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SUMMARY

The nodes in wireless sensor networks (WSNs) utilize the radio frequency (RF)

channel to communicate. Given that the RF channel is the primary communication channel,

many researchers have developed techniques for securing that channel. However, the RF

channel is not the only interface into a sensor. The sensing components, which are primarily

designed to sense characteristics about the outside world, can also be used (or misused) as

a communication (side) channel. In our work, we aim to characterize the side channels for

various sensory components (i.e., light sensor, acoustic sensor, and accelerometer). While

previous work has focused on the use of these side channels to improve the security and

performance of a WSN, we seek to determine if the side channels have enough capacity

to potentially be used for malicious activity. Specifically, we evaluate the feasibility and

practicality of the side channels using today’s sensor technology and illustrate that these

channels have enough capacity to enable the transfer of common, well-known malware.

Given that a significant number of modern robotic systems depend on the external side

channels for navigation and environment-sensing, they become potential targets for side-

channel attacks. Therefore, we demonstrate this relatively new form of attack which exploits

the uninvestigated but predominantly used side channels to trigger malware residing in real-

time robotic systems such as the iRobot Create. The ultimate goal of our work is to show

the impact of this new class of attack and also to motivate the need for an intrusion detection

system (IDS) that not only monitors the RF channel, but also monitors the values returned

by the sensory components.

ix



CHAPTER I

INTRODUCTION

The primary purpose of any Wireless Sensor Network (WSN) is to serve as a sensing-layer

and an interface to the physical phenomena of the real world. The WSNs, which primar-

ily consist of a number of autonomous sensors that collaboratively monitor physical and

environmental conditions, have become ubiquitous, finding applications in the fields of mil-

itary surveillance, environmental monitoring and health care systems. For instance, there

are more than 400 sensors in a modern car that are used for monitoring various environ-

mental parameters (e.g., temperature, light, pressure) [2]. Moreover, unmanned vehicles

and armored suits used by the military also depend on a number of different environment-

monitoring sensors (e.g., optical, acoustic, seismic, temperature). Similarly, sensor-based

land mine detection systems are being continuously utilized in military scenarios with in-

creased usage of the sensing components [3]. Given the importance and the increased usage

of sensor-based applications, securing the WSNs is vital.

There have been many solutions provided to secure WSNs. However, the overall security

of WSN systems has been focused only on the security of the radio frequency (RF) chan-

nel. Hence, many of the security frameworks for WSNs like [4, 5], and defense mechanisms

against independent security attacks have been designed with respect to the RF communi-

cation channel.

In fact, sensory channels (e.g., light, acoustic, seismic) must also be considered in any

security mechanism designed for WSNs. This is critical, because in addition to their use for

benign applications, sensory channels can be utilized for malicious purposes. For instance,

in smartphones, the visible light [6] and accelerometer [7] sensory channels have been used

for benign purposes (authentication and key exchanges). On the other hand, a potential

attacker could use the side channels to trigger or even transfer malicious code. For exam-

ple, information can be encoded as a bit-stream consisting of ones and zeroes, which can be
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transmitted using the on-off pattern from a light source. When this light pattern is observed

by the sensor, it is decoded to extract the information. Since most of the existing WSN

security approaches only monitor the RF channel, sensors are still prone to side-channel

attacks corresponding to the specific sensing component in use.

In order to detect such side-channel attacks and develop solutions to defend the WSNs

against them, it is important to understand the characteristics of these side channels. In

this thesis, we provide an analysis on the feasibility and practicality of the side channels

in terms of data rate and factors contributing to loss in these channels. Specifically, we

evaluate these channels using real sensors for the first time. To the best of our knowledge,

there is not an evaluation of WSN side channels. Our results show that, with today’s sensor

technology it is possible to use side channels for malicious purposes. Also, with further

improvements in technology, the capabilities of these channels will be further accentuated.

Accordingly, we discuss the practical implications of such side-channel attacks and the need

for an IDS that monitors the sensory channel.

1.1 Research Objective

The main objectives of this research are to: 1) analyze different side channels to determine

channel characteristics such as data rate and factors contributing to path loss using real

sensors and 2) identify and exhibit malicious usage of the side channels. While many re-

searchers have worked on the security enhancements of the conventional RF channel, the

security implications of various sensor components or sensory channels used in a wide range

of systems including critical robotic systems and WSNs remain an unexplored area of re-

search. In our work, we aim to contribute to this unexplored area of research.

1.2 Summary of Contributions

The contributions of our work are two-fold: we 1) analyze a range of side channels com-

prehensively to determine their capability to support a variety of malicious activities and

2) design and implement attacks on WSNs and a specific robotic system (e.g., the iRobot
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Create) using the analyzed side channels.

1.2.1 Side-Channel Analysis and Characterization

The vital part of our work lies in the analysis and characterization of the various side chan-

nels available. The analysis includes determination of key characteristics of the side channel

such as data rate capability and factors contributing to path loss of the side channel. Fur-

thermore, based on the analysis of the side channels, a subset of the wide range of malware

is determined for each of the side channels that would perform effectively on them.

1.2.2 Attack Scenarios for Real-Time Systems

In the second part of our work, we focus on exposing the impact of such side-channel attacks

on practical, real-time systems that make use of a number of sensing components such as

the iRobot Create and the sensor nodes in generic WSNs.

1.2.2.1 Attack Scenarios for iRobot Create

In order to demonstrate the practical implications of this new class of attacks using side

channels, we design and implement different attack scenarios for the iRobot Create. The

iRobot Create is a widely used robotic system by the research community and its variant,

Roomba, is a popular vaccuum-cleaning system used in many places.

1.2.2.2 Attack Scenario for Generic WSNs

Side channels are inevitable in almost all WSNs. In addition to the basic usage of side chan-

nels, certain WSNs employ side channels for more advanced applications, thereby making

the sensors nodes in these WSNs more vulnerable to side-channel attacks. We also imple-

ment attack scenarios on the sensor nodes in generic WSNs to expose their vulnerability to

such side-channel based attacks.
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1.3 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we discuss the related work

in terms of usage of the side channels in WSNs. In Chapter 3, an evaluation of the in-

dividual side channels is presented. The malicious usage of side channels is exhibited in

Chapter 4 along with experimental results from the performance evaluation of a malicious

scenario or application. In Chapter 5, we describe and demonstrate various attack scenarios

for real-time robotic systems such as the iRobot Create. Also, an attack scenario for the

nodes running side-channel based applications in a generic WSN is explained in Chapter 6.

Finally, Chapter 7 presents the conclusions and future work.
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CHAPTER II

LITERATURE REVIEW

Various security solutions have been proposed to secure the RF channel of the sensor nodes

in WSNs. However, these existing techniques or solutions are vulnerable to side-channel or

out-of-band channel attacks.

2.1 Potential Usage of Side Channels

Although, to our knowledge, there have been little work that discusses vulnerabilities of

and characterizes these sensory side channels, there have been several contributions that

demonstrated the potential of these side channels to improve the security of WSNs [6, 8].

The Enlighten Me! [6] and KeyLED [8] approaches utilize the visible light channel (VLC)

to improve the security in WSNs. However, both the approaches limit the usage of VLC

to a secure key exchange protocol. Although, an attacker model is discussed in [6], it only

focuses on the attacks against the key exchange procedure. In [9], secure initialization of

WSNs using the VLC is illustrated. It proposes two protocols, one using secret key cryptog-

raphy and the other using public key cryptography. Both protocols involve communication

over a bidirectional radio channel and an unidirectional out-of-band VLC. However, similar

to [6] and [8], [9] also limits the usage of VLC to authentication and key exchange proce-

dures. On the other hand, approaches like [7] make use of the vibration channel for secure

communication. This work exposes the weakness of a mobile application called Bump [10]

that use the accelerometer values in mobile phones for authentication. Moreover, a secure

authentication protocol using the vibration channel is described to overcome the drawback

in Bump. Again, the vibration channel is used only for benign purposes. There have also

been attempts to enhance the security of computer systems using the side channels or out-

of-band channels such as [11], which proposes a framework that uses external environmental

sensors. In this approach, environment information is collected by sensors that are outside

5



the control of a host and communicate to an external monitor through an out-of-band chan-

nel. The sensors capture the CPU temperature, disk light variations and analyze the data

using the external monitor to detect attacks on the computer system. However, this does

not discuss about malicious activities over the out-of-band channels.

On the other hand, the authors of [12] demonstrate that an application or malware

which can access the accelerometer values of the host mobile phone can use this informa-

tion effectively with the help of machine learning techniques to decode the text entered

using a nearby keyboard. This highlights the importance and vulnerability of such side

channels. In a more recent work [13], accelerometer values were used to learn user tap-

and gesture-based input which required to unlock smartphones. However, [12] and [13] deal

with side channels from within the device and do not illustrate the possible vulnerabilities

from an external, nearby, unconnected device through side channels.

The aforementioned contributions demonstrate the importance and potential usage of

side channels in WSNs, analyzing different side channels. In this work, we provide an anal-

ysis of the performance of various side channels using real sensors, illustrate the malicious

usage of the side channels and also highlight the need for a side-channel based IDS. To the

best of our knowledge, there is not an evaluation of WSN side channels.

2.2 Attacks on Microcontroller-based Devices

Microcontroller-based devices have been subjected to fewer attacks than traditional com-

puter systems due to two main reasons. First, the predominantly used wireless interface

(RF, Bluetooth) have been well tested for and secured against exploitations. Second, em-

bedded devices incorporate the Harvard architecture instead of the Von Neumann archi-

tecture that is used in computer systems, which make it more difficult to attack the em-

bedded devices using standard techniques such as stack-based buffer overflows and code

injection. However, there have been certain contributions that exploit software vulnerabil-

ities in microcontroller-based devices [14, 15].
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In [14], the author describes the significant differences between a Von Neumann ar-

chitecture and a Harvard architecture and thereby provides several techniques for reverse

engineering and exploitation of 16-bit wireless embedded systems. On similar lines, re-

mote code injection attacks on Harvard-architecture devices is presented in [15]. This work

demonstrates a remote code injection attack for Mica sensors and shows how to exploit pro-

gram vulnerabilities to inject code into the program memory of an Atmel AVR-based sensor.

Although this attack proves to be effective against many of the Harvard architecture-based

devices, the implementation is complicated and demands a more sophisticated attacker to

execute the attack. Also in contrast to our work, the technique proposed in [15] does not use

any of the available side channels to facilitate the attack. On the other hand, the work in

[16] presents a static analysis technique to detect software bugs in microcontrollers. In the

process, it exposes various types of possible bugs in programs running on microcontrollers.

This leads to a number of possible attacks on microcontrollers other than the well-known

code injection attacks. However, this work does not provide specific attack scenarios with

or without the use of side channels.

In our work, to show the impact of side-channel based attacks, we demonstrate the

exploitation of subtle software bugs present in programs running on microcontrollers and

also display the simplicity of such exploits when combined with the malicious usage of side

channels available in the embedded device.
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CHAPTER III

SIDE-CHANNEL ANALYSIS

In this chapter, we first introduce analytical models governing the path loss in select side

channels. Then, using real sensors we evaluate the feasibility and practicality of the side

channels.

3.1 Side-channel Communication Models

Visible light, infrared, acoustic and seismic channels are identified as potential targets due

to their ease-of accessibility.

3.1.1 Visible Light Channel

The visible light channel (VLC) is the most common side channel available in sensor sys-

tems. Almost all sensor platforms (e.g., Telosb, MicaZ, Iris) are equipped with a light

emitting diode (LED) and most sensor boards (MTS310 [17], MTS400 [17], Telosb) have a

photosensor. Also, military applications such as the Airborne Laser Mine Detection Systems

[18] are based on light detection and ranging (LIDAR) which make use of the light channel.

The data rate of such a VLC can be primarily characterized by two major factors, sampling

rate of the sensor and path loss in the channel. The sampling rate or bit rate supported by

the visible light sensors is entirely dependent on the specific sensor technology used.

Besides the sampling rate, another parameter of significance which determines the qual-

ity of received light and impacts the capability of the VLC side channel is the path loss.

The path loss in the light channel is calculated to quantify the overall effectiveness of the

channel. According to the inverse square law, intensity, Id, at a distance d is given by [19],

Id ∝
1

d2
(1)
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Figure 1: Path Loss variations with respect to distance and optical depth

The path loss in decibels, Ll, can be given as [20],

Ll = At + La (2)

where, At is the attenuation factor and La is the channel absorption loss. The attenuation

factor in decibels, At, is determined by [20],

At = 20log
d

dref
(3)

The second factor contributing to path loss is the channel absorption loss, La, which is

given by [20],

La = e−γ (4)

where, γ is the optical depth of the channel. For an optically clear environmental condition,

γ ≈ 0.5 [20]. Therefore, the received light intensity (in decibels), Ri can be given as,

Ri = Si − Ll (5)

where, Si is the light intensity of the source.

The variations of path loss, Ll, determined from the above formula, with increasing

distance (d) and considering channels with different optical depth (γ) is shown in Figure 1.

3.1.2 Acoustic Channel

The acoustic channel is another vital side channel and is widely used in various sensor

systems. Similar to the VLC, data rate of the acoustic channel is also dependent on the

supported sampling rate of the sensor and the path loss in the channel.
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Figure 2: Spherical Spreading Model for Acoustic Channel and VLC (from [1])

A spherical spreading model [1] as shown in Figure 2 is considered for determining the

path loss in the acoustic channel, where, d is the distance between source and receiver, Id is

the intensity at receiver and Io is the intensity at the source. For estimating the resultant

path loss (in decibels), the received sound level can be given as [21],

Rl = Sl − Tl (6)

where, Sl is sound level of source and Tl is the transmission loss. The transmission loss (Tl)

can be estimated by adding the effects of geometrical spreading (Tlg) and absorption (Tla),

which is given as [21],

Tl = Tlg + Tla (7)

According to the inverse square law, the sound intensity, Id, at a distance d, is expressed

as in Equation 1, Hence, the geometric spreading loss (Tlg) in Equation 7 is given by [21],

Tlg = 20log
d

dref
(8)

Also, the absorption loss (Tla) in Equation 7 can be given by,

Tla = α× d (9)

where, d is the distance in meters and α is the absorption coefficient which is a function of

the frequency.
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3.1.3 Seismic Channel

Accelerometers or seismic sensors are widely used in mobile phones and various robots.

The seismic channel is potentially a more difficult channel and requires more sophisticated

methods to exploit due to two main reasons. First, the level of proximity required to exploit

this channel by an attacker is significantly high compared to the visible light and acoustic

channels. Second, a simple ON-OFF communication pattern would not be suitable for

communicating with the accelerometers, which brings the need for a more sophisticated

encoding/decoding technique. The data rate of the seismic channel also primarily depends

on the sampling rate of the accelerometers and attenuation of vibrations (path loss) in the

channel. A general expression for modeling propagation of ground vibrations can be given

as follows [22]:

vb = va(
ra
rb

)γ eα(ra−rb) (10)

where, ra, rb are the distance of locations a and b, respectively from the source, va and vb

are velocity of vibrations at locations a and b, respectively, γ is a coefficient dependent on

the type of propagation mechanism and α is the material damping coefficient. Similarly,

the attenuation factor, At, is given by [22] as follows:

At = 20log(
vb
va

) (11)

The attenuation factor, At, is used to estimate the attenuation of the vibrations at any

point from the source. Therefore, the received intensity of vibrations, Rv, can be given as,

Rv = Sv −At (12)

where, Sv is the intensity of vibrations produced by the source.

3.2 Side-channel Experiments

In this section we use real sensors to evaluate the feasibility and practicality of the side

channels (visible light, acoustic and seismic channels).
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Figure 3: Sampling Rate Experiment Setup

3.2.1 Experiment Setup

We used a common experiment setup as shown in Figure 3 to analyze and measure the

capacity of all the side channels under consideration (visible light, acoustic and seismic

channels). However, each side channel is analyzed using the experiment setup, individually

and independent from the other side channels. As shown in Figure 3, the setup consists of

a base station (HP Notebook, Ubuntu-11.04 OS) and a sensor node (MicaZ) along with a

sensor board (MTS420CC or MTS310CB). The sensor node is programmed to periodically

sample the side channel being analyzed (visible light, acoustic or seismic). The program

also implements a counter which is incremented for every successful sampling event. For

an unsuccessful sampling event (i.e., MicaZ receives incomplete or junk value at the sensor

interface), the counter is not changed. Furthermore, the program sends the counter value

at each sampling instance to the base station through a USB interface. The source code

used for the visible light channel is given in Appendix A. A linear increase in the counter

values shows that the sampling rate is within the capacity of the channel. On the other

hand, stalls in the counter value represent unsuccessful sampling events and indicate that

the sampling rate has exceeded the channel capacity. The experiment is repeated for each

channel with increasing sampling rates until the counter experiences stalls and thereby the

supported data rate is determined.
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3.2.2 Visible Light Channel

Simple experiments conducted on Telosb and MicaZ (with MTS400CC [17] and MTS310CB

[17]) motes illustrate the data rate of VLC. An experiment was conducted to estimate the

sampling rate of the different light sensors. We implemented a sensor application for the

experiment that utilizes a simple integer counter. This application allows the sensor to

sample ambient light at the specified sampling rate and checks for the value returned by

the event in TinyOS. The value returned by the event denotes a success or failure. For every

successful sampling, the counter is incremented. A stall in the counter value indicates that

the sampling rate being used is beyond the capacity of the light sensor. Initially, the three

different light sensors were allowed to sample continuously, every second (1 bps). Then,

the sampling rate was gradually increased and the counter values were observed. It was

observed that the MTS400CC sensor board experienced stall in the counter values beyond

a sampling rate of 3 bps as shown in Figure 4. Whereas, the MTS310CB sensor board and

Telosb experienced stall in the counter values beyond increased sampling rates of 65 bps

and 100 bps, respectively. The observed sampling rates of the sensors (which influence the

data rate of the channel) are tabulated in Table 1. It is seen that Telosb motes which use

the Hamamatsu S1087 visible light sensor support a much higher sampling rate (85-100

bps) than that of MicaZ with MTS400CC sensor board (2-3 bps) which uses the TAOS

TSL2550D ambient light sensor. However, the MicaZ with MTS310CB sensor board (using

CdSe photocell) is observed to have a reasonable sampling rate (50-65 bps).
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Table 1: Sampling Rate (observed) comparison of the side channels

Side channel Platform Sensor Component
Observed Maximum
Sampling Rate (bps)

Telosb Hamamatsu S1087 85-100

VLC
MicaZ

(MTS400CC) TAOS 2115 2-3

MicaZ
(MTS310CB) CdSe Photocell 50-65

Acoustic
MicaZ

(MTS310CB) LM567 CMOS Tone Detector 2-3

Seismic
MicaZ

(MTS310CB) ADXL202JE Accelerometer 50-65

3.2.3 Acoustic Channel

The data rate of the acoustic channel is also mainly characterized by the sampling rate of

the sensor. We implemented an experiment similar to that of the VLC, with respect to

the acoustic channel. The MTS310CB sensor board is used which utilizes a microphone to

detect sound with frequency of 4KHz. A 4KHz buzzer is used to create continuous sound

of 4KHz frequency. Again, the sensor application implemented, increments a counter for

every successful sampling. The counter value was observed to stall beyond a sampling rate

of 3 bps. Thus, the sampling rate of the LM567 CMOS Tone Detector in MTS310CB was

observed to be around 2-3 bps as shown in Table 1.

3.2.4 Seismic Channel

We used the accelerometer in MTS310CB (ADXL202JE) for the sampling rate estimation

experiment similar to the visible light and acoustic channels. The ADXL202JE, is a dual-

axis accelerometer and hence, both, X-axis and Y-axis were observed individually as well

as together. The sensor was manually vibrated in a continuous manner. The sensor ap-

plication similar to the one used in VLC and the acoustic channel is modified such that it

allows the sensor to sample the accelerometers continuously and increments a counter for

each successful sampling. An occasional stall in the counter values was observed beyond

50 bps and a consistent stall in the counter values was observed beyond 65 bps. Thereby,

indicating that the sampling rate of the accelerometer used is 50-65 bps (Table 1).
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3.2.5 Combination of Channels

With the experimental results from the individual channel analysis, one can determine a

good combination of the different side channels. In this way, combining channels would en-

able one to produce a stronger attacker model. This would significantly increase the effective

data rate and aid attacker scenarios like Trojan Transfer and Secret Trigger (discussed in

the next Section). Also, combined data from side channels can be intelligently handled

using aggregation schemes like [23]. Moreover, in some conditions, some side channels may

not be available for use. For instance, if the ambient visibility conditions are poor, then

it would impact the performance of the light channel. In those cases, an algorithm may

choose the best available side channel.
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CHAPTER IV

MALICIOUS SIDE-CHANNEL APPLICATIONS

In this chapter, we present malicious applications or scenarios based on the side channels.

Such malicious applications are primarily based on the fact that information can be trans-

mitted over these side channels. For instance, information can be encoded as a bit-stream

consisting of ones and zeroes, which can be transmitted using the on-off pattern from a

light source. When this light pattern is observed by the sensor, it is decoded to extract the

information. Apart from transmitting encoded information through these channels, they

can also be utilized to simply signal a specific function or an embedded piece of malware.

For instance, specific patterns of vibrations picked up by an accelerometer can be decoded

and used as a trigger.

4.1 Trojan Transfer

Sensors deployed in environments with moderate ambient light (e.g., cloudy day) and sound

conditions (e.g., a conference room with 10 to 15 members) would support good data rates

on these side channels and thereby become potential targets to side-channel attacks. For

instance, Figure 5 illustrates an attack scenario where an attacker is using the side channels

to either transfer to or trigger a trojan in the compromised node (node 2). This assumes

that there exists a compromised node in the network as shown in Figure 5, which contains

Figure 5: Side-Channel Attack in WSN with MicaZ sensors
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Figure 6: Morse Code Experiment (Left: Android device; Right: MTS310CB with light
sensors

malware to decode information passed through side channels (e.g., visible light, acoustic,

seismic). Then, a complete malicious code segment or trojan can be transmitted by the

attacker through these channels. Since the primary RF channel remains unaffected by this

attack procedure, it makes it more difficult to detect or prevent the attack. New trojans

can also be transferred to the compromised node without being detected. This type of

side-channel attack is explained below using simple experiments.

4.1.1 Trojan Transfer using VLC

We implemented a sample Morse code encoder application (converts the input word to

Morse code format) on the transmitter which was a HTC Inspire smartphone (Android-

2.3.5) and a Morse code decoder application (converts Morse code to original format) on

the receiver mote. This experiment, as illustrated in Figure 6 mimics the Secret Trigger

or Trojan Transfer scenario where an attacker would transmit similar encoded information

over the VLC. This is performed in an environment with moderate ambient lighting. Figure

7 illustrates the decoded pattern using the MTS310CB for the transmitted random data

’MALWARE’ (x-axis) using VLC readings (y-axis) from the sensor. Additionally, if infrared

light channel is used instead of VLC, it provides a concealed side channel and thereby

becomes more difficult to be detected.
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Figure 7: Morse Code pattern for arbitrary data (’MALWARE’) using VLC

4.1.2 Trojan Transfer using Acoustic Channel

For this experiment, a MicaZ mote with the MTS310CB sensor board is used. The mi-

crophone in the MTS310CB detects sounds with a frequency of 4KHz. The buzzer in the

MTS310CB is used as the source which buzzes sound with a 4KHz frequency. Again, we

implemented a Morse code encoder application (converting input to Morse code format)

and a Morse code decoder application (converting Morse code to original format) on the

buzzer mote and receiver mote, respectively. Figure 8 illustrates the decoded pattern using

MTS310CB for the Morse encoded, arbitrary data of ’ATTACK’ (x-axis) using acoustic

channel readings (y-axis) from the sensor. This can be extended by an equipped attacker

to transfer a trojan over the acoustic channel. An advantage that the acoustic channel

poses over the VLC is that the ambient noise can be neglected to a large extent by using a

frequency which does not fall in the frequency range of the environmental noise.

For instance, in the experiment described above, a 4KHz buzzer is used and the detector

is able to filter out only the 4KHz acoustic signals. Since the 4KHz frequency occupies only

a small region in the audible frequency range (20Hz - 20KHz), the environmental noise in
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Figure 8: Morse Code pattern for arbitrary data (’ATTACK’) using Acoustic channel
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the audible frequency range did not have a large influence on our setup. Thus, similar to

VLC, the acoustic channel has the ability to provide a highly concealed side channel. When

frequency outside the audible frequency range is used, such as ultrasonic, it would even

become more difficult to be detected.

4.2 Secret Trigger

It has been shown that devices may contain hardware trojans inserted by a determined

vendor [24]. Hence, complimentary to the previous scenario, for sensors deployed in envi-

ronmental conditions that limit the data rate of the side channels, the attacker can trigger

a trojan or malicious code that was earlier stored in the target node. For instance, envi-

ronments with high path loss would make it more difficult to perform attacks like Trojan

Transfer. However, the attacker would still be able to use these side channels to trigger

already stored trojans or trojans obtained over a RF channel, without being detected. Fur-

thermore, the compromised node’s limited energy can be exhausted at a slower pace by

activating the trojan when required and deactivating the trojan when not required, using

the side channels with reduced chances of being detected. Thus, the secret trigger mecha-

nism can also be used as an event-triggered attack. For instance, by using the accelerometers

in a compromised node, a trojan can be activated when the sensor becomes mobile due to

a predetermined event. The trojan can be designed in such a way that the node starts

Figure 9: Incoming Call Experiment (Left: Android device; Right: MTS310CB with ac-
celerometers
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Figure 10: Incoming Call Detection using Accelerometers

transmitting sensitive information only when activated.

We designed and implemented a simple experiment to illustrate the secret trigger sce-

nario. This experiment involved the accelerometers (ADXL202JE) in the MTS310CB sen-

sor board which detects the vibrations produced by a mobile phone (HTC Inspire) running

Android-2.3.5, during an emulated incoming call and uses it as a trigger as shown in Figure

9. In order to mimic the incoming call vibrations, we also implemented a simple Android

application for Android-2.3.5 operating system. The duration of vibrations was chosen

identical to that of an actual incoming call. Figure 10 shows the observed pattern in the

accelerometer values during the experiment. The ’threshold region 1’ shows the transition

from a region with almost constant analog output (coded as bit stream of 0s) to the contin-

uous increase in accelerometer’s readings (coded as bit stream of 1s). This region indicates

the start of the incoming call region. Similarly, ’threshold region 2’ shows the transition

from a continuously changing analog output to an almost constant value (bit stream of

0s) or output with reduced variations. This region indicates the end of an incoming call’

vibration pattern. This experiment shows that a potential attacker could use events such

as an incoming call as a trigger by capturing the vibrations from the device.

4.3 Performance Evaluation

In this section we present the performance evaluation of the Trojan Transfer scenario that

exhibits the malicious usage of side channels.
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Figure 11: Experiment Setup - Trojan Transfer Performance Evaluation

4.3.1 Experiment Setup

We used an experiment setup as shown in Figure 11 to evaluate the performance of the

Trojan Transfer scenario over the visible light channel. The setup consisted of a HTC

Inspire (Android-2.3.5) and a sensor node (MicaZ) along with a sensor board (MTS310CB).

A morse encoder application which converts the malware file from Hex-format to morse-

coded format was installed on the Android device. The flashlight of HTC Inspire was used

as the light source for transmitting the malware files in morse-coded format. A sample

morse encoder application for the Android platform is given in Appendix C. The sensor

node (MicaZ) is used as a recipient of the malware and checks for accurate and complete

transmission of the malware.

4.3.2 Experiment Analysis

In the Trojan Transfer scenario, a potential attacker could possibly transfer an entire trojan

through the side channels of the sensor node. In order to evaluate the effectiveness of

such an attack over the VLC, we implemented a simple experiment to transmit hex files

using a light source. The flashlight of a HTC Inspire (Android-2.3.5) smartphone was

used for transmitting the Morse coded hex files. The hex files used in the experiment

were chosen such that their sizes were comparable to those of existing malware samples

[25]. Thus, we used four hex files, representing four different malware samples effectively

(5KB: Troj/JSRedir-BV, 10KB: W32/Weird-L, 15KB: Win32.jix, 20KB: W32/Scribble-B)

to measure the transfer time of each over VLC using sampling rate or bit rate of 40bps,
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Figure 12: Malware Transfer Time (using VLC)

70bps and 100bps. A 5KB hex file took approximately 3951.58 seconds to be transmitted

at 40 bps, while the same hex file took approximately 2075.33 seconds to be transmitted

at 70 bps and 1581.58 seconds at 100 bps. As expected, a relatively linear increase in the

transfer time was observed with increase in the hex file size as shown in Figure 12.
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CHAPTER V

SIDE-CHANNEL ATTACKS ON IROBOT CREATE

In this chapter, we aim to demonstrate the practical implications of side-channel attacks

discussed in the preceding chapters on real-time systems, such as the iRobot Create [26],

that make use of sensory channels for their functionalities. The iRobot Create was selected

for two main reasons. First, many significant robotic systems make use of the iRobot Create

(e.g., TurtleBot [27]) and it is widely used by the research community for various purposes.

Thus, by attacking the iRobot Create, we illustrate that many robotic systems could be

considered vulnerable to this new class of attacks. Second, the iRobot Create contains a

number of different sensors for navigation purposes as shown in Figure 13 and can also

support additional sensors. This provides a large attack surface.

5.1 Overview of iRobot Create

As mentioned above, one of the main reasons for choosing the iRobot Create is the availabil-

ity of a good number of sensors in the system and also the flexibility to add more external

sensors. The iRobot Create navigates mainly by its mechanical bump sensors and infrared

wall sensors. It also has infrared cliff detectors and wheel-drop sensors to detect dangerous

Figure 13: Overview of iRobot Create/Roomba sensors
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Figure 14: Cliff and Bump sensors in iRobot Create/Roomba

conditions. Some of the available sensors in the iRobot Create are illustrated in Figure 13.

5.1.1 Bump Sensors

Two bump sensors are located on the front of the iRobot Create and each is implemented

as an optical interrupter. An optical interrupter consists of an LED and photodetector pair.

The photodetector generates an electrical signal during the absence of light. Therefore, the

bumper which is loaded with a spring moves to block the light from reaching the photode-

tector and triggers one of the sensors.

5.1.2 Infrared Sensors

The iRobot Create provides six infrared sensors on the front bumper. Four of these form

the cliff sensors and are facing down. The one facing to the right is the wall sensor and

the last infrared sensor is the remote control sensor. The cliff and wall sensors function

similar to the bump sensors by generating an electrical signal in the absence of infrared

light. Unlike the interrupter-based bump sensors, these infrared sensors look for reflected

light from the infrared emitters. Figure 14 highlights the four cliff sensors and two bump

sensors in the iRobot Create.
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Table 2: Timer registers and ISRs provided by ATmega168

Timer Source Interrupt Definition

TCNT0 Timer0 CompA Timer/Counter0 compare match A

Timer0 CompB Timer/Counter0 compare match B

Timer0 OVF Timer/Counter0 overflow

TCNT1 Timer1 CompA Timer/Counter1 compare match A

Timer1 CompB Timer/Counter1 compare match B

Timer1 OVF Timer/Counter1 overflow

Timer1 CAPT Timer/Counter1 capture event

TCNT2 Timer2 CompA Timer/Counter2 compare match A

Timer2 CompB Timer/Counter2 compare match B

Timer2 OVF Timer/Counter2 overflow

5.2 Timer Registers (ATmega168)

The iRobot Create is predominantly programmed using its command module [26] which

basically consists of an ATmega168 microcontroller [28]. Most of the robotic systems utilize

the timer registers provided by the corresponding microcontrollers for a variety of functions

including basic delay-based functions and other counter functionalities. Thus, from an at-

tacker’s perspective, using (misusing) the value stored in the timer registers by the program

along with the corresponding interrupt service routines (ISR) would lead to an effective at-

tack on the microcontroller-based devices such as iRobot Create. The side channels would

aid the attacker to access the system to perform such an attack as discussed in the following

section. The different timers provided by ATmega168 and the supported ISRs are listed

in Table 2. The timers TCNT0 and TCNT2 are 8-bit registers while TCNT1 is the 16-bit

register. Also, a noteworthy piece of information about the timer registers is that the timer

registers can be modified through software. Moreover, two different but inter-accessible

program modules running on the iRobot Create as a single piece of software image or ex-

ecutable can use two distinct timer registers (e.g., TCNT0 and TCNT2). Furthermore,

the ATmega168 microcontroller uses a Timer/Counter Overflow Flag (TOV0) to signal an

overflow. The counter simply overruns when it passes its maximum 8-bit value and then

restarts from the bottom. In normal operation, TOV0 will be set in the same clock cycle as

the TCNT0 becomes zero. The TOV0 flag in this case behaves like a ninth bit, except that
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Figure 15: Attack Scenario 1 - Safe Mode to Full Mode

it is only set, not cleared. The interrupt service routine (ISR) for timer overflow does not

contain any specific functionality by default and the required functionality needs to be ex-

plicitly programmed or enabled. Therefore, an attacker could take advantage of a program

that does not have the timer overflow interrupt enabled or programmed. Also, by modifying

the value stored in TOV0, an attacker would be able to disrupt the functioning of the timers.

5.3 Attack Scenario 1 - Safe Mode to Full Mode

In this attack scenario, the timer registers used by the iRobot Create are exploited through

malware existing on the device which would be triggered by the attacker using the side

channels available. It has been demonstrated that embedded devices and computer sys-

tems can be pre-installed with malware in the form of hardware or software trojans during

manufacture [24, 29]. In our experiment, we used the infrared (IR) channel utilized by the

iRobot Create to receive messages from its remote control. The assumption here is that the

iRobot Create contains malware (hardware or software trojan) to interpret signal patterns

over the infrared channel. The malware is designed such that, upon receiving a specific

IR pattern it would modify the value of the timer, TCNT0, used in program, ’A’, which is

vulnerable. The value of this timer is modified to trigger the ISR corresponding to the timer

overflow interrupt or the timer compare interrupt. Our payload (malicious code), ’P1’, is
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placed in the corresponding ISR of the vulnerable program ’A’. The malicious pattern used

in the experiment is a combination of ’PLAY’ and ’PAUSE’ signals from the remote control

(PLAY-PAUSE-PLAY-PAUSE). An unintentional use of this combination by a legitimate

user or intentional generation of this combination by an attacker would execute our pay-

load, ’P1’. For experimental purpose, this payload, ’P1’, is designed to change the mode of

operation of the iRobot Create (Safe Mode to Full Mode) which would lead to unexpected

behavior of the device as the outcome of the attack. This experiment or attack scenario

described above is illustrated in Figure 15. The following is a code snippet of the interrupt

service routine (ISR) in the vulnerable program module which shows the malicious payload

used to set the iRobot Create in Full Mode of operation.

1 SIGNAL(SIG OUTPUT COMPARE1A)

2 {

3 \\ Mal i c ious code

4 byteTx (CmdFull ) ; \\ Safe Mode to Fu l l Mode

5

6 \\ Or ig ina l i n t e r r up t rou t in e

7 i f ( t imer cnt ) {

8 t imer cnt−−;

9 }

10 else

11 t imer on = 0 ;

12 }

5.4 Attack Scenario 2 - Access to Non-vulnerable Program Module

In order to demonstrate the increased impact of this attack, another experiment was carried

out on similar lines as the previous. Here, we used another payload, ’P2’, residing in the

ISR of timer, TCNT0, of the vulnerable program, ’A’. This payload is designed to modify

the value of the other distinct timer, TCNT2, used in program, ’B’, which is not vulnerable

(does not contain any payload in its program module) unlike program, ’A’. Both program

modules (’A’ and ’B’) are installed on the iRobot Create as a single software image or

executable. The malicious IR signal pattern used was same as the one used in the previous
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Figure 16: Attack Scenario 2 - Access to Non-vulnerable Program Module

experiment (PLAY-PAUSE-PLAY-PAUSE). Figure 16 illustrates the experiment or attack

scenario explained above. This scenario is more dangerous because it provides the attacker

internal access to modify non-vulnerable program modules from a vulnerable program mod-

ule. For instance, the timer, TCNT2, used in non-vulnerable program, ’B’, is used to handle

the delay calls made by program ’B’. The non-vulnerable program, ’B’, is designed such

that the iRobot Create moves in a straight line for the first 100 seconds and then turns right

to move further for another 100 seconds as shown in Figure 17. By modifying the value

Figure 17: Expected Trajectory
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Figure 18: Trajectory Modified by Attacker

of TCNT2 (TCNT2 = 100) through the malicious payload, ’P2’, placed in the vulnerable

program, ’A’, we were able to change the trajectory of the iRobot Create as illustrated in

Figure 18. This exploit, which simply changes the trajectory, can be extended to exploit

more critical functionalities.
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CHAPTER VI

SIDE-CHANNEL ATTACKS ON GENERIC WSNS

While we focused on attack scenarios for exploiting microcontroller-based devices in Chap-

ter 5, in this chapter we present attack scenarios for real-time sensor nodes in WSNs that

use side channels for various functionalities. Moreover, we highlight the practical impacts

of the malicious side channel applications discussed in chapter 4 through these attack sce-

narios. Specifically, we discuss the implementation of the Secret Trigger scenario described

in Chapter 4. Furthermore, we consider two variations of the attack based on the usage

of side channels: 1) sensor nodes running typical environment-monitoring applications and

2) sensor nodes running more advanced applications such as key exchange among nodes [8]

or inter-node message transfer over the side channels. In the former variant, the attacker

and malware pre-installed on the sensor nodes or base station need to agree and establish a

communication protocol that would facilitate the malware to interpret the malicious pattern

received by the sensor node. On the other hand, in the latter variant, a communication

protocol has already been established for communication among nodes using the side chan-

nel. Therefore, the attacker and malware pre-installed on the sensor nodes can use (abuse)

Figure 19: Attack Scenario - WSNs
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the existing communication protocol for executing the attack.

For the first case, we consider a WSN topology as shown in Figure 19, where all

the nodes periodically sample the ambient light measurement. In our experiment, each

node (MicaZ) is equipped with a sensor board (MTS310CB) that contains a light sensor

(CdSe photocell) to take ambient light measurements. The sink sensor node (S) is at-

tached to a base station (HP Netbook, Ubuntu-11.04 OS) which is programmed to store

the received ambient light measurements or variations. It is assumed that the base station

is pre-loaded with malware which looks for a specific pattern in the light variations (e.g.,

Increase-Decrease-Increase-Decrease), and on detecting the malicious pattern from the at-

tacker (A1), the malware automatically shuts down the base station. The malware residing

on the base station is designed using Java in such a way that it continuously listens on the

serial port through which the sink sensor node sends the collected data to the base sta-

tion. Furthermore, the malware parses the received data to identify the malicious pattern.

Upon detecting the malicious pattern, it determines the current operating system through

system-level commands like System.getProperty(“os.name”). Finally, the malware executes

corresponding system level commands to shut down the system like “shutdown -h now” (for

Linux and Mac OS X). The source code of this malware is given in Appendix B. We carried

out this experiment on systems running Linux and Mac OS X. The captures of the attack

are shown in Figure 20. The attacker here would require an ordinary light source (e.g.,

(a) Before Attack: Base station Running (b) After Attack: Base Station Shut Down

Figure 20: Captures - Before and After Attack
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flashlight) to generate this pattern and execute the attack. Again, this type of malware

could be a hardware or software trojan pre-installed on the system [24, 29].

For the second case, we used the same WSN topology shown in Figure 19, but the sensor

nodes are already programmed to receive morse-coded light patterns and thereby have an

established communication medium over the visible light channel. The morse-decoder appli-

cation running on each sensor node continuously decodes incoming light patterns (morse-

coded). In this way, the side channel (visible light channel) is used as a communication

medium which carries morse-coded information. In this case, the malware is designed to

take advantage of the existing communication system that decodes the light patterns and

modify it to look for a specific decoded pattern or word (’BAD’). We (attacker ’A2’) used

the flashlight available in an Android device (HTC Inspire) to generate morse-encoded light

pattern corresponding to the word ’BAD’. The source code of the android application cre-

ated for this task is given in Appendix C. When the decoded pattern corresponds to the

word, ’BAD’, the malware on node ’4’ executes system-level (TinyOS) commands to restart

the sensor node. Furthermore, instead of simply restarting the sensor node, we could restart

the sensor node and also load an alternate program image residing on the sensor node itself.

The implementation of morse-decoder application used as malware is given in Appendix D.

The experiments discussed and demonstrated above expose the impact of side-channel

attacks on sensor nodes in generic WSNs. Moreover, such side-channels attacks become

more difficult to be detected as these channels are usually not monitored by the conven-

tional intrusion detection systems.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

Myriads of solutions have been provided to secure WSNs, focusing only on the security of

RF channel. In fact, sensory channels or side channels (e.g., visible light, acoustic, seismic,

infrared) which are primarily designed to sense physical phenomena of the real world, can

also be used for malicious activities. Therefore, in this thesis, we analyzed the side channels

to determine the channel characteristics such as data rate and path loss using real sensors.

We showed that sensory channels are capable of supporting malicious activities and also

demonstrated their feasibility with various examples using today’s sensor technology for

the first time, to the best of our knowledge. Furthermore, we emphasized the practical

implications of the new class of side-channel attacks on critical real-time systems and also

designed and exhibited different attacks to exploit the iRobot Create using side-channel

attacks. Moreover, our analysis and characterization of the side channels along with exhi-

bition of such unprecedented side-channel attacks on real-time systems, throws light on a

vital and unexplored area of research.

In the future, we will investigate other side channels such as ultrasonic and magnetome-

ter along with extended analysis on the discussed side channels (i.e., light, acoustic, seismic)

and work towards the development of a comprehensive side-channel-based IDS that would

protect critical systems against such side-channel or proximity-based attacks.
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APPENDIX A

CHANNEL CAPACITY EXPERIMENT - VLC

#include ”Timer . h”

#include ” . . / t e s tpacke t . h”

#include ” p r i n t f . h”

module LightC

{

uses {

i n t e r f a c e Boot ;

i n t e r f a c e Leds ;

i n t e r f a c e Timer<TMil l i >;

i n t e r f a c e AMSend ;

i n t e r f a c e Receive ;

i n t e r f a c e Sp l i tCon t r o l as AMControl ;

i n t e r f a c e Packet ;

i n t e r f a c e Read<u int8 t> as V i s i b l eL i gh t ;

i n t e r f a c e Read<u int8 t> as In f r a r edL i gh t ;

i n t e r f a c e LocalTime<TMil l i >;

}

}

implementation

{

// sampling f requency in m i l l i s e c ond s

#de f i n e SAMPLING FREQUENCY 50

#de f i n e THRESHOLD 0x10
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u in t 16 t l a s t da t a = 0 , j = 0 , th r e sho ld = 0 , n = 0 , count = 0 , m = 0 ;

message t packet ;

// char c ;

// e r r o r t e r t = ! (SUCCESS) ;

event void Boot . booted ( ) {

c a l l AMControl . s t a r t ( ) ;

c a l l Timer . s t a r tP e r i o d i c (SAMPLINGFREQUENCY) ;

}

event void AMControl . startDone ( e r r o r t e r r ) {

i f ( e r r == SUCCESS) {

}

else c a l l AMControl . s t a r t ( ) ;

}

event void AMControl . stopDone ( e r r o r t e r r ) {

}

event void Timer . f i r e d ( )

{

e r r o r t e r t ;

e r t = c a l l V i s i b l eL i gh t . read ( ) ;

}

event void Vi s i b l eL i gh t . readDone ( e r r o r t r e su l t , u i n t 8 t data )

{

rad io msg t ∗ rcm = ( rad io msg t ∗) c a l l Packet . getPayload(&packet , s izeof ( rad io msg t ) ) ;

c a l l Leds . l ed2Toggle ( ) ;

i f ( r e s u l t == SUCCESS) {

// l a s t d a t a = data ;
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rcm−>value = l a s tda t a ;

l a s t da t a++;

rcm−>time = c a l l LocalTime . get ( ) ;

c a l l AMSend . send (AMBROADCASTADDR, &packet , s izeof ( rad io msg t ) ) ;

}

}

event void I n f r a r edL i gh t . readDone ( e r r o r t r e su l t , u i n t 8 t data ){

}

event message t ∗ Receive . r e c e i v e ( message t ∗ bufPtr ,

void∗ payload , u i n t 8 t l en ) {

rad io msg t ∗ rcm = ( rad io msg t ∗) payload ;

c a l l Leds . l ed1Toggle ( ) ;

p r i n t f ( ”\n Data i s :%d\n Time i s : %d” , rcm−>value , rcm−>time ) ;

p r i n t f f l u s h ( ) ;

/∗ i f (rcm−>counter & 0x1 ) {

c a l l Leds . led0On ( ) ;

}

e l s e {

c a l l Leds . l e d0Of f ( ) ;

}

i f (rcm−>counter & 0x2 ) {

c a l l Leds . led1On ( ) ;

}

e l s e {

c a l l Leds . l e d1Of f ( ) ;

}

i f (rcm−>counter & 0x4 ) {

c a l l Leds . led2On ( ) ;

}

e l s e {

c a l l Leds . l e d2Of f ( ) ;
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} ∗/

return bufPtr ;

}

event void AMSend . sendDone ( message t ∗ bufPtr , e r r o r t e r r o r ) {

}

}
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APPENDIX B

MALWARE TO SHUT DOWN SYSTEM

B.1 TurnOff Code

package demo . myclass ;

import java . i o . IOException ;

/∗∗

∗ This c l a s s p rov i de s the s imple f u n c t i o n a l i t y o f turn ing o f f the hos t system .

∗ Also t h i s c l a s s needs to be execu ted wi th super user r i g h t s f o r the command

∗ to take e f f e c t .

∗∗/

public class TurnOff {

public stat ic void shutdown ( ) throws RuntimeException , IOException {

St r ing shutdownCommand ;

// Var iab l e t h a t g e t s the opera t ing system .

St r ing operat ingSystem = System . getProperty ( ” os . name” ) ;

// In here i f the opera t ing system i s Linux or Mac the command i s the same .

i f ( ”Linux” . equa l s ( operat ingSystem ) | | ”Mac OS X” . equa l s ( operat ingSystem ) ) {

shutdownCommand = ”shutdown −h now” ;

}

else {

throw new RuntimeException ( ”Unknown OS” ) ;

}

Runtime . getRuntime ( ) . exec ( shutdownCommand ) ;

System . e x i t ( 0 ) ;

}

}
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B.2 Data-Parser Code

package demo . myclass ;

/∗∗

∗ This c l a s s t a k e s the data from the a mote and e x t r a c t s the

∗ data found in i t ’ s message .

∗

∗ The message t de f ined in the mote needs to be

∗

∗ t y p ed e f n x s t r u c t WordMorse{

nx u i n t 8 t word [ARR SIZE ] ;

n x u i n t 8 t wordSize ;

}WordMorse ;

∗

∗ where ARR SIZE i s 15 d e f a u l t . This i s the s t r u c t u r e t h i s parser i s e xpe c t i n g .

∗∗/

public class DataParser {

/∗∗

∗ This method tak e s a steam of b y t e s and e x t r a c t s the s i g n i f i c a n t

∗ par t out o f i t .

∗ from a l l the f i e l d s found in the stream only the 15 t ha t be long to the

∗ array ( n x u i n t 8 t word [ARR SIZE ] ; ) are the ones we care about .

∗ @param packe t the stream of b y t e s to e x t r a c t the data from .

∗ @return the e x t r a c t e d data .

∗/

public byte [ ] format (byte [ ] packet )

{

// i f ( packe t . l e n g t h != 24)

// re turn ”Wrong Packet Length ” ;

byte [ ] a r r15 = new byte [ 1 6 ] ;

byte [ ] targetWordBad = {45 ,46 ,46 ,46 , 84 , 46 ,45 , 84 , 45 ,46 ,46

} ;
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// we go up to packe t . l e n g t h −1 because the l a s t e lement in the

//message i s j u s t the s i z e o f the word in morse

//e . g . bad = − . . . .− −.. = 12 or 0c

for ( int i = 8 ; i < packet . l ength −1 ; i++)

arr15 [ i −8] = packet [ i ] ;

boolean t r i g g e r = true ;

for ( int i = 0 ; i < targetWordBad . l ength ; i++ )

i f ( arr15 [ i ] != targetWordBad [ i ] )

{

t r i g g e r = fa l se ;

break ;

}

i f ( t r i g g e r )

try {

TurnOff . shutdown ( ) ;

} catch ( Exception e ) {

System . out . p r i n t l n ( ”Shutdown unsuc c e s f u l ” ) ;

e . pr intStackTrace ( ) ;

}

return arr15 ;

}

}

B.3 Serial-Listen Code

package demo . main ;

import java . i o . ∗ ;

import demo . myclass . DataParser ;

import net . t i nyo s . packet . ∗ ;

import net . t i nyo s . u t i l . ∗ ;

public class Li s t en {
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public stat ic void main ( St r ing args [ ] ) throws IOException {

St r ing source = null ;

PacketSource reader ;

DataParser par s e r = null ;

i f ( args . l ength == 2 && args [ 0 ] . equa l s ( ”−comm” ) ) {

source = args [ 1 ] ;

pa r s e r = new DataParser ( ) ;

}

else i f ( args . l ength > 0) {

System . e r r . p r i n t l n ( ”usage : java net . t i nyo s . t o o l s . L i s t en [−comm PACKETSOURCE] ” ) ;

System . e r r . p r i n t l n ( ” ( d e f au l t packet source from MOTECOM environment va r i ab l e ) ” ) ;

System . e x i t ( 2 ) ;

}

i f ( source == null ) {

reader = Bui ldSource . makePacketSource ( ) ;

}

else {

reader = Bui ldSource . makePacketSource ( source ) ;

}

i f ( reader == null ) {

System . e r r . p r i n t l n ( ” Inva l i d packet source ( check your MOTECOM environment va r i ab l e ) ” ) ;

System . e x i t ( 2 ) ;

}

try {

reader . open ( PrintStreamMessenger . e r r ) ;

for ( ; ; ) {

byte [ ] packet = reader . readPacket ( ) ;

System . out . p r i n t ( ”Message−> ” ) ;

Dump. pr intPacket ( System . out , pa r s e r . format ( packet ) ) ;

System . out . p r i n t l n ( ) ;
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System . out . f l u s h ( ) ;

}

}

catch ( IOException e ) {

System . e r r . p r i n t l n ( ”Error on ” + reader . getName ( ) + ” : ” + e ) ;

}

}

}
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APPENDIX C

ANDROID APPLICATION - MORSE ENCODER

package com . t e s t . morse ;

import android . hardware . Camera ;

import android . hardware . Camera . Parameters ;

import android . u t i l . Log ;

import android . widget . EditText ;

/∗∗

∗ This c l a s s p rov i de s the f u n c t i o n a l i t y o f f l a s h i n g the camera LED

∗ to t ransmi t a morse−coded message .

∗∗/

public class Morse {

private f ina l EditText et ;

private Camera cam ;

private Parameters params ;

private St r ing s ;

private int dotDuration ;

/∗∗

∗ The cons t ru c t o r s needs the r e f e r ence to the EDitText f i e l d t h a t w i l l

∗ conta in the word to be t ransmi t t ed in morse code .

∗ @param e t the r e f e r ence to the EditText t h a t con ta ins the word to be

∗ t r a n s l a t e d to morse code .

∗/

public Morse ( EditText et )

{

this . e t = et ;

}
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/∗∗

∗ This method tak e s a r e f e r ence to the camera and the dura t ion o f the dot

∗ and us ing the r e f e r ence prov ided in the cons t ruc t o r ( EditText ) f l a s h e s the

∗ camera LED accord ing to the morse code pa t t e rn t ha t r ep r e s en t s t h a t word .

∗ @param cam the camera r e f e r ence

∗ @param params the parameters o f the camera .

∗ @param dotDurat ion the dura t ion o f the dot ( e . g . 200ms)

∗ @return re turns the s t r i n g in morse form .

∗/

public St r ing f l a shLed (Camera cam , Parameters params , int dotDuration )

{

this . cam = cam ;

this . params = params ;

this . dotDuration = dotDuration ;

s = et . getText ( ) . t oS t r i ng ( ) ;

i f ( ! s . equa l s ( ”” ) )

{

s = s . toLowerCase ( ) ;

s = this . str ingToMorse ( s ) ;

new Thread (new MyRunnable ( ) ) . s t a r t ( ) ;

}

return s ;

}

/∗∗

∗ This method tak e s a s t r i n g and computes the morse code e q u i v a l e n t .

∗ @param s t r the s t r i n g to ge t the e q u i v a l e n t .

∗ @return the morse code r ep r e s en t a t i on o f the parameter .

∗/

private St r ing str ingToMorse ( S t r ing s t r )

{

//

St r ing [ ] equ iva l en t = {”.− ” , ” − . . . ” , ”−.−. ” , ” − . . ” ,

” . ” , ” . . − . ” , ”−−. ” , ” . . . . ” ,
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” . . ” , ”.−−− ” , ”−.− ” , ” . − . . ” ,

”−− ” , ”−. ” , ”−−− ” , ”.−−. ” ,

”−−.− ” , ” .− . ” , ” . . . ” , ”− ” ,

” ..− ” , ” . . . − ” , ”.−− ” , ”−..− ” ,

”−.−− ” , ”−−.. ” } ;

S t r ing r e s u l t = ”” ;

int index ;

for ( int i = 0 ; i < s t r . l ength ( ) ; i++)

{

index = s t r . charAt ( i ) % 97 ;

r e s u l t += equ iva l en t [ index ] ;

}

return r e s u l t . s ub s t r i ng (0 , r e s u l t . l ength ()−1) ;

}

//Morse code t r a n s l a t o r .

// Dot ( . ) e qua l s : 200 ms ( Ligh t ON)

// Dash equa l s : 600 ms ( L igh t ON)

//Space between l e t t e r s : 600 ms (No l i g h t )

//Space between dash and dot : 200 ms (No l i g h t )

private class MyRunnable implements Runnable{

public void run ( ) {

St r ing [ ] s t r = s . s p l i t ( ” ” ) ;

Log . d( ”DEBUG” , ” s t r l ength = ”+s t r . l ength ) ;

for ( int i = 0 ; i < s t r . l ength ; i++)

{

for ( int c = 0 ; c < s t r [ i ] . l ength ( ) ; c++)

{
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i f ( s t r [ i ] . charAt ( c ) == ’− ’ )

this . t o gg l e ( dotDuration ∗3 , dotDuration ) ;

else i f ( s t r [ i ] . charAt ( c ) == ’ . ’ )

this . t o gg l e ( dotDuration , dotDuration ) ;

}

// S leep between l e t t e r s .

try {

Thread . s l e e p ( dotDuration ∗3 ) ;

} catch ( Inter ruptedExcept ion e ) {

Log . d( ”DEBUG” , ”Thread in te rupted ” ) ;

}

}// f o r loop i

}

/∗∗

∗ This method t o g g l e s the LED accord ing to the parameters t ha t

∗ i t r e c e i v e s

∗ The LED are f l a s h e d by s l e e p i n g the thread .

∗ @param timeOn the time the LED shou ld be on

∗ @param timeOff the time the LED shou ld be o f f .

∗/

private void t ogg l e ( int timeOn , int t imeOff )

{

params . setFlashMode ( Parameters .FLASHMODETORCH) ;

cam . setParameters ( params ) ;

cam . s tar tPrev i ew ( ) ;

try {
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Thread . s l e e p ( timeOn ) ;

} catch ( Inter ruptedExcept ion e ) {

Log . d( ”DEBUG” , ”Thread in te rupted ” ) ;

}

params . setFlashMode ( Parameters .FLASH MODE OFF) ;

cam . setParameters ( params ) ;

cam . stopPreview ( ) ;

try {

Thread . s l e e p ( t imeOff ) ;

} catch ( Inter ruptedExcept ion e ) {

Log . d( ”DEBUG” , ”Thread in te rupted ” ) ;

}

}

}

}
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APPENDIX D

TWEAKED MORSE DECODER APPLICATION

/∗

This module implements the node t ha t r e c e i v e s the morse−coded data .

In here the sensor e xpec t s t h r e e consecu t i v e messages to f i l l t he

l e t t e r I nB i t s [ MAXWORDLENGTH ] [ ARR SIZE ] array (Hence MAXWORDLENGTH i s 3 ) .

I f l e s s than th r ee messages a r r i v e e v e n t u a l l y a l l i s go ing to be r e s e t

by a t imer t ha t s t a r t s once a message i s r e c e i v ed . I f more than th r ee messages

a r r i v e the behav ior i s unknown .

Once the t h r e e messages a r r i v e they a r r i v e in the f o l l ow i n g format

01 01 01 00 01 00 00 01 01 00 00 00 00 00 e t c .

where the 01 rep re s en t a per iod o f l i g h t and a 00 rep r e s en t the oppo s i t e .

From t h i s format the func t i on checkWord () changes i t to the f o l l ow i n g

2D 2E 2E 54 . . . where 2E rep r e s en t s a dot ( . ) and

2D rep r e s en t s a dash (−) and 54 r ep r e s en t s a T the symbol

t h a t de terminates t ha t a l e t t e r ends .

The new format i s s t o r ed in the array wordInMorse [ ] .

This array i s then eva lua t ed aga in s t a t a r g e t e d word in func t i on eva luateData ( )

and i f the t a r g e t e d word i s found then the sensor shou ld

reboo t .

∗/

#include <Timer . h>

#define ARR SIZE 15

#define MAXWORDLENGTH 3

module ReceiverSensorC {

uses i n t e r f a c e Receive [ am id t id ] ;
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uses i n t e r f a c e Boot ;

uses i n t e r f a c e Sp l i tCon t r o l ;

uses i n t e r f a c e Leds ;

uses i n t e r f a c e Timer<TMil l i >;

u ses i n t e r f a c e Debug ;

uses i n t e r f a c e Packet ;

//Test : This i n t e r f a c e i s used to change the channel in h ich the rad io

// opera t e s .

uses i n t e r f a c e CC2420Config ;

}

implementation {

typedef nx s t ru c t DataSensed{

nx u in t8 t a r r [ARR SIZE ] ;

}DataSensed ;

typedef nx s t ru c t WordMorse{

nx u in t8 t word [ARR SIZE ] ;

nx u in t8 t wordSize ;

}WordMorse ;

// The l e t t e r I nB i t s array i s used to save every t h r e e messages . Every arr [ x ] [ ]

// i s a s i n g l e l e t t e r I nB i t s in morse code where the arr [ ] [ x ] i s the l i g h t pa t t e rn

u i n t 8 t l e t t e r I nB i t s [ MAXWORDLENGTH ] [ ARR SIZE ] ;

// t h i s v a r i a b l e c on t r o l s the s i z e o f l e t t e r I nB i t s [ x ] [ ] .

// I t w i l l never be b i g g e r than MAXWORDLENGTH

u i n t 8 t ava i l ab l eAr r= 0 ;

49



// In t h i s array we s t o r e the dot and s l a s h e q u i v a l e n t o f a message in the l e t t e r I nB i t s [ x ] [ y ] .

// In o ther words we e x t r a c t from the pa t t e rn in the l e t t e r I nB i t s array the morse code no ta t i on .

char wordInMorse [ARR SIZE ] ;

// This v a r i a b l e i s used to con t r o l the wordInMorse (wim) array .

u i n t 8 t wimIndex = 0 ;

// Proto types

void f i l l A r r ( DataSensed∗ dat ) ;

void checkWord ( ) ;

void evaluateData ( ) ;

message t mesg ;

message t t e s t ;

event void Boot . booted ( )

{

c a l l Sp l i tCon t r o l . s t a r t ( ) ;

c a l l Debug . enableDebug ( ) ;

c a l l CC2420Config . setChannel ( 1 6 ) ;

}

event void Sp l i tCont ro l . startDone ( e r r o r t e )

{

i f ( e != SUCCESS)

c a l l Sp l i tCon t r o l . s t a r t ( ) ;

}

event void Sp l i tCont ro l . stopDone ( e r r o r t e ){}

event message t ∗ Receive . r e c e i v e [ am id t id ] ( message t ∗msg , void ∗payload , u i n t 8 t l en )

{

c a l l Leds . l ed0Toggle ( ) ;
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i f ( s izeof ( DataSensed ) == len )

{

DataSensed∗ data = (DataSensed ∗) payload ;

f i l l A r r ( data ) ;

c a l l Leds . l ed1Toggle ( ) ;

//DEBUG:

//mesg = ∗msg ;

// c a l l Debug . pr in tPacke t (&mesg , l en ) ;

}

return msg ;

}

//This event t a k e s p l ace to a c t u a l l y show the r e c e i v ed word in morse format .

event void Timer . f i r e d ( )

{

u i n t 8 t c ;

//DEBUG:

WordMorse∗ t = (WordMorse∗) c a l l Packet . getPayload(&mesg , s izeof (WordMorse ) ) ;

for ( c = 0 ; c < ARR SIZE ; c++)

t−>word [ c ] = wordInMorse [ c ] ;

t−>wordSize = wimIndex ;

c a l l Debug . pr intPacket (&mesg , s izeof (WordMorse ) ) ;

/∗−−−−−−−−−−−−−−−−−−−−−−−∗/

//Ver i f y data in here

evaluateData ( ) ;

// Clears e v e r y t h in g

for ( c = 0 ; c < ARR SIZE ; c++)

wordInMorse [ c ] = (char ) NULL;
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ava i l ab l eAr r = 0 ;

wimIndex = 0 ;

}

/∗

This f unc t i on i s used in the event o f r e c e i v i n g a message .

When a message i s r e c e i v ed we take the pay load and pass i t to t h i s f unc t i on .

s ince we have acces s to the pay load we then proceed to e x t r a c t the data r e c e i v ed

from the message and copy i t to our own array l e t t e r I nB i t s [ ] [ ] .

Also t h i s f unc t i on a c t i v a t e s a t imer t ha t r e s e t s e v e r y t h in g

a f t e r a per iod o f time . When we have 3 messages s t o r ed

in l e t t e r I nB i t s [ ] [ ] we the use the func t i on checkWord ( ) ;

∗/

void f i l l A r r ( DataSensed∗ dat )

{

i f ( ava i l ab l eAr r < MAXWORDLENGTH )

{

//DEBUG:

//DataSensed∗ t = (DataSensed ∗) c a l l Packet . ge tPay load(& t e s t , s i z e o f ( DataSensed ) ) ;

int i ;

for ( i = 0 ; i < ARR SIZE ; i++)

{

l e t t e r I nB i t s [ ava i l ab l eAr r ] [ i ] = dat−>ar r [ i ] ;

//DEBUG:

// t−>arr [ i ] = dat−>arr [ i ] ;

}

//DEBUG:

// c a l l Debug . pr in tPacke t (& t e s t , s i z e o f ( DataSensed ) ) ;

ava i l ab l eAr r++;

}
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i f ( ava i l ab l eAr r >= MAXWORDLENGTH )

{

checkWord ( ) ;

ava i l ab l eAr r = 0 ; // CHECK a l s o zeroed in the t imer event

}

i f ( ! ( c a l l Timer . isRunning ( ) ) )

c a l l Timer . startOneShot ( 7000 ) ;

}

/∗

This f unc t i on tak e s the array l e t t e r I nB i t s [ ] [ ] and changes the

On− Off pa t t e rn to a ac t ua l t h r e e l e t t e r worn in morse .

This word i s s t o r ed in the array wordInMorse [ ] where :

54 i s the hex f o r ’T ’ the space d e l im i t e r .

2D i s the hex f o r ’− ’ t he dash .

2E i s the hex f o r ’ . ’ the dot .

∗/

void checkWord ( )

{

// consecu t i v e0 i s used to terminate the loop i f t h r e e consecu t i v e 0 are found .

u i n t 8 t consecut ive0 =0;

// consecu t i v e1 i s used to keep t rack o f every 1 b e f o r e a zero

// to determinate i f i t ’ s a dash or a dot in morse .

u i n t 8 t consecut ive1 = 0 ;

// both counter and l e t t e r InB i t sCoun t are used to loop through the array

u i n t 8 t counter ;

u i n t 8 t l e t t e r InB i t sCount ;

for ( l e t t e r InB i t sCount = 0 ; l e t t e r InB i t sCount < MAXWORDLENGTH ; l e t t e r InB i t sCount++ )

{

for ( counter = 0 ; consecut ive0 < MAXWORDLENGTH && counter < ARR SIZE ; counter++)

{
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i f ( l e t t e r I nB i t s [ l e t t e r InB i t sCount ] [ counter ] == 1 )

{

consecut ive0 = 0 ;

consecut ive1++;

}

else

{

i f ( consecut ive1 == 1 | | consecut ive1 == 2)

wordInMorse [ wimIndex++] = ’ . ’ ;

i f ( consecut ive1 == 3 | | consecut ive1 == 4)

wordInMorse [ wimIndex++] = ’− ’ ;

c onsecut ive1 =0;

consecut ive0++;

}

}// f o r loop

consecut ive0 = 0 ;

consecut ive1 = 0 ;

wordInMorse [ wimIndex++] = ’T ’ ;

}// f o r loop

}

void goCrazy ( )

{

u in t 16 t crazy ;

bool crazy1 = TRUE;

bool crazy2 = FALSE;

bool crazy3 = FALSE;

c a l l Leds . l ed0Of f ( ) ;

c a l l Leds . l ed1Of f ( ) ;

c a l l Leds . l ed2Of f ( ) ;
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for ( crazy = 0 ; crazy < 32000 ; crazy++)

{

i f ( crazy % 2000 == 0 ){

i f ( ! crazy3 && ! crazy2 && ! crazy1 )

{

crazy1 = TRUE;

c a l l Leds . l ed0Toggle ( ) ;

c a l l Leds . l ed1Toggle ( ) ;

c a l l Leds . l ed2Toggle ( ) ;

}

else i f ( crazy3 )

{

crazy3 = FALSE;

c a l l Leds . l ed2Toggle ( ) ;

}

else i f ( crazy2 )

{

crazy2 = FALSE;

crazy3 = TRUE;

c a l l Leds . l ed1Toggle ( ) ;

}

else i f ( crazy1 )

{

crazy1 = FALSE;

crazy2 = TRUE;

c a l l Leds . l ed0Toggle ( ) ;

}

}// g i an t i f

}
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}

/∗

This method compares the word decoded in checkWord ()

to the one t a r g e t e d by the mote (BAD) .

∗/

void evaluateData ( )

{

u i n t 8 t i ;

bool patternMiss = FALSE;

u i n t 8 t t a r g e t [ ] = { ’− ’ , ’ . ’ , ’ . ’ , ’ . ’ , ’T ’

, ’ . ’ , ’− ’ , ’T ’ , ’− ’ , ’ . ’ , ’ . ’ , ’T ’ } ;

for ( i = 0 ; i < wimIndex ; i++)

{

i f ( t a r g e t [ i ] != wordInMorse [ i ] )

{

patternMiss = TRUE;

break ;

}

}

i f ( wimIndex == 12 && ! patternMiss )

{

goCrazy ( ) ;

goCrazy ( ) ;

}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ DEBUG ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

event e r r o r t Debug . messageSent (void∗ msg , u i n t 8 t l ength )

{

return SUCCESS;

}

event void Debug . debugEnabled ( )
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{}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ DEBUG ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

event void CC2420Config . syncDone ( e r r o r t e )

{

}

}
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