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SUMMARY

Resource sharing is a common collaborative strategy used in practice. It has the

potential to create synergistic value and leads to higher system efficiency. However,

realizing this synergistic value can be challenging given the prevalence of decentral-

ization in practice, where individual operators manage resources based on their own

benefits. Hence, optimizing a decentralized system requires understanding not only

the optimal operational strategy in terms of the overall system efficiency, but also the

implementation of the strategy through proper management of individual incentives.

However, traditional network optimization approaches typically assume a centralized

perspective. The classic game theory framework, on the other hand, addresses incen-

tive issues of decentralized decision makers, but mainly takes a high-level, economic

perspective that does not fully capture the operational complexity involved in opti-

mizing systems with resource sharing.

The purpose of this thesis is to bridge this gap between practice and theory by

studying the design of tools to manage and optimize the operations in decentralized

systems with resource sharing using approaches that combine optimization and game

theory. In particular, we focus on decentralized network systems and analyze two

research streams in two application domains: (i) implementation of environmental

legislation, and (ii) managing collaborative transportation systems. These appli-

cations are characterized by their decentralized multi-stakeholder nature where the

conflicts and tension between the heterogeneous individual perspectives make system

management very challenging. The main methodology used in this thesis is to adopt

game theory models where individual decisions are endogenized as the solutions to
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network optimization problems that reflect their incentives. Such an approach allows

us to capture the connection between the operational features of the system (e.g.,

capacity configuration, network structure, synergy level from resource sharing) and

the individual incentives thus the effectiveness of the management tools, which is the

main research contribution of this thesis.

In the first research stream, we consider designing effective, efficient and practical

implementation of electronic waste take-back legislation based on the widely-adopted

Extended Producer Responsibility (EPR) concept that mandates the financial respon-

sibility of post-use treatment of their products. Typical implementations of EPR are

collective, and allocate the resulting operating cost to involved producers. In this

thesis, we demonstrate the complexity of collective EPR implementation due to the

tension among different stakeholder perspectives, based on a case analysis of the

Washington implementation. We then perform analytical studies of the two promi-

nent challenges identified in current implementations: (i) developing cost allocation

mechanisms that induce the voluntary participation of all producers in a collective

system, thus promoting implementation efficiency; and (ii) designing collective EPR

so as to encourage environmentally-friendly product design, thus promoting imple-

mentation effectiveness. Specifically, we prescribe new cost allocation methods to

address the first challenge, and demonstrate the practicality and economic impact of

the results using implementation data from the state of Washington. We then analyze

the tensions between design incentives, efficiency and the effectiveness of the cost al-

location to induce voluntary participation under collective EPR implementation. We

show there exists a tradeoff among the three dimensions, driven by the network ef-

fects inherent in a collective system. The main contribution of this research stream

is to demonstrate how the implementation outcomes of an environmental policy are

influenced by the way that the policy “filters” through operational-level factors, and

to propose novel and implementation mechanisms to achieve efficient and effective

xiii



EPR implementation. Hence, our study has the potential to provide guidance for

practice and influence policy-making.

In the second research stream, motivated by the practice of transportation al-

liances, we focus on a decentralized network setting where the individual entities

make independent decisions regarding the routing of their own demand and the man-

agement of their own capacity, driven by their own benefits. We study the use of

market-based exchange mechanisms to motivate and regulate capacity sharing so as

to achieve the optimal overall routing efficiency in a general multicommodity net-

work. We focus on the design of capacity pricing strategies in the presence of several

practical operational complexities, including multiple ownership of the same capacity,

uncertainty in network specifications, and information asymmetry between the cen-

tral coordinator and individual operators. Our study in this research stream produces

two sets of results. First, we demonstrate the impact of the underlying network struc-

ture on the effectiveness of using market-based exchange mechanisms to coordinate

resource sharing and to allocate the resulting synergistic benefit, and characterize

the network properties that matter. Second, we propose efficient and effective pric-

ing policies and other mechanism design strategies to address different operational

complexities. Specifically, we develop duality-based pricing algorithms, and evaluate

different pricing strategies such as commodity-based price discrimination, which is

shown to have an advantage in coordinating networks under uncertainty.

xiv



CHAPTER I

INTRODUCTION

Cooperation among companies is widely practiced today in different business sec-

tors. Facing increasing pressure to improve profitability, companies are responding

by seeking and implementing solutions that require strategic collaboration with ex-

ternal partners, because these solutions afford benefits that cannot be achieved alone.

Among the various forms of cooperation, resource sharing is a common strategy widely

used in practice. In the transportation industry, the members of carrier alliances

collaborate by pooling fleets and integrating service networks in order to “reduce

costs, increase asset utilization and improve overall service levels” [3]. For example,

modern air cargo alliances began at a global scale in the late 1980’s. [122] reports

that global airline groupings collectively account for 63.6% world share of passenger

traffic (Revenue Passenger Kilometres), 55.8% of passenger numbers and 58.4% of

group revenues [109]. Other examples of resource sharing include bandwidth pooling

among autonomous systems on the Internet to efficiently process and deliver individ-

ual end-to-end flow [128]. In environmental operations, many electronics producers

collaborate in post-use collection and recycling of their products by participating in

a common product take-back program where they pool return volume and share ca-

pacity [68, 162]. Such collective programs are believed to “offer the simplest, most

straightforward, and most cost-effective approach” in electronic waste (e-waste) man-

agement [178], and have been adopted worldwide.

Resource sharing has the potential to create synergistic value and leads to higher

system efficiency. It allows for the exploitation of scale economies from consolidating

1



demand for resources. It can also potentially increase the efficiency in resource allo-

cation, thus generate scope economies, or what we call network synergies. However,

realizing such synergistic value can be challenging given the prevalence of decentraliza-

tion in practice, where individual operators are entitled to independent management

of their own resources, driven by their own benefits. Unless completely aligned, these

multiple individual preferences and objectives give rise to conflicts and tensions that

potentially undermine the overall performance of the system, and even threaten the

stability of cooperation. This problem can be observed in many real-life settings, two

prominent examples being the following.

Example 1 (Implementation of environmental legislation). Extended Producer Re-

sponsibility (EPR) is a policy tool that holds producers financially responsible for the

post-use collection, recycling and disposal of their products. A well-functioning EPR

implementation can (i) ensure the proper recycling of e-waste in the short term via ad-

equate financing, and (ii) reduce the environmental impact of e-waste in the long-term

via design incentives. However, EPR implementation is a complex and challenging

process influenced by multiple environmental, economic, and operational factors, and

the different perspectives of many stakeholders involved including the large number

of producers, collection and recycling service providers, customers, legislative bod-

ies, NGOs and practitioners. An evidence of such complexity is the following: At the

present, EPR implementations are typically collective - a large collection and recycling

network (CRN) handles multiple producers’ products by sharing processing capacity;

the total cost is then allocated to producers proportional to producer-specific metrics,

such as their return shares. Such collective EPR implementations have been much

questioned and criticized for failing to account for individual producers’ benefits and

incentives, which undermines their effectiveness and efficiency in executing legislative

goals. In particular, producers are concerned about being over-charged under weight-

based allocations, and thus try to break away from a collective program and establish

2



their own independent recycling operations. Such fragmentation can result in recy-

cling operations that are inefficient due to the loss of synergies from resource sharing,

and additional overhead cost such as in monitoring producers’ compliance. The cur-

rent collective EPR implementation is also reported to mute producers’ incentives to

design more recyclable products, thus failing to achieve the ultimate legislation goal

of EPR.

Example 2 (Managing collaborative transportation systems). Restructuring and re-

organization of carrier alliances have been common in the transportation industry.

Companies are constantly on the lookout for partners with high synergy potential.

They may also leave an alliance when their individual benefit from the collaboration

diminishes, in many cases, due to the misalignment of their own goals and interests

with how the alliance is operated [3]. Such a trend has been observed in liner shipping

(see Figure 2 in [3] which summarizes the changes in the member structure of the four

major alliances in liner shipping). For airline alliances, Continental Airlines exited

the alliance of SkyTeam in 2009 after a 5-year membership and joined the Star Al-

liance network [149]. Mexicana Airlines left the Star Alliance in 2004 [155] and chose

to participate in the airline partnership oneworld in 2009 [119]. While the above

changes involve companies switching between alliances, Aer Lingus quit oneworld in

2007 due to an intention to “concentrate on becoming a non-frill operation”, and

thus an alliance membership became “less relevant for the airline” [168]. Besides

such tactical decisions regarding with whom to collaborate, the concrete operations

of individual companies can also exert a significant impact on the overall efficiency of

the combined transportation network. For example, one major operational decision in

transportation is route selection. Inefficiency in transportation systems resulting from

decentralized individual routing decisions, such as reducing the network throughput

or increasing the total congestion or routing cost, has been observed in many contexts

and discussed extensively in the literature (see [139] for an overview).
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Due to these incentive issues, optimizing a decentralized system is a very com-

plicated problem. It requires understanding not only what operational strategy is

the most desirable in terms of the overall system efficiency, but also how to imple-

ment the strategy through proper management of individual incentives. The classic

optimization framework provides a rich set of tools for the former problem; yet it

typically assumes a centralized perspective thus does not address the latter one. The

notion of mechanism design in game theory suggests a solution for the latter problem:

The basic tenet is to align the individual interests with system efficiency by design-

ing the operational rules, which are often termed as a mechanism, that motivate

individuals’ voluntary collaboration towards the best system performance. However,

traditional game theoretic analysis mainly takes a high-level, economic perspective

that does not fully capture the operational complexity involved in optimizing systems

with resource sharing. For example, the individual preferences are often modeled as

exogenous variables based on stylized assumptions.

The purpose of this thesis is to bridge this gap between practice and theory by

studying the design of tools to manage and optimize the operations in decentral-

ized systems with resource sharing using approaches that combine optimization and

game theory. In particular, we focus on decentralized network systems that consist

of capacity privately owned by different entities, and is not restricted to be used

only by its owner but can be employed in the routing operations of others. Such

combined network models are versatile in modeling many real-life systems including

the service networks of carrier alliances, Internet and telecommunication networks, as

well as the collection and recycling system of collective product take back programs.

Moreover, the structural properties of networks has motivated an extensive network

optimization literature that has generated insightful methodologies and results [5]. In

addition, the interconnected nature of network models effectively captures the mutual
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influence between individual entities, which is essential to understanding the poten-

tial negative externalities of their operations on system efficiency, and to designing

effective coordination mechanisms.

A central research question addressed in this thesis is the connection between

the operational features of the system (e.g., capacity configuration, network struc-

ture, synergy level from resource sharing) and the individual incentives and decisions,

based on which the coordination mechanisms are designed. For this purpose, the

main methodology used in this thesis is to adopt game theory models where indi-

vidual decisions are endogenized as the solutions to network optimization problems

that reflect their incentives. We use this approach to analyze the two practical prob-

lems mentioned in Example 1 and Example 2, i.e., implementation of environmental

legislation, and managing collaborative transportation systems. Motivated by these

problems, we particularly consider two types of individual decisions depending on the

specific context concerned: (i) participation decisions in a combined network with

resource sharing, (ii) the concrete tactical and operational decisions once they join

a combined network, e.g., product design, capacity management and routing strate-

gies. In analyzing the first type of decisions, we adopt a cooperative game theory

perspective and study incentivizing voluntary individual participation in resource

sharing via designing cost/benefit allocation mechanisms. We study the coordination

of the second type of decisions mainly based on an equilibrium analysis using non-

cooperative game models, and by prescribing concrete resource sharing rules such as

market-driven exchange of capacity. In cases where the problem involves both types

of decisions, we adopt a combination of the cooperative and non-cooperative angles,

for example, using a biform game model, to capture the additional tension between

the two decision-making processes. Incorporating optimization models into game the-

ory frameworks enables us to gain insights into the impact of operational factors on

the effectiveness of mechanisms in coordinating decentralized incentives, which is the
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main research contribution of this thesis.

In the rest of this chapter, we first review related literature on managing and

optimizing decentralized networks. We then provide an outline of the contents and

the structure of the thesis, which summarizes the main results and contribution in

each of the individual studies performed.

1.1 Literature Review

The problem of managing decentralized systems involving self-optimizing entities has

long been recognized and discussed from various aspects in the literature. In this

section we review some closely-related research areas. Papers that are more focused on

and more relevant to specific issues and contexts will be reviewed in the corresponding

sections in the subsequent chapters.

One major motivation of the study in this thesis is the potential inefficiency due to

the decentralized decision-making of individuals who operate based on their own ben-

efits. A stream of research in algorithmic game theory is focused on quantifying how

much worse a decentralized system can be in terms of system efficiency compared to

its optimal state under central control. The main approach is to evaluate the system

efficiency of a decentralized system at its equilibrium state where no participant bene-

fits from unilateral deviation. The concepts of the price of anarchy (PoA) introduced

by [96] measures the ratio between the worst case system efficiency at equilibrium

and the optimal efficiency level, and has been very widely used since. For example,

[137] studies the PoA in networks where individuals selfishly choose the fastest route

for themselves while the social goal is to minimize the total travel delay experienced

by all participants. Notice that this setting is different from the combined network

model with resource sharing studied in this thesis, as the road capacity is not owned

individually. However, in some cases the notion of PoA can be “overly pessimistic”

[106], especially when a best case Nash equilibrium can be guaranteed. In the light of
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this idea, [7] introduces a variation of PoA, the price of stability (PoS) which charac-

terizes the best-case system efficiency at equilibrium compared to the social optimum.

Their study is based on a network design problem where selfish entities try to form a

connected network and allocate the total cost among themselves based on centrally

designed policies. Our study in this thesis shares a similar spirit in the sense that

we also study designing operational rules of the decentralized network such that the

PoS of the system is equal to 1, i.e., the social optimum is achieved as an equilibrium

solution.

In this thesis, we focus on using mechanism design approaches to coordinate the

individual incentives of a decentralized network so that its operations can be opti-

mized. As mentioned before, the notion of mechanism design provides an important

framework to study managing decentralized incentives so that a socially desirable

solution is implemented without direct intervention. The field of cooperative game

theory provides tools and concepts in designing fair cost or benefit allocation mech-

anisms to motivate individual participation, which is one of the major individual

decisions we consider in this thesis. Some important fairness concepts include the

core, the stable set, the nucleolus and the Shapley value. We refer to [184] for a thor-

ough review of basic cost allocation methods and to [22] for a survey of cooperative

games associated with operations research problems. Cooperative game analysis on

combined networks with resource sharing is found in literature under the category of

network flow games. In [90], a flow game is introduced based on the maximum-flow

problems on single-commodity networks where each edge is uniquely owned. It is

shown that the core of such a flow game is guaranteed to be non-empty. Its exten-

sions include the pseudo-flow games [90], which involve public edges but may give rise

to empty cores, and the flow-based market games [151], which are defined on networks

that model market transaction with differentiated primary and secondary markets.

The multicommodity flow (MCF) game is another generalization defined on networks
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with multiple source-sink pairs. One such example is the MCF game adopted to

model Internet routing with node capacity controlled by individual autonomous sys-

tems in [128]. [105] further shows that the core of such a MCF game is non-empty

with either transferable utility or non-transferable utility, as well as when the utility

function is nonlinear, i.e., displaying diminishing marginal value. Another MCF game

formulation with edge resources shared is studied in [2] which is also proven to have

a non-empty core.

It is worth mentioning that linear flow games are special cases of linear program-

ming (or production) games defined based on linear programs (e.g., see [123, 141]),

which is one of the first models studied in literature that combines optimization

and game theory. In this thesis, we adopt concepts and methodologies from linear

programming games and MCF games to analyze the individuals’ resource sharing

incentives in networks; we further analyze the impact of operational conditions of

the network on such incentives. In literature, there also exists a set of papers that

study other versions of network flow games defined based on combinatorial network

optimization problems. These papers provide insight about the impact of the com-

binatorial structure of the underlying network problems on the individual incentives.

Examples include the Assignment game [148, 60], the Traveling Salesman game (TSG)

[158] and the Minimum Cost Spanning Tree game [62].

In this thesis, we also study how to implement a cost/payoff allocation in a resource

sharing setting. We consider rewarding marginal resource contribution of individuals,

as well as designing unit prices based on which side payments are made between

the players according to their resource usage. There exists a large literature on

how fair cost/payoff allocations can be implemented and achieved. One prominent

method is the Moulin mechanism introduced in [110], which charges a player the

marginal cost of involving him or her into a collaborative project or the utilization of

a public facility. This mechanism is shown to yield strong equilibrium selections that
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are coalition strategy-proof, i.e., all sub-coalitions being truthful in reporting their

private information. A series of papers expands the idea and investigates the design

of mechanisms that incentivize strategyproof cost sharing and are budget balanced or

satisfy other properties. Sample papers include [111] that establishes a relationship

between such allocation mechanisms and the Shapley value, and [108] that generalizes

the Moulin mechanism and reports better performance under more general settings.

Specific applications of the Moulin mechanism and its variations are also discussed in

the context of network related problems, for example, [21] studies a network design

problem with capacity requirements between any pair of nodes. In our study, we

show the connection between a market-based resource exchange mechanism and core

payoffs under certain pricing strategies.

Cooperative game theory essentially assumes a centralized perspective in manag-

ing the concrete operations once a coalition is formed. Such an assumption is not

valid in many practical applications and specific operational mechanisms are needed.

The goal is to design rules governing individual behavior such that the collective out-

come of the individual actions result in the social choice. This idea has been explored

in the literature on exchange economies and algorithmic game theory. The notion of

competitive prices in an exchange economy is a classic example under which the social

benefit is maximized and individual preferences are met; such a state is defined as the

competitive equilibrium [147]. In this thesis, we study a capacity exchange mechanism;

we show that by using pricing strategies based on the dual solution of the associated

network problems, the competitive equilibrium can be achieved. In fact, among the

mechanisms analyzed in literature, pricing mechanisms constitute a major category.

For example, price mechanisms are extensively discussed to reduce congestion in road

networks, where individuals internalize the negative impact of their behavior by pay-

ing a pre-designed road toll. [130] introduces the principle of marginal cost pricing of
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edge utilization1 to determine user taxes, under which the individual selfish routing

leads to the minimum total delay over the network. [34] further studies the taxation

mechanism towards the social goal defined as to minimize latency plus tax paid. [104]

studies another form of the price mechanism based on rebates to reduce congestion

in urban transportation networks. In the context of managing resource sharing in

combined networks, [2] considers a revenue maximization problem, and introduces a

capacity exchange mechanism under which users trade their own edge capacity with

each other based on a set of centrally pre-designed unit exchange prices. In this thesis,

we also consider designing capacity exchange prices, focusing on the impact of addi-

tional operational complexities such as demand uncertainty on the effectiveness of the

mechanism. The effectiveness of pricing mechanisms is also studied in the context of

revenue management in airline alliances, e.g., in [183]. Moreover, the implication of

price mechanisms on coalition stability is also discussed in the literature. [37] shows

that the competitive equilibrium resulting from the competitive prices is in the core

of an exchange economy. In network settings, [2] shows that under the condition of

unique ownership of edges, prices that induce the social optimal routing leads to an

allocation of the total revenue in the core. However, most of the papers under this

topic are based on economic models (see [150] as one of the pioneering examples in

this area), and a systematic study of this problem in the context of managing the

operations of decentralized networks is missing to the best of our knowledge.

From a methodological point of view, one goal of our study in this thesis is to pro-

pose mechanisms to perform optimization in a decentralized setting, thus to bridge

the gap between the traditional optimization framework that assumes a centralized

perspective, and the prevalence of decentralized systems in practice. In recent years,

decentralized optimization has attracted much attention in the computing systems

1The principle is in the similar spirit to the stand alone cost sharing in the Moulin mechanism
but provides a pricing tool. Pricing mechanisms derived based on the stand alone concepts are
developed in [77].
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literature. One focus in this literature is to design distributed algorithms for coordina-

tion and resource sharing in networks and systems, taking into account the restriction

in information availability for local agents to make decisions in large-scale computa-

tional systems. Common methodologies used to design such algorithms in distributed

optimization include the sub-gradient methods (e.g., [167, 116]), decomposition meth-

ods (e.g., see [117] for an overview), and consensus-based methods (e.g., [166]). In

[99], the authors take a different approach to designing local agents’ objective func-

tions such that a system-wide optimal solution is achieved under the Nash equilibrium

solution. Other relevant papers in this area include [54], where the authors present

a unifying framework in designing a distributed optimization environment called op-

timization services, [159] and [160], where the authors study the equilibrium state in

communication networks in the presence of multiple congestion control protocols that

respond to different pricing signals.

1.2 Thesis Outline and Contribution

We divide our study in this thesis into two research streams based on their application

domains, i.e., implementation of environmental legislation, and managing collabora-

tive transportation systems. These applications are characterized by their decentral-

ized multi-stakeholder nature where the conflicts and tension between the heteroge-

neous individual perspectives make system management very challenging. In the rest

of this subsection, we summarize the main issues analyzed and the contribution of

the results in each research stream.

Efficient and Effective Implementation of Electronic Waste Take-back Leg-

islation In this research stream (Chapter 2), we study the problem of how to

translate and operationalize the policy concept of Extended Producer Responsibil-

ity (EPR) into an efficient and effective working system, focusing on the collective

form of implementation that has been adopted in the majority of EPR legislations.
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We first analyze the tensions between stakeholder perspectives and identify the result-

ing challenges and opportunities that are present in a current EPR implementation

in practice, by conducting a detailed case study of the Washington state E-cycle pro-

gram. Due to the scope, scale and maturity of the Washington implementation for

e-waste, the Washington case is instructive and the findings generate insights not

only for Washington, but for other states and even other waste streams as well. This

case study also opens up a rich set of research opportunities to understand some reg-

ulatory and system design choices in EPR implementation, e.g., the cost allocation

mechanism (which is studied analytically in details in this stream), the mechanism

to mandate and drive collection, public education campaigns, and contract structure

with recyclers.

Among these practical challenges in implementing EPR, two major problems stand

out: (i) the homogeneity of the simple proportional weight-based cost allocation

methods employed currently, which can result in some producers being overcharged

in a collective system and thus the emergence of fragmented collection and recycling

networks that undermine efficiency and (ii) the implications of a collective system

for motivating environmentally-friendly product design. In the following two essays,

we perform a game-theoretic study of the use of mechanism design approaches to

address these two pressing issues in by (i) developing cost allocation mechanisms

that induce the voluntary participation of all producers in a collective system, thus

promoting implementation efficiency; and (ii) designing collective EPR to provide

design incentives, thus promoting implementation effectiveness.

In the first essay, we adopt a network cooperative game to capture operational

complexity such as product heterogeneity and the network synergies from capacity

sharing in a collective CRN, according to which effective cost allocation mechanisms

are prescribed. Motivated by the importance of the practicality of the methods used

in EPR implementations, the cost allocations we propose are presented as adjustments
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to the widely-used return share method, and include the weighing of return shares

based on processing costs and the rewarding of valuable capacity contributions to

the collective system. Revolving around the key issue of developing practical and

effective cost allocations, we also address several relevant research questions that are

much debated in practice in the EPR context, for example, the implication of scale

economies, the implementation of the shortfall fee concept that has been adopted

in several EPR bills to complement the recycling capacity shortage of individual

producers, and the value of performing source separation of the return volume. We

validate our theoretical results using Washington state EPR implementation data and

provide insights as to how these mechanisms can be implemented in practice and the

added economic value to be obtained by their implementation.

In the second essay regarding the design incentives of EPR, we move one step

further to study not only the implementation details of EPR, but also the legislation’s

impact on producers’ own operational decisions. Hence, such a problem involves

multiple stages of individual decision-making: The design choice of products and the

participation decision into a collective system for post-use recycling. This motivates

us to use a biform game model where the first stage is an equilibrium game on product

design and the second stage is a cooperative network game. We analyze the tensions

between design incentives, efficiency and the effectiveness of the cost allocation to

induce voluntary participation under collective EPR implementation. We show there

exists a tradeoff among the three dimensions, driven by the network effects inherent in

a collective CRN. Based on this observation, we show that, contrary to conventional

wisdom, a collective implementation can achieve superior design incentives relative to

an individual system provided the proper cost allocation mechanism is implemented.

In all, the contribution of this research stream is to highlight the pressing chal-

lenges in achieving the potential of efficient and effective EPR implementation, and

to propose novel and implementable mechanisms to address them. At the same time,
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our results reveal the important roles of operational factors, such as product-capacity

configuration and network structure of a CRN, and stakeholder incentives in deter-

mining the implementation outcome of a policy concept. Hence, given that the current

understanding of EPR largely remains at a high level from an economic perspective,

our results in this stream have the potential to inform the current debate on these

issues and provide guidance for practitioners, producers and legislative bodies in e-

waste management. These results have been used as policy input for the revision of

the WEEE Directive in the UK [83].

Managing Decentralized Resource Sharing in Networks In carrier alliances,

the individual companies often select the shipping routes for their own demand as

“full centralization is generally not an option given the technical and legal challenges

associated with integrating the information systems of autonomous carriers” [79].

Hence, in this research stream, we consider a combined network setting where the

players are entitled to independent decision making regarding the routing of their

own demand and the management of their own capacity, driven by their own ben-

efits. In this case, a major problem is that the resulting aggregate routing is not

guaranteed to be efficient and it may even violate capacity limits and lead to overflow

in the network. Hence, the main question addressed in this research stream is how

to incentivize participants to adopt routing solutions that are aggregately efficient

through imposing specially tailored operational guidelines. Taking into account the

features of a combined network, one natural way to do this is to design the access

rules according to which capacity can be used by individuals other than its owner.

In this study, since market trade is one of the most common form of sharing pri-

vate resources, we consider coordinating a combined network by designing a capacity

exchange mechanism under which capacity is traded according to a set of centrally-

designed unit prices. Via such a mechanism, a central authority of the system can
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influence individual participants’ profits and thus their selfish operations by choosing

the appropriate exchange prices.

The contribution of this study is the analysis of the effectiveness of market-based

mechanisms and propose capacity pricing strategies in the presence of several practical

operational complexities, including multiple ownership of the same capacity, potential

existence of free riders, uncertainty in network specifications, and information asym-

metry between the central coordinator and individual operators. We address these

issues respectively in three essays in Chapter 3 of this thesis. The main methodology

we adopt is a non-cooperative game model based on a set of network optimization

problems that represent individual operators’ routing and capacity allocation deci-

sions, and analyze the model using equilibrium analysis and inverse optimization

techniques [6].

In the first essay, we begin by proposing a dual-based method to price capacity

in a network such that in any network, not only a routing is achieved under which

the system efficiency is maximized (which we call the social optimal routing), but

also the stability of the collaboration is guaranteed as no players can strictly benefit

by breaking away from the combined network and quitting sharing resource with

others. In other words, with such dual prices, the capacity exchange mechanism

also identifies a core allocation of the total system benefit achieved under the social

optimal routing. We further show that in cases where there exist multiple owners of

the capacity on one edge, a core allocation is not guaranteed under any pricing scheme

that also induces a social optimal routing. This indicates a potential misalignment

between the optimality and the stability of a decentralized network under the capacity

exchange mechanism in the presence of multiple owners of the same resource. We

show that such diseconomies of multiple ownership is mainly due to the asymmetry

in the capacity levels among the multiple capacity owners on an edge relative to their

commodity demand.
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The second essay is motivated by the observation that dual-based prices can be

zero in an over-capacitated network and thus are inappropriate as exchange prices

in many practical applications. One of the biggest problems caused by zero prices is

that this implies the existence of free riders who obtain positive shipping revenues

using others’ capacities at no cost. Such a phenomenon can cause perception of

unfairness within the combined network, especially for the capacity owners, and thus

discourages them from sharing capacity. We address this problem by studying the

design of strictly positive capacity exchange prices to ensure the optimal operation

within a combined network. We show that such prices do not generally exist due to

the difference in individuals’ perspectives towards the profitability of edge capacities

over the network under strictly positive prices; such heterogeneity is caused by the

different capacity ownership levels among the players and the existence of certain path

structures. As a solution to this problem, we then propose a strictly positive pricing

scheme that partially coordinates each user’s individual routing towards the social

optimal one. We show that under such partial coordination, a social optimal routing

can always be achieved, but may not always be guaranteed to be an equilibrium. We

further analyze this problem by identifying network conditions such that the social

optimal routing can be maintained as an equilibrium under the pricing algorithm we

propose; we also design an auxiliary capacity allocation mechanism under which an

equilibrium is guaranteed at the social optimal routing given any combined network

under partial coordination of the capacity exchange mechanism.

The central issue addressed in the third essay is how to design effective capacity

exchange mechanism under the practical challenge of demand uncertainty, as in many

practical cases, a pricing mechanism is designed and announced ex-ante before the

demand is revealed. Hence, it is desirable that the capacity exchange mechanism is

robust, i.e., it can effectively coordinate the network under all potential demand sce-

narios using a fixed set of exchange prices. This task is more challenging in practice,
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as there often exists a certain level of information asymmetry between the mechanism

designer and the players on demand. To address this problem, we perform the follow-

ing two studies on the robustness of the capacity exchange mechanism under demand

uncertainty. First, we characterize how network structure affects the robustness of

the mechanism. Second, we investigate the algorithmic dimension of designing a ro-

bust capacity exchange mechanism in any given network. In particular, we propose a

general pricing algorithm and quantify the routing performance under the resulting

prices by providing bounds to the expected total revenue and the degree of potential

capacity violation in the network. We also evaluate different pricing strategies such

as commodity-based price discrimination, which are shown to have an advantage in

coordinating networks under uncertainty.
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CHAPTER II

EFFICIENT AND EFFECTIVE IMPLEMENTATION OF

ELECTRONIC WASTE TAKE-BACK LEGISLATION

Extended Producer Responsibility (EPR) is a policy tool that holds producers re-

sponsible for the post-use collection, recycling and disposal of their products [100].

The basic concept is to promote environmental impact reduction at end of life by (i)

making producers internalize the end-of-life costs of their products so as to incentivize

the design of products that are more recyclable and have lower toxicity ; and (ii) to

ensure there is sufficient and stable financing for running a collection and recycling

system for post-use products [107].

EPR initiatives have rapidly diffused throughout the US in recent years. They

target the waste streams of various products, including electronic waste (”e-waste”),

mercury lights, carpets, packaging, paint, and pharmaceuticals [115]. Among those,

e-waste stands out: Over the last decade, twenty five states have passed e-waste bills,

and legislation is pending in several other states; the vast majority of these e-waste

bills are based on the EPR principle [45]. The impetus is the potential impact of post-

use electronics at home and abroad: Consumer electronics contain toxic materials that

are harmful to both the environment and human health if not managed properly. Non-

governmental organizations (NGOs) such as Californians against Waste argue that

in the U.S., 70% of the toxic heavy metals found in landfills are estimated to come

from e-waste [27]. Documented e-waste exports to developing countries, where they

are handled in a way that is particularly harmful, have attracted attention [14]. A

well-functioning EPR implementation, in conjunction with adequate environmental
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regulation, can help alleviate these problems by (i) ensuring the proper recycling of e-

waste in the short term (via adequate financing), and (ii) reducing the environmental

impact of e-waste in the long-term (via design incentives).

The process to implement the EPR concept typically involves the following three

stages. First, an appropriate policy instrument that embodies the EPR principles

is identified, and a legislative framework is developed. Second, the legislation is

translated into an EPR program. This involves designing a set of detailed operational

rules, e.g., the specific mechanisms to finance the operations of the program and to

monitor the legal compliance of each entity involved, within the parameters of the

legislation. For example, many states in the US adopt a collective form of the EPR

legislation, i.e., there exists a centrally-operated network that handles a mixture of

products from multiple producers in an aggregate manner. Note that there is no

definite boundary between these two stages: While some states adopt e-waste laws

with high-level guidelines (e.g., in South Carolina [152]), there is also state legislation

that already contains some operational details (e.g., in Washington [176]). The final

stage is the execution of the EPR program into a working system in practice. This

stage is characterized by numerous interactions among multiple stakeholders whose

own managerial and operational strategies are affected by the EPR legislation, and

thus each of whom has its unique perspective towards the program. These interactions

greatly contribute to the shaping of the actual practice of e-waste collection and

recycling (see [11] for a detailed discussion).

A prominent phenomenon that arises during the above transitions is that the de-

cision made in each stage is influenced by various factors other than environmental

concerns. In particular, the proper handling of e-waste is typically a costly operation,

and this economic burden is shifted from local governments to the electronic industry

under EPR. In addition, EPR typically allows end-users to return used electronics

free of charge and requires advertising of take-back programs. This, in turn, typically
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increases the collection volume, implying that the economic burden can be higher

under EPR than in its absence. A mandated EPR program can also give rise to

economic opportunities for businesses involved in e-waste collection and recycling.

In addition, political factors such as the lobbying influence of stakeholders may play

a significant role. Another crucial element in EPR implementation is the challenge

of executing legislative objectives using practical and efficient methods, especially

considering the existing infrastructure related to collection and recycling operations

in the area. For example, in Washington state, transportation efficiency depends

on the geographic location of the route. The biggest differentiation occurs between

the so-called “west-of-the-mountains” and “east-of-the-mountains” areas, as the for-

mer contains the Seattle-Vancouver corridor where many trucking companies operate

busy routes and thus can provide ample back-haul miles at cheap prices. This is an

important factor when determining the location of collection and recycling facilities.

Moreover, due to the multi-agent nature of an EPR program, the efficiency of its im-

plementation is also greatly influenced by the heterogeneity in the perspectives and

individual incentives among the entities involved, even within a single stakeholder

group. These challenges often result in a gap between the EPR system in practice

and what is intended by the EPR principle and/or EPR legislation [11].

The difficulty of achieving policy objectives in the EPR context has received some

attention in the literature. For example, according to the environmental economics

literature, mandated producer take-back policy may not be able to motivate producers

to adopt product designs that are more environmentally friendly (e.g., [171]). Along

similar lines, a number of papers (e.g., [126, 55, 25]) study policy instruments such as

recycling subsidies, advance disposal fees, and command and control standards and

point out the impact of certain externalities in determining the efficiency of these

policy instruments. The environmental policy literature also recognizes the complex-

ity in the implementation of policy tools. One seminal work is the study of public
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policy implementation by Pressman and Wildavsky [133], which introduces a general

framework to analyze factors in the implementation process that result in differences

between the intended and the actual outcomes from the policies. This literature also

highlights the additional complexity of the problem when environmental objectives

are infused into the process (e.g., [118])

The recent operations management literature also recognizes the challenges with

implementing EPR, and investigates the translation of EPR principles into working

systems from an operations perspective. For example, Atasu and Van Wassenhove [11]

provide a systematic overview of the operational issues in implementing e-waste take-

back legislation. A set of other papers study specific outcomes of EPR implementation

using analytical models. For example, [165] studies the impact of recycling competi-

tion, [86] investigates supply chain configuration decisions under product take-back

mandates; [97], [173], and [73] study reverse logistics and network design; and [186],

[131], [48], and [10] study product design implications of EPR. The industrial ecol-

ogy literature has also provided evidence regarding the problem, pointing out the

drawbacks and limitations of the current execution of EPR principles and suggesting

conceptual solutions for improvement (e.g., [107, 101, 169, 163]).

The goal of this chapter is to contribute to the understanding of how the multiple,

and sometimes conflicting, stakeholder perspectives and prevailing conditions (eco-

nomic, geographic, etc.) in the implementation locality shape EPR “on the ground.”

Based on this understanding, we explore regulatory and system design choices to im-

prove efficiency and effectiveness of EPR implementation. The chapter is organized

as follows. In Section 2.1, we examine concrete activities at the operational front of

a collection and recycling system, and probe the hidden tensions that have driven a

specific system to its status quo. To this end, we conduct a detailed case study of

the Washington state EPR implementation for electronic waste, based on which we

provide an overview of various stakeholder perspectives and their implications for the
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attainment of EPR policy objectives in practice. In Section 2.2 and 2.3, we take a

deep dive and conduct analytical study into two specific problems identified in the

gap between the current implementation outcomes of EPR and its legislative goals,

i.e., how to (i) achieve operational efficiency via proper cost allocation design, and (ii)

realize the design potential of EPR in implementation. We use a game theoretic ap-

proach based on a network model, and propose policy recommendations accordingly.

Finally, in Section 2.4, we discuss some future research directions.

2.1 Implementing Extended Producer Responsibility Legis-
lation: A Multi-Stakeholder Case Analysis

2.1.1 Specifics of the Washington EPR Legislation and the “E-Cycle”
Recycling Program

In the Washington state, the Washington e-waste legislation [176] mandates free col-

lection, transportation and recycling services to be provided for covered entities (any

household, charity, school district, small business, local government in Washington

state) for covered electronic products (CEPs) defined as TVs, monitors and computers

(excluding peripherals). The collection and recycling system is financed by producers

or manufacturers1. The Washington Materials Management and Financing authority

(WMMFA) is established to put in place and run a “default” collection, transporta-

tion and recycling program (hereafter called the “standard plan”), and collect funds

from the participating producers to finance the operational and administrative ex-

penses incurred. The authority is governed by a board of directors comprised of

representatives from participating producers. All producers must register with the

Department of Ecology (hereafter referred to as “Ecology”’ for short) and participate

in either the standard plan or, alternatively, operate and finance their own “indepen-

dent plan” if certain criteria are met (after approval of such plan by Ecology) in order

1Please refer to [176] for the definition of a manufacturer, a collector, a transporter and a
processor.
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to sell covered electronic products in the state. Any plan (independent or standard)

must provide collection service in every county, and every city of size greater than

10,000 (called “the convenience standard”), and implement and finance the sampling

of brands processed in the plan for every program year. In addition, the standard

plan is expected to try to come to a negotiated agreement with all collectors and pro-

cessors that want to be in it. Each plan will be charged/paid for the deficit/surplus, if

the e-waste processed by the plan within a program year, relative to the total weight

processed by all plans, is below/above its return share, defined as the ratio of the

participating producers’ products returned to the total amount of electronic products

returned by weight.

The electronic product recycling program [175] further defines detailed regulations

with respect to the requirements for each entity involved in the system (see the section

on “Stakeholder Roles and Perspectives” for details), as well as the specific procedures

that Ecology will use to enforce these requirements and implement the legislation.

2.1.1.1 Implementation Overview.

To date, only the standard plan operates in Washington (no independent plans have

been approved by Ecology) and is thus responsible for handling all returned covered

electronic products in the state. A description of the material and financial flows

associated with the standard plan is provided in Figure 1.

Product Flows Consumers (including households and small businesses) bring post-

use CEPs to collection points, which are transported to processors (potentially after

being taken to consolidation points). Material flows are handled by transporters

(represented by solid lines in Figure 1.) The Authority determines to which processor

each lot from each collection point will be transported so as to minimize the total

cost it is charged. Transport is either in the form of self-transport by collectors or

takes place on transport capacity purchased by the Authority (typically in the form
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Figure 1: Product and financial flows of collective collection and recycling of elec-
tronics.

of backhaul miles). At the processors, the CEPs are dismantled into parts and/or

shredded and sorted into different materials. Processors incur the operational costs of

dismantling and/or shredding materials. Then the valuable parts and materials, such

as computer processors and metals, are sold to downstream parties (smelters, brokers,

refurbishers, etc.) to be reused or further processed, which creates a net value. The

rest of the parts and materials, such as leaded glass, can be delivered to downstream

brokers or facilities for further recycling and/or landfilling, both of which lead to a

net cost that the processor needs to pay. For example, in the Washington case, some

processors send the leaded glass to a Mexican facility that processes and sells the glass

for new CRT TV production in India. Processors must follow environmental, health

and safety standards (including those for the downstream brokers they interact with)

as outlined by Ecology.

The direct processor level is the “boundary” to which the oversight of Ecology and

the financial responsibility of the Authority extend. The extent to which materials

are recycled downstream does not need to be documented for plans that choose to

adhere to the “minimum” performance standards. However, processors voluntarily

adopting the “preferred” performance standards must send materials and parts to

downstream vendors that certify that they do not export the e-waste to developing
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countries that do not accept such waste.

Financial Flows The authority pays each collector, consolidator, and transporter

based on a unit rate per weight that they handle; the main cost of these entities is

operational in nature. Processors incur operational costs to dismantle/shred prod-

ucts and separate materials, and may either incur a cost or make money on each

material/part stream. Hence, in implementation, the Authority pays processors (by

weight) for products that incur a net cost, but obtains a reduction on its invoices

for products that generate a net value. The Authority’s total operational and ad-

ministrative cost then gets allocated to producers whose products are sold in the

state.

2.1.1.2 Washington Implementation in 2009.

Here we provide some implementation details in the first year of the E-cycle program

in Washington (2009), mainly based on the annual report by Ecology [174]. We men-

tion that the Washington implementation serves not only as a practical motivation

of this research, but also as a main test bed of our analytical study in the subsequent

sections.

In 2009, 38,509,563 pounds of CEPs were collected in the Washington state, of

which TVs, monitors and computers accounted for 58%, 32% and 10% respectively.

This corresponded to products from 137 different product brands from 87 producers

with return shares varying from 0.0001% to 7.9%. The return rate among the counties

ranged from 0.4 to 9.6 lbs. per capita, and King County alone, where Seattle is

located, achieved a return volume of almost 15 million pounds, or about 38.5% of the

total volume.

There were 244 collection points registered with Ecology in 2009, whose concentra-

tion widely varied from county to county because the population densities of counties

in Washington vary (Figure 2(a)). Overall, the “west-of-the-mountains” area had a
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(a) Collection point (b) Processors

Figure 2: Locations of (a) a representative sample of collection points (50 out of
244) and (b) all the in-state processors involved in the Washington E-Cycle program
in 2009. Note that there are two processors near Seattle that are very close to each
other and overlap in (b).

denser network of collection points compared to the “east-of-the- mountains” area.

In particular, 15 counties, most of which are located in the “east-of-the-mountains”

area, had only one collection point (which is mandated by the convenience standard),

while King county (in the “west-of-the-mountains” area) had 58. The convenience

standard assured that 38% of the 207 cities in Washington were covered and reached

approximately 90% of the population (based on 2010 Census data).

Eight processors were involved in the E-cycle program in 2009; yet the majority

of the total return volume (approximately 99%) was processed at the six in-state

processors (Figure 2(b)). It can be observed that these processors are all located along

the Seattle-Vancouver corridor with convenient and ample transportation capacity.

Among these processors, there are large-volume high-tech processors that handled

more than 60% of the total volume, and also small local businesses with mainly

manual dismantling operations.

The average handling cost (including the cost of collection, transportation, pro-

cessing and administrative expenses) was 24 cents/lb. in 2009. The rates paid to

collectors ranged widely, depending on the location of the collection point and its
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business scale. In particular, in counties with low population density, the collection

points that were established largely due to the convenience standard mandated by

the law and collected low volumes were typically compensated at a higher rate. The

transportation rates depend on the location of the routes: As described in the intro-

duction, backhaul capacity can often be utilized very cheaply to serve the collection

points in the Seattle-Vancouver corridor to the west of the mountain where the pro-

cessors are also located, while a slightly higher price is needed to transport the return

volume from east to west. The processing costs are largely influenced by the product

characteristics since products may require different recycling techniques and proce-

dures, and/or generate parts and materials with different profitability levels. The

biggest distinction exists between TVs/monitors and computers: TVs/monitors are

expensive to recycle due to the hazardous materials contained in them, such as the

leaded glass, while computers often lead to a positive net recycling profit as their

components and materials have high reuse value. Hence, the E-cycle program pays

processors for TVs/monitors and is effectively compensated by the processors for

computers. The specific processing cost can also depend on the operational efficiency

of the specific processors: Processors with large-scale and automated operations in-

cur lower processing cost; in addition, those that can perform advanced processing

operations besides basic dismantling of products, for example, shredding, material

separation and even computer refurbishing, are able to achieve better product recov-

ery and obtain more recycling profit, which can be reflected in the processing rates

they quote to the E-cycle program. Similarly, processors that have in-house transport

capacity can quote a combined and more advantageous rate to the Authority than

those without such capacity.
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2.1.2 Stakeholder Roles and Perspectives

As described in the previous section, the implementation of the WA program is the

result of the joint participation of various parties including producers, collectors, pro-

cessors, etc. Therefore, the perspectives of these stakeholders greatly influence and

even shape the current practice of the E-cycle system. In particular, there exists

misalignment of preferences among different stakeholders regarding various EPR pol-

icy implementation options. The attempt by both WMMFA and the Department

of Ecology to balance these varying perspectives influences the final implementation

structure. In this section, we illustrate this by providing examples of how such per-

spectives have been reflected in the Washington state implementation. We refer the

readers to [67] for a detailed discussion of the individual perspectives of each stake-

holder group.

First of all, the product recovery process directly monitored by the E-cycle pro-

gram in Washington consists of four stages: collection, consolidation, transportation,

and processing. In the collection stage, the Washington legislation departs from other

states in adopting the convenience standard to ensure comprehensive coverage, reach-

ing 90% of the population. This approach gives strong consideration to the consumers

who highly value the convenience of the service, and also local governments who are

concerned about the equity of the program across the state, as well as the economic

and environmental benefits in their areas. While producers may be concerned about

the cost of extensive coverage, and indeed small collectors are paid a higher collection

rate as discussed earlier, the volume collected at these locations is rather limited as

well so that the additional cost impact of the convenience standard does not appear

to be onerous in this state.

The economic concerns of local governments are also reflected in the stipulation

that the Authority give preference to processors operating in the state, creating an

opportunity for small scale processors to be involved in the program. This can help
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bolster the local economy by providing new employment opportunities. At the same

time, focusing on local e-waste operations, especially in processing, may forgo the

economies of scale advantage obtained by using only large processors and the use of

state-of-the-art recycling technologies that exist outside the state. The consequence

of balancing local economic development and cost efficiency concerns in Washington

state is the presence of a mixture of high-volume, established facilities with partially

automated equipment that are assigned a large percentage of the total return volume,

and a set of facilities (some new) that are characterized by low volumes and manual

operations.

The current scope of EPR legislation does not include peripherals (e.g., keyboards

and mice), and yet, a steady stream of peripherals (typically associated with comput-

ers) is brought to collection sites by consumers. These returns are either not accepted,

or accepted but handled outside the E-cycle program, with landfilling being the pri-

mary outlet. A recently proposed bill amendment would add some peripherals to

the electronic products covered. Clearly, expanding the scope to include peripherals

would be convenient for consumers and beneficial for collectors (and the environment),

but primarily represent a cost burden for the program.

One prominent feature of e-waste recovery is that it is a multi-stage process,

where different recovery methods such as parts reuse and product refurbishing can

be used according to the product condition. The current Washington system, like

many others, focuses primarily on recycling. The main concern from the perspec-

tive of the standard plan is that it would be much more complicated to manage and

coordinate different recovery operations, especially considering the fact that differ-

ent cost/revenue structures are to be observed from reuse and refurbishing compared

to recycling. From a producer perspective, reuse and refurbishing can indeed be a

desirable option. This, however, is the case only if each individual producer was to re-

furbish its own products and the market valuation of reused and refurbished products
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would result in positive margins for the producers. If third parties (i.e., processors

registered in the state) were to reuse or refurbish, this would effectively imply the

creation of a strong secondary market that would cannibalize producers’ new product

sales. Moreover, reuse and refurbishing require a different skill set and expertise than

new product manufacturing. Manufacturers who do not possess this capability are

likely to prefer shredding, as it is cheap and keeps cannibalization at bay. Inclusion

of reuse and refurbishing in the e-waste program appears to benefit consumers and

third party remanufacturers the most. In particular, low-cost refurbished products

can attract low-budget consumers to purchase products (albeit used) that they could

not otherwise. For third parties possessing the skill to refurbish, an inclusion of

reuse/refurbishing targets, similar to those that are considered for the recent revision

of the European Waste Electrical and Electronics Equipment (WEEE) Directive [50]

would imply a bigger revenue stream (i.e., refurbishing on behalf of producers who do

not possess the skill) as well. The Washington state implementation appears to be

maintaining its emphasis on recycling although some refurbishing is already taking

place.

The EPR legislation in Washington allows producers to set up and operate their

own independent plans, considering the perspectives of some producers who have

established their own collection network and recycling facilities, and the economic

advantage of using available resources. However, no independent plans have been

approved in Washington to date, the main reason being the challenge of developing

independent collection networks that meet the convenience standard. This is partially

due to large scale collectors’ concerns related to the operational difficulty and the

revenue uncertainty inherent in managing capacity sharing among different plans,

especially when no clear rules have been established regarding this issue. From the

standard plan’s perspective, the existence of independent plans may also imply an

efficiency or bargaining power loss as well. Hence, the status quo with an efficient
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standard plan benefits both the authority (and by extension, the producers) and the

large scale collectors in the state.

A central implementation design issue for a working collective EPR program (such

as the standard plan in Washington State) is to provide stable financing such that

the program continues to run efficiently and benefits all stakeholders. Currently, this

appears to be one of the major issues for producers associated with the program. In-

deed, as described above, the discussions between TV and computer producers have

led to the use of dynamically evolving combinations of return share and market share

to determine each producer’s cost allocation. These changes have not allayed fairness

concerns, however, as some producers continue to benefit from a market share based

cost allocation, while others prefer a return share based cost allocation, and others

prefer to build their individual systems. The fact that the current cost allocation

model in Washington (within the standard plan) uses a dynamically changing com-

bination of return share and market share is an outcome of the need to balance these

perspectives.

2.1.3 Challenges and Opportunities in EPR Implementation

The Washington EPR program is one of the most comprehensive working EPR im-

plementations in the US, having initially enlisted more than 240 collection points

(this number has risen to close to 300 recently) and several recyclers (including some

new entrants), and collected approximately 6 lbs. per capita in 2009 and 2010. This

volume may grow, especially if the scope of the covered electronics is expanded (con-

sidering its European counterpart that reached 17.6 lbs. per capita [51] over 11

product categories). Some of the future challenges and opportunities are discussed

below. In particular, we focus on those associated with the two major issues of the

financing mechanisms used and the product design implications under the current

collective implementation, which will be studied analytically in Section 2.2 and 2.3,
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respectively. We also provide a brief discussion of other challenges, regarding which

we refer the readers to [67] for details.

2.1.3.1 Fair Cost Allocation and Collective Efficiency.

Since the EPR legislation essentially shifts the cost burden of e-waste management

to producers, it is crucial to find a way to settle potential fairness concerns among

producers regarding their fair cost shares within the standard plan or any indepen-

dent plan; otherwise, the long-term viability of any plan will be at risk. The current

weighing method between return share and market share does not seem to be effec-

tive and may not necessarily reflect fair cost shares of individual producers. Hence,

finding new approaches for fair cost sharing remains as one of the most critical (if not

the most) challenges of collective e-waste systems. In §2.2, we study this issue and

propose adjustments to the return share method by (i) compensating producers for

bringing in additional capacities based on rates that reflect the operational efficiency

of these capacities; (ii) adjusting the return share of producers to reflect the use of

critical resources to process their products; and (iii) using a cost-weighted return

share to reward producers for having products with low processing cost and/or high

recycling revenues. We provide theoretical and empirical analysis which indicates that

these adjustments can be effective in better reflecting the differentials in cost burden

among producers in the standard plan and thus improve the fairness of the allocation.

Another approach in [107] proposes a novel cost allocation mechanism considering the

requirements of the WEEE Directive regarding future and historical waste electrical

and electronics equipment. It should be noted, however, that the feasibility of these

approaches would significantly depend on the support of producers in the state, who

may have varying preferences.

Another issue that is closely related to the cost allocation problem is the potential

independent plans operated by the producers, which is allowed by the Washington
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legislation (and also many of the current EPR laws.) Such actions have been indeed

taken place in practice, especially given the producers’ concerns regarding their cost

allocation under the return/market share method: In 2009, two producer groups have

submitted proposals of independent plans to Ecology but was declined on the ground

that they were insufficiently developed; yet these efforts are continued. Hence, in

the long term, the program should be able to handle the co-existence of independent

plans along with the currently operational standard plan. Achieving this requires

an unambiguous definition of program rules regarding the individual responsibility

of each plan, especially when multiple plans share collection, transportation, and

processing capacities. When independent plans become operational, they may bring

in additional capacities that are located out-of-state and that may be more efficient.

This raises the question of how to control, harmonize and utilize these capacities

to achieve a higher operational efficiency of the entire system, while still promoting

local economic development. We also note that such an integration and harmonization

issue has long been a major concern in the EU because of the need to coordinate the

legislation in different countries [177]. A similar problem has already emerged in the

US at the state level and can be expected to become a significant challenge to effective

EPR implementation that calls for a national solution [115]. In §2.2, we also propose

an approach to incentivize producers to contribute private capacities to a collective

system, thus promoting scope economies in EPR implementation.

2.1.3.2 Design Incentives.

Since the introduction of the EPR concept, it has been argued that it is not simply

about diverting waste away from landfills, but more about providing incentives to

producers to design more environmentally friendly products ([101], [11], [107]). Thus,

an essential element to be considered in designing e-waste regulation is the type of

design incentives that it provides to manufacturers. Under this issue, problems to
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be addressed include free-rider prevention, reuse/refurbish incentives, and toxicity

reduction. It is clear that simple volume-based cost allocations (such as return or

market share heuristics) that are essentially targeted at managing the allocation in

an effortless manner, are not going to provide these incentives. At best, they can result

in reduced consumption (through increased prices to cover for end-of-life expenses),

reduced weight or reduced product size (called miniaturization in practice) in order

to reduce end-of-life costs. If the real goal of e-waste regulation is to achieve design

incentives, there is the opportunity to tailor the implementation to exploit design

improvements (e.g. by source separation and routing of e-waste to the appropriate

processors) and to reflect their actual cost to each manufacturer (e.g., product or

recycling fee differentiation with respect to product toxicity). In §2.3, we discuss

how to do so via cost allocation design based on an analytical study of the design

implication of the current collective EPR implementation.

2.1.3.3 Other Challenges.

1. Better Reflecting EPR Goals into E-waste Legislation and Implementation

• Reuse and refurbishing: Reuse and refurbishing are clearly essential com-

ponents of EPR with a number of advantages from both an environmental and

economic perspective. However, incorporating reuse and refurbishing raises im-

plementation issues such as (i) whether a newer device will have sufficiently

improved environmental performance that it outweighs the benefits of waste

diversion [69], (ii) the complications that can arise in managing and accounting

for the contributions of reuse and refurbishing operations in a traditional take-

back setting, (iii) how to handle exporting of e-waste (and is indeed observed in

practice) under the guise of reuse ([161], [14]). These factors need to be consid-

ered carefully before attempting to incorporate reuse and refurbishing targets

into EPR laws. Nevertheless, there is an important opportunity to observe the
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implications of such requirements as the recent revision of the European WEEE

Directive [50] considers the inclusion of reuse and refurbishing operations in the

scope of the directive. The European experience could provide valuable policy

input as to the impact and feasibility of such targets.

2. Building A More Comprehensive E-waste Recycling Program

• Product scope: A bill amendment to add peripherals to the electronic prod-

ucts covered under the Washington program was proposed in 2011. The ex-

pansion of covered products indicates a level of maturity and acceptance of the

program. However, expanding product scope also brings operational challenges

and has the potential to exacerbate complications in achieving a fair cost allo-

cation and strong design incentives in a collective implementation, as different

products have different characteristics.

• Downstream material flows: One of the implicit objectives of e-waste leg-

islation is to avoid e-waste exports to undesirable parties. However, products

are not fully recycled at the processors and there are many more steps in the

entire product recovery process beyond the current scope of such programs. Yet

tracing all e-waste to its ultimate destination would be onerous if not impossible

at a processor or even Ecology level. The piecemeal nature of e-waste laws in

the US makes this even more difficult. Hence, it is impossible to know the ulti-

mate destination and usage of the e-waste, which is a serious problem as it can

defeat the environmental goal of an EPR program. In particular, at present,

toxic trade into developing countries is still a prominent phenomenon in the

downstream recycling business despite various influential anti-toxic-trade cam-

paigns worldwide [14]. Clearly, federal e-waste legislation can help close within-

country loopholes. Absent this, building a national clearing house for data on

material exports by the largest recyclers can be an effective information-based
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tool. In addition, specifying the level of post-disassembly material separation

and processing can be effective because some of the greatest abuses happen if

non-working whole units are exported.

3. Towards an Effective and Efficient EPR Implementation

• Local economic development: Maintaining the balance between program

efficiency and local resource utilization has been a consideration from the earliest

stages of the EPR debate in Washington. The embedded trade-offs between

local economic development and the cost efficiency resulting from the use of

state-of-the-art recycling technologies and also the economies of scale advantage

remains an open question to be investigated for a well-balanced choice.

• Education and outreach: Washington drives collection by consumer educa-

tion, relying on producers, retailers and local governments to expend effort to

do so. Hence, it is crucial for the viability of the program to design and imple-

ment efficient consumer education campaigns to achieve extensive diffusion of

the EPR concepts, especially in the presence of multiple plans in parallel.

• Volume uncertainty: There was (and still is) a lot of uncertainty about

how much e-waste would be collected under the program. Moreover, given

the amount of unused electronics that are expected to have accumulated in

households (if not small businesses), and the diffusion dynamics of information

about the program, it can be expected that the composition of the return volume

will also change over time. It is necessary to understand the implication of such

a trend for the operations in the existing collection and recycling system and to

design implementation strategies accordingly. Meanwhile, it is also important

to develop forecast mechanisms for the specific changes in the demand volume

and distribution over the region.
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• Long-term contracts: A barrier to recycling technology investment by pro-

cessors is the non-contractual nature of the relationship between the Authority

and recyclers. To overcome it, a first step would be to evaluate what type of

long-term contract (if any) would be most effective at both maintaining a com-

petitive environment and incentivizing investment under collection volume and

mix uncertainty.

2.1.4 Further Remarks

We would like to mention that our multi-stakeholder analysis of EPR implementation

in this section uncovers a strong relationship between some of the issues identified

and the characteristics of the electronics industry. In fact, we find that the electronics

industry combines some features that complicate the development of a comprehensive

and efficient EPR system. We summarize these features as follows. First, due to the

rapid technological obsolescence of electronics, many products are still in working

condition when they are replaced. This creates a need for multiple forms of product

recovery to extract the most value out of post-use products, including reuse, refur-

bishing and different levels of recycling. This not only complicates the operations

of an EPR system, but also leads to more stakeholders with different perspectives

being involved. Second, the potential residual value, combined with the toxicity of

the product, creates export concerns that are difficult to manage within the scope

of EPR legislation. Third, there is high product heterogeneity even within a small

range of electronics. For example, TVs and computers are very different in terms

of weight, recovery cost/revenue, market share evolution, etc. Hence, weight-based

cost allocation purely based on market or return share may not be sufficient to reflect

the true cost burden of each producer, and designing fair cost allocation mechanisms

becomes a challenge. Fourth, different manufacturers have made different levels of

progress with respect to engaging in product recovery. Some had years of experience

37



before the E-cycle program was launched and had established mature infrastructure

of their own, while some were new to the EPR concept. This contributes to different

attitudes towards the state legislation, and brings about the provision that allows

the establishment of independent plans. Some of these features are specific to elec-

tronics and will not carry over to other product categories. For example, few of the

products for which EPR legislation is diffusing in the US (mercury lights, carpets,

packaging, paint, and pharmaceuticals) lend themselves to reuse or refurbishing. At

the same time, the heterogeneity in producer perspectives as well as some of the other

fundamental tensions discussed herein are expected to persist.

2.2 Efficient Implementation of Collective Extended Pro-
ducer Responsibility Legislation

2.2.1 Introduction

Our analysis of the Washington EPR program in §2.1 indicates that designing a proper

financing mechanism is of crucial importance to the implementation efficiency of EPR.

It is also a very challenging task considering the different stakeholder perspectives and

the heterogeneous nature of the collection and recycling system in the Washington

state. Indeed, the cost allocation problem is a major issue in EPR implementation

that has been intensively discussed in practice. In this section, we study this problem

based on a general analytical model.

As we have mentioned in the previous section, the proper handling of e-waste is

typically costly, hence EPR introduces a significant economic burden on the electron-

ics industry, the main stakeholder group affected by EPR. The desire to minimize

this cost burden has resulted in the prevalence of collective implementations, which

are believed to “offer the simplest, most straightforward, and most cost-effective ap-

proach” [178]. In a typical collective system, such as the one in the Washington state,

a system operator (state- or producer-run) manages a large scale collection and re-

cycling network (CRN) with many origins (waste collection points) and destinations
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(processors). The CRN collects, transports and processes a mixture of electronic

waste consisting of many different product types originally sold by producers par-

ticipating in that collective system. Such implementations not only allow for the

exploitation of scale economies from consolidating waste volumes, but also capitalize

on the synergies that arise from integrating and sharing available collection, trans-

portation and recycling capacities, which we call the network synergies. Moreover,

a collective implementation can reduce compliance monitoring costs. It can also en-

courage competition among service providers (collectors, transporters and processors)

by employing competitive contracting [102, 178], further increasing cost efficiency.

An important consideration in operating a collective system is the allocation of the

total cost among participating producers, as it directly impacts producers’ willingness

to stay in that collective system. Typically, the system operator allocates the total

cost to participating producers by return share or market share, i.e., in proportion

to their shares (by weight) in the total e-waste volume returned or sold. Such simple

weight-based allocation mechanisms do not differentiate between producers even if

they impose heterogeneous costs on the system. Thus, producers whose products

incur lower transportation or processing costs can find that they are charged more in

a collective system than their potential stand alone cost. For example, at a time when

a cell phone could be recycled at a profit of about $0.50 [56], cell phone producers in

Europe were charged 0.03 Euros (approximately $0.05) by collective recycling systems

[47]. Another drawback of return/market share is that they do not take into account

the heterogeneous contributions of different producers to network synergies. A simple

example illustrates this.

Consider two producers A and B who have products πA and πB, respectively,

with return volumes of two and one. They have individual processing resources rA

and rB, respectively, with capacity equal to their own return volumes. Let cij denote

the cost of processing product i = πA, πB on capacity j = rA, rB. Suppose cπArA =
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$1, cπArB = $2, cπBrA = $2, and cπBrB = $4. In this case, if these producers independently

operate (i.e., using only their own individual resources), they incur a cost of $2 and $4,

respectively, for a total of $6. If they form a collective system, routing each product

to the other producer’s facility to exploit the network synergy yields a total cost of $5.

However, under cost allocation by return share, producer A would pay $3.3 and would

be worse off relative to its independent operating cost, despite contributing efficient

processing capacity at rA. Given the existence of producer owned or contracted

capacities in practice (e.g., HP’s recycling facility in California [80] and backhaul miles

available to producers through their delivery networks), the situation demonstrated

is an important practical concern.

These problems associated with weight-based proportional allocations have re-

sulted in significant producer concern. In the E.U., some producers have left or

stated their interest in leaving existing collective systems and establishing their own

networks [146, 84]. Similar action is taking place in the U.S. as well. In Washington,

as mentioned in §2.1, two independent system proposals were filed in 2009 by two

separate producer groups who believed their stand-alone costs would be lower than

their cost allocation under the collective system run by the Washington Materials

Management and Financing Authority (WMMFA). While these proposals were de-

clined on compliance grounds, such efforts are continuing [43] and the emergence of

independent systems operating in parallel with the default collective system is a real

possibility. In Oregon, three producer groups have already chosen not to participate

in the state’s default collective system.

System fragmentation, unless explicitly barred2, can result in recycling operations

that are economically inefficient. Yet cost efficiency is a key concern from both

legislative and producer perspectives. For example, in the E.U., a key consideration

2Collective implementations of EPR legislation increasingly allow the defection of individual
producers, with a few exceptions (e.g., in Belgium).
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in WEEE legislation is cost efficiency [81]. Similarly, recycling systems that are

directly operated by producers, such as the European Recycling Platform, aim to

ensure cost-effective implementation of the WEEE Directive [49]. In the Washington

state implementation in the U.S., WMMFA, which is a producer board-directed state

authority, aims to operate “in the most cost-effective manner” [181].

Hence, motivating the voluntary participation of producers in collective implemen-

tations is an important concern and requires alternative approaches to cost allocation.

What these approaches should be has elicited much debate among producers and pol-

icy makers [38, 83] and has led to specific suggestions. For instance, [107] interpreted

cost allocation in collective systems as an accounting problem and proposed ad hoc

methods to improve on return share. Similarly, in Washington, WMMFA experi-

mented with different heuristics that constitute adjustments to return share. The

WEEE advisory board of the UK Department of Business Innovation and Skills is

also in the process of analyzing three possible modifications to return share [83].

Despite these attempts, finding an effective cost allocation method remains an

open question. One fundamental problem is that the existing approaches are un-

able to address the network synergies in collective systems. A key principle in the

current discussions is to find mechanisms that “relate to the actual costs of dealing

with producers’ own products at end of their life” [83]. However, what constitutes

one’s “actual” cost is undefined in a collective system because the value generated

from network synergies is determined by combining all volumes and capacities. An

allocation that fails to capture such effects can be ineffective in inducing voluntary

participation of producers even in a simple CRN. In the above two-producer example,

if each producer were allocated exactly the amount incurred processing its products

in the collective system, then A would incur a cost of $3. This is higher than A’s

stand-alone cost of $2 and would motivate A to break away.

Hence, the goal of this section is to develop an effective tool for system operators
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to implement EPR in a way that motivates the voluntary participation of producers.

To this end, we adopt a network model of the operations of the collective system to

capture network effects, and focus on the incentives that drive producers’ defection

from that system either individually or with others. A natural benchmark to evaluate

such incentives is the stand-alone cost that a producer or a sub-coalition of producers

can achieve. Hence, a desirable property of an allocation that induces voluntary

participation is to charge each producer or sub-coalition no more than its stand-

alone cost. We call this requirement group incentive compatibility. This notion,

together with the property that all cost is allocated, is the concept of the core in

cooperative game theory, which is one of the fundamental allocations widely studied

in the literature [185]. The core notion is particularly appealing in our problem setting

as it addresses the fragmentation issue that has plagued many implementations to

date.

We note that proportional return/market share models remain widely used in

practice (despite their ineffectiveness in motivating producers’ participation) because

of their intuitive nature and simplicity. Thus, we focus on identifying group incentive

compatible mechanisms that can be presented as improvements to the return share

model3 in any CRN. In particular, we look for improvements based on measures that

capture the cost difference of products and producers’ heterogeneous contribution to

network synergies. As our analysis will show, the core contains allocations that have

these properties.

We study the cost allocation design problem using a cooperative network flow

game with shared collection, transportation and processing capacities. We show that

the cost allocation by return share is typically not group incentive compatible when

3We do not take market share as the basis for cost allocation as it does not take into account
return share differentials between producers, and is considered to be more arbitrary than return
share [84].
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there is cost and capacity heterogeneity in the system except under restrictive condi-

tions regarding the relationship between the two factors. We demonstrate that two

types of adjustments to return share can greatly reduce or eliminate its incentive

compatibility gap (the cost increase experienced by producers in the collective sys-

tem compared to their stand-alone costs): (i) making capacity-based side payments

to producers who provide access to resources that can handle (collect, transport and

process) e-waste more cost effectively; and (ii) adjusting/weighing return shares to re-

flect the processing cost differentials between products or the use of critical resources

(i.e., highly-utilized, low-cost resources) in the network. These adjustments provide

succinct and intuitive ways of capturing network synergies while remaining true to

the return share concept.

In addition, we address three important issues. (i) Economies of scale is one of the

main reasons why producers and policy makers argue for collective systems. An analy-

sis of the implications of economies of scale, however, uncovers a surprisingly negative

side-effect: Under proportional cost allocations that are not group incentive compati-

ble (e.g., return share), scale economies may increase the incentive compatibility gap

and introduce a stronger incentive for producers to break away. In particular, this

can happen when products that generate revenues from processing are handled in the

same network as those that impose costs. (ii) Some EPR bills mandate a penalty for

producers who operate their own collection and recycling networks but do not fulfill

their obligation. We show how the adjustments we propose can be implemented to

operationalize this concept while ensuring a group incentive compatible allocation.

(iii) An implementation requirement for the proposed adjustments is information on

the operational costs and volumes of each producer’s e-waste flows, which can be

obtained by separating waste at the collection stage. While costly, the value that can

be obtained from doing so (i.e., inducing industry-wide participation in the collec-

tive system to maximize cost efficiency) can justify the associated costs. Identifying
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conditions under which the cost efficiency benefits of such information are realized is

another practical contribution of our work.

To show how our results would translate into practice, we develop a sample net-

work and a representative cost structure based on the Washington state implementa-

tion. A set of numerical experiments illustrate the concepts developed in this section

and yield insights regarding their implementation. We observe that the incentive

compatibility gap of the allocation by return share, and the associated efficiency loss

from fragmentation, can be substantial. Economies of scale is shown to reduce the

incentive compatibility gap of return share (without guaranteeing a core allocation),

while greatly accentuating efficiency loss from fragmentation. We demonstrate that

the economic implications of legislative targets are strongly influenced by network

synergies.

In sum, our study in this section provides value at three levels: It identifies the

operational-level factors that cause return share to be an ineffective mechanism in en-

suring the voluntary participation of producers, and resolves the problem by providing

simple implementable adjustments. It provides system operators new directions in

how to manage cost allocation in collective systems and guidance to producers as

to what to lobby for vis-a-vis the legislature. Finally, it informs policy makers and

producer responsibility organizations about the implications of key legislative choices

in EPR bills.

2.2.2 Contribution to the Literature

A stream of research in the environmental economics literature studies the economics

of regulated collection and recycling of post-consumer products [125, 126, 55, 127, 172,

25, 26, 170, 171]. These papers use stylized economic models to identify the optimal

form of environmental legislation that maximizes social welfare. The main finding in

this stream of literature is that a deposit-refund policy maximizes social welfare. Yet,
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the practice of e-waste legislation around the globe has converged to EPR implemen-

tations with mandated collection and recycling level targets imposed on producers.

The recent operations management literature recognizes that implementing EPR is

essentially an operational problem, and investigates how the principles of EPR can be

effectively translated into working systems [164, 131, 12], but using stylized models

of operational decisions that do not capture network synergies. Our work contributes

to this growing literature by explicitly capturing the network synergies in a CRN,

without which group incentive compatible cost allocations cannot be designed.

Another relevant stream in the operations literature [52, 88, 182, 20, 103, 140, 154]

focuses on designing a reverse logistics network when product returns are valuable.

[114] studies the design of e-waste networks, considering a competitive market for

e-waste recycling. However, these papers do not investigate the efficient design and

operation of collective recycling networks within the context of environmental regu-

lation. We contribute to this literature by (i) explicitly modeling practical issues in

designing and implementing recycling networks when this activity is costly and car-

ried out because of EPR legislation, and (ii) identifying cost allocation mechanisms

that guarantee voluntary participation of producers and thus efficient collective EPR

implementations.

Cooperative game theory has been widely applied in operations management liter-

ature; one prominent application is to analyze profit sharing in supply chain alliances

with resource sharing (see [112] for a survey). However, most of these papers focus on

traditional supply chain problems and do not discuss product recovery issues. One

paper that studies recycling activities is [162]. The authors investigate the structure

of coalitions that would emerge given an exogenous unit recycling cost that is charged

to each member of a coalition and that depends on the size and product diversity of

the coalition; this cost structure defines an implicit cost allocation. In our approach,
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we endogenously determine a coalition’s total cost by solving a network flow prob-

lem which captures the cost heterogeneity and the network synergies, and focus on

developing cost allocations that promote participation in the collective system.

From a methodological perspective, we also contribute to the literature on coop-

erative network games [91, 92, 60, 39, 123, 142]. A classical result in this area is that

a dual-based cost allocation is guaranteed to be in the core. Ease of implementation,

on the other hand, favors the use of simple proportional allocations. This is the case

in the EPR context, where return share is prevalent. Thus, an important practical

consideration for the cost allocation problem under collective EPR is identifying a set

of core allocations that can be presented as derived from the return share concept.

In this work, we show that adjustments to the return share model can achieve a core

cost allocations under very general conditions. More importantly, we characterize

the adjustments that matter, i.e., weighing return shares by cost burden and critical

resource usage.

Collective EPR implementations often involve using both producers’ independent

capacities and those contracted by the system operator. By studying such a system

as a cooperative network game, we also introduce a new perspective on the use of a

mixture of player-owned and exogenous resources in collaboration. Existing analyses

of such games (e.g., the pseudo-flow game introduced by [91] and the simple flow

game studied in [134]) assume that the exogenous capacity is a public resource that

is available free of charge, and show that the core of such games can be empty under

certain conditions. [59] analyzes an extended linear production game where anyone

may purchase the exogenous capacity in bundles, and gives bundle prices to guarantee

the existence of the core. We extend this stream of research by studying a hybrid

model in §2.2.4.5, where the exogenous capacity is operator-contracted and thus ac-

cessible at no additional cost to the operator-run grand coalition, while independent
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sub-coalitions are allowed access to an arbitrary fraction of it for an additional (non-

member) fee. Such user differentiation reflects the policy in some EPR bills under

which capacity shortfalls in independent CRNs can be complemented by operator-

contracted capacity at a surcharge. We derive lower bounds for the unit access fees

under which the core must exist.

The organization of the rest of §2.2 is as follows: In §2.2.3, we introduce the

notation, define the CRN, and develop the cooperative game model. §2.2.4 provides

an analysis of the model and identifies group incentive compatible cost allocation

methods under different operating environments. §2.2.7.4 illustrates how these results

can be implemented in practice using data from Washington state and highlights the

practical value of the results. §2.2.6 concludes with a summary of the results and

discussion.

2.2.3 Model Description

In this section, we first introduce the notation and structure of the collection and recy-

cling network (CRN) that represents the practice of e-waste collection and recycling.

We then compute the minimum total operating cost that can be achieved in a CRN.

Finally, we formulate a cooperative game model based on which we mathematically

define the notion of a group incentive compatible cost allocation that will guarantee

the attainment of this minimum cost.

2.2.3.1 Network Model Formulation.

A typical collection and recycling system of e-waste consists of four components: col-

lection, consolidation, transportation and processing (dismantling, shredding, and/or

recycling). We model the operations of such a system as a multicommodity network

(Figure 3), called the collection and recycling network (CRN), where a variety of

post-use products from different producers are handled.
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Figure 3: The structure of a generic collection and recycling network.

The Network To formulate a CRN, we construct three sets of nodes: L = {j :

j is a collection point}, C = {n : n is a consolidator}, and R = {r : r is a processor}.

We denote the set of all edges as E. To represent capacity restrictions at each en-

tity as edge capacities, we duplicate node sets L, C and R by generating L′ = {j′ :

j is a collection point}, C ′ = {n′ : n is a consolidator} andR′ = {r′ : r is a processor},

and link each original node with its counterpart in the duplicated sets. The capaci-

ties at collector j, consolidator n and processor r are then modeled as edge capacities

on edges (j, j′), (n, n′) and (r, r′), respectively. Transportation capacities on edges

between any pair of nodes (u, v) in L′ and C, and in C ′ and R are modeled by a set

of parallel edges Euv, where each edge corresponds to a different transporter.

Products, Costs, and Legal Requirement We denote a producer by i and

the set of producers by M . Every producer i makes the set of products Πi; these

sets are mutually exclusive with each other. The set of all products is denoted by

Π =
⋃
i Π

i. On each edge e, the corresponding entity incurs an operational cost

cπe to collect, transport or process a unit of product π. Moreover, each processor r

also pays a downstream cost σπr for or obtains a downstream revenue ρπr (which is

modeled as a negative cost) from sending the parts and materials extracted from a
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unit of processed product π to downstream vendors, brokers and/or recyclers. For

example, TVs typically incur downstream processing costs, while computers generate

processing revenues. Hence, the net processing cost to r to process a unit of product

π is ĉπr = cπ(r,r′) + σπr + ρπr . In our main model, we assume that the unit costs do

not depend on the volumes handled, i.e., there are no scale economies. We relax

this assumption in §2.2.4.4 and show how our results can be extended under scale

economies.

We use dπj to denote the waste volume (by weight) of product π at collection point

j, i.e., the amount of product π brought to j by the consumers. These waste volumes

determine a producer’s legal obligations given a mandated recycling requirement,

modeled by the parameter τ , which is the minimum fraction of the return volume

of each product that should be recycled during the entire collection and recycling

process (including all downstream stages). Since landfilling mainly occurs after the

processing/downstream recycling stage, and is outside the boundary of the CRN that

is relevant for cost allocation purposes, we capture the influence of the stringency of

such a requirement by modeling cπ(r,r′), σ
π
r and ρπr , and thus the net processing cost

ĉπr at each processor r, as functions of τ , i.e., ĉπr (τ) = cπ(r,r′)(τ) + σπr (τ) + ρπr (τ). Such

a relationship is derived from the fact that the stringency of the mandated recycling

requirement influences the processing operations as well as where the resulting parts

and materials are sent. For example, when the mandated recycling requirement is

stringent, the processors should not only refrain from direct landfilling, but also con-

tract with downstream recyclers that are able to thoroughly recycle the lead and the

glass obtained from CRT TVs/monitors, both of which increase the processing costs.

Capacities Producers can privately own or contract for collection, transportation

and processing capacities, called their independent capacity. We denote the CRN

formed with the independent capacity of producer i by N i, where each edge e has
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kie amount of independent capacity available. There is a system operator whose role

is to establish a collective CRN that includes the independent capacities of those

producers who are willing to join it and that collects and processes their e-waste,

as well as that of producers with no independent capacity. The operator can also

contract for additional capacity, which we call operator-contracted capacity, up to

a limit of Kp
e on edge e, so as to supplement the independent capacity brought by

the producers who join the collective CRN. We assume that independent capacities

are reported truthfully to the operator; in practice, verification of capacities is feasi-

ble through a certification process (e.g., in Washington the Department of Ecology

certifies collectors, transporters and processors.)

Minimum Total System Cost Let N denote the network obtained by pooling

all independent and operator-contracted capacity together. Because it includes all

available resources, the total cost to collect and process all the producers’ products

will be minimized on N . Given a certain stringency level τ , this minimum total cost

can be computed by a minimum cost flow problem defined on N , which we call the

centralized problem (C).

(C) : min Z(f) =
∑

e∈E\{(r,r′)}

∑
π∈Π

cπe · fπe +
∑
r∈R

∑
π∈Π

ĉπr (τ) · fπ(r,r′) (1)

s.t
∑

e=(u,v)∈E

fπe −
∑

e=(v,w)∈E

fπe = 0 ∀v ∈ V \ {L,R′}, ∀π ∈ Π [υπv ] (2)

fπ(j,j′) = dπj ∀π ∈ Π,∀j ∈ L [βπj ] (3)∑
π∈Π

fπe ≤
∑
i∈M

kie +Kp
e ∀e ∈ E [αe] (4)

nonnegativity constraints . (5)

In the above program, (2) represents flow conservation constraints at every node

except for the source and terminal nodes, (3) guarantees that all collected units

are processed, and (4) represents the capacity constraint on every edge in N . The

variable listed beside each constraint is its corresponding dual variable. The objective
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function (1) minimizes the total cost incurred by the flow in the entire network N

under the mandated recycling requirement τ . The optimal solution to (C) is denoted

by f ∗, which we call the socially optimal routing. Note that the implementation of

f ∗ requires operator-contracted capacity to be used on edge e at the level of kpe
.
=

max{0,∑π∈Π(f ∗)πe −
∑

i∈M kie} ∀e ∈ E. Thus, an equivalent formulation of (C) can

be obtained by replacing Kp
e with kpe .

In conclusion, Z(f ∗) represents the optimal system cost that can be achieved

given τ . However, to attain Z(f ∗) requires the formation of the collective network

N by pooling all independent and operator-contracted capacity so that f ∗ can be

implemented by the system operator. This is not guaranteed to happen. The problem

is that individual producers or sub-coalitions can be better off by not joining the

centrally-operated system if the cost allocated to them under the centrally-operated

system is above their stand-alone costs. Thus, modeling the perspectives of individual

producers is an important part of the problem, which is discussed next.

2.2.3.2 A Cooperative Game on CRNs.

In this section, we formulate a cooperative game on the CRNs, called the collection

and recycling flow (CRF) game. In this game, individual producers are assumed to

have two options: (i) join the centrally-operated CRN or (ii) form and operate an

independent CRN individually or in a sub-coalition.

In option (i), it is the system operator that oversees and coordinates the e-waste

flow of the participating producers using the independent capacities of those producers

and additional operator-contracted capacity, if needed. Specifically, independent and

operator-contracted capacity availabilities and unit prices are collected by the system

operator. The return volumes are observed, routed optimally by the operator, and

processed. The operator is billed by the collectors, transporters and processors based

on the volumes they handled, at the unit prices previously communicated. Note that
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in this model, the unit cost of using independent capacity is assumed to be unchanged

when integrated into the centrally-operated CRN under the same mandated recycling

requirement τ . The participating producers pay the portion of the total cost in

this CRN that is allocated to them by the operator according to the cost allocation

mechanism in force. Such an amount is often determined ex-post in practice. For

example, under the return share mechanism, both the total cost and producers’ return

shares are observed/calculated after the products are processed, which are then used

to determine the amounts to be billed to producers.

In option (ii), producers process their products in a sub-coalition, using only the

independent capacities belonging to that sub-coalition. We call the network associ-

ated with such a coalition an independent CRN. Capacity within an independent CRN

is restricted to the usage of the corresponding sub-coalition members. Moreover, in

this main model, we assume that sub-coalitions cannot access operator-contracted ca-

pacity; this assumption is relaxed in §2.2.4.5, where we allow sub-coalitions operating

their independent CRNs to pay a fee to use operator-contracted capacity.

When all producers choose to join the centrally-operated CRN, the centrally-

operated grand coalition is formed. If not, a fragmented system is created, which con-

sists of the centrally-operated CRN and independent CRNs of defecting sub-coalitions.

Mathematically, we define the value of the centrally-operated grand coalition, v(M),

to be the minimum total system cost on network N (that includes the operator-

contracted capacities), i.e., Z(f ∗). The value of sub-coalition S (M in a CRF game,

v(S), is defined as the minimum total cost achievable on the corresponding indepen-

dent CRN, and can be computed by a program (CS) that can be interpreted as the

centralized problem within S. (CS) differs from (C) in that (i) the product set is

restricted to ΠS =
⋃
i∈S Πi, and (ii) sub-coalitions can only use their independent
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capacities, i.e., constraint (4) is replaced with

∑
π∈ΠS

fπe ≤
∑
i∈S

kie ∀e ∈ E . (6)

Based on this CRF game model, we define a cost allocation by x = {xi,∀i ∈ M}

such that
∑

i∈M xi = v(M), i.e., all cost is allocated. In the context of our prob-

lem, the central question in allocating the costs is to prevent defection of producers

(i.e., having them choose option (i)). The notion of the core of the CRF game [57]

provides a good solution to this problem: An allocation x provides incentives for the

participation of all producers in the collective system if
∑

i∈S x
i ≤ v(S) ∀S (M , i.e.,

no sub-coalition of producers is allocated a higher cost within the centrally-operated

grand coalition compared to operating their independent CRNs. In this thesis, we

refer to such cost allocations as being group incentive compatible.

2.2.4 Designing Group Incentive Compatible Cost Allocations

We first analyze the cost allocation by return share and identify its shortcomings.

Based on this analysis, we construct an allocation mechanism that is obtained by

making adjustments to return share and is guaranteed to be a core allocation of the

CRF game. This mechanism is called cost-corrected return share with capacity rewards

(§2.2.4.2). We then identify an alternative mechanism (return share with capacity

rewards) that does not require cost adjustments while guaranteeing group incentive

compatibility under mild conditions (§2.2.4.3). We conclude with a discussion and

analysis of practical concerns: economies of scale (§2.2.4.4) and non-member access

fees (§2.2.4.5).

2.2.4.1 Cost Allocation by Return Share.

A producer’s return share is defined as the ratio of the producer’s products re-

turned to the total amount of electronic products returned by weight [42]. For

notational simplicity, we denote the return volume belonging to sub-coalition S as
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RS .
=
∑

j∈L
∑

π∈ΠS d
π
j , and let R

.
=
∑

i∈M Ri be the total volume of products re-

turned. We assume Ri > 0 ∀i ∈ M . The cost allocation by return share, xr, is

defined such that the cost allocated to producer i is computed as

(xi)r
.
= v(M) · R

i

R
. (7)

Note that v̄M
.
= v(M)

R
can be interpreted as a flat rate charge equal to the average

cost within the centrally-operated grand coalition. Let v̄S
.
= v(S)

RS
be the average cost

within a sub-coalition S ( M operating an independent CRN. We can evaluate the

maximum cost increase experienced by a sub-coalition S ( M compared with its

stand-alone cost v(S) under the allocation by return share. We call this measure the

incentive compatibility gap of the allocation and denote it by G(xr), where

G(xr)
.
= max

S⊆M
{
∑
i∈S

(xi)r − v(S)} = max
S⊆M
{RS · (v̄M − v̄S)} . (8)

The last term in (8) indicates that the incentive compatibility gap can be interpreted

as the maximum increase in the average unit cost that a sub-coalition S will experi-

ence when joining the grand coalition multiplied by its return volume over all S ⊆M .

The change in the average unit cost for S, v̄M− v̄S, is influenced by network synergies.

Intuitively, a sub-coalition of producers who make cheaper-to-recycle electronics and

has established an efficient collection and recycling infrastructure with sufficient ca-

pacity tends to have a smaller average unit cost when operating its independent CRN,

and thus is more likely to suffer a cost increase from joining the grand coalition when

cost is allocated by return share. This intuition is substantiated by our following

analysis on the network conditions for the allocation by return share to be in the core

of the CRF game. First, we present a general sufficient condition in Proposition 1.

Proposition 1. Given a CRN, xr is in the core of the CRF game if (i) for any edge

e ∈ E and any processor r ∈ R, the operational cost and net processing cost of all

products are identical, i.e., cπe = ce and ĉπr = ĉr ∀π ∈ Π; (ii) for each product π, its
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ĉπB
rA
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Figure 4: An equivalent network structure of CRN2.

return share is the same at all collection points and is equal to its return share in the

entire CRN, i.e.
dπj∑
π∈Π d

π
j

is equal ∀j ∈ L; and (iii) the socially optimal routing f ∗

can be implemented without operator-contracted capacity, i.e.,
∑

π∈Π f
∗π
e <

∑
i∈M kie

∀e ∈ E.

Proof. All proofs are presented in Appendix 2.2.7.1.

Under the sufficient conditions presented in Proposition 1, the CRN is entirely

homogeneous and essentially uncapacitated with respect to independent capacities.

These sufficient conditions are very restrictive and generally not satisfied in practice.

Hence, further analysis is needed regarding the stringency of the necessary conditions

to ensure group incentive compatibility of return share. Since developing insightful

necessary conditions is very hard in a general network setting, in this analysis we

consider a special case of the general CRN, denoted by CRN2 (Figure 4), and focus

on the impact of the heterogeneity in processing costs and capacity.

In CRN2, there are two producers A and B who have products πA and πB with

return volume dπA and dπB , respectively. They have independent processing resources

rA and rB, respectively, with capacities krA ≥ dπA and krB ≥ dπB . Without loss of

generality, let rA be more efficient than rB such that both products are processed

more cheaply at rA, i.e., ĉπArA < ĉπArB and ĉπBrA < ĉπBrB . Proposition 2 characterizes the

necessary and sufficient conditions for the allocation by return share to be in the core.

Proposition 2. Consider CRN2 as defined above. When ĉπArA ≤ ĉπBrA , xr is in the
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core of the CRF game if and only if (i) there is sufficient capacity at processor rA to

process both products, i.e., krA ≥ dπA + dπB , and (ii) the unit processing costs of both

products at processor rA are identical, i.e., ĉπArA = ĉπBrA . When ĉπArA > ĉπBrA , there exist

two constants ∆ and ∆̄ such that xr is in the core of the CRF game if and only if

the difference between the unit processing costs of product πA and πB at processor rA

satisfies ∆ ≤ ĉπArA − ĉπBrA ≤ ∆̄.

Proposition 2 indicates that even under a two-producer setting, return share is not

group incentive compatible unless under very restrictive conditions. When ĉπArA ≤ ĉπBrA ,

producer A has both the more efficient capacity and the product that is cheaper to

recycle. Thus, in order to ensure his participation in the collective system under return

share, the average cost in the collective system should equal ĉπArA . This is essentially

equivalent to all products being recycled at the same cost under the optimal routing,

which requires a homogeneous and uncapacitated CRN. This condition becomes less

stringent in the case where ĉπArA > ĉπBrA , i.e., where the producers are complementary

as they either contribute a cheaper-to-recycle product or an efficient processor to

the collective system. In this case, a certain degree of cost heterogeneity between

the products is allowed given it is confined to a certain range [∆, ∆̄] that essentially

reflects a balance between the cost burden and the capacity contributions of the two

producers (see Appendix 2.2.7.1 for the detailed formulae of ∆ and ∆̄).

The above observations provide insights regarding the factors that drive the in-

centive compatibility gap of the allocation by return share in general, namely, cost

heterogeneity and independent capacity contribution. Accounting for those factors

helps us identify the right ingredients for designing a cost allocation model based on

return share that is in the core, as illustrated in the next section.
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2.2.4.2 A Cost Allocation in the Core: Cost-corrected Return Share with Capac-
ity Rewards.

The adjustments we propose to cost allocation by return share account for the differ-

ences among producers regarding their cost burdens and their differences in capacity

usage versus contribution. First, recall that v∗π, β∗πj and α∗e denote the dual opti-

mal solutions of the centralized problem (C) with respect to the constraints (2) -

(4). Hence, we can interpret the term β∗πj as the marginal cost to process one addi-

tional unit of product π returned to collection point j in the centrally-operated grand

coalition, which captures the network synergies under a cost-minimization objective

due to the requirement that all e-waste returned is to be processed. We weigh the

return volumes of products at each collection point by their marginal costs to obtain

a cost-corrected return share for each producer i, denoted by µi:

µi =

∑
j∈L
∑

π∈Πi d
π
j β
∗π
j∑

j∈L
∑

π∈Π d
π
j β
∗π
j

. (9)

Second, let pe denote the unit reward price on edge e. Then producer i receives

a total capacity reward equal to
∑

e∈E pek
i
e, i.e., producers are compensated for their

independent capacity contributions to the grand coalition according to a set of unit

reward prices on the edges of the CRN. These monetary rewards increase the total

cost to be allocated to v(M) +
∑

i∈M
∑

e∈E pek
i
e.

Consider the following allocation, denoted by xpµ:

(xi)pµ =

[
v(M) +

∑
e∈E

pe
∑
i∈M

kie

]
· µi −

∑
e∈E

pek
i
e ∀i ∈M. (10)

We call this allocation method cost-corrected return share with capacity rewards and

prove that it guarantees group incentive compatibility.

Theorem 1. Given any CRN, ∃ capacity reward prices pe ≥ 0 ∀e ∈ E such that xpµ

is in the core of the CRF game.

Theorem 1 is a strong result showing that simple but powerful adjustments to

return share can guarantee a core allocation. The proof proceeds as follows: When
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µi ≥ 0 ∀i ∈ M (i.e., all producers exert a nonnegative cost burden on the system),

it can be shown that if the capacity reward price pe is set equal to |α∗e| ∀e ∈ E,

xpµ resides in the set of dual-based allocations, and therefore, according to Theorem

2 in [58], must be contained in the core of the CRF game. The situation becomes

more complicated when there exists a large heterogeneity in product costs and some

producer i makes a net revenue contribution to the system (i.e., µi < 0). In that

case, the above capacity reward prices pe = |α∗e| cannot guarantee a core allocation

if operator-contracted capacity exists, but we show constructively that a set of prices

based on {|α∗e|} can be found that results in an allocation equivalent to a dual-based

allocation.

The practical value of this mechanism is that it can be presented as an allocation

based on the return share notion with adjustments for operational costs and inde-

pendent capacity contributions. To illustrate how Theorem 1 would be implemented,

consider the simple example presented in §1, for which the optimal dual solution is

β∗π1
= 2, β∗π2

= 3, α∗r1 = −1, and α∗r2 = 0. Hence, we calculate that µA = 2·2
2·2+1·3 = 4

7

and µB = 3
7
, and set capacity rewards pr1 = 1 and pr2 = 0 (only capacity at r1, i.e.,

only producer A, is rewarded). By formula (10), the total cost v(M) = $5 should be

allocated such that (xA)pµ = 4
7
(5 + 1 · 2) − 1 · 2 = 2 and (xB)pµ = 3

7
· (5 + 1 · 2) = 3,

which is clearly a core allocation.

2.2.4.3 An Alternative Cost Allocation Model.

In this subsection, we exploit the underlying network structure to develop an alterna-

tive model that can generate a core allocation by only focusing on capacity rewards.

Consider the following cost allocation model (return share with capacity rewards, xpr),

which uses simple return shares instead of cost-corrected return shares compared to

formula (10):

(xi)pr
.
=

[
v(M) +

∑
i∈M

∑
e∈E

pek
i
e

]
· R

i

R
−
∑
e∈E

pek
i
e ∀i ∈M . (11)
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It is easy to see that when the capacity reward prices pe on all edges are set to

zero, this model would be equivalent to the return share model. Hence, to what

degree capacity rewards can reduce the incentive compatibility gap of the allocation

by return share and whether this model can guarantee a core allocation depends

on how the {pe} are chosen. For example, in the simple example of §1, we can set

pr1 = 2, pr2 = 0 and thus obtain the core allocation (xA)pr = 2
2+1
· (5+2 ·2)−2 ·2 = $2

and (xA)pr = 1
2+1
· (5 + 2 · 2) = $3. However, it is not straightforward whether a core

allocation can be achieved in general.

To explore this issue further, let k̄Se =
∑
i∈S k

i
e

RS
denote the ratio of the independent

capacity availability on edge e to the total return volume of producers in S, i.e., the

normalized independent capacity of S. We can then define the incentive compatibility

gap of xpr given reward prices {pe} similarly as that for the allocation by return share,

and obtain

G(xpr)
.
= max

S⊆M
{
∑
i∈S

(xi)pr − v(S)} = max
S⊆M
{RS · [v̄M − v̄S −

∑
e∈E

pe(k̄
S
e − k̄Me )]} . (12)

The last term in (12) allows us to observe that the effectiveness of capacity re-

wards largely depends on the value of k̄Se − k̄Me , which measures the difference between

the normalized independent capacity in S and in the grand coalition M . A critical

observation is that only sub-coalitions with k̄Se > k̄Me on at least one edge can po-

tentially benefit from such a capacity reward. Hence, intuitively, we can expect the

capacity rewarding mechanism to be effective in reducing the incentive compatibil-

ity gap of return share when the average independent capacity availability in the

grand coalition is low. In order to analyze this situation further, we assume for the

rest of section 2.2.4.3 that the collective independent capacity contracted by all pro-

ducers is insufficient to process the total volume of products returned, necessitating

additional operator-contracted capacity. We analyze the factors limiting the maxi-

mum throughput in the network
⋃
i∈M N i (i.e., the grand coalition network without

operator-contracted capacity) as follows.
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We first transform the CRN into a capacitated single-commodity network by

adding an artificial origin node o that is linked to each of the collection points j via a

fictitious edge (o, j) with a capacity equal to
∑

π d
π
j , the total return volume at j. We

also add an artificial destination node d and connect every node r′ ∈ R′ to d with an

infinite capacity edge. Let the resulting network be called Nd
o . Then the maximum

flow on Nd
o is equivalent to the maximum throughput of

⋃
i∈M N i. A cut in Nd

o is a

set of nodes containing the origin o but not the sink d and the corresponding cut set

is defined by the set of edges that cross the cut. Let C̄ be the minimum capacity o−d

cut in Nd
o and let E(C̄) be its cut set. The max-flow-min-cut theorem [5] indicates

that the maximum flow passing from o to d in Nd
o equals the total capacity of E(C̄).

Let the capacity of E(C̄) be KE(C̄)
.
=
∑

e∈E(C̄)\{(o,j),j∈L}
∑

i∈M kie+
∑

j:(o,j)∈E(C̄)

∑
π d

π
j .

Hence, KE(C̄) < R indicates an inadequate level of independent capacity in Nd
o .

Theorem 2. Assume the minimum cut C̄ is unique. If KE(C̄) < R and E(C̄) ∩

{(o, j), j ∈ L} = ∅, indicating that the throughput of
⋃
i∈M N i is not restricted by the

return volumes at the collection points, then G(xpr) = 0, i.e., ∃ capacity reward prices

pe ≥ 0 ∀e ∈ E such that return share with capacity rewards generates an allocation

in the core of the CRF game.

The intuition behind this result is the following: The condition KE(C̄) < R implies

an inadequate independent capacity availability within the grand coalition M on the

edges in the minimum cut set. Hence, for any sub-coalition S that has sufficient

independent capacity to operate its own independent CRN, k̄Se > k̄Me on at least one

edge in E(C̄). Since we assume E(C̄) ∩ {(o, j), j ∈ L} = ∅, this edge must be in

the original CRN and we can associate a capacity reward with it. According to our

analysis to formula (12), this fact guarantees that the capacity rewarding mechanism

potentially can benefit all sub-coalitions that are likely to break away. In other words,

there exists a set of nonnegative reward prices {pe} that can adjust return share to

be incentive compatible. Note that Theorem 2 can also be extended to cases where
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the min-cut is not unique (see Appendix 2.2.7.2).

Also note that under the conditions in Theorem 2 and assuming the minimum cut

C̄ is unique, an additional unit returned to any collection point j cannot increase the

maximum throughput of
⋃
i∈M N i since E(C̄)∩{(o, j), j ∈ L} = ∅. This indicates that

the volume burdens of products on
⋃
i∈M N i are not differentiated. Such homogeneity

is essential to the group incentive compatibility of return share with capacity rewards,

as Theorem 2 may not hold when it is violated. In that case, we can show that the

group incentive compatibility of the allocation can still be guaranteed without a

cost correction; instead, we design a volume adjustment to producers’ return shares

based on the relative volume burdens of their products. The details are presented in

Appendix 2.2.7.3.

We would like to mention that the practical value of the above findings is that

under certain circumstances, the widely-adopted return share calculation can be re-

tained and group incentive compatibility be guaranteed by a simple capacity reward-

ing mechanism, without resorting to cost-based adjustments. In other words, cost

heterogeneity among different producers’ products can be reflected in the cost allo-

cation mechanism through simple capacity rewards.

2.2.4.4 Extensions: Economies of Scale.

In the rest of §2.2.4, we extend our results in two practically important directions:

incorporating economies of scale and non-member access fees.

Economies of scale is one of the frequently mentioned advantages (and the reason

for the popularity of) collective implementations of EPR. To gain insight into the

impact of economies of scale on the group incentive compatibility of cost allocations,

we consider a model where a global discount (increment) factor that is a function

of the total return volume handled in the network is applied to the unit operational

or downstream cost (unit downstream revenue) over the entire CRN; this ensures
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tractability while capturing the essence of economies of scale. The discount and the

increment factors are modeled respectively as a decreasing function η ∈ (0, 1] and an

increasing function ζ ∈ [1,∞) in the total return volume. In particular, we denote the

factors associated with a sub-coalition S by ηS
.
= η(RS) and ζS

.
= ζ(RS) respectively.

We let the operational cost of product π on each edge e be ηS · cπe when S operates

independently. The downstream cost/revenue that processor r pays for/obtains from

downstream recycling changes to ηS · σπr and ζS · ρπr respectively. Thus, the net

processing cost becomes ηS · cπ(r,r′) + ηS · σπr + ζS · ρπr . By replacing the cost vector

in the objective function in the program (CS) introduced in §2.2.3 by the unit costs

defined above, we obtain a new program (CS(η,ζ)) for each coalition S ⊆ M , and we

denote its optimal objective function value by v(η,ζ)(S). We define the core of the

CRF game under scale economies and the incentive compatibility gap of an arbitrary

allocation in this setting accordingly.

We calculate the three cost allocations x
(η,ζ)
r , x

p(η,ζ)
r and x

p(η,ζ)
µ by replacing v(M)

by v(η,ζ)(M) in formulas (7) and (11), and by adjusting both v(M) and µi in (10) based

on (CM(η,ζ)). Let vr(M) =
∑

r∈R
∑

π∈Π ρ
π
r · f ∗π(r,r′), where f ∗ is the socially optimal

routing, denote the total processing revenue obtained within the grand coalition under

no scale economies. Define vr(S) in the same way for each sub-coalition S (M with

adequate independent capacity to fulfill the recycling obligation of its members (i.e.,

v(S) <∞).

Proposition 3. Given scale economies parameters η and ζ that decrease and increase

respectively with respect to the total return volume in the CRN,

1. x
p(η,ζ)
µ is in the core of the CRF game under scale economies;

2. In the case where ∀π ∈ Π, ρπr = ρπ ∀r ∈ R, if ∀S (M such that v(S) <∞, ζM ·

|vr(M)
R
| ≥ ζS · |vr(S)

RS
| holds, i.e., the average processing revenue obtained within S

is no higher than that within the grand coalition under scale economies, then the
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incentive compatibility gaps G(x
(η,ζ)
r ) and minpe≥0 G(x

p(η,ζ)
r ) satisfy G(x

(η,ζ)
r ) ≤

ηM · G(xr) and minpe≥0 G(x
p(η,ζ)
r ) ≤ ηM ·minpe≥0 G(xpr).

Thus, according to the first result of Proposition 3, cost-corrected return share

with capacity rewards continues to guarantee an allocation in the core of the CRF

game under scale economies. Now consider the models of return share and return

share with capacity rewards. When the conditions in the second result of Proposition

3 are met, economies of scale can reduce the incentive compatibility gap of both

models by at least a fraction of (1 − ηM). This is because all producers can enjoy

a percentage cost saving of (1 − ηM) within the centrally-operated grand coalition

under the return-share based cost allocations, which is no less than their economies

of scale benefits under smaller sub-coalitions in a fragmented system in this case.

Otherwise, the effect of scale economies becomes more complex and scale can even

lead to an increased incentive compatibility gap. We analyze this effect by studying

CRN2 defined in §2.2.4.1 under return share, and focusing on the case where ∃ a

sub-coalition S such that ζM · |vr(M)
R
| < ζS · |vr(S)

RS
|. In particular, we assume that

πA creates a positive unit processing revenue ρ and zero downstream cost at both

processors, while πB has no processing revenue but exerts a downstream cost σπBrA and

σπBrB at both processors. We denote this network as CRNρ
2. Proposition 4 provides

sufficient conditions under which G(x
(η,ζ)
r ) > G(xr).

Proposition 4. Consider a CRNρ
2. Assume that the increment factors satisfy ζA−1

ζM−1
>

dπA
dπA+dπB

. There exists a constant ρ̄ such that G(x
(η,ζ)
r ) > G(xr) if the unit processing

revenue ρ ≥ ρ̄.

Intuitively, the condition ζA−1
ζM−1

>
dπA

dπA+dπB
indicates that producer A incurs a

bigger loss in average revenue from participating in the collective system after scale

economies are factored in. In other words, the revenue component of the incentive

compatibility gap is increased by scale economies. When the unit revenue ρ is large
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enough, such an increase dominates the reduction in the cost component of the gap

due to scale economies; the threshold ρ̄ reflects the relative magnitude of the two ef-

fects. This intuition can be used to explain the potential effect of scale economies to in-

crease the incentive compatibility gap in general CRNs: When ζM ·|vr(M)
R
| < ζS ·|vr(S)

RS
|,

the sub-coalition S experiences a loss in average recycling revenue participating in the

grand coalition, which contributes to the incentive compatibility gap of the allocation

by return share. Since such a revenue component of the incentive compatibility gap

is affected differently by scale economies (through ζ) than that derived from cost

(through η), a larger incentive compatibility gap may occur when scale economies

are factored in. Note that such a situation can only occur when processing revenues

associated with different products/processors vary widely. The practical implication

of these observations is that in the presence of revenue heterogeneity among products

or processors, economies of scale may not be as effective in reducing the incentive

compatibility gap as has been advocated (Shao and Lee 2009), particularly if a cost

allocation mechanism that is not group incentive compatible, such as return share, is

used. In other words, the scale advantage of collective systems may be undermined

by the prevalent return share model.

2.2.4.5 Extensions: Non-member Access Fees.

Some EPR bills are designed with flexibility provisions so that a capacity shortfall in

an independent CRN can be complemented by the system operator using available

operator-contracted capacity at a surcharge. For example, in Washington, a sub-

coalition operating an independent CRN will be charged a unit shortfall fee by the

system operator for the amount that it fails to process compared to its mandated share

of the total return volume collected. Such a unit fee often covers the operational and

downstream cost to handle the missing part of the sub-coalition’s obligation within

the centrally-operated CRN plus a surcharge. This policy is essentially equivalent to
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allowing sub-coalitions that operate independent CRNs to use operator-contracted

capacity for supplementing their independent capacities at a surcharge. We call these

surcharges non-member access fees. We show that when non-member access fees are

incorporated into the CRF game, the allocation by cost-corrected return share with

capacity rewards remains in the core under properly designed non-member access

fees.

Let the unit non-member access fee for operator-contracted capacity on edge e

be φe. We construct a CRF game with {φe} by modifying the program (CS) in

§2.2.3.2 that computes the value of a sub-coalition S ( M as follows: (i) add the

term
∑

e∈E φe ·max{0;
∑

π∈ΠS f
π
e −

∑
i∈S k

i
e} to the objective function to account for

the total amount of non-member access fees paid for operator-contracted capacity;

and (ii) increase the right-hand side of the capacity constraint on each edge e by

the amount of operator-contracted capacity, i.e., kpe . Define the optimal value of this

modified program as the value of sub-coalition S with non-member access fees {φe},

denoted by vφ(S). One important feature of this CRF game under non-member access

fee is the user differentiation of the operator-contracted capacity: Producers need to

pay to use the operator-contracted capacity only if they defect from the collective

system. Hence, this game essentially combines features of existing cooperative games

in literature that assume for all players and coalitions, the exogenous capacity not

owned by players is available either for free (e.g., the pseudo-flow game by [91]) or at

a price (e.g., the extended linear production game by [59]).

In the following, we analyze the choices of {φe} such that cost-corrected return

share with capacity rewards continues to guarantee an allocation in the core. To

build intuition, we first observe that when φe =∞ ∀e ∈ N , sub-coalitions operating

independent CRNs in a fragmented system will only use their own independent ca-

pacities. In this case, the CRF game with non-member access fees is equivalent to

the original one described in §2.2.3.2 and thus xpµ must be in the core by Theorem 1.
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The opposite extreme case occurs when φe = 0 ∀e ∈ N , resulting in a special case of

the pseudo-flow game, which is not guaranteed to have a non-empty core [91]. Our

analysis finds a threshold for {φe} in closed-form expressions, such that all values

of φe above this threshold guarantee that xpµ resides in the core of the CRF game

with non-member access fees. Moreover, the threshold characterizes how the impact

of incorporating non-member access fees into the game model is related to the cost

heterogeneity in the CRN and producers’ capacity ownership conditions. In present-

ing the result, we use e0 to denote an edge in the CRN where independent capacity

exists, i.e.,
∑

i∈M kie0 > 0.

Theorem 3. Given any CRN, ∃ capacity reward prices pe ≥ 0 ∀e ∈ E such that xpµ

is guaranteed to be in the core of the CRF game under non-member access fees {φe}

if

1. φe ≥ maxi∈M{(1− µi)} · |α∗e| ∀e ∈ E when µi ≥ 0 ∀i ∈M .

2. φe ≥
[
mine0∈E:

∑
i∈M ki

e0
>0 maxi∈M{(1−

ki
e0∑

i∈N ki
e0

)}
]
· |α∗e| ∀e ∈ E otherwise.

Theorem 3 implies that non-member fees can be effectively utilized to induce par-

ticipation in a collective system. Notice that the lower bounds given as the right-hand-

side in the above formulas will be smaller if the cost-corrected return shares (µi’s) or

the percentage independent capacity ownerships (
ki
e0∑

i∈N ki
e0

’s) are similar among the

producers. In fact, they attain their lowest value if µi or
ki
e0∑

i∈N ki
e0

equals 1
n
∀i ∈ N .

The practical implication of this observation is that it requires lower non-member

access fees to guarantee a core allocation under the model of cost-corrected return

share with capacity rewards if there is a higher level of homogeneity in cost/revenue

among products and in the independent capacity ownerships among producers.
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2.2.5 Implications for Practice

This section uses the Washington state implementation - one of the first U.S. imple-

mentations and the best documented one - as a test bed to investigate the practical-

ity, economic value added and implications of the results developed in the previous

section. The information used includes 2009 public e-waste data from Washington

state [145, 180, 41] and input from stakeholder interviews with collectors, processors,

transporters and NGOs (conducted by the authors in May 2011).

2.2.5.1 Washington State EPR Implementation Description.

In the state of Washington, the 2006 e-waste bill [176] mandated the formation of the

Washington Materials Management and Financing Authority (WMMFA) whose job

is to create a state-wide, collective “standard plan” to process the allowable e-waste

(TVs, monitors, computers, and laptops) brought to its collection points by the con-

sumers. Please refer to Section 2.1.1 for the details regarding the legislation and the

operations of the “standard plan”. In particular, the bill also allowed producers to

opt out of the standard plan (subject to Department of Ecology approval) and oper-

ate their own collection and recycling networks. As mentioned, two such independent

plans were filed in 2009 by two producers groups who believed their stand-alone costs

would be lower than their cost allocation under the standard plan. Although these

plans were rejected on the grounds that they were not sufficiently developed, they are

expected to be resubmitted [43], as the adjustments made by the Authority to the

return share model based on market share have not fully addressed their concerns.

Consequently, a fragmented state-wide recycling system in the state of Washington

is a real possibility, and our proposed cost allocation mechanism can serve to resolve

these issues as follows: The system operator (WMMFA) would communicate the cost

allocation mechanism to be used. Since independent capacities are subject to veri-

fication prior to approval of the plan by the Department of Ecology, the WMMFA
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has access to this information. After returns are observed, the WMMFA would in-

corporate this independent capacity information in calculating the optimal routing

of e-waste flows, determine the cost-corrections and the reward prices based on this

routing, and in turn, the cost to be allocated to each producer. Ex-post, producers

would be able to verify that their allocation is superior to what they would have

achieved on their own, giving them the incentive to stay with the WMMFA-operated

collective system.

To demonstrate how our proposed solution can be implemented in the Washington

example and its potential economic implications, we construct a highly representative

version of the Washington state collection and recycling network, including a sample

of fifty collection points, eight consolidation points, eight processors, and seventeen

producers who produce two product categories (TV/monitors and computers) with a

waste volume equal to the entire 2009 volume in Washington. In the set of processors,

we include the six in-state processors involved in the WA program, among which two of

them (denoted by r1 and r2) are high-tech processors and the rest (denoted by r5−r8)

are low-tech manual facilities, plus two out-of-state high-tech processors (denoted

by r3 and r4) associated with potential independent plans (discussed below). The

distinction in our example between “high-tech” and“low-tech” reflects the operational

differences among processors in practice, and results in cost heterogeneity in the CRN.

The detailed construction of the sample CRN is provided in Appendix 2.2.7.4.

The waste volume is taken equal to the entire 2009 volume. We distinguish be-

tween two product categories - TVs/monitors (≈27M lbs and 70% by volume) and

computers (≈12M lbs and 30% by volume), as the products’ processing costs and post-

use values primarily depend on this distinction at present. Specifically, TVs/monitors

are expensive to process due to the hazardous materials contained in them, while com-

puters generate revenues for processors as their components and/or materials have

high reuse value. The net processing cost structures for each product are reproduced
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Table 1: Representative net processing cost structure (cents/lb) by facility and prod-
uct as a function of τ , the mandated recycling requirement. The negative numbers
indicate revenues.

High-tech processor
Low-tech
processor
(r5 − r8)

Local
(r1− r2)

Out-of-state
TV/monitor-specialized

(r3)

Out-of-state
IT-specialized

(r4)
TVs/monitors 5 + 9τ 5 + 5τ 5 + 11τ 7 + 13τ

Computers -10 -7 -20 -6

in Table 1 for convenience, which are disguised estimates but structurally representa-

tive (see Appendix 2.2.7.4 for the construction of these costs and that of the collection,

consolidation and transportation costs).

Motivated by the existing independent recycling capacity of producers around the

WA region, we model two producers as having access to independent CRNs. In par-

ticular, a group of TV producers has contracted with a processor in Oregon that has

advanced TV/monitor recycling technology in order to fulfill its recycling obligations

in that state, and has filed one of the two independent plans in Washington. An

IT producer has established a nationwide collection and recycling system including

its own processing facility in Northern California, and is expected to apply for an

independent plan in WA. In light of this information, and based on these producers’

return volumes by category, we consider a TV producer A with 5.5M return vol-

ume, and a computer producer B with 2.1M lbs (25%) monitor volume and 6.4M lbs

(75%) computer volume. We assume that A and B have access to 6M lbs and 9M lbs

of independent recycling capacities at two out-of-state high-tech processors that are

specialized in recycling TVs/monitors (r3) and IT products such as computers (r4),

respectively. In addition, we model that the Authority can contract with in-state

processors r1, r2, and each of r5 − r8 for up to 10M, 5M and 6M lbs of capacity,

respectively. Collection and transportation are assumed to be uncapacitated for sim-

plicity of exposition. In experiments not reported here, we observed similar network
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effects as discussed below when such capacities were included.

2.2.5.2 Impact Assessment: Fairness Gap and Efficiency Loss.

In the following, the “centrally-operated grand coalition” refers to all producers par-

ticipating in the standard plan, whereas the “fragmented system” refers to the one

where producers A and/or B do not. In either case, the “system cost” includes the

cost generated by the collection, transportation and processing of all the producers’

e-waste. The “efficiency loss” refers to the increase in the system cost after the grand

coalition disintegrates into a fragmented system.

In Washington, the incentive compatibility gap of the cost allocation by return

share, and the associated efficiency loss from fragmentation, are substantial. The

solid line in Figure 5(a) reports the incentive compatibility gap of the cost allocation

by return share (xr) when τ varies from 0 to 1, assuming no scale economies. Return

share is clearly not group incentive compatible and at worst (when τ = 1), producer

B is allocated about $0.6M more within the centrally-operated grand coalition, which

is almost 60% more than what it could achieve on its own. This is because the cost

allocated to producer B according to its return share reflects neither the value of B’s

independent capacity in reducing the total operating cost within the grand coalition,

nor the much smaller cost burden (even a positive revenue) associated with computers,

which are dominant in B’s waste stream. Thus, B has an incentive to defect. While

A alone would not defect, if B defects, A also finds it preferable to do so provided the

A-B subcoalition allocates cost in a group incentive compatible way (i.e., adopts a

core allocation within themselves). Figure 5(b) plots the absolute efficiency loss that

would result. This loss is between 4.5-6.5% of the system cost of the grand coalition,

due to the reduction in network synergies in a fragmented system. It represents a

lower bound on the real efficiency loss as it is calculated under no economies of scale.

Remark 1. The economic implications of legislative targets are strongly influenced
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capacity rewards. In this figure, producer B
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the return share model, which defines the in-
centive compatibility gap of the allocation.

0 0.2 0.4 0.6 0.8 1
3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5
x 10

5

Minimum Recycling Requirement τ

(b) Efficiency loss (in dollars) when the A-
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operated plan.

Figure 5: Fairness gaps and efficiency loss under return share based allocations as a
function of τ , the mandated recycling requirement, under no scale economies.

by product heterogeneity and network effects.

A revealing property of Figure 5(b) is that the efficiency loss is non-monotone.

This phenomenon derives from the change in cost heterogeneity in the CRN and

the consequent network effects as the recycling requirement becomes more stringent.

Specifically, there is a change in the relative cost saving from rerouting product flow

from a local low-tech processor to a high-tech one between TVs/monitors and comput-

ers when τ reaches 0.5. Hence, in the fragmented system, it is optimal to process the

computer volume of producers other than A and B at the local high-tech (low-tech)

processors when τ is below (above) 0.5. Therefore, how e-waste flows are rerouted

relative to this baseline when a centrally-operated grand coalition is formed changes

with τ , yielding a non-monotone efficiency loss function. Another way to see this is

to note that network effects depend not only on the absolute magnitude of costs, but

also on their relative values. Hence, while one expects the efficiency loss to increase as

τ rises, the reverse may be observed. This discussion highlights the strong influence

of network effects in determining the implications of legislative choices.
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Remark 2. This case is an instance where allocation by return share with capacity

rewards generates a core allocation.

This is observed by referring to the dashed line in Figure 5(a), and is a demon-

stration of our general theoretical discussion regarding the sufficient conditions to

guarantee core allocations under this model in §2.2.4.3.

We now turn to the effect of scale economies. We model the discount factor ηS

of a coalition S as a convex quadratic decreasing function of RS (the parameters of

the function are calculated based on input from WMMFA; see Appendix 2.2.7.4 for

details); the increment ζ is assumed to be 1 for any return volume. To highlight the

effects of scale economies, we fix τ = 1 and let the return volumes of producers A and

B vary from 0.5 to 1 times their base values, while the amount of their independent

capacity remains constant. Figure 6 yields the following observation:

(a) Fairness gaps (in dollars) of the allocation by
return share.

(b) Efficiency loss (in dollars) when the A-B
sub-coalition does not join the centrally-operated
plan.

Figure 6: Comparison of efficiency loss and incentive compatibility gaps with/without
scale economies as a function of the return volume of A and B relative to the nominal
value. The capacity levels remain unchanged.

Remark 3. The presence of economies of scale reduces the incentive compatibility

gap of the allocation by return share (yet cannot guarantee a core allocation), and can

greatly accentuate the efficiency loss from fragmentation.
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Note that proponents of collective systems tend to fall back on the economies of

scale argument when faced with criticisms regarding the issues such as over-charging

and potential system fragmentation. Our analysis underlines that economies of scale

may not be sufficient to ensure group incentive compatibility of return share and thus

voluntary participation of all producers in a collective system. The resulting efficiency

loss from fragmentation can reach about $1.42M (equivalent to a 20% increase in

system cost) when τ = 1, which is more than four times that without scale economies

(about $0.35M). We conclude that scale makes it all the more important to resolve

incentive compatibility issues as it multiplies the efficiency loss that results from

fragmentation.

Collectively, these observations highlight the significant incentive compatibility

gaps and potential efficiency losses that can be incurred in practical implementations,

and the difficulty in predicting the sensitivity of these quantities with respect to

legislative choices and system characteristics. They also underline why finding a group

incentive compatible cost allocation is so important from an economic perspective.

2.2.5.3 The Mechanics of Adjustments to Return Share.

Return share and cost-corrected return share with capacity rewards generate a core

allocation in the Washington example as discussed. Here, we demonstrate how these

two proposed adjustments to return share work.

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1
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Minimum Recycling Requirement τ

Return share of A

Return share of B

Cost−corrected return share of A

Cost−corrected return share of B

Figure 7: Return shares and cost-corrected return shares of producers A and B.
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Figure 7 shows that the cost correction adjusts A’s return share upward and B’s

downwards. This is because producer A makes TVs, while producer B’s return vol-

ume consists mainly of computers (75% of the volume), which generate recycling

revenue and exert a much smaller cost burden on the system than TVs. Note that

the cost-corrected return share of producer B can even be negative, as the recycling

revenue from computers can dominate the costs of the smaller volume of TVs. As the

mandated recycling requirement τ increases, the cost correction becomes smaller.

This is because an increasing recycling requirement raises the processing cost of

TVs/monitors, which reduces the significance of the revenue contribution of B and

decreases the relative cost burden exerted by A.
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Under return share
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Under cost−corrected return share
with capacity rewards

(a) Unit capacity reward price at the
TV/monitor-specialized processor where A
has independent capacity
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0

0.02

0.04

0.06
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Under return share
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Under cost−corrected return share
with capacity rewards

(b) Unit capacity reward price at the IT-
specialized processor where B has indepen-
dent capacity

Figure 8: The unit capacity reward prices (in dollars) which lead to a cost allocation
in the core using the minimum total capacity reward under each model of the mech-
anisms of return share with capacity rewards and cost-corrected return share with
capacity rewards.

Remark 4. To ensure a core allocation, the capacity reward prices should be tailored

to whether a cost correction is implemented.

Figure 8(a) and (b) plot the unit reward prices for the independent capacity
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contributed by A and B (at the TV/monitor-specialized and the IT-specialized pro-

cessors, respectively) that guarantee a core allocation under the two proposed mech-

anisms4. Worth noting is the significant interaction between capacity reward prices

and cost corrections: With a cost correction, only the TV/monitor specialized capac-

ity brought in by producer A commands a capacity reward; without a cost correction,

only producer B gets a capacity reward for the IT specialized capacity it brings in.

The underlying reason for the two contrasting cases is the different roles cost cor-

rection can play: A is penalized by the cost correction and thus may end up with

too high a cost without a capacity reward, while B is rewarded and the reward from

the cost correction is enough to account for both its capacity contribution and the

processing revenues of its products. These observations highlight the nuances in the

implementation of the proposed mechanisms.

Finally, we evaluate the non-member access fees to be charged at the local proces-

sors (where capacity is centrally contracted) that ensure a core allocation under the

cost-corrected return share model with capacity rewards. The lower bounds of such

fees are positive at the two local high-tech processors where the capacity is fully-used

under the optimal routing; they vary from 2.3-6.1 cents/lb for r2 and 0.3-3.9 cents/lb

for r3 as the minimum recycling requirement τ varies from 0 to 1. Adding this to

the 24 cents/lb average processing cost in the Washington case, this is equivalent to

charging no less than around a 26-30 cents/lb shortfall fee to producers operating

independent plans, depending on τ . We conclude that the 50 cents/lb shortfall fee

charged in Washington [44] is above this lower bound and thus helps to motivate

producers’ participation in the collective system.

4Since there exist multiple such prices under both mechanisms, we focus on those under which
the total capacity reward to the A-B sub-coalition is the smallest.
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2.2.5.4 Evaluating the Value of Source Separation.

Implementing the optimal routing and calculating the proposed cost allocations re-

quires counting and separation (by product type and producer) at collection points.

In practice, e-waste is often routed to the processors without separation and return

shares are calculated by sampling. Thus, the CRN gains by avoiding the separation

cost, but it loses from not routing the e-waste optimally through the CRN. Moreover,

a group incentive compatible cost allocation as proposed here cannot be implemented.

In this section, we investigate the value of source separation in the Washington

example. To this end, we develop a “myopic routing” policy inspired by the current

practice in Washington (as opposed to the “optimal routing”) where the e-waste is

shipped to the processors without separation based on the transportation cost on

each edge so as to minimize the total consolidation and transportation cost subject

to capacity constraints at each processor. Sampling is carried out at each processor

so as to achieve a desired accuracy level, based on which the total processing cost

is calculated (please refer to Appendix 2.2.7.4 for the detailed specification of the

myopic policy). We incorporate new elements that influence the operating cost under

the myopic routing policy in the Washington example. Specifically, we include a

separation cost and a sampling cost. We model product heterogeneity as the fraction

p of the TVs in the total volume; a p value close to 0.5 means a higher heterogeneity

level.

Remark 5. The myopic routing has an advantage over the optimal one in terms of

the total cost only under a high cost difference between separation and sampling, and

a low level of product heterogeneity. However, such an advantage may not be realized

as the allocation by return share is generally not group incentive compatible under the

myopic routing.

Figure 5(a) compares the centralized CRN’s cost under the optimal routing with
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(a) Efficiency difference (b) Fairness gap under the myopic policy

Figure 9: Percentage difference in the centralized system’s total cost (including sep-
aration or sampling cost) between the myopic policy and the optimal policy, and the
incentive compatibility gap under the myopic policy.

source separation and the myopic routing. A big difference between the cost of sep-

aration and sampling makes it relatively too expensive to implement the optimal

routing. Moreover, a lower level of product heterogeneity requires a smaller sample

size to achieve the desired sampling precision and thus further reduces the cost of

the myopic policy. Note that the Washington instance is essentially a special case

of the numerical example used in this section with p=70% (see Appendix 2.2.7.4 for

details), and for this particular instance, the myopic policy dominates the optimal

one. This implies that from the WMMFA perspective, whose objective is to minimize

the overall system cost, the myopic policy will be preferred. An important caveat is

in order, however: The centralized cost of the myopic policy can only be achieved if

return share produces a core allocation, since return share is the only cost allocation

that can be implemented with sampling at the processors. We find return share to be

unfair for the entire range of the difference between the unit separation cost and sam-

pling cost values (Figure 5(b)). Therefore, although the myopic routing with return

share may seem attractive because it saves on separation cost, it will continue to raise

over-charging concerns that may culminate in a fragmented system in Washington.
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A critical driver of the status quo, where separation is economically not prefer-

able, is that the current composition of e-waste flows is dominated by mainly CRT

TVs. This results in a lower sample size requirement and a lower total sampling cost.

Presumably, the e-waste composition will change in the near future, and will consist

of a variety of different TV sets (e.g., fewer CRTs and more LCDs with Hg backlights,

LCDs without Hg backlights and LEDs) and more IT products. The increased prod-

uct heterogeneity would require larger sample sizes, and more variation in the value

and processing requirements would increase the attractiveness of source separation.

Indeed, our analysis suggests that the optimal policy with source separation would

be highly justified as long as the per unit separation cost is modest (not more than 2

cents higher than the unit sampling cost at p = 50%). With technological improve-

ments yielding higher RFID read rates and lower tag costs [76], this appears to be

feasible in the near future. In other words, our analysis suggests that centralized

systems such as the WMMFA should seriously consider the potential from separation

at source, both in terms of overall cost efficiency and a group incentive compatible

cost allocation.

2.2.6 Conclusions

In this study, we contribute to the ongoing debate regarding how to implement EPR

legislation in an effective and efficient manner. The choice in practice is often framed

as one between an efficient collective system where producers share a lower total cost,

and an individual system, where a producer is only responsible for its own cost, but

is unable to benefit from network synergies. We propose an alternative paradigm

that is capable of resolving this dilemma. The resolution we propose is based on the

observation that the active debate is not necessarily critical of collective systems per

se, but rather of the concerns regarding the prevalent proportional cost allocation

methods used in these systems. Accordingly, we focus on identifying group incentive
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compatible adjustments to the return share method, which is prevalent in practice due

to its simplicity. We first show that the cost allocation by return share is generally

not group incentive compatible due to its inability to account for processing cost

heterogeneity among products or for network synergies that arise in the CRN. Then,

we show that these shortcomings can be alleviated by simple adjustments such as

correcting return shares to account for differences in processing costs, and rewarding

independent capacities according to the value they bring to the collective CRN.

These results can influence the practice of EPR, as already evidenced by their

adoption as policy input for the revision of the WEEE Directive in the UK [83]. They

can also help different stakeholders shape their EPR implementation strategies. For

example, producers lobbying for bills and regulations that reflect their cost burdens

more accurately can focus their efforts on promoting these two easy-to-communicate

concepts. Similarly, state or producer-operated systems who aim to achieve scale

economies by drawing as many producers as possible to their system can implement

these concepts. As we show, scale by itself is not a guarantor of stability for collective

systems, and can even exacerbate their incentive compatibility gap, so these notions

continue to be valuable for any size organization. Finally, collective systems who wish

to institute flexibility provisions can institute non-member access fees developed here

and maintain group incentive compatibility in cost allocation.

The producer dynamics in the state of Washington provide the opportunity to

apply the concepts we develop and to assess their practical significance. To capture

the producer behavior observed in Washington, we consider a setting where two pro-

ducers are proposing to set up independent CRNs. We illustrate how the proposed

cost allocation models can be implemented in this state. Our findings suggest that

these cost allocation models, by guaranteeing group incentive compatibility, can retain

these producers in the state-wide collective system and result in efficiency improve-

ment of 5 - 20% for the state of Washington, which translates to $0.45M - $1.8M of
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opportunity cost. With a simple population-based projection of this scenario-based

analysis to the United States, this cost efficiency improvement would amount to ap-

proximately $22M - $90M for the electronics industry. Note also that this projection

is based on the 5.78 lbs/capita collection rate in Washington, which is much lower

than its European counterpart that reaches 17.6 lbs/capita because of its broader

scope [51]. If similar collection volumes are attained (e.g. via scope expansion) in

the US, the predicted efficiency improvement by a group incentive compatible cost

allocation can go up to $67M - $274M for the electronics industry. Moreover, if

fragmentation results in fewer processors being involved in each component of the

fragmented system, processor competition may soften. In this case, our calculation

of the efficiency loss would provide a conservative estimate of the true loss. More

importantly, projecting the sales volume in Washington to the sales volume in the

United States, we find that the collective system with cost allocation by return share

could charge producers A and B up to $30M more than their actual cost burdens.

While this is a case-based analysis, it underlines the economic potential of achiev-

ing collective system implementation and group incentive compatible cost allocation.

The analysis also highlights the sensitivity of the outcomes with respect to legislative

choices and network characteristics.

Implementing group incentive compatible cost allocations requires source separa-

tion, which can be a costly activity. Nevertheless, our analysis of the WA state data

suggests that collective systems should seriously consider finding efficient ways of

source separation, especially in the face of high product heterogeneity. This appears

to be economically feasible: the Japanese implementations of EPR [163] show that

separation can be achieved at low cost by a simple barcode technology.

While our focus in this section is cost efficiency given an existing set of products,

an important policy goal of EPR is to make producers internalize the end-of-life bur-

den of their products and encourage them to design better products. In the next
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section, we incorporate such a design incentive dimension of EPR implementation

into the analysis. We investigate whether the cost allocations we develop are effective

in providing design incentives, and explore the interactions between individual de-

sign incentives, efficiency and group incentive compatibility of the mechanism under

collective EPR.

2.2.7 Appendix

2.2.7.1 Proofs

Proof to Proposition 1. According to [58], the following dual-based cost allocation is

guaranteed to be in the core of the CRF game.

(xi)νd =
∑
j∈L

∑
π∈Πi

β∗πj d
π
j +

∑
e∈E

α∗ek
i
e +
∑
e∈E

α∗eν
i
e ∀i ∈M, (13)

where νie ≥ 0 ∀i ∈M ∀e ∈ E, and
∑

i∈M νie = kpe ∀e ∈ E.

According to conditions (i) and (iii) in Proposition 1, β∗πj are identical for all π

given any j ∈ L and α∗e = 0 ∀e ∈ E. Hence

(xi)r
.
=
v(M)

R
·Ri =

∑
j∈L β

∗
j · [
∑

π∈Π d
π
j ]

R
·Ri =

∑
j∈L

β∗j · [
∑
π∈Πi

dπj ] . (14)

The last equality holds due to condition (ii) that for each product π,
dπj∑
π∈Π d

π
j

is

identical for all collection points j. Hence, if we denote lπ
.
=

dπj∑
π∈Π d

π
j
∀π ∈ Π, then

Ri

R
=
∑

π∈Πi lπ and thus∑
π∈Π d

π
j

R
·Ri =

∑
π∈Π

dπj ·
∑
π∈Πi

lπ =
∑
π∈Πi

(
∑
π∈Π

dπj ) · lπ =
∑
π∈Πi

(
∑
π∈Π

dπj ) · dπj∑
π∈Π d

π
j

=
∑
π∈Πi

dπj

(15)

Hence, xr is equivalent to the dual-based allocation defined in (13).

Proof of Proposition 2. We first prove the result when ĉπArA ≤ ĉπBrA . The average cost

incurred when A operates alone is v̄A = ĉπArA . Hence by equation (7), if xr is in the

core, the minimum average cost within the grand coalition M = {A,B} must satisfy

v̄M ≤ v̄A = ĉπArA . Furthermore, when ĉπArA ≤ ĉπBrA , ĉπArA is the smallest unit processing
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cost on CRN2, thus ĉπArA ≤ v̄M . Therefore, we conclude that xr being a core allocation

indicates that v̄M = ĉπArA , which requires that all products are processed at rA and

ĉπArA = ĉπBrA . On the other hand, when there is sufficient capacity at rA to process all

products and ĉπArA = ĉπBrA , v̄M = v̄A = v̄B, and xr must be in the core according to

equation (7).

When ĉπArA > ĉπBrA , we consider four scenarios and calculate the minimum average

cost v̄M respectively. We first define the following notation that represents the unit

processing cost difference at the two processors for each product: δπi
.
= ĉπirB − ĉπirA

i = A,B.

scenario 1 where there are sufficient capacity at processor rA, i.e., krA ≥ dπA + dπB .

scenario 2 where krA < dπA + dπB and δπA ≥ δπB .

scenario 3 where dπB ≤ krA < dπA + dπB and δπA < δπB .

scenario 4 where krA < dπB and δπA < δπB .

The minimum average cost within the grand coalition in each scenario is calculated

as below.

v̄M =
1

dπA + dπB
·



[ĉπArA · dπA + ĉπBrA · dπB ] scenario 1

[ĉπArA · dπA + ĉπBrA · (krA − dπA) + ĉπBrB · (dπB − krA + dπA)] scenario 2

[ĉπBrA · dπB + ĉπArA · (krA − dπB) + ĉπArB · (dπA − krA + dπB)] scenario 3

[ĉπBrA · krA + ĉπBrB · (dπB − krA) + ĉπArB · dπA ] scenario 4

(16)

By equation (7), the allocation by return share is in the core of the CRF game if

and only if v̄M ≤ v̄A = ĉπArA and v̄M ≤ v̄B = ĉπBrB . By solving these two inequalities in

each scenario with v̄M replaced by the corresponding formula in (16), we obtain the

following sufficient and necessary condition for the allocation by return share to be

82



in the core.

ĉπArA−ĉπBrA ∈



[0, d
πA+dπB
dπA

· δπB ] scenario 1

[
dπA+dπB−krA

dπB
· δπB , krA

dπA
· δπB ] scenario 2

[
dπA+dπB−krA

dπB
· δπA , 1

dπA
· ((dπA + dπB) · δπB − (dπA + dπB − krA) · δπA)] scenario 3

[
dπA+dπB−krA

dπB
· δπB , 1

dπA
· ((dπA + krA) · δπB − dπA · δπA)] scenario 4

(17)

Hence, we can prove the proposition when ĉπArA > ĉπBrA by defining ∆ and ∆̄ as the

lower and upper bounds specified in (17) in each scenario.

Proof of Theorem 1. We discuss two cases to prove this theorem. Note that in our

problem, the dual variables βπj are unrestricted while αe ≤ 0 ∀e ∈ E. In addition,

since we assume sufficient public capacity is available, the centralized problem (C) is

feasible and obviously lower bounded (e.g., by zero). Thus strong duality must hold

for (C).

Case 1 When µi ≥ 0 ∀i ∈ M , we set pe = |α∗e| ∀e ∈ E. Since v(M) =∑
j∈L
∑

π∈Π β
∗π
j d

π
j +
∑

e∈E α
∗
e ·(
∑

i∈M kie+k
p
e) due to strong duality for (C), we conclude

that v(M) +
∑

e∈E pe
∑

i∈M kie =
∑

j∈L
∑

π∈Π β
∗π
j d

π
j +

∑
e∈E α

∗
ek

p
e . Thus by formula

(10),

(xi)pµ =

[∑
j∈L

∑
π∈Π

β∗πj d
π
j +

∑
e∈E

α∗ek
p
e

]
·
∑

j∈L
∑

π∈Πi β
∗π
j d

π
j∑

j∈L
∑

π∈Π β
∗π
j d

π
j

+
∑
e∈E

α∗ek
i
e

=
∑
j∈L

∑
π∈Πi

β∗πj d
π
j +

∑
e∈E

α∗ek
i
e +
∑
e∈E

α∗eµ
ikpe . (18)

Hence, xpµ is equivalent to the cost allocation xνd defined in (13) if we set νie = µikpe

∀e ∈ E ∀i ∈ M . With µi ≥ 0 ∀i ∈ M in this case, νie ≥ 0 ∀e ∈ E ∀i ∈ M . Hence,

this cost allocation is a dual-based cost allocation, and thus is in the core of the CRF

game.

Case 2 When ∃i ∈ M such that µi < 0, we show that any set of prices {pe}

that satisfy the following conditions give rise to an allocation xpµ in the core of the
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CRF game.
pe ≥ |α∗e| ∀e ∈ E (a)∑

e∈E pe ·
∑

i∈M kie =
∑

e∈E |α∗e| · (
∑

i∈M kie + kpe) (b)

(19)

To show this, consider an arbitrary sub-coalition S ⊂ M . Due to strong dual-

ity and condition (19b), v(M) +
∑

e∈E pe
∑

i∈M kie =
∑

j∈L
∑

π∈Π β
∗π
j d

π
j +

∑
e∈E α

∗
e ·

(
∑

i∈M kie + kpe) +
∑

e∈E |α∗e| · (
∑

i∈M kie + kpe) =
∑

j∈L
∑

π∈Π β
∗π
j d

π
j . Then by formula

(10), the cost allocated to S satisfies

∑
i∈S

(xi)pµ =
∑
i∈S

{[∑
j∈L

∑
π∈Π

β∗πj d
π
j

]
·
∑

j∈L
∑

π∈Πi β
∗π
j d

π
j∑

j∈L
∑

π∈Π β
∗π
j d

π
j

−
∑
e∈E

pek
i
e

}

=
∑
i∈S

{∑
j∈L

∑
π∈Πi

β∗πj d
π
j −

∑
e∈E

pek
i
e

}

≤1
∑
i∈S

{∑
j∈L

∑
π∈Πi

β∗πj d
π
j +

∑
e∈E

α∗ek
i
e

}
≤2 v(S) (20)

The inequality ≤1 is due to condition (19a). The second one ≤2 is due to the fact

that [β∗, α∗] is a feasible dual solution to the centralized problem within S, i.e., (CS),

and weak duality. Hence, by definition, the allocation xpµ is in the core of the CRF

game.

We then show that there exist prices that satisfy condition (19). Pick one edge

e0 such that
∑

i∈M kie0 > 0 (such an edge always exists otherwise no producer can

operate alone). Define a set of reward prices such that

pe0
.
= |α∗e0|+

∑
e∈E |α∗e| · kpe∑

i∈M kie0
; pe = |α∗e| ∀e 6= e0 (21)

It is easy to verify that such a set of prices satisfies both conditions specified in (19).

In fact, when these prices are adopted, we can calculate that the cost allocation to

producer i equals

(xi)pµ =
∑
j∈L

∑
π∈Πi

β∗πj d
π
j −

∑
e∈E

pek
i
e =

∑
j∈L

∑
π∈Πi

β∗πj d
π
j +

∑
e∈E

α∗ek
i
e +
∑
e∈E

α∗ek
p
e ·

kie0∑
j∈M kje0

(22)

84



Hence the cost allocation xpµ is equivalent to a dual-based cost allocation xνd defined

in (13) if we set νie =
ki
e0∑

i∈M ki
e0
· kpe ∀e ∈ E ∀i ∈M .

Proof of Theorem 2. To prove this theorem, we need the following lemma which cal-

culates G(xpr) as the optimal objective value of a linear program given any CRN.

Lemma 1. Let Ψ = {S ⊆ M : v(S) < ∞} be the set of sub-coalitions whose mem-

bers have sufficient independent capacity to process their own return volumes in their

individual CRNs. Then

G(xpr) = max
∑
S∈Ψ

[v̄M − v̄S] · yS (23)

s.t.
∑
S∈Ψ

[
k̄Se − k̄Me

]
· yS ≤ 0 ∀e ∈ E (24)

∑
S∈Ψ

1

RS
· yS ≤ 1 (25)

nonnegativity constraints . (26)

Proof of Lemma 1. The problem of minpe≥0 G(xpr) = minpe≥0 maxS⊆M{RS · [v̄M− v̄S−∑
e∈E pe(k̄

S
e − k̄Me )]} is equivalent to the following linear program:

min z s.t. z ≥ RS ·[v̄M−v̄S−
∑
e∈E

pe(k̄
S
e −k̄Me )] ∀S ∈ Ψ pe ≥ 0 ∀e ∈ E . (27)

We obtain the program (23)-(25) by taking the dual of the above problem (27).

Continuing the proof of Theorem 2, since E(C̄) ∩ {(o, j), j ∈ L} = ∅, KE(C̄) =∑
e∈E(C̄)

∑
i∈M kie < R. Hence, adding up the constraints (24) over the set E(C̄), we

obtain another constraint
∑

S∈Ψ

{∑
e∈E(C̄)

[
k̄Se − k̄Me

]}
· yS ≤ 0. Since ∀S ∈ Ψ such

that v(S) <∞, subset S has enough independent capacity to process its own return

volume in its private CRN, and
∑

e∈E(C̄)

∑
i∈S k

i
e ≥ RS. Thus

∑
e∈E(C̄)

[
k̄Se − k̄Me

]
=∑

e∈E(C̄)

∑
i∈S k

i
e

RS
−

∑
e∈E(C̄)\{(F,d)}

∑
i∈M kie

R
> 0, as the first (second) term is greater than

or equal to (strictly less than) 1. Due to the nonnegativity constraints on yS, we

conclude that the only feasible solution to the program (23)-(25) is the zero vector

and thus G(xpr) = 0 due to Lemma 1.
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Proof of Proposition 3. We first prove that G(x
p(η,ζ)
µ ) = G(xpµ) = 0. Consider a CRN

with unit cost (revenue) modified by the discount factors ηM (increment factor ζM)

associated with the grand coalition M . From Theorem 1, we know that there exists

a set of prices {pe} such that the allocation by cost-corrected return share with

capacity rewards x
p(η,ζ)
µ is inside the core of the CRF game defined based on the above

CRN. In other words, if we denote the minimum total cost incurred within any sub-

coalition S under the discount and increment factors (ηM , ζM) as v(ηM , ζM , S), then∑
i∈S(xi)

p(η,ζ)
µ ≤ v(ηM , ζM , S). Recall that in the CRF game under scale economies,

the stand-alone value of S, v(η,ζ)(S), is defined with the unit cost (revenue) modified

by the discount factors ηS (increment factor ζS). Since η and ζ decrease and increase

respectively as the return volume in the CRN grows, for each sub-coalition S ( M ,

ηM ≤ ηS and ζM ≥ ζS. Hence, we conclude that v(ηM , ζM , S) ≤ v(η,ζ)(S) and thus∑
i∈S(xi)

p(η,ζ)
µ ≤ v(ηM , ζM , S) ≤ v(η,ζ)(S) ∀S (M . By definition the allocation x

p(η,ζ)
µ

remains to be in the core in the CRF game under scale economies.

Next we prove the second result. Since the unit processing revenue of each product

π is identical among the processors, we know that under any flow within a coalition

S ⊆ M , the total revenue obtained equals
∑

π∈ΠS ρ
π ·∑j∈L d

π
j = vr(S). Let vc(S)

.
=

v(S) − vr(S). Hence, ∀S ⊆ M , v(η,ζ)(S) = ηS · vc(S) + ζS · vr(S). Now consider an

arbitrary sub-coalition S such that v(S) < ∞. Since ηM ≤ ηS and vc(S) ≥ 0, we

obtain the following inequality.

v̄(η,ζ)M − v̄(η,ζ)S = (
ηM · vc(M)

R
− ηS · vc(S)

RS
) + (

ζM · vr(M)

R
− ζS · vr(S)

RS
)

≤ ηM · (v
c(M)

R
− vc(S)

RS
) + (

ζM · vr(M)

R
− ζS · vr(S)

RS
) (28)

We further derive the following inequalities considering two cases respectively.

Case I: When |vr(M)
R
| ≥ |vr(S)

RS
|, then since ζM ≥ ζS and both vr(M) and vr(S) are
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nonpositive, and ηM ≤ ζM ,

ηM · (v
c(M)

R
− vc(S)

RS
) + (

ζM · vr(M)

R
− ζS · vr(S)

RS
)

≤ ηM · (v
c(M)

R
− vc(S)

RS
) + ζM · (v

r(M)

R
− vr(S)

RS
)

≤ ηM · (v
c(M)

R
− vc(S)

RS
+
vr(M)

R
− vr(S)

RS
) = ηM(v̄M − v̄S) (29)

Case II: When |vr(M)
R
| < |vr(S)

RS
|, then since ζM · |vr(M)

R
| ≥ ζS|vr(S)

RS
|

ηM · (v
c(M)

R
− vc(S)

RS
) + (

ζM · vr(M)

R
− ζS · vr(S)

RS
) ≤ ηM · (v

c(M)

R
− vc(S)

RS
)

≤ ηM · (v
c(M)

R
− vc(S)

RS
+
vr(M)

R
− vr(S)

RS
) = ηM(v̄M − v̄S) (30)

Hence, combining (28) with both (29) and (30), we conclude that v̄(η,ζ)M−v̄(η,ζ)S ≤

ηM · (v̄M − v̄S). Hence, by formulas (8), we know that G(x
(η,ζ)
r )) = maxS⊆M{RS ·

(v̄(η,ζ)M − v̄(η,ζ)S)} ≤ ηM ·maxS⊆M{RS · (v̄M − v̄S)} = ηM · G(xr). As for the model

of return share with capacity rewards, recall that by Lemma 1, the smallest incentive

compatibility gap under the model of return share with capacity rewards, G(xpr), can

be calculated as the optimal value of an linear program (23)-(26). Hence, if we denote

the feasible region of the above linear program as Y = {{yS, S ⊂ Ψ} : (24) − (26)},

then G(x
p(η,ζ)
r ) = maxY

∑
S∈Ψ[v̄(η,ζ)M − v̄(η,ζ)S] · yS ≤ ηM ·maxY

∑
S∈Ψ[v̄M − v̄S] · yS =

ηM · G(xpr).

Proof of Proposition 4. Let v̄cS
.
= vc(S)

RS
be the average of the cost component incurred

within each sub-coalition S. Then given any CRNρ
2, we can calculate that v̄M =

vc(M)+ρ·dπA
dπA+dπB

= v̄cM + ρ · dπA
dπA+dπB

, v̄A =
vc(A)+ρ·dπA

dπA
= v̄cA + ρ, v̄B = v̄cB, v̄(η,ζ)M =

ηM · v̄cM + ζM · ρ · dπA
dπA+dπB

, v̄(η,ζ)A = ηA · v̄cA + ζA · ρ. Under the condition of
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ζA−1
ζM−1

>
dπA

dπA+dπB
, we can show the following.

If |ρ| ≥ ρ̄1
.
=

v̄cM(1− ηM)− v̄cA(1− ηA)

(ζA − 1)− (ζM − 1) · dπA
dπA+dπB

,

then kπA · (v̄(η,ζ)M − v̄(η,ζ)A) ≥ kπA · (v̄M − v̄A).

If |ρ| ≥ ρ̄2
.
=
v̄cM(

dπB
dπA
− ηM) + v̄cA · ηA − v̄cB · dπB

dπA

ζA − ζM · dπA
dπA+dπB

+
dπB

dπA+dπB

,

then kπA · (v̄(η,ζ)M − v̄(η,ζ)A) ≥ kπB · (v̄M − v̄B).

If |ρ| ≥ ρ̄3
.
=
v̄cA · ηA − v̄cM · ηM

ζA − ζM · dπA
dπA+dπB

, then kπA · (v̄(η,ζ)M − v̄(η,ζ)A) ≥ 0. (31)

Hence, we can conclude that when |ρ| ≥ ρ̄
.
= max{ ¯ρ1, ρ2, ρ3}, G(x

(η,ζ)
r )) = maxS⊆M{RS·

(v̄(η,ζ)M − v̄(η,ζ)S)} ≥ kπA · (v̄(η,ζ)M − v̄(η,ζ)A) ≥ maxS⊆M{RS · (v̄M − v̄S)} = G(xr).

Proof of Theorem 3. To prove Theorem 3, we first present the following lemma that

calculates the lower bound of non-member access fees {φe} under which a given dual-

based allocation is guaranteed to be in the core of the CRF game (M, vφ(S)).

Lemma 2. The dual-based allocation xνd is in the core of the CRF game with non-

member access fees {φe} if φe ≥ maxi∈M{(1− νie
kpe

) · |α∗e|} ∀e ∈ E.

Proof of Lemma 2. We first model the problem (CS
φ ) as the following linear program.

(CS
φ ) vφ(S) = min

∑
e∈E\{(r,r′)}

∑
π∈ΠS

cπef
π
e +

∑
r∈R

∑
π∈Π

ĉπr f
π
(r,r′) +

∑
e∈E

φe · (kpe)S (32)

s.t.
∑

e=(u,v)∈E

fπe −
∑

e=(v,w)∈E

fπe = 0 ∀v ∈ V \ {L,R′},∀π ∈ ΠS [(υS)πv ] (33)

fπjj′ = dπj ∀π ∈ ΠS,∀j ∈ L [(βS)πj ] (34)∑
π∈ΠS

fπe ≤
∑
i∈S

kie + kpe ∀e ∈ E [αSe ] (35)∑
π∈ΠS

fπe − (kpe)
S ≤

∑
i∈S

kie ∀e ∈ E [ωSe ] (36)

nonnegativity constraints , (37)

where [υ, β, α, ω, σ] are the dual variables associated with the constraints in (CS
φ ).

Set (υS)πj = 0 ∀j ∈ L and (υS)πr′ = 0 r′ ∈ R′. Define the set Ej = {(j, j′),∀j ∈ L},
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and Er = {(r, r′), ∀r ∈ R. Then the dual to the above linear program is formulated

as follows:

(DS
φ ) max

∑
j∈L

∑
π∈ΠS

dπj (βS)πj +
∑
e∈E

∑
i∈S

kie · (αSe + ωSe ) +
∑
e∈E

kpe · αSe (38)

s.t. (υS)πj′ − (υS)πj + αSe + ωSe + (βS)πj ≤ cπe ∀π ∈ ΠS,∀e = (j, j′),∀j ∈ L (39)

(υS)πv − (υS)πu + αSe + ωSe ≤ cπe ∀π ∈ ΠS,∀e ∈ E \ (Ej ∪ Er) (40)

(υS)πv − (υS)πu + αSe + ωSe ≤ ĉπr ∀π ∈ ΠS,∀e = (r, r′),∀r ∈ R (41)

−ωSe ≤ φe, αSe ≤ 0, ωSe ≤ 0 ∀e ∈ E . (42)

We define a solution to the above program (DS
φ ) based on the optimal dual solutions

to the centralized problem (C) [υ∗πv , α
∗
e, β

∗π
j ].

(υS)πv
.
= υ∗πv ∀v ∈ V \ {L,R′},∀π ∈ ΠS (43)

αSe
.
=

∑
i∈S ν

i
e

kpe
· α∗e ωSe

.
= (1−

∑
i∈S ν

i
e

kpe
) · α∗e ∀e ∈ E (44)

(βS)πj
.
= β∗πj ∀π ∈ ΠS, ∀j ∈ L. (45)

Due to the optimality of [υ∗πv , α
∗
e, β

∗π
j ] with respect to the dual problem of (C), it

is easy to check that the solution defined in (43)-(45) is feasible for (DS
φ ) under

the condition given in the theorem. Hence by weak duality, we conclude that the

objective value of (DS
φ ) for the above solution, which is exactly the cost allocated to

sub-coalition S under the dual-based allocation xνd, is no greater than vφ(S) ∀S (M .

Hence, the dual-based allocation xνd lies in the core of the CRF game with non-member

access fee φe.

Continuing the proof of Theorem 3, it is easy to see that it directly follows from

Lemma 2, because according to the proof to Theorem 1, we can design prices {pe}

such that xrµ is equivalent to a dual-based allocation. In particular, in Case 1 (i.e.,

when µi ≥ 0 ∀i ∈ N), according to (18), we can see that by adopting the prices

pe = |α∗e| ∀e ∈ E, a dual-based allocation is obtained with νie = µi · kpe ∀e ∈ E
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∀i ∈M . Hence, replacing νie in Lemma 2 by µi, we obtain the first bound in Theorem

3. Similarly, when there exists some producer i whose µi < 0, we can adopt the

prices given by (21), and according to the proof of Theorem 1 (Case 2) and obtain

a dual-based allocation where νie =
ki
e0∑

i∈M ki
e0
∀e ∈ E ∀i ∈ M . Hence, by choosing e0

to be the edge such that the value of maxi∈M{(1− kie∑
i∈N kie

)} is minimized, we obtain

the second bound given in Theorem 3.

2.2.7.2 Generalization of Theorem 2 under Multiple Minimum Cuts C̄

Given a CRN
⋃
i∈M N i, we transform it into a single commodity network Nd

o as

described in §2.2.4.3. Assume multiple minimum cuts {C̄1, ..., C̄i, ..., C̄n} exist in Nd
o .

Define L̄i = {j ∈ L : (o, j) /∈ E(C̄i)}. Then the set
⋂n
i=1(L \ L̄i) = L \ ⋃n

i=1 L̄i is

comprised of collection points j such that the corresponding fictitious edge (o, j) is

contained in the edge set of all mininum cuts. Such an edge set can be identified by

the following algorithm (Algorithm 1).

ALGORITHM 1: Computing
⋂n
i=1(L \ L̄i), the set of collection points j such that the

corresponding fictitious edge (o, j) is contained in the edge set of all mininum cuts.

Input: A single commodity network Nd
o with multiple cuts.

Output: An edge set
⋂n
i=1(L \ L̄i) as defined above

Let L∗ = ∅ and t = 0.
while L 6= ∅ do

1. Pick an edge jt ∈ L and let L = L \ {jt}.

2. Increase the return volume at the collection point jt by one unit, i.e., let the
capacity on the edge (o, jt) in Nd

o be
∑

π d
π
j + 1.

3. Solve the maximum flow problem on the new network. if the maximum flow strictly
increases then

L∗ = L∗ ∪ {jt}.
else

L∗ = L∗.

end

4. Decrease the capacity on the edge (o, jt) back to
∑

π d
π
j . Let t = t+ 1.

end
Let

⋂n
i=1(L \ L̄i) = L∗.
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We prove the validity of the above algorithm by the following Lemma.

Lemma 3. Collection point j ∈ ⋂n
i=1(L \ L̄i) if and only if the maximum flow of the

network Nd
o strictly increases after an additional unit is collected at j.

Proof to Lemma 2.2.7.2. “⇒”: Assume the maximum flow does not increase after an

additional unit is collected at j. Then according to the max-flow-min-cut theorem,

there must exists a minimum cut that does not contain the edge (o, j) in the original

Nd
o network, a contradiction to the definition of

⋂n
i=1(L \ L̄i).

“⇐”: Assume there exists a minimum cut in Nd
o that does not contain the edge

(o, j). Then increasing the return volume at collection point j does not change the

value of this cut, which implies that the maximum flow should not be increased when

an additional unit is collected at j.

Note that the set
⋂n
i=1(L\L̄i) is the family of collection points where the products

collected do not burden the collective CRN within the grand coalition. We show that

there exists a minimum cut C̄ on Nd
o such that {j ∈ L : (o, j) ∈ E(C̄)} =

⋂n
i=1(L\L̄i).

Based on Lemma 2.2.7.2, given any collection point j /∈ ⋂n
i=1(L \ L̄i), no augmenting

path exists in the network Nd
o after the capacity on the corresponding edge (o, j) is

increased by 1. Since every path in Nd
o involves only one (o, j) edge, no augmenting

path exists if the capacities on all edges (o, j) are increased by 1 for j /∈ ⋂n
i=1(L\ L̄i).

Then increasing the capacities on all such edges by 1 will not change the maximum

flow and any minimum cut C̄ in the new Nd
o network is also a minimum cut in the

original one. Hence C̄ must satisfy {j ∈ L : (o, j) ∈ E(C̄)} =
⋂n
i=1(L \ L̄i).

Theorem 2 hold if we consider such a minimum cut C̄. Specifically, whenever⋂n
i=1(L\ L̄i) = ∅, a minimum cut with no artificial edges (o, j) can be found and thus

Theorem 2 holds.
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2.2.7.3 Allocation by Volume-corrected Return Share with Capacity Rewards

Assume E(C̄) ∩ {(o, j), j ∈ L} 6= ∅, that is, at least one artificial edge (o, j) in Nd
o is

in the cut set E(C̄), indicating that increasing the volume returned to this collection

point j by one unit will increase the maximum throughput in Nd
o when the min-cut

is unique. Let L̄
.
= {j : (o, j) /∈ E(C̄)}, that is, L̄ contains all collection points

that collect more products than they can process through the network
⋃
i∈M N i.

The volume burdens of products returned to the collection points in L̄ and in L \ L̄

are differentiated according to their capacity usage in the centrally-operated grand

coalition. In particular, it can be shown that processing the products returned to

the collection points in L \ L̄ does not take up any capacity on the edges in E(C̄) \

{(o, j), j ∈ L}. In other words, the independent capacity shortage in the grand

coalition is caused entirely by the products collected at L̄. Let Ri
L̄

.
=
∑

j∈L̄
∑

π∈Πi d
π
j

be the return volume of producer i collected at L̄, and RL̄
.
=
∑

i∈M Ri
L̄
; RL̄ > 0 is

guaranteed under the assumption of inadequate independent capacity in the centrally-

operated grand coalition. We define the volume-corrected return share of producer i

as
Ri
L̄

RL̄
and the cost allocation by volume-corrected return share with capacity rewards

as xprV C , where the allocation to the i-th producer is calculated as

(xi)prV C =

[
v(M) +

∑
e∈E

pe
∑
i∈M

kie

]
· R

i
L̄

RL̄

−
∑
e∈E

pek
i
e ∀i ∈M. (46)

The above allocation is identical to (11) except for the proportions used to allocate

the total cost, i.e.,
Ri
L̄

RL̄
, which is the same as Ri

R
in return share, but only applied to

the volume returned to L̄.

Theorem 4. Assume the minimum cut C̄ is unique. If KE(C̄) < R and v(S) ≥ 0

∀S ⊆ M , then G(xprV C) = 0, i.e., ∃ capacity reward prices pe ≥ 0 ∀e ∈ E such that

the volume-corrected return share with capacity rewards generates an allocation in the

core of the CRF game.
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Proof of Theorem 4. The proof of Theorem 4 is similar to that of Theorem 2 except

for the following changes. Since v(S) ≥ 0 ∀S ⊆ M , for the volume-corrected re-

turn share, it is sufficient to consider all sub-coalitions with v(S) < ∞ and RS
L̄

.
=∑

i∈S R
i
L̄
> 0 to test for the core membership of the allocation xprV C . Let ΨV C be

the set of such sub-coalitions. Also define the volume-corrected average cost and

average capacity availability within S ⊆ M as v̄SV C = v(S)

RS
L̄

and k̄SeV C =
∑
i∈S k

i
e

RS
L̄

.

Hence the incentive compatibility gap of the allocation xprV C can be calculated as

maxS∈ΨV C{RS
L̄
· [v̄MVC − v̄SV C −

∑
e∈E pe(k̄

S
eV C − k̄MeV C)]}. Modify Lemma 1 by replacing

Ψ, v̄S and k̄Se by their counterparts under the volume-corrected return share. Since

KE(C̄) =
∑

e∈E(C̄)\{(o,j),j∈L}
∑

i∈M kie+ (R−RL̄) < R and
∑

e∈E(C̄)\{(o,j),j∈L}
∑

i∈S k
i
e+

(RS − RS
L̄
) ≥ RS, we conclude that

∑
e∈E(C̄)\{(o,j),j∈L}[k̄

S
eV C − k̄MeV C ] > 0,∀S ∈ ΨV C .

The theorem can then be derived by summing up the modified inequalities (24) over

all edges in E(C̄) \ {(o, j), j ∈ L} and following the same argument in the proof of

Theorem 2. Note that the result can also be extended to situations with multiple

min-cuts based on similar arguments in Appendix 2.2.7.2, by defining the allocation

by volume-corrected return share with capacity adjustment based on the collection

points in
⋃n
i=1 L̄i.

It can be observed that Theorem 2 is essentially a special case of Theorem 4 in

which Ri
L̄

= Ri ∀i ∈ M . When such homogeneity no longer exists, Theorem 4 in-

dicates that weighted corrections of producers’ return shares that are proportional

to the relative volume burden of their own products can adjust for the network syn-

ergies arising in a centrally-operated CRN with low independent capacity availabil-

ity. Hence, when the total cost is allocated based on such proportions, the capacity

reward mechanism remains effective in reducing the incentive compatibility gap of

return share even when the gap is due to the cost differences among products. Note

that this is only guaranteed when the return volume within any sub-coalition S ⊆M
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results in a nonnegative cost burden, i.e., v(S) ≥ 0. The reason is that the mech-

anism essentially penalizes volume burden and rewards capacity contribution; yet

when L̄ 6= L, it may be that the participation of some producer neither exerts any

volume burden nor alleviates capacity shortage in the grand coalition, yet it reduces

the total cost due to the high processing revenue obtained from its products. In this

case, volume-corrected return share with capacity rewards is not sufficient to produce

a group incentive compatible allocation.

Hence, we conclude that while the volume correction improves the group incentive

compatibility of the allocation by return share with capacity rewards, the differen-

tiation among products is derived based on their volume burdens, which does not

explicitly and fully capture the network synergies arising from the heterogeneous op-

erational and downstream costs in the CRN, in particular when processing revenue

is involved. Furthermore, in cases with adequate independent capacity to process

the entire return volume in the grand coalition, the volume-corrected return share

becomes undefined as R̄L̄ = 0. In these situations, a cost-correction to the return

shares of producers may be necessary to guarantee group incentive compatibility of

the allocation.

2.2.7.4 Construction of the Numerical Example in §2.2.7.4

Facilities We build a sample CRN based on the state of Washington’s implemen-

tation of its EPR program in 2009. First, 50 collection points are chosen from the

244 that were registered with the WMMFA [180]. The sample contains at least one

collection point for every county and is generated according to Table 2. In counties

where more than one collection point is to be chosen, we select one in each of the

largest cities by population. In case no collection point is registered in such a city, we

pick the one that is the nearest to it. The resulting sample is displayed in Table 4.

We assume that there is a consolidator in each of the 8 counties with more than
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Table 2: The number of collection points chosen in each county.
Number of collection points registered Number of collection points chosen

1-5 1
6-19 2
≥ 20 3

one collection point. Each consolidator is in/near the biggest city by population of the

corresponding county and is identical to the collection point chosen in that city. The

consolidators are assumed to only handle the return volume within their respective

counties. In counties with only one collection point, we assume the return volume is

directly transported from the collection point to the processors.

Table 3: The list of processors in the sample CRN.
Processor Facility location Operation type

r1 Seattle In-state high-tech
r2 Vancouver In-state high-tech
r3 Clackamas, OR Out-of-state TV/monitor-specialized high-tech
r4 Roseville, CA Out-of-state IT-specialized high-tech
r5 Mukilteo Low-tech
r6 Auburn Low-tech
r7 Lynnwood Low-tech
r8 Tukwila Low-tech

WMMFA has contracted with 8 processors in 2009, 6 within Washington state,

which are reported to have processed 98.85% of the total volume in 2009. Within

these 6 processors, 2 have high-tech facilities, while the remaining 4 operate mainly

based on manual labor [180]. We incorporate these 6 processors into our example

and label them as processor r1 − r2 (high-tech) and r5 − r8 (low-tech), plus two out-

of-state processors (labeled r3 and r4) associated with two potential “independent

plans” (see Table 3). The locations of the sampled collection points and processors in

the example CRN are depicted in Figure 10. Note that all transportation distances

between entities in the sample CRN are measured by the minimum traveling time in

order to account for the differences in road conditions.
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Figure 10: Locations of the collection points and processors (except r4 located in
CA) considered in sample CRN. Note that recyclers r5 and r7 are very close to each
other and overlap in figure (b).

(a) Collection point (b) Processors

Products, Return Volumes and Capacity The EPR bill in Washington covers

TVs, computers, laptops and monitors [180]. Based on their processing costs, the

products are basically classified into CRT-TV/monitor (which is reported to account

for 98.5% of the total TV/monitor return volume in WA), LCD-TV/monitor, desk-

tops, laptops and computers, because these are the only cost drivers with the current

processing technology. In particular, TVs/monitors contain hazardous materials and

thus are costly to recycle under certain environmental standards, while the parts and

materials used in computers have high reuse value and usually generate a revenue in

recycling. Hence, we distinguish in the example two product types, TVs/monitors

and computers. A total volume of 38,509,563 lbs of products, among which about

30% are computers and 70% are TVs/monitors, were collected in Washington in 2009

in the form of 137 different product brands from 87 producers with return shares

varying from 0.001% to 7.9% [41]. In constructing the sample CRN, we uniformly

choose a set of 19 products (labeled from π1 to π19), manufactured by 17 producers

(labeled from m1 to m17) from the pool to capture the heterogeneity of the actual

return shares in the Washington implementation. The products are also chosen in
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order to reflect the 7:3 proportion of TVs/monitors vs computers in the total volume.

We then calculate the volume of each of the 19 products in the example proportional

to their relative return shares based on the actual collection volume of 38,509,563 lbs

(Table 5).

In order to distribute the collective return volume of the 19 products shown in

Table 5 among individual collection points, we first calculate the total amount col-

lected in each of the collection points in the sample CRN. Specifically, if only one

collection point is chosen in a county, then we assume that the entire volume within

this particular county is returned to this collection point. Otherwise, the county

volumes are proportionally allocated among the sampled collection points based on

the corresponding city populations. Based on this data, we calculate each collection

point’s share of the total volume by λj = collective volume returned to collection point j
38,509,563

. Then,

the volume of each product π at each collection point j is calculated based on a

homogeneous distribution of the product’s total volume among the collection points

that follows {λj, j = 1, 2..., 50}, i.e., dπj = λj · return volume of π shown in Table 5.

Cost Structure on the CRN and Economies of Scale Model The unit costs

in the sample CRN are disguised but structurally representative of costs in WA that

are reported as aggregate averages within each stage of the CRN for a product type.

All unit prices are in cents per weight (lb) except for the transportation cost, which

is in cents per pound hour (lb×hr).

We assume no administrative cost in the sample CRN, as this cost is negligible in

Washington. For each product type, the unit price for collection and consolidation

is assumed to be identical at each such site (10 cents/lb), while different processing

cost structures are quoted by different processors (see Table 6 for details). The unit

downstream recycling cost (revenue) used in this example is a weighted average over

all parts and materials according to their proportions by weight inside one unit of the
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corresponding product. Hence, given the mandated recycling requirement τ , the net

processing cost is calculated as a linear approximation as follows: For TVs/monitors,

the net processing cost equals operational cost + τ · downstream recycling cost + (1−

τ)· landfilling cost, while that for computers is simply operational cost + downstream

revenue, because 100% recycling will be implemented for computers regardless of τ

due to the potential processing revenues.

The transportation rates are reported to be based on the geographic location

of the route. Specifically, all processors in WA are located along the north-south

corridor between Seattle and Vancouver (which is referred to as the “west-of-the-

mountain-area”). Many common carriers operate busy routes along this north-south

corridor and thus can provide cheap back-haul miles for the collection points within

the area. In contrast, the transportation services for collection points located “east

of the mountain” are more expensive. Hence, in our example, we use two different

rates for the collection points sampled in these two areas (0.8 and 2 cents/lb×hr).

The calculation is done based on a 2 cents/lb average and the assumption that the

return volume at each collection point is distributed to the 8 processors according to

the aggregate percentages reported by [180], and that the cost in the “west-of-the-

mountain-area” is about 50% cheaper than that in the east.

As for our modeling of economies of scale in the example, our interviews indicated

that a 20% cost reduction can be expected in Washington when the total volume

doubles. According to this information, we calculate a decreasing quadratic function

η(x) such that η(38, 509, 563) = 1 and η(38, 509, 563 ∗ 2) = 0.8, which produces the

function 0.011146 · ( 1
38,509,563

· x− 10.47214)2.

The Myopic Policy in Studying the Value of Source Separation In this

section, we develop the myopic policy used for the numerical analysis to study the

value of source separation of products at the collection points. The assumption behind
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the myopic policy is that the e-waste volumes at collection centers are not separated

by brand. In other words, the distribution of individual producers’ e-waste volumes

are not known at the point of collection. Rather, the total volume at each collection

point j, dj =
∑

π∈Π d
π
j is the only available volume information. Because separating

each producer’s products at collection can be costly for high return volumes and

a heterogeneous mixture of products, the myopic policy estimates the mixture of

individual producers’ return shares by sampling at the processors. This set-up is

similar to many practical settings. Sampling typically takes place at processors,

because return volumes from different collection points are consolidated there, which

increases the statistical significance of the sampling procedure. This myopic policy can

be cost effective if sampling costs in practice are significantly smaller than separation

costs. Because sampling requires the handling of only a fraction of the waste volume,

the return share calculation can be achieved at a very low cost under this policy.

To highlight the above effects, for the rest of the discussion, we assume an identical

unit processing cost among all products on every edge of the CRN except at the

processors (which is exactly the case in the sample CRN used in the numerical study).

Because the myopic policy does not assume that the actual mixture of TVs/monitors

and computers at collection points is readily available, the network flow problem

cannot be solved optimally. Rather, the system operator needs to transport the e-

waste volumes to the processors using a suboptimal procedure. We model this myopic

procedure as follows: First the e-waste is routed to the processors to minimize the

total collection, consolidation and transportation cost, which can be solved by the
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following program.

(C) : min Z1(y) =
∑

e∈E\{(r,r′)}

∑
π∈Π

ce · ye (47)

s.t
∑

e=(u,v)∈E

ye −
∑

e=(v,w)∈E

ye = 0 ∀v ∈ V \ {L,R′} (48)

y(j,j′) = dj ∀j ∈ L (49)

ye ≤
∑
i∈M

kie +Kp
e ∀e ∈ E (50)

nonnegativity constraints . (51)

Let y∗ denote the optimal solution to the above program. Next, we model the

sampling procedure at the processors to determine the composition of the arriving vol-

umes, i.e., the amount of each product π (TVs/monitors or computers), at processor

r. Assume that the volume of TVs/monitors at a collection point j is generated from

a binomial distribution with parameters (dj, p), and the products are transported to

processors in a uniform mix of the two product types. Let dr(y
∗)

.
=
∑

n′∈C′ y
∗
(n′,r)

The required size of the product sample at each processor r is calculated by (52)

(adapted from [33]), which estimates the actual volume mixture of TVs/monitors

and computers with a 1% precision rate and a 99% confidence level.

Samplesizer =
Z2

1−0.01/2 · p ∗ (1− p)
0.012

·
[

1 +
1

dr(y∗)
· (
Z2

1−0.01/2 · p ∗ (1− p)
0.012

− 1)

]−1

(52)

Based on the composition information of the arriving volume under the myopic rout-

ing y∗ at each processor r, the processing cost at r can be calculated, which we

denote as Z2(y∗). Hence, the total cost incurred under the myopic routing policy is

Z1(y∗) + Z2(y∗) + Samplesize × csamp where csamp is the unit sampling cost. Our

numerical analysis compares this cost with Z(f ∗) +
∑

π∈Π,j∈J d
π
j · csep, where csep is

the unit separation cost, based on the sample CRN constructed. We also analyze

the potential group incentive compatibility of the cost allocations under the myopic

policy. We show that they can result in an inefficient fragmented system under the
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assumption that producers who defect from the centrally-operated CRN need to sep-

arate their own products to operate their own private CRNs. Both the cost difference

and the incentive compatibility gap are plotted as a function of product heterogeneity

(modeled by the percentage of TV/monitor volume, p) and csep − csamp. Note that

we also assume that as p changes, the return volume and the independent capacity

of producer A and B varies in the way such that their shares of the total TV and

IT volume, as well as their normalized independent capacity availability (i.e., capac-

ity/volume), remain constant and identical to those values in the nominal sample

CRN based on the Washington instance.

2.3 Product Design or Cost Efficiency?: A Network Per-
spective on Extended Producer Responsibility

2.3.1 Introduction

Since its introduction in the early 1990’s, EPR has been regarded at its heart a

policy strategy to create incentives for more environmentally-friendly design. By in-

ternalizing the end-of-life treatment cost of their products, producers are expected

to have the incentive to reduce this cost by designing more recyclable products. The

question of how to realize the design potential of EPR in implementation has been

discussed intensively in practice. In particular, there exist growing concerns that the

current collective implementations may mute design incentives, as the weight-based

cost allocations used, such as return or market share, do not differentiate between the

unit costs that producers are charged for different products. Such homogeneous cost

allocations do not penalize or reward producers in line with their product designs.

For example, one producer’s bad design and thus an expensive recycling cost of his

products at end-of-life is expected to be absorbed jointly by all producers within the

collective system; similarly, the cost saving resulting from the design improvement of

a product will be uniformly distributed in the collective system instead of being fully
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reflected in the cost allocated to the corresponding producer [84]. Indeed, some pro-

ducers have indicated that they lose design incentives after participating in a collective

system, as the costs they are allocated and need to internalize are not necessarily re-

lated to their own products [10]. These concerns have resulted in strong advocacy for

Individual Producer Responsibility (IPR) in practice as a solution to restore design

incentives in EPR implementation, a principle that requires each producer to only

bear cost for his own products even within a collective recycling system [101, 84]. In

particular, it is commonly agreed that an individual system where every producer

only processes his own products incentivizes the most recyclable product design, as

it involves no cost sharing and thus no free riding [10, 131, 48]. Nevertheless, it is

also believed that the same level of design incentives can be achieved in a collective

system by adopting an appropriate cost allocation mechanism that implements the

tenet of IPR, i.e., assigning each producer the end-of-life treatment cost of his own

products [143, 83, 38].

The operational nature of collective EPR implementations raises the following

questions and motivates us to re-evaluate the above well-established statements.

First, under EPR, the cost to collect and recycle a product is influenced by not

only the recyclability of the product design but also the operational efficiency of the

processing capacities. Hence, operational factors including the capacity configuration

and utilization within a collection and recycling system can have an impact on the

design incentives that the system can provide. In particular, a collective system with

resource sharing may have different design implications compared to an individual

system even if the concept of IPR is implemented via the cost allocation used. Sec-

ond, how to operationalize IPR in a collective system is not a straightforward issue,

either. The main reason is that sharing capacitated resources leads to synergistic

benefits (called the network synergies) under collective implementation due to more

efficient product routing. Since the value derived from such synergies is determined
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by combining all product volumes and capacities, it is difficult to isolate the por-

tion of the total cost in a collective system that is solely related to one producer’s

products. This gives rise to the following questions: (i) What is a reasonable way to

implement IPR in a collective system taking into account these operational factors?

(ii) How is the resulting design outcome in the collective system compared to that of

an individual system where producers indeed only bear cost for their own products?

In this section, we aim to address the above problems by studying the impact

of collective recycling operations on the design implications of collective EPR, using

the collection and recycling network model introduced in §2.2. In order to highlight

the design incentive dimension of collective EPR, there are several notable differences

in the model used in this study compared to the one in §2.2. First, the processing

stage of the post-use treatment of electronics is the most relevant stage to producers’

design choices as the unit processing costs are directly influenced by the recyclability

of the products. Hence, in this section, we focus on the processing operations in

a CRN by studying a transportation model, where a set of different products with

varying volumes is transported to and recycled at a set of processors that can be

different in their capacity and processing efficiency levels. Second, the producers’

design incentives are influenced by the recycling costs that they would expect to

internalize at the end of life of their products. Hence, in this study, we consider a

model that involves two stages of decisions under collective EPR: (i) the producers’

product design choices in the first stage, (ii) the operations of a collective CRN in

the second stage. The goal of this study is to understand the interactions between

these two stages. A major complexity to do this under collective EPR is the mutual

dependence among producers due to their network synergies in the collective CRN.

Specifically, a producer’s design choice determines the processing costs of his products,

thus potentially influencing the operations and the cost allocation in the collective

CRN, which ultimately impact all producers’ design incentives. This motivates us to
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adopt a non-cooperative game model of producers’ design decisions in the first stage.

We define a collection of design choices of all producers (called a design profile)

to be a Nash equilibrium if no unilateral deviation of any producer is beneficial

for himself. Such an equilibrium design profile represents a stable outcome of the

producers’ interactions under a collective implementation.

One important policy choice that influences the design incentives generated by

collective EPR is the cost allocation mechanism used in the second stage. This has

been recognized by the existing discussion in practice, which suggests the IPR prin-

ciple as a crucial property of the cost allocation to eliminate the negative impact of

joint responsibility in cost sharing. However, as we mentioned before, implement-

ing IPR is not straightforward given the network setting of the CRN. In §2.2, we

conduct a detailed analysis of this issue from the perspective of producers’ partic-

ipation incentives into the collective system, and propose a cost allocation method

called the cost-corrected return share with capacity rewards. This is a cost allocation

mechanism based on two adjustments to the return share model that capture the two

differentiating attributes of producers’ cost burdens on a collective system: (i) hetero-

geneity in post-use treatment cost structures, (ii) contribution of individual capacity

with different processing efficiency levels. We show that this mechanism reflects the

cost related to each producer’s own products in the sense that it is guaranteed to be

group incentive compatible (Theorem 1), i.e., no producer group is allocated a higher

cost compared to its stand-alone cost to process the products of its members inde-

pendently. In other words, it is a core allocation of the corresponding cooperative

CRF game.

In this study, we adopt a similar approach and model the collective recycling

operations in the second stage as a cooperative CRF game based on the transporta-

tion model. Hence, to summarize, we study a two-stage biform game model in this

section involving both non-cooperative and cooperative elements (Figure 11). We
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Figure 11: A two-stage biform game model to analyze the design implication of
collective EPR implementation.

assume that the allocation by cost-corrected return share with capacity rewards is

implemented, and thus all producers’ voluntary participation in the collective system

is guaranteed in the second stage. In analysis, we focus on studying the equilibrium

design profile in the first stage under the influence of this core allocation. In par-

ticular, we evaluate the products’ recyclability levels under such an equilibrium with

those that producers are incentivized to adopt in an individual system where everyone

processes his own product independently. We call a system providing superior design

incentives for a producer if it incentivizes more recyclable design of his products. We

also mention that to use a core allocation in the cooperative part of a biform game

is a common approach in analyzing such models in the literature, for example, in the

original biform game proposed by [23] and in its applications, such as in supply chain

management (e.g., [9]).

Our main observation in this study is that under the allocation by cost-corrected

return share with capacity rewards, the design implication of collective EPR strongly

depends on the level of potential network synergy in the collective CRN, which is

measured by, for each producer, the availability of more efficient capacity owned by
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others that he can potentially benefit from in the collective system. Specifically, our

analysis of a two-producer case indicates that when the network synergy level is high

enough, a collective system provides inferior design incentives than an individual one

for every producer. We show that this is mainly because the high network synergy

already significantly reduces the recycling cost allocated to each producer, such that

the cost reduction potential by improving the product design becomes quite limited.

However, in cases where the synergy level is low, the opposite result can be observed,

i.e., a collective system provides superior design incentives than an individual one for

every producer. This is due to the network setting of the CRN where the products’

marginal costs matter in designing group incentive compatible cost allocations. In

the low synergy case, although the total processing cost decreases due to the network

synergy, the marginal costs of both producers’ products go up, thus creating incentives

for more recyclable design. We show that both of these two results can be extended to

the general case with any number of producers. The situations in between, which we

call the medium synergy case, is shown to be more complex even with two producers;

in particular, the marginal value of capacity exerts an additional impact such that a

pure Nash equilibrium may not exist. However, by studying mixed-strategy equilibria,

we show that the collective system provides inferior incentives for the two producers

in the medium synergy case. How the result will generalize when more producers are

included is an immediate open question to be addressed.

In order to study the design issue under the current EPR implementations that

typically use weight-based proportional allocations, we further analyze the equilib-

rium design profile when the allocation by return share is used in the second stage of

the biform game model. Our analysis discovers a surprising result: In the low- and

medium-synergy case, a collective system can provide superior design incentives com-

pared to an individual system even under return share, if the capacity heterogeneity

in the collective CRN is high enough in terms of processing efficiency. This result
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underlines the significant influence of the operational factors, which can dominate the

negative economic impact derived from joint responsibility under such a homogeneous

cost sharing mechanism by return share.

To summarize, our analysis in this section demonstrates the importance of taking

into account the operational factors of a collective system in order to understand the

design implication of collective EPR implementations, especially the network synergy

from a more efficient routing due to capacity sharing. In particular, the network

synergy gives rise to a potential tradeoff between cost efficiency and design incentives

under collective EPR. At the same time, operational details associated with product

routing, such as the marginal costs of products, can also exert a big impact, as it is

demonstrated in the low synergy case. Based on these results, we can characterize

the operational conditions regarding the network structure and the capacity configu-

ration of a collection and recycling system, under which a collective implementation

may excel or be strictly dominated in creating design incentives compared to an in-

dividual system. This observation challenges the economic perspective generally held

in practice, which suggests that an individual system always provides the best design

incentives, yet the same incentives can also be achieved in a collective system via

proper cost allocation mechanisms.

The study in this section contributes to the existing discussion on realizing the

design potential of EPR, where the operational factors, especially the network op-

erations under capacity sharing, are generally not captured. For example, in the

environmental economics literature, a set of environmental policy instruments, such

as producer take-back mandates and combined fee/subsidy approaches, are analyzed

for their design-for-environment (DfE) potential (e.g., see a review in [171]); the

study is conducted from an economic perspective and does not address implementa-

tion issues in translating these policies into working systems. The current operations

literature on achieving the design potential of EPR focuses on stylized analysis of the

109



implications of implementation issues, such as cost sharing in collection and recycling,

information about return volumes, competition in the product market, new product

introduction frequency, and supply chain coordination (e.g., [10, 186, 48, 131, 156]).

The main contribution of our study to this literature is to explicitly model the network

operations in a collective system, and thus to capture the impact of the synergistic

effect from capacity sharing.

From a methodological point of view, the original biform game model proposed by

[23] considers the setting where the strategy set of individual players in the first stage

is finite, while in our problem, each producer is assumed to have a continuous choice

of product design. Biform models have been widely adopted to study multi-stage

decision-making processes that involve both competitive and collaborative elements,

most prominently in the literature on supply chain management (e.g., [65, 31, 9]). The

paper whose approach is the closest to ours is [9]. The paper studies an inventory

management problem where retailers make independent inventory decisions and then,

after the demand is realized, collaborate in transshipment. The authors identify

core allocations in the second-stage cooperative game, under which the first-stage

equilibrium of retailers’ inventory decisions is further analyzed. Note that in this

formulation, the transshipment problem is modeled as a simple linear program whose

optimal profit can be fully captured by a closed-form differentiable function. Although

using a similar approach, we provide a more comprehensive discussion of the impact of

network effects. Specifically, the interactions between the second-stage cost allocation

and the first-stage design decisions are critically based on the pattern of the optimal

routing in the CRN, e.g., the set of processors where a product is processed. We

study this problem by analyzing the combinatorial structure of the optimal routing

under three network configurations of the CRN, based on which we characterize the

equilibrium design profile.
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2.3.2 Model Description

In the following, we first introduce the notation and the processing cost structure of

the products considered in this study in §2.3.2.1. We then define the biform game

model in §2.3.2.2.

2.3.2.1 Notation and Processing Cost Structure.

We denote a producer by i and the set of producers by M . Since our goal is to compare

producers’ design incentives in a collective system versus his operating alone in an

individual system, we assume that each producer has sufficient independent capacity

to process his own product. Moreover, as mentioned in the introduction, we focus on

the processing stage of the post-use treatment of electronics in order to highlight the

end-of-life impact of product designs. Hence, in this study, we consider the following

setting: Each producer i has one product, denoted by π(i), with return volume dπ(i),

and has independent capacity at its own processor, denoted by r(i); the amount of

capacity at r(i) is denoted by kr(i) and satisfies kr(i) ≥ dπ(i) ∀i ∈ M . We also denote

the set of all products and processors as Π = {π(i)} and R = {r(i)}, respectively.

In the analysis, we will also sometimes drop (i) and refer to a generic product and

processor as π and r, respectively.

In this study, we focus on products that incur net unit processing costs5, denoted

by cπr for each product π processed at each facility r. In order to model the attributes

that influence this unit cost, we first model cπr as the sum of two parts c̄π + cπr . The

first component c̄π represents a base cost to process a unit of π and is determined by

the universal characteristics of the product category. For example, the cost required

to dismantle any TV might have a unit base cost. The second component cπr , for

example, the cost to process the leaded glass of a CRT TV, depends on the product

5The framework can also be used to study scenarios with products that generate recycling
revenues.
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design of π and the processing efficiency at r, which we model as follows. Let r0 be

a fixed standard processor whose efficiency level is taken as a benchmark. The unit

cost cπr0 incurred at r0 reflects the end-of-life impact of the product design of π. We

capture such a relationship by defining the recyclability level of π, denoted by κπ,

to be equal to the cost cπr0 . Intuitively, the smaller the κπ is, the more recyclable

the product design is. For discussion convenience, we allow κπ to be any number in

(0,∞). For a given processor r, a natural measure of its processing efficiency level is

the ratio between the unit costs incurred at r and at the standard processor r0 for

each product π, i.e.,
cπr
cπr0

. In this study, we focus on a homogeneous case where for

each processor r, this ratio
cπr
cπr0

is identical for all products. Hence, we assign to each

processor r a parameter τr
.
=

cπr
cπr0

to represent its efficiency level. Similarly, a smaller

τr value indicates more efficient capacity at r. To summarize, we model the unit cost

to process a product π at a processor r as a function of the product’s recyclability

level κπ and the processors’ efficiency level τr in the following way:

cπr = c̄π + κπ · τr ∀π,∀r (53)

2.3.2.2 A Biform Game Model.

In this subsection, we first introduce the transportation network model of the pro-

cessing operations in the collective system in the second stage, as well as the corre-

sponding cooperative network game and the allocation by cost-corrected return share

with capacity rewards. We then describe the non-cooperative game model of pro-

ducers’ product design decisions in the first stage, based on which the notion of an

equilibrium design profile is defined.

Second Stage Model: Collective Processing Operations We begin the de-

scription of the biform game model with collective recycling operations in the second

stage. Specifically, we model the processing stage in a collective system as a trans-

portation problem where the returned products are assigned to different processors.
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Figure 12: A Transportation CRN that represents the processing stage in the collec-
tion and recycling procedure.

We mention that a similar transportation model is used in [89] to study the assign-

ment of electronics components to different reuse options. The collective transporta-

tion CRN structure is shown in figure 12, where the two tiers of nodes represent the

set of products Π and the set of processors R, respectively. There exists an edge

between every pair of product π and processor r, and the unit cost on that edge is

modeled as the unit processing cost cπr . In this study, we focus on the case where the

transportation network only involves independent capacity of producers. Note that

to process the entire return volume on such a network is feasible since kr(i) ≥ dπ(i)

∀i ∈M . The goal in managing the product routing on the transportation network is

to minimize the total cost incurred, which can be computed by the following central-

ized transportation problem (Ct) (In this section, we use an additional subscript t to

differentiate some of the notations associated with the transportation network from

their counterparts used in the previous section.)

(Ct) : min Zt(ft) =
∑
π∈Π

∑
r∈R

cπr · fπtr (54)

s.t.
∑
r∈R

fπtr = dπ ∀π ∈ Π [βπ] (55)∑
π∈Π

fπtr ≤ kr ∀r ∈ R [αr] (56)

nonnegativity constraints . (57)

113



In the above program, constraint (55) makes sure that all return volume is pro-

cessed. Constraint (56) guarantees that the capacity at each processor is not exceeded.

The variables βπ and αr denote the dual variables associated with the correspond-

ing constraints. Let f ∗t denote the social optimal routing to the above centralized

transportation problem. The minimum total processing cost Zt(f
∗
t ) is then the total

amount to be allocated among the producers. In order to model this cost allocation

problem, we setup a cooperative CRFt game in a similar way as in §2.2.3. Specifically,

we define the value of the grand coalition vt(M)
.
= Zt(f

∗). For each sub-coalition of

producers S ( M , its incentive to participate in a collective system is captured by

the difference between its allocated cost in the collective system and its stand-alone

cost vt(S), which is defined as the minimum total cost to process the return volume

of the coalition members using their independent capacity. Such a cost can be cal-

culated by a similar program as (Ct), where the product set Π and the processor

set R are replaced by those within the sub-coalition S, i.e., ΠS = {π(i), i ∈ S} and

RS = {r(i), i ∈ S}.

We show that the model of cost-corrected return share with capacity rewards

gives rise to a core allocation of the above CRFt game. Specifically, let [β∗π, α∗r ] be

the optimal dual solution of the problem (Ct). In the transportation setting defined

above, the allocation by cost-corrected return share with capacity rewards, denoted

by xptµ, can be calculated as follows.

(xi)ptµ =

[
vt(M) +

∑
r∈R

prkr

]
· µit − pr(i)kr(i) ∀i ∈M. (58)

where pr is the unit price rewarded to the independent capacity at processor r, and

the cost-corrected return share µit is calculated as

µit =
dπ(i)β∗π(i)∑
π∈Π d

πβ∗π
. (59)

It is easy to derive the following result as a corollary to Theorem 1.
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Corollary 1. Given any transportation CRN, the allocation xptµ is guaranteed to be

in the core of the CRFt game if pr = |α∗r| ∀r ∈ R.

For the rest of this section, we denote by xαtµ the cost allocation by cost-corrected

return share with the capacity reward price at each processor equal to the marginal

value of the capacity there. Corollary 1 indicates that under the allocation xαtµ, each

sub-coalition S incurs a total cost within the grand coalition that is no higher than its

stand-alone cost, i.e.,
∑

i∈S(xi)αtµ ≤ vt(S) ∀S ⊂ M . Hence, the allocation guarantees

the voluntary participation of all producers in the collective system and thus the

formation of a grand coalition. In the rest of this study, we will assume that this

allocation is implemented in the second stage unless stated otherwise.

First Stage Model: Product Design Decisions Now we move up to the first

stage and consider how to incorporate the producers’ product design choices into the

model. First, for each producer i, we model the recyclability level κπ(i) of his product

π(i) as i’s decision variable in designing the product. We call a collection of design

choices of all producers a design profile, and denote it by K = {κπ(i),∀i ∈M}.

Next we analyze how producers’ design decisions in the first stage interact with the

CRFt game in the second stage. As modeled in (53), a design profile K affects the unit

processing costs of the products and thus has an impact on the total processing cost

Zt(f
∗) (i.e., the value of the grand coalition vt(M)) via the transportation problem

(54) - (57). Hence, K will potentially influence the cost allocated to each producer. To

capture this relation, we regard the cost allocation mechanism xαtµ as a vector function

that maps a design profile K to a vector in R|M | whose elements correspond to the

costs allocated to all producers. In order to highlight such a functional relationship,

in the remaining analysis of this section, we will also write the allocation as xαtµ(K)

and the cost allocated to each producer i as (xi)αtµ(K). Note that such an allocated

cost determines a producer’s design incentive in the collective system. In particular,

115



the producer would like to balance between the allocated post-use recycling cost and

the investment required to achieve a design improvement. Hence, we first model the

investment cost for each producer i as a decreasing convex function of the recyclability

level of his own product, denoted as Qi(κπ(i)); this function can be different among the

producers. Intuitively, the smaller κπ(i) is, the more recyclable the product is, which

requires a higher investment, as well as a larger marginal cost for further improvement.

Furthermore, for analysis convenience, we make the following smoothness assumption

of Qi, which is referred to in the rest of this section as the property ?.

Definition 1. Qi is defined to have the property ? if (i) it is continuously differen-

tiable; (ii) its first order derivative Qi′ is strictly monotone; and (iii) Qi′ satisfies

limκπ(i)→0Q
i′(κπ(i)) = −∞ and limκπ(i)→∞Q

i′(κπ(i)) = 0.

Clearly, a function Qi′ that satisfies the property ? is invertible on (0,∞) and we

denote its inverse function by (Qi′)−1. Then we model that each producer i chooses the

recyclability level of his product κπ(i) in the first stage in order to minimize his total

cost, which is calculated as the summation of the investment cost and the allocated

recycling cost as follows.

Costi(K)
.
= Qi(κπ(i)) + (xi)αtµ(K) . (60)

Clearly, since each producer’s total cost is a function of K that includes the design of

all products, there exists mutual impact between producers’ design decisions. Hence,

we propose the following notion of an equilibrium design profile. For each producer i,

let K−i .= {κπ(j),∀j 6= i, j ∈M} denote the set of design decisions of other producers.

Definition 2. A design profile is defined to be a Nash equilibrium design profile,

denoted by Kne = {κπ(i)
ne ,∀i ∈ M}, if ∀i ∈ M , producer i achieves the smallest

total cost by adopting the design κ
π(i)
ne , given that others all adopt the designs in K−ine.

Mathematically,

Costi(Kne) .
= Costi(κπ(i)

ne ,K−ine) ≤ Costi(κπ(i),K−ine) ∀κπ(i) (61)
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Intuitively, an equilibrium design profile represents a stable design outcome of

a collective implementation from which no unilateral deviation is beneficial for any

producer. In this study, we focus on evaluating the products’ recyclability levels under

an equilibrium Kne.

We would like to make the following additional remark about the above model.

Notice that in order to analyze the influence of the post-use recycling cost to pro-

ducers’ first-stage design choices, the model implicitly assumes that the producers

have access to deterministic estimates of their future return volumes, as well as to

information regarding the capacity availability in the collective CRN. This is relevant

in the case where the CRN operates based on stable capacities, and the EPR program

is mature enough such that most products sold will be returned for recycling, hence

the return volume can be estimated from the sales volume with a certain degree of

precision. Moreover, the return volumes are also assumed to be exogenous parameters

in this model. We mention that in practice, return volumes are typically dependent

on sales volumes, which are influenced by various factors in the product market, for

example, the competition among the producers in the same product category. Notice

that these factors can be in turn influenced by the producers’ product design choices

especially with environmentally-sensitive customers. Yet in this study, our focus is to

analyze the impact of an EPR regulation and the collective form of its implementation

on the design strategies of producers, assuming given product market conditions such

that the sales volumes and thus the return volumes can be estimated. We mention

that the influence of product market competition on the design implication of col-

lective EPR has been addressed in the literature, for example, in [10], using stylized

models that do not capture network effects. Hence, we take this problem, as well

as the impact derived from the intrinsic uncertainty in return volumes, as important

and interesting future research directions in this research stream.
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2.3.3 Analysis of Equilibrium Design Profiles under Collective Implemen-
tation

In this section, we formally analyze the equilibrium design profile under a collective

implementation. This is generally a complex problem given the network operations

with capacity sharing in a collective CRN. The main challenge is that the cost alloca-

tion depends on the social optimal routing, which can change under different design

profiles and thus is generally difficult to be fully captured by a closed-form formula.

Hence, in the following, we first analyze the biform game model with two producers

and discuss the intuition and insights from the observations (§2.3.3.1). Based on

this analysis, we further study the general situation with any number of producers in

§2.3.3.2. Finally, in §2.3.3.3, we study the equilibrium design profile if the widely-used

allocation by return share is adopted in the second stage.

As mentioned before, in order to evaluate the design implication of collective

implementations, we take the product designs that the producers will choose if op-

erating independently in an individual system as the benchmark. Hence, we first

characterize such a benchmark as follows. For every producer i, we can calcu-

late that the stand-alone processing cost that i incurs in an individual system is

dπ(i) · cπ(i)
r(i) = dπ(i) · [κπ(i) · τr(i) + c̄π(i)]. The producer’s design incentive operating

independently is then captured by the value of the recyclability variable κπ(i) that

minimizes the total cost function dπ(i) · [κπ(i) · τr(i) + c̄π(i)] + Qi(κπ(i)). Since Qi is a

convex function, it is easy to see that such a minimum, which we denote as κ
∗π(i)
ind ,

must satisfy dπ(i) · τr(i) +Qi′(κ
∗π(i)
ind ) = 0, i.e., the first-order derivative of the total cost

function equals zero. Hence, we can solve that

κ
∗π(i)
ind = (Qi′)−1(−dπ(i) · τr(i)) (62)

We call κ
∗π(i)
ind producer i’s individual optimal design.
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2.3.3.1 The Two-Producer Case.

Consider two producers 1 and 2. Without loss of generality, assume that producer

1’s independent capacity is more efficient, i.e., τr(1) < τr(2). In this case, a collective

system can benefit from the network synergy when producer 2’s product π(2) is

processed at r(1) at a lower unit cost. Hence, we evaluate the potential synergy level

in the collective CRN by the availability of the efficient capacity kr(i) relative to the

return volume, in particular dπ(2), i.e., the return volume of producer 2’s product.

Specifically, we consider three scenarios in this subsection, in each of which the main

observations are summarized in Table 2.

Table 7: Summary of observations in the two-producer case.
Low-synergy Medium-synergy High-synergy

Definition kr(1) ≤ dπ(2) dπ(2) < kr(1) < dπ(1) + dπ(2) dπ(1) + dπ(2) ≤ kr(1)

Existence of a
Guaranteed

Not guaranteed
(mixed-strategy equilibrium

is further analyzed)

Guaranteedequilibrium
design profiles
Type of system

Collective Individual Individualproviding superior
design incentives

Low-synergy Scenario Our approach to study the equilibrium design profile of

the biform game under collective EPR is based on characterizing each producer’s best

design choice in the first stage given the other producer’s decision. In other words, for

each producer, we first solve his best design response function (best response function

for short in the rest of this section) to the other producer’s design decision under

collective implementation. For discussion convenience, we denote such functions as

κ
∗π(1)
clt and κ

∗π(2)
clt .

We begin by analyzing producer 1’s best design choice, assuming that producer

2 has adopted a recyclability level κ̂π(2) for his own product π(2). Depending on

producer 1’s design decision, we can solve the social optimal routing (Figure 13) and
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π(2) r(1)

π(1) r(2)

kr(1)

dπ(2) − kr(1)

dπ(1)

(a) When κπ(1) < κ̂π(2)

π(1) r(1)

π(2) r(2)

dπ(1)

kr(1) − dπ(1)

dπ(2) − (kr(1) − dπ(1))

(b) When κπ(1) ≥ κ̂π(2)

Figure 13: Social optimal routing in the low-synergy scenario.

calculate the recycling cost allocated to producer 1 under cost-corrected return share

with capacity rewards accordingly.

(x1)αtµ(κπ(1)) =


dπ(1) · [κπ(1) · τr(2) + c̄π(1)]− kr(1) · κ̂π(2) · (τr(2) − τr(1)) if κπ(1) < κ̂π(2)

dπ(1) · [κπ(1) · τr(1) + c̄π(1) + κ̂π(2) · (τr(2) − τr(1))]− kr(1) · κ̂π(2) · (τr(2) − τr(1))

if κπ(1) ≥ κ̂π(2)

(63)

The total cost of producer 1 is then calculated as Cost1(κπ(1)) = Q1(κπ(1)) +

(x1)αtµ(κπ(1)). Since (x1)αtµ(κπ(1)) is piecewise linear and Q1(κπ(1)) is convex, we can

conclude that given producer 2’s design choice κ̂π(2), Cost1(κπ(1)) is a piecewise convex

function. Under the behavioral model that producer 1 aims at minimizing his total

cost, we can obtain his best design response to producer 2’s design choice κ̂π(2) by

solving the global minimum of the function Cost1. In the next proposition, we present

a characterization of producer 1’s best response function κ
∗π(1)
clt in the low-synergy

scenario.

Proposition 5. In the low-synergy scenario, given any convex decreasing function

Q1 that satisfies the property ?, the best response function of producer 1, κ
∗π(1)
clt , is a
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Cost1

κπ(1)

κ̂π(2) l1

(a) When κ̂π(2) < l2

Cost1

κπ(1)

κ̂π(2) l1l2

(b) When l2 ≤ κ̂π(2) ≤ κπ(2)0

Cost1

κπ(1)

κ̂π(2) l1l2

(c) When κ
π(2)
0 < κ̂π(2) ≤ l1

Cost1

κπ(1)

l2κ̂
∗π(2)
2

(d) When κ̂π(2) > l1

Figure 14: Four situations of the graph of the function Cost1 in the low-synergy
scenario.

step function that satisfies

κ
∗π(1)
clt =


l1
.
= (Q1′)−1(−dπ(1) · τr(1)) ∀κ̂π(2) ≤ κ

π(2)
0

l2
.
= (Q1′)−1(−dπ(1) · τr(2)) ∀κ̂π(2) > κ

π(2)
0

(64)

where κ
π(2)
0 ∈ (l2, l1) is a constant defined based on Q1.

To prove the above result, first notice that the cost allocation to producer 1,

(x1)αtµ, is a concave piecewise linear function. Hence, we can show that, given any

convex decreasing function Q1 that satisfies the property ?, there are four situations

of the graph of the total cost function Cost1 = Q1 + (x1)αtµ ( Figure 14; please refer

to Lemma 7 in Appendix 2.3.6 for details.)

Now we analyze the best design response of producer 2 to producer 1’s design

choice in the low-synergy case. It turns out that under the allocation by cost-corrected

return share with capacity rewards, the cost allocated to producer 2 is not influenced
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by producer 1’s design choice, and can be calculated as a linear function of his own

design variable κπ(2) as follows.

(x2)αtµ(κπ(2)) = dπ(2) · [κπ(2) · τr(2) + c̄π(2)] (65)

Hence, it is easy to see that in order to minimize his own total cost Cost2(κπ(2)) =

Q2(κπ(2)) + (x2)αtµ(κπ(2)), producer 2’s best design strategy is to adopt the following

recyclability level

q1
.
= (Q2′)−1(−dπ(2) · τr(2)) . (66)

In other words, producer 2’s best response function κ
∗π(2)
clt is a constant function equal

to q1.

By definition, an equilibrium design profile is the intersection of both producers’

best response functions (Figure 15). Hence, based on the above analysis, we conclude

the following theorem.

κπ(2)

κπ(1)

l2 l1

κ
π(2)
0

Best response

function κ
∗π(1)
clt

q1

Best response function

κ
∗π(2)
clt

Kne

(a) When q1 > κ
π(2)
0

κπ(2)

κπ(1)

l2 l1

κ
π(2)
0

Best response

function κ
∗π(1)
clt

q1

Best response

function κ
∗π(2)
clt

Kne

(b) When q1 ≤ κπ(2)0

Figure 15: The Equilibrium design profile under collective implementation in the
low-synergy scenario.

Theorem 5. In the low-synergy scenario, given any convex decreasing functions Q1

and Q2 that satisfy the property ?, there exists at least one equilibrium design profile

Kne. Moreover, for both producers, the recyclability levels of their product designs

under any Kne are no worse than their own individual optimal designs, i.e., κ
π(i)
ne ≤

κ
∗π(i)
ind for both i = 1, 2.
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We point out that the equilibrium design profile in the low-synergy scenario is

unique when κ
π(2)
0 6= q1. In particular, when q1 > κ

π(2)
0 , collective implementation

incentivizes a strictly more recyclable design of product π(1) (Figure 15(a); see Ap-

pendix 2.3.6 for details.) The intuition underlying the theorem is the following. When

the allocation mechanism of the cost-corrected return share with capacity rewards is

used, both producers’ design incentives depend on the sensitivity of their marginal

costs in the collective CRN to the changes in their product designs. In particular,

formula (64) and (66) indicate that in the low-synergy scenario, the faster the rate of

change in the marginal cost of a product is, a more recyclable product design will be

adopted by the corresponding producer, due to the convexity of the investment cost.

Note that such sensitivity is determined by the efficiency level of the facility where

the last unit of the product is processed. In the low-synergy scenario, we can observe

from Figure 13 that in the collective CRN, although the optimal total processing cost

is reduced compared to that of an individual system due to the benefits from resource

sharing, the last unit of either product is processed using capacity no more efficient

than the independent capacity of the corresponding producer. This results in supe-

rior or equal design incentives to each producer under collective implementation in

the low-synergy scenario compared to their operating independently in an individual

system.

Next, in order to highlight the impact of network synergy, we analyze the other

extreme case, the high-synergy scenario, where there exists sufficient capacity at

the efficient processor r(1) to process the entire volume. We obtain the opposite

result in that situation, i.e., collective implementation offers inferior design incentives

compared to an individual system.

High-synergy Scenario The high-synergy scenario is defined such that there is

sufficient efficient capacity to process the entire volume, i.e., dπ(1) + dπ(2) ≤ kr(1).
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It is easy to see that in this case, it is socially optimal to process all products at

the efficient processor r(1). Hence, we can calculate the allocation by cost-corrected

return share with capacity rewards to each producer as follows.

(x1)αtµ(κπ(1)) = dπ(1) · [κπ(1) · τr(1) + c̄π(1)]

(x2)αtµ(κπ(2)) = dπ(2) · [κπ(2) · τr(1) + c̄π(2)] (67)

Notice that in this scenario, the cost allocations and thus the design decisions of

individual producers are completely independent of each other. Thus, we can conclude

the following result.

Proposition 6. In the high-synergy scenario, given any convex decreasing functions

Q1 and Q2 that satisfy the property ?, there exists a unique equilibrium design profile

Kne such that

κπ(i)
ne = (Qi′)−1(−dπ(i) · τr(1)) ≥ κ

∗π(i)
ind i = 1, 2 (68)

In other words, for both producers, the recyclability levels of their product designs

under Kne are no better than their own individual optimal designs.

Proposition 6 demonstrates the potential tradeoff between cost efficiency and de-

sign incentives in a collective CRN. Specifically, when there exists a substantial level

of network synergy in the collective CRN, not only the total processing cost is signif-

icantly reduced compared to that of an individual system, but also the marginal cost

of each product is becomes smaller or remains unchanged, as the entire return volume

is processed at the efficient facility r(1). This leads to inferior design incentives under

collective implementation.

A common feature of both the low-synergy and the high-synergy scenarios is that

only the marginal costs of their products play a role in determining the producers’

design incentives in the collective CRN. Next, we show that when there exists a

medium level of network synergy in the collective CRN, the marginal value of the

producers’ independent capacity can also exert an impact through the capacity reward
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Figure 16: Social optimal routing in the medium-synergy scenario.

mechanism adopted under the cost allocation xαtµ. Such an impact adds significant

complexity to the problem. For example, it may undermine the existence of an

equilibrium design profile.

Medium-synergy Scenario We adopt a similar approach to analyze the medium-

synergy scenario, starting with characterizing the social optimal routing in the collec-

tive CRN. Specifically, since the efficient capacity at r(1) satisfies max{dπ(1), dπ(2)} <

kr(1) < dπ(1) +dπ(2), the social optimal routing is to route the full return volume of the

product that is more difficult to recycle (i.e., the one with the higher κ parameter)

to r(1), use the remaining capacity at r(1) to process the other product, and finally

route the rest of the return volume to r(2) (Figure 16). Hence, we can calculate each

producer’s cost allocation by cost-corrected return share with capacity rewards within

the collective CRN as follows.

• Producer 1’s cost allocation (x1)αtµ given producer 2’s design choice κ̂π(2):

(x1)αtµ(κπ(1)) =


dπ(1) · [κπ(1) · τr(2) + c̄π(1)]− kr(1) · κπ(1) · (τr(2) − τr(1)) if κπ(1) < κ̂π(2)

dπ(1) · [κπ(1) · τr(1) + c̄π(1) + κ̂π(2) · (τr(2) − τr(1))]− kr(1) · κ̂π(2) · (τr(2) − τr(1))

if κπ(1) ≥ κ̂π(2)

(69)

• Producer 2’s cost allocation (x2)αtµ given producer 1’s design choice κ̂π(1):

125



(x2)αtµ(κπ(2)) =


dπ(2) · [κπ(2) · τr(2) + c̄π(2)] if κπ(2) < κ̂π(1)

dπ(2) · [κπ(2) · τr(1) + c̄π(2) + κ̂π(1) · (τr(2) − τr(1))] if κπ(2) ≥ κ̂π(1)

(70)

From the above formulas, we observe that the cost allocation of producer 2, (x2)αtµ,

is a concave function of his design choice κπ(2). We can conclude a similar result as

in Proposition 5, i.e., the best response function of producer 2 is a step function with

two constant pieces.

Proposition 7. In the medium-synergy scenario, given any convex decreasing func-

tion Q2 that satisfies the property ?, the best response function of producer 2, κ
∗π(2)
clt ,

is a step function that satisfies

κ
∗π(2)
clt =


q2

.
= (Q2′)−1(−dπ(2) · τr(1)) ∀κ̂π(1) ≤ κ

π(1)
0

q1
.
= (Q2′)−1(−dπ(2) · τr(2)) ∀κ̂π(1) > κ

π(1)
0

(71)

where κ
π(1)
0 ∈ (q1, q2) is a constant defined based on Q2.

However, it turns out that producer 1’s best response function is not a step func-

tion in the medium-synergy scenario. Intuitively, according to formula (69), we can

observe that improving the design of the product π(1) may decrease the marginal

value of producer 1’s own independent capacity, thus can potentially result in a

smaller capacity reward in his cost allocation. Because of this, producer 1’s cost

allocation (x1)αtµ turns out to be a convex function of his design variable κπ(1) in

the medium-synergy scenario, as the slopes of the two linear pieces of (x1)αtµ satisfy

dπ(1) ·τr(2)−kr(1) · (τr(2)−τr(1)) = dπ(1) ·τr(1)− (kr(1)−dπ(1)) · (τr(2)−τr(1)) ≤ dπ(1) ·τr(1).

In this case, the graph of the total cost of producer 1 Cost1 (Figure 17) becomes dif-

ferent from that in the low-synergy scenario, which leads to a different best response

function of producer 1.
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Figure 17: Three situations of the graph of the function Cost1 in the medium-synergy
scenario.

Proposition 8. In the medium-synergy scenario, given any convex decreasing func-

tion Q1 that satisfies the property ?, the best response function of producer 1, κ
∗π(1)
clt ,

is continuous piecewise linear and satisfies

κ
∗π(1)
clt =


l1
.
= (Q1′)−1(−dπ(1) · τr(1)) ∀κ̂π(2) < l1

κ̂π(2) ∀l1 ≤ κ̂π(2) ≤ l3

l3
.
= (Q1′)−1(−dπ(1) · τr(2) + kr(1) · (τr(2) − τr(1))) ∀κ̂π(2) > l3

(72)

Based on Proposition 7 and 8, we plot the best response functions κ
∗π(1)
clt and

κ
∗π(2)
clt in Figure 18; the intersection of the two functions represents the equilibrium

design profile. In panel (a) and (b) of Figure 18, there must exist an equilibrium

design profile; the equilibrium is also unique if κ
π(1)
0 6= l1 and l3. However, notice that

this is no longer the case in Figure 18(c): The two best response functions do not

intersect, indicating that no equilibrium design profile exists when l1 < κ
π(1)
0 < l3.
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Figure 18: The Equilibrium design profile under collective implementation in the
medium-synergy scenario.

In this case, we further analyze the mixed-strategy equilibrium design profile of the

biform game. The idea is to allow each producer i to randomize among product

design choices based on a chosen probability distribution f i over his design variable

κπ(i). Mathematically, we denote a mixed-strategy design profile as the collection of

such probability distributions Km = {f i,∀i ∈ M}. We let EKm [Costi] denote the

corresponding expected total cost of producer i.

Definition 3. A mixed strategy design profile is called a mixed-strategy Nash equilib-

rium design profile, denoted by Kmne, if ∀i ∈M ,

EKmne [Cost
i] ≤ E{f i,K−imne}[Cost

i] ∀f i , (73)

128



where K−imne
.
= {f j ∈ Kmne : j 6= i}.

We conclude the following theorem regarding the design implication of collective

implementation in the medium-synergy scenario.

Theorem 6. In the medium-synergy scenario, consider any convex decreasing func-

tions Q1 and Q2 that satisfy the property ?.

1. If κ
π(1)
0 ∈ (0, l1]∪ [l3,∞), there exists at least one equilibrium design profile Kne.

Moreover, for both producers, the recyclability levels of their product designs

under any Kne are no better than their own individual optimal designs, i.e.,

κ
π(i)
ne ≥ κ

∗π(i)
ind for both i = 1, 2.

2. If κ
π(1)
0 ∈ (l1, l3), there does not exist an equilibrium design profile. However,

there must exist a mixed-strategy equilibrium design profile Kmne = {f 1, f 2},

under which for both i = 1, 2, κπ(i) ≥ κ
∗π(i)
ind ∀κπ(i) such that the probability

f i(κπ(i)) > 0.

We conclude that in the medium-synergy scenario, the network synergy decreases

the marginal cost of producer 2’s product thus reduces his design incentives, which is

another example of the tradeoff between cost efficiency and design incentives under

collective implementation. Meanwhile, for producer 1, the situation becomes more

complicated: On one hand, the marginal cost of his product π(1) may increase when

producer 1 participates in a collective CRN, and thus can potentially motivate pro-

ducer 1 to adopt a better design choice. However, on the other hand, such incentives

are undermined by the concern that a better recyclability level of π(1) may reduce

the marginal value of producer 1’s own independent capacity at r(1) and thus his

capacity reward. This result further underlines the complexity of the impact of the

operational details in capacitated systems with shared resources.
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2.3.3.2 The General Case.

In this subsection, we study the design implication of collective EPR with any num-

ber of producers under the allocation by cost-corrected return share with capacity

rewards, based on the insights obtained from the two-producer case. We focus on the

two extreme cases with a low and a high level of network synergy, respectively. In

particular, we show that both Theorem 5 and Proposition 6 can be extended to the

general case, i.e., a collective implementation with low/high network synergy leads to

superior/inferior design incentives compared to an individual system. This analysis

indicates the significance of the impact of the operations in a collective CRN in a

general setting. As for the medium-synergy scenario, based on our analysis in the

two-producer case, we can expect that the marginal value of capacity can exert an

impact and thus the situation can be much more complex with a general number of

producers involved; we leave this problem for future research.

In the following discussion, without loss of generality and similar to our assumption

in the two-producer case, we assume that the relative efficiency levels among the

processors are determined based on the order of producers’ indices. Specifically, r(i)

is more efficient than r(j) (i.e., τr(i) ≤ τr(j)) if i < j.

Low-synergy Scenario Recall that in the two-producer case, the low-synergy sce-

nario represents the situation where the return volume of producer 2 is larger than

the capacity at the efficient processor r(1). A natural way to generalize this idea to

a m−producer setting is assume that, for each producer, his own return volume is

larger than the total capacity that is more efficient than his independent capacity.

Mathematically, we define the low-synergy scenario with m producers as such that

dπ(i) >
∑

j<i kr(j) ∀i ∈M . Intuitively, the motivation behind such a definition is that

a collective CRN can benefit from network synergy when a product π(i) is routed to

a more efficient processor than r(i). When dπ(i) >
∑

j<i kr(j) ∀i ∈ M , no producer

130



can have his return volume entirely processed using the capacity more efficient than

his own, indicating a limited level of potential network synergy. We show that in this

scenario, collective implementation provides superior design incentives compared to

an individual system.

Theorem 7. Consider any set of producers M = {1, 2, ...,m} and any convex decreas-

ing functions {Qi,∀i ∈ M} that satisfy the property ?. In the low-synergy scenario

where dπ(i) >
∑

j<i kr(j) ∀i ∈ M , there exists at least one equilibrium design profile

Kne. Moreover, for all producers, the recyclability levels of their product designs under

any Kne are no worse than their own individual optimal designs, i.e., κ
π(i)
ne ≤ κ

∗π(i)
ind

∀i ∈M .

We prove the above theorem in a constructive way by providing an algorithm to

compute an equilibrium design profile. To do this, we first identify some structural

properties of the social optimal routing in this low-synergy scenario, which lead to a

full characterization of the best response function of each producer; we then design

the algorithm based on these observations. We find the proof itself insightful in char-

acterizing the key factors that influence producers’ design incentives under collective

EPR given a CRN structure with deficient efficient capacity. Hence, we highlight

some key steps and observations from the proof in this subsection. The technical

details are provided in Appendix 2.3.6.

We first propose the following greedy routing algorithm (Algorithm 2), which can

be shown to compute a social optimal routing in any transportation CRN as defined

in §2.3.2. For discussion convenience, we introduce the algorithm for nondegenerate

cases where producers’ recyclability levels and processors’ efficiency levels are differ-

ent. In general cases, the algorithm also applies with certain rules to break ties.

Lemma 4. Algorithm 2 computes a social optimal routing on any transportation CRN

as defined in §2.3.2.
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ALGORITHM 2: A greedy routing algorithm in a general transportation CRN

Input: A transportation CRN with a product set Π and a processors set R. For each
product π ∈ Π, the return volume dπ and the recyclability level of its design κπ

are given. For each processor r ∈ R, the capacity kr and its efficiency level τr are
given.

Output: A routing {fπr } of the products to the processors
Let Π0 = Π and R0 = R. Let fπr = 0 ∀r ∈ R π ∈ Π. Let t = 0.
while Πt 6= ∅ do

1. Let π̄
.
= arg maxπ∈Πt κ

π be product with the worst recyclability level in Πt. Let
r̄
.
= arg maxr∈Rt τr be the most efficient processor in Rt.

2. Let f π̄r̄ = min{dπ̄, kr̄}. Let dπ̄ = dπ̄ − f π̄r̄ and kr̄ = kr̄ − f π̄r̄ .

3. Let Πt+1
.
= Πt \ {π : dπ = 0}, and Rt+1

.
= Rt \ {r : kr = 0}. Let t = t+ 1.

end
Output {fπr }.

Intuitively, Algorithm 2 gives products that are more difficult to recycle the pri-

ority in using more efficient capacity. We prove the above lemma by duality theory.

Based on this routing algorithm, we are able to explore the combinatorial structure

of the social optimal routing, which leads to the following property of the cost allo-

cation by cost-corrected return share with capacity rewards to each producer in the

low-synergy scenario.

Lemma 5. In the low-synergy scenario, for each producer i, the cost allocation to i

under cost-corrected return share with capacity rewards, (xi)αtµ, is a function of only

the decision choices of the set of producers {j : j ≥ i}.

According to the above lemma, it can be concluded that in the low-synergy sce-

nario, a producer i’s best response function under collective implementation is only

dependent on the design choices of producers with indices larger than i. This indi-

cates that in this case, an equilibrium design profile can be computed in a sequential

manner, which motivates us to design the following algorithm.

Lemma 6. In the low-synergy scenario, a design profile is a Nash equilibrium if and

only if it is a solution to Algorithm 3. Moreover, in the algorithm, for any producer

132



ALGORITHM 3: An algorithm to compute a design profile.

Input: A set of producers M . For each producer i, the return volume dπ(i), the capacity
kr(i) and its efficiency level τr(i), as well as the investment function Qi, are given.

Output: A design profile K
Let κπ(m) = (Qm′)−1(−dπ(m) · τr(m)). Let t = m− 1.

while t > 0 do

Compute a global minimum of the function Costt = Qt + (xt)αtµ, with {κπ(j), j > t} as

parameters. Assign the value to the design variable κπ(t). Let t = t− 1.
end

Output K = {κπ(i),∀i ∈M}.

i, given any convex decreasing functions Qi that satisfies the property ?, the global

minimum of the total cost function Costi = Qi + (xi)αtµ is equal to (Qi′)−1(dπ(i) · τr(j))

for some j ≥ i.

Combining Lemma 4, Lemma 5 and Lemma 6, we conclude that under any equilib-

rium design profile in a collective system, the recyclability level of each product is no

worse than that under the corresponding individual optimal design. This completes

the proof to Theorem 7. To summarize, the key factor that leads to the superior

design incentives under collective EPR in the low-synergy scenario is the potential

increase in the marginal cost of each product under resource sharing, due to the

deficiency in efficient capacity in the collective CRN.

High-synergy Scenario We define the high-synergy scenario with any number of

producers as such that there exists sufficient capacity at the most efficient processor

r(1) to handle the entire return volume, i.e., kr(1) ≥
∑m

i=1 d
π(i). Hence, the social

optimal routing is to route all products to r(1). Applying the same argument used

in the high-synergy scenario in the two-producer case, we conclude the following

theorem.

Theorem 8. Consider any set M = {1, 2, ...,m} producers and any convex decreasing

functions {Qi,∀i ∈M} that satisfy the property ?. In the high-synergy scenario where
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kr(1) ≥
∑m

i=1 d
π(i), there exists a unique equilibrium design profile Kne such that

κπ(i)
ne = (Qi′)−1(−dπ(i) · τr(1)) ≥ κ

∗π(i)
ind ∀i ∈M (74)

In other words, for all producers, the recyclability levels of their product designs under

Kne are no better than their own individual optimal designs.

2.3.3.3 The Design Implication of using the Allocation by Return Share in Col-
lective Implementation.

We conclude our analytical study in this section of the design implication of collective

EPR by studying the equilibrium design profile of the biform game assuming the

recycling cost in the second stage is allocated proportional to producers’ return shares.

As mentioned in §2.2, such a return share model is widely-used in practice. However,

it has been criticized by producers and practitioners for being the major factor to

mute producers’ design incentives under collective EPR implementation. Specifically,

under such a homogeneous cost allocation, the externality of a producer’s design

choice is not completely reflected in his cost allocation, thus the producer’s economic

incentives to improve the design are undermined. Because of this, it is generally

believed that an individual system always incentivizes product designs that are easier

to recycle compared to a collective one where the allocation by return share is adopted.

Surprisingly, our analysis indicates that while the common wisdom holds true under

some circumstances, a collective system with return share may also provide superior

design incentives compared to an individual one in certain cases.

We would like to mention that one additional complexity that arises from adopting

the allocation by return share in our biform game model is that the grand coalition

is not guaranteed to be sustained in the second stage, as the producers may be over-

charged under such a homogeneous cost allocation and thus be incentivized to break

away. In other words, the allocation by return share is generally not group incentive

compatible (Proposition 1 and Proposition 2). The fragmentation of a collective
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system can have a potential impact on producers’ end-of-life recycling cost and thus

their design incentives. In order to analyze such an impact, we need to study the

coalition structure that producers form in the second stage under return share. This

requires additional assumptions regarding the cost allocation used within each sub-

coalition and an equilibrium analysis of producers’ participation decisions in those

sub-groups. In literature, such problems are analyzed based on farsighted, dynamic

coalitional stability notions such as the largest consistent set, equilibrium process

of coalition formation, subgame perfect consistent stability and etc. [32, 94, 64].

Applications of these models include supply chain management and product take-

back economics [66, 113, 162]. In the context of collective EPR, it can be expected

that the design implication of such fragmentation issues under return share can be

a significant concern in the long run. However, the current debate focuses on the

negative impact of joint responsibility in cost sharing within a collective recycling

system due to the uniform nature of the allocation by return share. Hence, in this

study, we analyze producers’ design incentives in a collective system with return share,

assuming there exists significant exit barrier for the producers to leave the collective

system.

In this subsection, we consider the two-producer case and discuss the problem

in the low-, medium- and high-synergy scenarios. In each scenario, we focus on

characterizing the equilibrium design profile under a collective implementation where

the cost allocation by return share to each producer i equals

xir =
dπ(i)

dπ(1) + dπ(2)
· vt(M) i = 1, 2 . (75)

We then compare the recyclability level of each product under the equilibrium design

profile with that under the corresponding individual optimal design. In the rest of this

subsection, we provide an overview of our analysis and highlight the new observations.

We refer the readers to Appendix 2.3.6 for technical details.
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Figure 19: Producers’ allocations by return share in the low-synergy scenario.

Low-synergy Scenario In this scenario, we can calculate that for each producer,

the second-stage cost allocation by return share is a concave piecewise linear func-

tion of his own design variable (Figure 19). Hence, similar to our previous results in

Proposition 5 and Proposition 7, it can be shown that the best response functions

of both producers are step functions with two constant pieces. We show that the

existence of an equilibrium design profile can be guaranteed (see Figure 20). We can

also observe that, under return share, there exist multiple equilibrium design profiles

in the situation depicted in Figure 20(d), i.e., the break point of producer 1’s best

response function lies between the two constant pieces of producer 2’s best response

function, and vice versa. This is different from the situation under cost-corrected re-

turn share with capacity rewards, where the equilibrium design profile is unique unless

κ
π(2)
0 = q1 in the low-synergy scenario. Moreover, in cases with multiple equilibria,

whether a producer experiences superior or inferior design incentive under a collec-

tive implementation with return share compared to an individual system depends on

which equilibrium design profile is achieved.

Theorem 9. Consider the two-producer case of the biform game where the allocation

by return share xr is adopted in the second stage. In the low-synergy scenario, given
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Figure 20: The Equilibrium design profile under collective implementation with
allocation by return share in the low-synergy scenario.

any convex decreasing function Q1 and Q2 that satisfy the property ?, there exist at

least one equilibrium design profile Kne. Moreover,

1. for producer 2, the recyclability level of his product design under any Kne is

strictly worse than his own individual optimal design, i.e., κ
π(2)
ne > κ

∗π(2)
ind .

2. for producer 1,

(a) the worst recyclability level of his product design under an Kne is always

strictly worse than his own individual optimal design, i.e., maxKne κ
π(1)
ne >

κ
∗π(1)
ind .

(b) if there exists multiple equilibria, then when
τr(1)

τr(2)
< dπ(1)

dπ(2)+dπ(1) , the best

recyclability level of his product design under an Kne is strictly better than

his own individual optimal design, i.e., minKne κ
π(1)
ne < κ

∗π(1)
ind .

Result 2(b) in Theorem 9 is a surprising and counter-intuitive result from an eco-

nomic perspective that is generally held in practice. To see why this is the case, note

that intuitively a small ratio
τr(1)

τr(2)
indicates a large heterogeneity level in processing
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efficiency among the processors in the collective CRN. In this case, the potential in-

crease in the marginal cost of product π(1) can be significant when its last unit is

routed to processor r(2) under the social optimal routing in the low-synergy scenario.

Such a significant marginal cost increase can incentivize a better design choice of

producer 1 in a collective system with return share even if the impact of a product’s

marginal cost is jointly absorbed by all producers under the homogeneous return

share allocation. In this case, we conclude that the effect of the operational factors

in a collective CRN (e.g., marginal cost) on producers’ design incentives dominates

the negative impact of joint responsibility in cost sharing.

Medium-synergy Scenario In the medium-synergy scenario, our analysis gives

rise to very similar results as in the low-synergy scenario regarding the design incen-

tives of both producers under collective EPR when the allocation by return share

is used. Specifically, both producers’ cost allocation by return share in the second

stage are concave piecewise linear functions (Figure 21), which lead to best response

functions that are step functions with two constant pieces. Hence, the existence of

an equilibrium design profile is guaranteed yet it is likely that there are multiple

equilibria in this system. We also derive the following result, which is very similar

to Theorem 9. In particular, producer 1 may also experience superior design incen-

tives in the medium-synergy scenario if there is a big enough difference between the

efficiency level of the two processors.

Theorem 10. Consider the two-producer case of the biform game where the allocation

by return share xr is adopted in the second stage. In the medium-synergy scenario,

given any convex decreasing function Q1 and Q2 that satisfy the property ?, there exist

at least one equilibrium design profile Kne. Moreover,

1. for producer 2, the recyclability level of his product design under any Kne is

strictly worse than his own individual optimal design, i.e., κ
π(2)
ne > κ

∗π(2)
ind .
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(b) Producer 2’s allocation by return share

Figure 21: Producers’ allocations by return share in the medium-synergy scenario

2. for producer 1,

(a) the worst recyclability level of his product design under an Kne is always

strictly worse than his own individual optimal design, i.e., maxKne κ
π(1)
ne >

κ
∗π(1)
ind .

(b) if there exists multiple equilibria, then when
τr(1)

τr(2)
<

dπ(1)+dπ(2)−kr(1)

dπ(1)+2dπ(2)−kr(1)
, the

best recyclability level of his product design under an Kne is strictly better

than his own individual optimal design, i.e., minKne κ
π(1)
ne < κ

∗π(1)
ind .

High-synergy Scenario As we have mentioned before, the social optimal routing

in the high-synergy scenario is to route the entire return volume to the efficient

processor r(1), due to the abundant capacity there. In this case, we can calculate the

unique equilibrium design profile Kne under collective implementation with return

share as follows.

κπ(1)
ne = (Q1′)−1(− dπ(1)

dπ(1) + dπ(2)
· dπ(1) · τr(1)) > κ

∗π(1)
ind (76)

κπ(2)
ne = (Q2′)−1(− dπ(2)

dπ(1) + dπ(2)
· dπ(2) · τr(1)) > κ

∗π(2)
ind (77)

Hence, we conclude that in the high-synergy scenario, collective EPR with return

share allocation leads to strictly inferior design incentives compared to an individual

139



system. We further show that in this case, for each producer, his equilibrium de-

sign under return share is strictly worse than that under cost-corrected return share

with capacity rewards. This demonstrates that in the high-synergy scenario, both

the operational factors (e.g., high-synergy level from resource sharing) and the im-

pact of joint responsibility undermine producers’ design incentives under collective

implementations.

2.3.4 A Numerical Study

The analytical study above provides a general understanding towards the impact of

the operational factors on the design implications of collective EPR. In particular,

our results indicate the significant roles of the capacity configuration of a collective

CRN and the network synergy derived from resource sharing. One prominent obser-

vation from the analysis is that collective implementation may lead to superior design

incentives compared to an individual system if the efficient capacity availability is rel-

atively low in the collective CRN. Moreover, the heterogeneity in capacity efficiency

among the processors can also exert a substantial impact especially if the allocation

by return share is used in the second stage of the biform game. Specifically, we pro-

vide analytical bounds to the value of
τr(1)

τr(2)
, under which collective implementation

with return share may provide better design incentives. In this section, we perform

a numerical study of the problem. The purpose of the numerical study is twofold:

First, we validate our analytical results. Second, we study the joint impact of the

availability of efficient capacity and the efficiency heterogeneity among the proces-

sors. In particular, our analytical results provide parameter ranges where a collective

implementation leads to strictly superior/inferior design incentives compared to an

individual system.

The numerical study is performed based on a collective CRN with two producers.

Producer 1 has a return volume of dπ(1) = 10M lbs and producer 2’s return volume

140



Color legend:          indifferent          collective system is better          individual system is better 

Collective system with cost-corrected 

return share with capacity reward 

v.s. Individual system 

Collective system with return share 

v.s. Individual system 

Producer 

1 

Producer 

2 

Figure 22: Producers’ allocations by return share in the medium-synergy scenario

is dπ(2) = 13M lbs. The unit base cost of the products are assumed to be c̄π(1) =

10 cents/lb, and c̄π(2) = 12 cents/lb. The design investment function of the two

producers are modeled as reciprocal function; specifically, Q1(κπ(1)) = 200 · 1
κπ(1) and

Q2(κπ(2)) = 300 · 1
κπ(2) . We take the processor r(2) where producer 2 has independent

capacity as the standard processor, i.e., τr(2) = 1; the independent capacity there is

assumed to be kr(2) = 20 M lbs. Based on this instance, we consider a continuum

of scenarios with different capacity availability at and efficiency level of the efficient

processor r(1). Specifically, we allow the efficiency level of r(1) to vary in [0.1, 1] and

the capacity level there to vary in [10, 25] million lbs.

Figure 22 compares the producers’ individual optimal designs with the equilibrium

design profiles under collective EPR with either the allocation by cost-corrected return
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share with capacity rewards (column 1) or the allocation by return share (column

2). Note that the figure for producer 1 in column 2 is plotted based on his best

equilibrium design under return share. Overall, the numerical results are consistent

with our analytical results. Specifically, in the high-synergy case, an individual system

indeed dominates collective implementation and motivates better design, as resource

sharing with abundant efficient capacity in the collective system leads to high network

synergy and thus the tradeoff between cost efficiency and design incentives. It is also

the case for producer 2 for the entire parameter space. For producer 1, collective

implementation has the potential to achieve superior design incentives for him in

both the low-synergy and the medium-synergy scenarios, given that the choice of the

allocation mechanism is made based on the specific configuration of the collective

CRN.

One prominent observation from Figure 22 is that in this example, the degree

of heterogeneity in capacity efficiency levels plays an important role in determining

under which cost allocation mechanism collective EPR implementation can provide

strictly superior design incentives compared to an individual system. We first ob-

serve that when the efficiency levels of the two producers are similar, i.e., when
τr(1)

τr(2)

is greater than approximately 0.75, then under cost-corrected return share with capac-

ity rewards, collective implementation can provide strictly superior design incentives

to producer 1 in the low synergy case. However, also note that under the same range

of
τr(1)

τr(2)
, doing so in the medium synergy case actually leads to strictly inferior de-

sign incentives to both producers, due to the additional impact from the marginal

value of producer’s independent capacity. This finding accentuates the complexity of

the design implication of collective EPR implementation derived from the network

operations in a collective system.

In contrast, we observe quite the opposite result if the allocation by return share

is used. Specifically, under return share, producer 1 adopts a more recyclable product
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design in the collective system compared to his individual optimal design in the low-

synergy scenario when there is a big difference between the efficiency levels of the two

processors, i.e.,
τr(1)

τr(2)
is small and is approximately in the range of [0, 0.43]. Notice

that such a range gradually shrinks in the medium synergy case as the capacity at

r(1) increases. These numerical observations are consistent with our analytical results

in Theorem 9 and Theorem 10: In the low-synergy case, Theorem 9 indicates that

producer 1 may have higher design incentives under return share when
τr(1)

τr(2)
is less

than producer 1’s return share dπ(1)

dπ(1)+dπ(2) , which can be calculated to be 10
23
≈ 0.43

in this example. In the medium-synergy case, Theorem 10 suggests that a collective

system with return share may provide superior design incentives to producer 1 if

τr(1)

τr(2)
is within (0,

dπ(1)+dπ(2)−kr(1)

dπ(1)+2dπ(2)−kr(1)
); such a range obviously becomes smaller with more

capacity kr(1) in the system.

A natural question that arises when comparing the above two sets of observations

is that why collective EPR does not provide strictly superior design incentives under

small values of
τr(1)

τr(2)
under cost-corrected return share with capacity rewards. The

answer to that question is that the interaction and dynamics between the producers’

decisions also play an important role under a collective implementation, which is

captured by our equilibrium analysis of the biform game. Specifically, when
τr(1)

τr(2)

is low, it is not an equilibrium for producer 1 to adopt a strictly more recyclable

design under cost-corrected return share with capacity rewards, due to the influence

of producer 2’s design decision.

2.3.5 Conclusion

Providing design incentives has been regarded as one of the ultimate goals of Extended

Producer Responsibility as a policy concept to treat post-use products. The current

debate on how to realize such design potential in implementation essentially focuses
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on finding effective ways to reflect the products’ environmental impact in the post-

use recycling cost that the corresponding producers need to internalize. An intuitive

economic perspective suggests that one crucial element to achieve this is to prevent

joint responsibility, i.e., to associate each producer’s recycling cost only with his own

products. This principle of Individual Producer Responsibility (IPR) has been widely

supported in practice, and has steered the majority of the existing discussion on the

design implication of EPR implementation. For example, it is based on this IPR

principle that an individual system, where all producers operate independently, is

generally regarded as being able to provide the best design incentives, as no cost

sharing occurs thus joint responsibility is absolutely prevented. Moreover, under a

collective implementation, although the recycling operations are done jointly, it is

believed that the same design incentives can be achieved if the financing mechanism

is designed to separate the cost for each participant.

In this section, we argue that IPR is not a sufficient and necessary condition for

superior design incentives, due to the significant impact of operational-level factors,

in particular, the capacity configuration of the CRN and the network synergy derived

from resource sharing. The intuitive reason is that these factors can influence the

post-use treatment cost in a collective system, thus potentially exerting an impact on

producers’ design incentives. In this section, we explore such an impact by adopting

a network perspective towards the collective recycling operations, and studying a

two-stage biform game model that captures the interaction between such operations

and the producers’ design decisions. Specifically, the first stage is modeled as a non-

cooperative game where producers independently choose their product designs, while

the second stage is a cooperative network game model of the recycling operations in

a collective system at the end-of-life of the products.

Our first analysis assumes that the allocation by cost-corrected return share with

capacity rewards is adopted in the second stage. Such an allocation is shown to be
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group incentive compatible in §2.2, i.e., the costs allocated to producers are related

to their own products in the sense that no sub-coalition of producers suffers a higher

cost in the collective system compared to their operating independently. We mainly

study three scenarios with different capacity configurations thus different levels of

network synergy from capacity sharing. The analysis indicates that a producer’s

design incentive under collective implementation is strongly dependent on the synergy

level in the collective system as well as operational details such as the marginal costs

of his products. In particular, when abundant efficient capacity exists, we identify

a tradeoff between cost efficiency and design incentives in a collective system. We

also identify network conditions where collective implementation has the potential

to provide superior design incentives compared to an individual system. Finally, we

further analyze the design implication of using the allocation by return share in the

collective system. The IPR principle suggests that the producers’ design incentives

should be significantly weakened under such a homogeneous cost allocation. However,

we show that producers may be motivated to adopt a more recyclable design under

return share compared to operating independently in an individual system when

the capacity heterogeneity in the collective system is high in terms of processing

efficiency. This result underlines the significance of the operational impact on the

design implication of EPR. Hence, our study suggests that in order to realize the

design potential of the EPR concept, it is important to make policy choices based

on the operational features of the collection and recycling infrastructure in the area

concerned.

Being our first study towards the operational impact on design implication of

EPR, this section also motivates a rich set of issues to be further explored. For

example, one immediate question is to study the medium-synergy scenario in the

general case with any number of producers, from which we can expect to gain more

general insights regarding the impact of the marginal value of capacity. Moreover,
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as mentioned in the previous two sections, current collective implementations often

involve capacities that are contracted by the system operator. The availability of such

exogenous capacity changes the capacity configuration of the collective system and

thus is expected to have an impact on the design incentives of the producers. Our

initial study on small examples indicates that incorporating the operator-contracted

capacity can increase the synergy level in a collective system and thus can potentially

undermine producers’ design incentives. Under what conditions this observation can

be generalized is another interesting question to investigate. In addition, as we men-

tion at the end of §2.3.2.2, the study in this section also motivates us to evaluate the

impact of other operational factors such as the competition in the product market

and the uncertainty in return volumes. Finally, we conclude from this study that

the efficiency of capacities has a significant impact on the implementation outcomes

of EPR. This motivates us to consider the question of whether and how an EPR

regulation and its implementation may incentivize producers’ investment in process

improvement, such as adopting more advanced recycling technology. We discuss this

issue in more details in the next section as a future research direction motivated from

this research stream.

2.3.6 Appendix

Proof of Proposition 5. In order to prove this proposition, we first present the fol-

lowing lemma that characterizes the global minimum of the sum of a general convex

decreasing function Fc : (0,∞) → (0,∞) and an increasing function Fl : (0,∞) →

(0,∞) that consists of two linear pieces. Specifically, we defined Fl as

Fl(x) =


a1 · x+ b1 x ∈ (0, c)

a2 · x+ b2 x ∈ [c,∞)

(78)

where a1 > 0 and a2 > 0. We assume that a1 · c+ b1 = a2 · c+ b2 to ensure continuity

of the function Fl.
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Lemma 7. Given a convex decreasing function Fc and a two-step linear increasing

function Fl as defined above. Assume that Fc satisfies the property ?.

1. If Fl is concave, i.e., a1 > a2, then the minimum of the function Fc+Fl satisfies

arg minFc + Fl =


x∗2

.
= (F ′c)

−1(−a2) if c ≤ c0

x∗1
.
= (F ′c)

−1(−a1) if c > c0

(79)

where c0 is a constant contained in the interval (x∗1, x
∗
2).

2. If Fl is convex, i.e., a2 < a1, then the minimum of the function Fc +Fl satisfies

arg minFc + Fl =


x∗2

.
= (F ′c)

−1(−a2) if c < x∗2

c if c ∈ [x∗2, x
∗
1]

x∗1
.
= (F ′c)

−1(−a1) if c > x∗1

(80)

Proof of Lemma 7. Consider the case where Fl is concave. Since a1 > a2 > 0 and Fc

is a convex decreasing function that satisfies the property ?, it is easy to calculate that

(F ′c)
−1(−a1) < (F ′c)

−1(−a2). Denote (F ′c)
−1(−a1) by x∗1 and (F ′c)

−1(−a2) by x∗2. We

consider the following four situations. First, we define c0
.
=

Fc(x∗1)+a1·x∗1−Fc(x∗2)−a2·x∗2
a1−a2

.

Since x∗1 is the global minimum of the function Fc + a1 · x, we can calculate that

Fc(x
∗
1) + a1 · x∗1 − Fc(x∗2)− a2 · x∗2

a1 − a2

<
Fc(x

∗
2) + a1 · x∗2 − Fc(x∗2)− a2 · x∗2

a1 − a2

= x∗2 (81)

Similarly, since x∗2 is the global minimum of the function Fc + a2 · x, c0 > x∗1. Hence

we conclude that c0 ∈ (x∗1, x
∗
2).

• When c ≤ x∗1. Then ∀x < c, (Fc +Fl)
′ < 0 thus Fc +Fl is a decreasing function

in the interval of (0, c). When x = c, Fc+Fl is continuous but not differentiable;

however, we can calculate that both the left- and right-derivative at x = c are

nonpositive, indicating that x = c is not a local minimum of the function. When

x > c, (Fc+Fl)
′ = 0 when x = x∗2. Hence, we conclude that in this case, Fc+Fl
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decreases when x < x∗2 and increases when x > x∗2, thus the only local minimum

and thus the global minimum of the function Fc + Fl is x∗2.

• When x∗1 < c ≤ c0. In this case, the function (Fc + Fl) has two local minima at

x∗1 and x∗2. We can calculate that

(Fc + Fl)(x
∗
1)− (Fc + Fl)(x

∗
2) = a1 · x∗1 + b1 + Fc(x

∗
1)− a2 · x∗2 − b2 − Fc(x∗2)

=1 a1 · (x∗1 − c) + Fc(x
∗
1)− a2 · (x∗2 − c)− b2 − Fc(x∗2) ≥2 0 (82)

where the relation =1 is derived from the assumption that a1 ·c+b1 = a2 ·c+b2,

and ≥2 is due to c ≤ c0. Hence, the global minimum of the function Fc + Fl is

x∗2. We mention that both x∗1 and x∗2 are global minima when c = c0.

• When c0 < c < x∗2, the situation is similar to the previous one where x∗1 < c ≤ c0,

i.e., (Fc +Fl) has two local minima at x∗1 and x∗2. Using a similar argument, we

calculate that in this case, (Fc + Fl)(x
∗
1) < (Fc + Fl)(x

∗
2) since c0 < c, thus the

global minimum of the function Fc + Fl is x∗2.

• When c ≥ x∗2, we apply a similar argument as in the first case when c ≤ x∗1, and

show that the function Fc + Fl has only one local minimum at x = x∗2. Hence,

x∗2 is the global minimum of the function.

Combining the above four cases, we obtain formula (79).

Now we consider the other case where Fl is convex. Since 0 < a1 < a2 and Fc

is a convex decreasing function that satisfies the property ?, it is easy to calculate

that x∗1
.
= (F ′c)

−1(−a1) > (F ′c)
−1(−a2)

.
= x∗2. We adopt a similar analysis as above.

Specifically, when c ≤ x∗2 or c ≥ x∗1, the situation is similar as in the first and fourth

situation in the concave case, i.e., the function Fc+Fl has only one local minimum at

x = x∗2 or x = x∗1, respectively, which is therefore the global optimum of the function.

When c ∈ (x∗2, x
∗
1), we can show that the function Fc + Fl decreases in the interval

(0, c) and increases in (c,∞). Since Fc + Fl is continuous, we conclude that x = c is
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the only local minimum thus the global minimum of Fc +Fl. Therefore, formula (80)

follows.

Continuing the proof of Proposition 5, according to (63), the cost allocated to

producer 1 based on the cost-corrected return share with capacity rewards model in

the low-synergy case is a two-step piecewise linear increasing function where a1 =

dπ(1) · τr(2), a2 = dπ(1) · τr(1), and c = κ̄π(2). Since the facility r(1) is more efficient,

τr(1) < τr(2) thus the linear function is concave. Based on our model, the best response

function of producer 1 is essentially the global minimum of the total cost function

(x1)αtµ +Q1. Hence, Proposition 5 follows immediately from formula (79), where κ
π(2)
0

is calculated based on the formula that calculates c0 in the proof of Lemma 7.

Proof of Theorem 5. By definition, the equilibrium design profile is the intersection

of the best response functions of the two producers. Hence, according to Figure 15,

the equilibrium design profile is
κ
π(1)
ne = l2

κ
π(2)
ne = q1

if q1 > κ
π(2)
0 ;


κ
π(1)
ne = l1

κ
π(2)
ne = q1

if q1 ≤ κ
π(2)
0 (83)

Notice that when q1 = κ
π(2)
0 , both of the two design profiles above are Nash equilibria.

By definition, l1 = κ
∗π(1)
ind and q1 = κ

∗π(2)
ind . l2 < κ

∗π(1)
ind since τr(2) > τr(1) and Q1 is a

convex function. Thus we can conclude that in the low-synergy case, κ
π(i)
ne ≤ κ

∗π(i)
ind

for both i = 1, 2.

Proof of Proposition 6. In the high synergy case, according to (67), the cost allocated

to each producer i under cost-corrected return share with capacity rewards is a linear

function of his design choice, and is independent of the other producer’s design choice.

Hence, in order to solve for the equilibrium design, we only need to compute the global

minimum of the function Qi+(xi)αtµ for both i = 1, 2. Since for both i = 1, 2, the total

cost functionQi+(xi)αtµ is a convex function, the global minimum is achieved where the

149



first order derivative of the function is zero. Hence, according to (67) and τr(1) < τr(2),

it is easy to calculate that κ
π(i)
ne = (Qi′)−1(−dπ(i) · τr(1)) ≥ (Qi′)−1(−dπ(i) · τr(i)) = κ

∗π(i)
ind

∀i = 1, 2.

Proof of Proposition 7. The proof is based on Lemma 7. According to (70), the cost

allocated to producer 2 based on the cost-corrected return share with capacity rewards

model in the medium-synergy scenario is a piecewise linear increasing function where

a1 = dπ(2) · τr(2), a2 = dπ(2) · τr(1), and c = κ̄π(1). Since τr(1) < τr(2), the linear function

is concave. Hence, Proposition 7 follows immediately from formula (79), where κ
π(1)
0

is calculated based on the formula that calculates c0 in the proof of Lemma 7.

Proof of Proposition 8. The proof is also based on Lemma 7. (70) is a piecewise linear

function where a1 = dπ(1) · τr(2) − kr(1) · (τr(2) − τr(1)), a2 = dπ(1) · τr(1), and c = κ̄π(2).

Since producer 1 is assumed to have enough independent capacity to process his own

products, i.e., kr(1) ≥ dπ(1), we can calculate that dπ(1) · τr(2) − kr(1) · (τr(2) − τr(1)) =

dπ(1) ·τr(1)− (kr(1)−dπ(1)) · (τr(2)−τr(1)) ≤ dπ(1) ·τr(1). In particular, when kr(1) > dπ(1),

a1 < a2 thus the cost allocated to producer 1 by cost-corrected return share with

capacity awards is a piecewise linear convex function. Hence formula (72) follows

from formula (80) in Lemma 7. In the special case when kr(1) = dπ(1), a1 = a2 thus

the cost allocated to producer 2 becomes a linear function. Hence the best response

function becomes a constant function, which is equal to (Q1′)−1(−a1) = (Q1′)−1(−a1),

i.e., l1 or l3. Notice that since l1 = l3 in this special case, formula (72) is also reduced

to a constant function and thus is consistent with our conclusion.

Proof of Theorem 6. Figure 18 depicts the intersection of the best response functions

of both producers and thus shows the equilibrium design profile in each of the three

cases. Notice that the relationships κ
π(1)
0 ∈ (q1, q2) and l1 ≤ l3 must hold in these

graphs.

We first analyze the case where l1 ≥ κ
π(1)
0 . We show that (l1, q1) is the only
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equilibrium design profile (as demonstrated by Figure 18(a)). If producer 1 chooses

l1, then since l1 ≥ κ
π(1)
0 , q1 is the best response of producer 2 according to Proposition

7. Similarly, if producer 2 chooses q1, we know from Proposition 8 that l1 is the best

response of producer 1 due to q1 < κ
π(1)
0 ≤ l1. By their definitions, it is easy to see

that l1 = κ
∗π(1)
ind and q1 = κ

∗π(2)
ind . Meanwhile, we can also show that (l3, q2) cannot be

an equilibrium, since when producer 1 adopts l3, producer 2’s best response is q1 6= q2

due to l3 > l1 ≥ κ
π(1)
0 . Hence, we conclude that when l1 ≥ κ

π(1)
0 , the equilibrium

design satisfies κ
π(i)
ne = κ

∗π(i)
ind ∀i = 1, 2.

When l3 ≤ κ
π(1)
0 (Figure 18(b)), we can apply a similar argument to show that

(l3, q2) is the only equilibrium; moreover, l3 ≥ l1 = κ
∗π(1)
ind and q2 ≥ q1 = κ

∗π(2)
ind .

Combining the results from the above two cases, we conclude that if κ
π(1)
0 ∈

(0, l1] ∪ [l3,∞), κ
π(i)
ne ≥ κ

∗π(i)
ind ∀i = 1, 2.

We next analyze the case when κ
π(1)
0 ∈ (l1, l3) (Figure 18(c)). We first show that

no equilibrium exists. Note that κ
π(1)
0 ∈ (l1, l3) implies that l1 < l3 thus dπ(1) < kr(1).

Let producer 1 chooses an arbitrary design, to which the best response of producer 2

is either q1 or q2. Assume producer 2 responded by choosing q1. Since q1 < κ
π(1)
0 < l3,

according to Proposition 8, producer 1’s best response to q1 is either l1 or q1, which

is strictly less than κ
π(1)
0 . By Proposition 7, producer 2 will then respond by choosing

q2. In this case, we can use the similar argument to show that producer 1’s best

response becomes either l3 or q2 since q2 > κ
π(1)
0 > l1, which in turn leads to producer

2’s choosing q1. Hence, no (pure) equilibrium design profile exists.

We then show that the following mixed strategy design profile is a mixed Nash

equilibrium: Producer 1 chooses κ
π(1)
0 , and producer 2 chooses the mixed strategy

such that the probabilities of choosing q1 and q2 equal

f 2(q1) =
−Q1′(κ

π(1)
0 )− a1

a2 − a1

; f 2(q2) = 1− f 2(q1) (84)

where a1 = dπ(1) · τr(2) − kr(1) · (τr(2) − τr(1)), a2 = dπ(1) · τr(1). We first show that

the mixed strategy defined above for producer 2 is a valid one, i.e., f 2(q1) ∈ (0, 1).
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Since l1 < κ
π(1)
0 < l3, according to the convexity of the function Q1, we know that

Q1′(l1) < Q1′(κ
π(1)
0 ) < Q1′(l3), i.e., −a2 < Q1′(κ

π(1)
0 ) < −a1. Hence, it is easy to see

that f 2(q1) ∈ (0, 1).

Next we show that the mixed strategy design profile (κ
π(1)
0 , f 2) is a Nash equilib-

rium. According to our previous analysis, when producer 1 chooses κ
π(1)
0 , both q1 or

q2 are global minima of producer 2’s total cost function, thus so is any of their convex

combinations. The situation is more complex for producer 1 if producer 2 adopts the

mixed strategy specified above. In this case, producer 1’s expected cost allocation

is calculated as Ef2 [(x1)αtµ(κπ(1))] = f 2(q1) · (x1)αtµ(κπ(1), q1) + f 2(q2) · (x1)αtµ(κπ(1), q2),

which is a piecewise linear function with three linear pieces.

Ef2 [(x1)αtµ](κπ(1)) =



a1 · κπ(1) + b1 if κπ(1) ≤ q1

(f 2(q1) · a2 + f 2(q2) · a1) · κπ(1) + (f 2(q1) · b1
2 + f 2(q2) · b1)

if κπ(1) ∈ (q1, q2)

a2 · κπ(1) + (f 2(q1) · b1
2 + f 2(q2) · b2

2) if κπ(1) ≥ q2

(85)

where a1 = dπ(1) · τr(2) − kr(1) · (τr(2) − τr(1)), a2 = dπ(1) · τr(1), b1 = dπ(1) · c̄π(1),

b1
2 = dπ(1) · [c̄π(1) + q1 · (τr(2) − τr(1))]− kr(1) · q1 · (τr(2) − τr(1)), b

2
2 = dπ(1) · [c̄π(1) + q2 ·

(τr(2) − τr(1))] − kr(1) · q2 · (τr(2) − τr(1)). We analyze the best response of producer

1, i.e., the global minimum of the function Ef2 [(x1)αtµ] + Q2, as follows. First, we

can show that the expected total cost function of producer 1, i.e., Ef2 [(x1)αtµ] + Q2,

decreases in (0, q1] and increases in [q2,∞). To see this, notice that ∀κπ(1) ∈ (0, q1],

x ≤ q1 < κ
π(1)
0 < l3, thus the first order derivative of the expected total cost function

is negative. Similarly, ∀κπ(1) ∈ [q2,∞), x ≥ q2 > κ
π(1)
0 > l1, thus the first order

derivative of the expected total cost function is positive. When κπ(1) ∈ (q1, q2), we

can calculate that there exists a local minimum at x = (Q1′)−1(−f 2(q1)·a2−f 2(q2)·a1).

Based on the definition of f 2(q1) and f 2(q2), it is easy to show that the local minimum
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occurs at x = κ
π(1)
0 . Since this is the only local minimum of the expected total cost

function for producer 1, we can conclude that κ
π(1)
0 is the global minimum thus the

best response for producer 1 to the mixed strategy f 2 as defined in (84). Hence, by

definition, the mixed strategy design profile (κ
π(1)
0 , f 2) is a Nash equilibrium. Since

κ
π(1)
0 > l1 = κ

∗π(1)
ind , q1 = κ

∗π(2)
ind and q2 > κ

∗π(2)
ind , the conclusion in result 2 of Theorem

6 follows.

Proof of Theorem 7. We prove this theorem by proving Lemma 4 - 6 as follows.

Proof of Lemma 4. We prove this lemma by duality theory. For the convenience of

discussion, assume the routing computed by Algorithm 2 is nondegenerate. We first

introduce the following notation. Let Rπ be the set of processors to which the volume

of a product π is assigned. Denote the largest (smallest) indexed member of the

set Rπ as r̄π (rπ) ,i.e., r̄π
.
= rmax{j:rj∈Rπ} (rπ

.
= rmin{j:rj∈Rπ}) is the most inefficient

(efficient) processor in Rπ. We compute a dual solution that shares the same basis

as the routing solution obtained from the greedy algorithm, as follows. Define the

marginal value of all partially-utilized processors as zero, i.e., αr = 0 ∀r /∈ ⋃m
i=1 Rπ(i),

and αr̄π(m)
= 0

αr = (cπ(i)
r − cπ(i)

r̄π(i)
) +

∑
j:κπ(j)<κπ(i)

(cπ(j)
rπ(j)
− cπ(j)

r̄π(j)
) ∀r ∈ Rπ(i) \ {r̄π(i)} ∀i ∈M (86)

βπ(i) = c
π(i)
r̄π(i)
−

∑
j:κπ(j)<κπ(i)

(cπ(j)
rπ(j)
− cπ(j)

r̄π(j)
) ∀i ∈M (87)

By the optimality condition of a transportation problem, the greedy algorithm

produces the optimal routing as long as under the corresponding dual solution, fπr =

0⇒ αr + βπ ≤ cπr . To check the condition, for every product π(i), we first consider

computing the value αr + βπ − cπr for a processor r that is used to process a product

π(t) that is less expensive to recycle than π(i), i.e., κπ(t) < κπ(i). In order to write the

following formula, for every producer i, we introduce another notation i′ to denote

the index of the product that is the most expensive to recycle among the set {j :

153



κπ(j) < κπ(i)}.

αr + βπ(i) − cπ(i)
r = (cπ(t)

r − cπ(i)
r̄π(t)

) +
∑

j:κπ(j)<κπ(t)

(cπ(j)
rπ(j)
− cπ(j)

r̄π(j)
)

+ c
π(i)
r̄π(i)
−

∑
j:κπ(j)<κπ(i)

(cπ(j)
rπ(j)
− cπ(j)

r̄π(j)
)− cπ(i)

r

= cπ(t)
r − cπ(i)

r +
∑

j:κπ(t)<κπ(j)≤κπ(i)

(c
π(j)
r̄π(j)
− cπ(j′)

r̄π(j)
)

=
∑

j:κπ(t)<κπ(j)≤κπ(i)

[(c
π(j)
r̄π(j)
− cπ(j′)

r̄π(j)
)− (cπ(j)

r − cπ(j′)
r )]

=
∑

j:κπ(t)<κπ(j)≤κπ(i)

(κπ(j) − κπ(j′)) · (τr̄π(j)
− τr) ≤ 0 (88)

Now we consider a processor that is used to process a product π(t) that is more

expensive to recycle than π(i), i.e., κπ(t) > κπ(i), and compute the value of αr+βπ−cπr
in a similar way.

αr + βπ(i) − cπ(i)
r =

∑
j:κπ(i)<κπ(j)≤κπ(t)

[(cπ(j)
r − cπ(j′)

r )− (c
π(j)
r̄π(j)
− cπ(j′)

r̄π(j)
)]

=
∑

j:κπ(i)<κπ(j)≤κπ(t)

(κπ(j) − κπ(j′)) · (τr − τr̄π(j)
) ≤ 0 (89)

Combining (88) and (89), we show that αr + βπ ≤ cπr holds for all pairs of (r, π) such

that fπr = 0 under the greedy algorithm. Hence, the routing computed by the greedy

algorithm is optimal.

Proof of Lemma 5. The following two finding can be concluded in the low-synergy

scenario: (i) the last unit of each product π(i) cannot be processed at a facility

more efficient than r(i) due to the definition of the low-synergy scenario, i.e., dπ(i) >∑
j<i kr(j) ∀i ∈ M ; (ii) the total capacity at the set of processors {r(1), ..., r(i)} is

sufficient to process the demand of products owned by the corresponding producers.

Hence, according to the way that the greedy algorithm works, all of π(i)’s demand

must be processed by {r(1), ..., r(i)} if all products that are more expensive to recycle

than π(i) are owned by producers with a smaller index than i. We derive from these
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finding the following remark on the structural property of the social optimal routing

in the low-synergy scenario.

Remark 6. Given any design profile K, in the low-synergy scenario, Algorithm 2

satisfies the following for any producer i ∈M .

Observation 1: The last unit of product π(i) can only be assigned to processors

that are no more efficient than r(i). In particular, it will be assigned to r(i) if there

does not exist producer j > i such that κπ(j) > κπ(i); otherwise, it will be assigned to

r(jmax) where jmax
.
= max{j : j > i, κπ(j) > κπ(i)}.

Observation 2: The last unit of capacity at processor r(i) must be utilized by a

product π(j) such that j > i.

Observation 3: Any product π(j) such that j < i and κπ(j) > κπ is only assigned

to one processor. Similarly, Any product π(j) such that j < i and that is processed at

less efficient facilities than r(i) is only assigned to one processor.

Notice that under the sequential routing of the greedy algorithm, any change to the

return volume of π(i) only influences the optimal routing of products with κπ ≥ κπ(i).

Similarly, increasing the capacity at r(i) only has an impact on the optimal routing

of products that are processed at less efficient facilities, i.e., r(j) with j ≥ i. Hence,

based on Observation 3 in Remark 6, we conclude that both the marginal cost of

π(i) and the marginal value of r(i) are not influenced by the design choices of any

producer j < i. Moreover, according to Observation 1, we can write the marginal

cost of π(i) as

β∗π(i) =


κπ(i) · τr(i) +G({κπ(j), j > i}) if {j : j > i, κπ(j) > κπ(i)} = ∅

κπ(i) · τr(jmax) +G({κπ(j), j > i}) otherwise

(90)

whereG is some function that only depends on the product design choices of producers

with indices larger than i. Similarly, based on Observation 2, we can also write the

marginal value of r(i) as α∗r(i)({κπ(j), j > i}). Hence, the second-stage cost allocation
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to a producer i under the cost-corrected return share with capacity rewards model, i.e.,

(xi)αtµ, is determined by only the design choices of a subset of producers {j : j ≥ i}.

Proof of Lemma 6. The first statement of the lemma that a design profile is a Nash

equilibrium if and only if it can be solved as a solution to Algorithm 3 directly follows

from Lemma 5 and the way that the algorithm is constructed.

To prove the second part of the lemma, let us go back to the allocation by cost-

corrected return share with capacity rewards to a producer i in the second-stage.

Based on our analysis of the marginal cost of π(i) and marginal value of r(i), we

conclude that, given others’ design choices K̂−i = {κ̂π(j), j 6= i}, the cost allocation

(xi)αtµ is a concave piecewise linear function of κπ(i). Specifically, the break points of

the function correspond to the design choices of a set of producers {j1, ..., jT} ⊂ {j :

j > i} such that j1
.
= arg maxj>i κ̂

π(j) and jt+1
.
= arg maxjt+1>jt κ̂

π(j) ∀t ∈ {t > 1, jt <

m}; it is easy to see that jT = m, i.e., the index of the last producer. We further

calculate the slope of (xi)αtµ in every linear piece to be

∂(xi)αtµ
∂κπ(i)

=


dπ(i) · τr(i) ∀κπ(i) > κ̂π(j1)

dπ(i) · τr(jt) ∀κπ(i) ∈ [κ̂π(jt+1), κ̂π(jt)] ∀t = 1, 2, ..., T − 1

dπ(i) · τr(m) ∀κπ(i) < κπ(m)

. (91)

It can be observed that the function (xi)αtµ is a concave piecewise linear function.

Hence, the total cost function Qi + (xi)αtµ is a piecewise convex function. We show by

contradiction that the global minimum point of Qi + (xi)αtµ must be attained at the

local minimum of one of the convex pieces of the function, i.e., where the first order

derivative of the convex piece equals zero. If (xi)αtµ contains no more than two linear

pieces, then the result is obvious according to Lemma 7. Otherwise, assume none of

these local minima is the global minimum of the function. Then, since the Qi+ (xi)αtµ

is a piecewise convex function, the global minimum can only be achieved at a break

point between these convex pieces. Without loss of generality, assume κπ(i) = κ̂π(jt) is
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the global minimum for some jt ∈ {j1, ..., jT}. Then this value is obviously the global

minimum of the function Qi + (xi)αtµ restricted on the interval [κ̂π(jt+1), κ̂π(jt−1)]. This

conclusion leads to a contradiction to Lemma 7, since (xi)αtµ contains only two linear

pieces and is also concave, which completes the proof of this Lemma.

Continuing the proof to Theorem 7, since according to our assumption, r(j) is

less efficient than r(i) ∀j > i, i.e., τr(j) > τr(i) ∀j > i. Hence, due to the convexity

of Qi, it is easy to see that (Qi′)−1(dπ(i) · τr(j)) ≤ (Qi′)−1(dπ(i) · τr(i)) = κ
∗π(i)
ind ∀j ≥ i.

Combining this result with Lemma 6, we can derive Theorem 7.

Proof of Theorem 8. It is easy to see that in the high-synergy case, the social optimal

routing is to route all return volume to r(1), the most efficient processor. Hence, the

cost allocated to each producer i under cost-corrected return share with capacity

rewards equals

(xi)αtµ(κπ(i)) = dπ(i) · [κπ(i) · τr(1) + c̄π(i)] ∀i ∈M (92)

Hence, the total cost function for each producer i, Qi+(xi)αtµ, is a convex function. By

taking the first order derivative of the function, we conclude that the only equilibrium

design profile in the high-synergy scenario satisfies κ
π(i)
ne = (Qi′)−1(−dπ(i) · τr(1)) ∀i ∈

M . Due to the convexity of Qi and the fact that τr(1) ≤ τr(i) ∀i ∈ M , it is easy to

conclude that κ
π(i)
ne ≥ κ

∗π(i)
ind ∀i ∈M .

Proof of Theorem 9. The existence of an equilibrium design profile can be concluded

based on Figure 20. Figure 20 also demonstrates that the equilibrium design profile is

achieved only at the local minimum of the convex pieces of each producer’s total cost

function. Hence, result 1 of the theorem regarding producer 2’s design incentives can

be proven based on the fact that the slopes of both linear pieces of his cost allocation

by return share (Figure 19(b)) are smaller than dπ(2) · τr(2), and the convexity of the

investment function Q2. Similarly, for producer 1, we can show that his cost allocation
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by return share (Figure 19(a)) satisfies

slope1
1 < dπ(1) · τr(1)

slope1
2 > dπ(1) · τr(1) if

τr(1)

τr(2)

<
dπ(1)

dπ(2) + dπ(1)
(93)

Hence, result 2 follows due to the convexity of the investment function Q1.

Proof of Theorem 10. This theorem can be proven in the similar way as Theorem 9.

In particular, we can calculate that when
τr(1)

τr(2)
<

dπ(1)+dπ(2)−kr(1)

dπ(1)+2dπ(2)−kr(1)
, producer 1’s cost

allocation by return share (Figure 19(a)) satisfies slope1
2 > dπ(1) · τr(1).

2.4 Future Research Directions

From its few-sentence principles to a state-wide program consisting of thousands of

entities and influencing millions, EPR implementation is a complex process. During

this process, multiple dimensions of environment, economics, politics and operations

come into play, and the differences among them create challenges in achieving an effi-

cient balancing of environmental and economic tradeoffs. Moreover, the exponential

growth of the number of stakeholders involved poses additional challenges to coordi-

nate and reconcile different individual agendas. These challenges raise a rich set of

research questions in managing and optimizing decentralized systems, some of which

are briefly outlined at the end of §2.1.3. In this section, we provide a more detailed

discussion of the three issues that are closely related to the analytical study performed

in this chapter on cost allocation mechanisms and product design implications under

collective EPR.

First, the goal of our study in §2.2 is to understand the impact of operational

factors (i.e., network synergy, product heterogeneity, stakeholder perspectives) in a

given CRN on the implication of regulatory design choices such as cost allocations,

and to propose policy recommendations accordingly. Considering practice where the

cost is allocated ex-post after all return volume is observed, routed, processed, and
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the total cost is incurred, it is reasonable to adopt a CRN model in this study that

assumes full information of the network specifics, in particular the return volumes

of the products. However, as it is mentioned at the end of §2.1.3, uncertainty in

consumers’ responses creates stochasticity in both the volume and the product mix

of the returned electronics. This is a prominent feature of EPR implementation and

plays a significant role in the operations of the CRN. Hence, it is an important future

research to evaluate the robustness of group incentive compatibility under the cost

allocation mechanisms proposed to such uncertainty of the CRN. In game theory

literature, a set of cooperative game models with stochastic elements are proposed

and various solution concepts for cost/benefit allocation mechanisms are studied (e.g.,

[15, 157, 29, 28, 24, 144, 70]). Cooperation under uncertainty is also studied in the

operations literature (e.g., [30, 93]). In our problem, how the network synergy from

capacity sharing in a collective system plays a role can be an interesting question to

explore.

The EPR concept is regarded as an economic tool to incentivize more environmentally-

friendly design choices of the producers, as by doing so, the producers can potentially

reduce the post-use recycling cost of their products. In §2.3, we take an operational

angle towards this issue, which suggests that the processing efficiency levels of the re-

cycling facilities can exert a significant impact. This implies that the EPR legislation

and its implementation may also potentially incentivize producers to invest in process

improvement, e.g., investing in more advanced recycling technology and thus more ef-

ficient processing capacity. This is a practical and important issue. In practice, some

major electronics producers have already established their own remanufacturing ca-

pacities as an essential sustainability strategy [80]. Capacity management issues are

also extensively studied in sustainable operations (e.g., [153, 154, 85]). For example,

in [132], the authors study how input and output prices affect material manufacturers’
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incentives to invest in process improvement including improving input efficiency, ca-

pacity efficiency, and developing flexibility between the two; based on the analysis, the

authors analyze the implication of a carbon tax or cap-and-trade policy on material

manufacturer’s incentives to improve energy efficiency. In our problem, the trans-

portation network model used in §2.3 captures the impact of capacity efficiency on

the total operational cost and thus offers a natural starting point for future research

on this capacity investment issue in the EPR context.

In this chapter, our study is focused on the design and the implication of col-

lective implementation of EPR. Although collective implementation is adopted in

most states where the collection and recycling operations are directly managed by a

central authority, developing a market-based approach may be more suitable in the

US setting where industry is historically not open to direct state intervention and

prefers market-based mechanisms. Given the CRN context where network effects are

at work in determining individual preferences (e.g. no collector wants to be in charge

of low-density areas), it may be especially effective for states to implement a more

decentralized system where the state-run authority designs market mechanisms (re-

source exchange prices) and where each entity makes its own decisions about whom

to transact with and at what volume. In the next chapter, we conduct a theoretical

study of such market-based exchange mechanisms on general multicommodity net-

works with privately-owned resources that are motivated by the combined service net-

works in transportation alliances; we show that resource exchange mechanisms can be

effective in coordinating individual participants’ operations and generating sufficient

payoffs to each of them. In addition, pricing mechanisms have also been extensively

studied in the literature of routing games, where various ways to design traffic tolls

that are effective in reducing network congestion are proposed (e.g., [130, 34, 104]).

Hence, it will be an interesting research to evaluate the effectiveness of such market

mechanisms in the EPR setting where a different set of practical complications exist,
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e.g., the CRN has both producer-owned and exogenous resources. Further research

questions include the robustness of the mechanism to return volume uncertainty and

the impact of economies of scale.
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CHAPTER III

MANAGING DECENTRALIZED RESOURCE SHARING

IN MULTICOMMODITY NETWORKS

Network systems that consist of capacity privately owned by different entities are com-

mon in practice. For example, transportation networks often contain a pool of fleets

owned by different companies; Internet is a collection of thousands of autonomous

systems with their own bandwidth. In these combined networks, capacity is usually

not restricted to the use of its owner and can be employed in the routing operations

of others according to certain access rules. Hence, these systems have the potential

for improving routing efficiency by exploiting synergies via capacity sharing. Indeed,

consider the previous two examples: companies in transportation industry often form

alliances and combine their service networks to reduce operational cost and improve

service levels [3]; in Internet, end-to-end flows are delivered in an efficient manner

with the joint effort among autonomous systems sharing bandwidth [128].

However, fully realizing the synergistic potential of a combined network can be

challenging, as many practical systems are utilized by multiple users to deliver goods

and information in a decentralized way. In particular, in these applications, the par-

ticipants are entitled to make their own commodity routing and capacity management

decisions, driven by their own interests and benefits. The resulting aggregate routing

is not guaranteed to be efficient. In fact, it is widely observed that decentralized

routing decisions can jointly undermine the overall efficiency of the network, reducing

the network throughput or increasing the total congestion or routing cost (e.g., as

noted in [139]). Such a problem is more complex and prominent in the setting where

a limited amount of privately-owned capacity is shared among multiple users. First,
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due to the existence of the capacity limits, the feasibility of the routes chosen by a user

for his commodities depends on others’ routings. However, the users normally decide

individually and simultaneously and thus are unaware of each other’s routing until

all commodities are shipped. In this case, the aggregate routing may violate capacity

limits and lead to overflow in the network. Second, sharing privately-owned capacities

requires a well-defined and reasonable rule to regulate how others may access these

capacities. In addition, in many applications, the users decide on their own volition

whether to join a resource sharing agreement, for example, under collective imple-

mentation of EPR legislation that we analyzed in the previous chapter. Hence there

exists a potential risk of players breaking away from a combined network, resulting in

a fragmented system, thus undermining the synergies from resource sharing. Hence,

it is desirable that the system benefit from resource sharing can be distributed in a

reasonable way among players to incentivize participation.

The notion of mechanism design suggests an approach to tackle the above prob-

lems by incentivizing participants to adopt routing solutions that are aggregately

efficient through imposing specially tailored operational guidelines. Taking into ac-

count the features of a combined network, one natural way to do this is to design

the access rules according to which capacity can be used by individuals other than

its owner. In this study, since market trade is one of the most common form of

sharing private resources, we consider coordinating a combined network by designing

a capacity exchange mechanism under which capacity is traded according to a set

of centrally-designed unit prices. Specifically, every user pays the capacity exchange

price for every unit of others’ capacity utilized for the shipment of his own commodi-

ties on each edge in the combined network. Their individual routing decisions are

then made in order to maximizes their own profits, i.e., the routing revenues gen-

erated from their own commodities plus their net gains from the capacity exchange

prices received from and paid to others. Via such a mechanism, a central authority
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of the system can influence individual participants’ profits and thus their selfish op-

erations by choosing the appropriate exchange prices. Note that under such a market

exchange mechanism, producers essentially make side payments to each other for re-

sources, thus the exchange prices essentially determine the allocation of the benefits

from resource sharing among the players. Hence, it is also desirable that the prices

are designed under which all players benefit and thus have the incentives to join a

combined network.

Designing a mechanism that can well-coordinate a complex network system is

a challenging task, especially taken into the operational complexities in practical

applications. First, in many applications, there usually exist multiple owners of the

same type of resources. For example, different airlines can operate fights between

the same cities. Results from the cooperative game theory literature indicate that

such multiple ownership of capacity on the same edge can give rise to diseconomies

that undermine the resource-sharing incentives in combined networks (e.g., [90, 36]);

yet there is little discussion on the impact of such multiple ownership conditions on

the effectiveness of market exchange mechanisms. Second, zero exchange prices for

privately-owned resources are generally not acceptable in practice. One of the main

concerns is that they give rise to free-riders, i.e., players obtaining positive shipping

revenues using others’ capacities at zero cost. Hence, it will be desirable to design

effective and strictly positive exchange prices. Third, it is ideal that the central

authority has full knowledge of the network parameters such as capacity and demand

levels, in order to tailor the mechanism accordingly. However, this is usually not the

case in practice and one prominent example is demand uncertainty. Indeed, in many

applications, a resource sharing mechanism is determined as a tactical decision before

the actual demand is revealed; yet there is significant demand volatility, thus precise

demand forecasting is difficult. Under such circumstances, robustness becomes an

important and desirable property of a capacity exchange mechanism. Moreover, in
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practice there is often a time lag between mechanism design and individual decision-

making when more demand information is likely to be obtained by the players. Such

information asymmetry between the central authority (the mechanism designer) and

the players adds additional complexity to the problem.

In this chapter, we provide a systematic analysis of the use of market-based ex-

change mechanisms to motivate and regulate capacity sharing, focusing on the design

of capacity pricing strategies in the presence of the aforementioned practical opera-

tional complexities. There are two main goals of this research stream: (i) to analyze

how the coordination benefit of market-based mechanisms depends on the underlying

network structure and characterize the network properties that matter; (ii) to propose

efficient and effective pricing strategies to address different operational complexities.

To this end, we adopt a non-cooperative game model based on a set of network

optimization problems that represent individual operators’ routing and capacity al-

location decisions, and analyze the model using inverse optimization techniques.

The structure of this chapter is the following. We first provide a literature review

in §3.1; note that some papers that are specific to individual topics covered in this

research stream are discussed in the corresponding sections. In §3.2, we introduce

the notation and mathematically define the combined network model and the capac-

ity exchange mechanism studied in this chapter. We begin by analyzing the case

with deterministic demands. In §3.3, we propose a dual-based pricing strategy that

guarantees both the overall routing optimality and the voluntary participation of all

players in the combined network via generating a group incentive compatible allo-

cation of the total shipping revenue. We further discuss the potential diseconomies

derived from multiple ownership of the same capacity. We further consider design-

ing strictly positive prices in §3.4, where we show in certain networks the perfect

alignment of the individual incentives with the goal to maximize the overall routing

efficiency cannot be achieved using such prices, yet a certain level of partial alignment
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can be guaranteed by a pricing algorithm we propose. In §3.5, we move on to study

a stochastic case with unknown demand. Our main results in this section includes

characterizing how network structure affects the robustness of the mechanism, and

propose robust pricing strategies and algorithms

in any given network.

3.1 Review of Related Literature

The efficiency problem in decentralized network systems is intensively studied in the

routing game literature where the increase in network congestion due to the selfish

routings of individual travelers are analyzed mainly based on the measures of the

price of anarchy (PoA) (e.g., [138, 35]) and the price of stability (PoS) (e.g., [8]).

These two notions are defined, respectively, as the ratios of the congestion under

the worst and the best routing equilibrium compared to the smallest congestion that

can be achieved over the network. Collaboration mechanisms are also proposed in

this literature to improve the PoA or PoS in decentralized networks, including the

Stackelberg strategies [95, 136], taxation [130, 34] and rebates [104]. These papers

study networks that are open to public such as the road systems, while we focus on

networks where capacity are privately owned and users can decide whether to share

their own capacity or not. Moreover, we study not only the equilibrium state of a

combined network but also how an equilibrium can be achieved based on a decision-

making model of the users that capture both their selfishness and unawareness of

others operations.

In literature, resource-sharing in networks is often studied as cooperative games,

called the flow games (e.g., in [90, 61, 40, 151, 128, 105]), where the value of a sub-

coalition is defined as the optimal objective value of a certain flow problem on the

sub-network formed by its members. A central issue in this literature is to characterize

the set of fair allocations of benefits or costs among participants inside a combined
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network. For example the core of a flow game is defined as the set of allocations

under which no individual benefits less than his operating individually or inside a

sub-coalition. It is a well-known result in this literature that a core payoff of a flow

game can be calculated based on the optimal dual solutions of the corresponding

flow problem (e.g., [123]). In addition, there also exists a set of papers that analyzes

the diseconomies arising from the existence of multiple owners of the capacity on

a single edge, under which a flow game may have an empty core (see a review by

Sounderpandian [151]). However, while a cooperative game framework assumes the

existence of a central authority who dictates the operations of a combined network

and allocates the resulting benefits or costs, we investigate the design of a capacity

exchange mechanisms aiming at achieving a fair distribution of the total revenue as

the result of decentralized individual routings.

One collaboration mechanism that is similar in spirit to ours is the competitive

prices studied in production economy literature, under which individual decisions

made under selfish preferences synthesize a social optimum, called a competitive

equilibrium [147], and a core payoff is guaranteed under mild conditions [37]. Yet the

notion of competitive prices does not explicitly characterize how individuals interact

so that a competitive equilibrium can be attained. In this study, we base our study

on an individual decision-making model so that the routes chosen by the users are

analytically tractable; and we show constructively how a collective optimal routing

can be achieved under well-designed capacity exchange prices.

The most relevant study to this research stream is by Agarwal and Ergun [2], which

introduces the mechanism based on capacity exchange prices. The authors show the

general existence of prices that induce a collective optimal routing within a combined

network, and that every set of such prices lead to a core payoff if the capacity on

any edge is owned by a unique user. Our study in this research stream provide a

more comprehensive analysis to the coordination power of the mechanism in general
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situations where different practical operational complexities are incorporated. First,

we study a general network setting that allows multiple capacity owners on the same

edge. Second, we consider the potential existence of free riders, that can be a serious

barrier to resource sharing in real-life situations. Third, we analyze stochastic network

settings with demand uncertainty. In studying these issues, our results demonstrate

not only the effectiveness but also the limitations of capacity exchange mechanisms

under practical restrictions, and we propose price design solutions that represent a

better balance between the practicality of the mechanism and the efficiency of the

resulting system.

Finally, note that a large part of the complexity of collaboration mechanism design

for combined networks is due to the mutual obliviousness among individual users to

each other’s behavior, as it is a significant barrier for effective coordination of the

interactions among the users under a resource-sharing setting. In literature, various

forms of individual obliviousness in games are modeled and studied, for example, by

Halpern and Rêgo [72], Foster and Vohra [53] and Weintraub et al. [179], mainly

focusing on characterizing the resulting equilibrium states. Our study contributes

to the literature by considering using a mechanism design approach to minimize the

negative impact of individual obliviousness within a decentralized system.

3.2 Preliminaries

In this section, we formally introduce a model of a multicommodity network with

combined capacity (combined network for short) and the capacity exchange mecha-

nism that this research stream is based on. The model is first introduced by Agarwal

and Ergun [2], which captures many features of practical network systems. In §3.5, we

also introduce a stochastic combined network by incorporating demand uncertainty.

A Multicommodity Network with Combined Capacity Consider a directed

network G = (V,E) with multiple source-sink pairs and a set N = {1, 2, ..., n} of
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players, each representing a participant of the network system that owns capacity on

G and/or commodity demand to be routed through G. Let ce be the total amount of

capacity on each edge e ∈ E. Each player i is assumed to own a γie percentage of the

total capacity on e such that 0 ≤ γie ≤ 1 and
∑

i∈N γ
i
e = 1 ∀e ∈ E. A commodity is

defined by the triplet (o, d, i) that specifies its origin o, destination d and owner i. We

assume that there exists at least one path in G for each commodity to be delivered.

The demand and the unit routing revenue of commodity (o, d, i) are denoted by d(o,d,i)

and r(o,d,i) respectively, and we assume r(o,d,i) > 0 ∀(o, d, i) ∈ D. We also denote by

Di the set of commodities owned by a player i, and denote by D
.
=
⋃
i∈N D

i the set

of all commodities.

G is a combined network when all its edge capacity are shared among all players.

In other words, there is no restriction in capacity utilization in the routing of any

commodity, thus the total shipping revenue generated over the entire network can

be maximized. Such a maximum total revenue can be computed by the following

weighted maximum flow problem on G, which we call the centralized problem (C).

First, for modeling convenience, we create a fictitious edge (d, o, i) for each commodity

(o, d, i) going from its destination node d to the origin node o with infinite capacity

that is owned and only used by the corresponding commodity owner. Let δ−(v) =

{(u, v) ∈ E : ∀u} and δ+(v) = {(v, w) ∈ E : ∀w} be the sets of incoming and outgoing

edges for node v respectively. The variables f
(o,d,i)
e denote the amount of commodity
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(o, d, i) shipped via edge e.

(C) max R(f) =
∑

(o,d,i)∈D

r(o,d,i) · f (o,d,i)
(d,o,i) (94)

s.t.
∑

e∈δ−(v)

f (o,d,i)
e −

∑
e∈δ+(v)

f (o,d,i)
e ≤ 0 ∀v ∈ V ∀(o, d, i) ∈ D (95)

∑
(o,d,i)∈D

f (o,d,i)
e ≤ ce ∀e ∈ E (96)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ D (97)

f ≥ 0 . (98)

In words, the centralized problem (C) maximizes the total revenue R(f) under a

feasible routing f for all commodities in the network subject to the flow conservation

constraints (95), the capacity constraints (96), the demand constraints (97), and the

nonnegativity constraints. We denote an optimal solution to (C) by f ∗, which we call

the social optimal routing and which represents the highest level of system efficiency

in G.

The above centralized problem implicitly assumes a centralized setting of the com-

bined network, where the operation is directly managed by a central planner. In this

case, it is easy to implement f ∗ by dictation. However, assuming such a centralized

setting is generally not realistic, as in practice combined networks normally operate

in a decentralized way where the players are entitled to independent management of

their commodities and capacity. To coordinate such decentralized combined networks

requires more subtle and indirect approaches. One way for the central planner to

do this is to designing the operational rules of the network, which is often called a

mechanisms. Considering our problem setting where the capacity is privately owned

but generally accessible, a natural and practical mechanism is the market trade of

capacity according to centrally-designed exchange prices, which we discuss next.

A Capacity Exchange Mechanism In the following, we present a model of the

capacity exchange mechanism, first studied by Agarwal and Ergun [2]. Let coste ≥ 0
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be the unit capacity exchange price on each edge e ∈ E in G that is pre-determined

by the central planner. Every network player pays for others’ capacity that is used for

the shipment of his own commodities according to these prices. We assume that the

total amount of capacity exchange prices obtained on an edge e is allocated among the

capcity owners on e proportionally to their ownership levels {γie}. Such an assumption

makes analyzing the mechanism analytically tractable. Another interpretation of

this assumption is that for each player, his demand for capacity on an edge e is

allocated among all the capacity owners on e proportional to their ownership levels

{γie}. Although such an assumption simplifies capacity buyers’ individual preferences

over the sellers, it captures the general relationship between one’s capacity ownership

level and his market share in resource exchanges. Note that under the above model of

the capacity exchange mechanism, we essentially study the coordination of individual

routing decisions under a fully-regulated market environment where no competition

exists among capacity owners on the same edge for user demand1.

Under the above model of the capacity exchange mechanism, we can calculate the

payoff to the players given a routing f of all the commodities in network G and the set

of capacity exchange prices {coste}. Specifically, we denote the payoff to a player i by

xicost(f), which includes the shipping revenue from satisfying his commodity demand

and the net profit from capacity exchanges over G.

xicost(f) =
∑

(o,d,i)∈Di
r(o,d,i)·f (o,d,i)

(d,o,i) +
∑
e∈E

coste·

γie ∑
(o,d,j)/∈Di

f (o,d,j)
e − (1− γie)

∑
(o,d,i)∈Di

f (o,d,i)
e

 .

(99)

In a decentralized setting, each player i plans for his own operations in order to

maximize the individual profit {xicost(f)} under the mechanism based on the given

capacity exchange prices. However, notice that according to (99), one player’s profit

1Competition over capacities and prices for user demand in networks among resource owners is
also studied in literature, focusing on the inefficiency under an equilibrium state, for example, by
[1].
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is also dependent on the routings of others’ commodities, which are assumed to be

decided simultaneously and independently from that of player i. Estimation of others’

behaviors is practically difficult. One major reasons is that it is often hard to access

the revenue information of other companies. Hence, in order to model the incentives

of individual players as well as their obliviousness to others’ decisions, we adopt

the following behavioral model where each player solves for a routing for all the

commodities in G, including those of others, over the entire network in order to

maximize his own profit. Mathematically, each player i solves an individual program

(P i
cost)

(P i
cost) : max xicost(f) s.t. (95)− (98) in (C) , (100)

We call the optimal solution f i∗cost player i’s individual optimal routing, based on

which player i routes the demand in his own commodity set Di. Solving such an

individual problem is practically plausible as it only requires the demand and capacity

information of others, which is normally feasible to be accessed or estimated.

Given the above behavioral model of individual players, we conclude that in order

to coordinate a decentralized combined network, the capacity exchange prices {coste}

should be designed to induce the individual optimal routings f i∗cost towards f ∗. This

leads to the following definition of the perfect coordinating prices.

Definition 4. A set of capacity exchange prices {coste} is called perfect coordinating

if f i∗cost = f ∗ ∀i ∈ N for some collective optimal routing f ∗.

Intuitively, Definition 4 indicates that perfect coordinating prices represent the

strongest guarantee for the overall efficiency of a given combined network. Specifi-

cally, they induce all players to route their commodities according to the social optimal

routing f ∗ and thus guarantees that the optimal total revenue R(f ∗) is achieved. In

particular, under the influence of such prices, f ∗ also leads to the maximum individual
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profit for every player that can ever be obtained within the combined network. Be-

cause of this, the individual incentives are perfectly aligned with the central planner’s

goal to maximize the total revenue. Moreover, it is also easy to see that f ∗ is guaran-

teed to be a Nash equilibrium under perfect coordinating prices, i.e., a stable routing

from which no individual player would strictly benefit from unilateral deviation.

In literature, perfect coordinating prices are analyzed in [2], where they are

shown to exist in any combined network G as modeled above. There, such prices

are termed inverse feasible prices as they can be computed in polynomial time

via inverse optimization techniques. Specifically, exchange prices {coste} is per-

fect coordinating if and only if ∃ a dual solution to each individual problem (P i
cost)

that also satisfies the complementary slackness conditions with respect to f ∗. The

problem can be formulated as a feasibility problem with respect to a linear con-

straint system. Mathematically, let D̄∗ = {(o, d, i) ∈ D : f
∗(o,d,i)
(d,o,i) = d(o,d,i)} and

Ē∗ = {e ∈ E :
∑

(o,d,i)∈D f
∗(o,d,i)
e = ce} to be the sets of commodities whose demand

is fully shipped and edges where capacity is fully utilized under a social optimum f ∗,

and F̄ ∗ = {f ∗(o,d,i)e : f
∗(o,d,i)
e > 0} to be the set of strictly positive flow variables under

f ∗. The linear constraint system associated with the individual problem of player i,
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denoted by I i, can be written as follows.

(πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e ≥ −(1− γie)coste (o, d, i) ∈ Di, e ∈ E : f ∗(o,d,i)e /∈ F̄ ∗ (101)

(πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e = −(1− γie)coste (o, d, i) ∈ Di, e ∈ E : f ∗(o,d,i)e ∈ F̄ ∗ (102)

(πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e ≥ γiecoste (o, d, i) /∈ Di, e ∈ E : f ∗(o,d,i)e /∈ F̄ ∗ (103)

(πi)(o,d,i)
v − (πi)(o,d,i)

u + (αi)e = γiecoste (o, d, i) /∈ Di, e ∈ E : f ∗(o,d,i)e ∈ F̄ ∗ (104)

(πi)(o,d,i)
o − (πi)

(o,d,i)
d + (βi)(o,d,i) ≥ r(o,d,i) (o, d, i) ∈ Di : f

∗(o,d,i)
(d,o,i) /∈ F̄ ∗ (105)

(πi)(o,d,i)
o − (πi)

(o,d,i)
d + (βi)(o,d,i) = r(o,d,i) (o, d, i) ∈ Di : f

∗(o,d,i)
(d,o,i) ∈ F̄ ∗ (106)

(πi)(o,d,i)
o − (πi)

(o,d,i)
d + (βi)(o,d,i) ≥ 0 (o, d, i) /∈ Di : f

∗(o,d,i)
(d,o,i) /∈ F̄ ∗ (107)

(πi)(o,d,i)
o − (πi)

(o,d,i)
d + (βi)(o,d,i) = 0 (o, d, i) /∈ Di : f

∗(o,d,i)
(d,o,i) ∈ F̄ ∗ (108)

(αi)e = 0 ∀e /∈ Ē∗; (βi)(o,d,i) = 0 ∀(o, d, i) /∈ D̄∗ (109)

nonnegativity constraints . (110)

[2] indicates that the constraint set
⋃
i∈N I

i fully characterizes the set of perfect

coordinating prices, which can thus be solved in polynomial time.

However, note that although players are guaranteed to achieve the maximum

individual payoff in the combined network under perfect coordinating prices, such a

payoff may be smaller than what they can achieve operating independently without

sharing resources with others. In this case, a player can be incentivized to break away

from the combined network. Such fragmentation, as we mentioned in Chapter 2, will

undermine the synergies from resource sharing and thus the overall efficiency of the

combined network. Hence, it is desirable that a set of perfect coordinating prices can

also lead to payoffs that motivate the participation of all players in the combined

network. Whether such perfect coordinating prices exist and if yes, how to design

them, are open problems under the general setting of combined networks, especially

with multiple players owning the capacity on a same edge. We discuss these problems

in §3.3.
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In §3.4, we further analyze the property of the perfect coordinating prices to ensure

f ∗ to be an equilibrium. We show that this property of perfect coordinating prices can

be incompatible with the requirement to avoid free riders. To resolve the conflict, we

introduce in §3.4.2 a less restrictive pricing concept, i.e., partial coordinating prices.

The basic idea is that the social optimal routing f ∗ is enforced only for commodities

owned by player i. We show that strictly positive partial coordinating prices always

exist; however, the tradeoff is that such a relaxation cannot guarantee that f ∗ is

achieved as an equilibrium,

Also note that in the above model, the demand d(o,d,i) is assumed to be known

information for every commodity. In §3.5, we generalize this deterministic model

to a stochastic setting with demand uncertainty, and study the existence and the

computation of robust perfect coordinating prices.

3.3 Dual Payoffs, Core and a Capacity Exchange Mecha-
nism under the Multiple Capacity Ownership Condi-
tion

In this section, we focus on studying players’ incentives to participate in a combined

network and to share resources under perfect coordinating prices. To this end, we

analyze their payoffs induced by perfect coordinating prices using concepts from the

cooperative game framework.

We first define a cooperative game (N, v) based on the combined network model

introduced in the last section. N is the set of players considered, which we call the

grand coalition. The value of the grand coalition is set as the maximum total shipping

revenue achievable on the combined network G, i.e., v(N)
.
= R(f ∗). For each sub-

group of players S ⊂ N , which is called a sub-coalition, we define its value v(S) as

the maximum revenue that can be obtained by routing the commodity demand of its

members on the sub-network of G with capacity of its members. Such a value can be

computed by solving a weighted max-flow problem similar to the centralized problem
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(C) (94)-(98) but restricted to the capacity and demand owned by members in S,

i.e., γSe
.
=
∑

i∈S γ
i
e fraction of the total capacity on each edge e, and the demand with

respect to the commodity set DS .
=
⋃
i∈S D

i, respectively. We can interpret such a

flow problem, denoted as (CS), as the centralized problem within S. We call this

cooperative game a multicommodity flow game (MCF game for short).

In a MCF game, an allocation of the total revenue v(N)
.
= R(f ∗) is defined as

{xi} such that
∑

i∈N x
i = v(N). Note that under a set of perfect coordinating prices

{coste}, since all players are induced to the social optimal routing, the individual

payoffs {xicost(f ∗)} essentially give rise to an allocation of the maximum total rev-

enue. The cooperative game theory literature provides a rich set of notions to study

the performance of different allocation schemes. Many of them are defined based on

the stand-alone values of sub-coalitions, i.e., the set of {v(S)}, as benchmarks. For

example, as introduced in Chapter 2, the notion of the core of a cooperative game is

defined as the set of allocations under which no sub-coalition S is allocated a smaller

payoff inside the combined network compared to its stand-alone value v(S) operating

independently. A payoff allocation in the core provides participation incentives of

players into the grand coalition and represents a very strong type of stability that is

not threatened by the defection of sub-coalitions. Hence, in our problem, it will be

ideal if perfect coordinating prices can also guarantee a core payoff among the players.

This is the central issue we study in the rest of this subsection. In §3.3.1, we first

present a dual-based pricing strategy to calculate a set of perfect coordinating prices

under which a core payoff of the MCF game is also achieved given any combined

network. In §3.3.2, we further analyze the relationship between the players’ payoffs

under any perfect coordinating prices, and the core of the MCF game. We show that

in cases where there exist multiple owners of the capacity on a same edge, perfect

coordinating prices do not generally guarantee a core allocation. This indicates a po-

tential misalignment between the optimality and stability of a decentralized network
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under the capacity exchange mechanism in the presence of multiple owners of the

same resource. We show that such diseconomies of multiple ownership is mainly due

to the asymmetry in the capacity levels among the multiple capacity owners on an

edge relative to their commodity demand.

3.3.1 Dual Optimal Solutions as Capacity Exchange Prices.

In the following, we present a pricing scheme based on the dual optimal solution

associated with the capacity constraint (96) on each edge e in the centralized prob-

lem (C), which we denote as α∗e. The dual optimal solution α∗e has a nice economic

interpretation: It is the marginal value of the capacity on edge e in improving the

maximum total shipping revenue over the combined network, and thus can be re-

garded as a benchmark for the pricing of the resource. In literature, they are termed

as market prices in [46] and equilibrium prices in [123] to emphasize on their eco-

nomic interpretation. In the cooperative game theory framework, it is a well-known

result (e.g. in Owen 1975 [123]) that a core allocation of the maximum total revenue

within a combined network can be computed using α∗e and the optimal dual solution

β∗(o,d,i) with respect to the demand constraint (97) in the centralized problem. Such

an allocation is called a dual allocation, which we denote by {Aid} and is computed

as follows.

Aid =
∑
e∈E

α∗e · ceγie +
∑

(o,d,i)∈Di
β∗(o,d,i) · d(o,d,i) ∀i ∈ N . (111)

In this section, we show that {α∗e} can be effective as capacity exchange prices to

coordinate decentralized combined networks. We also call such prices dual prices in

the subsequent discussions.

Theorem 11. Given any combined network G, the capacity exchange prices {α∗e} are

perfect coordinating and give rise to a dual allocation as computed in (111).

An important implication of Theorem 11 is that {α∗e} are by nature competitive

prices, if we regard the commodity routing process as a production economy with edge
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capacity and commodity demand as resources, the routings as production plans, and

the shipping revenues as products. According to Debreu and Scarf [37], competitive

prices are defined as resource prices under which there exists a production plan and

an allocation of the resulting products among participants that maximize the social

welfare as well as satisfy individual preferences. This allocation is also proven to be in

the core of the economy under mild conditions in the same paper. Such a relationship

between the dual optimal solutions and competitive prices is also implied from the

study by Owen [123]; yet the paper focuses on characterizing the core payoffs derived

from the dual-based prices but does not consider how dual-based prices can induce a

social optimal production plan that also satisfies individual preferences.

We also point out that there are several notable differences between Theorem 11

and the properties of competitive prices. In particular, first, in the capacity exchange

mechanism, only edge capacity can be exchanged but not the commodity demand.

Hence, Theorem 11 actually indicates that even by a restricted market mechanism

where certain resources are not to be shared, we can still achieve efficiency of the

economy and individual satisfaction using the dual optimal solutions {α∗e}. Second,

we consider a decentralized setting where the overall routing, or the production plan,

is composed by individual choices of the routes for their own commodities. Such

choices are assumed to be made simultaneously and independently. However, the

notion of competitive prices is not defined based on such a decentralized environment,

and how a production plan that maximizes the social welfare can be constructed is

not explicitly indicated. Third, in our setting, the allocation of the shipping revenue

is achieved as a natural result of the market exchanges of capacities and individual

commodity routing within the combined network. In summary, Theorem 11 not only

indicates the existence of a collectively efficient routing (production plan) and a core

payoff allocation under the prices {α∗e}, but also shows how they can be constructed

in a practical decentralized environment under natural resource trading rules without
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direct central intervention.

One main contribution of Theorem 11 is to provide insights regarding the general

relationship between perfect coordinating prices, core payoff allocations, and dual

optimal solutions {α∗e} in the context of coordinating decentralized resource sharing

in combined network. Specifically, given a network G as modeled in §3.2, we represent

the set of individual payoffs that are derived under perfect coordinating prices as P ,

i.e., P = {{xicost(f ∗)} : {coste} is perfect coordinating}. Let C and D denote the set

of core payoffs and dual allocations. We conclude that D ⊂ P (Theorem 11) and

D ⊂ C [123]. A natural question is whether P ⊂ C, i.e., whether a core payoff can

be guaranteed under any perfect coordinating prices. We analyze this problem in the

following subsection.

3.3.2 Individual Payoffs under Perfect Coordinating Prices

In the next proposition, we present a characterization of the general relationship

between the stand-alone value of a sub-coalition S v(S) and the payoff to S in the

combined network operated under a set of perfect coordinating prices. Let αi∗e and

βi∗(o,d,i) denote the dual optimal solutions associated with the capacity and demand

constraints respectively in the individual problem (P i
cost) in (100) for each player i.

Proposition 9. Given any combined network G operated under a set of perfect co-

ordinating prices {coste}, ∀ sub-coalition S ( N , the payoff to S,
∑

i∈S x
i
cost(f

∗),

satisfies

∑
i∈S

xicost(f
∗)−v(S) ≥

∑
e∈E

ce(1−γSe )·
∑
i∈S

αi∗e +
∑

(o,d,i)/∈DS
d(o,d,i)·

∑
i∈S

βi∗(o,d,i)−
∑
e∈E

coste(1−γSe )·ceγSe .

(112)

The above formula (112) provides a lower bound on the difference between the

payoffs to S operating inside a combined network and independently. Note that

such a bound may be negative, hence
∑

i∈S x
i
cost(f

∗) ≥ v(S) is not guaranteed. In
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Figure 23: The general relation between the set of payoffs induced by perfect coor-
dinating prices P , the set of dual allocations D, and the set of core payoffs C.

fact, we can construct small network examples (e.g., Example 3) where the bound

is negative and tight, indicating that some players’ payoffs are strictly undermined

participating in a combined network. Hence, it can be concluded that given a general

combined network, perfect coordinating prices do not guarantee a core payoff of the

corresponding MCF game. In other words, in general, P 6⊂ C (Proposition 9) and we

can also find simple examples where C 6⊂ P . Hence, we can summarize the general

relationship between these three sets given any combined network in Figure 23.

Example 3. A network has two nodes o and d and an edge e = (o, d). Player

I owns ceγ
1
e units of the capacity, but his demand exceeds the total capacity, i.e.,

d(o,d,1) > ce. Player II owns no shipping demand but only ce(1 − γ1
e ) units of the

edge resources. The unit shipping revenue is r(o,d,1) = 1. The social optimal routing

of this network instance is obviously to ship ce units of the commodity owned by

Player I. Consider the objective functions in the problems (P 1
cost) and (P 2

cost), i.e.,

[1 − coste(1 − γ1
e )]f

(o,d,1)
(d,o,1) and coste(1 − γ1

e )f
(o,d,1)
(d,o,1) . We conclude that the exchange

price on edge e, coste, is perfect coordinating if and only if 0 ≤ coste ≤ 1
1−γ1

e
.

Now calculate the payoff to Player I under an arbitrary inverse feasible exchange

price coste.

x1 = ce[1− ¯cost(1− γ1
e )] (113)

= v(1) + ce(1− γ1
e )(1− coste) . (114)

Since in this example α∗1e = 1−coste(1−γ1
e ), (113)-(114) indicates that the inequality
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(112) holds tight for player I, and thus x1 < v(1) if coste > 1. Since 0 < γ1
e < 1,

1 < 1
1−γ1

e
. Hence, a perfect coordinating price in the nonempty interval (1, 1

1−γ1
e
] leads

to less profits for player I than his playing alone.

Figure 24 illustrates how player I accumulates his payoff when a perfect coordi-

nating exchange price coste strictly greater than 1 is adopted. The line segment ob

represents the situation in which all resources in use are exchanged at a price of coste

and Player I earns a unit profit of 1− coste(1− γ1
e ) from routing his own commodity

demand. Because the exchange price is perfect coordinating, 1 − coste(1 − γ1
e ) ≥ 0,

indicating a nonnegative slope of ob. The situation becomes different if we consider

the other way that player I accumulates his profit, as indicated by the right-hand-side

of inequality (112), or equivalently by (114) in this example. Specifically, player I first

operates alone to use up his own resources with a unit profit 1, which is the slope of

the line segment oa. Then he joins the coalition and ships more using the capacity

owned by player II. However, since player I needs to pay player II even for using his

own capacity and in this example receives no income from capacity exchanges from

player II, the unit profit he actually earns according to (114) after joining the grand

coalition, which is the slope of ab, is 1 − coste which is negative when coste > 1.

Hence the payoff to player I is undermined in the coalition with player II even if the

total shipping revenue can be strictly increased.

Example 3 provides us with some insights into how the capacity exchange mecha-

nism affects one’s payoff especially under perfect coordinating prices, especially when

there are multiple owners of the capacity on the same edge. Based on these insights,

we analyze the bound provided in formula (112) in general cases as follows. The main

observation is that the bound characterizes the potential additional profit and cost

that a sub-coalition S would expect from joining the resource-sharing system in a

combined network. First, consider the term
∑

i∈S α
∗i
e +

∑
i∈S β

∗i
(o,d,i). According to the

sensitivity of a linear program to the changes in its right-hand-side parameters, the
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Figure 24: Payoff accumulation of Player I in Example 3, where x denotes the
shipping amount as well as the resources used on e, and y denotes the profit earned.

individual payoff xicost(f
∗) is a piecewise linear concave non-decreasing function of the

amount of capacity on each edge or of the demand for each commodity. This indi-

cates a non-increasing marginal profit to player i as the capacity or demand increases

unit by unit. Hence, the value
∑

i∈S α
i∗
e is a lower bound to the sum of the marginal

profits to the members in S benefiting from each unit of the capacity on e owned by

players outside S. The value
∑

i∈S β
i∗
(o,d,i) plays a similar role with regard to every

commodity (o, d, i) /∈ DS. Hence,
∑

i∈S α
∗i
e +

∑
i∈S β

∗i
(o,d,i) essentially computes the

minimum benefit that S can obtain by exploiting the synergies from resource sharing

participating in a combined network.

The last term of the bound, i.e., −∑e∈E coste(1 − γSe ) · ceγSe , indicates that the

coalition S may need to pay extra cost on edges where 0 < γSe < 1 when participating

in a combined network under the capacity exchange mechanism. To see why this

happens, note that the stand-alone value of S, v(S), is achieved under the implicit

assumption that the capacity of its members is shared for free within themselves

when S operates independently. However, it is no longer the case inside the combined

network where a different capacity access rule is adopted. Specifically, the capacity

exchange mechanism requires every participant to pay the other capacity owners for

every unit of his own commodity routed through each edge e. For S, it implies an
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additional capacity cost of coste(1 − γSe ) per unit demand of its members routed

on e. In cases where the total amount of flow routed by the members of S is no

larger than their own capacity, i.e., ceγ
S
e , on each edge e, S can choose to operates

independently and completely avoid the capacity exchange prices. This provides an

intuitive explanation for the extra cost that S will incur joining a combined network

with capacity exchanges, and why this cost is upper bounded by
∑

e∈E coste(1−γSe ) ·

ceγ
S
e in formula (112).

In conclusion, Proposition 9 indicates that while one can benefit from the avail-

ability of a larger pool of resources and routing demand when participating in a

combined network, he may also incur additional costs entering a capacity exchange

market and collaborating with others who own the same capacity as he does. To

understand the intuition behind such a cost, note that the purpose of capacity ex-

change prices is to benefit capacity owners from the shipment of others’ commodities

and thus motivate them to share resources. Hence, everyone who participates under

such a mechanism may potentially yield part of the shipping revenue that she could

achieve alone to others in the form of capacity exchange prices. Note that such a

situation can be prevented for a sub-coalition S if on each edge, γSe equals either

1 or 0, i.e., S either owns all the capacity on an edge or none, as in this case, no

players outside S can claim a capacity payment if all commodities in S are routed

using only edges where its members own capacity. This argument is substantiated

by inequality (112) as the third term on the right-hand-side of the formula becomes

zero when γSe = 0 or 1. Moreover, we can observe that in this case, (112) implies∑
i∈S x

i
cost(f

∗) ≥ v(S) as αi∗e and βi∗(o,d,i) are both nonnegative. This indicates that S

is guaranteed to receive no less profit inside the combined network than operating by

itself and thus has incentives to share resources with others, as long as a set of perfect

coordinating prices is adopted. The above argument holds for all sub-coalitions when
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there is a unique capacity owner on every edge in the network, thus perfect coor-

dinating prices guarantees are guaranteed to yields a core payoff {xicost(f ∗)}. The

same result (i.e., obtaining a core payoff under the unique ownership condition using

a capacity exchange mechanism with perfect coordinating prices) is also reported in

[2] as a stand-alone theorem using a different proof approach, while here we derive it

as a corollary to a more general result of Proposition 9.

While the above situation is ideal, i.e., any perfect coordinating prices give rise

to a core payoff, the unique ownership condition is usually not satisfied in practice.

However, when there exist multiple owners of capacity on the same edge, the fact

that the perfect coordinating prices do not generally guarantee individual payoffs in

the core of the corresponding MCF game indicates a potential misalignment between

the optimality and stability of a decentralized network under the capacity exchange

mechanism. Our next result indicates that the impact of such potential diseconomies

of multiple ownerships on a sub-coalition’s payoff depends on the asymmetry in the

capacity levels among the multiple capacity owners relative to their commodity de-

mand. To present the result, we denote by MS = {e ∈ E : 0 < γSe < 1} the set of

edges where S has partial capacity. Let fS be a feasible routing for sub-coalition S,

i.e., a feasible solution to the problem (CS), and let f ∗S be the optimal one.

Proposition 10. Given any combined network G operated under a set of perfect

coordinating prices {coste}, the payoff to a sub-coalition S ( N is guaranteed to

satisfy
∑

i∈S x
i
cost(f

∗) ≥ v(S), if there exists a feasible routing fN\S to the problem

(CN\S) such that∑
(o,d,i)∈DS(f ∗S)

(o,d,i)
e

ceγSe
≤
∑

(o,d,i)/∈DS(fN\S)
(o,d,i)
e

ce(1− γSe )
∀e ∈MS . (115)

The proof of Proposition 10 is intuitive: Consider a feasible routing f̄ over G under

which the commodities owned within S and N \ S are routed according to f ∗S and

fN\S respectively. Then by (115) (after cross-multiplication), the cost that S pays
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for capacity under f̄ is guaranteed to be no larger than the amount that it receives

from others on each edge in MS. This indicates that given routing f̄ under which

the potential synergies from the scope economies is not yet exploited, the payoff to S

is already no smaller than v(S). The fact that a set of perfect coordinating prices is

applied in the combined network ensures an even higher payoff to S under the social

optimal routing f ∗ than f̄ and this completes the proof.

Although formula (115) is derived based on a specific routing for the commodities

owned within S and N \S respectively, we can gain some general insights from Propo-

sition 10 into the factors that impact individual payoffs under the capacity exchange

mechanism. Specifically, we can interpret the ratio of the left-hand-side in formula

(115) as the optimal internal capacity utilization rate on e within S when it operates

alone. Similarly, the term on the right-hand-side represents the internal capacity uti-

lization rate within its counterpart N \S under some feasible routing for N \S. Hence,

according to Proposition 10, perfect coordinating prices can guarantee better indi-

vidual profit within the combined network for sub-coalitions whose optimal internal

capacity utilization rates are sufficiently low. To see why this is the case, note that a

low internal capacity utilization rate indicates a large capacity ownership within the

sub-coalition compared to the routing demand of its members; thus the participation

of these players in the combined network increases the overall capacity availability for

commodity routing. The nature of capacity exchange prices is to reward players for

their capacity contribution to the combined network, thus the result of Proposition

10 follows. This analysis also indicates that under such a mechanism, the players

who have higher internal capacity utilization rate and essentially contribute routing

demand are not rewarded enough and thus may not receive a fair share of the total

shipping revenue achieved by the joint effort of all players involved in the combined

network. However our next result, which we derive as a corollary to Proposition 10,

indicates that such an unfavorable situation will not happen in combined networks
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under a homogeneous setting where all players have high internal capacity utilization

rates.

Corollary 2. Given any combined network G operated under a set of perfect coor-

dinating prices {coste}, the individual payoff {xicost(f ∗)} is guaranteed to be a core

payoff, if for each user i, there exists a feasible routing fi to the problem (Ci) such

that all capacity owned by i on edges in Mi is saturated, i.e.,
∑

(o,d,i)∈Di(fi)
(o,d,i)
e = ceγ

i
e

∀e ∈Mi.

In words, the condition in the above corollary indicates that all players can achieve

the highest internal capacity utilization rate of 1 on each edge where multiple capacity

owners exist. This implies that all players are homogeneously under-capacitated.

Under such a situation, Corollary 2 shows that any perfect coordinating prices can

ensure a core payoff. This result further implies that the capacity exchange mechanism

can be biased towards allocating better payoffs to players whose internal capacity

utilization is low compared to others and whose participation enhances the capacity

availability in the combined network.

3.3.3 Appendix

Proof of Theorem 11. Let [π∗, α∗, β∗] be the optimal dual solution of the centralized

problem (C) associated with the constraints (95)−(97) respectively. It must sat-

isfy the dual constraints with respect to (C) (116)−(118), and the complementary
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slackness conditions together with the corresponding f ∗ (119)−(122).

π∗(o,d,i)v − π∗(o,d,i)u + α∗e ≥ 0 ∀(o, d, i) ∈ D ∀e ∈ E (116)

π∗(o,d,i)o − π∗(o,d,i)d + β∗(o,d,i) ≥ r(o,d,i) ∀(o, d, i) ∈ D (117)

nonnegativity constraints (118)

π∗(o,d,i)v − π∗(o,d,i)u + α∗e = 0 ∀(o, d, i) ∈ D ∀e ∈ E if f ∗(o,d,i)e > 0 (119)

π∗(o,d,i)o − π∗(o,d,i)d + β∗(o,d,i) = r(o,d,i) ∀(o, d, i) ∈ D if f
∗(o,d,i)
(d,o,i) > 0 (120)

α∗e = 0 ∀e ∈ E if
∑

(o,d,i)∈D

f ∗(o,d,i)e < ce (121)

β∗(o,d,i) = 0 ∀(o, d, i) ∈ D if f
∗(o,d,i)
(d,o,i) < d(o,d,i) . (122)

Hence, it is easy to verify that when the capacity exchange prices coste = α∗e ∀e ∈

E, for each player i ∈ N , the vector [πi, αi, βi] defined by (123)−(126) is a feasible

dual solution with respect to player i’s individual problem (P i
α∗), i.e., satisfying the

dual constraints (137)−(141), due to inequalities (116)−(118).

πi(o,d,i)v
.
= π∗(o,d,i)v ∀(o, d, i) ∈ Di ∀v ∈ V (123)

αie
.
= α∗eγ

i
e ∀e ∈ E (124)

βi(o,d,i)
.
= β∗(o,d,i) ∀(o, d, i) ∈ Di (125)

βi(o,d,j)
.
= πi(o,d,j)v = 0 ∀(o, d, j) /∈ Di ∀v ∈ V . (126)

Moreover, due to equations (119)−(122), the above solution also satisfies the comple-

mentary slackness conditions together with f ∗ for (P i
α∗), i.e.,

πi(o,d,i)v − πi(o,d,i)u + αie = −(1− γie)α∗e ∀(o, d, i) ∈ Di ∀e ∈ E if f ∗(o,d,i)e > 0 (127)

πi(o,d,j)v − πi(o,d,j)u + αie = γieα
∗
e ∀(o, d, j) /∈ Di ∀e ∈ E if f ∗(o,d,j)e > 0 (128)

πi(o,d,i)o − πi(o,d,i)d + βi(o,d,i) = r(o,d,i) ∀(o, d, i) ∈ Di if f
∗(o,d,i)
(d,o,i) > 0 (129)

πi(o,d,j)o − πi(o,d,j)d + βi(o,d,j) = 0 ∀(o, d, j) /∈ Di if f
∗(o,d,j)
(d,o,j) > 0 (130)

αie = 0 ∀e ∈ E if
∑

(o,d,i)∈D

f ∗(o,d,i)e < ce (131)

βi(o,d,i) = 0 ∀(o, d, i) ∈ D if f
∗(o,d,i)
(d,o,i) < d(o,d,i) . (132)
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Hence, by duality theory, we conclude that f ∗ and [πi, αi, βi] defined by (123)−(126)

are the primal and dual optimal solutions, respectively, to the individual problem

(P i
α∗). Hence, by definition, the capacity exchange prices {α∗e} are perfect coordi-

nating. Moreover, by strong duality, the payoff to each player i under prices {α∗e},

xiα∗(f
∗), equals

∑
e∈E ceα

i
e+
∑

(o,d,i)∈D d(o,d,i)β
i
(o,d,i), which can be shown to be identical

to the dual allocation as computed in (111).

Proof of Proposition 9. Formulate as follows the dual program of the problem (CS),

i.e., the minimum cost problem from which the value of a sub-coalition v(S) is com-

puted.

(DS) : min ZS(α, β) =
∑
e∈E

γSe ceαe +
∑

(o,d,i)∈DS
β(o,d,i)d(o,d,i) (133)

s.t. π(o,d,i)
v − π(o,d,i)

u + αe ≥ 0 ∀(o, d, i) ∈ DS ∀e ∈ E (134)

π(o,d,i)
o − π(o,d,i)

d + β(o,d,i) ≥ r(o,d,i) ∀(o, d, i) ∈ DS (135)

αe ≥ 0; β(o,d,i) ≥ 0; π(o,d,i)
v ≥ 0 ∀e ∈ E ∀(o, d, i) ∈ D ∀v ∈ V . (136)

Consider the optimal dual solution to the individual problem (P i
cost), i.e., [πi∗, αi∗, βi∗],

which must satisfy the dual constraints with respect to (P i
cost), i.e.,

πi(o,d,i)v − πi(o,d,i)u + αie ≥ −(1− γie)coste ∀(o, d, i) ∈ Di ∀e ∈ E (137)

πi(o,d,j)v − πi(o,d,j)u + αie ≥ γiecoste ∀(o, d, j) /∈ Di ∀e ∈ E (138)

πi(o,d,i)o − πi(o,d,i)d + βi(o,d,i) ≥ r(o,d,i) ∀(o, d, i) ∈ Di (139)

πi(o,d,j)o − πi(o,d,j)d + βi(o,d,j) ≥ 0 ∀(o, d, j) /∈ Di (140)

nonnegativity constraints . (141)

Hence, by adding the constraints (137) and (138) over all i ∈ S with respect to

each commodity and each edge, and adding (139) and (140) with respect to each

commodity, we see that the vector [
∑

i∈S π
i∗,
∑

i∈E α
i∗ + (1 − γSe )coste,

∑
i∈S β

i∗] is

feasible to the problem of (DS); hence it gives rise to an objective value no smaller
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than the optimal value of (DS), which equals v(S) by strong duality. Mathematically,

ZS(
∑
i∈S

αi∗ + (1− γSe )coste,
∑
i∈S

βi∗) ≥ v(S) . (142)

Since [πi∗, αi∗, βi∗] is the optimal dual solution to the individual problem (P i
cost),

by strong duality we know that∑
i∈S

xicost(f
∗) =

∑
e∈E

∑
i∈S

αi∗e ce +
∑

(o,d,i)∈D

∑
i∈S

βi∗(o,d,i)d(o,d,i)

= ZS(
∑
i∈S

αi∗ + (1− γSe )coste,
∑
i∈S

βi∗)

+
∑
e∈E

ce(1− γSe )(
∑
i∈S

αi∗e − costeγSe ) +
∑

(o,d,i)/∈DS

∑
i∈S

βi∗(o,d,i)d(o,d,i) (143)

where the second equality is obtained after some algebraic manipulations. Com-

bining formula (142) and (143), we can derive the following relationship between∑
i∈S x

i
cost(f

∗) and v(S),∑
i∈S

xicost(f
∗) ≥ v(S)+

∑
e∈E

ce(1−γSe )
∑
i∈S

αi∗e +
∑

(o,d,i)/∈DS

∑
i∈S

βi∗(o,d,i)d(o,d,i)−
∑
e∈E

coste(1−γSe )·ceγSe .

(144)

By rearranging terms in the above inequality we obtained inequality (112) in Propo-

sition 9.

Proof of Proposition 10. Consider a feasible routing fN\S for N \ S to operate alone

that satisfies condition (115). Define a routing f ∗S ⊕ fN\S over the entire collective

network G, such that all commodities owned by members in the sub-coalition S are

routed according to f ∗S while the commodities owned within N \S are routed based on

fN\S (note that this routing is referred to as f̄ in the paper). Given a set of capacity

exchange prices {coste}, the payoff to S under such a routing can be computed as in

(145). ∑
i∈S

xicost(f
∗
S ⊕ fN\S)

= v(S)−
∑
e∈MS

coste(1− γSe )
∑

(o,d,i)∈DS
(f ∗S)(o,d,i)

e +
∑
e∈E

costeγ
S
e

∑
(o,d,i)/∈DS

(fN\S)(o,d,i)
e . (145)
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According to (115), on each edge e in MS we have

coste(1− γSe )
∑

(o,d,i)∈DS
(f ∗S)(o,d,i)

e ≤ costeγ
S
e

∑
(o,d,i)/∈DS

(fN\S)(o,d,i)
e (146)

and this leads to
∑

i∈S x
i
cost(f

∗
S ⊕ fN\S) ≥ v(S). The fact that {coste} is perfect

coordinating indicates that
∑

i∈S x
i
cost(f

∗) ≥ ∑i∈S x
i
cost(f

∗
S ⊕ fN\S) ≥ v(S) and this

completes the proof.

Proof of Corollary 2. Consider an arbitrary sub-coalition S. For its counterpartN\S,

there exists a feasible routing fN\S defined as
∑⊕

i∈N\S fi under which the commodities

owned by player i is routed according to the routing fi. Under the given condition that∑
(o,d,i)∈Di(fi)

(o,d,i)
e = ceγ

i
e ∀e ∈M i, we know that

∑
(o,d,i)/∈DS(fN\S)

(o,d,i)
e = ce(1− γSe )

is guaranteed on all edges in MS. This indicates that the RHS of inequality (115) is

1, which is the highest capacity utilization rate. Hence by Proposition 10 we know

that
∑

i∈S x
i
cost(f

∗) ≥ v(S). According to the definition of a core payoff, we conclude

that {xicost(f ∗)} is a core payoff.

3.4 Avoidance of Free Riders under a Capacity Exchange
Mechanism

In the last section, Theorem 11 indicates that when the optimal dual solutions {α∗e}

are applied as the capacity exchange prices on the corresponding edges, a decen-

tralized combined network can achieve its maximum efficiency in terms of the total

shipping revenue, and all its participants can benefit from the synergies of capacity

sharing. While such a situation is highly desirable, these dual solutions can have

serious practical drawbacks as exchange prices. One of them is that, due to the com-

plementary slackness of linear programs, α∗e = 0 on each edge e where the capacity is

not fully used under the social optimal routing. Yet zero prices are usually unaccept-

able for privately-owned resources in practice, and if used, can discourage the capacity

owners from sharing capacity. Moreover, the existence of zero exchange prices can

190



lead to free riders who gain positive shipping revenues by using others’ capacity for

free. The existence of free riders can cause perception of unfairness of the mechanism

and becomes a significant barrier to its implementation.

The free rider problem is a classic problem in economics (e.g., in [74]) and has

recently received attention in the algorithmic game theory literature. For example,

Immorlica et al. [82] study the issue in the context of cost sharing mechanism design

where the criterion of no free riders is found to be incompatible with those of budget-

balancedness and group strategyproofness. While our study to the free rider problem

also indicates incompatibility as capacity exchange prices that both avoid free riders

and guarantee a social optimal routing do not generally exist, our result applies to

capacity exchange mechanism design that manages selfish routings without direct

central intervention in either network operations or payoff allocation. [87] show the

existence of strictly positive competitive prices in digital goods pricing under the non-

satiation assumption of individual utilities. However, such an assumption implies

unlimited commodity demand, which is typically relevant to the digital market, yet

is unrealistic under the setting of our problem.

In this section, we study the design of capacity exchange prices to coordinate de-

centralized combined networks under the requirement that no free riders should exist

in the system. As a first study, we focus our discussion in cases where participation

of all players in the combined network is enforced, for example by a binding agree-

ment, since we find the problem challenging even under such a simplified situation.

In particular, the requirement to avoid free riders may be incompatible with the goal

to induce the decentralized individual routings towards the social optimal one within

a combined network, as we show in certain cases (e.g., Example 4), free riders always

exist under any perfect coordinating prices.

Example 4. Consider the network shown in Figure 25. with two network players

a and b. Player a owns two thirds of the capacity on the edge AB and all capacity
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Figure 25: The combined network in Example 4. The numbers on the edges represent
capacity levels.

on DE; player b owns the rest of the network capacity. There are four commodities,

(A,F, a), (D,F, a), (B,E, a) and (A,C, b), each with 1 unit of demand and a shipping

revenue of 1. The unique social optimal routing is to route 1 unit of (D,F, a), (B,E, a)

and (A,C, b). It can be observed that if the exchange price on edge AB is set to be

costAB > 0, the individual optimal routing for player b is to route 1 unit of commodity

(A,F, a) and (A,C, b), which is different from the social optimal one. Hence all

perfect coordinating prices must satisfy costAB = 0, which directly results in player

a’s providing free capacity for the shipment of player b’s commodity (A,C, b), and

thus b being a free rider.

In the light of the observation made in Example 4, our discussion in this section is

centered around the following two studies. First, we analyze the factors that cause the

non-existence of perfect coordinating prices that can also avoid free riders. Second,

as a solution to this problem, we design and analyze capacity exchange prices that

partially coordinate the behavior of individual players in the combined network, and

under which no free riders exist. We will use strict positiveness of prices as the

criterion for avoiding free riders throughout the rest of this section.
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3.4.1 Existence of Strictly Positive Perfect Coordinating Prices

We first point out that according to Theorem 11 and strict complementary slackness

of linear programs, at least one set of strictly positive perfect coordinating prices

can be found in networks that are under-capacitated on every edge under the social

optimal routing. Basically, we set the prices equal to the corresponding set of strictly

positive dual prices. Hence, our discussion in this section on the existence of such

prices focuses on the general setting where there can be excess capacity under the

social optimal routing.

We start by analyzing Example 4 to gain some insights towards the cause of

the incompatibility between perfect coordinating and free rider avoidance under the

capacity exchange mechanism. In Example 4, when a unit of commodity (A,F, a)

is shipped, player b can earn 1
3
costAB + costBD + costEF from player a via capacity

exchanges; whereas she only earns costBD + costEF if commodities (D,F, a) and

(B,E, a) are shipped instead. Hence, player b will prefer to route commodity (A,F, a)

to (D,F, a) and (B,E, a) whenever costAB > 0.

The above reasoning is simple but it points to essential factors that undermine

the existence of strictly positive perfect coordinating prices. First, compare the com-

modities (A,F, a) and (D,F, a). They create the same unit shipping revenue while

(A,F, a) requires one more unit of capacity on edge AB and BD to ship. From the

system efficiency perspective, commodity (D,F, a) is preferred as it uses less capacity

to deliver and leaves space for the routing of commodity (B,E, a), which generates an

additional unit of revenue. However, for player b as a capacity seller, the shipment of

commodity (A,F, a) can benefit him more from capacity exchanges when costAB > 0,

and thus is preferred under her own individual optimal routing. This indicates that

strictly positive prices can deviate individual routings from the collective optimal one

if certain inefficient routes exist, where more capacity is used to deliver commodities
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with lower unit revenues compared to other routes in the network. The main underly-

ing factor is that while the collective efficiency is measured based on the total shipping

revenue, an individual’s payoff is partially determined by the amount of his own ca-

pacity that can be sold under the capacity exchange mechanism. Second, notice that

in this example, routing 1 unit of both commodities (D,F, a) and (B,E, a) requires

more capacity on edge DE compared to when only (A,F, a) is shipped. However,

player b does not own any capacity on edge DE, thus cannot benefit from capacity

exchanges on that edge in either situation. This indicates that one’s capacity owner-

ship levels can bias his perception of the profitability of the edges and thus impact the

individual optimal routing. In general, such individual bias can be hard to coordinate

with positive prices especially when it is widely varied among the players.

We formalize the above discussion by showing that when the impact of both

factors, i.e., existence of inefficient routes and heterogeneous individual ownership

conditions, is eliminated, at least one set of perfect coordinating prices is guaranteed

to be strictly positive. Before presenting the result, we first introduce the following

definition that characterize the inefficient routes mentioned in the previous paragraph.

Let P(o,d,i) be the set of all paths that go from the origin node o to the destination

node d for commodity (o, d, i), and let P =
⋃

(o,d,i)∈D P(o,d,i).

Definition 5. Given a multicommodity network G = (V,E) and the unit shipping

revenues {r(o,d,i)} of the commodities, a set of paths P1 = {pt} ⊂ P in G is dominated

by another set of paths P2 = {ps} ⊂ P if there exist constants {λt > 0} and {µs > 0}

such that

∑
(o,d,i)∈D

∑
t:pt∈P1∩P(o,d,i)

λtr(o,d,i) ≤
∑

(o,d,i)∈D

∑
s:ps∈P2∩P(o,d,i)

µsr(o,d,i) (147)

∑
t:pt∈P1

λtχ{e∈pt} ≥
∑

s:ps∈P2

µsχ{e∈ps} ∀e ∈ E (148)∑
t:pt∈P1

λtχ{e∈pt} >
∑

s:ps∈P2

µsχ{e∈ps} for some e ∈ E (149)
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where χ is an indicator function.

To interpret the above definition, regard the constants {λt} and {µs} as the

amount of flow routed through path pt in P1 and ps in P2 respectively. Hence, by

choosing the routing scheme {λt} over {µs}, inequality (147) indicates that no more

shipping revenue can be generated; yet no less capacity is used on any edge in the

network (inequality (148)) and at least one edge exists where strictly more capacity

is used (inequality (149)).

Theorem 12. Given any combined network G, assume that for each player i, the

capacity ownership levels are identical on all edges, i.e., γie1 = γie2 ∀e1, e2 ∈ E. Then

strictly positive perfect coordinating prices are guaranteed to exist if there are no

dominated paths.

Theorem 15 is proven by inverse optimization techniques, first introduced and

studied in [6] and the property of strict complementary slackness of linear programs

[19]. The network setting of uniform capacity ownership for every user is relevant

in practical situations where the ownership levels of an individual are not calculated

edge by edge but are determined according to some aggregate measure over the entire

network, such as her share in the total investment in establishing the infrastructure of

the network. An example of such a situation occurs in sea cargo collaborations, where

shipping companies often cooperate to operate a service route and their capacity

ownership levels throughout the route are calculated as their percentage of the total

TEUs (twenty-foot equivalent units) deployed along the route [121].

An implication of Theorem 15 is the limitation of the capacity exchange mech-

anism to coordinate heterogeneous combined networks under certain practical re-

strictions such as the strict positiveness of prices. To see this, note that both the

conditions of uniform capacity ownership levels and the non-existence of dominated

paths indicate a certain degree of homogeneity: The former one implies proportionally
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identical resource ownership among the players over all the network edges, and the

latter implies similar profitability of the routing paths. Such limitation is originated

from the fact that this capacity exchange mechanism is based on a single price that

applies to all users and all commodities on the same edge.

Although Theorem 15 provides insights into the underlying factors that results

in the non-existence of strictly positive perfect coordinating prices in general net-

works, the sufficient conditions given are too restrictive in many practical applica-

tions. Hence, in order to provide a practical solution to this problem, in the next

section, we study the design of strictly positive prices to partially coordinate the indi-

vidual optimal routings so that a social optimal routing is guaranteed to be attained

and can be maintained as an equilibrium under certain conditions or with the aid of

an auxiliary mechanism to manage the capacity allocation among the players.

3.4.2 Design of Strictly Positive Partial Coordinating Prices

Recall that by Definition 4, a set of perfect coordinating prices {coste} should be able

to induce each individual optimal routing f i∗cost towards the collective optimal one f ∗

for all commodities involved in the network. In this section, we relax this criterion

such that for each player, only the routing of her own commodities should equal f ∗

under the influence of the capacity exchange prices.

Definition 6. A set of capacity exchange prices {coste} is called partial coordinating

if ∀i ∈ N (f i∗cost)
(o,d,i)
e = f

∗(o,d,i)
e ∀e ∈ E ∀(o, d, i) ∈ Di for some social optimal routing

f ∗.

The definition of partial coordinating prices is motivated by the fact that each

player can only route her own commodities. Hence, in order to achieve a social op-

timal routing, it is sufficient to partially align every individual optimal routing with

the social optimal one with respect to the commodity set owned by the correspond-

ing player. In the following discussion, we show that unlike perfect coordination of
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individual optimal routings, such partial coordination can always be achieved using

strictly positive prices. However, the potential tradeoff is that the social optimal rout-

ing is not guaranteed to be a Nash equilibrium and thus may be unstable, since there

is no guarantee under partial coordination that adopting f ∗ for his own commodities

is the best response for a player given that others do so.

Theorem 13. Given any combined network G, a set of strictly positive partial coor-

dinating prices always exists and can be computed in polynomial time.

The proof to Theorem 13 is a constructive one consisting of two steps (refer to

Algorithm 4 for details). First, we compute a routing f̃ i for each player i such that

f̃
i(o,d,i)
e = f

∗(o,d,i)
e ∀e ∈ E ∀(o, d, i) ∈ Di, i.e., his own commodities being routed

according to a social optimal routing f ∗, plus some additional properties specially

tailored for the proof. Second, we apply the techniques from inverse optimization to

formulate a set of linear inequalities that identifies capacity exchange prices {coste}

such that the individual optimal routing f i∗cost is identical to f̃ i ∀i ∈ N . The pro-

cedure is summarized in the following algorithm. The existence of a set of strictly

positive prices that satisfies these inequalities is proven based on the theory of strict

complementary slackness of linear programs (refer to the Appendix for proof details).

However, as we have mentioned before, although a social optimal routing is guar-

anteed to be attained under partial coordinating prices, the routing may not be an

equilibrium. To see why this occurs, note that under partial coordinating prices

{coste}, the social optimal routing f ∗ is guaranteed to be the best strategy for each

player i to operate if others route their commodities according to his individual op-

timal routing f i∗cost. Since f i∗cost is not entirely coordinated with f ∗ for the demand

of others, it is possible that player i can earn a better profit by deviating from f ∗,

given that others route according to f ∗ instead. This is a serious drawback of partial

coordinating prices compared to perfect coordinating ones, as the lack of stability of

a social optimal routing can pose serious threats to the long-term efficiency of the
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ALGORITHM 4: Designing strictly positive partial coordinating prices in a general com-

bined network
Input: A combined network G
Output: A set of strictly positive partial coordinating prices {coste}
Find an optimal solution {f̃ i∗∆ } to the following program

max
∑
e∈E

∑
j∈N

γje ∑
(o,d,i)∈D

(f j∆)(o,d,i)
e −

∑
(o,d,j)∈Dj

(f j∆)(o,d,j)
e

 (150)

s.t. f i∆ is a feasible augmenting flow with respect to f∗ ∀i ∈ N (151)∑
i∈N

 ∑
(o,d,i)∈Di

(1− γie)(f i∆)(o,d,i)
e −

∑
(o,d,j)/∈Di

γie(f
i
∆)(o,d,j)

e

 ≤ 0 ∀e ∈ E (152)

∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i)(f
i
∆)

(o,d,i)
(d,o,i) = 0 (153)

if the optimal solution to the above program equals zero then
Strictly positive perfect coordinating prices exist. Compute such prices {coste} by
solving a solution to

⋃
i∈N I

i where Ii is defined in (101) - (110). Such a solution can
be solved efficiently (e.g., using the algorithm proposed in [19]). Output {coste}.

else

1. Consider the augmented flow f∗ + f̃ i∗∆ ∀i ∈ N (refer to this flow f∗ + f̃ i∗∆ as f̃ i).

2. Formulate a constraint set similar to
⋃
i∈N I

i where each Ii is defined in (101) -
(110), but with the complementary slackness conditions changed to those with
respect to the new flow f̃ i.

3. Find a solution to the program that contains a set of strictly positive prices {coste}
(similarly, this solution can be solved efficiently using the algorithm proposed in
[19]). Output {coste}.

end

network. Hence, it is important to understand the conditions under which f ∗ can be

guaranteed as a Nash equilibrium using strictly positive partial coordinating prices

in the capacity exchange mechanism. We discuss this issue in the following analysis.

Moreover, we also propose auxiliary mechanisms to reinforce the stability of the social

optimal routing under partial coordinating prices.

We first point out that since an individual player i can manage both his own capac-

ity and demand, there are two ways for i to deviate from the social optimal routing

f ∗ in operation: (i) by routing his commodities differently; and (ii) by refusing to
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share his capacity according to f ∗. While both situations can occur, in practice, the

individuals’ manipulation of how to share their own capacity within a combined net-

work can be restricted, especially when a binding resource sharing agreement exists,

which is usually the case in practical alliances. Hence, in the rest of this section, we

focus on the routing decisions of players and study when and how all players can be

prevented from adopting a different routing other than f ∗ for their own commodities

under strictly positive partial coordinating prices, given others following f ∗. We call

f ∗ a routing equilibrium if such a condition is satisfied.

Definition 7. Given a combined network and a set of capacity exchange prices

{coste}, a routing f is called a routing equilibrium if for every player i, his indi-

vidual payoff satisfies

xicost(f) ≥ xicost(f
i′, f−i) ∀ routing for i’s commodity f i′ that is feasible given f−i

(154)

where f−i = {f (o,d,i)
e ,∀(o, d, i) /∈ Di} denotes the part of the routing f that corresponds

to commodities owned by players other than i.

Recall that we mentioned previously that perfect coordinating prices guarantee

the social optimal routing f ∗ to be a routing equilibrium. The reason is that under

such prices, each individual optimal routing is completely aligned with f ∗ for all com-

modities. Theorem 14 below indicates that such a strong condition is not necessary

to ensure f ∗ to be a routing equilibrium. Specifically, given a set of strictly positive

partial coordinating prices as defined in Theorem 13, a certain alignment between the

set of saturated edges under the individual optimal routings and that under f ∗ is suffi-

cient to prevent players from deviating from the social optimal routing. To present the

result, recall that in the proof of Theorem 13, the strictly positive partial coordinating

prices are computed so that the individual optimal routing for each player i equals a

certain routing f̃ i (refer to Algorithm 4). Let Ēi = {e ∈ E :
∑

(o,d,i)∈D f̃
i(o,d,i)
e = ce}
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and Ē∗ = {e ∈ E :
∑

(o,d,i)∈D f
∗(o,d,i)
e = ce} be the set of fully-used edges under each

f̃ i and under the social optimal routing f ∗.

Theorem 14. Given any combined network G, assume the social optimal routing

f ∗ is unique. There exists a set of strictly positive partial coordinating prices under

which f ∗ is a routing equilibrium if either of the following two conditions holds.

1. Ēi ⊂ Ē∗ ∀i ∈ N ; or

2. On each edge e ∈ Ē∗, γie > 0 ∀i ∈ N , i.e., all users own positive fraction of the

capacity.

To see the connection between the two conditions in the above theorem, note that

a perfect alignment between Ēi and Ē∗, i.e., Ēi = Ē∗, requires that both Ēi \ Ē∗ = ∅

and Ē∗\Ēi = ∅. In Theorem 14, condition 1 is equivalent to Ēi\Ē∗ = ∅ ∀i ∈ N , which

indicates that no edge with redundant capacity under the social optimal routing f ∗ is

used to its full capacity under any individual routings. Condition 2, on the contrary,

ensures the opposite situation that for each player i, Ē∗ ⊂ Ēi and thus Ē∗ \ Ēi = ∅

(see Lemma 9 in the Appendix for a detailed proof). In this case, all edges that are

fully used under f ∗ are also saturated under all individual optimal routings.

We can interpret Theorem 14 as follows. For each player i, the set Ēi represents

the set of edges where an additional unit of available capacity will lead to positive

extra individual profit for him. The set E \ Ēi, on the other hand, represents the set

of edges where the capacity is left redundant under the individual optimal routing.

Intuitively, in order to maximize his own profit, player i tends to prefer a routing

of his own commodities under which more capacity on edges in Ēi and less capacity

on edges in E \ Ēi is used. Hence, if there is a large difference between Ēi and

Ē∗, such incentives can result in player i deviating from f ∗ for his own commodities

when others’ commodities are routed according to f ∗. Theorem 14 implies that, when

such incentives are derived due to the existence of only one of the sets of Ēi \ Ē∗ and
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Ē∗\Ēi, strictly positive partial coordinating prices can be designed to prevent players

from deviating from f ∗, and thus guarantee a routing equilibrium at f ∗. However,

when both sets are nonempty, it may be impossible to devise a unique set of strictly

positive partial coordinating prices to eliminate the negative impact of these two

different types of edges at the same time.

We also point out that condition 2 in Theorem 14 is in fact stronger than the

condition of Ē∗ \ Ēi = ∅ ∀i ∈ N . In other words, the existence of a player i who owns

no capacity on some edge e ∈ Ē∗ may pose additional restrictions to our search for

strictly positive partial coordinating prices under which f ∗ is a routing equilibrium,

even if Ē∗ \ Ēi = ∅ is satisfied. To see this, note that such a player i will not

profit from the capacity exchanges on this edge e due to his zero capacity ownership.

Hence, in planning his individual optimal routing, the player is likely to deviate others’

commodities from e to edges where he owns positive capacity in order to gain capacity

exchange prices. This can result in more capacity on e, which can potentially induce

player i to route more of his own commodities on e compared to that under f ∗. Such

a possibility needs to be eliminated according to the definition of partial coordinating

prices, and thus creates an extra constraint for our price design problem.

The above discussion points to a direction for designing auxiliary mechanisms to

guarantee the existence of strictly positive partial coordinating prices under which

the social optimal routing f ∗ is a routing equilibrium. Specifically, we can impose

an operational rule to limit the amount of commodities that the players can route

on edges that are saturated under f ∗ if they own no capacity on these edges. Such

flow caps help to explicitly eliminate the possibility that such a player may route

more than he could under f ∗. We prove that this mechanism is indeed effective under

general network conditions, as shown in the following corollary to Theorem 14.

Corollary 3. Given any combined network G, assume the social optimal routing f ∗

is unique. There exists a set of strictly positive partial coordinating prices under
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which f ∗ is a routing equilibrium if on each edge e ∈ Ē∗, the flow that any player

i ∈ {i ∈ N : γie = 0} can route on e is upper bounded by
∑

(o,d,i)∈Di f
∗(o,d,i)
e .

As a final remark, the mechanism proposed above essentially determines capacity

allotments on each of the saturated edges under the social optimal routing f ∗ to

players who own no capacity on it. This is a realistic approach considering the

current industry practice such as in carrier alliances (Houghtalen et al. [78]). We

also mention that a similar mechanism is studied by Houghtalen et al. [78] where a

capacity allocation scheme is pre-designed on every edge for all players. However,

the study is different from ours in several notable ways. First, while their mechanism

determines a capacity allocation on all edges for every player, ours only involves edges

that are fully used under f ∗ and does not restrict the flow of any capacity owners

on these edges, which is more practical. Second, their paper studies a setting where

the capacity on each edge is uniquely owned and all individual optimal routings are

computed to maximize the profit that can be obtained from the shipment of their

own commodities (i.e., shipping revenue minus the capacity exchange prices paid)

given the capacity allocated to them, ignoring the capacity exchange prices that they

can earn from others; their result shows that perfect coordinating prices exist in such

a setting given certain capacity allocation rules. Yet our study is based on a more

general network setting with multiple capacity owners on an edge, and we focus on

designing prices to coordinate the combined network under the practical restriction

to avoid free riders.

3.4.3 Appendix

Proof of Theorem 15. To prove the theorem, we use the following lemma that pro-

vides a sufficient and necessary condition for the existence of a set of strictly positive

perfect coordinating prices. First we define a feasible augmenting flow f∆ with re-

spect to f ∗ such that the augmented flow f ∗+f∆ is nonnegative and satisfies the flow

202



conservation constraint and demand constraint for each commodity, and the capacity

constraint on every edge over all commodities.

Lemma 8. Given any collective network G, strictly positive perfect coordinating

prices exist if and only if the constraint (157) is binding ∀e ∈ E in the following

program for all the optimal solutions.

max
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i)(f
i
∆)

(o,d,i)
(d,o,i) (155)

s.t. f i∆ is a feasible augmenting flow with respect to f ∗ ∀i ∈ N (156)∑
i∈N

 ∑
(o,d,i)∈Di

(1− γie)(f i∆)(o,d,i)
e −

∑
(o,d,j)/∈Di

γie(f
i
∆)(o,d,j)

e

 ≤ 0 ∀e ∈ E . (157)

Proof of Lemma 8. ⇐: According to duality theorem and complementary slackness

for each linear program (P i
cost), a set of capacity exchange prices {coste} is perfect

coordinating if and only if the union of the inequality sets (137)−(141) (i.e., dual

feasibility constraints) and (127)−(132) (i.e., complementary slackness constraints)

over all players i is feasible. Hence, we can solve for perfect coordinating prices using

the following program, i.e.,

min
∑
i∈N

0 · [πi, αi, βi] + 0 · cost

s.t. (137)− (141) and (127)− (132) ∀i ∈ N ; coste ≥ 0 ∀e ∈ E (158)

Every optimal solution to this program points to a set of perfect coordinating prices.

After some manipulations 2, we can verify that the dual of (158) is exactly the one

shown in (155)−(157), and the primal variables {cost} correspond to the constraint

(157). Hence, according to strict complementary slackness of linear program, when

constraint (157) is binding under all optimal solutions, there must exist an optimal

solution to the primal problem which contains a set of strictly positive perfect coor-

dinating prices.

2For details, please refer to an online supplement at the author’s webpage at
www2.isye.gatech.edu/˜lgui3.
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⇒: Assume that there exists an optimal solution to the above program (155)−(157)

{f i∗∆ } such that the constraint (157) is a strict inequality for at least one edge. We

know that the optimal objective value of this program is zero due to the existence

of perfect coordinating prices in any network (Agarwal and Ergun [2]). Then un-

der any strictly positive prices {coste}, we conclude that
∑

i∈N x
i
cost(f

∗ + f i∗∆ ) >∑
i∈N x

i
cost(f

∗). This indicates that for at least one player i, xicost(f
∗+f i∗∆ ) > xicost(f

∗),

which contradicts the condition that {cost} is perfect coordinating.

Now going back to the proof of Theorem 15, let us assume that there does not

exist a set of strictly positive perfect coordinating prices. Then according to Lemma

8, there exists at least one optimal solution to the program (155)−(157), under which

the constraint (157) holds as a strict inequality on at least one edge e. Denote such

an optimal solution as {f̂ i∗∆ }. Under the uniform capacity ownership condition, let γi

denote the capacity ownership of player i on every edge in G. Consider the following

augmenting flow

f̂ (o,d,i)
e

.
=
∑
j∈N

γj(f̂ j∗∆ )(o,d,i)
e −(f̂ i∗∆ )(o,d,i)

e ∀e ∈ E∪{(d, o, i) : ∀(o, d, i) ∈ D} ∀(o, d, i) ∈ D

(159)

Since each f̂ j∗∆ is a feasible augmenting flow with respect to f ∗,
∑

(o,d,i)∈D r(o,d,i)(f̂
j∗
∆ )

(o,d,i)
(d,o,i) ≤

0 for each j ∈ N ; otherwise it is a contradiction to the optimality of f ∗. In ad-

dition,
∑

i∈N
∑

(o,d,i)∈Di r(o,d,i)(f̂
i∗
∆ )

(o,d,i)
(d,o,i) = 0 as the optimal objective value of the

program (155)−(157) is zero. Hence, we conclude that
∑

(o,d,i)∈D r(o,d,i)f̂
(o,d,i)
(d,o,i) =∑

j∈N γ
j
∑

(o,d,i)∈D r(o,d,i)(f̂
j∗
∆ )

(o,d,i)
(d,o,i) −

∑
i∈N
∑

(o,d,i)∈Di r(o,d,i)(f̂
i∗
∆ )

(o,d,i)
(d,o,i) ≤ 0.

Second, it is easy to see that the total augmenting flow under f̂ on any edge e

is equal to the absolute value of the LFS in constraint (157), i.e.,
∑

(o,d,i)∈D f̂
(o,d,i)
e =∑

j∈N

[
γje
∑

(o,d,i)∈D(f̂ j∗∆ )
(o,d,i)
e −∑(o,d,j)∈Dj(f̂

j∗
∆ )

(o,d,j)
e

]
, and thus is guaranteed to be

nonnegative on all edges and is strict positive at at least one edge.
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Finally, since each f̂ i∗∆ is a feasible augmenting flow, we can verify that the aug-

menting flow f̂ defined in (159) satisfies the flow conservation constraints for each

commodity. Thus we can decompose f̂ into flow on the o−d paths for each commod-

ity, and combine the paths with strictly positive and negative flow into two different

sets. Such two sets cannot be empty, since we have shown that (i) f̂ strictly increases

the flow on at least one edge, and (ii) the revenue change is nonpositive under f̂ .

Hence, according to the definition of dominated paths (Definition 5), it is easy to see

that the set of path with negative flow is dominated. This is a contradiction to the

condition of the theorem that no dominated paths exist.

Proof of Theorem 13. To prove the theorem, we show in two steps that Algorithm 4

computes a set of prices {coste} that is partial coordinating. First, we prove that if

the algorithm is valid, then its outcome must be partial coordinating. Second, we

show the validity of the algorithm. For each step we prove a related claim.

Claim 1. Define routing f̃ such that ∀i ∈ N ∀(o, d, i) ∈ Di

f̃ (o,d,i)
e

.
= (f ∗ + f̃ i∗∆ )(o,d,i)

e ∀e ∈ E ∪ {(d, o, i) : ∀(o, d, i) ∈ D} . (160)

f̃ is a feasible and collective optimal routing to the centralized problem (C).

Proof of Claim 1. The feasibility of f̃ is proven as follows: Due to constraint (157)

and the fact that f̃ i∗∆ is a feasible augmenting flow with respect to f ∗ for all i, the

total flow on each edge e under f̃ satisfies

∑
(o,d,i)∈D

f̃ (o,d,i)
e =

∑
i∈N

∑
(o,d,i)∈Di

[f ∗(o,d,i)e + (f̃ i∗∆ )(o,d,i)
e ]

≤
∑
j∈N

γje
∑

(o,d,i)∈D

[f ∗(o,d,i)e + (f̃ j∗∆ )(o,d,i)
e ] ≤

∑
j∈N

γjece = ce . (161)

In addition, f̃ obviously satisfies the flow conservation and demand constraints as each

f̃ i∗∆ is solved as a feasible augmenting flow with respect to f ∗. Moreover, according

to the last constraint in the program (150)−(153),
∑

i∈N
∑

(o,d,i)∈Di r(o,d,i)f̃
(o,d,i)
(d,o,i) =
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∑
i∈N
∑

(o,d,i)∈Di r(o,d,i)f
∗(o,d,i)
(d,o,i) . Since the flow f̃ generates the maximum total shipping

revenue and is feasible, by definition f̃ is a collective optimal routing.

In the next step, we show the existence of strictly positive prices {coste} under

which the individual optimal routings f i∗cost for each program (P i
cost) equals f ∗ + f̃ i∗∆ .

To do that, we first take the dual of the program (158), where the complementary

slackness conditions (127)−(132) are with respect to the flows {f ∗+ f̃ i∗∆ ∀i ∈ N}, and

obtain a similar program to the one in (155)−(157), i.e.,

max
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i)(f
i
∆)

(o,d,i)
(d,o,i) (162)

s.t. f i∆ is a feasible augmenting flow with respect to f ∗ + f̃ i∗∆ ∀i ∈ N (163)∑
i∈N

 ∑
(o,d,i)∈Di

(1− γie)(f i∆)(o,d,i)
e −

∑
(o,d,j)/∈Di

γie(f
i
∆)(o,d,j)

e

 ≤ 0 ∀e ∈ E (164)

Claim 2. The optimal objective value of the program (162)−(164) is zero. Moreover,

the constraint (164) is binding under all the optimal solutions to the program.

Proof of Claim 2. Assume there exists a feasible solution { ˜̃f i∗∆ } to the program (162)-

(164) that gives rise to strictly positive objective value. Then it is easy to see that the

solution {f̃ i∗∆ + ˜̃f i∗∆ } is feasible to the program (155)−(157) and also generates a positive

objective value. This is a contradiction to the fact that the program (155)−(157) has

a zero objective value, due to the general existence of perfect coordinating prices.

Now assume { ˜̃f i∗∆ } is an optimal solution to the program (162)−(164) under which

the constraint (164) is strictly positive on at least one edge. Then it is easy to see that

the objective function (150) has a strictly higher value under the solution {f̃ i∗∆ + ˜̃f i∗∆ }

than {f̃ i∗∆ }, a contradiction to the optimality of {f̃ i∗∆ } to the program (150)−(153).

Given Claim 2, we conclude that, by strict complementary slackness of linear

program, there must exist a feasible solution to the program (158) with respect to

the flows {f ∗ + f̃ i∗∆ ∀i ∈ N} that contains strictly positive prices. These prices can
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also be computed in polynomial time (e.g., using the algorithm given by Bertsimas

and Tsitsiklis [19]). Moreover, we know by complementary slackness, such prices

must induce each player i to the routing f ∗+ f̃ i∗∆ , and give rise to a collective optimal

routing f̃ according to Claim 1. Thus by definition, this set of prices is partial

coordinating.

Proof of Theorem 14. In the previous proofs, we characterize the set of perfect (par-

tial) coordinating prices by program (158) with respect to f ∗ (f ∗ + f̃ i∗∆ ∀i ∈ N).

Similarly, we provide here a characterization of the set of prices under which f ∗ is

a routing equilibrium in the collective network. First, by definition, f ∗ is a routing

equilibrium if and only if for each player i, the part of f ∗ with respect to her own

commodity set Di is optimal to the following program.

max
∑

(o,d,i)∈Di
r(o,d,i)f

(o,d,i)
(d,o,i) −

∑
e∈E

coste(1− γie)
∑

(o,d,i)∈Di
f (o,d,i)
e (165)

s.t.
∑

e∈δ−(v)

f (o,d,i)
e −

∑
e∈δ+(v)

f (o,d,i)
e ≤ 0 ∀v ∈ V ∀(o, d, i) ∈ Di (166)

∑
(o,d,i)∈Di

f (o,d,i)
e ≤ ce −

∑
(o,d,j)/∈Di

f ∗(o,d,j)e ∀e ∈ E (167)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ Di (168)

f ≥ 0 . (169)

It can be easily verified that the dual constraints with respect to the above program

is identical to the constraints (137), (139) and (141); its complementary slackness

conditions with respect to the f ∗ is exactly those in (127), (129), and (132) restricted

to the commodity set Di. Hence we conclude that a set of prices {coste} is partial
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coordinating and induces a routing equilibrium at f ∗ if

{coste} is partial coordinating, i.e., ∃ values [πi1, α
i
1, β

i
1] such that inequalities

(137)− (141) and (127)− (132) with respect to flow {f ∗ + f̃ i∗∆ }

are satisfied for all i ∈ N ;

{coste} induces a routing equilibrium at f ∗ , i.e., ∃ values [πi2, α
i
2, β

i
2] such that

inequalities (137), (139), (141) and (127), (129), (132) restricted to

Diare satisfied for all i ∈ N .

(170)

According to Theorem 13, it is known that strictly positive partial coordinating

prices always exist. To prove Theorem 14, we first show that under condition 1 in

Theorem 14, f ∗ is a routing equilibrium under any partial coordinating prices. To see

this, note that under any partial coordinating prices, there exists feasible solutions

[πi1, α
i
1, β

i
1] ∀i ∈ N to the first set of inequalities in (170). Since the collective optimal

routing is unique, for each player i, f ∗ + f̃ i∗∆ = f ∗ ∀(o, d, i) ∈ Di. Hence, it is easy to

check that setting [πi2, α
i
2, β

i
2] = [πi1, α

i
1, β

i
1] generates a feasible solution to the second

set of inequalities when Ēi ⊂ Ē∗ ∀i ∈ N .

To prove the theorem under condition 2, we show the existence of strictly positive

prices under which all of the inequalities in (170) can be satisfied simultaneously, based

on strict complementary slackness of linear programs. To do this, we first transform

the inequality system (170) into a linear program with a zero objective function, which

is similar to the program in (158).We denote the vector of dual variables associated

with each of the two constraint sets in (170) by f i∆1 and f i∆2, and formulate the dual

problem as follows. Note that while each f i∆1 indicates an augmenting flow for all
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commodities in D, f i∆2 is only associated with i’s own commodities in Di.

max
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
[
(f i∆1)

(o,d,i)
(d,o,i) + (f i∆2)

(o,d,i)
(d,o,i)

]
(171)

s.t. f i∆1 is a feasible augmenting flow with respect to f ∗ + f̃ i∗∆ ∀i ∈ N (172)

f i∆2 is a feasible augmenting flow with respect to f ∗ for Di ∀i ∈ N (173)∑
i∈N

(1− γie)
∑

(o,d,i)∈Di

[
(f i∆2)(o,d,i)

e + (f i∆1)(o,d,i)
e

]
−
∑
i∈N

γie
∑

(o,d,j)/∈Di
(f i∆1)(o,d,j)

e ≤ 0 ∀e ∈ E (174)

Note that the prices {coste} are the primal variables associated with constraint

(174) in the above dual program. Hence, in order to prove the existence of strictly

positive {coste}, we show that given condition 2, under any optimal solution to the

program (171)−(174), constraint (174) is binding. To achieve this goal, we first prove

the following technical result.

Proposition 11. If on each edge e ∈ Ē∗, γie > 0 ∀i ∈ N , then any optimal solution

{f i∗∆1, f
i∗
∆2} to the program (171)−(174) satisfies (f i∗∆1)

(o,d,i)
e = (f i∗∆2)

(o,d,i)
e = 0 ∀e ∈ E

∀(o, d, i) ∈ Di ∀i ∈ N .

Proof of Proposition 11. We prove this result in three steps. First, we show that the

optimal value to the program (171)−(174) is zero. To see this, we assume that the

optimal solution to the program, denoted as {f i∗∆1, f
i∗
∆2}, generates a positive objective

value. Then we construct the following flow f̂ i∆ for each player i such that

f̂ i∆
.
=


1
2
· [f̃ i∗∆ + f i∗∆1 + f i∗∆2] ∀(o, d, i) ∈ Di

1
2
· [f̃ i∗∆ + f i∗∆1] ∀(o, d, i) /∈ Di .

(175)

Since both f̃ i∗∆ +f i∗∆1 and f i∗∆2 are feasible augmenting flow with respect to f ∗, any flow

that is a convex combination of them is also a feasible augmenting flow with respect

to f ∗. Since {f i∗∆1, f
i∗
∆2} also satisfies (174), it is easy to verify that f̂ i∆ is a feasible

solution to the program (155)−(157) that gives rise to a strictly positive objective

value. However, it is known that the optimal value to the program (155)−(157)
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should be zero, since perfect coordinating prices always exist. Thus by contradiction,

we conclude that the optimal value to the program (171)−(174) is zero.

Second, consider the routing resulting from every player i routing her own com-

modity according to f ∗ + f̂ i∆. According to the same reasoning as in Claim 1, such a

routing is feasible and thus is a collective optimal one as we have shown previously that∑
i∈N
∑

(o,d,i)∈Di r(o,d,i) · (f̂ i∆)
(o,d,i)
(d,o,i) = 0. Hence, due to the uniqueness of the collective

optimal routing, we conclude for each player i, (f̃ i∗∆ )
(o,d,i)
e + (f i∗∆1)

(o,d,i)
e + (f i∗∆2)

(o,d,i)
e = 0

∀e ∈ E ∀(o, d, i) ∈ Di. Since by Claim 1 and the uniqueness of the collective optimal

routing, we know that (f̃ i∗∆ )
(o,d,i)
e = 0 ∀e ∈ E ∀(o, d, i) ∈ Di ∀i ∈ N , we conclude that

(f i∗∆1)
(o,d,i)
e = −(f i∗∆2)

(o,d,i)
e ∀e ∈ E ∀(o, d, i) ∈ Di ∀i ∈ N .

Now we prove the proposition by contradiction. Assume there exists an optimal

solution where f i∗∆2 6= 0 for some i. Due to the uniqueness of the collective optimal

routing,
∑

i∈N
∑

(o,d,i)∈Di r(o,d,i)(f
i∗
∆2)

(o,d,i)
(d,o,i) < 0 as each f i∗∆2 is a feasible augmenting

flow with respect to f ∗, and hence
∑

i∈N
∑

(o,d,i)∈Di r(o,d,i)(f
i∗
∆1)

(o,d,i)
(d,o,i) > 0. Then the

routing f̂ defined as

f̂ (o,d,i)
e

.
= f ∗(o,d,i)e +m · (f i∗∆1)(o,d,i)

e ∀e ∈ E ∀(o, d, i) ∈ Di ∀i ∈ N (176)

cannot be feasible for any constant m > 0, since otherwise it is a contradiction to the

collective optimality of f ∗. However, we know that each f i∗∆1 is a feasible augmenting

flow with respect to f ∗ + f̃ i∗∆ , and (f̃ i∗∆ )
(o,d,i)
e = 0 ∀e ∈ E ∀(o, d, i) ∈ Di. These two

facts indicate that the routing f̂ cannot violate any flow conservation or demand

constraint. Hence, f̂ being infeasible for any m > 0 implies that ∃e ∈ Ē∗ such that

∑
i∈N

∑
(o,d,i)∈Di

(f i∗∆1)(o,d,i)
e > 0 . (177)

We show that inequality (177) is impossible under condition 2 of Theorem 14 as

follows. First, we prove the following lemma that any edge in Ē∗ also belongs in Ēi

if the player i owns capacity on it.
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Lemma 9. Given any collective network G, assume the collective optimal routing f ∗

is unique. Then Ē∗ ∩ {e ∈ E : γje > 0} ⊂ Ēj ∀j ∈ N .

Proof of Lemma 9. As we have argued before, due to the uniqueness of collective

optimal routing and Claim 1, for each player i, (f̃ i∗∆ )
(o,d,i)
e = 0 ∀e ∈ E ∀(o, d, i) ∈ Di.

Hence, we obtain the following relation from constraint (157)∑
j∈N

γje
∑

(o,d,i)∈D

(f̃ j∗∆ )(o,d,i)
e ≥

∑
i∈N

∑
(o,d,i)∈Di

(f̃ i∗∆ )(o,d,i)
e = 0 ∀e ∈ E . (178)

Meanwhile, since each f̃ j∗∆ is a feasible augmenting flow with respect to f ∗, we know

that
∑

(o,d,i)∈D(f̃ j∗∆ )
(o,d,i)
e ≤ 0 ∀e ∈ Ē∗. Combining this inequality with (178), we

conclude that on each edge e ∈ Ē∗, for each player j with positive capacity ownership,

i.e., γje > 0,
∑

(o,d,i)∈D(f̃ j∗∆ )
(o,d,i)
e = 0. Hence ∀j ∈ N Ē∗ ∩ {e : γje > 0} ⊂ Ēj.

Now going back to the derivation of a contradiction to (177). On each edge e ∈ Ē∗,

we know that for each player i,
∑

(o,d,i)∈Di(f
i∗
∆2)

(o,d,i)
e ≤ 0 and thus

∑
(o,d,i)∈Di(f

i∗
∆1)

(o,d,i)
e ≥

0. Under condition 2 in Theorem 14, i.e., all players own positive amount of capacity

on each edge in Ē∗, Ē∗ ⊂ Ēi ∀i ∈ N by Lemma 9. Since each f i∗∆1 is a feasible

augmenting flow with respect to f ∗ + f̃ i∗∆ , this indicates that on every edge in Ē∗,∑
(o,d,j)/∈Di(f

i∗
∆1)

(o,d,j)
e ≤ 0 and thus γie ·

∑
(o,d,j)/∈Di(f

i∗
∆1)

(o,d,j)
e ≤ 0. Combine this in-

equality with constraint (174), which is reduced to
∑

i∈N γ
i
e

∑
(o,d,j)/∈Di(f

i∗
∆1)

(o,d,j)
e ≥ 0

∀e ∈ E under any optimal solution as on any edge f i∗∆1 + f i∗∆2 = 0 for any commodity

in Di ∀i ∈ N . It can be concluded that for any edge in Ē∗,
∑

(o,d,j)/∈Di(f
i∗
∆1)

(o,d,j)
e = 0

(since γie > 0 ∀i ∈ N). Thus we derive that∑
(o,d,i)∈Di

(f i∗∆1)(o,d,i)
e = 0 ∀e ∈ Ē∗ ∀i ∈ N, (179)

since Ē∗ ⊂ Ēi and f i∗∆1 is a feasible augmenting flow with respect to f ∗+f̃ i∗∆ . Hence, we

obtain a contradiction to inequality (177), which completes our proof that any optimal

solution to the program (171)−(174) satisfies that for each player i, (f i∗∆1)
(o,d,i)
e =

(f i∗∆2)
(o,d,i)
e = 0 ∀e ∈ E ∀(o, d, i) ∈ Di under condition 2 in Theorem 14.
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We finally show by contradiction that the above result implies that constraint

(174) must be binding under all optimal solutions {f i∗∆1, f
i∗
∆2}. Assume constraint

(174) is not binding under an optimal solution. Then since according to Proposition

11, f i∗∆2 = 0, the flow {f̃ i∗∆ +f i∗∆1} is a feasible solution to the program (150)−(153) that

gives a higher objective value than {f̃ i∗∆ }. This is a contradiction to the optimality

of {f̃ i∗∆ } to the program 150−153. Therefore, due to strict complementary slack-

ness, we conclude that there must exist strictly positive prices {coste} that satisfies

the constraints in (170) and thus is partial coordinating and also induces a routing

equilibrium at f ∗.

Proof of Corollary 3. The proof of Corollary 3 follows the same argument as those

in the proof of Theorem 14 under condition 2 except for the following difference:

When deriving a contradiction to inequality (177), we first derive equation (179) on

each edge e ∈ Ē∗ for all players i such that γie > 0 in the same way as in the proof

of Theorem 14. Yet for each player i who own no capacity on such an edge e, we

conclude that
∑

(o,d,i)∈Di(f
i∗
∆1)

(o,d,i)
e ≤ 0 since she is not allowed to route more than∑

(o,d,i)∈Di f
∗(o,d,i)
e on e and f i∗∆1 is a feasible augmenting flow with respect to f ∗ + f̃ i∗∆

where (f̃ i∗∆ )
(o,d,i)
e = 0 ∀e ∈ E ∀(o, d, i) ∈ Di due to Claim 1 and the uniqueness of the

collective optimal routing. Hence we can conclude that

∑
i∈N

∑
(o,d,i)∈Di

(f i∗∆1)(o,d,i)
e ≤ 0 ∀e ∈ Ē∗, (180)

which is also a contradiction to (177).

3.5 A Robustness Analysis of a Capacity Exchange Mech-
anism under Demand Uncertainty

In this section, we consider a practical challenge to coordinate a combined network us-

ing market exchange mechanisms that arises from uncertainties in demand. In many

practical cases the mechanism is designed before the demand is revealed. Hence, it is
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desirable that the capacity exchange mechanism is robust, i.e., it can effectively coor-

dinate the network under all potential demand scenarios using a fixed set of exchange

prices. Hence, we study the robustness of the capacity exchange mechanism assuming

the existence of a number of potential demand scenarios of the combined network.

Notice that the task of designing robust mechanisms becomes more challenging as

in practice, there often exists a certain level of information asymmetry between the

mechanism designer and the players about demand. In this study, we also capture

the information asymmetry between the central authority and the participants by

assuming that the exact demand is revealed for individual decision-making after the

mechanism is imposed.

We conduct two analyses of the robustness problem from different angles. The

first one revolves around how robust a capacity exchange mechanism can be under

different network structures. It is motivated by the observation that in some networks,

no fixed set of exchange prices can induce the maximum total routing revenue without

violating capacity limits under every demand scenario, indicating that the robustness

of the mechanism is undermined by intrinsic network features. We show that the

undermining factors are the existence of inefficient path structures, which we call

dominated paths, and the widely varied individual capacity ownership levels over

the network. We also show that the negative impact of dominated paths can be

countered and the robustness of the mechanism be reinforced by commodity-based

heterogeneous pricing of the capacity on one edge (i.e., price discrimination).

Our second analysis is focused on the computational side of the problem, i.e.,

how to efficiently compute a set of capacity exchange prices that has certain robust

properties in any given network. We investigate this question by proposing a polyno-

mial pricing algorithm based on inverse optimization techniques, assuming a known

probability distribution over the set of potential demand scenarios, and analyzing

the routings induced by the mechanism. In particular, we bound the expected total
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revenue and the maximum overflow relative to capacity limit on all edges under each

demand scenario; one nice property observed about the prices computed is that they

guarantee less overflow in demand scenarios that are more likely to occur. Based on

these results, we mathematically illustrate the impact of demand uncertainty, char-

acterized by the size of the set of potential demand scenarios and the probabilities

associated with them, on the robustness of the capacity exchange mechanism.

Review of Related Literature Optimization problems with parameter uncer-

tainty has been extensively addressed in literature, e.g., in stochastic optimization and

robust optimization. The robust optimization framework, such as the one proposed

by [17], are related to our study since the routing that maximizes the total revenue

is computed by solving a network optimization problem. However, the decentralized

setting of the collaborative network model makes our problem more complicated.

There also exists a set of papers in the stochastic network flow literature that studies

centralized management of resource sharing between different queuing systems with

stochastic demand arrivals using fluid models, focusing on stylized network structures

(e.g., [75]). In contrast, we consider a general multicommodity network setting with

decentralized operators who manage the routing of their own demand, and study

the design of a fixed robust mechanism that can coordinate the network under any

demand realizations.

The challenge to manage individual incentives under information uncertainty is

also recognized and addressed in the literature under different contexts. For example,

[16] study the existence of robust incentive compatible mechanisms in the framework

of Bayesian games. The issue of managing cooperative system under data uncertainty

is also addressed in an inventory-based context using multi-stage stochastic programs,

mainly focusing on collaborative recourse strategies among individuals and profit

allocation schemes [63, 124]. In the routing game literature, there is a set of papers
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that study stochastic network setting with uncertainties in travel time. For example,

[120] show that a road toll mechanism can be used to induce risk-aversive network

users towards a robust social optimal routing, i.e., a fixed routing that minimizes the

worst-case congestion. This study is different from ours in the way that uncertainty is

modeled: The authors study the setting where the central authority and the users face

the same level of uncertainty in travel time, while in our model demand information

is assumed to be asymmetric between the two parties. Due to such information

asymmetry, it is generally implausible to induce a fixed routing solution under all

demand scenarios in our problem, and we adopt a different approach in this study

that allows for the computation of prices under which a different routing may be

obtained in each demand scenario.

3.5.1 Model Description

In this study, we consider a stochastic combined network with uncertain demand. To

this end, in this subsection, we first incorporate a demand uncertainty model into the

multicommodity network model introduced in §3.2. We also generalize the perfect

coordinating prices concept to such a stochastic setting by defining robust perfect

coordinating prices. We then illustrate the robustness problem using an example,

from which we derive intuition that sheds light on the general robustness analysis

presented in the rest of this section.

We model the uncertainty in the routing demand of commodities by assuming

the demand vector d
.
= {d(o,d,i), ∀(o, d, i) ∈ D} to be a discrete multivariant random

variable with a sample space of size K, denoted by Ω = {d1,d2, ...,dK}. Each element

dk in Ω is termed a demand scenario, where the demand level for each commodity

(o, d, i) equals dk(o,d,i). Given each dk, the maximum total routing revenue achievable

without violating capacity limits can be computed as the optimal value of a weighted

max-flow problem over the entire network G as if the routing of all commodities
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can be centrally dictated. We call this problem the centralized problem in demand

scenario k, denoted by (Ck) and formulated as follows.

(Ck) R(f) = max
∑

(o,d,i)∈D

r(o,d,i) · f (o,d,i)
(d,o,i) (181)

s.t.
∑

{e∈δ−(v)}

f (o,d,i)
e −

∑
{e∈δ+(v)}

f (o,d,i)
e = 0 ∀v ∈ V ∀(o, d, i) ∈ D (182)

∑
(o,d,i)∈D

f (o,d,i)
e ≤ ce ∀e ∈ E (183)

f
(o,d,i)
(d,o,i) ≤ dk(o,d,i) ∀(o, d, i) ∈ D (184)

f ≥ 0 . (185)

The optimal solution to (Ck), denoted by f ∗k , is defined as the social optimal routing

in demand scenario k, and represents the highest routing efficiency in that scenario.

Hence, a natural goal of designing the capacity exchange mechanism in such a stochas-

tic setting is to induce the individual routing decisions towards f ∗k in each demand

scenario k.

The basic mechanics of the capacity exchange mechanism remain the same in

the stochastic setting. It provides monetary side-payments to the players, and thus

creates incentives for them to behave in a socially optimal manner. However, the im-

plementation of the mechanism is affected by the demand uncertainty and information

asymmetry between the mechanism designer and the individual decision makers. In

order to highlight such an impact, we describe the sequence of events involved as

follows.

The first step is the design of the mechanism, which is assumed to occur at the

beginning of the planning horizon before the actual demand is observed. The central

authority is assumed to have full information of the sample space Ω of the demand

variable3. To design the mechanism, the authority chooses a unit exchange price

3In section 3.5.3 we also assume that the authority knows the probability distribution over the
sample space.
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coste ≥ 0 for the capacity on each edge e in the network.

In the second step, the demand scenario is revealed, according to which the players

decide the routing for their commodities and exchange capacity, aiming at the best

individual benefit. We adopt the same behavioral model considered previously, i.e.,

each player searches for a routing for all commodities over the entire network that

maximizes his own profit, including the routing revenue obtained from satisfying his

own commodity demand and the profit from capacity exchanges. Mathematically,

given a demand scenario dk, each player i solves the following program, which we call

the individual problem under demand scenario k (P k
i )

(P k
i )

∑
(o,d,i)∈Di

r(o,d,i) · f (o,d,i)
(d,o,i) +

∑
e∈E

coste

γie ∑
(o,d,i)/∈Di

f (o,d,i)
e − (1− γie)

∑
(o,d,i)∈Di

f (o,d,i)
e

 (186)

s.t. (183)− (185) in problem (Ck) (187)

and route his own commodities (i.e., those in the set Di) according to the individual

optimal routing fk∗i . It is obvious that the most desirable case is to design the mech-

anism such that fk∗i = f ∗k ∀i ∈ N , i.e., all players are induced to the social optimal

routing, in every demand scenario. This motivates the following definition, which

generalizes the concept of the perfect coordinating prices in the deterministic case

considered in the previous sections.

Definition 8. A set of capacity exchange prices {coste} is called perfect coordinating

in demand scenario k if fk∗i = f ∗k ∀i ∈ N . The exchange prices are called robust

perfect coordinating if the above condition holds for all dk ∈ Ω.

As we have mentioned in §3.2, from the literature, we know that perfect coordi-

nating prices exist in any combined network given a fixed demand scenario [2]. The

primary method to show this result uses techniques from inverse optimization frame-

work, which studies the design of parameters in optimization problem so that a target

solution becomes optimal (e.g., [4]). Specifically, in the deterministic case, the perfect
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coordinating prices are characterized by a set of dual feasibility and complementary

slackness constraints of the individual problems with respect to the social optimal

routing under the given demand scenario. According to optimization theory, these

constraints only depend on the basis4 of the social optimal routing, which, in our

problem, can be fully characterized by the corresponding sets of (i) partially-used

edges, (ii) commodities with partially-fulfilled demand, and (iii) strictly positive flow

variables. Hence, we can easily derive the following result for the existence of robust

perfect coordinating under demand uncertainty.

Proposition 12. Given a combined network G and a set of demand scenarios Ω,

robust perfect coordinating prices exist if ∀dk ∈ Ω, the social optimal routing f ∗k has

the same basis, i.e., the sets of Ēk .
= {e ∈ E :

∑
(o,d,i)∈D(f ∗k )

(o,d,i)
e < ce} (partially-used

edges), D̄k .
= {(o, d, i) ∈ D : (f ∗k )

(o,d,i)
(d,o,i) < dk(o,d,i)} (commodities with partially-fulfilled

demand), and F̄ k .
= {(f ∗k )

(o,d,i)
e : (f ∗k )

(o,d,i)
e > 0} (strictly positive flow variables) are

identical for all k.

Not surprisingly, the situation becomes complicated when the condition in the

above proposition is violated, as robust perfect coordinating prices must simultane-

ously satisfy multiple sets of conditions with respect to different bases under the social

optimal routings in different demand scenarios. These sets of conditions may con-

tradict with each other and thus no robust perfect coordinating prices exist. In this

case, the social optimal routing cannot be guaranteed for every possible demand sce-

nario via a fixed capacity exchange mechanism: The individual decisions would lead

to inefficient routing of commodities (e.g., inefficient route choices) and/or overflow

on edges when directly aggregated. We illustrate such a situation in the following

example, focusing on the overflow problem.

4The basis of a solution to a linear program is defined as the set of nonzero variables under the
standard form of the program, i.e., in the form min{cTx|Ax = b, x ≥ 0} (refer to [18] for details).
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Figure 26: The network in Example 5

Example 5. Consider the network shown in Figure 26 with two players. The number

on each edge is the total amount of capacity available (the letter after the number

is used to denote the edge in the discussion.) Player I and II own all the capacity

on edges a, c and edges d, e respectively, and share the capacity on edge b equally.

There are five commodities; the origin and destination node of each commodity i is

denoted by oi and di respectively in the figure. Player I owns commodities 1, 2 and

3, and player II owns commodities 4 and 5. The unit revenue of the commodities

are r1 = r5 = 5, r2 = 1, r3 = 4 and r4 = 2. Two demand scenarios are considered,

where the demand of commodity 1 and 5 increases from d1
1 = d1

5 = 1 (scenario 1) to

d2
1 = d2

5 = 3 (scenario 2), while the demand of other commodities remains the same,

i.e., d1
2 = d2

2 = 4, d1
3 = d2

3 = 2 and d1
4 = d2

4 = 5.

We show that robust perfect coordinating prices do not exist in this example. In

fact, it can be observed that any set of perfect coordinating prices in one demand

scenario leads to edge overflow in the other. To see this, first consider scenario 1

where it is social optimal to route 2 and 1 unit(s) of commodity 3 and 4 respectively.

In order to induce player II to adopt this routing, the capacity exchange prices must

satisfy 1
2
costb + 2 ≤ coste, since otherwise routing 2 and 3 units of commodity 2

and 4 respectively instead of commodity 3 is profitable for player II. Meanwhile,

coste ≤ r3 = 4 must also hold as otherwise player I pays a net cost to route commodity

3 and would refrain from doing it. These two constraints together lead to costb ≤ 4.

However, in scenario 2, such prices motivate both players to route 3 units of demand
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of their own commodity through edge b (i.e., commodity 1 and 5 respectively), which

creates 1 unit of overflow on b. On the other hand, we can calculate that in demand

scenario 2, prices must satisfy costb = r1 = r5 = 5 and coste ≤ r3 = 4 to be perfect

coordinating. Under these two conditions, it can be observed that in scenario 1, player

II is induced to route 3 units of commodity 4 since 1
2
costb + 2 > coste, while player I

continues to route 2 units of commodity 3. This leads to 2 unit of overflow on edge e.

The non-existence of robust perfect coordinating prices in the above example indi-

cates limitation of a fixed capacity exchange mechanism in coordinating the combined

network shown in Figure 26 under demand uncertainty. This motivates us to ask the

following questions: What factors influence the robustness of the capacity exchange

mechanism? How is such influence originated considering the nature of the mecha-

nism? We investigate these questions in the next section.

3.5.2 Limitation of the Mechanism’s Robustness due to Underlying Net-
work Structure

In order to build intuition for more general discussions, we start this section by ana-

lyzing the elements that contribute to the non-existence of robust perfect coordinating

prices in Example 5. From our description of the example, it can be observed that in

demand scenario 1, the exchange price should be low on edge b (i.e., no more than

4) to be perfect coordinating; yet in scenario 2, it requires a relatively high price on

b (i.e., equal to 5) to induce both players towards the social optimal routing. To see

how such a distinction occurs, note that in scenario 1, the exchange price on edge b

is designed to divert player II from routing commodity 2, while in scenario 2 the role

of costb is to coordinate the individual routing decisions regarding commodity 1 and

5. The underlying factor that makes it impossible to accomplish both goals using the

same price is that commodity 2 generates less unit revenue compared to commodity

1 and 5 yet uses more capacity to route. In other words, path a − b is less efficient

than path b, and the robustness of the capacity exchange mechanism is undermined in
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the presence of this inefficient path (which is not even used under the social optimal

routing in either demand scenarios). We generalize the above observation regarding

the influence of path structure in the network in §3.5.2.1.

3.5.2.1 Network Structure and the Existence of Robust Perfect Coordinating Prices.

The key observation in this subsection is that the robustness of the capacity exchange

mechanism can be reinforced in networks where inefficient paths, such as path a− b

in Example 5, do not exist. In particular, in this case, we can guarantee the existence

of robust perfect coordinating prices under certain homogeneity conditions of the

individual capacity ownership levels over the network. To present the result, we first

introduce a definition that formally characterizes inefficient paths in a network. Let

P(o,d,i) be the set of all paths that go from the origin node o to the destination node

d for commodity (o, d, i), and let P =
⋃

(o,d,i)∈D P(o,d,i).

Definition 9. Given a combined network G and the unit routing revenue r(o,d,i) of

all commodities, a set of paths P1 = {pt} ⊂ P in G is dominated by another set of

paths P2 = {ps} ⊂ P (called the dominating path set) if there exist positive constants

{λt > 0} and {µs > 0} such that

∑
(o,d,i)∈D

∑
t:pt∈P1∩P(o,d,i)

λtr(o,d,i) <
∑

(o,d,i)∈D

∑
s:ps∈P2∩P(o,d,i)

µsr(o,d,i) (188)

∑
t:pt∈P1

λtχ{e∈pt} ≥
∑

s:ps∈P2

µsχ{e∈ps} ∀e ∈ E , (189)

where χ is an indicator function.

To interpret the above definition, regard the constants {λt} and {µs} as the

amount of flow routed through paths in P1 and P2 respectively. Definition 9 es-

sentially says that by choosing the routing scheme {λt} along paths in P1 over the

one {µs} with respect to P2, strictly less routing revenue is generated (inequality

(188)) using no less capacity on any edge in the network (inequality (189)), indicat-

ing inefficiency of paths in P1. Note that the definition of path dominance in this
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section is different from that in Definition 5 in §3.4.

Theorem 15. Given a combined network G where for each player i, the capacity

ownership levels are identical on all edges, i.e., γie1 = γie2 ∀e1, e2 ∈ E, robust perfect

coordinating prices {coste} exist for any set of demand scenarios Ω if there are no

dominated path sets in G.

We prove this theorem in a constructive way where we propose a method to

compute a set of robust perfect coordinating prices, and show the existence of such

prices are related to the non-existence of dominated paths by duality theory. Please

refer to Appendix 3.5.5 for details. Note that Theorem 15 assumes the network

condition of uniform capacity ownership for every user. Such a setting is relevant

in practical situations where the ownership levels of an individual are not calculated

edge by edge but are determined according to some aggregate measure over the entire

network. For example, in some transportation networks, the capacity ownership of

player i on each edge depends on the proportion of i’s asset contribution compared

to the total assets deployed in the entire network.

To see how the undermining effect of dominated path structures on the robust-

ness of the capacity exchange mechanism arises, note that the incentives provided by

the mechanism is based on capacity payments. Hence, while dominating paths are

preferred under the social optimal routings due to higher routing revenues associated

with them, the capacity owners tend to favor the dominated ones as they use more

capacity, which, under a homogeneous exchange price on each edge, imply a larger

capacity payment. Consistency between capacity payment and revenue is crucial for

the effectiveness of a capacity exchange mechanism especially under uncertainty. In-

deed, it can be observed that when dominated paths do not exist, the robust perfect

coordinating prices constructed in the proof to Theorem 15 are such that the total

unit price of the capacity along a path equals the unit revenue of the corresponding
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commodity. We can also use a similar argument to explain the impact of the indi-

vidual capacity ownership levels in the network on the robustness of the mechanism:

Heterogeneous capacity ownership levels imply different potential for capacity pay-

ments to the player over the edges and hence bias his evaluation of the profitability

of network capacity. Such individual biases are hard to coordinate using a fixed set

of prices given different demand levels.

3.5.2.2 Enhancing the Robustness of the Capacity Exchange Mechanism.

In this section, we discuss an approach to enhance the robustness of the capacity

exchange mechanism by commodity-based price discrimination. The approach is mo-

tivated by our analysis in the previous section: It works by designing prices to reflect

the revenue of routing each commodity through the corresponding edges and thus

encountering the negative influence of dominated paths.

Price discrimination has been a traditional topic in economic theory literature

as an important pricing strategy (e.g., [129]). Recently, it has inspired intensive

research in operations research on the design and implementation of such strategies

from both a theoretical and practical point of view, e.g., in service industries [98].

The heterogeneous pricing principle is also studied in the setting of communication

network control. For example, [159] study the network equilibrium in the presence of

multiple congestion control protocols that respond to different pricing signals.

Given the setting of the capacity exchange mechanism on a combined network, we

propose a commodity-based pricing model as follows. On each edge e, we let cost
(o,d,i)
e

to be the unit exchange price charged for the routing of commodity (o, d, i). Under

these prices, the profit of every player i is calculated using a formula different from

(187).

∑
(o,d,i)∈Di

r(o,d,i)·f (o,d,i)
(d,o,i) +

∑
e∈E

γie ∑
(o,d,i)/∈Di

cost(o,d,i)e f (o,d,i)
e − (1− γie)

∑
(o,d,i)∈Di

cost(o,d,i)e f (o,d,i)
e

 ,

(190)
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and the individual problems (P i
k) is changed accordingly. The definition of being

robust perfect coordinating for such heterogeneous prices is the same as for homoge-

neous ones in Definition 8. In the next theorem, we show that the existence of robust

perfect coordinating prices is not affected by the existence of dominated paths in the

network if such a commodity-based pricing strategy is adopted.

Theorem 16. Given a combined network G where for each player i, the capacity

ownership levels are identical on all edges, i.e., γie1 = γie2 ∀e1, e2 ∈ E, heterogeneous

robust perfect coordinating prices {cost(o,d,i)e } exist for any set of demand scenarios Ω.

An important result that leads to the above theorem is as follows.

Lemma 10. Dominated paths do not exist in any single-commodity network with one

source-sink pair.

The proof of lemma 10 is based on Definition 9 of dominated paths and the

max-flow-min-cut theorem in single-commodity networks. Since commodity-based

pricing is essentially equivalent to designing a set of exchange prices over the network

considering the routing between each source-sink pair separately, it is easy to see

that Theorem 16 follows from Theorem 15 and Lemma 10. We also mention that

the observation made in Lemma 10 is enlightening by itself as it sheds light on the

potential link between the existence of dominated path structures and the max-flow-

min-cut relation in a multicommodity network, which is an interesting direction for

future study.

It should be noted that the heterogeneous pricing approach trades price equity

for the robustness of the capacity exchange mechanism. Next, we investigate the

minimization of such price differentiation while guaranteeing the prices to be robust

perfect coordinating. We measure the degree of price discrimination under a set of

heterogeneous prices {cost(o,d,i)e } by the largest price difference on the same edge.

∆cost = max
e∈E

max
(o,d,i)1,(o,d,i)2∈D

∣∣cost(o,d,i)1
e − cost(o,d,i)2

e

∣∣ . (191)
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Theorem 15 implies that under the condition of uniform capacity ownership lev-

els, robust perfect coordinating prices can be designed such that ∆cost = 0 (i.e.,

homogeneous) if no dominated paths exist. We extend this observation by show-

ing that in networks with a general path structure, the minimum degree of price

discrimination under the heterogeneous robust perfect coordinating prices is upper

bounded by a certain normalized measure of the maximum inefficiency of domi-

nated paths in the network. Mathematically, given any path set P1 dominated

by another P2, let ϕ(P1,P2) be the absolute difference between the right- and left-

hand-side in inequality (188) in Definition 9, which calculates the additional revenue

achieved if capacity is used for routing along paths in P2 instead of P1 under the

corresponding parameters {λt} and {µs}. We also compute the difference in the

amount of capacity used on edge e for routing each commodity (o, d, i), denoted by

κ
(o,d,i)
e (P1,P2)

.
=
∑

ps∈P2∩P(o,d,i)
µsχ{e∈ps} −

∑
pt∈P1∩P(o,d,i)

λtχ{e∈pt}. We measure the

normalized inefficiency of the dominated path set P1 with respect to P2 by the fol-

lowing function

Φ(P1,P2) =
ϕ(P1,P2)∑

e∈E
∑

(o,d,i)∈D max{κ(o,d,i)
e (P1,P2), 0}

. (192)

Note that the denominator in (192) is guaranteed to be strictly positive, since oth-

erwise we can find at least one commodity in D and derive dominated paths on the

corresponding single commodity network, which is a contradiction to Lemma 10.

Theorem 17. Given a combined network G where for each player i, the capacity

ownership levels are identical on all edges, i.e., γie1 = γie2 ∀e1, e2 ∈ E, the least price

discriminating heterogeneous robust perfect coordinating prices {cost(o,d,i)e } satisfy

∆cost ≤ max
P1 dominated by P2

Φ(P1,P2) (193)

for any set of demand scenarios Ω.

We close this section by mentioning a research direction on minimizing another
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dimension of price discrimination under heterogeneous exchange prices in a multi-

commodity network, i.e., the number of different sets of prices employed. Note that

even if homogeneous robust perfect coordinating prices do not exist, it is possible

to coordinate a subset of the commodities using the same prices. This motivates

the following combinatorial problem: How to pack the commodities into the smallest

number of subsets, for each of which a single set of prices is designed, such that the

resulting prices are guaranteed to be robust perfect coordinating? Inspired by our

discussion on the impact of path dominance in this section, an initial step is to an-

alyze a network decomposition problem, i.e., partitioning the commodity set D such

that the sub-network corresponding to each subset is free of dominated path sets.

3.5.3 Mechanism Design in General Networks under Demand Uncer-
tainty

In the previous section, we investigate the influence of network structure on the ro-

bustness of a capacity exchange mechanism. While this analysis provides insights into

the nature and effectiveness of the mechanism under demand uncertainty, two prac-

tical problems remain unsolved. First, since the conditions given in both Theorem 15

and 16 are quite restrictive considering most practical applications, a natural ques-

tion is how robust the mechanism can be in a general network. The second question

concerns the computation of the exchange prices. Although the proof to Theorem 15

provides a way to construct robust perfect coordinating prices under certain network

structures (i.e., compute prices such that the total unit price along each path equals

the unit revenue of the corresponding commodity), solving an equation system of ex-

ponential size is not an efficient choice. Extending the question to general networks,

we are interested in developing an efficient method to compute prices that guarantee

certain robustness properties for the resulting mechanism.

In literature, [2] provide a polynomial method to compute perfect coordinating
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prices given a static network with fixed demand using the inverse optimization frame-

work. Specifically, as we have briefly described in §2.3.2, a set of dual and comple-

mentary slackness conditions of the individual problems with respect to the social

optimal routing, called an inverse problem, are used to characterize such prices. The

constraint set has a polynomial size and is guaranteed to be feasible in the static

setting, thus can be directly solved by linear programming techniques. We generalize

this approach to the stochastic setting considered in this paper by first combining all

the inverse problems that can arise under a given set of demand scenarios Ω. However,

the central difficulty is that the resulting constraint set, which obviously fully defines

robust perfect coordinating prices, is usually infeasible, as illustrated by Example 5

and our discussion in the previous section, meaning that the social optimal routing

cannot be achieved in every scenario under one set of prices. The contribution of our

algorithm is to resolve this situation by identifying a set of new routings, one for each

individual problem (P k
i ), with respect to which the new inverse problem is feasible.

Each of these new routings is obtained by augmenting the social optimal routing in

the corresponding demand scenario. The augmenting directions are computed by a

program specially designed using the dual program of the original infeasible inverse

problem in order to maintain a certain level of efficiency under the new routings5.

To do this, the algorithm requires a set of weight parameters associated with the

demand scenarios that represent their relative importance in the central authority’s

price design decision. This is an intuitive approach since the algorithm essentially

tries to manage multiple objectives using one set of variables. Under the context of

uncertainty, a natural candidate for the weight parameters is the probabilities that

the potential scenarios will occur.

Formally, we assume for the rest of this section a prior knowledge of the probability

5[4] recognize that the dual of an inverse problem can be formulated so that every feasible point
of it represents a feasible way to alter the target solution based on which the inverse problem is
defined. They call this dual problem the 0-centered dual inverse problem.
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distribution of the demand variable d over its sample space Ω. Mathematically, let

pk be the probability that d = dk, i.e., demand scenario k occurs. We focus on

designing homogeneous exchange prices that are unique on every edge, and Algorithm

5 outlines the steps to do this in a general network. First, we denote the dual variables

associated with the constraints in each individual problem (P k
i ) as [πki , α

k
i , β

k
i ]. We

let Invki denote the inverse problem with respect to the social optimal routing f ∗k

and an individual problem (P k
i ), i.e., the following set of linear constraints with

[πki , α
k
i , β

k
i , coste] as variables.

(πki )(o,d,i)
v − (πki )(o,d,i)

u + (αki )e ≥ −(1− γie)coste (o, d, i) ∈ Di, e ∈ E : (f ∗k )(o,d,i)
e /∈ F̄ k (194)

(πki )(o,d,i)
v − (πki )(o,d,i)

u + (αki )e = −(1− γie)coste (o, d, i) ∈ Di, e ∈ E : (f ∗k )(o,d,i)
e ∈ F̄ k (195)

(πki )(o,d,i)
v − (πki )(o,d,i)

u + (αki )e ≥ γiecoste (o, d, i) /∈ Di, e ∈ E : (f ∗k )(o,d,i)
e /∈ F̄ k (196)

(πki )(o,d,i)
v − (πki )(o,d,i)

u + (αki )e = γiecoste (o, d, i) /∈ Di, e ∈ E : (f ∗k )(o,d,i)
e ∈ F̄ k (197)

(πki )(o,d,i)
o − (πki )

(o,d,i)
d + (βki )(o,d,i) ≥ r(o,d,i) (o, d, i) ∈ Di : (f ∗k )

(o,d,i)
(d,o,i) /∈ F̄ k (198)

(πki )(o,d,i)
o − (πki )

(o,d,i)
d + (βki )(o,d,i) = r(o,d,i) (o, d, i) ∈ Di : (f ∗k )

(o,d,i)
(d,o,i) ∈ F̄ k (199)

(πki )(o,d,i)
o − (πki )

(o,d,i)
d + (βki )(o,d,i) ≥ 0 (o, d, i) /∈ Di : (f ∗k )

(o,d,i)
(d,o,i) /∈ F̄ k (200)

(πki )(o,d,i)
o − (πki )

(o,d,i)
d + (βki )(o,d,i) = 0 (o, d, i) /∈ Di : (f ∗k )

(o,d,i)
(d,o,i) ∈ F̄ k (201)

(αki )e = 0 ∀e ∈ Ēk; (βki )(o,d,i) = 0 ∀(o, d, i) ∈ D̄k (202)

nonnegativity constraints . (203)

Note that the sets Ēk, D̄k and F̄ k in the above formulas are as defined in Proposition

12. By duality theory, every feasible solution to Invki identifies a set of prices under

which fk∗i = f ∗k .

It is easy to see that Algorithm 5 is polynomial. We can also guarantee that the

algorithm outputs a set of prices by the following proposition.

Proposition 13. In Algorithm 5, the constraint set ¯Inv =
⋃K
k=1

⋃
i∈N

¯Inv
k
i where

each ¯Inv
k
i is defined with respect to the routing f̄ki is guaranteed to be feasible.
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ALGORITHM 5: Price design under demand uncertainty in a general combined network

Input: A combined network G, a set of demand scenarios Ω and the probabilities {pk} on
Ω

Output: A set of capacity exchange prices {coste}
Solve the constraint set Inv =

⋃K
k=1

⋃
i∈N Inv

k
i

if a feasible solution {coste} is found then
{coste} is robust perfect coordinating. Output {coste} and the algorithm stops.

else
1. Find an optimal solution {δfk∗i } to the following program

(DInv) max
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

pk · (δfki )
(o,d,i)
(d,o,i)

s.t. δfki is a feasible augmenting flow w.r.t. f∗k ∀i ∈ N ∀k = 1, 2, ...,K∑
i∈N

∑
(o,d,i)∈Di

K∑
k=1

pk · (δfki )(o,d,i)
e ≤

∑
i∈N

γie ·
∑

(o,d,j)∈D

K∑
k=1

pk · (δfki )(o,d,j)
e ∀e ∈ E .

2. Calculate the routing f̄ki = f∗k + δfk∗i ∀i ∈ N ∀k = 1, 2, ...,K. Solve the constraint

set ¯Inv =
⋃K
k=1

⋃
i∈N

¯Inv
k
i where each ¯Inv

k
i is defined with respect to the routing

f̄ki , and output any feasible solution {coste}.

end

In summary, Algorithm 5 computes in polynomial time a set of prices that is either

robust perfect coordinating as long as such prices exist, or coordinates every player i

towards the routing f̄ki in each demand scenario k, i.e., the individual optimal routing

fk∗i = f̄ki ∀i ∈ N ∀dk ∈ Ω. Note that in the latter situation, it is not guaranteed that

given any demand scenario dk, all players are induced to the same routing as in the

definition of perfect coordinating prices. Hence, we introduce a new notation f ′k to

denote the (direct) aggregate routing in this case, defined such that ∀(o, d, i) ∈ Di,

(f ′k)
(o,d,i)
e = (f̄ki )

(o,d,i)
e ∀e ∈ E. Moreover, we call the prices computed by Algorithm 5

partial coordinating with respect to f ′k in demand scenario k, since they only motivate

each player i to follow f ′k for his own commodities.

In the following analysis, we evaluate the potential total routing revenue implied by

f ′k, i.e., R(f ′k) as computed in the objective function (181) of the centralized problem

(Ck). Furthermore, we also note that partial coordination is not as strong as perfect
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coordination; one direct consequence is that the aggregate routing f ′k may violate

capacity limits and cause overflow on the edges. Our next theorem provides analytical

results on both the revenue and capacity violation implications of the routings {f ′k}.

These results characterize the effectiveness of the capacity exchange mechanism under

demand uncertainty in networks that do not admit robust perfect coordinating prices.

In the theorem, we adopt a relative capacity usage measure, i.e., the ratio between

the total flow routed on an edge e and its capacity, to evaluate the degree of capacity

violation in a network6.

Theorem 18. Consider a combined network G where robust perfect coordinating

prices do not exist, and a set of demand scenarios Ω with probabilities {pk}. Algorithm

5 computes a set of capacity exchange prices under which the induced aggregate routing

f ′k in a demand scenario k satisfies

1. the expected total revenue under {f ′k} is no less than that under the social opti-

mal routings {f ∗k}, i.e.,

K∑
k=1

pk ·R(f ′k) >
K∑
k=1

pk ·R(f ∗k ) (204)

2. the maximum relative capacity usage over all edges in G under f ′k satisfies

max
e∈E

1

ce
·
∑

(o,d,i)∈D

(f ′k)
(o,d,i)
e ≤ 1

pk
∀k = 1, 2, ..., K . (205)

We briefly mention the proof to Theorem 18. Inequality (204) in result (1) is

due to the way that the objective function of the program (DInv) in Algorithm 5

is designed, i.e., the program aims at maximizing the change in the expected total

revenue in search for qualified augmenting flows. Result (2) can be proven by showing

that the expected routing
∑K

k=1 p
k · f ′k is a feasible one in terms of capacity usage,

which is due to the constraints of (DInv). Please refer to Appendix 3.5.5 for details.

6The same formula is used to calculate the congestion ratio on an edge in the congestion game
literature that studies a different setting where all demand is to be routed through the network, and
exceeding the capacity results in lengthening routing delay.
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Theorem 18 provides a lower bound of the network efficiency under the direct ag-

gregation of the individual routings induced under the prices calculated by Algorithm

5 in the unfavorable cases where the network does not admit robust perfect coordi-

nating prices. However, note that for any demand scenario k, the total revenue R(f ′k)

may not be readily achievable in the given network due to the existence of overflow

under f ′k; yet we observe that in any network, the prices guarantee a lower degree

of capacity violation in demand scenarios that are more likely to occur. Both of the

results are due to the way that the program (DInv) is constructed in Algorithm 5.

Below we provide an illustration of Theorem 18 using the network setting in Example

5.

Example 6. Consider the combined network presented in Example 5 where robust

perfect coordinating prices do not exist. We show that exchange prices can be de-

signed in this network to induce routings that satisfy both (204) and (205). We

discuss two cases. First, assume the probability associated with scenario 1 p1 ≥ 1
4
.

We design the prices to be perfect coordinating in scenario 1, e.g., costb = 1 and

coste = 3 (since capacity exchanges only occur on edge b and e), which will induce

the social optimal routing in scenario 1. If scenario 2 occurs, it can be calculated that

such prices lead to the aggregate routing f ′2 such that 3 units of both commodity 1

and 5, as well as 2 and 1 unit(s) of commodity 3 and 4 respectively, are routed. This

results in a higher revenue in scenario 2 (thus a higher expected revenue since the

social optimal routing is achieved in scenario 1), yet an overflow on edge b. However,

the relative capacity usage equals 6
5
< 1

p2
, and the expected flow on edge b can be

calculated to be no more than the amount of capacity there.

Consider the other case where p1 < 1
4

and the exchange prices costb = 5 and

coste = 4. It can be calculated that these prices induce the following aggregate routing

in each demand scenario (here we simplify the notation and use (f ′k)
j to denote the

amount of commodity j routed under f ′k). In scenario 1, (f ′1)1 = (f ′1)5 = 1, (f ′1)3 = 2
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and (f ′1)4 = 3; note that due to a high costb, player II is motivated to give routing

priority to commodity 2 and 4 instead of to commodity 3. In scenario 2, the same

prices can partially coordinate both players to route their own commodities according

to f ′2 such that (f ′2)1 = (f ′2)5 = 3
2p2

+1, (f ′1)3 = 2− 2p1

p2
and (f ′1)4 = 1. We calculate that

the expected revenue under f ′1 and f ′2 equals 31p1 + 35p2, which is strictly larger than

that under the social optimal routings in these two scenarios, i.e., 20p1 + 35p2, since

demand is uncertain and p1 > 0. Moreover, under these two routings, the expected

flow on any edge in the network does not exceed its capacity and thus inequality (205)

also holds.

The possibility of capacity violation when individual routings of their own com-

modities are directly aggregated, as indicated by Theorem 18, implies additional

complexity in the operations and management of a combined network with capacity

exchanges. In particular, from an individual participant’s perspective, it can suggest

the existence of potential competition for capacity in the network, which is one of

the prominent factors that influence one’s operational strategies in practice. From

the perspective of the central authority who coordinates the network, the managerial

implication of Theorem 18 is the potential necessity of a flow control and/or capac-

ity management mechanism to solve the overflow problem if it does occur. In fact,

such mechanisms are widely employed in practice. For example, airlines often adopt

policies to redirect passengers to flights other than their initial choices with certain

compensations in case of ticket oversales due to the widely-used overbooking policy

in the industry [135].

In the rest of this section, we provide a preliminary discussion on the impact of

the potential existence of overflow in a general decentralized network under the ca-

pacity exchange mechanism studied in this paper, focusing on situations with central

flow control. We first present a simple flow synthesizing mechanism based on uni-

form scaling, and discuss its efficiency implication in eliminating the overflow that
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can arise under the capacity exchange prices computed by Algorithm 5. By doing so,

we are able to incorporate the negative effect of capacity violation on network effi-

ciency and provide a more comprehensive evaluation of the robustness of the capacity

exchange mechanism. We then discuss a number of research directions, including de-

sign and analysis of other flow control/capacity management mechanisms, as well as

incorporating and studying competitive behavior of individual participants.

A Flow Synthesizing Mechanism Consider a network where robust perfect co-

ordinating prices do not exist, and the partial coordinating exchange prices computed

by Algorithm 5 are used and induce an aggregate routing f ′k in each demand scenario

k. A flow synthesizing mechanism regulates how individual routings can be composed

into a feasible one to prevent overflow in the network. One intuitive and straightfor-

ward method is by uniform scaling : A scale factor between 0 and 1 is designed on

every edge e, by which the flow of all commodities on e is multiplied so that a feasible

adjusted aggregate routing is achieved. We analyze the case where the flow synthe-

sizing mechanism is imposed after the individual routings are decided and thus a set

of scaling factors ηk = {ηek} can be designed accordingly for each demand scenario

k. We denote by η∗
.
= {η∗k} the optimal scaling factors under which the adjusted

aggregate routings, denoted by {f ′k(η∗k)}, maintain the maximum percentage of the

expected total routing revenue under {f ′k}. We can derive the following result based

on Theorem 18.

Proposition 14. Consider a combined network G where robust perfect coordinating

prices do not exist, and a set of demand scenarios Ω with probabilities {pk}. Algorithm

5 computes a set of capacity exchange prices under which the adjusted aggregate rout-

ings by the optimal uniform scaling factors η∗ under the flow synthesizing mechanism

satisfy
K∑
k=1

pk ·R(f ′k(η
∗
k)) > min

k
pk ·

K∑
k=1

pk ·R(f ∗k ) (206)
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In words, Proposition 14 indicates that under demand uncertainty, we can guar-

antee at least mink p
k percentage of the highest expected revenue without violating

capacity limits in any demand scenario. We discuss two implications of this result.

First, this lower bound is the largest when the demand vector d follows a uniform dis-

tribution over the sample space Ω, indicating that the capacity exchange mechanism,

with prices designed by Algorithm 5, can be more effective dealing with demand un-

certainty that is more “balanced”. This is intuitive, since in cases with widely-varied

probabilities associated with different demand scenarios, the pricing decision tends

to favor the scenarios that are more likely to occur (as modeled by the high weights

assigned to these scenarios in Algorithm 5), and can result in low routing efficiency

when the “worst-cases”, i.e., scenarios with small probabilities, happen. Second, we

also note that in the case of uniform distribution, the capacity exchange mechanism,

together with a flow synthesizing mechanism based on uniform scaling, can guarantee

an expected revenue no less than 1
K

of the highest level attainable when coordinat-

ing K different demand scenarios with one single set of prices. This well illustrates

how the robustness level of the mechanism diminishes as the set of potential demand

scenarios is enlarged.

3.5.4 Final Remark

Robustness of mechanisms based on market exchange of resources is an important and

complex issue. The discussion in this subsection summarizes our first study of the

problem in the context of managing decentralized networks with combined capacity

under demand uncertainty, and illustrates the challenges in doing so under general

network conditions. In particular, the issue of capacity violation opens up a rich set of

research questions, of which we briefly discuss as follows. First, the flow synthesizing

mechanism studied previously is assumed to be designed ex post after the individual

routings are determined. A natural extension of the study (and a more practical one)
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is to assume that the mechanism is imposed ex ante and analyze whether it can di-

vert players from overly utilizing capacity for their own commodities spontaneously.

Second, instead of using flow control methods, another common approach used in

practice to solve the overflow problem is to purchase additional capacity from the

spot market, usually at higher rates than the exchange prices within the centrally-

regulated combined network. We can potentially use Theorem 18 to evaluate the

profitability of such a capacity outsourcing mechanism; one particular question to in-

vestigate is at how high a price the capacity should be purchased to maintain a certain

level of the system profit (i.e., total routing revenue − cost of additional capacity).

Finally, as we have mentioned, overflow implies competition among participants for

capacity, which often results in price premium in practice. In order to incorporate

such competitive behavior into the model and capture the interaction between prices

and supply/demand balance, we can study a generalization of the capacity exchange

mechanism considered in this section, where players choose exchange prices for their

own capacity in each demand scenario within a fixed centrally-designed price range

on each edge.

3.5.5 Appendix

Proof of Theorem 15. First, we show that under the conditions of the theorem, a set

of prices {coste} exists such that
∑

e∈p coste = r(o,d,i) ∀p ∈ P(o,d,i). This is because

otherwise the dual problem to the program min{0 · cost|∑e∈p coste = r(o,d,i),∀p ∈

P(o,d,i) and cost ≥ 0} must admit a solution with strictly positive objective value.

Mathematically, there exists a set of values {θp}, which can be either positive or

negative, such that∑
p∈P

χ{e∈p}θp ≤ 0 ∀e ∈ E and
∑

(o,d,i)∈D

∑
p∈P(o,d,i)

r(o,d,i)θp > 0 . (207)

Hence, according to Definition 9, the set of paths P1 = {p : θp < 0} is dominated by

the set P2 = {p : θp > 0}, and both sets must be non-empty due to (207), which is a
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contradiction to the condition of non-existence of dominated path sets in the network.

We then prove that the prices constructed above is robust perfect coordinating.

Given {coste} such that
∑

e∈p coste = r(o,d,i) ∀p ∈ P(o,d,i) and uniform capacity own-

ership levels {γi}, we can rewrite the objective function (187) in each individual

program (P k
i ) as

(187) = γi ·
∑

(o,d,i)∈D

r(o,d,i) · f (o,d,i)
(d,o,i) = γi · (181) , (208)

where (181) is the objective function of the centralized problem (Ck). In other words,

the objectives of all individual players are perfectly aligned with that of the central

authority. Since (P k
i ) and (Ck) share the same constraints, it is guaranteed that

their optimal solutions coincide. Hence, by Definition 8, {coste} is robust perfect

coordinating for any set of demand scenarios.

Proof of Lemma 10. Consider a single commodity network G with a source o and a

sink d. Assume there exists a set of paths P1 that is dominated by another one P2

under weights {λt} and {µs}. Define the capacity on edges in G as

ce =
∑
pt∈P1

χ{e∈pt}λt ∀e ∈ E . (209)

It is easy to show that the value of the minimum cut in G must equal
∑

pt∈P1
λt.

However, by definition of dominated paths, we can utilize the network G capacitated

as in (209) to deliver
∑

ps∈P2
µs >

∑
pt∈P1

λt units of flow from o to d, which is a

contradiction to the max-flow-min-cut theorem.

Proof of Theorem 17. We first calculate the minimum degree of price discrimination

under heterogeneous prices {cost(o,d,i)e } such that
∑

e∈p cost
(o,d,i)
e = r(o,d,i) ∀p ∈ P(o,d,i)

as the optimal value of the following program. For notation simplicity, we index the

commodities as l = 1, 2, ..., |D|, and replace (o, d, i) by l in all notations to indicate

236



their association with the l-th commodity.

min z (210)

s.t. z − costl1e + costl2e ≥ 0 ∀e ∈ E,∀l1 6= l2, l1, l2 ∈ {1, 2, ..., |D|} (211)∑
e∈p

costle = rl ∀p ∈ Pl,∀l ∈ {1, 2, ..., |D|} (212)

costle ≥ 0 ∀e ∈ E,∀l ∈ {1, 2, ..., |D|} . (213)

The dual problem of the above program can be written as

max

|D|∑
l=1

rl
∑
p∈Pl

θp (214)

s.t.
∑
p∈Pl

χ{e∈p}θp ≤
∑
l′ 6=l

(ζell′ − ζel′l) ∀e ∈ E,∀l ∈ {1, 2, ..., |D|} (215)∑
e∈E

∑
l1 6=l2

(ζel1l2 + ζel2l1) = 1 (216)

ζ ≥ 0 . (217)

First, adding constraints (215) over all commodities (i.e., all l) generates the condition∑|D|
l=1

∑
p∈Pl χ{e∈p}θp ≤ 0 ∀e ∈ E. Hence, we conclude that every feasible solution to

the dual program that gives rise to a strictly positive objective value corresponds

to a path set P1 dominated by another P2. Moreover, the θp values should satisfy

θp = c · λt if p = pt ∈ P1 and θp = c · µs if p = ps ∈ P2 (others are zero), where c is a

constant such that there exist {ζ} values that satisfy

∑
l′ 6=l

(ζell′ − ζel′l) ≥ c · κle(P1,P2) ∀e ∈ E,∀l ∈ {1, 2, ..., |D|} (218)

and (216)-(217). It is easy to see that given P1, P2 and the corresponding parameters

{λt} and {µs}, the maximum value of the objective function (214) is obtained by

maximizing the constant c . This is equivalent to solving the following minimization

problem

min
∑
e∈E

∑
l1 6=l2

(ζel1l2 + ζel2l1) s.t. (218) with c replaced by 1, and (217) , (219)
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and set c equal to the inverse of its optimal solution. We again take the dual of the

above minimization program and obtain the following.

max
∑
e∈E

|D|∑
l=1

κle(P1,P2) · ϕle s.t. ϕl1e − ϕl2e ∈ [−1, 1] ∀e ∈ E,∀l1 6= l2 and ϕ ≥ 0

(220)

The constraints in the above maximization problem indicate that the variables ϕle

are within an interval of length at most 1 for each edge e. Since we know that∑|D|
l=1 κ

l
e(P1,P2) ≤ 0 ∀e ∈ E, the optimal solution is to set ϕle = 0 if κle(P1,P2) ≤ 0

and ϕle = 1 otherwise. This leads to the maximum constant c given P1 and P2 (and

their corresponding parameters λ and µ)

c∗(P1,P2) =
1∑

e∈E
∑|D|

l=1 max{κle(P1,P2), 0}
(221)

Therefore, we conclude that the optimal value to the program (214)-(217) equals

maxP1 dominated by P2 Φ(P1,P2), and this completes our proof.

Proof of Proposition 13. We first write out the dual of the program min{0 ·cost| ¯Inv}.

max
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

(δfki )
(o,d,i)
(d,o,i)

s.t. δfki is a feasible augmenting flow w.r.t. f̄ki ∀i ∈ N ∀k = 1, 2, ..., K∑
i∈N

∑
(o,d,i)∈Di

K∑
k=1

(δfki )(o,d,i)
e ≤

∑
i∈N

γie ·
∑

(o,d,j)∈D

K∑
k=1

(δfki )(o,d,j)
e ∀e ∈ E (222)

We show by contradiction that the above dual program has a zero objective value,

indicating that ¯Inv is feasible. Assume that it has a feasible solution δ̄fki that gives

rise to a strictly positive objective value. Hence, we can construct a feasible solution

to program (Dinv) in Algorithm 5, i.e., δfki = δfk∗i + δ̄f
k
i

pk·M , where M > 0 is chosen big

enough such that each δ̄f
k
i

pk·M is a feasible augmenting path w.r.t. f̄ki for all k. To see

its feasibility, first, it is easy to verify that this solution {δfki } is a feasible augmenting

path w.r.t. f ∗k since f ∗k + δf i∗k + δ̄f
k
i

pk·M = f̄ki + δ̄f
k
i

pk·M must be a feasible flow ∀i, k. Next,
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due to the last inequality in both (DInv) and constraint (222),

∑
i∈N

∑
(o,d,i)∈Di

K∑
k=1

pk · (δfki )(o,d,i)
e −

∑
i∈N

γie ·
∑

(o,d,j)∈D

K∑
k=1

pk · (δfki )(o,d,j)
e

=
∑
i∈N

∑
(o,d,i)∈Di

K∑
k=1

pk · (δfk∗i )(o,d,i)
e −

∑
i∈N

γie ·
∑

(o,d,j)∈D

K∑
k=1

pk · (δfk∗i )(o,d,j)
e

+
∑
i∈N

∑
(o,d,i)∈Di

K∑
k=1

pk · ( δ̄f
k
i

pk ·M )(o,d,i)
e −

∑
i∈N

γie ·
∑

(o,d,j)∈D

K∑
k=1

pk · ( δ̄f
k
i

pk ·M )(o,d,j)
e ≤ 0 . (223)

We then show that δfki gives rise to an objective value of (DInv) greater than that

under the solution {δfk∗i } and thus contradicts the optimality of {δfk∗i }.

∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

pk · (δfk∗i +
δ̄f

k
i

pk ·M )
(o,d,i)
(d,o,i)

=
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

pk · (δfk∗i )
(o,d,i)
(d,o,i) +

∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

pk · ( δ̄f
k
i

pk ·M )
(o,d,i)
(d,o,i)

=
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

pk · (δfk∗i )
(o,d,i)
(d,o,i) +

1

M
·
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

(δ̄f
k
i )

(o,d,i)
(d,o,i)

>
∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

pk · (δfk∗i )
(o,d,i)
(d,o,i) (224)

Hence, we conclude that the dual program to the problem min{0 · cost| ¯Inv} has

a zero optimal value, which indicates that ¯Inv is feasible by strong duality.

Proof of Theorem 18. To show result (1), note that the optimal value of (DInv) is

strictly positive when robust perfect coordinating prices do not exist. Hence,

K∑
k=1

pk ·
∑

(o,d,i)∈D

r(o,d,i) · (f ′k)(o,d,i)
(d,o,i)

=
K∑
k=1

pk ·
∑

(o,d,i)∈D

r(o,d,i) · (f ∗k )
(o,d,i)
(d,o,i) +

∑
i∈N

∑
(o,d,i)∈Di

r(o,d,i) ·
K∑
k=1

pk · (δfk∗i )
(o,d,i)
(d,o,i)

>
K∑
k=1

pk ·
∑

(o,d,i)∈D

r(o,d,i) · (f ∗k )
(o,d,i)
(d,o,i) (225)

239



To show result (2), by the last constraint in (DInv), we know that for each edge

e ∈ E ∑
(o,d,i)∈D

K∑
k=1

pk · (f ′k)(o,d,i)
e =

∑
i∈N

∑
(o,d,i)∈Di

K∑
k=1

pk · (f ik)(o,d,i)
e

=
∑
i∈N

∑
(o,d,i)∈Di

K∑
k=1

pk · (f ∗k + δfk∗i )(o,d,i)
e ≤

∑
i∈N

γie ·
∑

(o,d,j)∈D

K∑
k=1

pk · (f ∗k + δfk∗i )(o,d,j)
e ≤ ce (226)

The last inequality is obtained since each f ∗k + δfk∗i is a feasible routing. Hence, we

conclude that the routing
∑K

k=1 p
k · f ′k is a feasible routing, and (205) follows.

3.6 Conclusion and Future Research Directions

In this chapter, we study the use of market-based exchange mechanisms to motivate

and regulate capacity sharing so as to achieve the optimal overall routing efficiency

in a general decentralized multicommodity network such as a transportation or a

telecommunication system. We focus on the design of capacity pricing strategies in the

presence of several practical operational complexities, including multiple ownership of

the same capacity, uncertainty in network specifications, and information asymmetry

between the central coordinator and individual operators.

Our study is based on a general multicommodity network where the capacities

are privately owned by individual players; we allow multiple capacity owners to exist

on a single edge. We also incorporate demand uncertainty into the network model in

order to analyze the robustness of exchange mechanism. We adopt a non-cooperative

game theory approach where the game model is defined based on on a set of network

optimization problems that represent individual operators’ routing and capacity allo-

cation decisions, and analyze the model using inverse optimization techniques. Com-

bining game theory analysis and network optimization models, our study provides

insights into the interaction between operational features of networks and individual

incentives in resource sharing, and to design effective mechanisms accordingly.

To summarize, we show two sets of results.
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1. We demonstrate the impact of operational features of decentralized networks

on the effectiveness of using market-based exchange mechanisms to coordinate

resource sharing and to allocate the resulting synergistic benefit. Specifically,

in §3.3, we show that perfect coordinating prices may not give rise to a core

allocation under the multiple ownership of the capacity on a single edge. This

indicates that the effectiveness of the capacity exchange mechanism is poten-

tially undermined in this situation. Analyzing the cause of this problem, we

show that it is due to the heterogeneity in capacity ownership levels of the mul-

tiple owners relative to their return volume. In particular, under the capacity

exchange mechanism which essentially rewards capacity contribution, players

who have abundant capacity compared to their own volumes make significant

capacity contribution when participating in a combined network and thus are

likely to be allocated a better payoff. This study characterizes the diseconomies

of multiple capacity ownerships, which has been discussed in literature in other

contexts, under our problem setting of designing capacity exchange mechanisms.

Furthermore, in both §3.4 and §3.5, we show that network structure, in particu-

lar the existence of inefficient paths, can undermine the coordination benefit of

the capacity exchange mechanism. For example, in some networks, it requires

zero prices on certain edges to achieve perfect coordination, which potentially

lead to free riders. Such network conditions can also strongly influences the

robustness of the capacity exchange mechanism under demand uncertainty.

2. As the second set of results, we propose efficient and effective pricing policies and

other mechanism design strategies to address different operational complexities.

We develop dual-based capacity exchange prices that are perfect coordinating

and also guarantees a core allocation. In order to mitigate the incompatibil-

ity between prefect coordination of individual routing decisions and free rider
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avoidance, we propose the notion of partial coordinating prices and an algo-

rithm to efficiently compute such prices. We also propose a capacity control

mechanism to tackle the potential instability of the social optimal routing un-

der partial coordination. In the presence of demand uncertainty, we propose

a general robust pricing algorithm. We also evaluate different pricing strate-

gies such as commodity-based price discrimination, which is shown to have an

advantage in coordinating decentralized resource sharing in combined networks

under uncertainty.

Coordination of decentralized resource sharing in general networks is a very broad

topic and has many practical applications. These applications raise a rich set of

challenging research questions that can motivate interdisciplinary studies combining

frameworks in operations research, game theory, design and analysis of algorithms,

machine learning, etc. Our research in this chapter has motivated a set of open

questions in designing market-based exchange mechanisms. For example, first, since

players’ payoffs greatly influence their participation incentives in a combined network,

it is important to study the payoff implication of adopting the partial coordinating

prices and the robust prices computed by the algorithms proposed in this chapter.

Second, the dual prices are shown to be perfect coordinating and to guarantee a

core payoff. Yet such prices are zero on edges where the capacity is not fully utilized,

which can lead to free riders and may mute the resource-sharing incentives of capacity

owners. In literature, this is known that dual-based approaches in payoff allocation

may discourage players to share their resources [63]; a common approach to tackle this

problem is to use methods based on the average marginal contribution of players, e.g.,

Shapley value. Our preliminary results indicate that capacity exchange prices based

on the Shapley value of the players can be effective in preventing free riders; yet it

remains an open question of how these prices can coordinate the decentralized routing

decisions of players. Third, as we mention at the end of §3.5, capacity violation is a
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prominent problem in a stochastic decentralized network, which indicates that play-

ers may be incentivized to compete for capacity by the capacity exchange mechanism

under demand uncertainty. This motivates us to study different capacity manage-

ment methods such as capacity outsourcing, and auction mechanisms. In addition, it

also motivates us to consider incorporating stochastic network approaches, where the

excess demand for edge capacity is stored in a buffer in queues to be processed later,

and to analyze a multi-period routing model on the network.

Lastly, recall that in §3.5, we assume individual players have full knowledge of

the demand when making their routing decisions. Such a model highlights the in-

formation asymmetry between the central planner (the mechanism designer) and the

individual decision makers. One direction for further research is to generalize this

model by incorporating demand uncertainty that individual players themselves can

often experience in practice. One particular example is the uncertainty associated

with online demand that is to be routed in the order of its reception without knowing

the total demand to be received over the network in the entire time horizon, espe-

cially in many applications of service operations. Hence, we are motivated to study

the robustness of the capacity exchange mechanism when players decide their indi-

vidual routings using online routing algorithms, and whether adopting approaches

such as online learning techniques when designing the exchange prices can reinforce

the robustness of the mechanism. In our initial study of the problem, we start by

analyzing centralized routing strategies of online demand. We adopt the notion of

oblivious routing from computer science literature [13, 71], and study the design of

online oblivious routing algorithms to maximize network throughput.
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