediction and measured response can be 
graphically explained. Consider a small perturbation in the terminal voltage of the varactor 
about an operating point near the breakpoint of the piecewise-linear C-V curve, as seen in Fig. 
18(a). The resulting change in capacitance is greater for the piecewise-linear curve than that of 
the actual since the slope of the actual curve is less than that of the approximation near the 
operating point. As a result, the gain analytical model overestimates the change in capacitance 
and returns a value greater than is measured. Conversely, in Fig. 18(b), the perturbation is 
applied about a bias point near zero volts where the slope of the actual C-V curve is greater 
than the slope of the piecewise-linear. The gain analytical model now underestimates the 
change in capacitance and returns a value that is less than measured. This error could be 
corrected by implementing a more complex model for the C-V curve of the varactor but the 
resulting equation is much more complex and is of little practical use for the purposes of circuit 
design. 

 

 



   
Figure 15: Mathematical reasoning behind the error between the prediction made by the gain 
analytical model of (3.17) and the measured results from the VHF breadboard upconverting 
parametric amplifier. 

  

  

The second upconverting parametric amplifier translated a 140 MHz input to 1.3 GHz 
through parametric mixing with a 1.16 GHz pump source. As with the previously discussed 
upconverting parametric amplifier, the 1S2208 varactor diode was chosen as the nonlinear 
capacitor for it's high quality factor and available change in capacitance. The design of this RF 
upconverter was practically identical to the previously discussed following an architecture and 
layout similar to Fig. 13. 

The RF upconverting parametric amplifier was first modeled in a harmonic balance 
simulator using standard SPICE models for all circuit components. Simulations predicted a linear 

power gain of 4 dB and a maximum efficiency of 30% in backoff at 23=pP  dBm when 

practical losses were included in the transmission lines. Once constructed, the RF upconverting 
parametric amplifier demonstrated a maximum gain and efficiency of 4.5 dB and 37%, 

respectively, as sP  approached saturated operating levels. 

The performance of the RF upconverting parametric amplifier and the ability of the 
analytical models in (3.17) and (3.27) to accurately predict the gain and efficiency across a wide 
range of operating points can be determined from the constructed breadboard. To compute 
the predicted responses from the gain and efficiency analytical models, the varactor terminal 
voltage swing must be known at both the pump and source frequencies. Simulated 
measurements were used to determine both the capacitance ratio of the varactor under 
excitation and the peak source voltage at the varactor terminals. Because of the accuracy of the 
simulated results as compared to the measured results from the breadboard parametric 
upconverter, the simulated capacitance ratio and peak source voltage at the varactor terminals 
are considered to be indicative of what would be physically measured on the breadboard 
upconverting parametric amplifier. 

Figure 19 compares the surface plot of the measured gain of the breadboard 
upconverting parametric amplifier to that predicted by the analytical model of (3.17), and Fig. 
20 compares the measured efficiency to that predicted by the analytical model of (3.27). The 
small error between the measured and predicted values for both figures can be explained using 



the same argument presented above for the VHF upconverting parametric amplifier. 
 

 

   
Figure 4.16: Surface plot comparison of the measured gain of the RF breadboard upconverting 

parametric amplifier to that predicted by the analytical model of (4.117). 
  

  

 

 

   
Figure 4.17: Comparison of surface plots of the measured system efficiency of the breadboard 

parametric upconverter against the predicted efficiency of the analytical model of (4.134). 
  

  
 

 



b) Phase Coherent Negative-Resistance Degenerate Parametric Amplifiers 

 Three fundamental conditions must be satisfied for a nonlinear capacitance to exhibit a 
negative resistance. First, a large-signal pumping source is needed to drive the nonlinear action. 

Second, the large-signal average capacitance of the nonlinear capacitor, oC , must be 

eliminated by an attached resonant network, and, finally, the resonant network must properly 

isolate currents at s  from those at p . It was demonstrated above that when these three 

requirements are satisfied, and the resonant conditions 
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are established, (4.127) will predict the small-signal transducer gain, tg , of a degenerate 

negative-resistance parametric amplifier. 
To satisfy the three fundamental conditions outlined above across a broad range of 

operating frequencies, a double-balanced mixer (DBM) architecture was adopted. 
Double-balanced structures have the advantage of inherent isolation at all ports, broadband 
rejection of pump noise, spurious signals, and intermodulation products, and broadband 
operation. Conversely, the primary disadvantages of double-balanced mixer architectures are 
that they require four diodes and two baluns. However, the advantages of a double-balanced 
mixer architecture outweigh the disadvantages, making it ideal for use as a degenerate 
parametric amplifier architecture. Figure 4.18 shows a double-balanced ring mixer. 

 

 

   
Figure 4.18: A double-balanced mixer showing the incident and reflected source, pump, and 
output waves. By Conservation of Phase, the reflected source waveforms will be in-phase and 
will combine at the center tap of the secondary of the source balun. 

  

  

The double-balanced mixer provides balanced differential signals at both the pump and 



source frequencies to each of the four ring diodes. Assuming ideal baluns, the incident balanced 
pump waveforms (blue) and source waveforms (red) will be of equal amplitude and perfectly 
180 degrees out of phase. The differential action of the baluns force a virtual ground for both 
the incident pump waveforms (blue dashed line) and source waveforms (red dashed line) at the 
varactor diode terminals. Connecting the pump circuit to the source circuit's virtual ground and 
vice versa provides broadband isolation between the two. The incident source waveforms 
interact with the pumped varactors in anti-phase such that by the Conservation of Phase for 
mixers the reflected waveforms must be in-phase. The source reflected waves then combine to 
the center tap of the secondary of the source balun to form the output. 

To better understand how the Conservation of Phase for mixers guarantees the source 
reflected waves will be in-phase with each other, consider the equivalent source circuit in Fig. 
22. In each branch, the varactors are connected in anti-parallel but the polarity of the pumping 
voltage ensures that the change in capacitance is identical. Because of the differential pumping 
of the varactors, the pump voltage phase relationship between branch 1 and branch 2 will 
always be 180 degrees. Therefore, regardless of the dot convention of either the source or 
pump balun the possible phase of each reflected source waveform is 

 

  1800=01800=:1 ororBranch sp   (4.128) 
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such that the reflected source wave in branch 1 will always be in phase with the reflected 
source wave in branch 2. 

 

 

   
Figure 4.19: Equivalent circuit from the perspective of the source generator. The polarity of 
the pumping voltage across each varactor is indicated to illustrate how Conservation of Phase 
for mixers will guarantee the reflected waves will always be in-phase. 

  

  

Fig. 4.20 shows the circuit design of the phase-coherent degenerate parametric 
amplifier in the DBM architecture. Varactor diodes were selected to act as the nonlinear 
capacitive mechanism. The design in Fig. 4.20 was implemented in a single-tone harmonic 



balance simulator with the source frequency set as the fundamental (note that the source and 
pump frequencies are commensurate in a degenerate paramp, so only one fundamental is 
needed), using standard SPICE models for all components. The varactor diodes are the BB857 
model that have an available junction capacitance range of approximately 0.5 pF at their 
maximum reverse bias voltage of 30 V to 6.6 pF at zero volt bias. Each varactor was doubled-up 
in parallel to center the capacitance-voltage curve for maximum gain. Surface-mount 
transforming baluns were chosen (Minicircuits TC4-25+), and RF crossovers were needed for 
routing traces in a single-layer microstrip environment. The prototype circuit was fabricated on 
62 mils thick Rogers 4350 RF substrate material with 1 oz copper plating, as seen in Fig. 24. 

 

 

   
Figure 4.20: Circuit schematic of the double-balanced phase-coherent degenerate parametric 
amplifier showing all component values. 

  

  

 

 



   
Figure 4.21: Photograph of the prototype double-balanced phase-coherent degenerate 
parametric amplifier board with critical components identified and labeled. 

  

  

To test the prototype, a test bench setup was constructed. This setup used two 
phase-locked RF signal generators (one of which has the capability of phase adjustment) to 
produce the phase-coherent single-tone pump and source signals, as seen in Fig. 4.22. The 
output of the degenerate parametric amplifier was monitored by a spectrum analyzer to 
confirm stable operation. 

 

 

   
Figure 4.22: Test bench setup to measure gain, bandwidth, and stability of the 
phase-coherent degenerate parametric amplifier. 

  

  

 

 



   
Figure 4.23: Plot of the simulated and measured gain versus source frequency of the 
double-balanced phase-coherent degenerate paramp at a constant pump power level of 30 
dBm. 

  

  

Fig. 26 compares the simulated and measured gain versus source frequency of the 
double-balanced phase-coherent degenerate parametric amplifier at a constant pump power 
level of 30 dBm. This large of a pump power level was required to maximize the capacitance 
switch of the varactors. If lower breakdown voltage varactors had been available with similar 
capacitance-voltage characteristics, the necessary pump power level might have been 
considerably less. 

Ripple can be seen in both the simulated and measured gain plots within their usable 
bandwidths. As the source frequency varies, phase coherence is not perfectly maintained and 

the amplitude of the voltage waveform at p  across each varactor diode fluctuates. These 

two factors contribute to a slight change in the negative resistance value that causes the gain 

ripple. In addition, the gain drops below zero when 150 MHz >> sf  1150 MHz as it exceeds 

the operational bandwidth of the baluns. The average gain within the usable bandwidth of the 
amplifier is approximately 26 dB. 

 

c) Phase-Coherent Upconverting Parametric Amplifiers 

 The analysis above demonstrated that an architecture similar to that of a 
phase-coherent degenerate parametric amplifier could be used to demonstrate a 
phase-coherent upconverting amplifier. The degenerate parametric amplifier prototype 
developed in the above section does not use any output filtering and was intended to operate 

under the condition sp  2=  making it ideal to demonstrate phase-coherent upconversion. 

Figure 27 compares the simulated and measured transducer gain versus the 
upconverted output frequency in addition to predicted values according to the analytical model 
in (3.66). Ripple in the gain can be seen within the usable bandwidth. Inspection of (3.66) shows 
that term 1 in the denominator is sensitive to changes in the source frequency and the 



transformed source, pump, and load conductances. Small perturbations in these values causes 
large changes in the transducer gain resulting in gain variations across the usable bandwidth. In 

addition, the gain drops below a usable value when 1.5 GHz >3> sf  2.1 GHz. This is a result of 

bandwidth limitations of the source and pump baluns that introduce losses that cannot be 
overcome by the negative resistance. 

 

 

   
Figure 4.24: Simulated and measured transducer gain versus upconverted output frequency 
in addition to predicted values according to the analytical model in (3.66). 

  

  

Figure 4.24 also shows the theoretical phase-incoherent upconverting parametric power power 
gain limit imposed by the Manley-Rowe relations. As predicted, the Manley-Rowe relations are 
incapable of predicting upconverted gain when the source and pump frequencies are 
phase-coherent. In addition, the achievable gain goes beyond what the Manley-Rowe relations 
would state is the theoretical limit for parametric upconversion.  

 

G) Stability Analysis of Parametric Amplifiers 
The strong nonlinearity of the nonlinear reactance in parametric amplifiers gives rise to 

situations when they can sustain an oscillation at a frequency different from those delivered by 
the source and pump generators or their harmonic combinations. As a result, paramps can be 
classified as autonomous microwave circuits. Stability analysis of autonomous microwave 
circuits is difficult due to their inherent nonlinearity and the usual coexistence of the oscillatory 
solution with a mathematical solution for which the circuit does not oscillate. Traditionally, 
two-port amplifier stability is determined by investigating the small-signal regime of the circuit 

and determining if for some frequency interval  maxmin  ,  the S-parameters of the amplifier 

satisfy the Rollet stability criteria. While parametric amplifiers are inherently three-port 
networks, they can be reduced to a two-port by linearizing the circuit equations about either 
the large-signal pump periodic regime (for large-signal stability analysis) or the small-signal 



source regime (for small-signal stability analysis). Typically, though, the Rollet stability criteria is 
not applicable to parametric amplifiers as it assumes the circuit is intrinsically stable and is a 
single-frequency device. However, the combination of the Manley-Rowe relations and the 
analytical models developed above provide a simplified set of tools to analyze the stability of 
parametric amplifiers under various perturbations, operating conditions, and input and output 

reflection coefficients, in  and out , respectively. 

 

a) Conditional Stability of Phase-Incoherent Upconverting Parametric Amplifiers 

 While the Rollet stability criteria is limited to single-frequency two-port amplifiers (and 
thus not applicable to parametric upconverters), the general concepts of the theory can still 
provide a means to begin a stability analysis of phase-incoherent upconverting parametric 
amplifiers. By the Rollet stability criteria, a two-port amplifier is said to be unconditionally 

stable in the small-signal regime if    0>inZ  for any passive complex load LZ  and 

   0>outZ  for any passive complex source sZ  within the entire frequency interval 

 maxmin  , . From the perspective of the source generator, any standing wave would be at s , 

and from the perspective of the output, any standing wave would be at pso  = . 

Therefore, the condition of the real part of the input and output impedances remaining positive 
should be satisfactory to determine upconverting parametric amplifier stability in the 

small-signal regime with the caveat that inZ  and outZ  be analyzed independently. Figure 28 

shows a phase-incoherent upconverting parametric amplifier whose nonlinear reactance, 
circuit isolation filters, and pumping circuit have been placed inside a ``black box.'' The amplifier 

is being driven by an AC generator at frequency s  with a Thévenin impedance sZ . The 

output circuit of the parametric amplifier has been terminated in an impedance LZ  resulting 

in a reflection coefficient L . 

 

 

   
Figure 28: A black box phase-incoherent upconverting parametric amplifier. The incident and 
reflected source and output waves can be expressed independently of one another, allowing 

for the two ports to be analyzed individually. 
  

  

Unconditional stability in the small-signal regime is guaranteed if the magnitude of the 
total reflection coefficients seen at the source and output ports are less than or equal to 1 



within the frequency interval  maxmin  ,  since this implies the real parts of the complex 

impedances  sinZ   and  ooutZ   are non-negative. S-parameter analysis of the circuit in Fig. 

28 can only be achieved if the circuit is treated as a one-port from, first, the perspective of the 
source, and, second, from the perspective of the output. Let 
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be the input reflection coefficient without considering a substantial reverse-transfer wave '

1b . 

In other words, in  is only a measure of impedance mismatch between the source generator 

and the phase-incoherent upconverting parametric amplifier's source port. Then, let 
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be the total input reflection coefficient when considering the superposition of 1b  and '

1b . By 

S-parameter network theory, 
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Substitution of (4.3), (4.4), and (4.5) into (4.2) yields 
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From the Manley-Rowe relations, the idealized power gain of a phase-incoherent upconverting 

parametric amplifier can be expressed as 
s

o




. Above it was noted that a parametric 

downconverter will always attenuate with an idealized minimum loss of 
s

o




, where, for the 

downconverter, the down-converted output frequency o  is always less than the source input 

frequency s . In addition, by the Conservation of Phase for mixers, the output of a parametric 

upconverter must have a relative phase equal to the sum of the relative phase of the source 

and the relative phase of the pump, s  and p , respectively, and, similarly, the relative phase 

of the output from a parametric downconverter must be the difference between the source 
and pump relative phases. Finally, the forward and reverse power gain is related to 

S-parameter network theory by the square of 21S  and 12S . Therefore, for a phase-incoherent 

upconverting parametric amplifier the forward- and reverse-transfer coefficients can be 
expressed as 
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It is important to note that the Manley-Rowe relations are independent of the shape of the 
nonlinearity curve of the nonlinear reactance, the manner in which harmonic currents are 

isolated, and how each harmonic current is terminated. As a result, the definition of 21S  and 

12S  in (4.136) and (4.137) do not change for any passive reflection coefficient s  or L . 

Equation (4.6) can now be simplified to 
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which is guaranteed to be less than or equal to 1 for any source frequency s  at any source 

power drive level that does not approach that of the pump and passive reflection coefficients 

s  and L . Performing a similar derivation for the output port, it can be shown that 
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where 
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and 21S  and 12S  are defined by (4.139) and (4.140). Equation (4.141) is guaranteed to be less 

than or equal to 1 for any output frequency o  at any source power drive level that does not 

approach that of the pump and passive reflection coefficients s  and L . 

From the analysis presented above, it would appear that phase-incoherent upconverting 
parametric amplifiers are unconditionally stable for any and all frequencies and input drive 
levels. However, this analysis focused on the small-signal response of the amplifier in the 
small-signal regime by linearizing its response to the large-signal pumping source. To complete 
the stability analysis of upconverting parametric amplifiers, the circuit must be linearized about 
the large-signal pumping source to determine its response in the periodic large-signal regime. 

An analysis performed demonstrated the capability of oscillation for a nonlinear 



capacitance being pumped by a periodic large-signal source. It was assumed that the circuit was 
lossy and contained some inductive reactance. At some pumping power threshold the circuit 
will exhibit a flip bifurcation resulting in a steady-state subharmonic oscillation at the natural 

frequency 
2

=
p

o


 . The former periodic solution occurring at p  continues to exist after the 

flip bifurcation, but it has become unstable. Beyond the threshold point the only observable 
solution is the frequency-divided solution. 

Combining the small-signal and large-signal analysis for phase-incoherent upconverting 
parametric amplifiers it can be seen that they are conditionally stable. It should be noted that 
the possibility of a flip bifurcation was not explored in the small-signal analysis as it was 
assumed that the amplifier was intrinsically stable when linearized about the small-signal 
solution and that the input source drive level would never approach that of the pumping 
source. To do so would lead the analysis out of the small-signal regime and into the large-signal 
regime. 
 

b) Conditional Stability of Negative-Resistance Parametric Amplifiers 

 The analytical models developed above regarding both degenerate and 
non-degenerate parametric amplifiers shows the generation of a negative resistance. Power 
gain is possible when the negative resistance is large enough as the circuit attempts to balance 
the excess negative resistance exhibited by the nonlinear reactance with the positive resistance 
presented by the losses of the surrounding linear circuitry. However, when the value of the 
negative resistance exceeds the positive losses of the circuit, balance cannot be maintained, 
and the circuit will become unstable. From (3.46), large-signal stability will be maintained for 
degenerate parametric amplifiers when 
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To better understand the conditions for large-signal stability, assume that the source 

conductance sG  is small compared to 
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Let LsL GVP 2=  such that 
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where NLsC ,  is a measure of the nonlinearity of the capacitance-voltage curve of the nonlinear 



reactance. It is now useful to define a new positive resistance, 
p

s
stab

I

V
R = , that relates the peak 

value of the voltage waveform across the nonlinear reactance at the source frequency to the 
peak value of the pump current generator such that 
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Evaluating the inequality of (4.145) shows that as the pump drive level is increased, stabR  

decreases, and eventually will fall below the stability threshold resulting in unstable operation. 

In addition, an unexpected result comes from this inequality. Decreasing NLsC , , and all else 

being unchanged, can eventually lead to instability. NLsC ,  is a measure of nonlinearity of the 

nonlinear reactance at the DC operating point. To decrease the nonlinearity when using, say, a 
varactor diode as a voltage-dependent nonlinear capacitor, one would increase the DC bias 
voltage such that the operating point sat in the linear portion of the capacitance-voltage curve. 
At first this would seem counterintuitive based on the large-signal transducer gain analytical 
model. However, (4.145) seems to suggest that a decrease in the nonlinearity of the nonlinear 
reactance at the DC operating point has an overall effect of increasing the negative resistance 
seen by the source resulting in an increase in the power gain. Following a similar derivation for 
non-degenerate parametric amplifiers, and using the transducer gain analytical model in (4.48), 
the criteria for stable operation can be shown to be 
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A phase-coherent degenerate parametric amplifier was designed based on the analytical 
models developed above. Because of the direct relationship between gain and stability in the 
large-signal regime, and the sensitivity of stability to small perturbations, an in-depth stability 
analysis of phase-coherent negative-resistance parametric amplifiers is warranted. 

As discussed, to obtain the maximum gain in phase-coherent degenerate parametric 

amplifiers, the phase condition sp  2=  must be imposed. The pump power must also be 

properly selected, which is generally done through a power sweep, most often using a 
commercially-available harmonic balance (HB) simulator. Inspection of (4.16) shows that 

perturbations in the pump power level results in changes in stabR  that could potentially 

destabilize the amplifier. Therefore, to continue the stability analysis of phase-coherent 
degenerate parametric amplifiers the evolution of the system poles will be determined under 
variations in the pump power level. 

The poles are obtained by, first, inserting a small-signal current source of value sI  at a 

perturbation frequency,  , in parallel with a sensitive circuit node such as the cathode of a 
varactor diode. Next, the conversion-matrix approach is applied to linearize the circuit about 
each particular steady-state solution. A closed-loop transfer function, Z( ), can then be 



defined as the ratio between the node voltage and the perturbation current sI . Finally, the 

fitting of Z( ) with a quotient of polynomials numerically provides the poles associated with 
each steady-state solution. Figure 29 shows the evolution of the system poles of the 

phase-coherent degenerate parametric amplifier developed above at sf  = 400, 650, and 900 

MHz as the pump power level is swept from 28 dBm to 35 dBm. It can be seen that a set of 
complex poles at 650 MHz cross the imaginary axis into the right-half plane approximately 

when pP  = 30.85 dBm, resulting in a flip bifurcation. However, the amplifier appears to be 

stable within its usable bandwidth below pP  = 30.5 dBm. 

 

 

   
Figure 4.25: Evolution of the system poles of the phase-coherent degenerate parametric 
amplifier as the pump power level is swept. A set of complex poles at 650 MHz cross the 

imaginary axis at about pP  = 30.85 dBm causing a flip bifurcation and destabilizing the 

amplifier. The paramp appears to be stable when <pP  30.5 dBm. 

  

  

With phase-coherent degenerate parametric amplifiers, a flip bifurcation results in the 
coexistence of an oscillatory solution at the same frequency as the source input. The evolution 
of the system poles in Fig. 29 provides no insight into the implications of this instability on the 
solution curves in the periodic regime as this is dependent on the initial conditions of the 
amplifier and the relative phase of the oscillatory solution with respect to the source input. 

The stability properties of periodic regimes are determined by the Floquet multipliers 
with the number of multipliers agreeing with the system dimension N. In the frequency domain, 
stability is analyzed in terms of the poles, or roots, of the characteristic determinant of the 
harmonic balance (HB) system perturbed about the periodic regime. This determinant can be 

written in a compact manner as    0=pkJHdet s  , where J  is the Jacobian matrix and k  

= -NH to NH, where NH is the number of harmonic terms. There is a non-univocal relationship 



between the poles and the multipliers, given by 
Ti

k
p

i em = , with i  = 1 to N and sT  the 

solution period. Thus, there is a set of poles pijkpp i

k
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``canonical'' pole associated with multiplier im . The critical poles, 
2

==
p

s jjp


  , are 

associated with the multiplier 1== 2
1

s
T

p
j

em




. Also associated with 1m  is a pole with value 

zero, 0=p . For 0=p , the characteristic determinant agrees with the determinant of the 

Jacobian matrix of the original HB system. Therefore, the HB system should become singular at 

the bifurcation point with the critical poles 
2

=
p

jp


 . This singularity can give rise to a 

turning point of the solution curve or to the onset of new solution paths at the same 

fundamental frequency s . 

To illustrate this, it will be assumed that prior to the bifurcation (occurring at o ) there 

is only one solution per parameter value (single curve). Let oX  be the HB solution at the 

bifurcation   0=, oXH  . For an arbitrarily small increment  , the HB system can be 

linearized about oX . Then it is straightforward to demonstrate that the generation of new 

solution branches from oX  is only possible in the case of a singular Jacobian matrix 
oX

H




. 

This situation can be associated with a pitchfork bifurcation ruled by the transformation 
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where the sub-index indicates the number of unstable poles. At the bifurcation, the original 

solution curve oS  becomes unstable ( 1S ) and gives rise to two distinct stable solutions '

oS . In 

fact, this pitchfork bifurcation is difficult to observe in practice because it requires particular 
symmetry conditions. Instead, the system exhibits an imperfect pitchfork bifurcation. 

Utilizing the simulations and prototype board, solution curves were obtained across 

multiple frequency and operating points. At sf  = 716 MHz, the output-power curve obtained 

with a HB simulation passes through a maximum, then begins to decrease, as seen in Fig. 4.26. 
The evolution of the system poles in Fig. 29 shows that at the sharp maximum near 650 MHz a 

pair of complex conjugate poles, 
2

p
j


  , cross the imaginary axis into the right half of the 

complex plane. However, there is no clue on how the system evolves after this bifurcation 
point. In fact, the remainder of the curve obtained in HB is unstable and unobservable. 

 

 



   
Figure 4.26: Solution curve of the phase-coherent degenerate parametric amplifier at sf  = 

716 MHz using a HB simulation. 
  

  

To search for other possible solution paths, auxiliary generators (AGs) were connected 
in parallel between the terminals of one of the varactor diodes. The AG operates at the source 

frequency, sAG  = , and allows implementation of a parameter-switching technique. To 

obtain high slope sections of the solution curves, the AG amplitude, AGV , is swept, optimizing 

both the AG phase, AG , and the pump power in order to fulfill the non-perturbation condition 

0==
AG

AG
AG

V

I
Y , where AGI  is the current passing through the AG, AGV  is the voltage across 

the terminals of the AG, and AGY  is the admittance seen by the AG. Using this technique, it 

was possible to complete the solution curves seen in Figs. 4.27(a) and (b). 
 

 

 
Figure 4.27: Analysis of the branching phenomenon of the phase-coherent degenerate 

parametric amplifier at sf  = 716 MHz. 

  

  

The original curve, S , in Fig. 31(a) is continuous and quickly grows to high output 

power values at s . There is a second path that only exists on the right hand side of Fig. 31(a), 

from the turning point TP (Pp=28.9 dBm). The upper section of this second path ( 'S ) is very 



close to the high power section of the original curve ( S ). Note that the HB simulation evolves 

from curve S  to curve 'S  instead of following the fast power increase of the original curve 

S . In the higher output power section, the two curves S  and 'S  have very similar amplitude 

values, however, they have a phase shift close to 180   at s . To confirm that the difference is 

not due to an analysis inaccuracy, the solutions obtained with the AG have been introduced as 
initial conditions in the HB simulation and produced identical results. 

Unlike the transformation in (4.18), there is no branching point in the curves in Fig. 31. 
In spite of this, the geometry of the paths suggest the possible occurrence of an imperfect 

pitchfork bifurcation. In this bifurcation, the original solution path (assumed stable here) oS  

exists for the whole parameter interval and maintains its stability properties. However, a new 
independent path, with a turning point, is generated close to the original one. When the 

parameter is varied from the original regime oS  towards the bifurcation, the transformation 

at the bifurcation point is 
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where the second relationship indicates that there are no solutions ( ) in path 'S  before the 

bifurcation, and two solutions, one stable and the other unstable, after this bifurcation. Note 
that there is one solution prior to the bifurcation and three solutions after this bifurcation for 
both the perfect and imperfect pitchfork bifurcations. 

To verify the above assumptions, pole-zero identification has been applied along the 

two solution paths in Fig. 31 with the results in Fig. 32. Curve S  is stable for all values of pP . 

Its dominant poles, 
2

p
j


  , approach the imaginary axis near the high slope section but do 

not cross this axis. In the case of the path 'S , a pair of complex-conjugate poles 
2

p
j


   

cross the imaginary axis at pP  = 28.9 dBm; the upper section is stable and the lower section is 

unstable. The stability analysis confirms the existence of a transformation of the form in (4.19). 
This stability study explains the differences between simulations and measurements 
encountered in the pole-zero analysis in Fig. 4.28. 

 

 



   
Figure 4.28: Stability analysis using pole-zero identification of the solution curves. 

  

  

According to the above analysis there are two stable solutions with very similar output 
power values coexisting for pump power values larger than 28.9 dBm. The existence of two 
stable solutions can be related to the fact that the instability gives rise to a frequency 
division-by-2 of the pump signal. In standard divide-by-2 frequency dividers (without an 

independent source at the divided-by-2 frequency), two identical solutions with 180   phase 
shifts coexist after the bifurcation. In fact, the two solutions in the upper section of Fig. 31(a) 

have a phase difference close, but not identical to, 180  . The small difference in magnitude is 

attributed to the presence of an independent source at 
2

=
p

s


 . The power difference 

increases with increasing source power level, as seen in the simulation of Fig. 4.29. In fact, the 
physical observation of one solution or another will depend on the initial conditions of the 
amplifier. 

 

   
Figure 4.29: Variation in the output power at sf  versus increasing source power level 

showing two possible solution curves that are dependent on the initial conditions of the 
phase-coherent degenerate parametric amplifier. 

  

  

For sf  = 650 MHz, there is a qualitative change in the circuit behavior, as seen in Fig. 



4.30. Curve S  exhibits the turning point (TP2) whereas curve 'S  does not change its stability 
properties in the neighborhood of this point. Curve S  (providing the only circuit solution for 
small pump power levels) becomes unstable at TP2, so the system necessarily jumps to the 
upper curve section in agreement with the measurement results. 

 

 

   
Figure 4.30: Solution curve for the phase-coherent negative-resistance degenerate parametric 

amplifier at sf  = 650 MHz. 

  

  
  



7. Summary and Conclusions 
 
The purpose of this seedling research project was to investigate the feasibility of using 

multiferroic materials for advanced RF applications. The project was divided into three parallel 

tasks of materials growth, device design, and circuit design. The materials growth effort was 

specifically aimed at epitaxial quality Terfenol-D, an alloy of Terbium, Dysprosium, and Iron 

(TbxDy1-xFe2-y) that exhibits large magnetostriction at room temperature and relatively small 

applied magnetic fields. The use of a piezoelectric substrate was proposed to provide the 

mechanical coupling necessary to achieve electric-field tunable materials. An initial approach 

using one MBE chamber was explored. However, mechanical issues prevented this approach 

from yielding any usable materials. A secondary approach was attempted using separate MBE 

chambers and vacuum-locked wafer transport. Some results were obtained using this 

technique. However, oxidation of the metal layers, particularly Tb, prevented any successful 

alloyed-layer growth of Terfenol-D. 

The device design task consisted of electromagnetic simulation of transmission line 

structures, specifically coplanar waveguide (CPW), using Terfenol-D layers on Lithium Niobate 

(LiNbO3) substrates. Simulations of phase velocity change were conducted to assess the extent 

to which the magnetic properties (permeability) of Terfenol-D would change the phase velocity. 

Of course, the phase velocity change was also due to the change in permittivity of the 

piezoelectric substrate. Simulations indicated approximately a 1.4:1 change in phase velocity 

could result from the shifts in permittivity and permeability due to an applied bias voltage. Such 

phase velocity changes could result in usuable devices for various tunable RF applications. 

The circuit design aspect of this project consisted entirely of a study of parametric 

amplifiers (paramps). Such amplifiers result from a change in reactive impedance (i.e. 

associated with a phase velocity change) due to applied RF voltages. In this manner, 

high-efficieciency, and potentially wideband RF power amplifiers could be achieved. Because 

this task was executed in parallel with the materials growth and device design, no circuit 

designs using multiferroic materials was possible. Instead, conventional semiconductor varactor 

devices were used to assess the feasibility of RF power paramps. Extensive circuit modelling 

was performed, and prototype circuits were constructed. Some successes were achieved in the 

development of wideband amplifiers based on double-balanced mixer circuit topologies. In 

addition, efficiencies approaching 50% were achieve for narrow band parametric amplifiers. 

In conclusion, it is clear that significantly more research must be performed on 
multiferroic materials growth in order to achieve any successes at the device or circuit level. If 
sufficient improvement in materials quality is obtained, the device and circuit simulations and 
prototypes indicate some feasibility of the approach of using multiferroic materials for 
advanced RF applications. 
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