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SUMMARY

Research in the areas of target detection, tracking, and geo-location is most important for enabling

an unmanned aerial vehicle (UAV) platform to autonomously execute a mission or task without

the need for a pilot or operator. Unmanned systems that are typically designed to be small and

lightweight may not be able to support devices that can provide accurate guidance or localization.

Small class UAVs and video camera sensors complemented with �soft sensors� realized only in

software as a combination of a priori knowledge and sensor measurements are called upon to

replace the cumbersome precision sensors on-board a large class UAV. The objective of this

research is to develop a geo-location solution for use on-board multiple UAVs with mounted

video camera sensors only to accurately geo-locate and track a target.

The Kalman �lter is still widely used in state estimation, and has been applied many times to the

problem of target tracking and geo-location. However, the limitations of the Kalman �lter, linear

or linearized systems and Gaussian noise, require precise simpli�cations of the problem space or

careful construction of supporting systems, like the interacting multiple model �lter. Recently,

the particle �lter is being adapted to the problem of target geo-location. Current particle �lter

applications may be split into those that use time of arrival or time di�erence of arrival measure-

ments from large-scale sensor technologies to track a target, or a variety of sensors including video

sensors to geo-locate a stationary ground target, usually from �xed-wing aircraft. Advances in

video image frame tracking are combined with simple or advanced topography approximations to

project estimated vectors-to-target onto the ground, although uncertainty in measurements and

topography estimations translate to large geo-location uncertainty.

There is a need to develop and implement on-board small UAVs suitable sensing technologies that

are lightweight, �exible, and cost e�ective, like EO/IR, passive sonar( particularly for underwa-

ter vehicles, or passive radio frequency spectrum emission detection, which in combination with

appropriate estimation algorithms can address e�ciently and e�ectively the target detection and

geo-location problem. This research introduces an estimation solution that combines the power

of the particle �lter with the utility of the video sensor as a general solution for passive target

geo-location on-board multiple UAVs.

The particle �lter is taken advantage of, with its ability to use all of the available information

about the system model, system uncertainty, and the sensor uncertainty to approximate the

xiii



statistical likelihood of the target state. When applied to target geo-location the particle �lter

accepts video sensor data in the form of the detected location of the target in an image frame and

estimates the location of the target within its environment based on knowledge about the sensor

and assumptions on the target model.

The observation model for the video sensor is the basis for determining the probable location of

the target, and this is constructed in two parts: the projection model and the transformation

model. The combination of these two models transforms points related to the target location in

the world coordinate system to points as interpreted by the combined camera-UAV system. The

particle �lter uses this transformation as a means of evaluating the likelihood of target location

estimates.

The state space model for the target system is constructed as an approximation of the behavior of

the target. Only ground targets are considered and the state space model is designed with ground

vehicles as potential targets. The non-holonomicity of the car is deconstructed and approximated

as a set of linear and non-linear operating modes, with a Markov switching model for changing

between operating modes.

The geo-location particle �lter is tested online and in real-time in a simulation environment

involving multiple UAVs with video cameras and a maneuvering ground vehicle as a target. During

simulation, the geo-location particle �lter estimates the target location in meters with a relative

error of as small as 4% (one percent being one meter of error for every 100 meters distance to the

UAVs). The addition of UAVs or particles to the system improves the location estimation accuracy

with minimal addition of processing time, and the UAV control and trajectory generation restrict

the UAV to a desired range to minimize error.

The main contributions of this research are as follows:

� A robust particle �ltering algorithm capable of geo-locating a target from a UAV platform
using limited video sensor information.

� A multi-modal state estimation solution for target behavior and location estimation.

� A real-time geo-location solution with �exibility in design complexity and robustness to
maximize probability of mission completion.

� A scalable framework for the addition and removal of multiple UAVs, with minimal compu-
tation cost requirements.

� A closed-loop target tracking system, using the geo-location particle �lter and a UAV control
and trajectory generator to minimize the geo-location estimation error.
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CHAPTER I

PROBLEM DESCRIPTION & BACKGROUND

1.1 INTRODUCTION

Unmanned aerial vehicles (UAVs) are fast becoming an integral part of both military and, to a

lesser degree, commercial airspace. The need for removing the human element from the situation

can be viewed from a number of di�erent angles, or as is more commonly known as the three

D's: missions that are dull, dirty, or dangerous [7]. A pilot may make errors in judgement, may

become tired during long operations, or may be put in harms way. Replacing the pilot with an

operator �ying a UAV remotely reduces the danger to personnel to a minimum, while creating an

autonomous unit may mitigate human error.

Research in the areas of target detection, tracking, and localization are most important for creating

a UAV platform that can autonomously execute a mission or task without the need for a pilot

or operator. While instrumentation abounds in conventional aircraft, unmanned systems are

typically designed to be small, cheap, and lightweight, and devices that can provide accurate

guidance or localization may not be available. �Soft sensors,� or sensors that are realized only in

software as a combination of a priori knowledge and indirect hard sensor data, are required to

replace the cumbersome precision sensors on-board aircraft. Global Positioning Systems (GPS)

and Inertial Measurement Units (IMU) can provide information to the UAV about its own location.

However, information about objects outside the UAV, objects such as geographic landmarks,

potential obstacles to �ight, and mission-critical targets, is not easily discerned from the limited

sensor hardware available without the aid of a human operator.

This proposal examines the problem of target tracking and localization with the goal of develop-

ing a software solution for automatic localization using only video cameras on-board a single or

multiple UAVs. It begins with an investigation of the history of the problem of tracking and local-

ization (Section 1.2) and state-of-the-art solutions applicable to general cases and cases speci�c to

UAVs (Section 1.3). It proposes a software architecture, based on the particle �lter (Chapter 2),

that can detect a ground target in a camera image frame, then quickly, accurately, and robustly

locate and track the target from a single or multiple UAVs (Chapter 3). It provides a derivation

of UAV motion dynamics and a control and trajectory generation method (Chapter 4). Lastly, it

shows the accuracy and e�ciency of this geo-location particle �lter approach through simulated

trials (Chapter 6).
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1.2 HISTORICAL METHODS

1.2.1 LOCALIZATION GEOMETRY

The steps involved in locating ground targets, detection, tracking, transformation, and fusion,

each present inaccuracies and opportunities for false information. This amounts to an unreliable

estimate of an object's location, or even completely false information, such as reporting the

detection of targets that do not exist. The algorithmic and heuristic techniques presented in this

chapter have been developed to minimize or eliminate these limitations.

Early localization techniques regard the simple geometry of the problem. The target, representable

by a point in space, can be given a coordinate along a single plane from the perspective of

another point, the viewer. The orientation of this coordinate plane is dependent on the spatial

relation between the viewer and the target, and ignores the third dimension: the distance from the

viewer. The heart of the localization problem is using two-dimensional perspectives to estimate a

three-dimensional coordinate, along with developing a proper transformation between this relative

coordinate system and an absolute coordinate system. Geo-location, as presented in this thesis,

deals primarily with ground targets and their GPS coordinates.

While the concept of using geometry to estimate points in space is over 2000 years old, starting

with triangulation, it has been used extensively all the way through the present for navigation,

surveying, localization, and more.

Triangulation is the simple method of using two known points to locate a third point using the

geometric properties of a triangle [49]. Using approximate measurements of angles of incidence

between the lines of sight from two observers to a �xed point, and the baseline between the

observers, the target point, forming the apex of the formed triangle, can be localized as being at

the intersection of the two lines of sight and its coordinates found using the law of sines.

Similar to triangulation, trilateration uses known distances from �xed locations to a point to

determine its location [28]. Using the measured distances between references and target, a circle

can be de�ned around each of the reference points, and the target will lie at the intersection of

the circles. This only works for targets located on the same plane as all three reference points.

Trilateration can be used for three dimensional coordinates, but because of the nonlinear equations

describing the spheres about the reference points, certain constraints must be made on the location

2



of these reference points to simplify the problem. Using three points, one must be de�ned at

the origin, another along one of the Cartesian axes, and all three must lie on the same axis

plane, typically de�ned as the x-y plane. It should be noted that any three points, with the

target point, can be transformed into an arbitrary Cartesian coordinate system to meet these

positioning requirements. The intersection between the three resulting spheres will result in up

to two possible locations for the target point, and in some cases no solution is possible. Often

this technique requires a fourth reference, or otherwise logical deduction to determine the correct

estimation, such as where the target point is expected to be in either the transformed or world

coordinate system.

Multilateration works like trilateration, but instead of known distances between references and

a target, an emitted signal from the target object is received by �xed observers, and the time

di�erence of arrival (TDOA) of the signal is used to calculate the target's position [46]. The

TDOA of a signal between two receivers forms a hyperboloid surface on which the target emitter

lies. Adding a third or fourth receiver reduces the location to existing on the curve between two

intersecting hyperboloids or at a single coordinate, respectively.

Because it is easier to obtain a more accurate TDOA measurement than range or angle measure-

ments, the multilateration technique is usually more accurate than triangulation or trilateration.

The algorithm is also easily scalable, such that adding reference points re�nes the accuracy of the

calculation. Thus, multilateration is commonly used as a localization solution.

All of these geometric techniques, and any method that require sensor data, introduce measure-

ment error into the calculation [49]. Given aspects of the problem, such as distances between

references and target, the accuracy and nature of the sensors, and the number of steps involved,

it's likely these errors will grow into unwieldy inaccuracies in the location estimation. Multiple

sensor readings from alternate reference locations can help re�ne the estimation, but not all geo-

metric estimation methods accept multiple data points, and averaging techniques can exaggerate

error or bias.

Methods exploiting statistical distributions have thus grown in popularity as a means of combining

sets of sensor data to estimate or even predict target locations to a higher degree of accuracy. Data

regression, Kalman �ltering, and assorted Monte Carlo techniques, including particle �ltering, are

some of the more prevalent methods.
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Data regression analysis, developed around the turn of the 19th century, statistically combines

inaccurate data to produce an estimation close to the expected result. Beginning with an assumed

linear data model, the unknown parameters in the model are approximated for each data point,

each producing an error with the expected model. These errors are minimized using a least

squares approximation, resulting in a parametric, closed-form solution that most closely represents

the sample data. For nonlinear data models, this becomes an iterative process with no closed

solution and the possibility of non-convergence. Unfortunately, the expected target behavior and

measurement model of the geo-location problem are nonlinear.

A reasonable assumption in current technology, aiming for real-time consistent data acquisition

and processing, is that a stream of sensor data on the target will be fed to the localization system.

With discretized time-based data, the Kalman �lter has become more common in the geo-location

problem [5]. The Kalman �lter uses previous state estimations to predict the current state, then

combine the predicted state with current measurements to arrive at a potentially more accurate

estimation.

Kalman �lter state estimation is only valid under certain model constraints. The system must be

a linear Markov chain with Gaussian perturbation. For nonlinear systems, there are a number of

alternate Kalman �lters, including the popular extended Kalman �lter, unscented Kalman �lter,

and variations. The measurement noise must be Gaussian, but in some systems, non-Gaussian

noise can be approximated in Gaussian form. The Kalman �lter will then provide a �rst-order

approximation.

Monte Carlo methods can be used to circumvent the problems associated with nonlinear regression

analysis and Kalman �lter shortcomings, while smoothing the uncertainties in location data. The

general method is to use a mix of random sampling to locate areas of high probability, and

algorithmic computation to re�ne estimations. These include algorithms such as random walk,

but more importantly for the application of localization is the Particle Filter.

The Particle �lter, a Bayesian estimator like the Kalman �lter, relies on a known system model

with a known or approximated probability distribution function (pdf) [14]. A number of random-

ized samples are distributed using the expected pdf of the system model. The particles at time

k are propagated according to the system model similar to the Kalman �lter, weighted according

to the expected pdf and current measurements, and resampled by weight for the next iteration.

The distribution of weighted particles at time k+1 can provide a close approximation to actual
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data over noisy, inaccurate observations. Where the Kalman �lter can only provide a �rst-order

approximation in the face of non-Gaussian noise, the Particle �lter can provide a much more

accurate estimation given enough sample particles [14, 43].

1.2.2 DETECTION

While simple geometrical concepts can be used to identify an object's location using reference

points, there still remains the di�cult task of detecting, identifying, and tracking the respective

reference points in the problem. Using the latest sensing technology, UAVs are able to distinguish

their target as well as determine their positions relative to the target, relative to a local reference,

or globally. The most notable techniques are RF signal tracking, active sensing, and passive

sensing using cameras, and each type comes with associative costs and rewards.

A simple directional antenna is enough to determine a direction to a target that is emitting an

EM transmission, though more sophisticated sensors improve the results. Triangulation between

multiple UAVs, or multiple snapshots in time from a single UAV, will provide an accurate location

on the transmitting target. Of course, targets may not always be emitting constantly, making

tracking di�cult, or may not emit any signals at all�such as a person carrying no electronics

devices�making tracking impossible.

Common in many military and aeronautical applications, active sensing techniques like radar,

LIDAR, or sonar use emissions like electromagnetic or acoustic waves are used to scan for and

image targets. The emissions are re�ected back to a receiver that can interpret characteristics like

the signal travel time to determine target range, which coupled with the direction to the target

can provide a rough estimate of its position. In these systems, with measurement noise that is

often Gaussian and easily modeled, the system can be improved with a simple Kalman �lter or

the inclusion of multiple receivers, though even such improvements are not always necessary.

These active sensing techniques are unfortunately not always viable using current UAV technology.

Small reconnaissance and surveillance UAVs are weight restricted such that it is not possible to

include heavy sensing equipment on-board, such as RADAR. The General Atomics Predator,

an actively deployed reconnaissance UAV is designed with a synthetic aperture radar on-board,

though it may be removed to reduce weight [1]. Another disadvantage to note is susceptibility to

jamming, reducing the accuracy of the detection and tracking systems, sometimes making them

completely ine�ective.
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Passive sensing like video or infrared imaging are more suitable and adaptable for use on UAVs.

Cameras are capable of imaging a large area at one time and capture image frames in quick

succession using small, lightweight, and cheap equipment. Unfortunately, this sensing technology

relies entirely on emissions from outside the UAV, most often in or near the range of visible light.

Like the human eye, a camera is capable of capturing a large �eld of view, but unlike the human

brain, image processing software is in early stages of being able to interpret an entire captured

scene accurately and in real time. However, for tracking single non-cooperative ground targets

from the air, video cameras are highly capable of target detection and tracking.

Many image processing algorithms exist to detect an object in an image or track an object in

an image stream. Most algorithms seek to simplify the image data, such as segmentation, or

eliminate areas of the image with low likelihood of containing a target object, such as feature

detection or the application of neural networks. The image processing system is supplied with

a priori data about the desired target, which is used to locate areas with a high probability of

containing the target. Simple geometric transformations can translate a likely location within an

image to a relative direction from the camera's reference frame. More sophisticated algorithms

can approximate the distance to the target based on a priori size and shape data as compared to

the size and shape in the image, though this data is not always available.

1.3 RELATED RESEARCH

York and Pack compare two methods for target tracking, Kalman �ltering and triangulation,

for localizing moving targets using multiple UAVs [49]. The moving targets are assumed to

be emitting RF signals in all directions. In simulation, the UAVs follow a surveillance control

architecture to search for, detect, and locate the mobile targets. Using simple Kalman �ltering

and triangulation, the Kalman �lter was shown to take longer to localize multiple targets due to

the number of iterations required to reach a steady state, while triangulation can produce results

in a single iteration. The Kalman �lter tracking algorithm performed more poorly due to the

inconsistency of RF transmissions from the target, though it produced more accurate UAV orbit

trajectories.

Although not applied to the problem of target tracking, Mao et al. used the extended Kalman

�lter (EKF) to localize a UAV with a temporary failure in its positioning system utilizing range

measurements to two other UAVs with known location [29]. For a closed system, this is similar
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Figure 1.1: Simulation scenario involving multiple UAVs and multiple maneuvering targets [45].

to the problem of localizing a target using radar or TDOA measurements with two UAVs. A

trilateration technique, along with the UAV motion dynamics, was used for estimating the UAVs

position and linearized to be implemented in the EKF. Three UAVs were �own in simulation, and

the UAV with a malfunctioning positioning system was localized to within a 40m margin of error

(with UAVs spaced on the order of 5km apart). However, the EKF depends on knowledge of the

UAV dynamics, and a carefully constructed covariance for its estimation errors. This knowledge

may not be available in a realistic target tracking application.

Savage et al. apply the unscented Kalman �lter (UKF) to locate a stationary target using TDOA

measurements. Simulations show a smooth convergence of the UKF to an accuracy below the

simulated TOA noise level. However, convergence is slow, and is impacted by the accuracy of the

initial estimated state [46].

Plett et al. continued with the Kalman �lter approach with a technique for combining sensor

data (sequential DOA readings in time and space) using a sigma-point Kalman �lter (SPKF),

speci�cally the central di�erence Kalman �lter (CDKF), to locate ground targets [39]. The SPKF

is used over an EKF to achieve higher estimation accuracy without the need for computing

derivatives. The results show that the technique provides an accurate location and dynamics

estimation on a target being orbited by a single UAV, which is easily scalable to multiple UAVs.

However, the choice of Kalman �lter is based on the assumption that all pdfs are Gaussian uni-

modal, which is not guaranteed for passive video sensing and tracking.

The unscented Kalman �lter has been used together with the interacting multiple model (IMM)

�lter to introduce target motion into the tracking problem [5, 44, 45]. Multiple mode state

dynamics are not handled well by the Kalman �lter. The IMM �lter uses parallel mode estimations

and creates a Gaussian mixture to approximate a single posterior density. In [44] and [45], this
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Figure 1.2: Splitting particle based on multiple maneuvers [21].

is applied to a simulation of single and multiple target with position and velocity estimations

generated from TDOA measurements in a noisy or cluttered environment, with an S-D Lagrangian

relaxation assignment to resolve the data association. This has the bene�t of isolating multiple

targets for separate target tracking without being prohibitively computationally expensive. In

simulation, this is found to achieve a target localization accuracy on the order of tens of meters

with the highest assumed measurement noise level (1ns for TDOA measurements), given multiple

emitting targets and sensing platforms (Figure 1.1).

The particle �lter may be more suited to the task of tracking a target with unknown dynamics,

given the non-linear and non-Gaussian nature of the problem, with the advantage that the es-

timation error is independent of the state dimension. Doucet and Gordon developed a particle

�lter algorithm for tracking a maneuvering target, assuming a linear observation relationship [11].

The particle �lter track estimate proved to be able to track a simulated maneuvering target in the

presence of clutter. For the same simulated target, the previously developed interacting multiple

model probabilistic data association (IMM-PDA) technique failed to accurately track the target

[4].

In 2000, Karlsson and Bergman used the auxiliary particle �lter (APF) for tracking a moving

target without linearizing the target state space [21]. Target maneuvers were modeled using a

Markov chain and splitting and weighting each particle according to the model (Figure 1.2). For

simulations of an Air Tra�c Control track-while-scan (TWS) system, using radar measurements

at four second intervals, the auxiliary particle �lter outperformed the IMM �lter using parallel

EKFs.

Morelande et al. compared a number of di�erent particle �lters in a comparative study on their
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use for the target tracking problem [34], including the transition density-based auxiliary particle

�lter (TD-APF) and the optimal importance density particle �lter (OID-PF) and with reversed

resampling (OID-PF(RR)). It was found that the OID-PF(RR) and the TD-APF outperform

other particle �lters and classical �lters (such as the PDAF and MKF) in both e�ciency and

tracking performance, when tracking a single non-maneuvering target.

Li et al. take the APF tracking implementation a step further with a smoothing particle �lter

[25]. By strati�ed sampling theory, it is possible to resample a set of weighted pdfs into a single

distribution. This is applied in the smoothing particle �lter by generating a smoothed pdf based

on the Markov switching probabilities between maneuvering modes, which in turn is used to

propagate particles according to the distribution. This has the advantage of preserving the number

of particles per iteration and preserving the estimation and prediction for a randomly maneuvering

target. Simulation results show the smoothing particle �lter approach achieves similar, if better

results than the APF.

The smoothing particle �lter and auxiliary particle �lter are again applied to the problem of

tracking a maneuvering target, this time using multiple sensors [20]. Kamel and Badawy imple-

mented both algorithms in a multiple sensor environment, tracking a target maneuvering through

the environment. Simulations showed that the smoothing particle �lter performed better than

the auxiliary particle �lter, narrowing the target location to less than 100 meters, where the APF

had an accuracy of between 100 and 400 meters.

The previous research in the �eld of target tracking has assumed the utilization of either active

sensing techniques, like radar or laser range-�nding, or passive techniques depending on RF trans-

missions, like TDOA measurements. In the general case, these assumptions are not always valid.

A passive approach like video tracking and geo-location can be used cheaply and ubiquitously,

requiring only a line-of-sight to the target and su�cient processing power to detect and track the

target object in a video frame.

Gibbins et al. use video geo-location to locate a �xed point target on the ground for use in

and improvement of image enhancement for further tracking and surveillance applications [13]. A

tracked target in an image frame (using FFT cross correlation with sample patches) is localized by

converting from image to UAV coordinates, then passing a vector through the target point, with

the altitude (or range) given by the intersection with an elliptical approximation of the Earth.

This 3D coordinate can be transformed from the UAV's coordinate space to GPS coordinates.
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Target location estimates are merged to enhance the prediction accuracy, but this process is not

explained in the study. Experimental trial �ights show geo-location errors to be between 20 and

30 meters for UAV altitudes between 150 and 700 meters.

Conte et al. use video geo-location on a micro aerial vehicle (MAV) with an on-board camera

[8]. In this implementation, the target location is determined by an image registration technique,

a process that combines, via pattern matching, two or more images separated in time or space.

After a target is detected in a video frame (based on an operator de�ned template), the image

is matched to a reference image and the resulting image transformation is used to generate a 3D

coordinate for the target. The advantage of this technique over more the classical ray-tracing

approach is that the target location is calculated directly from the transformations, with no

assumptions made about the altitude or range from the sensing platform based on approximate

topography. Conte et al. use a recursive least squares �lter to re�ne the estimate of the target

position. The algorithm was �own on board the PingWing MAV platform in an experiment to

localize a stationary ground target at an air�eld. The target was localized to within 2.3m (at 30

samples) with a MAV altitude of 70m.

In 2006, Ludington developed a particle �lter algorithm for tracking targets in a video stream

[26, 27]. The algorithm identi�es the state of the target as a rectangle bounding it in the image,

with an adaptive combination of random walk and jump propagation models. Each particle is

weighed by comparing the image cues contained within the rectangle bounds to a preselected

sample of the target. This technique has the advantages of both detecting and tracking the target

in a cluttered and noisy video stream, as well as smooth reacquisition of the target if it is lost or

occluded, with the disadvantage of the processing requirements of a particle �lter mitigated by use

of an adaptive control over the number of particles required. In conjunction with a geo-registration

or particle �lter localization approach, the target's ground position can be estimated.
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CHAPTER II

PARTICLE FILTER STATE ESTIMATION

2.1 PARTICLE FILTER

The particle �lter is a Monte Carlo estimator used to numerically approximate integration of

I =

ˆ
f (x) · π (x) dx, (2.1)

where π (x) is a probability distribution, or probability density function (PDF), of variable x

restricted to x ∈ Rnx ,
´
π (x) dx = 1, and π (x) ≥ 0. The integral resolves the expectation I with

respect to the arbitrary function f (x), which is most commonly expressed as a moment of x. I,

in this application, is estimated about the �rst moment of x, the state of the target. The particle

�lter reduces the complexity of this integration through a combination of simpli�ed statistical

procedures, importance sampling, and numerical approximation techniques.

2.1.1 SEQUENTIAL MONTE CARLO ESTIMATION

By generating N samples
{
xi; i = 1, . . . , N

}
, xi ∈ x, according to the distribution π (x), for a

su�ciently large N it can be shown [22] that the sample mean

IN =
1

N

N∑
i=1

f
(
xi
)
, (2.2)

and it is theorized that lim
N→∞

IN = I, allowing for a numerical technique to estimate I. Importantly,

this means that a �nite number of discrete samples may approximate π (x).

It is, however, unlikely that π (x) is known and thus generating samples from it is di�cult.

Simpi�cations and work-arounds of the problem exist to reduce integration complexity, such as

uniform sampling or importance sampling methods like the VEGAS algorithms or the popular

Metropolis-Hastings algorithm [37, 24, 31, 15]. An importance distribution, q (x), is de�ned to

be used in place of π (x) with the requirement that q (x) has the same support as π (x). The

importance distribution can be used to alter Eq. (2.1) to
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I =

ˆ
f (x)

π (x)

q (x)
q (x) dx, (2.3)

such that

IN ≈
1

N

N∑
i=1

f
(
xi
) π (xi)
q (xi)

=

N∑
i=1

f
(
xi
)
w′
(
xi
)
, (2.4)

where w
(
xi
)
are the normalized importance weights generated by the likelihood ratio between

the true and importance distributions [14],

w
(
xi
)

=
w′
(
xi
)∑N

j=1 w
′ (xj)

, (2.5)

w′
(
xi
)

=
π
(
xi
)

q (xi)
. (2.6)

Importance sampling has the added bene�t of variance reduction during estimation. Using an

importance density that is biased towards desired regions or shapes of the probability space

focuses sampling on so-called important values. Through importance sampling and resampling,

samples in these biased regions are emphasized, narrowing�or e�ectively reducing�the sampling

variance. Importance resampling is discussed in a subsequent section. The likelihood ratio Eq.

(2.6) di�erentiates between the biased and the true probability densities.

The particle �lter takes advantage of the above to approximate the posterior density π (x) ≡

p (Xk|Zk), whereXk and Zk in this application are the sequences of target states and observations,

respectively, up until time k. Given the random measure
{
Xi
k, w

i
k

}N
i=1

, where Xi
k is a set of

support points characterizing Xk with normalized weights wk. p (Xk|Zk) can then be given, for

�rst moment expectations, as

p (Xk|Zk) ≈
N∑
i=1

wikδ
(
Xk −Xi

k

)
, (2.7)

Following the same procedure as above and de�ning the importance density as q (Xk|Zk) ,

q (xk|Xk−1,Zk) q (Xk−1|Zk−1), Eq. (2.7) can be manipulated [43] to show that
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p (xk|Zk) ≈
N∑
i=1

wikδ
(
xk − xik

)
, (2.8)

with normalized weights

wik ∝ wik−1

p
(
zk|xik

)
p
(
xik|xik−1

)
q
(
xik|xik−1, zk

) , (2.9)

or

wik ∝ wik−1p
(
zk|xik

)
, (2.10)

if the importance density is chosen as the transition prior density, q (xk|xk−1, zk) = p (xk|xk−1),

depending on the assumption that the system follows a zero-mean Gaussian process noise model;

an assumption that will be applied for the problem of target tracking and geo-location.

2.1.2 IMPORTANCE RESAMPLING

The likelihood ratio relation between the importance and true probability densities Eq. (2.6) is

viable when the sample sequence xk is independent and identically distributed. Samples xk evolve

over iterations according to the importance denisty q (xk|xk−1, zk), and due to their independence

will diverge over time. This divergence is called particle degeneracy.

It is possible to make a selection of q (xk|xk−1, zk) that constrains degeneracy [43, 37]. However,

this selection is application dependent, and typical applications will see importance densities that

promote, instead of limit, sample divergence, such as densities with long tails or multi-modal

densities. Another approach is to re-initialize the particle �lter when degeneracy occurs, but this

is not desirable as information stored in the particle �lter is lost, reducing the e�ciency and utility

of the algorithm.

Importance resampling counters the problem of particle degeneracy by regenerating the internal

approximation of the PDF, π (x). The weighted samples comprising the approximate probability

distribution are shifted towards regions of expected higher probability. If degeneracy is explained
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Figure 2.1: CDF (re)sampling procedure. Region a results in more sampled particles. Regions b result
in fewer sampled particles.

Table 2.1: Systematic Resampling Pseudocode

Given {xk, wk}

� c =Cumulative sum of wk

� i = 1

� Draw u ∼ U (0, 1) ∗ 1/N

� FOR j = 1 . . . N

� WHILE j−1
N + u > c (i)

* i = i+ 1

� END WHILE

� xj∗k = xik

� wj∗k = 1/N

� END FOR

as samples diverging away into low probability regions, then importance resampling is gathering

the samples back into the more important regions of the state space.

The goal of resampling is to draw new samples from the weighted PDF (Figure 2.1) approximated

by the samples xk and their weights wk, and many resampling algorithms are available. The

systematic resampling algorithm has been chosen for its simplicity of design and implementation

with respect to the particle �lter. Systematic resampling uses uniformly distributed cross-sections

of the cumulative distribution function (CDF) of π (x) to generate N new samples, x∗k. However,

to avoid costly sorting and construction of the CDF, a cumulative sum of weights (CSW) is

generated from the set wk, and x
∗
k is drawn from the set xk. After resampling, the samples x∗k

uniformly approximate π (x), and so the weights are set to w∗k = 1/N. The systematic resampling

algorithm is expressed in Table 2.1.
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Samples that diverge away from the true probability π (x) are denoted as xfk , for{
xfk | xfk ∈ xk, π

(
xfk

)
≈ 0

}
. All other samples are nearer the true probability and are de-

noted as xnk , for

{
xnk | xnk ∈ xk, π (xnk ) > 0

}
. As sample divergence increases, the sample

weights wfk respective to xfk decrease relative to wnk , such that after normalization wnk � wfk .

In the extreme case, the set xnk contains only one sample with a weight wnk = 1, with all other

weights wfk = 0.

Using the measure

Neff =
1

N∑
i=1

(
wik
)2 , (2.11)

the e�ective level of degeneracy is measured as an index Neff ∈ [1, N ], with smaller values

corrsepsonding to higher levels of degeneracy. A large level of degeneracy, for example the extreme

case with only one non-zero weight, would result in an index Neff ≈ 1. A threshold, Nthr, is set

such that if Neff < Nthr, an importance resampling cycle is triggered, which reconstitutes the

approximate PDF and reduces the level of degeneracy, or raises Neff . An appropriate threshold

may be chosen as Nthr = N/3 [43, 36].

2.1.3 THE PARTICLE FILTER ALGORITHM

The generic particle �lter can be summarized as a four step process: particle evolution, particle

weighting, estimation via expectiation, and particle resampling. This process is repeated for each

iteration of the particle �lter, typically performed as sensor measurements arrive. An initialization

step is performed before operation to generate the �rst particle set.

Initializing the particle �lter involves assigning values to all particles according to a notion of

the current state of the system, in this case the state of the target being geo-located. Particle

initialization can be a long and varied task, but for the purposes of this research, the direct

approach is taken. Speci�cally, an imprecise estimate of the target state is derived using one or

more initial measurements.

With su�cient sampling or, as is described Section 3.1, knowledge of the sampling mechanism�i.e.

the sensors�a probability distribution may be approximated for the state of the target. The initial

particles, x0, are sampled from this distribution. Because the particles already conform to the

distribution, they are each assigned initial uniform weights of wi0 = 1/N. Although this particle
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distribution may not be representive of the actual probability distribution of the target state,

subsequent iterations of the particle �lter will reduce such imprecision.

Each iteration of the particle �lter begins with a new set of particles sampled from the impor-

tance density q (xk|xk−1, zk). This step can be simpilifed to sampling from the transitional prior

p (xk|xk−1) if a zero mean process noise model is assumed. With a knowledge of the state space

model of the target system, sampling from p (xk|xk−1) can be rewritten as

xk = f (xk−1, vk) , (2.12)

where f (x, v) is the discrete state space process update function andvk is the process noise. For

additive process noise, f (x, v) = f (x) + v. Particles are assumed to be independent of each

other, as each is an independently sampled point in state space. Therefore, all N particles are

individually evolved according to Eq. (2.12) for each iteration of the particle �lter.

Note, generating new samples using zero process noise removes any randomness from the particle

�lter, and with it the ability of particles to converge outside the speci�c surfaces allowed by

f (x, 0), which my not intersect with the correct target states. For deterministic systems, it is

better to use an alternative state estimation algorithm. However, some level of uncertainty always

exists in the target system for the geo-location problem, and this uncertainty is re�ected by a

non-zero process noise.

The newly generated particles must be re-evaluated according to new measurements. The new

particle weights are assigned according to Eq. (2.10). The likelihood p
(
zk|xik

)
may be derived

from a known state space model observation function, z = h (x,w), where w is the observation

noise. For the case of additive zero-mean white noise w, the likelihood function may be rewritten

for each particle xik and measurement zkas

zik = h
(
xik
)

+ w, (2.13)

p
(
zk|xik

)
= N

(
zik; zk, σw,k

)
. (2.14)

In this case, σ2
w,k is the known variance of the measurement zk, andN (·) is the Gaussian likelihood

function. Substituting Eqs. (2.13) and (2.14) in Eq. (2.10), the new weight for each particle is
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given as

wik = N
(
h
(
xik
)

; zk, σw,k
)
wik−1. (2.15)

For cases without additive zero-mean white observation noise, a similar procedure may be followed

to derive a weight update function. Following this calculation, unnormalized weights w̃k are

normalized,

wk =
w̃k
N∑
i=1

w̃ik

, (2.16)

such that
N∑
i=1

wik = 1.

After the two previous steps, an approximate PDF composed of the particles and weights exists

for the current target state. The state estimation value of interest is the �rst moment expectation

value for the state and the straightforward method for calculating this is to use a weighted mean,

x̄k =

N∑
i=1

xikw
i
k. (2.17)

Higher moments may also be calculated, or more sophisticated estimations may be extracted from

the PDF, such as excluding invalid regions or mixing PDFs from other estimations.

Finally, a resampling step may be performed as necessary and according to the procedure de�ned

in the previous section and Table 2.1. The PDF may be further enhanced to improve accuracy or

particle �lter performance, such as with a regularization pass to reduce the e�ects of discretization

of the PDF [10, 38, 36, 2, 43].

2.1.4 PSEUDOCODE

The complete pseudocode for the general particle �lter algorithm, including a resampling step, is

shown in Table 2.2.

2.1.5 MULTI-MODAL PARTICLE FILTER

In complex systems, the state space model may be best represented using a Markov switching

model. For example, a target state may switch between either staying constant or changing at a

constant rate with a given probability that it will change between modes at a given time. This
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Table 2.2: Particle Filter Pseudocode

Given {xk−1, wk−1} , zk
� FOR i = 1 . . . N

� Draw xik ∼ p
(
xik|xik−1

)
� w̃ik = wik−1p

(
zk|xik

)
� END FOR

� wk =Normalize weights w̃k

� Estimate state x̄k

� IF 1∑N
i=1(wik)

2 < Nthr, with 1 ≤ Nthr ≤ N chosen to prevent degeneracy

� Resample
{
xi∗k , 1/N

}
such that P

{
xi∗k = xjk

}
= wjk (see Table 2.1)

� {xk, wk} = {x∗k, 1/N}

� END IF

multi-modal behavior is di�cult to represent in a simple state space update function f (x). Yet,

the random nature of the particle �lter accomodates such models.

A Rao-Blackwell particle �lter is implemented to reduce the dimension of the multi-modal state

space while preserving the Markov switching behavior. The particle states, xk, are extended

to include an additional state, rk, denoting the mode the particle�and by extension the target

state�is currently operating in [35, 43]. As such, for a Markov chain with M modes, rk ∈ R

and R = {1 . . .M}. This mode determines how each particle is updated for each iteration of the

particle �lter. The state space update function is similarly extended to include all relevant modes

of operation:

f (x, r, v) =



f1 (x, v) r = 1

f2 (x, v) r = 2

...
...

fM (x, v) r = M

. (2.18)

The transitional probabilities de�ned in the system Markov chain are used to determine the

switching probabilities from one mode to another for each iteration of the particle �lter. All
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transitional probabilties are collected into Π, an M ×M matrix with each entry

Πij = pij = P (rk = j|rk−1 = i) , (2.19)

belonging on row i and column j. The probability of a particle not changing modes is given when

i = j, along the diagnoal of Π. As probability measures, then necessarily
N∑
j=1

Πij = 1. These

transitional probabilities may be derived directly from the system process model, determined

empirically, or adapted online or o�ine to achieve appropriate behavior from the particles and

the �nal state estimation.

The particle mode is updated at each iteration either before or after the original particle state is

updated. Each particle has a chance to change from its current mode to another mode according

to the probabilities in Π. First, a cumulative distribution matrix, F , is constructed, such that

Fij =

j∑
ϕ=1

Πiϕ. (2.20)

Then, consider the following, with rk−1 = i and uk ∼ U (0, 1):

rk = j if Fij−1 < uk ≤ Fij . (2.21)

This formula preserves the markov property of the system and equates to particles switching

modes according to Π.

Modes may or may not be taken into account during subsequent steps of a particle �lter iteration.

For example, di�erent modes of operation may require separate measurement functions, hr (x,w) ,

or likelihood functions, pr (zk|xk). These are designed as needed according to the system under

examination, and are trivially implemented. State estimation may also be performed di�erently,

such as with the existence of discontinuous or disparate modes of operation. For geo-location, all

modes of operation are designed to transition smoothly together, such that f (x) has at least C0

continuity despite transitions.

Particles are not directly restricted to operate in a mode of operation that matches the current

target behavior, a valid mode. With �ner detail in the Markov chain, the chance of a particle

switching to an invalid mode may be limited, but such a speci�c design of the Markov chain may be

impractical. Because resampling is performed independently of the mode of the particles, rk, it is
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the deciding factor in eliminating particles that switch to invalid modes. Therefore, particles may

be encouraged via exaggeration of transition probabilities to switch more often than necessary.

This e�ectively allows the particle �lter to �search� both the state space and Markov chain for

the correct particle state and behavior, while still restricting the search space to the most likely

mode candidates.
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CHAPTER III

TARGET TRACKING AND GEO-LOCATION

Geo-location is primarily a problem of geometry. After sensing and detecting an object, a geomet-

ric relation is drawn between the UAVs and targets, forming the basis for which all geo-location

solutions arise. When using observation techniques that lack the critical information of range

between the observers and the target, the geometric relation becomes incomplete. The particle

�lter geo-location approach uses assumptions about the behavior of the observers, the behavior of

the targets, and assumptions about the scenario and the environment to �ll in any missing infor-

mation, re�ne the accuracy of the information, and complete the geometric geo-location solution.

3.1 SENSORS AND MEASUREMENTS

Where the problem of target sensing and detection di�ers from geo-location is the common lack

of range information for the target. Thus, the derived information during the detection phase is

the location of the target on a surface de�ned by the type of detecting equipment being used. For

visible light and infrared cameras�EO/IR sensors�and many other sensing apparatus, this surface

is a �at plane onto which the image is projected, also called an image plane or image frame. For

instance, a photograph is the projection of the image a camera captures onto a �at piece of paper.

A video stream is a similar projection onto a number of sequential image frames then displayed

on a screen.

The precise location of the target, assuming the target is a point, on the image plane is determined

by the projection geometry of the sensing device. There are two principal projection techniques

that are discussed in the following paragraphs: pinhole projection and lens projection. Electronic

sensors, such as charge-coupled device (CCD) cameras, may use either of these types of projection

techniques, although lens cameras are more common.

The simpler type of projection is a pinhole camera projection (Figure (3.1)). This projection

type uses light rays re�ected from objects in a scene, passing through a point at the center of

projection�a pinhole�and intersecting a plane on which a photographic plate is a�xed. The

distance from this plate to the pinhole is the focal length of the camera. The image is reversed in

both the horizontal and vertical axes of the image frame of the plate. The image frame is de�ned

with the origin, (0, 0), at the center of the captured image, the +x axis along the horizontal line
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f

Figure 3.1: Pinhole camera projection with focal length f .

of the image and to the right of the frame, and the +y axis along the vertical line of the image

and to the top of the frame. In reality, pinhole cameras produce blurry images due to convolution

of the light rays passing through a �nite aperture, with smaller apertures causing di�raction of

the light. Image processing algorithms, such as deconvolution, may reduce this blurring e�ect.

In computer graphics, projection is accomplished with a pinhole camera type projection with a

negative focal length f or an image frame that exists between the center of projection and the

scene at coordinates z = −f [12]. When using a homogeneous coordinate system, this simpli�es

projection to a simple a�ne transformation. In this system, a point location in three dimensions

is given as

p =

[
px py pz 1

]T
. (3.1)

Assuming p lies in the camera frame of reference1, the pinhole projection of p is written as

pI =

[
pIx pIy pIz 1

]T
= W (P ∗ p), where P , the projection matrix, is given as

P =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/f 0


, (3.2)

and the function W (·) returns a coordinate vector to homogeneous unity by dividing the vector

by its fourth coordinate. Therefore,

pI = W (P ∗ p) = W

([
px py pz

pz
f

]T)
=

[
fpx
pz

fpy
pz

f 1

]T
(3.3)

1The camera frame of reference has the origin at the center of projection, the z axis along the direction the

camera is facing, and the y axis along a �xed, arbitrarily chosen direction, usually denoted as the �up� direction,

or �up vector.�
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relates a point in three dimensional space to a location on the image frame. The pinhole projection

type is used in the simulations in Chapter 5.

The lensed camera addresses the problem of image blurring found with pinhole cameras by focusing

the gathered light rays onto a point. However, this focusing e�ect only occurs for objects at a

given distance from the camera, blurring objects at any other distances. For a camera with a

single, thin lens of focal length f and a movable image plane located at pIz, the optimum object

distance is given by

p∗z =
fpIz
pIz − f

, (3.4)

and the projected point for objects at this distance will lie on the image plane at

pIx =
f

px (p∗z − f)
. (3.5)

A single lens produces a number of optical artifacts on the image plane, such as various scattering

and blurring e�ects. Most artifacts may be reduced or eliminated by using a compound lens

system along with lens coating. Due to the varying sizes, refractive indices, and placement of the

lenses in cameras, the construction of a complete projection transformation is dependent on the

design of the lensed camera in use.

Notice that the projected point in both cases depends on the distance from the center of projection

to the location of the object along the z axis. It is also true that with knowledge of this range

information, these transformations can be reversed to recover the location of an object in the

camera space. Without this critical range information, it is not possible to perform the reverse

transformations, necessitating a more complex geo-location procedure.

A three-dimensional object has a non-zero volume, and therefore must be represented in the

image frame as more than a single point. The metrics of interest are based on the assumption

that objects are roughly ellipsoid, with a center of mass located around the volumetric centroid

of the object. In the two-dimensional projection in the image frame, the object may be de�ned as

having a height and width along the horizontal and vertical axes of the image plane, respectively,

that bound the object inside a rectangle, with a location given at the centroid of this rectangle

(Figure 3.3). Therefore, an object in the image frame has coordinates

p′ =

[
pIx pIy sx sy

]T
. (3.6)
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In this context, sx and sy are the width and height of the bounding rectangle, respectively. Any un-

certainty in these measures, perhaps arising from image artifacts and blurring or from uncertainty

and error in the detection method, may be transformed by these same reverse transformations,

producing a similar uncertainty in the location of the object in the camera space.

3.2 TRACKING GEOMETRY

The geometric structure of the range-less geo-location problem begins with the triangle and the

law of cosines. The law of cosines governs the relationship between the three edge lengths and

three inner angles of a triangle. Importantly, if at least two inner angles and one edge length, or

at least two edge lengths and one inner angle are known, then all inner angles and edge lengths

may be derived. In geo-location, this is translated to knowing the location of two �xed observers

or UAVs, and the direction vector from each observer to a target at an unknown location. This

is the basis for the triangulation method of localization (Figure 3.2).

Because measurements are taken in the image frame, they must be converted to the space-�xed,

inertial frame which the observers and the target occupy. This is a simple multi-step process

involving a series of translation and rotation matrices. The initial image frame location, pI , is

reconstituted from the measures in Eq. (3.6), and converted to the camera space using pC =

W−1
(
pI , pz

)
, the inverse of the projection function. Now, pC is the location of the target in the

camera space, and the remaining transformations involve a series of multiplication of translation

and rotation matrices. The UAV is a moving, rotating body in the space-�xed frame, and the

camera is a self-rotating body that is not centered on the UAV, and so each of these aspects is

addressed in the �nal transformation.

The complete transformation procedure is

pS = TURUTCRCp
C , (3.7)

where the translation, T , and rotation, R, matrices are de�ned as

T = T (d) =



1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1


, (3.8)
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and

R = R (φ, θ, ψ) =



cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1





cos θ 0 sin θk 0

0 1 0 0

− sin θ 0 cos θk 0

0 0 0 1





1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1


,

(3.9)

where d =

[
dx dy dz

]T
is the displacement from the local coordinate system origin�i.e. dC

is the displacement of the camera from the center of the UAV�and φ, θ, and ψ are the roll, pitch,

and yaw with respect to the parent frame�i.e. RC resolves the orientation of the camera with

respect to the UAV. As the camera is assumed to have no roll component, then it is assumed that

φC = 0. This operation amounts to the target location in camera frame to coincide with the UAV

body frame, translating to the UAV body frame, rotating to the space-�xed frame, then �nally

translating to the space-�xed frame.

The space-�xed frame is an arbitrary inertial frame with an origin at a �xed point on the earth,

for example a nearby structure or point of interest with a well-known position in the positioning

frame of choice. For example, using the space-�xed coordinate relative to a GPS marker, the target

location may be transformed easily to GPS coordinates for precise earth-�xed location. And in

fact, as long as any �xed point is known in this space-�xed system, any Earth-�xed Earth-centered

(ECEF) or Earth-centered inertial (ECI) coordinate system may be used for global positioning or

referencing. This �nal step is dependent on the application domain that the UAVs belong to and

is not covered here.

Note, the range information is critical to the transformation process. The initial conversion from

the image frame to the camera frame depends on knowing pz, which is assumed to be unknown.

Alternatively, a direction to the target may be derived from the same coordinate transformation.

A value is chosen, p̂z, such that the vector from the center of projection to p̂I =

[
pIx pIy p̂z

]T
is parallel to the vector from the center of projection to

[
px py pz

]T
. The point p̂I is

transformed to the camera frame, p̂C = W−1
(
pI , p̂z

)
, and then to the space-�xed frame using the

same transformation procedure in Eq. (3.7). The origin of the camera frame pC0 is transformed

as well.

Figure 3.2 sets up the basic triangulation problem. A vector may be formed from these two points

in the space-�xed frame, along which it is known that the target (T ) must lie. This vector, when
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Figure 3.2: Basic triangulation problem.

used with two UAVs (OAand OB) or two separate measurements from a single UAV, may be used

in the triangulation problem. The two vectors may be extended to form each edge of the triangle

in Figure and the resulting angles (α and β) known from the direction of the vectors completes

the requirements for the law of cosines. Uncertainty in image detection translates to a narrow

volume within which the target may be located, with an associated volumetric probability density

function (PDF), and the intersection of two or more volumetric PDFs form an approximate PDF

of the location of the target.

Volumetric PDFs, however, are di�cult to de�ne analytically and mix together. The particle �lter

geo-location scheme aggregates the same information and generates a similar PDF of the target

location. The particle �lter also integrates the target behavior to modify the PDF according to

the target motion.

3.3 STATE SPACE CONSTRUCTION

The state space model describes the behavior of the intended target, necessary for estimation

and prediction of the target's behavior. The localization system can use this to match inaccurate

or incomplete observations to the expected observations according to the target's motion and

measurement model, collectively called the state space model, taking the general form

dx (t)

dt
= f (x (t) , v (t) , t) , (3.10)

z (t) = h (x (t) , w (t) , t) , (3.11)
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Figure 3.3: Camera projection example.

f (·)is the transfer function, propagating the state in time, z (t) the measurement function, and

v (t) and w (t) the process and observation noise/disturbance, respectively.

Here, the state x (t) contains information on the target, like its position and velocity. In two

dimensions, this can be represented as

x (t) =

[
xτ (t) yτ (t) ẋτ (t) ẏτ (t)

]T

, (3.12)

where (xτ , yτ ) are the world-space coordinates of the target in two dimensions, and (ẋτ (t) , ẏτ (t))

the target velocity.

The transformed point, x̂Sk , de�nes the observation of the target in the space-�xed coordinate

system of choice: in this case, the coordinate system in which the UAV lies. The system could

be GPS coordinates, or relative to a local origin like a locator beacon, with the assumption that

the coordinates can be locally de�ned as Cartesian. Because this observation lies on a ray cast

from the camera center of projection (Sec (3.1)), intersecting the target location, a unit vector

v = xS0,k − x̂Sk , −→v = v/‖v‖can be constructed that describes the direction (angle) to the target, as

in Figure 3.3. Thus,

−→v (t) ≡ z (t) = h (x (t) , xU (t) , xC (t) , w (t) , t) , (3.13)

All that remains is an understanding of the target's expected dynamics, in the form of f (·), to

complete the model, allowing for a more accurate estimation of the target state x (t).
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Simple Linear Model � The simplest assumption, besides a completely stationary target, is a

target with a �xed velocity. In two dimensions, the discretized transfer function is

xk = f (xk−1, vk−1) = Axk−1 +Bvk−1, (3.14)

A =



1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1


, B =



∆T 2

2 0

∆T 2

2 0

0 ∆T

0 ∆T


, (3.15)

where ∆T is the time interval between discrete samplings.

This model is straightforward and easy to implement. However, it is an unrealistic assumption

except in a few special cases. Objects such as �xed-wing aircraft or ground vehicles on a long,

straight road may exhibit this behavior of a �xed-velocity for brief periods. Ballistic trajectories

may be locally linearized in such a manner, with e�ective accuracy given a small enough ∆T .

A target with su�cient acceleration relative to its velocity, such as a person rounding a corner

during a run, could confuse an estimator using this expected model.

The model can be adjusted with the addition of a third term Ba:

xk = f (xk−1, vk−1) = Axk−1 +Bvk−1 +Ba, (3.16)

where

Ba =

[
0 0 ax ay

]T
. (3.17)

For a = (ax, ay), this adds a constant acceleration to the simple linear model. By using this in

conjunction with the constant velocity model, actions such as the target speeding up, slowing

down, and stopping may be accounted for. The target state space model is also updated to allow

the particle �lter to adjust the acceleration a:

x =

[
xτ yτ ẋτ ẏτ ax ay

]T
. (3.18)
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Non-linear Model � A target may frequently exhibit speci�c non-linear behavior, such as during

a maneuver like a coordinated turn. For example, an aircraft may execute a turn at a constant

speed and angular velocity, Ω. Its state can then be modeled as [3]

xk = f (xk−1, vk−1) = A (Ω)xk−1 +Bvk−1, (3.19)

x =

[
xτ yτ ẋτ ẏτ Ω

]T

, (3.20)

A (Ω) =



1 0 sin(Ω∆T )
Ω − (1−cos(Ω∆T ))

Ω

0 1 (1−cos(Ω∆T ))
Ω

sin(Ω∆T )
Ω

0 0 cos (Ω∆T ) − sin (Ω∆T )

0 0 sin (Ω∆T ) cos (Ω∆T )


B =



∆T 2

2 0

∆T 2

2 0

0 ∆T

0 ∆T


. (3.21)

The state space model has been extended to include the target's angular velocity, on which the

state matrix, A, has a non-linear dependence. The dynamics of this mode of behavior most closely

describes movement along the arc of a circle with radius r = v/Ω, for a constant tangential velocity

v. This behavior may approximate an aircraft during a turning maneuver, a ballistic trajectory

over short time periods, a car making a turn at an intersection or during all or part of a curve in

a road, or other target behaviors. While allowing more freedom of movement and covering more

possible target behaviors, the model still assumes a constant activity, in this case governed by a

constant angular velocity.

Maneuvering Model � This model attempts to account for changes in the target's behavior

by extending or parameterizing the desired model in such a way as to predict abrupt changes

in dynamics. The changes may consist only of allowing for a variable constant, such as turn

acceleration; or of adding entirely new dynamic behavior to a preexisting model, such as extending

the simple linear model to include turns, or maneuvers; or a combination of the two.

In any case, to enable prediction via posterior construction (see Section 2.1), the probability that

a maneuver may be made must be known. This is known as a jump Markov model, in that
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the probability that a given maneuver will exit into another maneuver is subject to a Markov

switching system [5, 48].

In formal terms,

xk = fk (xk−1,mk, vk−1) , (3.22)

zk = hk (xk,mk, vk) , (3.23)

where mk is the model variable, representing the model that is in e�ect at time k. The probability

of transition from any model m ∈M , where M is the set of n model identi�ers M = {1, 2, . . . , n},

is de�ned as

πi,j , P {mk = i|mk−1 = j} (i, j ∈M) , (3.24)

with πi,j forming the elements of an n× n transition matrix Π.

In a jump Markov linear model, for example, Eqs. (3.22) and (3.23) can be expressed as

xk = Ak−1,mkxk−1 + vk−1,mk , (3.25)

zk = Ck,mkxk + wk,mk , (3.26)

which highlights that the state space model now has a dependence on the currently selected model

mk.

Estimators like the particle �lter can be extended to account for multiple models subject to a

Markov switching system with known transition probability matrix, Π. Some solutions [21, 25, 48]

include splitting particles to cover probable maneuvers or changes in maneuver at time k, or

generating and resampling from a posterior that encompasses the probable maneuvers at time k.
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3.4 PARTICLE FILTER GEO-LOCATION

The information presented in this section is used to complete the particle �lter design. The state

space models for the UAV and target are used to update the particles, along with the multi-modal

behavior of the target. The observation model derived from the camera design and the camera

space transformation adjusts measurements to match the UAV camera perspective. Finally, the

likelihood function used to weight the particles is determined by the observation uncertainty,

dependent on the camera and the detection system in use.

3.4.1 PARTICLE EVOLUTION

Each particle in the particle �lter represents a guess on the current state of the target. The

complete state is written as

x =

[
xτ yτ zτ ẋτ ẏτ żτ ax ay az Ω

]T
. (3.27)

This state encapsulates the position and velocity of the target as the primary measures of interest.

The acceleration and angular acceleration are only used in such cases where the multi-modal

behavior requires them, as is shown in the following paragraphs. All measures have been updated

from two to three dimensions with the addition of zτ , żτ , and az, and the changes to the state

space models are trivial. It is assumed that all turns will happen in roughly two-dimensions, or

on a plane, and so the angular acceleration remains a scalar.

The following target state space models are used in conjunction within a multi-modal framework:

f1 (xk, vk) = Axk +Bvk, (3.28)

f2 (xk, vk) = Axk +Bvk +Ba, (3.29)

f3 (xk, vk) = A (Ω)xk +Bvk. (3.30)

More complex varieties of state space model are available, and many are dependent on the type

of vehicle being tracked. The three models of constant velocity (Eq. (3.14)), constant linear

acceleration (Eq. (3.16)), and constant angular acceleration (Eq. (3.19)) capture the most likely

behaviors of any object in motion. All process disturbances, vk, are considered to be additive.

The Markov switching behavior is achieved through use of the multi-modal particle �lter and the
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mode state rk, for r = {1, 2, 3}. The �nal particle update function is

f (xk, rk, vk) = fr (xk, vk) . (3.31)

The mode transition probability matrix Π is constructed from empirical study of the target of

interest, measuring the probability that a target will continue, slow down, speed up, stop, turn,

or perform other actions under various circumstances.

During the particle evolution stage of the particle �lter execution, each particle will mimic the

expected behavior of the target according to its own guess of the target state. A particle that

assumes the target is moving at 50 km per hour to the east will adjust itself each time step ac-

cording to this assumption, with an additional random disturbance. With more particles evolving

as such over time, it becomes more likely that one or more particles will reach a state coinciding

with the measurements taken of the target.

3.4.2 PARTICLE WEIGHTING

Each particle may be considered to be a virtual target itself. The location of the virtual target

may be extracted and used to create a virtual measurement according to Eq. (2.13). Because

the target state is estimated in the space-�xed coordinate system, it must �rst be transformed to

the camera frame to accurately simulate the camera behavior. The same procedure to transform

from the camera frame to the space-�xed frame Eq. (3.7) is reversed to perform the converse

transformation.

In practice, the individual rotation and translation matrices may be inverted to create the separate

reverse translations. However, it may be shown that by inverting the resultant 4×4 transformation

matrix T , the entire reverse transformation is recovered as well [9]. For

pS = TURUTCRCp
C = T̄ pC , (3.32)

and pS =

[
xτ yτ zτ 1

]T
the reverse transformation from the space-�xed frame to the

camera frame is

pC = R−1
U T−1

U R−1
U T−1

U pS = T̄−1pS . (3.33)

With the virtual target state in the camera frame of reference, the same projection matrix as-
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sociated with the camera in use is applied. A pinhole camera model is used in the simulations,

so Eq. (3.3) is applied, with p =

[
pCx pCy pCz 1

]T
. The entire transformation procedure is

coincident with the observation function of the state space model h (·), which is also mentioned

in Eq. (2.13), with an observation noise of zero. This noise is relevant to the particle weighting

according to the likelihood function.

These two operations�frame transformation and projection transformation�are performed for each

particle, resulting in a virtual measurement associated with each guess of the target state. As

with the actual measurements, an amount of uncertainty is associated with these measurements

according to errors in the location and orientation of the UAV, as measured by the on-board

GPS and IMU; error in the orientation of the camera sensor, as measured by encoders on the

positioning servos or the camera gimbal; and uncertainty and error associated with detection of

the target in the image frame, which is dependent on the detection algorithm in use.

These errors and uncertainties accumulate over the successive transformations. Unfortunately,

the probability distribution of the product of two or more random variables is di�cult to describe

analytically. Alternatively, the PDF associated with the complete transformation may be roughly

approximated using a sum of Gaussian distributions. And, it is assumed that the measurement

errors and uncertainties conform to distributions that are linearly independent. The sum of

independent Gaussian distributions,

N∑
i=1

N
(
µi, σ

2
i

)
= N

(
N∑
i=1

µi,

N∑
i=1

σ2
i

)
, (3.34)

is a Gaussian distribution with �rst and second moments equal to the sum of the �rst and second

moments of the initial distributions [16].

The complete probability distribution due to uncertainty and error in measurement may be re-

duced to an approximate Gaussian distribution. This forms the basis for the likelihood function.

Now, Eq. (2.10) is used to weight each particle, i = {1...N}, according to the actual measurement,

pI�the location of the target in the image frame�and the virtual measurement of the particle, pI,i:

wik = N
(
pI,ik ; pIk,Σk

)
wik−1, (3.35)

where Σ is the covariance matrix of the Gaussian distribution approximating the uncertainty of

the measurements.
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Table 3.1: Particle Filter Geo-Location Pseudocode

Given {xk−1, rk−1, wk−1} , pIk
� FOR i = 1 . . . N

� xik = f
(
xik−1, r

i
k−1, v

i
k−1

)
= fr

(
xik−1, v

i
k−1

)
� pC,ik = T̄−1 ·

[
xτ,ik yτ,ik zτ,ik 1

]T
� pI,ik = W

(
P ∗ pC,ik

)
, for pinhole projection transformation W (·)

� w̃ik = N
(
pI,ik ; pIk,Σk

)
wik−1

� END FOR

� wk =Normalized weights w̃k

� Estimate state x̄k =
N∑
i=1

[
xτ,ik yτ,ik zτ,ik

]T
wik

� IF 1∑N
i=1(wik)

2 < Nthr, with 1 ≤ Nthr ≤ N chosen to prevent degeneracy

� Resample
{
xi∗k , 1/N

}
such that P

{
xi∗k = xjk

}
= wjk (see Table 2.1)

� {xk, wk} = {x∗k, 1/N}

� END IF

3.4.3 STATE ESTIMATION

The �nal step in producing a state estimate is to take the expected value according to the ap-

proximate distribution of the N weighted particles. The measure of interest is the �rst moment

of this distribution, which may be extracted as the weighted mean of the particles:

x̄k = E [xk] =

N∑
i=1

[
xτ,ik yτ,ik zτ,ik

]T
wik. (3.36)

Additional moments and measures may be collected from the particles for further use, such as to

gauge the expected accuracy of the particle �lter state estimation.

3.4.4 PARTICLE FILTER GEO-LOCATION PSEUDOCODE

The complete pseudocode for the particle �lter geo-location algorithm is shown in Table 3.1.
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3.5 MULTIPLE OBSERVER (UAV) EXTENSION

The framework presented above allows for a variable length of observation structure zk at each

time step k. This makes the addition of one or more observers, in this case UAVs, to the scenario

simple and quick. For a single observer, p (zk|xk) in Eq. (2.10) can be assumed to be

p
(
zk|xik

)
= N

(
h
(
xik
)

; zk, σ
2
z

)
(3.37)

with σ2
z the nominal accuracy of measurement zk, and N

(
x;m,σ2

)
the normal probability density

of x with mean m and variance σ2. With n observers, this is simply

p
(
zk|xik

)
= Nn

(
H
(
xik
)

;Zk,Σz
)

(3.38)

H
(
xik
)

=

[
h1

(
xik
)

h2

(
xik
)
· · · hn

(
xik
) ]T

(3.39)

Zk =

[
zk,1 zk,2 · · · zk,n

]T

(3.40)

where Σz is the n× n covariance of the n× 1 measurement Zk, Nn (·) is the multivariate normal

density function, and ho (·) is the observation function for each observer for o ∈ {1, 2, ..., n}.

All that remains is de�ning the multiple measurements Zk and ho
(
xik
)
and their associated

covariance Σz. For multiple UAVs, this can be as simple as concatenating each successive UAV

measurement zk,o, assuming they are independent, and creating a diagonal Σz such that the

diagonal values are the measurement accuracy σ2
z,o for each UAV. For multivariate measurements

zk,o, σ
2
z,o becomes a covariance matrix Σz,o, and Σz becomes a block diagonal covariance matrix.

The particle �lter estimator is thus quickly scalable with the addition of UAVs. For a multivariate

system with n observers and block diagonal covariance
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Σz =



Σz,1 0 · · · 0

0 Σz,1 · · · 0

...
...

. . .
...

0 0 · · · Σz,n


(3.41)

p (zk|xk) can be reduced to

p (zk|xk) = Nn
(
H
(
xik
)

; zk,Σz
)

=

n∏
o=1

N
(
ho
(
xik
)

; zk,o,Σz,o
)

(3.42)

Thus, each new UAV adds only density estimation and one product to the weight calculation,

keeping complexity under control while improving target location estimation accuracy.

Any likelihood function derived from expected value operator E (f (X)) may be similarly reduced

to the product of individual likelihood functions. In general, the likelihood function is only

multiplicative across random variables when these variables are independent, or uncorrelated. In

terms of uncorrelated sets of variables, the covariance between these sets is cov (X,Y ) = 0. By

the de�nition of covariance, cov (X,Y ) = E (XY )− E (X)E (Y ), a covariance of zero between X

and Y results in E (XY ) = E (X)E (Y ).

The issue of correspondence, or the misidenti�cation of one or more targets within a scenario, is

not addressed in this research. It is assumed that only one target exists at all times in the region

of interest, so measurements from multiple observers are accepted as measurements of the same

target.

3.6 TARGET DYNAMICS

The target behavior integrates into the particle �lter primarily in Eq. (2.12). It is through the

state space model update function that particles are informed how to behave, and by matching the

particle and target behavior, the particle �lter estimate may more closely track the target state.

As the observation function transforms the target coordinates to a coordinate frame coincident

with camera measurements (Section 3.2), target motion only needs to be represented through the

particle update function.
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The target behavior modeled for this research is that of a car. The car is a non-holonomic system

that accepts a thrust command and an angular velocity command. However, the target state

space model is simpli�ed further to introduce use of the maneuvering model (Section 3.3). The

car system is represented as a simple Newtonian system with three types of behavior: constant

velocity, constant acceleration, and turning with constant velocity (Eqs. (3.28)-(3.30)).

The non-holonomic behavior of the car is recreated through a set of state space modes S. This

set includes stopping, accelerating, decelerating, coasting, and turning:

S = {STOP, ACCEL, DECEL, COAST, TURN} . (3.43)

During simulation, the target switches behavior between these modes according to a rule set

de�ned below. For each mode switch, the previous target state is preserved, only the update

function and its parameters are changed. However, the parameters are derived from the state

at the time of the mode switch, such that acceleration and deceleration occur along the current

velocity vector or on a vector matching the target orientation when stopped. In this manner,

non-holonomicity of the target system is preserved.

The switching between modes in set S is tuned to mimic the driving conditions of the target

and to preserve at least C1 continuity. Di�erent driving patterns, such as driving in the city,

on highways, in the desert, etc., will result in di�erent switching frequencies and patterns. Here,

a suburban driving pattern is assumed, with frequent stops and turns to simulate intersections,

inconsistent tra�c patterns, and fewer instances of high speed driving.

Figure 3.4 diagrams the Markov switching system with the possible mode switching allowed.

Dashed lines indicate a lower switching probability than full lines. Stopping may only be reached

after decelerating to a stop, and other modes may only be reached from a stop after �rst acceler-

ating.

The driving mode diagram in Figure 3.4 is used to construct a transition probability matrix Π

that will be used as a basis for the target maneuvering model. Each transition line in the diagram

translates to a probability πi,j , from Eq. (3.24). These are tuned through experimentation and

simulation to most closely match the desired target behavior. Table 3.2 is the �nal tuned transition

matrix Π.
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C: COAST

T: TURN

Figure 3.4: Driving modes and Markov switching system.

Table 3.2: Target transition probability matrix.

Π =


0.995 0.005 0.000 0.000 0.000
0.000 0.992 0.002 0.004 0.001
0.003 0.001 0.991 0.002 0.002
0.000 0.002 0.002 0.995 0.001
0.000 0.003 0.001 0.002 0.993


This matrix is used to form the rule base for switching driving modes only. The switching behavior

is extended with additional rules enforcing a maximum target velocity of 80km/h, minimum and

maximum turning radii, and minimum and maximum height values (target motion along the

z-axis).

3.6.1 MULTIPLE TARGET EXTENSION

The research presented in this thesis focuses mainly on single target detection and geo-location.

However, multiple targets of interest may be in the same scene. Tracking multiple targets at the

same time is a di�cult problem requiring many additions and enhancements to the geo-location

particle �lter. This section notes a few possible routes for achieving multiple target geo-location

estimates, however, the implementation of a multiple target tracking system is beyond the scope

of this research.

Initially, each target must be detected and di�erentiated using the sensors and imaging system.

For video sensors, this may include a more advanced segmentation algorithm, or background

subtraction and optical �ow algorithms. For radar or other active sensors, TDOA measurements

may be analyzed and classi�ed according to the likelihood of individual detection versus false

alarm [45].

Once the multiple targets have been detected and separated, the geo-location particle �lter must

apply the measurements towards evaluating the likelihood of particles estimating the state of each
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of the targets of interest. A naive approach to redesigning the particle �lter might then be to

use a separate geo-location particle �lter for each target estimation. Assuming a detection and

di�erentiation algorithm with bounded error, this eliminates the chances of losing target track

or confusing targets due to sensor uncertainty. However, duplicating the particle �lter for each

target is costly.

Another possibility is to extend the target state to encompass all targets in the region of interest.

Particles may then individually obtain both good state estimates and bad state estimates. Particle

weights may be extended to contain information about the target states for which a particle has a

good track, with an appropriate resampling algorithm that splits and merges particles accordingly.

Groups of particles thus track groups of targets, with the ability for particles to switch groups as

they gain and lose track of targets. With this method, starvation may occur, where a target may

have very few or no particles tracking it.

A compromise between the above two systems is to assign particles to one or more targets. Each

particle accepts measurements for and tracks its assigned target, and is weighted against particles

tracking the same targets. During resampling, particles with poor tracks on one or more targets

are eliminated as usual. Particles with good tracks are duplicated and extended with new target

assignments. This method avoids both problems of having multiple particle �lters to track each

target, and the problem of target starvation.
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CHAPTER IV

UAV AND CAMERA CONTROL

4.1 INTRODUCTION

The UAV investigated in this thesis is the main representative of the rotorcraft family which is

the helicopter. Such rotorcraft UAVs of this design include the Yamaha R-MAX or the Boeing

A160 Hummingbird. The rotorcraft platform is chosen for its versatility of �ight modes, including

hovering, �ying at low speeds, and orbiting with a small radius. In the recent years there has

been considerable research related to the helicopter autonomous �ight control problem [23, 17,

30, 41, 42].

Many varieties of sensors are available to detect and track targets, such as video and infrared

devices, radar, and LIDAR. Passive sensing techniques like video and infrared are of interest for

tracking applications due to their low or nonexistent emissions, high resolution, and wide operating

range. Part of the UAV path planning or control algorithms must be devoted to pointing the video

or infrared sensors at the target, and ensuring the UAV is within a desired range of the target.

Gimbaled camera systems grant the ability to aim a camera sensor in a desired direction, and have

been used on-board UAVs for target tracking systems [13, 40]. The UAV controller is designed

with the assumption that the camera gimbal will point the camera to the target, taking into

account the direction of the target and the orientation of the UAV.

It is accepted that under certain �ight conditions the UAV body itself may intersect the line-of-

sight from the camera to the target, possibly occluding the target. The suggested UAV controller

does not attempt to orient the UAV to prevent camera occlusion, which under certain conditions

may be di�cult or impossible (i.e. steep tilt angles that result in lateral UAV motion). However,

the controller design attempts to limit the roll and pitch of UAV for stability purposes, and

assuming the target is always at a lower height than the UAV, it is safe to assume the target is

always within the visual range of the camera and gimbal system.

This chapter address the dual problem of rotorcraft control and trajectory generation for the

tracking of a moving target. The �ight controller is designed based on the rotorcraft nonlinear

dynamics that include the basic equations of motion and a simpli�ed model of the torque and

force generation. The controller considers the discrete rotorcraft dynamics to accommodate the
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discretization e�ects that emerge from the execution of the algorithm by a microprocessor. The

�ight controller is utilizing a backstepping approach for systems in feedback form. The intermedi-

ate control signals (a.k.a. pseudo controls) for each level of the feedback system are appropriately

chosen to stabilize the helicopter dynamics. The goal of the proposed trajectory generator is to

provide the rotorcraft with an additional level of autonomy in moving target tracking missions.

The trajectory generator is composed by two modes depending on the motion of the target. When

the target is moving the rotorcraft is kept within a speci�ed sensor range. When the target is

stationary the rotorcarft is subject to orbiting motion around a �xed radius from the target.

The applicability of the combined controller-trajectory generator module is successfully veri�ed

through numerical simulations.

4.2 HELICOPTER MODEL

4.2.1 MATHEMATICAL NOTATION

For simplicity, the abbreviations Ct, St, and Tt with t ∈ R represent the trigonometric functions

cos(t), sin(t), and tan(t), respectively. For a vector ~w =

[
w1 w2 w3

]T
∈ R3, the notation ~̂w

denotes the skew-symmetric matrix of the vector. The operand ‖(·)‖ denotes the Euclidean norm.

4.2.2 ROTORCRAFT SYSTEM DYNAMICS

The �rst step toward the development of the rigid body's equation of motion is the de�nition of

two reference frames. The �rst one is the inertia frame de�ned as FI =
{
OI ,~iI ,~jI ,~kI

}
. The

second is the body �xed reference frame de�ned as FB = {OB , iB , jB , kB} where the center OB is

located at the Center of Gravity (CoG) of the helicopter. The direction of of the body �xed frame

unitary vectors can be seen in Figure 4.1, although the axis vectors ~jB ,~kB ,~jI ,~kI are reversed from

typical placement [41, 47, 32] as shown. This is to comply with the space-�xed frame desired for

tracking calculations (Section 3.2).

The angular velocity with respect to the body frame is ωB =

[
ωx ωy ωz

]T
∈ R3. Positive

direction of the angular velocity components refers to the right-hand rule of the respective axis.

The external forces and moments acting on the CoG of the helicopter are denoted by fB and τB ,

expressed in the body frame coordinates. The rotation matrix R is parametrized with respect

to the three Euler angles roll (φ), pitch (θ), and yaw (ψ) and maps vectors from the the body
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�xed frame FB to the inertia frame FI . The same standard rotation matrices as in Eq. (3.9) and

multiplied over all three rotations results in

R =


CψCθ −SψCφ + CψSθSφ SφSψ + CφSθCψ

SψCθ CφCψ + SφSθSψ −CψSφ + SψSθCφ

−Sθ CθSφ CθCφ

 . (4.1)

The orientation vector is given by Θ =

[
φ θ ψ

]T
and the associated orientation dynamics

are governed by Θ̇ = Ψ(Θ)ωB , where

Ψ(Θ) =


1 SφTθ CφTθ

0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ

 . (4.2)

Let pI =

[
pIx pIy pIz

]T
∈ R3 be the position vector of the CoG of the helicopter with respect

to the inertial coordinates, and vI =

[
vIx vIy vIz

]T
∈ R3 be the linear velocity vector in

inertial coordinates. The complete dynamic equations of the rigid body in the special orthogonal

con�guration space, SE (3) = R3 × SO (3), are

ṗI = vI , (4.3)

v̇I =
1

m
RfB , (4.4)

Ṙ = Rω̂B , (4.5)

Iω̇B = ωB ×
(
IωB

)
+ τB , (4.6)

where I denotes the inertia matrix of the helicopter with respect to the body �xed reference

frame.

4.2.3 FORCE AND MOMENT MODELS

There are four control commands associated with helicopter piloting. The control input is de�ned

as u =

[
TM TT a b

]T
where TM and TT are the thrust magnitudes generated by the main

and tail rotor, respectively. The other two control commands are the �apping angles a, b, and they

represent the tilt of the Tip-Path-Plane (TPP) at the longitudinal and lateral axis, respectively.
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Figure 4.1: The helicopter body frame, the TPP angles, and the thrust vectors of the main and tail rotor
[47].

The TPP is the plane in which the tips of the blades lie. Since the thrust vector is considered

normal to the TPP, by controlling the TPP inclination the pilot indirectly controls the direction

of the propulsion forces. The inclination of the TPP can be seen in Figure 4.1.

Let ~hM =

[
xm ym zm

]T
and ~hT =

[
xt yt zt

]T
be the position vectors of the main and

tail rotors shafts respectively (expressed in the body coordinate frame). Since the thrust vector

is assumed to be perpendicular to the TPP from simple geometry, the torque equations follow

~TM =


XM

YM

ZM

 =


SaCb

−SaCb
CaCb

TM ≈
 −

a

b

1

TM . (4.7)

The above equation (4.7) is simpli�ed by assuming small angle approximation (cos(·) = 1 and

sin(·) = (·)) for the �apping angles. The small angle assumption is adopted by [18, 23, 32]. For

the tail rotor,

~TT =

[
0 YT 0

]T
=

[
0 1 0

]T
TT . (4.8)

Therefore by including the helicopter weight, with mass m and standard acceleration due to
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gravity g = −9.82 m/s2, the complete force vector is

fB =


XM

YM + YT

ZM

+RT


0

0

mg

 . (4.9)

A common simpli�cation practice followed in [23, 17, 30] is to neglect the e�ect of the lateral and

longitudinal forces produced by the TPP tilt and the e�ect of the tail rotor thrust. Therefore,

fB =

[
0 0 TM

]T
+RT

[
0 0 mg

]T
. (4.10)

The generated torques are the result of the above forces and the moments of the rotors. Let

τBM = ~hM × ~TM and τBT = ~hT × ~TT be the torques generated by ~TM and ~TT , respectively. The

complete torque vector is

τB = τBβ + τBQ + τBM + τBM

=


−Kβb

−Kβa

0

+


SaCb

−SaCb
CaCb

QM + ~hM × ~TM + ~hT × ~TT , (4.11)

where τBβ is a torque on the helicopter body due to a spring-like force from the main rotor hub

sti�ness and Kβ is the sti�ness of the main rotor blades; τBQ is the anti-torque due to spinning

of the main rotor, with QM = CM |TM |1.5 + DM and CM , DM are positive constants. A more

compact form of the torque can be given as

τB = A (TM )


a

b

TT

+B (TM ) , (4.12)
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where

A (TM ) =


QM zmTM −Kβ −zt

zmTM −Kβ −QM 0

−ymTM −xmTM xt

 , (4.13)

B (TM ) =

−
ymTM

xmTM

QM

 . (4.14)

4.2.4 COMPLETE RIGID BODY DYNAMICS

Using the force simpli�cation assumption given in Eq. (4.10) and the applied torque by Eq. (4.12)

the helicopter dynamics in the con�guration space will have the form

ṗI = vI , (4.15)

v̇I =
1

m
Re3TM − e3g, (4.16)

Ṙ = Rω̂B , (4.17)

Iω̇B = ωB ×
(
IωB

)
+A (TM ) vc +B (TM ) , (4.18)

where e3 =

[
0 0 1

]T
and vc =

[
a b TT

]T
.

4.2.5 DISCRETE SYSTEM DYNAMICS

In this section, the discrete dynamics of the helicopter are provided by using Euler's implicit

method for the approximation of the continuous derivatives. The motivation to shift the controller

design to discrete time is twofold. First, control algorithms are computed by microprocessors so

the discretization e�ect should be incorporated into the controller. And second, the ultimate

purpose of the helicopter controller is to autonomously maintain a desired pose relative to a

moving target, and data on the position of this target is being generated at discrete points in
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time. The following set of equations are the discrete system to be controlled:

pIk+1 = pIk + ∆TvIk, (4.19)

vIk+1 = vIk + α1Rke3TM,k + α2e3, (4.20)

Rk+1 = Rk + ∆TRkω̂
B
k , (4.21)

ωBk+1 = ωBk + Π
(
ωBk
)

+A (TM,k) vc,k + B̄ (TM,k) , (4.22)

with the compact terms de�ned as

α1 = ∆T
1

m
α2 = ∆Tg

Ā(TM,k) = ∆TI−1A (TM,k) B̄ (TM,k) = ∆TI−1B (TM,k)

Π
(
ωBk
)

= ∆TI−1
(
ω̂Bk IωBk

)
.

4.3 CONTROLLER DESIGN

The controller design is based on a previously derived discrete time backstepping controller [41, 42,

32], with only minor changes to accommodate a change in the coordinate system orientation. The

rotorcraft dynamics and controller are not integral parts of the target tracking and geo-location

problem, but are used to simulate realistic UAV dynamics and uncertainties.

Consider a helicopter described by the di�erence equations Eqs. (4.19)-(4.22). The objective is

to design a nonlinear controller stabilizing the position pIk and the yaw angle ψk to the refer-

ence values pIr,k =

[
prx,k pry,k prz,k

]T
and ψr,k, respectively. The discrete time backstepping

design procedure is similar with its continuous time counterpart. The main di�erence is that

di�erentiation is substituted by shifting one time step forward in time.

4.3.1 ANGULAR VELOCITY DYNAMICS

Considering Eq. (4.22), an obvious control choice for canceling out the nonlinear terms of the

angular velocity dynamics is

vc,k = Ā (TM,k)−1
(
−ωBk −Π

(
ωBk
)
− B̄ (TM,k) + v̄k

)
, (4.23)
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where v̄k =

[
v1,k v2,k v3,k

]T
is a stabilizing term designed in 4.3.2 and 4.3.3. The angular

dynamics become

ωBk+1 = v̄k. (4.24)

4.3.2 TRANSLATIONAL DYNAMICS

The equation of translational velocity is given by Eq. (4.20). Let Rk =

[
ρ1,k ρ2,k ρ3,k

]
,

where ρi,k for i = 1, 2, 3 are the column vectors of the rotation matrix. The di�erence equation

of the translational velocity can be written as

vIk+1 = vIk + α1ρ3,kTM,k + α2e3. (4.25)

The column vector ρ3,k is a unit vector with changing direction depending on the Euler angles.

The goal is to change the direction of ρ3,k and at the same time adjust the magnitude of TM,k to

match a desired vector that will control the translational velocity dynamics. Therefore, the vector

function ρ3,kTM,k is stepped forward in time until the components of v̄k appear. Let TM,k+1 = ηk,

and by considering Eq. (4.21) and that ω̂Bk e3 = −ê3ω
B
k then

ρ3,k+1TM,k+1 = Rk+1e3ηk

= Rke3ηk −∆TRkê3ω
B
k ηk

= Rk
(
e3 −∆T ê3ω

B
k

)
ηk. (4.26)

Let ηk+1 = ζk then, by stepping forward in time once more, Eq. (4.26) becomes

ρ3,k+2TM,k+2 = Rk+1

(
e3 −∆T ê3ω

B
k+1

)
ηk+1

= Rk+1 (e3 −∆T ê3v̄k) ζk

= Rk+1


∆Tv2,k

−∆Tv1,k

1

 ζk = Xk, (4.27)
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Zk+2 = Xk z−2 vI
k+1 = vI

k + α1Zk + α2e3 z−1 pI
k+1 = pI

k + Tsv
I
k z−1

z−2

Zk vI
k

TM,k

v1,k

v2,k

ζk

Rk+1

pI
k

Figure 4.2: Interconnection of the helicopter dynamics using Eqs. (4.28)-(4.32). The term z−1 denotes
a unit time delay [47].

where Xk is a vector as de�ned below. From Eq. (4.27), the following equalities hold:

ζk = eT3 R
T
k+1Xk (4.28)v1,k

v2,k

 =

−∆Tζk 0

0 ∆Tζk


−1 ρT2,k+1Xk

ρT1,k+1Xk

 (4.29)

The existence of the inverse matrix on the right hand side of Eq. (4.29) is guaranteed by the

fact that the thrust magnitude TM,k should be always greater than zero (note that ζk = TM,k+2),

since during typical �ight conditions some thrust is needed to compensate for the weight force.

Some rare maneuvers exist during which the desired thrust may be zero, requiring a small but

non-zero ζε such that ζk = TM,k+2 + ζε.

Let Zk+i = ρ3,k+iTM,k+i with i ∈ N. The associated equations related to the translational

dynamics are

pIk+1 = pIk + ∆TvIk, (4.30)

vIk+1 = vIk + α1Zk + α2e3, (4.31)

Zk+2 = Xk. (4.32)

Using the above equation, the interconnection of the helicopter dynamics is shown in Figure 4.2.

The error dynamics of the pI , vI and Z state variables are

ep,k+1 = pIk+1 − pIr,k+1 = −pIr,k+1 + pIk + ∆TvId,k + ∆Tev,k, (4.33)

ev,k+1 = vIk+1 − vId,k+1

= −vId,k+1 + vIk + α1Zd,k + α2e3 + α1eZ,k, (4.34)

eZ,k+2 = Zk+2 −Zd,k+2 = −Zd,k+2 + Xk. (4.35)
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Let the desired values be chosen as

vId,k =
1

∆T

[
pIr,k+1 − pIk +K1ep,k

]
, (4.36)

Zd,k =
1

α1

[
vId,k+1 − vIk +K2ev,k − α2e3

]
, (4.37)

Xk = Zd,k+2 + Λ1eZ,k+1 + Λ2eZ,k, (4.38)

where K1,K2,Λ1,Λ2 are diagonal gain matrices. After applying the desired values of Eqs. (4.36)-

(4.38) to the translational dynamics described in Eqs. (4.33)-(4.35). the following is obtained:



ep,k+1

ev,k+1

eZ,k+2

eZ,k+1


=



K1 ∆T 0 0

0 K2 0 α1

0 0 Λ1 Λ2

0 0 1 0





ep,k

ev,k

eZ,k+1

eZ,k


(4.39)

Provided that the eigenvalues of the above linear system lie inside the unit circle, the translational

helicopter dynamics will be globally asymptotically stable. Therefore, the convergence rate of the

error variables can be determined by the designer. Due to the fact that small-scale helicopters are

very sensitive to control inputs, regulating the convergence rate of each state improves the �ight

behavior.

4.3.3 YAW DYNAMICS

The yaw dynamics are obtained from Eq. (4.2). More speci�cally,

ψk+1 = ψk + ∆TeT3 Ψ (Θk)ωBk . (4.40)

Let eψ,k = ψk − ψr,k be the error in the yaw, then the yaw error dynamics are

eψ,k+1 = ψk+1 − ψr,k+1 = −ψr,k+1 + ψk + ∆TeT3 Ψ (Θk)ωBk . (4.41)

The above equation is shifted forward in time in order for the control commands to appear. This
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leads to

eψ,k+2 = −ψr,k+2 + ψk+1 + ∆TeT3 Ψ (Θk+1)ωBk+1

= −ψr,k+2 + ψk+1 + ∆T

(
Sφk+1

Cθk+1

v2,k +
Cφk+1

Cθk+1

v3,k

)
. (4.42)

An obvious choice for the selection of the value of v3,k, that will cancel out the nonlinear terms

and stabilize the yaw error dynamics, is

v3,k =
Cφk+1

Cθk+1

[
−Sφk+1

Cθk+1

v2,k +
1

∆T
(ψr,k+2 − ψk+1 +Meψ,k+1)

]
, (4.43)

whereM is a diagonal matrix of gains with the absolute value of each diagonal entry being smaller

than unity. Applying the above value for v3,k, the yaw error dynamics become eψ,k+2 = Meψ,k+1,

which implies the asymptotic convergence of eψ,k to zero.

4.4 CAMERA CONTROL AND TRAJECTORY GENERATION

4.4.1 GIMBAL CAMERA CONTROL

Gimbal devices are a common choice for camera positioning, allowing aiming of a directional

sensor [33, 6]. Gimbal orientation may be set through two command types: position commands

or angular velocity commands. For simplicity, a gimbal that accepts position commands only

is chosen; design and use of an angular velocity controller is beyond the scope of this research.

The gimbal aims the camera at the measured or estimated location of the target, attempting to

place the target in the center of the camera image. A precise estimate is not necessary; only the

estimate error bounds, projected onto the camera image frame, must lie within the �eld-of-view

(FoV) of the camera.

The camera gimbal is assumed to orient an attached camera sensor in the desired direction,

with the observation vector towards the target, by accepting a pitch and yaw command. Let

η̄ =

[
η̄x η̄y η̄z

]T
denote the unitary directional vector from the helicopter CoG to the target,

expressed in the body-�xed frame. The position of the target in the inertial frame is denoted by
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the vector pIt =

[
ptx pty ptz

]T
. The desired pitch and yaw commands for the camera are

η̄ = RT
pIt,k − pIk∥∥∥pIt,k − pIk∥∥∥ , (4.44)

ψcam = atan2 (η̄y, η̄x) , (4.45)

θcam = atan2
(
η̄z, cos (ψcam)

)
, (4.46)

where atan2 (·, ·) is the four-quadrant arctan (·) function.

4.4.2 TRAJECTORY GENERATION

Trajectory generation is a broad problem with many solutions available, each dependent on the

application goals [40, 26, 19]. For this application, the rotorcraft UAV is intended to be following

a ground target with an estimated location in the inertial frame, or in Earth-�xed coordinates.

The UAV will need to both seek the target to retain proximity and orbit the target for multiple

observation vantages as the situation changes.

According to this scenario, the target is assumed to be traveling at an altitude below the UAV,

with a variable speed and variable heading. There exists on-board equipment for measuring and

estimating the position and velocity of the target with a degree of accuracy, particularly the

camera sensors and geo-location particle �lter. It is therefore assumed that the position, pIt , and

velocity, vIt , of the target are estimated with �nite error bounds.

The UAV is tasked with keeping the target within range of its sensing equipment. Depending

on the type of sensors on-board, this operative range may vary, and will depend on criteria such

as sensor coverage footprint, resolution, and error, as well as uncertainties in the position and

orientation of the UAV. The range is thus described as a hemisphere above the terrain with a

radius, r, determined by said criteria.

During all operation, the UAV is restricted to a single altitude, denoted by h, to ensure airspace

decon�iction with multiple UAVs and to simplify the operative range to a circle centered over the

location of the target at the altitude of the UAV, with radius R =
√
r2 − (h+ pTz )2. Therefore,

the desired position of the UAV will always be the nearest point of this circle.
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The vector function Pxy : R3 → R2 is de�ned such that for every λ =

[
λx λy λz

]T
∈ R3,

Pxy (λ) =

[
λx λy

]T
. The directional vector of the target with respect to the helicopter in

the x − y plane of the inertia frame is denoted by π =

[
πx πy

]T
. Because the velocity of

the target is either estimated or known, the desired yaw angle is calculated as the heading to the

target:

πk = Pxy
(
pIt,k − pIk

)
, (4.47)

ψr,k = atan2 (πy,k, πx,k) . (4.48)

Adding the altitude restriction, the reference position vector is given by pIr,k =

[
πr h

]T
, where

πr,k = Pxy
(
pIt,k
)
− πk
‖πk‖

ζR, (4.49)

and ζ ∈ R, 0 ≤ ζ < 1 is a scaling factor to ensure the reference position is within the target

circle. The ζ factor is chosen to maximize the orbit radius while keeping the resulting circle

inscribed within a region described by the absolute target position estimate error bound, ε, so

that (1− ζ)R ≤ ε.

There are bene�ts to keeping a UAV in motion while it is tracking a target, either by �ying in a

speci�c pattern relative to a moving target, or by orbiting a stationary target. The general goal

is to minimize the geometric dilution of precision (GDOP) between any UAVs in the scenario and

to maximize the line-of-site rate (LOS-rate) for each UAV.

The measurement uncertainty of a single observer covers a volume of the state space de�ned by the

measurement error bounds and the geometry of the observation function. For the case of a video

camera mounted on a UAV, this volume is a cone extending from the camera and encompassing the

actual location of the target. For multiple volumes de�ned by multiple observers, the overlap of

these volumes contains the majority of the probability density of the target location and represents

the target's most likely location, and the GDOP is a measure of the overlapping volume between

observations. Therefore, the smaller the overlap between volumes, the smaller the region in which

the target may be found and the smaller the GDOP. For the problem of geo-location using video

sensors and the case of using two UAVs, it is ideal to separate the UAVs by 90° around the target

in any direction to minimize the GDOP. For more than two UAVs, other geometric con�gurations
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may be used, such as spreading UAVs out evenly in a circle around the target, or placed around

a sphere surrounding the target.

For individual UAVs, the LOS-rate is maximized to continuously produce succesively new mea-

surements of the target. A stationary UAV is only viewing a target from a single angle at all times,

whereas an orbiting UAV is viewing the target from new angles over time. Ideally, the LOS-rate

should be maximized at all times, however, it is desired for the UAVs to close the distance to

the target as fast as possible to �rst minimize estimation errors due to the range ot the target

(as seen in Chapter 6). After reaching the target, the UAV then performs an orbiting maneuver

to maximize the LOS-rate. It is desired that once the UAV enters this circle, it begins to orbit

around the circumference of the circle until the target and the circumscribed circle above it move

out of range. The reference values when the UAV is in orbital mode are

˙̄θ = 2sin−1

(
d

2ζR

)
, (4.50)

πr,k = ζR

 cos
(

˙̄θTs + θ̄
)

sin
(

˙̄θTs + θ̄
)
+ Pxy

(
pIt,k
)
, (4.51)

ψr,k = atan2
(
pry,k − pIy,k, prx,k − pIx,k

)
, (4.52)

θ̄ = atan2
((
pIy,k − pty,k

)
,
(
pIx,k − ptx,k

))
. (4.53)

Although the controller is designed to handle UAV overturning gracefully, it is practically un-

desirable to allow this behavior. A maximum allowable acceleration, am, is set to prevent large

values for tilt angle contorls a and b. This desired acceleration translates to subsequent reference

positions

pIr,k+i = pIk + i∆TvIk +
1

2
am (i∆T )

2
. (4.54)

Additional heuristic commands are used to account for three possible cases: 1) the UAV is

currently travelling away from pIr,k (−ep,k · vIk < 0), 2) the UAV is within deceleration range

(‖ep,k‖ < rd), and 3) the UAV is beyond deceleration range (‖ep,k‖ ≥ rd). The deceleration

range,rd =
‖vIk‖2
2am

, is the distance required for the UAV to reach a stop,
∥∥vI∥∥ = 0, from current

velocity at �xed deceleration rate a = −am. For each of the three cases, the acceleration is

contextually chosen as either a = am or a = −am to accelerate the UAV towards the reference

position pIr,k or decelerate the UAV to a stop.
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Table 4.1: UAV system parameters.

CM 0.004452 m/
√

N hM
[
−0.015 0 0.235

]T
m

DM 0.6304 N ·m hT
[
−0.91 0 0.08

]T
m

m 8.2 kg Kβ 52 N·m/rad

I diag(0.18, 0.34, 0.28) kg ·m2

Table 4.2: UAV controller gains.

K1 diag (0.99, 0.99, 0.98)
K2 diag (0.97, 0.97, 0.90)
Λ1 diag (0, 0, 0)
Λ2 diag (0.9, 0.9, 0.85)

4.5 SIMULATION RESULTS

The simulation uses rotorcraft model parameters similar to those of a small-scale model helicopter

developed at U. C. Berkeley and found in Table 4.1. For simplicity, all control signal gains are

set to 1 and the UAV starts at the origin with a yaw angle of 0o. The control gains are shown

in Table 4.2. The UAV is restricted to an altitude of 80 meters, with ζ = 0.5 and d = 90 meters

chosen through trial and error.

Some care must be taken in selecting controller gains. To reduce the likelihood of the UAV

overcorrecting for large position errors, the gains are set close to positive one, resulting in more

conservative control overall. Due to the fact that the control for the position is two sample periods

behind control over the orientation, the thrust control, which is primarily responsible for rectifying

position errors, is set to be stronger than the tilt control by setting z axis gains to smaller values.

The simulated target is assumed to be a ground vehicle that starts 100 meters east and 150 meters

south of the UAV. The target trajectory is as follows: for 200 seconds it travels northeast at 40

kph, for another 200 seconds it travels southeast at 30 kph, for 100 seconds it remains stationary,

for 50 seconds it travels west at 54 kph, then it stops for the remainder of the simulation. The

ground is a �at plane at z = 0, so the target travels over level terrain for the duration of the

simulation and the UAV never con�icts with the ground.

Figure 4.3 shows the resulting UAV position in the x−y directions, along with the target position,

at various points in time during the simulation. Figure 4.4 shows the UAV altitude, set to be at

the desired altitude of 80 meters.

It is shown that the rotorcraft UAV can be controlled to maintain a desired altitude while tracking

a moving target on the ground. While the target is in motion, the UAV follows the target closely
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Figure 4.3: Position of the target (thin, red line) and the UAV (thick, blue line) at times 180 seconds
(A), 380 seconds (B), 480 seconds (C), and 800 seconds (D).

behind, attempting to remain within sensor range. Once the target has come to a stop, the UAV

switches modes and begins to orbit the target, as can be seen in Figure 4.3C and 4.3D. The UAV

controller is shown to keep the UAV in a stable condition throughout the simulation.
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Figure 4.4: Altitude of the UAV during simulation. Desired altitude is 80 meters.
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CHAPTER V

SIMULATION AND PERFORMANCE METRICS

5.1 SIMULATION

The testing procedure is split into two parts: simulation and performance metrics extraction.

The simulation is restricted to its own environment to ensure clean measurements of processing

time and real-time visualization. Raw data is extracted and saved during simulation, and then

imported into MATLAB for processing and performance metrics extraction. MATLAB provides

tools for fast vector data processing and plotting.

The simulation is written entirely in the C++ programming language. The C++ language was

chosen for its �exibility in all areas of the design process. The object-oriented design philosophy

of the language allows easier creation of modular systems, i.e. separate UAVs, UAV subsystems,

and target system. Public code libraries are widely available for complex data structures, system

APIs, and computational algorithms relating to the geo-location problem. The 3D environment

is processed using the OpenGL API, which communicates two-dimensional and three-dimensional

model and drawing information to the graphics processing unit (GPU) of the computer. Because

the geo-location problems naturally involves three-dimensional constructs and transforms, taking

advantage of the processing capabilities of the GPU is a step towards optimizing the geo-location

algorithm.

The simulation consists of one target, supported by a behavioral model expressed in Chapter 3

and speci�cally Section 3.6. One or more UAVs may be added or removed from the simulation

at any time, with UAV consisting of a dynamics model, a controller and trajectory generator,

and a camera sensor, as de�ned in Chapters 3 and 4. The geo-location particle �lter accepts

measurement data from the UAVs, processes these data according to the geometric transformations

and information about the UAVs, and estimates the target location in the world coordinate system.

Sensor noise and uncertainty is modeled during the simulation as well.

The simulation updates at a maximum rate of 40 Hz. In cases where the processing requirements of

the system do not allow an update rate of 40 Hz, such as during high system load, the system may

update at a slower rate. All systems are designed to update at a variable rate during simulation

to allow for this case. Some sensitive systems are negatively impacted should this occur, but this

is restricted to the UAV controller and trajectory generator. During the testing cases related in
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Figure 5.1: Example screenshots of the simulation environment.

Chapter 6, the visualization module is deactivated to provide maximum processing power to the

target, UAV, and particle �ltering modules.

Some example screenshots of the visualization environment are shown in Figure 5.1. The black

grid is for distance reference and is oriented along the x − y plane at z = 0. The grid does

not take any part in helping to estimate the location of the vehicle in the image frame or in

the environment, it is for visualization only. The target is represented by a model of a truck,

and the UAV is represented by a model of a helicopter. Both models are designed to scale, but

increased by a factor of ten for visualization purposes. In the screenshot on the right in Figure 5.1,

several colored objects are visible near the target. Each is a triangle located in the world-space

coordinates, and represents one particle in the geo-location particle �lter.

5.2 PERFORMANCE METRICS

Test runs are designed to examine di�erent aspects of the geo-location particle �lter and UAV con-

trol. Each test run is performed a number of times, usually 50. Performance metrics are extracted

after the completion of a full set of test runs to allow for a wider range of test con�gurations and

random behavioral patterns. The following metrics are extracted.

5.2.1 TARGET LOCATION ESTIMATE

The target position is the desired output of the geo-location particle �lter, although the full

particle state may be estimated, including the velocity, acceleration, and angular velocity when

appropriate. Because the particle state is weighted according to the likelihood of the particle

position matching the sensor measurements, the target position is most likely to be correct. Other
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target dynamics may be derived from the estimated target position instead of extracted from the

particle state if desired.

The target position estimate, p̄, is calculated using a weighted mean of the particle state. The

weighted sum is the �rst moment expectation of the PDF formed by the particles (Eq. (2.17)).

The location estimate is used to evaluate the particle �lter error or accuracy.

5.2.2 ESTIMATOR ACCURACY

The estimator accuracy is determined through analysis of the absolute error of the target location

estimate. The estimator accuracy is inversely proportional to the absolute estimator error, and is

an abstract term meant to convey how close the estimator may be to the actual target location.

A reliable sense of the accuracy of the estimator may be obtained through statistical analysis of

the absolute and relative error measures.

The formula for the absolute error, ε, is ε = ‖pτ − p̄τ‖2, where p̄τ is the �rst triplet of the

estimated particle state, or the estimated position of the target. To better represent the geo-

location accuracy over numerous runs, the error may calculated at all times for each run and

averaged at each time instant over all runs. The overall error may be averaged across all time and

all runs.

5.2.3 ESTIMATION PERCENT ERROR

The distance of the UAVs to the target is shown in Chapter 6 to play a role in the accuracy of the

target location estimation accuracy. The estimation percent error metric accounts for the distance

to the target to better show the behavior of the geo-location particle �lter at any distance.

This is a relative metric, calculated by dividing the absolute estimation error by the average

distance from each UAV to the target, or as η = ε
mean(‖pτ−pU‖) . The relative metric may be more

easily recognizable as a percent, or when η% = η ∗ 100. Like the previous metrics, the percent

error is averaged at each time instant over all runs.

5.2.4 ERROR VS. DISTANCE

This exmaines the same dependence as the percent error metric, plotting ε versus

mean
(∥∥pτ − pU∥∥). However, this method of examining the data emphasizes the role of the dis-

tance between the UAVs and the target in determining the geo-location error.
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5.2.5 CPU PROCESSING TIME

The amount of time spent processing a speci�c section of the geo-location particle �lter algorithm

is called the CPU time. This is calculated by subtracting the time, ts, when the geo-location

process enters the section of code from the time, te, when the process leaves the section of code.

To acheive high precision time measurements on the Windows machine the internal Windows

process timer is used, which has a precision on the order of microseconds and is accessed through

the QueryPerformanceCounter function. This function returns the time, t′, in the number of

processing ticks since process initiation. To translate this to seconds, this is divided by the number

of ticks per second, f , as reported by the QueryPerformanceFrequency function. Therefore,

measuring the amount of time spent processing a section of the geo-location algorithm is done by

t =
t′e − t′s
f
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CHAPTER VI

TESTS AND RESULTS

6.1 BASE TEST CASE

The initial tests serve as a baseline case from which to analyze the behavior of the particle �lter

itself. The random target maneuvers and UAV control have been removed to reduce testing

variety. This test shows some basic issues with the particle �lter geo-location algorithm. The

accuracy and error metrics described in Section 5.2 are the most useful methods of visualizing the

performance of this initial test.

Only one mode is activated in the geo-location particle �lter, matching the single behavior of

the target: constant velocity motion. Although the target behavior is known, the target position

and velocity is unknown to the UAVs at the start of the test. The use of a single target mode is

intended to restrict the convergence time of the particle �lter to acquisition of the target position

only, ignoring the time required to determine the correct target mode. Given the initial placement

of the particles is relatively near ot the target location, convergence time only appears as a factor

during test runs where the particle �lter loses track of the target entirely. For this run, the particle

count is �xed at 50 particles.

The target is placed at pτ (0) =

[
−30m 10m 0m

]T
at the start of the test run, with velocity

vτ =

[
1.15m/s 0.96m/s 0m/s

]T
, or a speed of 1.5m/s and a heading of 40° north of east. Each

run lasts for 120 seconds (at 40 computation cycles per second), resulting in a �nal target position

of about pτ (120) =

[
110 125 0

]T
.

The target is geo-located by three stationary UAV observers. The UAVs are placed at random

positions pU =

[
u1 u2 40

]T
, where u1,2 ∼ U (−100, 100). There is a high probability that

the UAVs will surround the target over part of its path, and a low probability that the UAVs will

never surround the target, for instance being placed all to one side of the target path or, in the

worst case, behind the target entirely. The particle �lter uses 50 particles for each run. The test

is repeated 50 times, and the average performance of the geo-location particle �lter accounts for

cases of good and poor UAV placement relative to the target and its path.
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Figure 6.1: Actual and estimated target paths.

Target Location Estimate � The target location estimate produced by the geo-location particle

�lter over the 120 second test run forms a time-dependent track that is desired to follow the

target as precisely as possible. The tracks from all 50 runs are averaged together and shown in

Figure 6.1. This average track, although not representative of a single geo-location run, shows

the general capabilities of the geo-location particle �lter to track the target with a minimum set

of assumptions, the one assumption being that the target moves with a constant but unknown

velocity.

In Figure 6.1, the dashed line represents the steady path that the target takes during the test run,

and the solid line is the average estimated track. The target begins in the bottom left of the map,

and ends at the top right at the end of the run. The three UAVs are placed at random positions

for each run as described above, which are not shown here. Also not shown is the z dimension,

or the altitude, as neither the target nor the UAVs change altitude during the test run. A more

in-depth examination of the geo-locator performance is given farther below.

Besides giving a sense of how the particle �lter estimator tracks the target, there are a couple

of points of interest in Figure 6.1. The �rst point, though di�cult to see, is the extension of

the estimated track beyond the actual path at the end of the test run. It is desired that the

estimated track is as close to the actual track as possible, minimizing estimator error. However,

the estimated track begins to deviate further from the actual path in the opposite direction from

the location of the UAVs (restricted to x and y ∈ [−100, 100]). This is a limitation of the range-

limited geo-location system. The range of a target that is moving directly away from an observer

becomes di�cult to impossible to estimate. The target is estimated as farther away from the

UAVs (Figure 6.2a) than nearer because the particle �lter favors higher speeds on the target
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Figure 6.2: Example of target geo-location with good UAV placement.

motion vector.

The second point of interest is the deviation apparent towards the beginning of the test runs.

Analysis of the 50 test runs shows that this is due to the particle �lter losing track of the target

for one or more runs because of poor UAV placement. After averaging, the exceptional error

during these iterations produce a larger error in the average track.

For an example of good geo-location tracking resulting from good UAV placement, see Figure 6.2.

For this 13th iteration of the base test, the UAVs are placed to either side of the target path and

are relatively spaced apart within the space (Figure 6.2a). This provides three distinct vantages

for observing the target during the test, including two at nearly 180° for a large portion of the

target path. Notably, the geo-location error (Figure 6.2b) decreases as the target moves between

the UAVs. It is during this time, from 45 to 100 seconds into the test run, that the observers are

closer to the target and better surrounding the target.

For an example of poor UAV location causing the geo-location particle �lter to lose track of the

target, see Figure 6.3. A noticeable deviation in the geo-location estimate occurs towards the
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Figure 6.3: Example of target geo-location with poor UAV placement.

middle of the 16th test iteration. The placement of the three UAVs on only one side of the

target path, along with the placement of two UAVs near each other, results in a poor geo-location

accuracy throughout the entire test run.

At the point where the geo-location track begins to deviate (pτ (t) ≈
[

10 40 0

]T
), the

observation vector for all three UAVs are nearly parallel, e�ectively providing only a single vantage

of the target. The geo-location particle �lter continues to roughly track the direction of the target

motion, but can not estimate the range of the target with any accuracy, pushing the estimate far

to one side of the actual target path. As the target continues, the observation vectors between the

two southern UAVs and the northern UAV begin to separate, increasing the ability to determine

range and improving the geo-location accuracy.

These tests cases and their di�erent results highlight the need for deliberate UAV placement near

and around the target of interest. Although the majority of the test cases provide a good geo-

location accuracy, as shown in Figure 6.1, certain UAV placements and edge cases may reduce

the ability of the geo-location particle �lter to estimate the all or part of the target state.

Estimator Accuracy � Figure 6.4 shows the average estimator error for all 50 runs of the base

test.

Before 100 seconds, the estimator error steadily increases from around 5 meters to 9 meters. The

exceptional increase in error around 30 seconds is due to the test iteration where the geo-location

particle �lter loses track of the target due to poor UAV placement. Besides this singular event,

the steady increase in error (or decrease in accuracy) is attributed to the target moving farther
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Figure 6.4: Geo-location particle �lter estimation error.
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Figure 6.5: Geo-location particle �lter percent error.

away from the centroid of the region of UAV placement. It is expected that the accuracy of the

estimator decreases as the target moves farther from its observers.

Also of note is the behavior of the estimator error after 100 seconds. It is around this time that the

target is forced to leave the convex hull formed by the UAV placement. Within this region, there

is a high probability that the UAVs may surround the target. Outside this region, the target is

not contained by the UAVs, and the ability to estimate the target location decreases signi�cantly.

This is eveident in the sharp increase in geo-location estimator error.

Estimation Percent Error � In Figure 6.5, it is shown that the percent error is roughly between

6 and 9 percent for the base test. The large anomaly around 30 seconds is due to the poor UAV

placement during few test runs.

The low estimation percent error is equivalent to the statement that for every 100m between the

UAVs and the target, there is a roughly 6-9m error in the target geo-location.
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Table 6.1: Transition probability matrices Π.

Derived mode change probability Markov switching transition matrix

Πd =


0.995 0.005 0.000 0.000 0.000
0.000 0.992 0.002 0.004 0.001
0.003 0.001 0.991 0.002 0.002
0.000 0.002 0.002 0.995 0.001
0.000 0.003 0.001 0.002 0.993

 Πp =


0.990 0.010 0.000 0.000 0.000
0.000 0.986 0.004 0.008 0.002
0.006 0.002 0.984 0.004 0.004
0.000 0.004 0.004 0.990 0.002
0.000 0.006 0.002 0.004 0.988



6.2 MANEUVERING TARGET CASE

In this test case, target maneuvers are added according to the driving car scheme in Section

3.6. The initial target position is set to a random location for each test run, chosen as pτ ∼[
U (−25, 25) U (−25, 25) 0

]T
, with initial velocity vτ ∼

[
U (−10, 10) U (−10, 10) 0

]
and a yaw angle matching the velocity vector (i.e. the car is travelling forward, not in reverse),

and no acceleration.

The initial driving mode for the target is chosen randomly from the �ve available modes: STOP,

ACCEL, DECEL, COAST, and TURN. The associated parameters for the chosen driving mode,

such as the acceleration magnitude or the turning rate, are also chosen at random. During

simulation, the car will continue driving in this chosen mode until a new mode is chosen under

two possible circumstances: 1) a new mode is chosen at random from the set of allowed modes at

the current time, or 2) speci�c conditions are met that force a mode change, such as decelerating

to a complete stop. These modes and mode changes simulate a car maneuvering according to a

set of driving rules. The mode switching behavior is not Markovian, as a mode may alter itself

without requiring a mode switch, such as a right turn changing to a left turn over time, although

set probabilities are supplied for the purposes of simulating decisions.

The geo-location particle �lter is accordingly augmented to simulate these multiple modes of

driving behavior. However, the multi-modal behavior of the particles strictly follows a Marko-

vian switching system design. A 5x5 transition probability matrix Π is designed based on the

probablities of mode changes derived from the previously described behavior. To faciliate mode

switches among the relatively small number of particles (50), the probabilities that a particle will

switch to a new mode are double their derived values. In this way, particles are more likely to

seek alternative mode solutions than the actual existence of those solutions, without completely

abandoning a correct solution when found.

Table 6.1 shows both the derived mode change probabilities, and the Markov switching prob-
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abilities in the form of transition matrices. Each row contains probabilities the current mode

(sorted by [STOP, ACCEL, DECEL, COAST, TURN]) will switch to a new mode according to

the column the probability value lies in (sorted the same as the rows). For example, if the target

is believed to be operating in mode ACCEL, or row 2, it has a 0.8% probability that it will switch

to mode COAST, or row 2 column 4.

Note that the rows sum to one only in the matrix Πp associated with the particle �lter. For

the derived probabilities, an extra column is not shown containing the probabilities that a mode

changes internally without switching to another mode. This is inconsistency is not allowed in the

Markov switching system for the target behavior, so it is rolled into the matrix elements that

govern the probability a mode will not switch. The random particle behavior within each mode

generates solutions for such internal mode changes.

As noted in Section 2.1.5, particles may not be restricted to operating in the same mode as the

actual mode of the vehicle. For instance, while the vehicle is turning, not all particles must be

updated according to the turning behavior. Because the mode transitions enforce C1 continuity,

and most target behaviors appear linear for short periods of time, most target modes appear

indistinguishable over short periods. Over longer periods of time, this is not true, and particles

that have switched to a correct mode will tend to be favored by the particle �lter resampling, and

this in turn will correct the full estimated target state over successive iterations. Therefore, the

multi-modal particle �lter improves target state estimation for maneuvering target behavior, but

particles do not necessarily estimate the correct target mode.

Along with the mode additions, the same test parameters are used for the multi-modal tests as

for the base test case: three stationary observers placed randomly and a particle �lter using 50

particles. A total of 50 test runs are performed, with 180 seconds per run at 40 computation

cycles per second.

Typical Multi-Modal Run � Figure 6.6 shows one of the 50 test runs for the maneuvering target

test case. In this case, the UAVs are placed relatively far apart, but not in a manner that provides

optimal vantage for the target throughout the run. However, the location estimate tracks the

actual target location roughly well, with a relative estimator error that ranges between 2-12%.

Of importance is the number of turns that the target performs during a typical run. Each turn

visually represents both a non-linearity in the target state space model and a sudden maneuver
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Figure 6.6: Example maneuvering target test run.
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Figure 6.7: Average estimator accuracy for maneuvering target case.

requiring an alteration to the assumed target behavior. Other mode changes such as stops and lin-

ear acceleration exist but are not easily visually identi�able, nor is it possible to show the altitude

of the vehicle from this vantage, which is parallel to the z-axis. However, the performance metrics

account for all three axes and will substitute for a visual identi�cation of estimator behavior.

Although the following performance metrics are averaged across all 50 test runs, the non-

deterministic state of the target across the runs precludes examining the average behavior of

the target location estimate itself.

Estimator Accuracy � Unlike the base test case, the maneuvering target runs for 60 seconds

longer and runs at much faster speeds for stretches of time. Therefore, the target travels much

farther from the starting position and the UAVS. The estimator accuracy, shown in Figure 6.7, is

averaged over all 50 runs. As expected, the accuracy decreases (location error increases) as the

target moves farther away.

68



50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

avg UAV distance (m)
e

rr
o
r 

(m
)

Figure 6.8: Error vs. distance for maneuvering target case.

This, along with the error versus distance plot below, highlights the necessity for a UAV control

scheme that attempts to follow the target, keeping it within a speci�c distance. While the relative

location error remains relatively steady over increasing distance between the UAVs and the target,

a maximum location error can only be enforced by restricting the UAV distance.

Error vs. Distance � Figure 6.8 plots the location estimate error as a function of the average

distance from the three UAVs. The distance is computed as the average distance from all UAVs to

the target at each point in time. A hard lower limit of roughly �ve meters estimation error exists

below 100 meters. This is a limit of the process noise required by the particle �lter to acquire

state estimate solutions and to retain track of the target at all times. Beond 100 meters, this

process noise is overcome by the observation noise, which linearly increases in proportion to the

distance of the target from the observer(s). It is apparent that the location estimate error follows

this linear trend, with about 5-10 meters of location error for every 100 meters distance from the

UAVs to the target. This is also shown in the percent error metric.

It must be noted that there is fewer collected data for average distances above 300 meters, as few

targets managed to reach such distances. However, the roughly linear trend is still apparent. For

certain targets, it may be infeasible to design an image detection system that can reliably detect

a target within an image frame at such distances.

Estimation Percent Error � Like in the base test case, the relative location error, given as

percent error, is quite steady over all runs (Figure 6.9). On average, the relative error is between

about 5-8% error, or 5-8 meters in location estimate error for every 100 meters between the target

and UAVs.
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Figure 6.9: Relative error for maneuvering target case.

The initial low estimation error (near 0 meters) during the �rst few cycles of each simulation is

due to a unique situation in the simulation when the observation measurements have yet to show

noticeable uncertainty. The simulation is reliable after at most one second of operation, or 40

cycles.

Here, a comparison may be made between the location error and the observation error, which

is assumed to be the major contributor to uncertainty in calculating the target location. The

observer error amounts to an uncertainty in the direction vector from the center of observation to

the target.

In a two-dimensional problem, the geometric location may be reduced to p = d ∗ sin (ψ), where p

is the location of the target in the y-axis, d is the distance to the target from the observer along

the x-axis, and ψ is the yaw to the target from the observer. A �xed uncertainty in ψ translates to

a �xed error in p that is linearly dependent on the distance d. With a �xed compound uncertainty

assumed for ψ, a hard upper bound on the relative error may be derived from p/d = sin (σψ). For

percent error (error relative to 100 meters), the upper error bound for an assumed σψ = 0.3 is

p/d = sin (0.3) ∗ 100 ≈ 29.5%. The resulting percent error for the maneuvering target case, which

is roughly between 5 and 8 percent, shows a location estimation improvement of 400-600% over

the upper bound of 29.5%.

Target Mode Estimation Accuracy �
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Figure 6.10: Example mobile UAV test run.

6.3 MOBILE UAV PLATFORM

As the previous test results make clear, the accuracy of the geo-location particle �lter is dependent

on the distance from the UAVs to the target. It is necessary for the UAV to attempt to stay within

a maximum distance from the target to minimize the estimator location error. This presents no

problem for the highly mobile rotorcraft UAV platform.

For the tests in this section, the UAV trajectory generator and controller described in Chapter

4 have been activated. The UAV parameters are the same as those described in Tables 4.1 and

4.2, which match the model parameters for a small-scale model helicopter developed at U. C.

Berkeley. Three UAVs are included from each test run, each operating at a distinct �xed height,

beginning at 30 meters above the ground and increasing in increments of ten meters per UAV.

The outer target radius is R = 80m and the inner orbiting radius is ζR = 50m. Without a more

sophisticated placement algorithm, it is not guaranteed the UAVs will reach unique vantages,

so each UAV is assigned to orbit either clockwise or counter-clockwise according to the height

it operates at, with successively higher UAVs alternating orbit directions as a naive scheme to

minimize the GDOP for at least part of the orbit cycle. This increases the likelihood of unique

vantages, or viewing angles, throughout the simulation run.

All other testing parameters remain the same as previous tests. A total of 50 test runs are

performed with 50 particles used in the geo-location particle �lter. Each test is run for 180

seconds at 40 computation cycles per second.
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Figure 6.11: Histogram of average UAV distance, d, to target.

Typical Mobile UAV Run � For clarity, only one UAV path is shown in Figure 6.10. The UAV

path shown follows the estimated target location during the run. Initially, the UAV begins about

200 meters away from the target and attempts to close this distance. Once the UAV is within the

prescribed range, it attempts to orbit the target in a counter-clockwise pattern. The UAV follows

the target while it is in motion, which is for the majority of this test run.

UAV Distance from Target � Figure 6.11 is a histogram of the average UAV distance to the

target over all runs. For the majority of the runs, the UAVs maintain a distance to the target

between 60-80 meters. Time spent above 80 meters distance is due to the UAVs approaching

the target at the beginning of each run. Conversely, very little time is spent below 50 meters to

target, which is considered too close according to the test con�guration.

The histogram con�rms the desired behavior of the UAV control system and trajectory generator,

which is to keep the UAVs below a maximum distance to the target at all times, if possible.

Estimator Accuracy �

Estimation Percent Error � The geo-location estimation absolute error and relative error

shown in Figures 6.12 and 6.13 validate the advantage of restricting the range of the UAVs to the

target. After 40 seconds and once the UAVs have approached the target, the absolute estima-

tion error is limited to less than �ve meters. This is con�rmed by the relative estimation error,

which shows that for UAV-to-target distances of around 70 meters a relative error of around seven

percent is maintained.

72



0 20 40 60 80 100 120 140 160 180
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

time (s)

e
rr

o
r 

(m
)

Figure 6.12: Average estimator accuracy for mobile UAV case.
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Figure 6.13: Relative error for mobile UAV case.
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Figure 6.14: Geo-location estimator aboslute error (left) and relative error (right) vs. number of particles
in use.

6.4 EFFECT OF NUMBER OF PARTICLES

Estimator Accuracy and Percent Error �

Estimator Percent Error � Figure 6.14 relates how the location estimation error changes with

respect to the number of particles in use by the geo-location particle �lter. As the number of

particles decreases, the location estimation error increases exponentially. This result is expected

and is due to the reduced amount of space that the particles can cover in numbers. As the

number of particles increases, the probability that one or more particles will achieve the correct

state increases to one. However, above a certain number of particles�between 40 and 80 particles

according to the experiments�the minimum possible estimator error is reached and the accuracy

of the particle �lter no longer improves.

Through similar analysis of estimator error, simulation data, and real �ight test data, it is possible

to optimize the number of particles in use to minimize excessive computation cycles and memory

allocation. Also, through experimentation, it is possible to train a reasoning system to alter the

number of particles in use according to mission, �ight, and environmental conditions [26]. These

optimizations are beyond the scope of this research.

Average UAV Distance � Figure 6.15 veri�es that the UAV control algorithm is minimally

a�ected by the number of particles in use by the geo-location particle �lter. Although the location

estimation error increases as the number of particles decreases, and the UAV trajectory generation

and control is dependent on the accuracy of the location estimate, the UAV maintains the desired

distance to the target, on average during the duration of the tests. The robustness of the UAV
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Figure 6.15: Average UAV distance to target vs. number of particles.
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Figure 6.16: Algorithm CPU time for geo-location particle �lter algorithm.

control and the generated trajectory prevent the UAV from deviating too far from the estimated

location of the target, however poor that estimation may be.

CPU Time � Figure 6.16 shows the total CPU processing time required per iteration by the

geo-location particle �lter in relation to the number of particles in use. Because each particle

is manipulated independently, there is a linear relationship between the processing time and the

number of particles. According to the experiment data, a single particle requires about 10 μs of

processing time per iteration. Extrapolated linearly to 160 particles, this translates to around 1.6

ms of processing time, which coincides with the experimental results seen in Figure 6.16.

For a large number of particles, here 160 particles, the total processing time per iteration remains

well below the upper limit for allowed processing time�25 ms allowed by the 40 Hz system update

rate. By extrapolating to the upper bound of 25 ms, it is found that the total number of particles

allowed is around 2500, a very large number of particles. This extremely high limit allows for
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Figure 6.17: Geo-location estimator absolute error (left) and relative error (right) vs. number of UAVs.

more complex and sophisticated re�nements of the geo-location particle �lter algorithm.

6.5 EFFECT OF NUMBER OF UAVS

The variable number of UAVs is tested in this series of experiments. Five separate cases are

run, with one, two, four, eight, and sixteen UAVs simultaneously geo-locating and tracking the

maneuvering target per case. Each UAV is operating at maximum capacity: all target modes and

mode switching behavior are estimated, and the UAVs are controlled and restricted to remain

within a �xed radius of the target in the x− y plane. Each test case is run ten times, for a total

of 50 test runs, and performance metrics are extracted and collated for each case independently.

Estimator Accuracy and Percent Error � Figure 6.17 shows both the absolute error and the

relative error in relation to the number of UAVs present during the test. As expected, the accuracy

of the geo-location particle �lter increases as more UAVs are added to the mission. A single UAV

may only view the target from a single vantage, and thus has limited information from which to

estimate the location of the target. As more UAVs are added, more vantages are available and

thus more information is added to the location estimation system.

A single UAV performs poorly, but the estimation rapdily improves for each UAV added to the

system, wth diminishing returns for larger numbers of additional UAVs. The improvement in

estimation performance�in relation to location error�is roughly 600% when the total number of

UAVs is increased to two. The minimum location error for this con�guration, an error of around

�ve meters, is achieved when the total number of UAVs is between four and eight.

As with the variable number of particles, it is possible to optimize the number of UAVs par-

ticipating in the geo-location of a single target. Mission and environemntal parameters play an
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Figure 6.18: Average UAV distance to target vs. number of UAVs.

important role in the ability of each UAV to detect, locate, and track a target, and must be taken

into account to achieve the right balance between too many and too few UAVs. For scenarios

requiring tracking of multiple targets, the ability to optimize the number of UAVs tracking each

target enables e�cient resource allocation and improves the capabilities of the entire multi-UAV

system.

Average UAV distance � The average distance of the UAVs to the target is maintained for

both low and high numbers of UAVs, as shown in Figure 6.18. The robustness of the particle �lter

geo-locator and the UAV control and trajectory generator and these systems ability to work in

concert are key to maintaining the desired distance to the target.

The anomaly of the average UAV distance increasing as the number of UAVs increases is an

artifact of the trajectory generator. In particular, the desired height of each UAV is restricted to

a single value to reduce the chances of collisions between UAVs. As more UAVs are added to the

system, more UAVs are restricted to higher altitudes and are farther away from the target because

of their height restriction. A more advanced airspace decon�iciton algorithm may be incorporated

into the trajectory generator to allow more UAVs to operate at lower heights, closer to the target.

CPU Time � Figure 6.19 shows the CPU time spent processing the weight update function

algorithm, and the CPU time spect processing the remaining portion of the particle �lter geo-

location algorithm. The sum of these two CPU times is the total processing time for the entire

geo-location algorithm.
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Figure 6.19: Algorithm CPU time for particle �lter weight update (left) and remaining particle �lter
algorithm (right).

It is seen that only the weight update function is a�ected by the nubmer of UAVs present in the

mission. The observation function for the camera system, independently computed for each UAV,

is the only interaction between the UAVs and the geo-location particle �lter.

More importantly, it is seen that the weight update function processing time is linearly dependent

on the number of UAVs present. As explained in Section 3.5, because all UAVs operate inde-

pendently of each other, the likelihood function may be calculated as a product of the individual

likelihoods derived for each UAV. The computation time for this product is negligible compared

to the computation time for each likelihood function, and so the total computation time for the

weight update function is linearly dependent on the number of UAVs, as is evident from the

experiment data.

Also of note is how much processing time is spent during the weight update versus the rest of

the geo-location particle �lter algorithm. Minus the weight update function, the particle �lter

algorithm completes in 0.3-0.35 ms per iteration. As the number of UAVs increases from one to

sixteen, the processing time for the weight update function increases from 0.1 to 1.1 ms, or 25% to

75% of the total geo-location particle �lter processing time. Even though these tests remain well

below the upper limit of 25 ms of total processing time per iteration�25 ms allowed by the 40 Hz

system update rate�the total number of UAVs is limited by this upper bound. By extrapolating

these results, it is found that the limit of the number of UAVs is in the hundreds, or speci�cally

300 UAVs. This extremely high limit allows for more complex and sophisticated re�nements of

the geo-location particle �lter algorithm.
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CHAPTER VII

CONCLUSIONS

The result of this research is a geo-location particle �lter that accepts video sensor and image

frame data to determine the location of a target in world-space coordinates. The geo-location

particle �lter reliably locates the target with no measurements of or assumptions on the distance

from the UAV to the target. This required modeling the projection of three-dimensional data

to two dimensions according to the structure of the video sensor, as well as incorporating uncer-

tainty of the position and orientation of the UAV, and subsequently the on-board video camera.

Additionally, approximations of the target motion are used to improve the target location esti-

mate, which necessitated construction of a Markov switching model to describe the target motion.

And, a scalable architecture supports the addition of multiple UAVs to the geo-location problem

with minimal cost addition in processing time. This research attempts to close the loop in target

tracking architecture by providing a solution for target geo-location. Small-scale UAVs can inex-

pensively and reliably locate a target in world-space coordinates using cheap sensing technologies

and limited sensor information.

7.1 CONTRIBUTIONS

� A robust particle �ltering algorithm capable of geo-locating a target from a UAV platform

using limited video sensor information.

� A multi-modal state estimation solution for target behavior and location estimation.

� A real-time geo-location solution with �exibility in design complexity and robustness to

maximize probability of mission completion.

� A scalable framework for the addition and removal of multiple UAVs, with minimal compu-

tation cost requirements.

� A closed-loop target tracking system, using the geo-location particle �lter and a UAV control

and trajectory generator to minimize the geo-location estimation error.
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7.2 FUTURE WORK

This research focuses primarily on tracking a target modeled after a car. Further work is needed

to re�ne the target behavior model used by the geo-location particle �lter to further improve

location estimation results. Additionally, other models may be derived to approximate other

types of targets, such as aerial vehicles, underwater vehicles, and humans, and to accommodate

for di�erent reactions and varied behavior modes.

The geo-location particle �lter is designed to accept video sensor and image frame data as mea-

surements of the target location, but the particle �lter is �exible enough to accept many di�erent

sensor and data types. Further work may examine heterogeneous sensing strategies, including

non-UAV observation platforms.
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