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SUMMARY

Spin systems are powerful mathematical models widely used and studied in

Statistical Physics and Computer Science. This thesis focuses on two specific spin

systems of particular combinatorial interest: colorings and weighted independent sets

(hard-core model).

In many spin systems, there exists a phase transition phenomenon: there is a

threshold value of a parameter such that when the parameter is on one side of the

threshold, the system exhibits the so-called spatial decay of correlation, i.e., the

influence from a set of vertices to another set of vertices diminishes as the distance

between the two sets grows; when the parameter is on the other side, long range

correlations persist. The uniqueness problem and the reconstruction problem are two

major threshold problems that are concerned with the decay of correlations in the

Gibbs measure from different perspectives.

In Computer Science, the study of spin systems mainly focused on finding an effi-

cient algorithm that samples the configurations from a distribution that is very close

to the Gibbs measure. The Glauber dynamics is a typical Markov chain algorithm

for conducting such sampling. In many systems, the convergence time of the Glauber

dynamics also exhibits a threshold behavior: the speed of convergence experiences a

dramatic change around the threshold of the parameter.

The first two parts of this thesis focus on making connections between the phase

transition of the convergence time of the dynamics and the phase transition of the

reconstruction phenomenon in both colorings and the hard-core model on regular

trees. A relatively sharp threshold is established for the change of the convergence

time, which coincides with the reconstruction threshold. A general technique of upper

xi



bounding the conductance of the dynamics via analyzing the sensitivity of the recon-

struction algorithm is proposed and proven to be very effective for lower bounding

the convergence time of the dynamics.

The third part of the thesis provides an innovative analytical method for estab-

lishing a strong version of the decay of correlation of the Gibbs distributions for many

two spin systems on various classes of graphs. In particular, the method is applied

to the hard-core model on the square lattice, a very important graph that is of great

interest in both Statistical Physics and Computer Science. As a result, we signifi-

cantly improve the lower bound on the uniqueness threshold for the square lattice and

thereby improve the range of the parameter of interest where the Glauber dynamics

has fast convergence (i.e., rapid mixing).
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CHAPTER I

INTRODUCTION

1.1 Background and Motivations

Spin systems are powerful mathematical models widely used and studied in Statistical

Physics, Applied Probability and Computer Science. The concept of a spin system

originated from Statistical Physics as an idealized model to study a physical system

at equilibrium such as magnetic materials and lattice gases. Mathematically, a spin

system is comprised of a finite graphG = (V,E) with vertices V modeling the particles

or individuals and edges E modeling the interactions. A configuration for a vertex

or a set of vertices is an assignment of one of the spins to each vertex. Different

configurations have different likelihoods of appearing in the model of the equilibrium

state of the system. The likelihood comes in two ways: one is from the spin of each

vertex, each spin may have a different weight; the second way is from the interactions

among the vertices, i.e., there are different weights assigned to edges depending on

the different spins at the endpoints of the edge. Indeed, this can be made into a

formal probability statement and we are able to define the probability space called

the Gibbs measure over the set of configurations, which represents the equilibrium

state of the finite system.

For spin systems in Statistical Physics, when studying magnetic materials, the

underlying graph G typically becomes a lattice (usually a two-dimensional or three-

dimensional grid) and each site represents an atom. The states of a site specify the

“up” or “down” magnetic moment of the atom and edges are modeling the interaction

among the neighboring atoms. For the lattice gas model, sites are the possible places

where atoms of non-negligible size can reside and can be either “occupied” or “vacant”
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with the constraint that no two neighboring sites can be both occupied at the same

time so that atoms will not overlap. Researchers have been using this general modeling

tool to understand properties of the equilibrium states of various systems including:

how the particles/individuals affect each other in the equilibrium states, how the

physical system reaches equilibrium, and also whether long range correlations exist.

1.1.1 Phase Transitions

Perhaps, the most important object in the study of spin systems in Statistical Physics

is to understand the phase transition phenomenon. A phase transition is said to

occur when a microscopic change in the parameters of the system causes a dramatic

macroscopic change in the properties of the system. It is quite common in our daily

life, such as when water boils into steam or freezes to ice. A more sophisticated

example is the so-called “spontaneous magnetization”; if we put a piece of metal into

a magnetic field for a while and then remove the external magnetic field, sometimes the

metal is still magnetized, i.e., the magnetic moments of most of the atoms stay in the

state “up” (or “down”) simultaneously. Physicists discovered that depending on the

materials, when the temperature is sufficiently high, the magnetization will not persist

after removing the external field, while when the temperature is low, magnetization

does persist after the removal and spontaneous magnetization happens. There is

a critical temperature for spontaneous magnetization to appear; it only happens

when the temperature is below a certain threshold value. Generally, why such phase

transitions exist is not an easy question to answer. For spontaneous magnetization,

this is exactly what Ernst Ising intended to answer in his original study of the now

famous Ising model in the 1920s [33].

The (ferromagnetic) Ising model is the simplest and most widely studied example

of a spin system. It is defined on a finite graph G = (V,E). In this model, each

vertex is assigned a spin from the set Q = {−1,+1}. A configuration σ is a function
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from V to Q. Each configuration is weighted by

w(σ) = exp

β ∑
(u,v)∈E

σ(u)σ(v)

 ,

where β > 0 is a real number called the inverse temperature. The entire space of

the configurations with positive weight is denoted as Ω = ΩG. In the Ising model, all

the assignments have positive weights and hence it is a soft-constraint model. The

partition function Z = ZG =
∑

σ∈Ωw(σ) is the total sum of the weights over all the

configurations in Ω. Then, one can define a probability space over Ω, i.e., µ(σ) =

w(σ)/Z. This measure is called the Gibbs measure and is one of the main subjects

we study in this thesis. It is easy to see that, since β > 0, in this probability space,

the configurations with more edges having the same assignments on both endpoints

are more likely to appear.

We can assign a boundary condition to a spin system by fixing an assignment of

spins to a fixed set of vertices (called the boundary). Different boundary conditions

will result in different conditional Gibbs measures on the internal vertices which are

not on the boundary. For instance, if the graph G is a ∆-regular tree with height h,

one can fix the configurations on the leaves, and this derives a conditional probability

space for the configurations on the internal (non-leaf) vertices. In the ferromagnetic

Ising model, if we assign the vertices Lh on level h to be all +1, then in the conditional

Gibbs measure on the non-leaf vertices, the vertices are biased to choose +1 instead of

−1 as their spins since the model favors those configurations that put the same spins

on the both endpoints of each edge. On the other hand, if we assign the boundary

with all −1 as their spins, then the internal vertices are biased to choose −1. When

no boundary condition is assigned to the system, we say the system has free boundary

conditions and the distribution is called the free Gibbs measure.

The Ising model on the square lattice Z2 is the major model for studying spon-

taneous magnetization. Mathematically, we can characterize and understand the
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phenomena of spontaneous magnetization in the following way using boundary con-

ditions. Let r be the origin of the square lattice Z2 and Rn be the finite n by n

rectangle (subgraph) of Z2 centered at the origin r. Now, we fix the configurations

on the boundary of the rectangle Rn to all +1 (as shown in Figure 1), one of the

extremal boundary conditions that biases the conditional distribution of the origin r

in favor of +1. This is similar to putting an external magnetic field around a piece

of metal. Let p+,n denote the conditional probability of the origin r being +1 under

the all +1 boundary condition for the subgraph Rn. Similarly, one can put all −1

around the rectangle and hence define the corresponding conditional probability p−,n

of r being +1 under the all −1 boundary condition. In this case, the conditional

distribution of the origin is biased toward −1, i.e., p−,n < 1 − p−,n. It is not hard

to see that the effect of any other boundary condition to r is in between the all +1

and all −1 boundary conditions: any boundary condition cannot bias the origin r to

favor +1 more than the all +1 boundary condition can do, and neither can it bias

the origin to −1 more than the all −1 boundary can do.

r+

+

+

+

+

+

+

+

+ + + + + + + + +

+

+

+

+

+

+

+

++ + + + + + +

Figure 1: A all + boundary condition for Ising model on the sub-lattice R9. The
conditional probability of the origin r being +1 is p+,9.

We consider the effect of the boundary condition to r when the boundaries move
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off to infinity, i.e., let n → ∞, which mimics the removal of the external magnetic

field. Hence, let

p+ = lim
n→∞

p+,n and p− = lim
n→∞

p−,n.

Now we ask whether p+ equals p−. It turns out that there is a critical inverse tem-

perature βc(Z2) such that if β < βc(Z2) (the temperature is high), then p+ = p−, and

we say the model exhibits decay of correlation from the boundary to vertices deep

in the interior and when β > βc(Z2) (the temperature is low), then p+ 6= p−, and

therefore the effect of the boundary condition persists, which corresponds to the per-

sistence of the magnetization after removing the external magnetic field. The value

of the critical temperature βc(Z2) has been known since 1944 by Onsager [53]. An

alternative formulation of the above phase transition phenomenon is known as the

uniqueness problem asking whether the infinite Gibbs measure on the infinite graph

Z2 is unique or not. The critical value for this phase transition is hence called the

uniqueness threshold. We will discuss the details of infinite-volume Gibbs measures

in Chapter 2.2. Behind those rigorous mathematical formulations for infinite-volume

Gibbs measures, it is the existence of decay of correlations from the boundaries to

the origin over the finite subgraphs that plays the essential role in the uniqueness

problem.

Besides the square lattice, uniqueness problem can be defined for spin systems on

other infinite graphs, such as the ∆-regular infinite tree T∆. For the Ising model,

the critical value for the uniqueness of infinite Gibbs measure on T∆ is at βc(T∆) =

arctan( 1
∆−1

) (see, e.g., Preston [56]). This critical value is called the tree uniqueness

threshold for the Ising model. Generally, the uniqueness problem is equivalent to the

decay of correlation from the all +1 and the all −1 boundary conditions to the origin

r as n → ∞. When the spin system is in the uniqueness phase, there is no long

range correlation among the vertices and hence different boundary conditions have

the same limiting influence on internal vertices; on the other hand, when the system
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is in the non-uniqueness phase, the effect of the worst case boundary conditions

persist even when the boundaries are very far away. In this thesis, we will develop a

general technique that can be used to improve lower bounds of conjectured uniqueness

thresholds for various spin systems.

1.1.2 Glauber Dynamics and Phase Transition of Mixing Time

In Computer Science, the study of spin systems mainly focuses on finding efficient

algorithms for sampling configurations from distributions that are very close to the

corresponding Gibbs measures. It was shown by Jerrum, Valiant and Vazirani [36]

that having an efficient sampling algorithm for the Gibbs measure is equivalent to

having a fully polynomial randomized approximation scheme (FPRAS) for the cor-

responding partition function of the spin system. Typically, computing the partition

function of a spin system exactly is known to be #P-complete (see, e.g., [34]). It is

also interesting to study the dynamical questions in a finite system: how does the

system evolve from an initial pre-assigned configuration to the equilibrium state, i.e.,

the Gibbs measure, and how long does it take to do so. A key stochastic process to

study is called the Glauber dynamics which, on the one hand, is considered a basic

model for simulating the actual evolution of the physical system and, on the other

hand, is the heart of Monte Carlo Markov chain algorithms for performing the sam-

pling from Gibbs measures. The Glauber dynamics is a Markov chain on the state

space Ω. The “heat-bath” Glauber dynamics works in the following way: at each step

we pick a random vertex v, all vertices other than v maintain the same spins and we

update the spin of v according to the Gibbs measure conditioning on the spins of the

neighbors of v. The heat-bath Glauber dynamics is an ergodic and reversible Markov

chain with the Gibbs measure µ = µG as its stationary distribution.

There are several ways to measure the convergence speed of Markov chains. The

mixing time Tmix of the Glauber dynamics is the number of steps the dynamics needs
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to perform so that starting from any initial configuration, the final distribution is close

to the stationary distribution. When the mixing time is polynomial in the number

of vertices, the Glauber dynamics naturally gives an efficient sampling algorithm for

the Gibbs measure, and in this case, we say the Markov chain is rapidly mixing. The

relaxation time Trelax, defined as the inverse of the spectral gap of the Markov chain,

is a different measurement of how fast the dynamics converges to the equilibrium

measure. Readers can refer to Chapter 2.3 for formal definitions of the above concepts.

The pursuit of understanding the speed of convergence of Markov chains on spin

systems never comes to an end. In the last two decades, numerous results have been

proven for both the upper and lower bounds on the mixing time for spin systems

under different parameter settings. Generally, it is conjectured that for spin systems

on various graphs (such as trees, lattices and graphs with bounded degrees), there

is a threshold for the parameter of the system such that the mixing time of the

Glauber dynamics experiences drastic change when the parameter varies around the

threshold. A major part of this thesis is devoted to develop a methodology that

clarifies the threshold behavior of mixing times for certain spin systems on regular

trees.

For the Ising model, recent studies (see, e.g., [8, 52, 74, 67]) have been gradually

revealing the fundamental reason why such a phase transition for the mixing time

could exist, making more explicit connections to the properties of the equilibrium

states of the spin systems.

It appears that for general graphs, the mixing time of the Glauber dynamics has

a phase transition at the tree uniqueness threshold. For the class of graphs with

maximum degree ∆, it was shown by Mossel and Sly [52] that the phase transition

for the mixing time of the Glauber dynamics on the Ising model occurs at the tree

uniqueness threshold βc(T∆) = arctanh( 1
∆−1

). They show that when β < βc(T∆), the

mixing time of the Glauber dynamics is O(n log n) where n is the number of vertices
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in the graph. Previously, it was shown by Gerschenfeld and Montanari [28] that the

mixing time of the Glauber dynamics is exp(Ω(n)) on random ∆-regular graphs with

high probability when β > βc(T∆).

However, note that for more restricted classes of graphs, the thresholds for the

mixing time of the Glauber dynamics might be different than the tree uniqueness

threshold. The phase transition for the mixing time has been known for the Ising

model on Z2 since the early 1990s (see, e.g., [44, 43]). It is shown that when the inverse

temperature β < βc(Z2), in the region that the correlation decays exponentially in the

distance from the boundary to the origin, the Glauber dynamics is rapidly mixing.

When β > βc(Z2), the mixing time is lower bounded by exp (Ω(
√
n)). In these

studies, the connection between the spatial decay of correlation in the Gibbs measure

and the mixing time of the Glauber dynamics has been observed and established for

the Ising model on the square lattice. The uniqueness threshold of the Ising model

on the square lattice is the phase transition threshold of the mixing time for the

corresponding Glauber dynamics.

Interestingly, for the ∆-regular tree itself and some of the locally tree-like graphs

such as planar graphs, the phase transition for the mixing time does not seem to be

at the uniqueness threshold. It is conjectured that the phase transition threshold for

the mixing time of the Glauber dynamics in the regular tree case is at the so-called

reconstruction threshold. This connection is what we investigate next.

1.1.3 The Reconstruction Threshold

For the regular tree T∆, there is another way to generate an infinite Gibbs measure,

called broadcasting (see, e.g., [51]). As suggested by its name, the process generates

spin assignments from the root down to infinity by a homogeneous Markov chain. For

example, in the case of Ising model, the broadcasting process works in the following

way:
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• The root is assigned a spin uniformly at random from {−1,+1};

• For each vertex, select the spins for its b children independently at random

according to the transition matrix

B =

1− ε ε

ε 1− ε

 ,

i.e., each child of v will have the same spin as v with probability 1− ε and the

opposite spin with probability ε.

One can easily check that this indeed generates the free Gibbs measure over the whole

tree by noticing that if the broadcasting process stops at height h, the distribution of

the configurations is exactly the same as the Ising model with β = 1
2

ln 1−ε
ε

on the ∆-

regular tree of height h with free boundary conditions. An important question related

to the broadcasting process is called the reconstruction problem. It addresses the ques-

tion of how much information the root passes to its descendants in the broadcasting

process. As we can see during the above broadcasting process, the information of the

root’s spin is being lost in some sense as the spins pass from the parents to their chil-

dren. However, when one has all the assignments at the leaves, it may still be possible

to recover the root’s original spin with a non-trivial probability. The reconstruction

problem asks over random boundary conditions generated by the broadcasting pro-

cess, whether in expectation the assignment of the root can be recovered with a

non-trivial probability or not. As compared to the uniqueness problem which con-

cerns the decay of correlation from the worst case boundary conditions (such as the

all +1/−1 boundary conditions for the Ising model), in the reconstruction problem,

it concerns the average decay of correlations for the influence from all the boundary

conditions. Readers can refer to Chapter 2.3 for formal details. The reconstruction

problem was first studied in Statistical Physics for understanding the free Gibbs mea-

sure of the Ising model on the infinite tree. For years, it has also been widely studied
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in Computational Biology as a method of reconstructing evolutionary trees (see, e.g.,

[14]), and in Computer Science to model tree communication networks. It turns out

that there are again threshold behaviors for reconstruction problems in many spin

systems.

A general connection between the reconstruction and the convergence time of

the Glauber dynamics was shown by Berger et al. [8]. They showed for general

spin systems that O(n) relaxation time on the complete tree (with free boundary

conditions) implies non-reconstruction on the tree. Recently, for the Ising model, the

picture of the mixing time of the Glauber dynamics on the ∆-regular tree is actually

completed and the phase transition was shown to happen exactly at the reconstruction

threshold. A new work of Ding et al. [17] gives very sharp bounds on the mixing time

of the Glauber dynamics for the Ising model on the complete tree. They illustrate

that the dynamics undergoes a phase transition at the reconstruction threshold by

showing that when β = βr = arctanh(1/
√

∆− 1), the mixing time is lower bounded

by Ω(n log3 n). When β < βr, the mixing time was already known to be O(n log n) by

Martinelli et al. in [46] and when β > βr, the mixing time is precisely lower bounded

by Ω(nf(∆,β)) for some concrete function f(∆, β) > δ > 1, as established by Berger

et al. in [8].

While in the Ising model it seems that the pictures of uniqueness, reconstruction,

mixing time and their connections are quite clear for various classes of graphs, it is

not the case for other spin systems such as colorings and weighted independent sets.

The difficulties arise from the fact that both colorings and weighted independent sets

are hard-constraint models. They possess different combinatorial properties of their

own, which make it impossible to directly apply the existing methods used for Ising

models. These two hard-constraint models are the main subjects that we study in

this thesis.
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1.2 Colorings, Weighted Independent Sets and Our Results

Colorings and weighted independent sets (hard-core model) are the spin systems of

particular interest in Combinatorics and Computer Science. In the colorings problem,

one is given a finite graph G = (V,E) and a set of k colors. The valid configurations

are proper k-colorings of G where each vertex is assigned one of k colors from the

set [k] = {1, 2, . . . , k} and for every edge e ∈ E, the colors on the endpoints of

e are different. The Gibbs measure is the uniform distribution over all the valid

configurations. In the hard-core model, one is given a finite graph G = (V,E) and a

real number λ called the activity. The configurations are independent sets (subsets of

V where there are no edges between the vertices) of the graph G and each independent

set I is weighted by raising the activity λ > 0 to the power of the number of vertices in

I, i.e., w(I) = λ|I|. The partition function is Z =
∑

I⊆V w(I) and the Gibbs measure

assigns each independent set I with probability w(I)/Z. We will formally define these

models and concepts in a more general setting later in Chapter 2.1. For k-colorings,

Jonasson [37] established that the tree uniqueness threshold is at kc(T∆) = ∆ + 2.

Kelly [38] proved that the tree uniqueness threshold for the hard-core model is at

λc(T∆) = (∆−1)∆−1

(∆−2)∆ .

The mixing times of the Glauber dynamics for these two models are heavily stud-

ied. For instance, for k-colorings on graphs of maximum degree ∆, Jerrum [35] showed

that the Glauber dynamics is rapidly mixing when the number of colors k ≥ 2∆.

Later, Vigoda [73] established that the Glauber dynamics is rapidly mixing when

k ≥ 11∆
6

which is still the best known result for k-colorings on general graphs. When

restricting the class of graphs by imposing minimum girth requirements or the pla-

narity, we can establish rapid mixing for smaller k, with respect to ∆ [21, 24, 31, 32].

When k < ∆ + 2, it is easy to verify that the Glauber dynamics on graphs of maxi-

mum degree ∆ is not ergodic for some graphs. However, we do not know whether it

is true that the Glauber dynamics is always rapidly mixing whenever k is above the
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tree uniqueness threshold kc(T∆) = ∆ + 2.

For the hard-core model on graphs of maximum degree ∆, the exact threshold of

the phase transition for the Glauber dynamics is not known either. However, recently

a remarkable connection was established between the computational complexity of

approximating the partition function for graphs of maximum degree ∆ and the tree

uniqueness threshold λc(T∆). On the positive side, Weitz [74] showed a deterministic

fully-polynomial time approximation algorithm (FPAS) for approximating the par-

tition function for any graph with maximum degree ∆, when λ < λc(T∆) and ∆ is

constant. On the other side, for every ∆ ≥ 3, it was shown that unless NP = RP ,

there does not exist an FPRAS for the partition function for graphs of maximum

degree at most ∆ when λc(T∆) < λ, as shown by Sly [67] and later improved by

Sly and Sun [68] and Galanis et al. [25]. The algorithmic result of Weitz and the

hardness of approximation result of Sly suggest that the uniqueness threshold for the

infinite ∆-regular tree is the right threshold for the phase transition of the mixing

time of the Glauber dynamics on the class of all graphs with maximum degree ∆.

The underlying reason is that the ∆-regular tree is considered to be the extremal case

for the decay of correlations amongst all graphs of maximum degree ∆.

For these models, to get precise thresholds for the mixing times of the Glauber

dynamics in the setting of general graphs is extremely challenging. However, as illus-

trated earlier in the Ising model, the tree uniqueness threshold is not the threshold

for having an efficient sampling algorithm or approximating the partition function in

polynomial time for many classes of graphs with more structural information. In this

thesis, we develop new analytical methods to study colorings and weighted indepen-

dent sets on graphs with extra structures (such as square lattices and trees) and hence

we are able to prove new bounds for the uniqueness thresholds and mixing times of

the Glauber dynamics on these graphs. We now summarize our major contributions

below.
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1.2.1 Uniqueness Threshold for the Hard-core Model on Z2

Our first main result focuses on the well-studied particular case of the hard-core model

on the square lattice Z2, and provides a new lower bound for the uniqueness threshold,

in particular taking it well above the tree uniqueness threshold λc(T4) which is the

best previous result of the lower bound proved by Weitz [74].

Empirical evidence suggests that the critical point λc(Z2) ≈ 3.796 [26, 6, 57]. But,

unlike the Ising model on Z2 where the critical value of the uniqueness threshold is

known, both upper and lower bounds on the possible uniqueness threshold λc(Z2) are

significantly far from this conjectured point. The possibility of there being multiple

such λc is not ruled out, although no one believes that this is the case. From below, van

den Berg and Steif [72] used a disagreement percolation argument to prove λc(Z2) >

pc
1−pc where pc is the critical probability for site percolation on Z2. Applying the

best known lower bound on pc > 0.556 for Z2 by van den Berg and Ermakov [71]

implies λc(Z2) > 1.252 . . . . Prior to that work, an alternative approach aimed at

establishing the Dobrushin-Shlosman criterion [19], yielded, via computer-assisted

proofs, λc(Z2) > 1.185 by Radulescu and Styer [59], and λc(Z2) > 1.508 by Radulescu

[58].

These results were improved upon by Weitz [74] who showed that λc(Z2) ≥

λc(T4) = 27/16 = 1.6875. For the upper bound, a classical Peierls’ type argument

implies λc(Z2) = O(1) [18]. Recently, results of Randall [60] and later improved by

Blanca et al. [11] show slow mixing of the Glauber dynamics for λ > 5.3646. The up-

per bound for the uniqueness threshold λc(Z2) is also established at 5.3646 by them,

which is a significant improvement of the upper bound to a relatively small value

from what was previously known.

In this thesis, we propose a new analytical way to establish a strong version of

the decay of long range correlation (the so-called strong spatial mixing condition, see

Chapter 2.2 for a formal definition). Our technique refines and builds on the tree of
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self-avoiding walks approach of Weitz [74], resulting in a technical sufficient criterion

for the strong spatial mixing (and hence uniqueness) to hold on the hard-core model.

The new criterion achieves better bounds on strong spatial mixing when the graph has

extra structures, improving upon what can be achieved by just using the maximum

degree. The methodology we adopt is general and applicable to other spin systems

for a general class of regular graphs (see, e.g., [65]). Applying our technique to Z2

we prove that strong spatial mixing holds for all λ < 2.48, improving upon the work

of Weitz that held for λ < 27/16 = 1.6875. Our results imply a fully-polynomial

deterministic approximation algorithm for estimating the partition function. In the

square lattice, for any vertex v, the number of vertices that are within radius t from

v grows polynomially in t, and hence the square lattice is called an amenable graph.

It was shown by Dyer et al. [23] that for amenable graphs, if strong spatial mixing

holds, then the Glauber dynamics is rapidly mixing. Therefore, for the hard-core

model on the square lattice, as a corollary of our decay of correlation results, we

improve the range of the activity λ where the Glauber dynamics is rapidly mixing on

the square lattice. In summary, we prove the following theorem. This is a joint work

with Ricardo Restrepo, Jinwoo Shin, Prasad Tetali and Eric Vigoda [61], published

in Probability Theory and Related Fields, 2012.

Theorem 1. The following hold for the hard-core model on Z2 for all λ ≤ λ∗ = 2.48:

1. Strong spatial mixing holds on Z2.

2. There is a unique infinite-volume Gibbs measure on Z2.

3. For every finite subgraph G of Z2, Weitz’s algorithm [74] gives a fully-polynomial

time approximation scheme (FPAS) for approximating the partition function

Z(G).

4. For every finite subgraph G of Z2, the Glauber dynamics has O(n log n) mixing

time.
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1.2.2 Phase Transitions of Convergence Times for the Glauber dynamics
on Trees

The second main result we present is about the conjectured phase transition for the

mixing time of the Glauber dynamics for k-colorings on the ∆-regular tree. Note

that for the ∆-regular tree, we always use b = ∆− 1 to denote the branching factor.

Sly [66] and Bhatnagar et al. [10] show that the reconstruction threshold occurs at

kr = b(1 +o(1))/ ln b. It was believed that the place where the mixing time transition

happens coincides with the reconstruction threshold on regular trees.

Our interest in the reconstruction threshold on trees is its apparent connection to

the threshold for the efficiency of certain local algorithms on locally-tree like graphs,

such as sparse random graphs G(n, c/n) (where each edge appears with probability

c/n for some constant c > 1) and planar graphs. For colorings, the reconstruction

threshold kr on the tree is believed to be intimately connected to the threshold for the

efficiency of local algorithms for the sampling problem on locally tree-like graphs. The

evidence in support of that belief is that the the geometry of the space of solutions

on sparse random graphs appears to change dramatically near (and possibly at) the

reconstruction threshold; see [2, 28, 49]. Hayes et al. [32] recently proved that the

Glauber dynamics for any planar graph with maximum degree ∆ mixes in polynomial

time when k > 100∆/ ln ∆, which is a constant factor away from the reconstruction

threshold for the regular tree. Their result for the Glauber dynamics of colorings on

planar graphs suggests that the reconstruction threshold may have connections to the

mixing time of the Glauber dynamics on planar graphs as well.

For k-colorings on the ∆-regular tree, in Goldberg et al. [29] a non-trivial lower

bound of the mixing time is established when the number of colors k < b
2 ln b

, which

is below the reconstruction threshold. In contrast, Lucier and Molloy [42] show an

upper bound of the mixing time using the canonical flow approach (c.f., [41] Chapter

13.5). However, the upper bound is a high degree polynomial of n and hence it is not
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tight enough to establish the existence of a phase transition. Here, we provide a more

precise picture for the phase transition of the mixing time than provided by the results

in [29, 42]. Our main result gives (nearly) sharp bounds on the mixing time Tmix and

relaxation time Trelax of the Glauber dynamics of k-colorings for the ∆-regular trees,

establishing a phase transition at the critical point k = b(1 + ob(1))/ ln b. This is a

joint work with Prasad Tetali, Juan Vera and Eric Vigoda [70], published in Annals

of Applied Probability, 2012. We prove that:

Theorem 2. For the Glauber dynamics of k-colorings on the (b + 1)-regular tree T

of n vertices and height H = blogb nc satisfies the following:

1. For all ε > 0 and all k = (1+ε)b
ln b

:

Ω (n lnn/(b poly(ln b))) ≤ Tmix ≤ O(n1+ob(1) lnn),

Ω(n) ≤ Trelax ≤ O(n1+ob(1)).

2. For all ε > 0 and all k = b
(1+ε) ln b

:

Ω(n1+ε−ob(1)) ≤ Tmix ≤ O(n1+ε+ob(1) lnn),

Ω(n1+ε−ob(1)) ≤ Trelax ≤ O(n1+ε+ob(1)).

where the ob(1) functions are O(ln ln b/ ln b) for the upper bounds, (1 + ε)/bε for

the lower bounds when 0 < ε < 1 and exactly zero for the lower bounds when

ε ≥ 1. The constants in the Ω(·) and O(·) are universal constants.

Our third main result is for the Glauber dynamics of the hard-core model on

the complete tree, where we have the same phase transition phenomena around the

reconstruction threshold. For the hard-core model, the existence of the reconstruction

threshold follows from Mossel [50, Proposition 20]. By recent works of Bhatnagar et

al. [9] and Brightwell and Winkler [13], it is known that the critical ωr = (ln b+ (1 +

o(1)) ln ln b)/b where ω is the real positive solution of λ = ω(1 + ω)b.
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Figuring out the mixing time for the hard-core model on trees is indeed a more

complicated question to answer correctly than for k-colorings. Martinelli et al. [47]

showed that for the hard-core model on the (b + 1)-regular tree of height h with

free boundary condition the relaxation time is O(n) for all λ (and the mixing time

is O(n log n)). Hence, for the hard-core model, unlike in the Ising and colorings

models, the Glauber dynamics on the tree with free boundary condition does not

have connections to the reconstruction threshold. Our interest was whether there is

a boundary condition for which there is such a connection.

We prove there is a connection by explicitly constructing a boundary condition for

which the relaxation time slows down at the reconstruction threshold. The boundary

condition is constructed to mimic the measure generated by the broadcasting process

for the hard-core model on the infinite trees. Here is the formal statement of our

results. It is a joint work with Ricardo Restrepo, Daniel Stefankovic, Juan Vera and

Eric Vigoda [62], published in SODA 2011.

Theorem 3. For the Glauber dynamics of the hard-core model with activity λ =

ω(1 + ω)b on the (b + 1)-regular tree of n vertices and height H = blogb nc, the

following hold:

1. For all ω ≤ ln b/b:

For every boundary condition,

Ω(n) ≤ Trelax ≤ O(n1+ob(1)).

2. For all δ > 0 and ω = (1 + δ) ln b/b:

(a) For every boundary condition,

Trelax ≤ O(n1+δ+ob(1)).

(b) There exists a sequence of boundary conditions for all H →∞ such that,

Trelax = Ω(n1+δ/2−ob(1)).
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Overview of the Organization

The remainder of the thesis is organized as follows. In Chapter 2, we formally

define spin systems, Gibbs measure, the Glauber dynamics and related background

concepts used in the thesis. In Chapter 3, we introduce a general method that relates

reconstruction to a lower bound on the mixing time of the Glauber dynamics on trees.

We then apply the method to k-colorings and the hard-core model, to derive the lower

bound results in Theorem 2 and Theorem 3. In Chapter 4, we use various coupling

techniques to prove the upper bounds given in Theorem 2 and Theorem 3. We also

establish a connection between the log-Sobolev constant and the spectral gap of the

dynamics for the complete trees that is near optimal in order to sharply bound the

mixing time. Finally, we discuss the uniqueness problem for the hard-core model on

the square lattice in Chapter 5. Here, we introduce an analytical tool to improve the

range where the spatial mixing condition holds for a general class of regular infinite

graphs.
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CHAPTER II

PRELIMINARIES

In this chapter we formally define the spin systems, Gibbs measures, the uniqueness

problem, the reconstruction problem, the Glauber dynamics, mixing time and related

concepts.

2.1 Nearest Neighbor Spin Systems

Let G = (V,E) be a (finite) graph and Q be a finite set called spins. Let k = |Q|. A

configuration σ of the graph is a function from V to Q, i.e., an assignment for each

vertex v ∈ V with a spin q ∈ Q. We can define a probability measure µ = µG over

all the configurations, which is called the Gibbs measure.

Let the external field Λ be a fixed real vector of length k and the interaction

matrix B be a fixed k by k matrix with entries in R∪{±∞}. For each σ ∈ Ω, let the

weight of the configuration be defined as:

w(σ) = exp

 ∑
(u,v)∈E

B(σ(u), σ(v)) +
∑
v∈V

Λ(σ(v))

.
The set of all the configurations with positive weights is denoted as Ω = ΩG.

Let Z =
∑

σ∈Ω w(σ) be the partition function which is the total sum of the weights

over all the configurations. Then, the Gibbs distribution µ is defined as for σ ∈ Ω,

µ(σ) = w(σ)/Z. Note that, when the graph G is clear in the context, the notations

for µ,Ω and Z will always omit G in the subscription for simplicity.

To measure the similarity of two probability distributions, usually we use the

notion of total variation distance which is defined as follows.

Definition 4. For probability distribution µ and ν on the space Ω, the total variation
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distance ‖µ− ν‖TV is defined as

‖µ− ν‖TV =
1

2

∑
σ∈Ω

|µ(σ)− ν(σ)| = max
A⊆Ω
|µ(A)− ν(A)| .

The ferromagnetic Ising model mentioned in the introduction can be defined using

the above notions by setting Q = {+1,−1}, Λ(+1) = 0,Λ(−1) = 0 and B(i, j) = ijβ

for all i, j ∈ Q. In this thesis, we mainly study the following two hard constraints

spin systems: k-colorings and the hard-core model.

Example 2.1.1. The k-proper coloring is a spin system with |Q| = k spins. Each

valid configurations is a proper k coloring of the underlying graph G, i.e., the assign-

ments of two vertices cannot be the same if there is an edge between the vertices. The

Gibbs measure is uniform distribution over all the proper colorings. Fitting into the

general spin systems setting, the coloring model is the same as setting B(i, i) = −∞,

B(i, j) = 0 for i 6= j and Λ(i) = 0.

Example 2.1.2. Weighted independent set (hard-core) model, is a spin system with

two spins: occupied and unoccupied. Each valid configuration is an independent set of

the underlying graph G. An independent set of the graph G is defined as a subset I of

vertices V such that there is no edge between the vertices in I. Each independent set

I is of weight λ|I| where λ > 0 is called activity. When λ > 1, the system is in favor

of independent sets with larger sizes and when λ < 1, the system is in favor of smaller

independent sets. When λ = 1, the Gibbs distribution is the uniform distribution over

all independent sets. Putting into the context of general spin systems, here the matrix

B is defined by the following table:

unoccupied occupied

unoccupied 0 0

occupied 0 −∞

And the site activity Λ(unoccupied) = 0, Λ(occupied) = log(λ). Generally, we will use

Q = {0, 1} and let spin 0 represent “unoccupied” and spin 1 represent “occupied”.
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Now we are going to study the conditional Gibbs distribution on a set of vertices,

say U , when the configurations on another set of vertices distinct from U , say S,

is fixed. To do this, we introduce the concept of boundary condition. A boundary

condition is a fixed partial assignment to the vertex set V . Formally, let S be a subset

of V . Then, a boundary condition ρ is an assignment from S to Q. We can then

define the space of valid configurations according to the boundary condition:

Ωρ = ΩG,ρ = {σ ∈ Ω|σ(S) = ρ(S)} .

Figure 2: Both blue and green vertices are in the set S and ∂S are the green vertices.
The white vertices are hence in the set V \ S.

We will use the notation ∂S to denote the set of vertices that are on the boundary

of S with respect to V \ S (See Figure 2 for an example), i.e.,

∂S = {s ∈ S|∃v ∈ V \ S, (v, s) ∈ E}.

The probability measure µρ = µG,ρ is then defined as the conditional probability

distribution on ΩG,ρ for each configuration that agrees with the boundary condition

ρ on set S, i.e., for each σ ∈ Ωρ,

µρ(σ) = µG,ρ(τ) =
w(σ)

Zρ
,
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where

Zρ = ZG,ρ =
∑

σ∈ΩG,ρ

w(σ).

The conditional Gibbs distribution µρ can be also viewed as the probability dis-

tribution on the space ΩG′ with G′ = (V \S,E) (e.g., the white vertices and edges in

Figure 2). For each configuration τ ∈ ΩG′ , let

µρ(τ) =
µ(τ ◦ ρ)∑
τ µ(τ ◦ ρ)

,

where µ is the Gibbs distribution on the graph G. For any two assignments η1 : S1 →

Q and η2 : S2 → Q with S1 ∩ S2 = ∅, the concatenated function η1 ◦ η2 is defined as

the assignment from S1 ∪ S2 to Q such that it agrees with η1 on S1 and with η2 on

S2. From this point of view, for any fixed graph G, it is immediate to check that µG,ρ

actually only depends on the assignments on ∂S.

To extend the definition of the Gibbs measure from finite graphs to infinite graphs,

the following well-known DLR (Dobrushin-Landford-Ruelle) compatibility conditions

[27] is used.

Definition 5. A probability measure ν over the configurations on the infinite graph

G = (V,E) is a Gibbs measure if, for any subset T of V such that V \ T is finite,

any boundary condition ρ on ∂T and almost surely every τ ∈ Ω(G) that agrees with

ρ, we have

ν(σV \T |σT = τT ) = µG,ρ(σV \T ),

where according to the definition, µG,ρ is the Gibbs measure on the finite graph of G

restricted on the vertex set V \ T with the boundary condition ρ.

Note that µG,ρ only depends on the assignment on ∂T and when the graph G

is locally finite, i.e., the degree of G is bounded, then ∂T is finite and hence µG,ρ

is enumerable with respect to the assignments to ∂T . In many works, the finite

dimension measures µG,ρ are called the specification. It is clear that all the spin
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systems we defined previously over the finite graphs give valid specifications and it

is well known that for any specification, at least one infinite Gibbs measure always

exists [27].

2.2 Uniqueness, Weak and Strong Spatial Mixing

As we saw in the introduction, for the Ising model on infinite tree, we can write a

sequence of boundary conditions and it is known that when an appropriate sequence

of boundary conditions is chosen, the weak limit of the conditional Gibbs distribution

exists and gives a valid infinite Gibbs measure (see, e.g., [27]). When two sequences

of boundary conditions are different, the infinite Gibbs measures we obtain from the

limits may be different. Hence, there may be coexistence of several infinite Gibbs

measures for the same specification µ. One of the central questions in the study of

the spin systems is the so-called the uniqueness problem asking whether the system

admits more than one several infinite Gibbs measures.

In fact, the set of infinite measures forms a simplex and any infinite measure can be

written as a convex combination of extremal Gibbs measures. Therefore, to determine

whether the infinite Gibbs measure is unique or not, it is sufficient to study those

extremal measures. It has been proved that the extremal Gibbs measures can always

be defined as the the weak limit of the measures specified by a sequence of boundary

conditions on finite subgraphs of the infinite graph. This nice fact gives us a more

constructible way to understand and manipulate the infinite Gibbs measures. As we

view an extremal measure as the limit of a sequence of finite boundary conditions,

we can treat the uniqueness problem as whether different sequences of boundary

conditions have substantially different effects to the interior in the limit, i.e., whether

the information from the boundaries can affect the probability distributions of the

configurations on the internal vertices. For an infinite graph, the Gibbs distribution

for the specification µ is unique if and only if the following condition holds. The

23



results mentioned in this paragraph are summarized in [27].

Proposition 6. A specification µ admits unique Gibbs measure on infinite graph

G = (V,E) if and only if for any finite region S ⊂ V , there is a sequence of finite

regions S ⊂ S1 ⊂ S2 · · · ⊂ Sn ⊂ . . . that ∪n>0Sn = V , and for any two configuration

σ and η, the following holds:

lim
n→∞

∥∥µSσn − µSηn∥∥TV
= 0,

where for each n, σn (same for ηn) corresponds to the boundary conditions σ on V \Sn,

i.e., the configurations outside Sn are fixed to be σ. And µSσn is the projection of the

measure µσn on Ω(S).

This inspires the concepts of various spatial mixing conditions which are the suf-

ficient conditions for establishing the uniqueness.

Our results about spatial mixing are mainly for two spin systems, especially for

the hard-core model, and therefore it is convenient to define them in terms of the

hard-core model to simplify the notations.

Let G = (V,E) be a (finite) graph. For v ∈ V , let αρ(v) = αG,ρ(v) denote

the marginal probability of v being set to “unoccupied” in the measure µG,ρ with a

boundary condition ρ on the vertex set S ⊆ V .

The first spatial mixing property is Weak Spatial Mixing (WSM). Here we consider

a pair of boundary configurations on a subset S and consider the “influence” on the

marginal probability that a vertex v is unoccupied. WSM says that the influence on

v decays exponentially in the distance of S from v.

Definition 7 (Weak Spatial Mixing). For a finite graph G = (V,E), in the spin

system with Gibbs distribution µ, WSM holds if there is a 0 < γ < 1 such that for

every v ∈ V , every S ⊂ V , and every two boundary conditions ρ,η on S,

|αρ(v)− αη(v)| ≤ γdist(v,S),
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where dist(v, S) is the graph distance (i.e., length of the shortest path) between v and

(the nearest point in) the subset S.

The second property of interest is Strong Spatial Mixing (SSM). The intuition is

that if a pair of boundary configurations on a subset S agree at some vertices in S then

those vertices “encourage” v to agree. Therefore, SSM indicates that the influence on

v decays exponentially in the shortest distance from v to the subset of vertices where

the pair of configurations differs.

Definition 8 (Strong Spatial Mixing). For a finite graph G = (V,E), in the spin

system with Gibbs distribution µ, SSM holds if there is a 0 < γ < 1 such that for

every v ∈ V , every S ⊂ V , every S ′ ⊂ S, and every two boundary conditions ρ,η on

S where ρ(S \ S ′) = η(S \ S ′),

|αρ(v)− αη(v)| ≤ γdist(v,S′).

Note that since dist(v, T ) ≤ dist(v, T \ S), SSM implies WSM. We can specialize

the above notions of WSM and SSM to a particular vertex v, in which case we say

that WSM or SSM holds at v. If the graph is a rooted tree, we will always assume

that the notions of WSM and SSM are considered at the root.

For the hard-core model on a graph G = (V,E), for a subset of vertices S and a

fixed configuration ρ on S, the effect of the boundary condition ρ on G is equivalent

to modifying the graph G to an induced subgraph G′ in the follow way: for each

v ∈ S that is fixed to be unoccupied we remove v from G, and for each v ∈ S that

is fixed to be occupied we remove v and its neighbors N(v) from G. In this way we

obtain the following observation which will be useful for proving SSM holds.

Observation 9. For a graph G = (V,E) and v ∈ V , in the hard-core model, SSM

holds in G at vertex v iff WSM holds for all the induced subgraphs G′ of G at vertex

v. To be precise, by induced subgraphs we mean graphs obtained by considering all the

vertex induced subgraphs of G and taking the component containing v.
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2.3 Broadcasting Process and Reconstruction

The broadcasting process is a way to generate an infinite probability measure over

the configurations on regular infinite trees starting from the root. It simulates the

process of how the information is broadcasted from the root to other vertices in a

tree communication network (see, e.g., [51]). Given an infinite tree T∆ of branching

factor b = ∆ − 1, a set of spins Q with |Q| = k and a k by k stochastic matrix B,

the broadcasting process does the following. The assignment to the root is randomly

selected from some initial distribution π. We denote the root’s assignment as σr.

Then, each child of the root is assigned with spins independently randomly according

to the distribution B(σr, ·). This procedure is carried on from the root level by

level down to the infinite. Usually, we use ν = ν(G,B) to denote the probability

distribution generated by the broadcasting process. Here we give two examples of the

broadcasting processes which we will study later.

Example 2.3.1. For k-coloring on the complete tree T∆, the broadcasting model is

quite straightforward. The initial distribution for the assignment σr of the root is

1/k for each color. Then, each child of the root is choosing a color from Q \ {σr}

independently and uniformly randomly. The corresponding stochastic matrix B is

defined as:

• B(i, i) = 0;

• B(i, j) = 1
k−1

for all i 6= j.

The broadcasting process for the hard-core model is a bit complicated.

Example 2.3.2. Let ω be the real positive solution of the equation

λ = ω(ω + 1)b.

Initially the root is unoccupied with probability ω+1
2ω+1

and occupied with probability
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ω
2ω+1

. The 2 by 2 stochastic matrix is then defined as:

B =

 1
1+ω

ω
1+ω

1 0

 .

Let Ln denote the vertices that are at distance n from the root, i.e., the nth level of

the tree. We use σn to denote the projection (restriction) of the configuration σ ∈ Ω

to the vertex set Ln. We use Pi
n to denote the conditional probability measure of the

configurations on Ln given that the root is assigned with the spin i. The so-called

reconstruction problem is defined as follows.

Definition 10 (Reconstruction Problem, see, e.g., [51]). The reconstruction problem

for T∆ and B is solvable if there exists i, j ∈ Q such that

lim
n→∞

∥∥Pi
n −Pj

n

∥∥
TV

> 0,

where ‖µ1 − µ2‖TV is the total variation distance between two distributions µ1 and µ2.

From the definition, we can see that the reconstruction problem is concerning the

difference between two conditional distributions on the configurations of Ln when

the broadcasting process starts with different assignments on the root as n → ∞.

There are several equivalent definitions of the reconstruction solvability and readers

can refer to [51] for more details. We will use the following, which asks whether a

typical assignment of the leaves influences the conditional measure at the root.

Definition 11 (Reconstruction Problem). For the measure ν generated by the broad-

casting process B on T∆, the reconstruction problem is solvable if there exists a spin

q ∈ Q such that

lim
n→∞

Eσ∼ν [|µσn(η(r) = q)− ν(σ(r) = q)|] > 0,

where µσn(η(r) = q) is defined as the marginal conditional probability of the root r

being colored q given the boundary condition σ at the vertices Ln.
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Note that the reconstruction problem is not solvable if and only if the correspond-

ing broadcasting measure on the infinite tree is extremal (see, e.g., [27, 51]).

2.4 Glauber Dynamics and Bounds on Convergence Times

The (heat bath) Glauber dynamics is a discrete time Markov chain (Xt) for sampling

from the Gibbs distribution µ for a specific spin system on a given graph G = (V,E).

The transitions Xt → Xt+1 of the Glauber dynamics are defined as:

• Choose a vertex v uniformly at random;

• For all w 6= v set Xt+1(w) = Xt(w);

• Set Xt+1(v) = i with probability µρ(v = i), where ρ is the boundary condition

defined on V \ {v} and ρ(w) = Xt(w) for all w ∈ V \ {v}.

When a boundary condition ρ is specified for the Glauber dynamics, the state space

is restricted to Ωρ.

Let P (·, ·) denote the transition matrix of the Glauber dynamics, and P t(·, ·)

denote the t-step transition probability. The total variation distance at time t from

initial state σ is defined as

‖P t(σ, ·)− π‖TV :=
1

2

∑
η

|P t(σ, η)− π(η)|.

The mixing time Tmix for a Markov chain is then defined as

Tmix(ε) = min
t
{max

σ
{‖P t(σ, ·)− π‖TV } ≤ ε}.

In many papers, ε is often set to be a fixed number, e.g., ε = 1
2e

. This is due to the

well-known fact that Tmix(ε) ≤ Tmix( 1
2e

) log 1
ε
. We denote Tmix( 1

2e
) as Tmix.

Let λ1 ≥ λ2 ≥ · · · ≥ λ|Ω| be the eigenvalues of the transition matrix P . The

spectral gap cgap is defined as 1− λ2. The relaxation time Trelax of the Markov chain

is then defined as c−1
gap, the inverse of the spectral gap. It is an elementary fact that
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the mixing time gives a good upper bound on the relaxation time (see, e.g., Theorem

5 in [22]), which we will use in our analysis:

Trelax = O(Tmix). (1)

Note that our definition of relaxation time following [8, 46] is slightly different from the

standard definition, the inverse of the absolute spectral gap which is (1−max{|λ2|, |λ|Ω||})−1

(see, e.g., Chapter 13 in [41]). It is a standard fact that by passing to a lazy chain

(1
2
P + 1

2
I) which makes no move with half probability, the two definitions are iden-

tical. Introducing the laziness to the Glauber dynamics only adds an extra factor of

two to the mixing time, therefore it will not affect our asymptotic results.

To lower bound the mixing and relaxation times we analyze the conductance.

The conductance of the Markov chain on Ω with transition matrix P is given by

Φ = minS⊆Ω{ΦS}, where ΦS is the conductance of a specific set S ⊆ Ω defined as

ΦS =

∑
σ∈S
∑

η∈S̄ π(σ)P (σ, η)

π(S)π(S̄)
.

Roughly speaking, the conductance ΦS measures the probability of being in the

set S and getting out of S in the next step of the transition following the Markov chain

transition matrix P . A general way to find a good upper bound on the conductance

is to find a set S such that the probability of escaping from S is relatively small.

The well-known relationship between the relaxation time and the conductance is

established in [39] and [64] and we will use the form

Trelax = Ω(1/Φ) , (2)

for proving the lower bounds.

We will also work with the logarithmic Sobolev constant of a (finite) Markov

chain. We briefly recall here the variational definition of both the spectral gap and

the log-Sobolev constant.
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Let f be a function (vector) from Ω to R, π be the stationary distribution over

Ω and µ be any probability distribution over Ω. Let D(f) be the standard Dirichlet

form of the heat-bath Glauber dynamics defined as:

D(f) =
1

2

∑
σ

∑
σ′

(f(σ)− f(σ′))2π(σ)P (σ, σ′).

Let Eµ(f) be the average of f under the distribution µ, and let Varµ(f) :=

Eµ(f 2)− E2
µ(f) be the corresponding variance, which can also be written as:

Varµ(f) =
1

2

∑
σ

∑
σ′

(f(σ)− f(σ′))2µ(σ)µ(σ′).

Let Entµ(f) := Eµ(f log f)−Eµ(f) log(Eµ(f)). When it is clear what the under-

lying distribution is, we will drop the subscript µ in the notation Ent(f).

The spectral gap cgap is equivalently defined as (see, e.g., Chapter 13 in [41])

cgap = inf
f

D(f)

Var(f)
.

The log-Sobolev constant csob is defined as (see, e.g., [16]),

csob = inf
f≥0

D(
√
f)

Ent(f)
,

where the infimum in both equations is over non-constant functions f .

From this definition, it is more clear that the relaxation time Trelax = 1/cgap is a

good measurement of the convergence speed, since it is not hard to show that, for

any function f ,

Varπ(P tf) ≤ (1− cgap)2tVarπ(f).

A similar inequality about the entropy form Ent(P tf) holds for the log-Sobolev con-

stant.

As for the upper bounds on the mixing time of the dynamics, one can use the

following well-known relationship between the mixing time and the relaxation time

(see, e.g., Theorem 12.3 in [41]):

Tmix ≤ log

(
1

minσ∈Ω{π(σ)}

)
Trelax.
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By applying the above relationship, one usually gets an additional factor of n for the

upper bound of the mixing time. To save this factor of n, one may use the following

relationship between the mixing time and the inverse of the log-Sobolev constant (see

e.g. [16] for more details):

Tmix = O

(
c−1
sob ln ln

1

minσ∈Ω{π(σ)}

)
. (3)
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CHAPTER III

LOWER BOUNDS ON THE RELAXATION TIME AND

MIXING TIME

In this chapter we will establish the connection between the reconstruction solvability

and the upper bound of the conductance and hence the lower bound of the relaxation

time and mixing time of the Glauber dynamics.

This chapter is organized in the following way. First, we will introduce the con-

cept of reconstruction algorithms, which are effective algorithms for recovering the

assignments at the root given the configurations on the leaves when the reconstruction

problem is solvable. Then, we will show a simple but strong connection between the

conductance of the Glauber dynamics and the so-called sensitivity of a reconstruc-

tion algorithm. We analyze a reconstruction algorithm (FR) for k-colorings and a

reconstruction algorithm (BW) for hard-core model respectively and establish upper

bounds for the conductances in both models. As a result, we are able to establish

good lower bounds of the relaxation time and the mixing time.

3.1 Conductance and Reconstruction Algorithms

Let us denote the finite ∆-regular tree of height h as Th when the degree ∆ is clear

in the context. Let νh be the projection of the broadcasting distribution ν (defined

in Chapter 2.3) of the entire infinite tree onto the first h levels of the tree, i.e., νh

is the distribution on the configurations of Th generated by the broadcasting process

with a broadcasting matrix B. For the tree Th, we use L to denote the leaves Lh for

simplicity.

A reconstruction algorithm is a function A : Ω(L) → Q ∪ Q′ (ideally efficiently
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computable) such that A(σh) and σ(r) are positively correlated for random configu-

rations σ ∼ νh. One can imagine that for a configuration σ, only the configurations

on the leaves are exposed to the algorithm A and the task of algorithm A is to take

the configurations σh at the leaves L as the input and tries to guess (compute) the

configuration σ(r) at the root. When the context is clear, we write A(σ) instead of

A(σh). The set Q′ is a set of extra symbols that is different from the spins in Q for the

reconstruction algorithm to use. Usually, if a good reconstruction algorithm outputs

a symbol in Q′ for the root, it means that the uncertainty for the configuration at

the root is high given the configurations at the leaves.

Under the Gibbs measure νh, the effectiveness of A is the following measure of

the covariance between the algorithm A’s output and the marginal at the root of the

actual measure:

rh,A = min
x∈Q

[νh(A(σ) = σ(r) = x)− νh(A(σ) = x)νh(σ(r) = x)] .

If it is the case that

lim inf
h→∞

rh,A = c0 > 0

for some positive constant c0 (independent of the number of vertices n and height

h), then we say that A is an effective reconstruction algorithm. In words, an effective

algorithm, is able to recover the spin at the root, from the information at the leaves,

with a nontrivial success, when h → ∞. Notice that reconstruction (defined in

Definition 11) is a necessary condition for the existence of an effective reconstruction

algorithm, since

Eσ∼νh [|µσh(η(r) = x)− νh(η(r) = x)|]

≥ Eσ∼νh [|µσh (η(r) = x)− νh (η(r) = x)|1(A (σ) = x)]

≥ Eσ∼νh [µσh (η(r) = x) 1(A (σ) = x)]− νh(A(σ) = x)νh(σ(r) = x)

≥ rh,A,
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where 1(·) is the indicator function. We define the sensitivity of A, for the configu-

ration σ ∈ Ω(Th), as the fraction of vertices v such that switching the spin at v in σ

changes the final result of A. More precisely, let σv→c be the configuration obtained

from changing σ at v to spin c. Define the sensitivity as:

SA(σ) =
1

n
#{v ∈ L : ∃c ∈ Q,A(σv→c) 6= A(σ)}.

The average sensitivity S̄A is hence defined as

S̄A = min
x∈Q
{S̄A,x}, and S̄A,x = Eσ∼νh [SA(σ)1(A(σ) = x)].

It is fine to define the average sensitivity without the indicator function, which only

affects a constant factor in the analysis. We are doing so to simplify some of the

statements and proofs.

Typically when one proves reconstruction, it is done by presenting an effective

reconstruction algorithm. Using the following theorem, by further analyzing the

sensitivity of the reconstruction algorithm, one obtains an upper bound on the con-

ductance of the Glauber dynamics.

Theorem 12. Suppose that A is an effective reconstruction algorithm. Then, the

conductance Φ of the Glauber dynamics satisfies Φ = O
(
S̄A
)
.

Proof. Throughout the proof let π := νh. Consider the set U = {σ : A(σ) = 1}.

Without loss of generality, we can simply assume that spin x = 1 is the one that is

minimized for S̄A,x as in the definition of S̄A. Recall that P is the transition matrix
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of the Glauber dynamics. Then,

ΦU =

∑
σ∈U π(σ)

∑
w∈L

∑
τ :τ(w)6=σ(w),A(τ)6=A(σ) P (σ, τ)

π(U)(1− π(U))

≤
∑

σ∈U π(σ)
∑

w∈L
∑

τ :τ(w)6=σ(w),A(τ) 6=A(σ)

(
1
n
πσ(τ)

)
π(U)(1− π(U))

≤
∑

σ∈U π(σ) 1
n

∑
w∈L 1(∃c ∈ Q,A(σw→c) 6= A(σ))

π(U)(1− π(U))

≤
∑

σ∈U π(σ)SA(σ)

π(U)(1− π(U))

=
S̄A,1

π(U)(1− π(U))

≤ S̄A
r2
h,A

by the definition of rh,A and |Q| ≥ 2.

Because the algorithm is effective, we have that lim infh→∞(rh,A) = c0 > 0 and

hence for all h big enough, rh,A > c0/2. Therefore, ΦU ≤ (rh,A)−2S̄A = O(S̄A), and

hence,

Φ ≤ ΦU = O
(
S̄A
)
,

which completes the proof of the theorem.

In the following two sections, we will use the above Theorem 12 to establish the

upper bound of the conductance and hence prove the lower bounds of the mixing

time and relaxation time of the Glauber dynamics in Theorem 2 for k-colorings and

Theorem 3 for hard-core models on the ∆-regular trees.

3.2 Colorings

Here we first give a simple reconstruction algorithm for colorings, then we will bound

the conductance via analyzing this algorithm. Specifically, we will prove the following

theorem for the conductance.

Theorem 13. For all ε > 0, there exists b0 such that, for all b > b0, for k = b
(1+ε) ln b

,

the conductance of the Glauber dynamics on the (b + 1)-regular tree T of n vertices
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and height H = blogb nc satisfies the following:

Φ = O
(
n−(1+ε−ob(1))

)
,

where the ob(1) function is (1 + ε)/bε for the lower bounds when 0 < ε < 1 and

exactly zero for the lower bounds when ε ≥ 1. The constants in the O(·) are universal

constants.

Then, by the relationship between the conductance and the relaxation time in

Eq. (2) and the relationship between the relaxation time and the mixing time in

Eq. (1), we are able to lower bound both the relaxation time and mixing time by

Ω
(
n1+ε−ob(1)

)
, and hence prove the lower bounds in Theorem 2.

The intuition why the Glauber Dynamics slows down when k < b/ ln b is that for

a typical configuration of the complete tree, the configuration of the root is hard to

change. The children of the root will have all the colors appearing and hence in order

to change the color of the root, the dynamics has to first change the spin of one of the

children such that the root has a choice to switch to some other colors. As we will

show later, this is impossible since the configuration of the root is actually frozen by

the configurations on the leaves, i.e., there is a subtree of the complete tree such that

if one wants to change the color of the root, then one has to start from the leaves.

There is no “free” internal vertex.

The algorithm (denoted as FR, stands for “frozen”) is a function that maps each

σ ∈ Ω(TH) to Q∪{♦}, where the diamond mark♦ is a special color called “unknown”.

It works in a bottom up manner from the configurations on the leaves: for each

parent v of the leaves, if its children contains all colors in Q except for σ(v), then

the algorithm marks v to color σ(v) (denote the mark of v as FR(σ, v)); otherwise,

FR(σ, v) = ♦. Then, the algorithm marks the vertices two level above the leaves in

the same manner recursively. The mark of the root is the output of the algorithm.

Formally, we describe the algorithm as below. The configuration σ is called frozen if
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Algorithm 1 FR(σ, v) : Reconstruction Algorithm for Colorings

if v is not leaf then
for w ∈ N−(v) do

FR(σ,w)
end for
if |{FR(σ,w) : w ∈ N−(v)} \ {♦}| = q − 1 then

return FR(σ, v)← Q \ {FR(σ,w) : w ∈ N−(v)}
else

return FR(σ, v)← ♦
end if

else
return FR(σ, v)← σ(v)

end if

FR(σ, r) = σ(r) meaning that the root configuration of σ is uniquely determined by

the configurations on the leaves.

In coloring σ ∈ Ω(TH), we say a vertex v is frozen in σ if in the subtree Tv the

coloring σ(L(Tv)) of the leaves of Tv forces the color for v. In other words, v is frozen

in σ if: for all η ∈ Ω where η(L(Tv)) = σ(L(Tv)), we have η(v) = σ(v) and hence

FR(σ, v) = σ(v). Note, by definition, the leaves are always frozen. If the vertex v

is not frozen, then FR(σ, v) = ♦. Observe that for a vertex to be frozen, its frozen

children must “block” all other color choices. This is formalized in the following

observation as in [29].

Observation 14. A non-leaf vertex v is frozen in coloring σ if and only if, for every

color c 6= σ(v), there is a child w of v where σ(w) = c and w is frozen.

Using this inductional way of defining a vertex being “frozen” in a coloring, we

can further show the following lemma. It is a generalization of Lemma 8 in [29], which

only applied to the case ε ≥ 1.

Lemma 15. For any ε ∈ (0, 1), in a random coloring of tree TH , the probability that

a vertex of the tree is not frozen is at most b−ε. For the leaves in TH , by definition,

they are always frozen.
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Proof of Lemma 15. The proof is very similar to the proof of Lemma 8 in [29]. We

include it here for completeness.

Let U` be the probability that a vertex at the height ` is not frozen. We are going

to prove that U` < b−ε by induction.

First of all, by definition, U0 = 0 since they are leaves. Let v be a vertex at height

` > 0. Since the probability that the color of v equals c is independent from the

probability that v is frozen, therefore we can just fix the color of v to some c∗ ∈ C,

and hence

U` = Pr [v is not frozen in σ | σ(v) = c∗].

Let w be a child of v. Again by the same argument using the independency, the

probability that w is frozen to color c equals 1−U`−1

k−1
. Thus, the probability that all the

children of v are either not frozen or not colored by using c is (1−(1−U`−1)/(k − 1))b.

By the union bound and induction, U`, the probability that there exists a color

c 6= c∗ such that all the children of v are not frozen to color c, is bounded by:

(k − 1)
(

1− 1− U`−1

k − 1

)b
≤ (k − 1) exp

(
− b(1− U`−1)

k − 1

)
≤ (k − 1) exp

(
− b(1− b−ε)

k − 1

)
≤ (k − 1) · exp

(
− (1 + ε)(1− b−ε) ln b

)
≤ b−ε, (4)

where the last inequality holds for large b. Putting everything together, we showed

that for every ` ≤ H, U` ≤ b−ε.

Using the same argument, we can prove a slightly stronger result: for any ε > 0,

U` ≤ 1
bε ln b

, and when ε ≥ 1, U` ≤ 1
(1+ε)b

.

Note that in the reconstruction algorithm FR, we have for any color c ∈ Q,

FR(σ) = c implies σ(r) = c. Then, by a direct calculation, this lemma also implies

the fact that

lim inf
h→∞

rh,FR > 0,
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which means that the algorithm FR is effective.

3.2.1 Upper Bound on the Conductance via Sensitivity Analysis

For the remainder of this section, we will analyze the sensitivity of the reconstruction

algorithm FR on the regular tree of height H. Let us denote T = TH for simplicity.

Let Fc = Fc(T ) denote those colorings in Ω(T ) where the root r of T is frozen to

color c ∈ Q, i.e.,

Fc(T ) = {σ ∈ Ω(T ) : FR(σ, r) = c} .

Note that µ(Fc(T )) ≤ 1/k by the symmetry. For each c ∈ Q, we will analyze the

sensitivity of the reconstruction algorithm FR in set Fc(T ) to upper bound the con-

ductance.

Fix a color c∗, to this end, we should bound the number of colorings σ ∈ Fc∗ which

can leave the set with one transition, and also the total number of transitions leaving

Fc∗ . To unfreeze the root, one has to recolor a leaf. Thus, we need to bound the

number of colorings frozen at the root which can become unfrozen by one recoloring,

and in that case, we need to bound the number of leaves which can be recolored to

unfreeze the root. For a coloring σ, vertex v and color c, let σv→c denote the coloring

obtained by recoloring v to c.

We capture the colorings on the “frontier” of Fc∗ as follows. For tree T = TH ,

coloring σ ∈ Ω(T ), a vertex v and a leaf z of Tv, let Ec∗v,z denote the event that the

coloring σ ∈ Ω is frozen to c∗ at the vertex v and there exists a color i where the

coloring σz→i is not frozen at the vertex v, i.e.,

Ec∗v,z =
{
σ ∈ Ω : FR(σ, v) = c∗ and ∃i ∈ Q,FR(σz→i, v) = ♦

}
.

By definition, this event only depends on the configurations at the leaves of the

subtree Tv. In particular, for the root of the tree, let 1σ,z,c∗ be the indicator of the

event Ec∗r,z for a specific configuration σ. According to the definition of the sensitivity
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S̄FR,c∗ , we have

S̄FR,c∗ = Eσ∼νH [SFR(σ)1(FR(σ) = c∗)]

=
1

n
Eσ∼νH

 ∑
z∈L(T )

1
(
∃i ∈ Q,FR(σv→i) 6= FR(σ)

)
· 1(FR(σ) = c∗)


=

1

n
Eσ∼νH

 ∑
z∈L(T )

1σ,z,c∗


=

1

n

∑
z∈L(T )

Pr
[
Ec∗r,z
]
, (5)

where the probability distribution is νH over the configurations on the tree T = TH .

Now if we can prove that

Prσ∈Ω

[
Ec∗r,z
]
≤ b−(1+ε−o(1))H , (6)

where o(1) is an inverse polynomial of b when ε < 1 and equals to zero when ε ≥ 1.

This will be clarified later in the proof of Lemma 16. Then by plugging this back into

Equation (5) we get

S̄FR,c∗ ≤
1

n
· bH · b−(1+ε−o(1))H ≤ 20n−1−ε+o(1).

Therefore, we can conclude that the sensitivity of the reconstruction algorithm FR

on the complete tree is upper bounded by O(n−1−ε+o(1)), and hence the conductance

of the Glauber dynamics is O(n−1−ε+o(1)). This proves Theorem 13.

3.2.2 Sensitivity Analysis of a Reconstruction Algorithm: Proof of Equa-
tion (6)

Let Ω∗ = {σ ∈ Ω : σ(r) = c∗} be the set of colorings where the root is colored c∗. By

symmetry and conditioning on Ω∗, it is easy to see that

Prσ∈Ω

[
Ec∗r,z
]

=
1

k
Prσ∈Ω∗

[
Ec∗r,z
]
.

Therefore, for the remainder of the proof we condition on the root being colored c∗.
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To simplify the notation, we denote B := b−(1+ε−o(1)). Let Ev,z be the union of Ecv,z

over all c ∈ Q, i.e., Ev,z is the event that includes those configurations σ where v is

frozen (to some color) in σ, and there exists a color i where the coloring σz→i is not

frozen at the vertex v. Let w0 = r, w1, . . . , wH−1, wH = z denote the path in T from

the root r down to the leaf z. We will show by induction that,

Prσ∈Ω∗
[
Ec∗r,z
]

= Prσ∈Ω∗
[
Er,z
]

≤ B Prσ∈Ω∗
[
Ew1,z

]
≤ B2 Prσ∈Ω∗

[
Ew2,z

]
≤ BH Prσ∈Ω∗

[
EwH ,z

]
= BH .

Recall that we always condition on the event that the root is colored to a fixed spin

c∗, therefore the first equality above is trivial. For the event Er,z to occur we need

that along the path from the leaf z to the root r, unfreezing each of these vertices will

“free” a color for their parent. More precisely, for σ to be in Er,z, w1 has to be frozen

because the color of z only affects the root through w1, and if w1 is not frozen then it

cannot affect the root becoming unfrozen. In order for the root to become unfrozen

by changing the color of the leaf z, it must also occur that w1 becomes unfrozen at

the same time, hence σ ∈ Ew1,z
, i.e., Er,z ⊆ Ew1,z

and more generally, Ewi,z ⊆ Ewi+1,z
.

For each 1 ≤ i ≤ H, let Awi,z denote the event that includes those configurations σ

where no sibling y of wi satisfies both of the following: σ(y) = σ(wi) and σ is frozen at

y. By the siblings of wi, as usual we mean the children (other than wi) of wi−1. The

event Ewi,z implies the fact that wi+1 is the only child that causes wi simultaneously

being frozen and being blocked from using color σ(wi+1), which means Ewi,z ⊆ Awi+1,z
.

We will show the following lemma for bounding the probability of Aw1,z
.

Lemma 16. Let C∗ = C − c∗. For a fixed color c1 ∈ C∗,

Prσ∈Ω∗
[
Aw1,z

| σ(w1) = c1

]
≤ B = b−(1+ε−o(1)).
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where o(1) is a function that goes to zero when b→∞.

Proof of Lemma 16. When ε < 1, the probability that all the siblings of w1 are either

not frozen or not colored with c1 is upper bounded by(
1− 1− UH−1

k − 1

)b−1

≤ exp
(
− (b− 1)(1− b−ε)

k − 1

)
≤ b−(1+ε)(1−b−ε),

where UH−1 is defined in Lemma 15.

Now we can see that o(1) is actually (1+ε)/bε when ε < 1. Note that, when ε ≥ 1,

by the same way it is easy to see that(
1− 1− UH−1

k − 1

)b−1

≤ b−(1+ε).

Observe that the events A1,z and Ew1,z
are independent, conditioned on the fixed

colors of the root and w1, because they depend on the configurations of different parts

of leaves. Then we have that for each c1 ∈ C∗,

Prσ∈Ω∗

[
(σ(w1) = c1)

⋂
Ew1,z

⋂
A1,z

]
= Prσ∈Ω∗

[
Ew1,z

| σ(w1) = c1

]
· Prσ∈Ω∗

[
A1,z | σ(w1) = c1

]
· 1

k − 1

≤ BH−1 ·B
k − 1

, (7)

where the last inequality is by the inductive hypothesis applied on the complete tree

Tw1 of height H − 1 and Lemma 16.

Finally, by the fact that Er,z ⊆ Ew1,z

⋂
A1,z and (7) above, we have

Prσ∈Ω∗
[
Er,z
]
≤ Prσ∈Ω∗

[
Ew1,z

⋂
Aw1,z

]
=

∑
c1∈C∗

Prσ∈Ω∗

[
(σ(w1) = c1)

⋂
Ew1,z

⋂
Aw1,z

]
≤ BH .

This completes the proof of (6) and hence the proof of the upper bound in Theorem 13.
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3.3 Hard-core Model

In this section, we aim at show the following theorem for the conductance of the

Glauber dynamics for hard-core models on the ∆-regular tree.

Theorem 17. For the Glauber dynamics of the hard-core model with activity λ =

ω(1 + ω)b on the (b+ 1)-regular tree TH with n vertices and height H = blogb nc, the

following holds:

For all δ > 0 and ω = (1 + δ) ln b/b, there exists a sequence of boundary conditions

for all H →∞ such that,

Φ = Ω
(
n−(1+δ/2−ob(1))

)
.

Then again, by the relationship between the conductance and the relaxation time

in Eq. (2), we prove the lower bounds in Theorem 3.

Martinelli et al. [47] showed that for the hard-core model on Th with free boundary

condition the relaxation time is O(n) for all λ (and the mixing time is O(n log n)).

In contrast, recall that from Bhatnagar et al. [9] and Brightwell and Winkler [13], it

is known that the reconstruction threshold of the broadcasting process for the hard-

core model on the infinite b-ary tree is at ωr = (ln b + (1 + o(1)) ln ln b)/b. We first

point out that there is no contradiction here about these two facts, by noticing the

fact that the free boundary condition gives an infinite measure that is very different

from the broadcasting process. Therefore, the rapid mixing result of the Glauber

dynamics does not contradict with the conjecture that the reconstruction threshold

should overlap with the phase transition threshold for the Glauber dynamics on the

complete trees.

Hence, for the hard-core model, the question is even harder: whether there is a

boundary condition for which the Glauber dynamics slows down beyond a certain

threshold of λ, and whether the threshold is the same as the reconstruction thresh-

old for the broadcasting process. We prove positively that there is a connection by
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constructing a boundary condition for which the relaxation time slows down at the

reconstruction threshold.

There are two major difficulties we were facing: one is to identify a proper subset

of the state space with poor conductance, such that the corresponding conductance

bound closely matches the relaxation time of the Glauber dynamics. The conductance

of such a subset should be sensitive to the boundary conditions, as we already know

that the Glauber dynamics is rapidly mixing under properly chosen boundary condi-

tions. The other difficulty, once we realized that the relaxation time of the Glauber

dynamics can be nontrivially lower bounded under a nonuniform hard-core model

(see Section 3.3.1 for details), is to prove that, when reconstruction happens, such a

nonuniform model can be approximated (in the measure sense), by an appropriate

sequence of boundary conditions. As a result, then we are able to show Theorem 17

via Theorem 12.

We begin by explaining the high level idea of the proof approach. To that end, we

first analyze a variant of the hard-core model in which there are two different activities,

the internal vertices have activity λ and the leaves have activity ω. The resulting

Gibbs distribution is identical to the measure νh which is obtained by following the

broadcasting process defined in Section 2.3 from the root to the level h. Thus we

refer to the following model as the broadcasting model.

For the tree Th = (V,E), we look at the following equivalent definition of the

distribution νh over the set Ω of independent sets of Th. For σ ∈ Ω, let

w′(σ) = λ|σ∩V \L|ω|σ∩L|,

where L are the leaves of Th and ω is, as before, the positive solution to ω(1+ω)b = λ.

Let νh(σ) = w′(σ)/Z ′ where Z ′ =
∑

σ∈Ω w
′(σ) is the partition function. By simple

calculations, the following proposition holds.

Proposition 18. The measure νh defined by the hard-core model with activity λ for
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internal vertices and ω for leaves is identical to the measure defined by the broadcasting

process.

Proof. In fact, we just need to verify that in the hard-core model with activity λ

for internal vertices and ω for leaves, the probability pv of a vertex v being occupied

conditioning on its parent is unoccupied is ω/(1+ω). This can be proved by induction.

The base case is v being a leaf, which is obviously true by the Markovian property of

the Gibbs measure. If v is not a leaf, by induction, the probability pv has to satisfy

the following equation

pv = (1− pv)
λ

(1 + ω)b
,

which solves to pv = ω/(1 + ω).

The result of Berger et al. [8] mentioned before implies that, in the reconstruction

region, the relaxation time of the Glauber dynamics on the broadcasting model is

ω(n). We will prove a stronger result, analogous to the desired upper bound of the

conductance for Theorem 17.

Theorem 19. For all δ > 0, the Glauber dynamics for the broadcasting model on the

(b + 1)-regular tree TH with n vertices, H = blogb nc and w = (1 + δ) ln b/b satisfies

the following:

Φ = O
(
n−(1+δ/2−ob(1))

)
and Trelax = Ω

(
n1+δ/2−ob(1)

)
,

where the ob(1) function is O(ln ln b/ ln b).

To prove Theorem 19, we analyze the sensitivity of the reconstruction algorithm

by Brightwell and Winkler [13, Section 5] which yields the best known upper bounds

on the reconstruction threshold. Our goal is to show that the average sensitivity

of this algorithm is small. The analysis of the sensitivity of the Brightwell-Winkler

(BW) algorithm, which then proves Theorem 19, is presented in Section 3.3.1.
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Our main objective remains of constructing a sequence of “bad” boundary condi-

tions under which the Glauber dynamics for the hard-core model slows down in the

reconstruction region. An initial approach is to simulate the nonuniform hard-core

model on T by by attaching the same tree T ′ (with boundary conditions) to all of the

leaves of a complete tree T , where T ′ is a (small) complete tree with some boundary

condition such that the marginal of the root being occupied is ω/(1+ω). In this case,

the resulting measure projected onto T is the same as the one in the broadcasting

model, and hence we can apply the same approach to upper-bound the conductance

of the dynamics on this new augmented tree. However, from a cardinality argument,

it is not the case that for every ω there exists a complete tree of finite height with

some boundary condition such that the marginal probability of the root being occu-

pied equals ω/(1 + ω). Alternatively, we give a constructive way to find boundary

conditions that approximate the desired marginal probability relatively accurately.

This is done in Section 3.4.

Finally, at the end of Section 3.4 we argue that since the error is shrinking very

fast from the bottom level under our construction of boundary conditions, we can

again analyze the sensitivity of the Brightwell-Winkler algorithm starting from just a

few levels above the leaves. This approach yields the upper bound of the conductance

of the dynamics stated in Theorem 17.

3.3.1 Lower Bound for Broadcasting: Proof of Theorem 19

Throughout this section we are working with the tree Th = (V,E), which is the

complete tree of height h and branching factor b. We denote L as the leaves of Th,

and for v ∈ V , let N(v) denote the children of v. We will focus on the broadcasting

model νh where each independent set σ of tree Th is weighted by λ|σ∩V \L|ω|σ∩L|. Recall

that λ = ω(1 + ω)b. For simplicity, we identify σ with its characteristic function. We

use the following function definition for σ: σ(v) = 1 if v ∈ σ, and σ(v) = 0 if v /∈ σ.
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To prove Theorem 19 we analyze the average sensitivity of the following recon-

struction algorithm used by Brightwell and Winkler [13], which we refer to as the

BW algorithm. For any configuration σ ∈ Ω as the input (or it suffices to have the

assignment σh for the leaves), the algorithm works in the following bottom up manner

labeling each vertex starting from the leaves: a vertex v is labeled to occupied if all

of its children N(v) are labeled to unoccupied; otherwise, v is labeled to unoccupied

if at least one of its children N(v) is occupied. The algorithm will output the la-

beling of the root as the final result. Formally, it can be described by the following

deterministic recursion deciding the labeling of every vertex:

BW(σh, v) =

 σ(v) if v ∈ L

1−maxw∈N(v) BW(σh, w) otherwise

Finally, let BW(σ) = BW(σh, r), where r is the root of the tree. Note that, BW(σ)

only depends on the initial configuration σh of the leaves. The algorithm is proved to

be effective in [13] for all ω = (1 + δ) ln b/b where δ > 0. Therefore, their algorithm

can be used under our framework to lower bound the relaxation time.

In the BW algorithm, by definition, we have that the average sensitivity satisfies:

S̄BW = O
(
n−1Eσ∼νh [#{z ∈ L : BW(σ) = 1 and BW(σz) = 0}]

)
. (8)

Due to the symmetry of the function BW(σh, v) and the measure νh, the expec-

tation can be further simplified as follows. Fix a leaf z∗, we have that:

Eσ [#{z ∈ L : BW(σ) = 1 and BW(σz) = 0}]

= bhνh
(
BW(σ) = 1 and BW(σz

∗
) = 0

)
. (9)

Observe that, for each vertex v and each configuration σ, if BW(σh, v) 6= BW(σzh, v),

then z∗ is a leaf on the subtree rooted at v and moreover, for each child w of v which

is not on the path from v to z∗, BW(σh, w) = 0. This fact leads to the following

lemma that we will use to upper bound the right hand side of (9).
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Lemma 20. Let z∗ be a leaf of Th, and let z∗ = u0, u1, . . . , uh = r be the path between

z∗ and the root of Th. For each i > 0, let

fi = νi−1(σ : BW(σ) = 0)

denote the probability that for the broadcasting model on the complete tree of height

i− 1, the Brightwell-Winkler algorithm outputs 0 for the root. Then,

νh(BW(σ) = 1 and BW(σz
∗
) = 0) ≤ Eσ∼νh

 ∏
i>0:σ(ui)=0

(fi)
b−1

.
Proof. Fix a configuration σ ∈ Ω where BW(σ) = BW(σh, r) = 1. Let the path P

from z∗ to the root r be u0 = z∗,u1, u2, · · · , uh = r. Let N̂(ui) = N(ui) \ {ui−1}. We

want that BW(σ) = 1 and BW(σz
∗
) = 0, i.e., by changing σ only at z∗, the output of

the BW algorithm changes from occupied to unoccupied for the labeling of the root.

Two necessary conditions for this to occur are the following. First, the output of the

BW algorithm along the path P alternates between occupied and unoccupied, i.e.,

σ satisfies BW(σh, ui) = 1 − BW(σh, ui−1) for all i ≥ 1. Second, for all i ≥ 1, for

all children w ∈ N̂(ui), we have BW(σh, w) = 0. This two conditions ensure that if

the configuration at ui changes then the output of the BW algorithm will change for

ui−1. Hence,

νh(BW(σ) = 1 and BW(σz
∗
) = 0) ≤ νh(σ : ∀i > 0, w ∈ N̂(ui),BW(σh, w) = 0).

(10)

To calculate the probability that a random σ ∼ νh satisfies such conditions, it would

be easier if we expose the configurations along the path P . Let σP be the projection

of σ on the path P . Conditioning on a configuration σP on the path, the events

BW(σh, w) = 0 are independent for all w ∈
⋃
i>0 N̂(ui). Note that, given σ(ui) = 0,

we have for all w ∈ N̂(ui), the conditional probability of BW(σh, w) = 0 equals fi.
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Therefore,

νh(BW(σ) = 1 and BW(σz
∗
) = 0)

≤ νh(σ : ∀i > 0, w ∈ N̂(ui),BW(σh, w) = 0) by (10)

=
∑

η∈{0,1}|P|
νh(σ : σP = η)

h∏
i=1

∏
w∈N̂(ui)

Prσ∼νh [BW(σh, w) = 0 | σ(ui) = η(ui)]

≤
∑

η∈{0,1}|P|
νh(σ : σP = η)

∏
i>0:σ(ui)=0

∏
w∈N̂(ui)

Prσ∼νh [BW(σh, w) = 0 | σ(ui) = 0]

=
∑

η∈{0,1}|P|
νh(σ : σP = η)

∏
i>0:σ(ui)=0

∏
w∈N̂(ui)

fi

=
∑

η∈{0,1}|P|
νh(σ : σP = η)

∏
i>0:η(ui)=0

(fi)
b−1

= Eσ∼νh

 ∏
i>0:σ(ui)=0

(fi)
b−1

.

To use Lemma 20, we derive the following uniform upper bound on the probability

fi, for all i. Note that, since our bounds are asymptotic, we will always assume that

the degree b is large enough with respect to δ to make our proofs simpler. In particular,

for ω = (1 + δ) ln b/b and λ = ω(1 + ω)b, let

b0(δ) := min{b′ ≥ 104 : exp

(
2(1.01)(ωb)2

λ

)
≤ 1.01 for all b > b′}. (11)

(Note, the extra factor of 2 in the exponential is not needed in the proof of Lemma

20, but is convenient in Section 3.4 for the proof of Proposition 29.) Note that, b0(δ)

is well-defined since for any fixed δ,

lim
b→∞

exp

(
2(1.01)(ωb)2

λ

)
= lim

b→∞
exp

(
2(1.01) ln b

bδ

)
< 1.01.

Lemma 21. For all δ > 0, all b > b0(δ) and i ≥ 1, setting ω = (1 + δ) ln b/b, we

have,

fi ≤
(1.01)1/b

1 + ω
.
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Proof. We will prove the lemma by induction. We first derive the recurrence of fi for

each i. For the base case i = 1, by the definition of the broadcasting model,

f1 =
1

1 + ω
.

When i = 2, f2 is the probability that the complete tree of height two has at least

one child that is occupied. This requires to first unoccupy the root with probability

1/(1 + ω) and then have at least one child occupied. Therefore,

f2 =
1

1 + ω

(
1−

(
1

1 + ω

)b)
.

Generally, one can see the recurrence holds for fi+1 by looking into two cases of

σ sampled from distribution νh: Occupying the root r with probability ω/(1 + ω) in

σ and then calculate the conditional probability of having at least one child that is

labeled as 1 (occupied) in the BW algorithm. This is the complement of the event

that all of the children of r having at least one of their own children reconstruct

to occupied in the BW algorithm, given the fact that all children of r are fixed to

unoccupied in σ. The probability of this event happening equals (1− (fi−1)b)b. The

second case occurs when we do not occupy the root with probability 1/(1 + ω) in σ

and then the event occurs that at least one child is labeled 1 in the BW algorithm.

Therefore, we have

fi+1 =
ω

1 + ω

(
1−

(
1− (fi−1)b

)b)
+

1

1 + ω

(
1− (fi)

b
)
. (12)

By the inductive hypothesis, we have

fi+1 ≤
ω

1 + ω

(
1−

(
1− (fi−1)b

)b)
+

1

1 + ω
by (12)

≤ ω

1 + ω

(
1−

(
1− 1.01ω

λ

)b)
+

1

1 + ω
by the inductive hypothesis

≤
1 + 1.01ω2b

λ

1 + ω
since (1− t)b ≥ 1− tb for t < 1

≤ exp(1.01ω2b/λ)

1 + ω
since (1 + t) ≤ et

≤ (1.01)1/b

1 + ω
. from the definition of b0(δ) in (11)
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Now, we combine Lemmas 20 and 21 to prove Theorem 19.

Proof of Theorem 19. Fix a leaf z∗ of Th, and let P be the path z∗ = u0, u1, . . . , uh = r

between z∗ and the root of Th. We upper bound the average sensitivity of the BW

algorithm in the following way:

S̄BW = O
(
νh(BW(σ) = 1 and BW(σz

∗
) = 0)

)
by Equations (8) and (9)

= O

(
Eσ∼νh

[(
1.01ω(1 + ω)

λ

)#{i:σ(ui)=0}
])

by Lemma 20 and Lemma 21.

In this expectation, the number of unoccupied vertices in P can be trivially lower

bounded by h/2, since it is impossible to have two consecutive occupied vertices in P .

Therefore, the above expectation can be easily bounded by O∗(n−(1+δ)/2) for h = H.

This is not good enough in our case; to establish the existence of a phase transition we

need a bound of the form O∗(n−(1+δ/2)). This improved bound will be a consequence

of the following lemma.

Lemma 22. For all δ > 0, all b > b0(δ), setting ω = (1 + δ) ln b/b, we have,

Eσ∼νh

[(
1.01ω(1 + ω)

λ

)#{i:σ(ui)=0}
]

= O

([
1.01ω

λ1/2

]h)
.

Lemma 22 is proved in Section 3.5. Then, by the fact that the height of the tree

h = H = logb n, we have, for δ > 0, and ω = (1 + δ) ln b/b, for all b > b0(δ)

S̄BW = O

([
1.01ω

λ1/2

]h)
= O

n−
[

1+
ln(λ/(1.01ωb)2)

2 ln b

] .

Now, from the fact in [13, Section 5] that the BW algorithm is effective for all δ > 0,

ω > (1 + δ) ln b/b and b > b0(δ) (A similar statement is proved later in our paper in

Proposition 29.), Theorem 12 applies, and the conclusion follows for the conductance,

allowing us to conclude that for δ > 0, and ω = (1 + δ) ln b/b, for all b ≥ b0(δ),

Φ = O
(
n−d
)

and Trelax = Ω
(
nd
)
,
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where

d =

(
1 +

ln (λ/(1.01ωb)2)

2 ln b

)
.

Theorem 19 is a simple corollary by noticing that d = 1 + δ/2 − O
(

ln ln b
ln b

)
. Note

that, when b < b0(δ), our bound is trivial.

3.4 “Bad” Boundary Conditions: Proof of Theorem 17

First, we will show that for any ω, there exists a sequence of boundary conditions on

the leaves, denoted as Γω := {Γi}i>0, one for each complete tree of height i > 0, such

that if i → ∞, the probability of the root being occupied converges to ω
1+ω

. Later

in this section we will exploit such a construction to attain in full the conclusion of

Theorem 17.

As a first observation, note that, the Gibbs measure for the hard-core model on Ti

with boundary condition Γ is the same as the Gibbs measure for the hard-core model

(with the same activity λ) on the tree T obtained from Ti by deleting all of the leaves

as well as the parent of each (occupied) leaf v ∈ Γ. It will be convenient to work

directly with such “trimmed” trees, rather than the complete tree with boundary

condition. Having this in mind, our construction will be inductive in the following

way. We will define a sequence of (trimmed) trees {(Li, Ui)}i≥1 such that Li+1 is

comprised of si+1 copies of Ui and b− si+1 copies of Li with {si}i≥1 properly chosen.

Similarly, Ui+1 is comprised of ti+1 copies of Ui and b− ti+1 copies of Li, with {ti}i≥1

properly chosen. Note that, from the construction we can see that for each i > 1, the

trees Ui and Li are always ∆-regular for the internal vertices, therefore, essentially

the trimming of the trees only happen at the leaves.

We will show that, for either T ∗i = Li, or T ∗i = Ui, it is the case that the ‘Q’-value,

defined as:

Q(T ∗i ) =
µT ∗i (σ(r) = 1)

ωµT ∗i (σ(r) = 0)
,

where µT ∗i (·) is the hard-core measure on the trimmed tree T ∗i , satisfies Q(T ∗i ) → 1.
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Note that if Q(T ∗i ) = 1, then the probability of the root being occupied is ω/(1 + ω)

as desired. To attain this, we will construct Li and Ui in such a way that Q(Ui) ≥ 1

and Q(Li) ≤ 1.

The recursion for Q(Li+1) can be derived easily as

Q(Li+1) =
(1 + ω)b

(1 + ωQ(Ui))si+1(1 + ωQ(Li))b−si+1
,

and a similar equation holds for Q(Ui+1) by replacing si+1 with ti+1.

To keep the construction simple, we inductively define the appropriate ti and si,

so that once Li and Ui are given, we let ti+1 be the minimum choice so that the

resulting Q-value is ≥ 1, more precisely, we let:

ti+1 = min{` ∈ [0, b] :
(1 + ω)b

(1 + ωQ(Ui))`(1 + ωQ(Li))b−`
≥ 1}. (13)

And similarly, we let:

si+1 = max{` ∈ [0, b] :
(1 + ω)b

(1 + ωQ(Ui))`(1 + ωQ(Li))b−`
≤ 1}. (14)

The recursion starts with U1 being the graph of a single node and L1 being the

empty set, so that Q(U1) = λ/ω and Q(L1) = 0. Observe that, by definition,

si+1 ∈ {ti+1, ti+1 + 1} and that the construction guarantees that the values Q(Li)

are at most 1, and the values Q(Ui) are at least 1. Therefore si and ti are always

well-defined for all i. The following simple lemma justifies the correctness of our

construction.

Lemma 23.

lim
i→∞

Q(Ui)/Q(Li) = 1.

Proof. It is easy to see that either ti = si (meaning that Q(Li) = Q(Ui) = 1), or

ti = si − 1, which implies that

Q(Ui)

Q(Li)
=

1 + ωQ(Ui−1)

1 + ωQ(Li−1)
<
Q(Ui−1)

Q(Li−1)
.
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Therefore the ratio is shrinking and bounded from below by 1. Suppose the limit is

not 1 but some value q > 1, which implies that Q(Ui)/Q(Li) > q for all i. Then we

have the following:

Q(Ui−1)

Q(Li−1)
− Q(Ui)

Q(Li)
=
Q(Ui−1)

Q(Li−1)
− 1 + ωQ(Ui−1)

1 + ωQ(Li−1)

=
Q(Ui−1)−Q(Li−1)

(1 + ωQ(Li−1))Q(Li−1)

≥ (q − 1)Q(Li−1)

Q(Li−1)(1 + ω)
since Q(Ui)/Q(Li) > q

=
q − 1

1 + ω

> 0 since q > 1.

Therefore as long as q > 1, we show that the difference between the ratios for each

step i is at least some positive constant which is impossible. Hence the assumption

is false, and it must be the case that q = 1.

By this lemma, it is easy to check that if we let T ∗i to be equal to either Ui or Li,

then Q(T ∗i )→ 1. Indeed, we can show that the additive error decreases exponentially

fast. The following lemma indicates that this is the case for ω < 1 (although a similar

result holds for any ω).

Lemma 24. Let ε+i be the value of Q(Ui) − 1 and let ε−i be the value of 1 − Q(Li),

then

ε+i+1 + ε−i+1 ≤ ω(ε+i + ε−i ).

Proof. Note, by algebraic manipulations we have:

(1 + ω)b

(1 + ωQ(Ui))j(1 + ωQ(Li))b−j
=

1

(1 + ω
1+ω

ε+i )j(1− ω
1+ω

ε−i )b−j
. (15)

Now, let k be the largest index j over [b] such that the denominator of the right-hand

side of the previous expression is less than 1. Thus, k+ 1 will be the least index such

that the denominator is greater than 1. Then by applying Equation (15) for Q(Ui+1)

and Q(Li+1),
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ε+i+1 + ε−i+1 =
1

(1 + ω
1+ω

ε+i )k(1− ω
1+ω

ε−i )b−k
− 1

(1 + ω
1+ω

ε+i )k+1(1− ω
1+ω

ε−i )b−k−1

=
ω

1+ω
(ε+i + ε−i )

(1 + ω
1+ω

ε+i )k+1(1− ω
1+ω

ε−i )b−k

≤
ω

1+ω
(ε+i + ε−i )

1− ω
1+ω

ε−i
by the above property of k + 1

≤ ω(ε+i + ε−i ).

Coming back to the original tree-boundary notation, let Γ1
h be the boundary cor-

responding to the trimming of the tree Uh and let Γ2
h be the boundary corresponding

to the trimming of the tree Lh. Note that, according to our construction, it is clear

that the trees Uh and Lh only differ at the bottom level and hence Γ1
h and Γ2

h are the

boundary conditions on the leaves of the ∆-regular tree Th.

By our construction, for any vertex v on the tree of height h, the measure from µΓ1
h

(or µΓ2
h
) projected onto the space of the independent sets of the subtree rooted at v

with the boundary condition corresponding to the correct part of Γ and the parent of v

being unoccupied is either µΓ1
i

or µΓ2
i
, where i is the distance of v away from the leaves

on Th. Conditioning on the parent of v being unoccupied, in the broadcast process

defined in Chapter 2.3, we would occupy v with probability ω/(1 + ω). Therefore, in

the above construction, the probability v is occupied (or rather unoccupied) is close to

the desired probability, and the error will decay exponentially fast with the distance

from the leaves. This is formally stated in the following corollary of Lemma 24.

Corollary 25. Given any ω < 1 and the complete tree of height i, for Γ equal to Γ1
i

or Γ2
i inductively constructed above, we have∣∣∣∣µΓ(σ(r) = 0)− 1

1 + ω

∣∣∣∣ ≤ ωi−1λ/b.
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Throughout the rest of this section it is assumed that we are dealing with the

boundary conditions {Γ1
h}h∈N and {Γ2

h}h∈N constructed above. We will then show

that for every ω = (1 + δ) ln b/b under these two boundary conditions, the Glauber

dynamics on the hard-core model slows down, whenever δ > 0. As we know from

Corollary 25, the error of the marginal goes down very fast, so that roughly we can

think of the marginal distribution of the configurations on the tree from the root to

the vertices a few levels above the leaves as being close to the broadcasting measure.

Note that, Lemma 23 is already sufficient for the rest of our proof even if we did not

prove Corollary 25. Corollary 25 provides us a concrete value of the height for each

∆ and ω when the approximation is good enough for us to use.

In fact, by following the same proof outline as we did in Section 3.3.1, we are

able to prove the same bounds for the hard-core model on regular trees under these

boundaries. To do that we need a slight generalization of the reconstruction algorithm

and extensions of the corresponding lemmas used in that section to handle the errors

in the marginal probabilities.

To generalize the notion of a reconstruction algorithm to the case of a boundary

condition we need to add an extra parameter ` depending only on ω and b. We

will essentially ignore the bottom ` levels in the analysis, and we will use that for

the top h− ` levels the marginal probabilities are close to those on the broadcasting

tree. We define a reconstruction algorithm with a parameter ` for the tree Th with

boundary condition Γ as a function A` : Ω(Lh−`) → {0, 1}. The algorithm A` takes

the configurations of the vertices at height h − ` as the input and tries to compute

the configuration at the root. For any σ ∈ Ω(Th,Γ), the sensitivity is defined as:

S`,A(σ) =
1

n
#
{
v ∈ Lh−` : A`(σ

v
h−`) 6= A`(σh−`)

}
.

The average sensitivity of the algorithm at height h− ` with respect to the boundary

Γ is defined as:

S̄Γ
`,A = Eσ [S`,A(σ)1(A`(σh−`) = 1)].
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And the effectiveness is defined as:

rΓ
`,A = min

x∈{0,1}
[µh,Γ(A`(σh−`) = x and σ(r) = x)− µh,Γ(A`(σh−`) = x)µh,Γ(σ(r) = x)].

We can show the analog of Theorem 12 in this setting.

Theorem 26. Suppose that A` is an effective reconstruction algorithm. Then, it is

the case that the conductance Φ of the Glauber dynamics for the hard-core model on

the tree of height h with boundary condition Γ, satisfies Φ = O(S̄Γ
`,A).

To bound the average sensitivity for the boundary conditions Γ1
h and Γ2

h con-

structed above, we again use the same BW algorithm as we analyzed for the broad-

casting tree. As in Equations (8) and (9), it is again enough to bound the probability

µΓh(BW`(σh−`) = 1 and BW`(σ
z∗

h−`) = 0) (16)

for a fixed vertex z∗ at a distance ` from the leaves, although in this case, this

probability will not be the same for all z∗. Let the path P from z∗ to the root r be

u` = z∗, u`+1, u`+2, · · · , uh = r.

As in the proof of Lemma 20 in Section 3.3.1, let N̂(ui) = N(ui) \ {ui−1} denote

the children of ui different from ui−1. For i > `, consider some w ∈ N̂(ui). Let Γ(w)

be the boundary condition Γh restricted to the subtree Tw of Th rooted at the vertex

w. These subtrees are of height i. Note that, by our construction of the boundary

conditions, Γ(w) = Γ1
i−1 or Γ(w) = Γ2

i−1. Then (16) can be calculated by the following

lemma, which is the analog of Lemma 20 for the broadcasting tree.

Lemma 27.

µΓh(BW`(σh−`) = 1 and BW`(σ
z∗

h−`) = 0)

≤ Eσ

 ∏
i>`:σ(ui)=0

∏
w∈N̂(ui)

µΓ(w)(η : BW`(η) = 0)

,
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where the expectation is over the measure µΓh, and for each i and w ∈ N̂(ui), con-

figuration η is a random configuration on the subtree rooted at w chosen from the

probability measure µΓ(w).

Proof. Let BW`(σh−`, w) denote the labeling of the algorithm on vertex w from the

input configurations σ on the vertices at height h − ` (i.e., level `). By a similar

argument as we did in the proof of Lemma 20,

µΓh(BW`(σh−`) = 1 and BW`(σ
z∗

h−`) = 0)

≤ µΓh(σ : ∀i > `, w ∈ N̂(ui),BW`(σh−`, w))

≤
∑

η∈{0,1}|P|
µΓh(σ : σP = η)

∏
i>`

∏
w∈N̂(ui)

Prσ [BW`(σh−`, w) = 0 | σ(ui) = η(ui)]

≤
∑

η∈{0,1}|P|
µΓh(σ : σP = η)

∏
i>`:η(ui)=0

∏
w∈N̂(ui)

µΓ(w)(η : BW`(η) = 0)

= Eσ

 ∏
i>`:σ(ui)=0

∏
w∈N̂(ui)

µΓ(w)(η : BW`(η) = 0)

.

To bound µΓ(w)(η : BW`(η) = 0) for every i > ` and w ∈ N̂(ui), we proceed

along the lines of Lemma 21, but extra care is required to deal with the errors in the

marginal probabilities which were bounded in Corollary 25. Here and throughout the

remainder of the paper, we define `0 = `(λ, b) to be

`0 = min

{
` :

∣∣∣∣µΓ1
i
(η : η(r) = 0)

1/(1 + ω)
− 1

∣∣∣∣ ≤ (exp

(
1.01ω2b

λ

)
− 1

)
for all i > `

}
. (17)

The existence of such a constant `(λ, b) is guaranteed by Lemma 23. Moreover, from

Corollary 25 we can deduce an explicit value for `0, provided that ω < 1. For every

i ≥ `, let fi,1 = µΓ1
i
(η : BW`(η) = 0) and similarly let fi,2 = µΓ2

i
(η : BW`(η) = 0).

We will use the following lemma to bound fi,1 and fi,2.
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Lemma 28. For all δ > 0, all b ≥ b0(δ), there exist `0 = `(λ, b) such that for all

i > `0, the following bounds hold:

fi,1 ≤
1.011/b

1 + ω
,

and

fi,2 ≤
1.011/b

1 + ω
.

Proof. Similar to the proof of Lemma 21, the proof is again by induction. Here we

take ` = `0. Let t̄i = b − ti and s̄i = b − si for simplicity. Recall that we define ti

and si in Equation (13) and (14). Again, we can derive the recurrences in exactly the

same way as in Lemma 21.

For the base case i = `, by the definition the algorithm will label the vertices on

level ` to be the same as their actual configurations. For instance, for the boundary

condition Γ1
` on the complete tree of height `, the root is unoccupied with probability

µΓ1
`
(η(r) = 0) for a random configuration η. Therefore,

f`,1 = µΓ1
`
(η(r) = 0), f`,2 = µΓ2

`
(η(r) = 0).

For the case i = ` + 1, for a random configuration η ∼ µΓ1
`+1

, in order for the root r

at level `+ 1 to be labeled as 0 (unoccupied) in the algorithm, at least one child of r

should be occupied in η since the algorithm takes input at level ` by the definition.

This requires us to unoccupy the root with probability µΓ1
`+1

(η(r) = 0) and then

have at least one child occupied in η, which happens with probability (1−f t`+1

`,1 f
t̄`+1

`,2 ).

Note that, the boundary condition for the subtree rooted at each child is not the

same. There are t`+1 trees with boundary condition Γ1
` and t̄`+1 trees with boundary

condition Γ2
` by the definition of Γ1

`+1. The same argument holds for f`+1,2. Therefore,

f`+1,1 = µΓ1
`+1

(η(r) = 0)
(

1− f t`+1

`,1 f
t̄`+1

`,2

)
,

f`+1,2 = µΓ2
`+1

(η(r) = 0)
(
1− f s`+1

`,1 f
s̄`+1

`,2

)
.

59



And for each i > `, by the same argument as in Lemma 21 and taking the boundary

conditions into consideration as we did for f`+1,1 and f`+1,2, we have

fi+1,1 = µΓ1
i
(η(r) = 1)

(
1−

(
1− f tii−1,1f

t̄i
i−1,2

)ti+1 (
1− f sii−1,1f

s̄i
i−1,2

)t̄i+1

)
+ µΓ1

i
(η(r) = 0)

(
1− f ti+1

i,1 f
t̄i+1

i,2

)
, (18)

fi+1,2 = µΓ2
i
(η(r) = 1)

(
1−

(
1− f tii−1,1f

t̄i
i−1,2

)si+1 (
1− f sii−1,1f

s̄i
i−1,2

)s̄i+1

)
+ µΓ2

i
(η(r) = 0)

(
1− f si+1

i,1 f
s̄i+1

i,2

)
. (19)

Our goal now, is to show by induction that fi,1, fi,2 ≤ 1.011/b

1+ω
for all i ≥ ` = `0. From

the definition of `0 in (17), the base case is simple:

f`+1,1 ≤ f`,1 ≤ µΓ1
`
(η(r) = 0) ≤ 1

1 + ω
exp

(
1.01ω2b

λ

)
,

and the last term is less or equal to 1.011/b

1+ω
for b ≥ b0(δ). Similarly, it is the case that

f`+1,2 ≤ f`,2 ≤ 1.011/b

1+ω
. Assuming the inductive hypothesis, by algebraic calculations,

we can get from the above recurrence (18) that

(fi+1,1)b ≤

[
ω

1 + ω

(
1−

(
1− 1.01ω

λ

)b)
+

1

1 + ω

]b
exp

(
1.01(ωb)2

λ

)
≤ exp(1.01(ωb)2/λ)

(1 + ω)b
exp

(
1.01(ωb)2

λ

)
as in the proof of Lemma 21

=
exp(2(1.01)(ωb)2/λ)

(1 + ω)b

≤ 1.01

(1 + ω)b
for b ≥ b0(δ), by the definition of b0(δ) in (11)

This proves fi+1,1 ≤ 1.011/b

1+ω
by induction and a similar proof can be done for fi+1,2.

It is also not hard to show that the Brightwell-Winkler algorithm under the same

setting as in Lemma 28 is effective.

Proposition 29. For all δ > 0 and b > b0(δ), the BW algorithm is an effective re-

construction algorithm to recover the configuration at the root from the configurations

at distance `(λ, b) from the leaves.
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Proof. We use the same notation as in the proof of lemma 28. Let t̄i = b − ti and

s̄i = b− si, where ti and si are defined in Equation (13) and (14). Then,

Prσ∼µ
Γ1
h

[BW(σ) = 0 | σ(r) = 0] = 1−
[
(fh−1,1)th (fh−1,2)t̄h

]
,

Prσ∼µ
Γ1
h

[BW(σ) = 1 | σ(r) = 1] =
[
1− (fh−2,1)th−1 (fh−2,2)t̄h−1

]th
×
[
1− (fh−2,1)sh−1 (fh−2,2)s̄h−1

]t̄h .
These recursions follow easily by noticing that BW(σ) = 0 iff it is not true that

BW(σi) = 0 for all i = 1, . . . , b, where σi is the restriction of σ to the tree subtended

at the i-th children of the root. And also that BW(σ) = 1 iff it is not true that

BW(σi) = 0 for all i = 1, . . . , b2, where σi is the restriction of σ to the tree subtended

at the i-th grandchildren of the root. Now, from these recurrences and the bounds

stated in Lemma 28, we deduce that

µΓ1
h
(BW(σ) = 0, σ(r) = 0)− µΓ1

h
(BW(σ) = 0)µΓ1

h
(σ(r) = 0)

= Ω

(
1− 1.01

(1 + ω)b
− 1.011/b

1 + ω

)
.

Now, notice that

1− 1.011/b

1 + ω
≥ 1

b

[
(1 + δ) ln b− 0.01

(1 + ω)

]
.

Also, for b ≥ b0(δ) as defined in (11), we have that

1.01

(1 + ω)b
≤ 1

b

[
0.01

2(1 + δ) ln b

]
.

Therefore, effectiveness, with rate roughly (1+δ) ln b
b

, holds for all b ≥ b0(δ). The same

result holds for µΓ2
h
(·).

Then, we are able to again bound S̄Γ
`,BW for Γ = Γ1

h or Γ2
h, proving the following

theorem, which completes the proof of Theorem 17.

Theorem 30. Let δ > 0, and let ω = (1 + δ) ln b/b. For all b ≥ b0(δ), it is the case

that

Φ = O
(
n−d
)
, where d =

(
1 +

ln (λ/(1.01ωb)2)

2 ln b

)
.
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Proof. We take ` as `0 = `(λ, b), as in Lemma 28. Now, due to Lemma 27, we have

that

S̄Γ
`,BW = O

(
1

n

∑
z∗∈ level `

Eσ∼µΓh

[(
1.01ω(1 + ω)

λ

)#{i:σ(ui)=0}
])

.

The following lemma bounds the expectation and the proof is presented in the next

section.

Lemma 31. For all δ > 0, all b > b0(δ), setting ω = (1 + δ) ln b/b, we have that for

any leaf z∗ in level ` and the corresponding path P from the root to z∗,

Eσ∼µΓh

[(
1.01ω(1 + ω)

λ

)#{i:σ(ui)=0}
]

= O

((
1.01

ω

λ1/2

)h)
.

Since `0 is a constant independent of n and h, just as the argument at the end of

Section 3.3.1, we can deduce that for δ > 0, b > b0(δ), setting ω = (1 + δ) ln b/b,

S̄BW = O

([
1.01ω

λ1/2

]H)
= O

n−
[

1+
ln(λ/(1.01ωb)2)

2 ln b

] .

Now, from Proposition 29, the BW algorithm is effective for ω > (1 + δ) ln b/b,

b > b0(δ). Therefore, Theorem 26 applies, and the conclusion of Theorem 17 follows

(trivially for b < b0(δ)).

3.5 Calculating the Expectation

Here we provide all the technical lemmas that are needed in the previous sections for

calculating the expectations. Recall that, in the broadcasting model, we fix a leaf z∗

and take sample σ from distribution νh and we want to calculate the expectation

Eσ∼νh

[(
1.01ω(1 + ω)

λ

)#{i:σ(ui)=0}
]
,

where ui are vertices on the path P from z∗ to the root. Here we let u0 be the root

and uh be the leaf z∗, which reverses the order we used for ui in previous sections.

Observe that the random configurations for each ui are essentially Markovian with

respect to i due to the spatial Markov property of hard-core model. Therefore, we
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will first prove the following results for general Markov chain and then apply it to

calculate the expectations for Lemma 22 and Lemma 31.

Let ζ0, ζ1, . . . be a Markov process with state space {0, 1}, such that ζ0 = 0

and with transition rates p0→0 = p, p0→1 = q, p1→0 = 1, p1→1 = 0. Let Nh =

# {1 ≤ i ≤ h : ζi = 0}.

Lemma 32. For the Markovian process {ζ}t≤h, we have

1. for any a > 0 :

E
[
aNh
]

= O

((pa
2

[
1 +

√
1 + 4q/ (ap2)

])h)
.

2. Moreover, if ζ̄0, ζ̄1, . . . is a ‘perturbed’ version of the chain, in the sense that the

transition rate p0→0 (and therefore p0→1) is now inhomogeneous but such that

for some γ > 0,

∣∣∣∣p(i)
0→0

p
− 1

∣∣∣∣ ≤ γ. Then, if N̄h = #
{

1 ≤ i ≤ h : ζ̄i = 0
}

, we have

that for any a > 0 :

E
[
aN̄h
]
≤ (1 + γ) E

[
(a (1 + γ))Nh

]
.

Proof. Let

τ1 = min{` : ζ` = 1},

and for each i ≥ 1, let

τi+1 = min {`− τi : ` ≥ τi and ζ` = 1} .

Therefore, τ1 is the index of the first occurrence of state 1 and τ2, τ3, . . . are the

distance between subsequent occurrences of the state 1 in the sequence. Also, let

τ̃ = min{h − ` : ` ≤ h and τ` = 1}, that is, the distance between h and the last

occurrence of the state 1 in the sequence ζ0, ζ1, . . . ζh. It is easy to see that if t̃ ≥ 1

and 0 ≤ k ≤ bh/2c,

Pr
[
Nh = h− k, τ1 = t1, . . . , τk = tk, τ̃ = t̃

]
= ph−2kqk,
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and if t̃ = 0 and 1 ≤ k ≤ b(h+ 1) /2c,

Pr
[
Nh = h− k, τ1 = t1, . . . , τk = tk, τ̃ = t̃

]
= ph−2k+1qk.

Thus, adding up over all the possible choices of t1, . . . , tk, t̃, having in mind the re-

strictions t1 ≥ 1, t2 ≥ 2, . . . , tk ≥ 2 and t1 + · · ·+ tk + t̃ = h; we obtain

Pr [Nh = h− k and ζh = 0] =
(
h−k
k

)
ph−2kqk for 0 ≤ k ≤ bh/2c

Pr [Nh = h− k and ζh = 1] =
(
h−k
k−1

)
ph−2k+1qk for 1 ≤ k ≤ b(h+ 1) /2c ,

therefore

E
[
aNh
]

=

bh/2c∑
k=0

(
h−k
k

)
ph−2kqkah−k +

b(h+1)/2c∑
k=1

(
h−k
k−1

)
ph−2k+1qkah−k (20)

Now, for the first term, we have that

bh/2c∑
k=0

(
h−k
k

)
ph−2kqkah−k = (pa)h

bh/2c∑
k=0

(
h−k
k

)
xk,

where x = q
ap2 .

Let us define

φ(t) := lim
h→∞

ln
[(
h−th
th

)
xth
]

h

= (1− t) H

(
t

1− t

)
+ t ln (x) ,

where H stands for natural entropy. φ(t) reaches its maximum at t∗ = 1
2
(1− ε), where

ε = 1/
√

1 + 4x. It is easy to see the following holds.

I(h) =

∫ 1/2

0

ehφ(t)dt

≈
bh/2c∑
k=0

(
h−k
k

)
xk.

Using the Laplace’s approximation method, it is a standard procedure to approximate

the asymptotic sum (integral I(h)) when h → ∞ by the saddle point evaluation.
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Noticing that the function φ′′(t∗) = −4
ε(1−ε)(1+ε)

, we have that

I(h) = O

(
ehφ(t∗)

√
2π

hφ′′(t∗)

)
(21)

= O
(
ehφ(t∗)

)
(22)

= O

((
1 +
√

1 + 4x

2

)h)
. (23)

For the second term in (20), we have that

b(h+1)/2c∑
k=1

(
h−k
k−1

)
ph−2k+1qkah−k = p(pa)h

b(h+1)/2c∑
k=1

(
h−k
k−1

)
xk,

Using a similar saddle point estimate, we have that

b(h+1)/2c∑
k=1

(
h−k
k−1

)
xk = O

((
1 +
√

1 + 4x

2

)h)
. (24)

Now, combining the asymptotics (23) and (24) into eq. (20) part 1 follows.

For part 2, using the same notation as above, we have that

Pr
[
N̄h = h− k, τ1 = t1, . . . , τk = tk, τ̃ = t̃

]
≤


(1 + γ)h−k ph−2kqk if t̃ ≥ 1, 0 ≤ k ≤ bh/2c ,

(1 + γ)h−k+1 ph−2k+1qk if t̃ = 0, 1 ≤ k ≤ b(h+ 1) /2c .

Therefore,

Pr
[
N̄h = h− k and ζh = 0

]
≤
(
h−k
k

)
(1 + γ)h−k ph−2kqk for 0 ≤ k ≤ bh/2c

Pr
[
N̄h = h− k and ζh = 1

]
≤
(
h−k
k−1

)
(1 + γ)h−k+1 ph−2k+1qk for 1 ≤ k ≤ b(h+ 1) /2c

This leads to

E
[
aN̄h
]
≤

bh/2c∑
k=0

(
h−k
k

)
(1 + γ)h−k+1 ph−2kqkah−k

+

b(h+1)/2c∑
k=1

(
h−k
k−1

)
(1 + γ)h−k+1 ph−2k+1qkah−k

= (1 + γ) E
[
(a (1 + γ))Nh

]
.
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Proof of Lemma 22. Notice that when σ ∼ νh, ζi := σ(ui) is a Markov chain with

state space {0, 1} and transition probabilities p0→0 = 1/(1 + ω) and p1→0 = 1. To

estimate Eσ∼νh
[
θ#{i:ζi=0}] for any θ > 0, we apply the technical result in Part 1 of

Lemma 32. In fact, recalling the random variable Nh defined in Lemma 32, we have

that

Eσ∼νh
[
θ#{i:ζi=0}] = O

(
Eσ∼νh

[
θ#{i:ζi=0} : ζ0 = 0

])
= O

(
E
[
θNh
])

Therefore, plugging in the asymptotic from the lemma for θ = 1.01ω(1+ω)
λ

, we get

E
[
θNh
]

= O

(1.01ω

2λ

[
1 +

√
1 +

4λ

1.01

])h
 ≤ O

((
1.01ω

λ1/2

)h)
.

For the last inequality we used the fact that 1 +
√

1 + 4λ/1.01 ≤ 2λ1/2, which holds

for λ > (101)2, and in particular, when ω = (1 + δ) ln(b)/b and b > b0(δ) where b0(δ)

was defined in (11).

Proof of Lemma 31. The proof goes along the lines of lemma 22. For σ ∼ µh,Γh ,

ζi := σ(ui) is a inhomogeneous Markov chain with state space {0, 1} and transition

probabilities, for i ≤ h − `(λ, b), such that | p0→0

1/(1+ω)
− 1| ≤

(
exp

(
1.01ω2b

λ

)
− 1
)

(from

eq. 17) and p1→0 = 1. Now, to estimate Eσ∼νh
[
θ#{i:ζi=0}] for θ > 0, we apply Part 2

of Lemma 32. This time, recalling the random variables Nh and N̄h defined in such

lemma, we have that

Eσ∼µh,Γh

[
θ#{i:ζi=0}] = O

(
1

1 + ω
Eσ∼µh,Γh

[
θ#{i:ζi=0} : ζ0 = 0

])
= O

(
1

1 + ω
Eσ∼µh,Γh

[
θ#{i≤h−`:ζi=0} : ζ0 = 0

])
= O

(
E
[
θN̄h−`

])
= O

(
E
[
θN̄h
])

= O

(
E

[(
exp

(
1.01ω2b

λ

)
θ

)Nh])
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Now, plugging in the asymptotics for θ = 1.01ω(1+ω)
λ

, we get

E

(exp

(
1.01 (ωb)2

λ

)
θ

)Nh


= O

1.01ω

2λ
exp

(
1.01 (ωb)2

λ

)1 +

√√√√1 +
4λ

1.01
exp

(
−1.01 (ωb)2

λ

)h

Finally we use the inequality

1 +

√
1 +

4λ

1.01
exp

(
−1.01ω2b

λ

)
≤ 2λ1/2 exp

(
−1.01ω2b

λ

)
,

which holds whenever ω = (1 + δ) ln b/b and b > b0(δ).
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CHAPTER IV

UPPER BOUNDS VIA COUPLING

Recall that in the Ising model on regular trees, the phase transition for the mixing

time of the Glauber dynamics happens exactly at the reconstruction threshold. In

last chapter, we show the lower bounds of mixing times of the Glauber dynamics

for colorings and hard-core models on trees when the reconstruction problems are

solvable. In this chapter, we will prove that the upper bounds for mixing times or

relaxation times of the Glauber dynamics are very close to the lower bounds in both

reconstruction and non-reconstruction regions. Then we are able to establish similar

pictures of phase transitions for the convergence speed of the Glauber dynamics as

in the Ising model on trees. The following two theorems summarize the main results

of this chapter, which are the restatements of the upper bounds in Theorem 2 and

Theorem 3.

Theorem 33. For the Glauber dynamics on the hard-core model with activity λ =

ω(1 + ω)b on the (b + 1)-regular tree T of n vertices and height H = blogb nc, the

following hold:

1. For all ω ≤ ln b/b, for every boundary condition,

Trelax ≤ O(n1+ob(1)).

2. For all δ > 0 and ω = (1 + δ) ln b/b, for every boundary condition,

Trelax ≤ O(n1+δ+ob(1)).

Theorem 34. For the Glauber dynamics of k-colorings on the (b+ 1)-regular tree T

of n vertices and height H = blogb nc satisfies the following:
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1. For all ε > 0 and all k = (1+ε)b
ln b

:

Tmix ≤ O(n1+ob(1) lnn),

Trelax ≤ O(n1+ob(1)).

2. For all ε > 0 and all k = b
(1+ε) ln b

:

Tmix ≤ O(n1+ε+ob(1) lnn),

Trelax ≤ O(n1+ε+ob(1)).

The constants in the Ω() and O() are universal constants.

Before we present the proofs of these two theorems, let us briefly review the

coupling of two Markov chains. Coupling is a power technique for showing the upper

bound of the mixing time is. Given two copies, (Xt) and (Yt), of the Markov chain at

time t > 0, recall that a (one-step) coupling of (Xt) and (Yt), is a joint distribution

whose left and right marginals are identical to the (one-step) evolution of (Xt) and

(Yt), respectively. The Coupling Lemma [3] (c.f., Theorem 5.2 in [41]) guarantees

that if, there is a coupling and time t > 0, so that for every pair (X0, Y0) of initial

states, Pr [Xt 6= Yt] ≤ 1/2e under the coupling, then Tmix ≤ t. It is our main tool

here to prove the bounds.

This chapter is organized as follows. First we will show the upper bound of the

relaxation time of the Glauber dynamics for the hard-core model under any boundary

condition on trees by using a monotone coupling and the censoring inequality for

monotone systems. Then, we are going to show an upper bound for the mixing time

and the relaxation time for colorings on trees with the free boundary condition. This

combining with the lower bound results in Chapter 3, completes the full picture as

described in Theorem 2 and Theorem 3 and establishes the phase transition for the

Glauber dynamics around the reconstruction thresholds of both models respectively.

Meanwhile, we will improve a connection between the log-Sobolev constant and the
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spectral gap for the Glauber dynamics of the colorings on trees which makes it possible

for us to bound the mixing time from the relaxation time in an accurate way.

4.1 Hard-core Model

Before we show the main idea for our upper bound proofs, we first introduce some

notation we use in this section. For a b dimensional vector ρ = (ρ1, . . . , ρb) where

0 ≤ ρi ≤ 1 for every 1 ≤ i ≤ b, let τρ be the relaxation time of the following Glauber

dynamics of the hard-core model on the star graph G? with root r and b = ∆ − 1

leaves {w1, . . . , wb}. The dynamics on the star graph G? is defined as follows. Given

an independent set Xt,

1. Choose a vertex v uniformly at random from {r, w1, . . . , wb}.

2. If v = r, then set

X ′ =


Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ).

3. If v = wi is a leaf of G?, then set

X ′ =


Xt ∪ {wi} with probability ρi

Xt \ {wi} with probability 1− ρi.

4. If X ′ is an independent set, then set Xt+1 = X ′, otherwise set Xt+1 = Xt.

Let τ ? := maxρ{τρ} be defined as the worst case relaxation time over all possible

choices of ρ. Using the block dynamics approach of Martinelli [43], as used in [8,

Section 2.3] (see also [42] for similar results), it is not hard to show that the relaxation

time of the above Glauber dynamics is exactly the same as that of the natural block

dynamics which updates the configurations of a whole subtree of the root in one step,

and hence the following lemma holds.
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Lemma 35. For the complete tree of height H with any boundary condition on the

leaves, the relaxation time Trelax of the Glauber dynamics of the hard-core model sat-

isfies:

Trelax ≤ (τ ?)H .

We omit the proof of the above lemma since it is essentially identical to that in

[8, Section 2.3].

Note that, the relaxation time on the complete tree is quite sensitive to the bound-

ary conditions. For example, as mentioned in the Introduction, Martinelli et al. [47]

show that when the boundary condition is all even (or similarly for all odd), i.e., all

of the leaves are occupied when the height is even (respectively, odd) and all of the

leaves are unoccupied when the height is odd (even), then the mixing time is O(n lnn)

for all λ. In this paper we are considering all boundary conditions, and in our lower

bound, we show there are boundary conditions that slow down the Glauber dynam-

ics. The lower bound on the relaxation time for the Glauber dynamics under those

boundary conditions which we show suffer the slow-down roughly matches up with

the upper bound we prove here. The following lemma establishes an upper bound

for τ ?.

Lemma 36. For the Glauber dynamics of the hard-core model on G?, the worst

relaxation time over all the boundary conditions ρ satisfies

τ ? ≤ 100(λ+ 1)(b+ 1) ln2(b+ 1).

Therefore, by Lemmas 35 and 36, for any boundary condition on the leaves, the

Glauber dynamics of the hard-core model on the complete tree of height H satisfies,

Trelax ≤ (τ ?)H ≤
(
100(λ+ 1)(b+ 1) ln2(b+ 1)

)logb n ≤ nd,

where

d = 1 +
ln
(
200(λ+ 1) ln2(b+ 1)

)
ln b

.
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Now, if ω ≤ ln b
b

, we have that, for some constant c0 > 0,

d ≤ 1 +
c0 ln ln b

ln b
.

On the other hand, for δ > 0 and ω = (1 + δ) ln b/b, we instead get, that for some

constant c1 > 0,

d ≤ 1 + δ +
c1 ln ln b

ln b
.

This proves Theorem 33.

4.1.1 Upper Bound for the Relaxation Time on the Star Graph: Proof
of Lemma 36

We will analyze the following coupling L of two copies (Xt), (Yt) of the Glauber

Dynamics of the hard-core model on G?. The coupling L chooses the same random

vertex v to update in both chains Xt and Yt. If v = r, the root of G?, and there is

not an occupied leaf in any of the two copies, then r is coupled to be occupied with

probability λ/(1+λ) and unoccupied with probability 1/(1+λ) in both Xt+1 and Yt+1.

If v = wi, a leaf in G?, and the root is unoccupied in both Xt and Yt, then v is also

coupled to be occupied or unoccupied in both Xt+1 and Yt+1 with the corresponding

probability. If in either Xt or Yt the neighbors of v contains an occupied vertex, then

each copy is updated independently with the corresponding probability.

Given a pair of configurations η, η′ : G? → {0, 1}, we say that η � η′ if η(r) ≤ η′(r)

and for every i = 1, . . . , b, η(wi) ≥ η′(wi). Let ηmax and ηmin be the unique maximal

and minimal elements in this partial order, respectively. An important property of

the coupling L of the hard-core model in the star is monotonicity. Namely, if (Xt, Yt)

are such that Xt � Yt then after applying one step of the coupled dynamics we have

that Xt+1 � Yt+1. More generally for bipartite graphs G, the hard-core model is a

monotone system (see, e.g., Chapter 22 in [41]) in the sense that, if (Xt) and (Yt) are

two copies of the Glauber dynamics on the hard-core model on G and x0 � y0, then
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there exists a one-step coupling C of (Xt) and (Yt) such that for all t ≥ 0,

PrC [Xt � Yt | X0 = x0, Y0 = y0] = 1.

In this case, we say (Xt) is stochastically dominated by (Yt) and denote it as Xt �d Yt.

Using monotonicity of the coupling L, we have that:

PrL [Xt 6= Yt | X0, Y0] ≤ PrL [Xt 6= Yt | X0 = ηmax, Y0 = ηmin];

that is, the worst case initial configurations, for the coupling probability, are the

maximal and minimal configurations.

Therefore, using (1) and the coupling lemma, to prove Lemma 36 it is enough to

show

PrL [XT 6= YT | X0 = ηmax, Y0 = ηmin] ≤ 1/2e for T = 100(1+λ)(b+1) ln2(b+1). (25)

We will use the censoring technique of Peres and Winkler (see Theorem 1.1 in

[54]) which intuitively says that in a monotone system, extra moves of the Glauber

dynamics will not hurt the total variation distance from current distribution to the

stationary distribution. In our case, we will do the coupling analysis in the following

way. First of all, instead of bounding the coupling probability for any T -step sequence

of vertices in the Glauber dynamics, we want to bound the coupling probability for

some “good” sequences which occur with a very high probability. Then, we are able

to use the censoring technique to reduce the calculations of coupling probabilities for

those “good” sequences to the calculations on just a few fixed sequences of vertices

which are the “censored” subsequences of those “good” sequences of vertices. The

calculations of the coupling probabilities on those fixed sequences are very easy to

conduct.

We now specify the details formally. Throughout this section we assume that the

initial states are X0 = ηmax and Y0 = ηmin. Given a sequence u = (u1, u2, . . .) of

vertices of G?, let Xu = (Xu
t )t≥0 be the Glauber dynamics such that for every t ≥ 1,
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the chain is updating the vertices according to the sequence u, i.e., at time t, Xu
t

chooses vertex ut to update. Let U = (u1,u2, . . .) be a sequence of i.i.d uniform

random vertices of G?. Notice that X, the (original) Glauber dynamics satisfies

X
d
= XU. (26)

Given a 0/1 sequence γ = (γt)t≥1, and a sequence of vertices u = (u1, u2, . . .),

we define Xu,γ = (Xu,γ
t )t≥0 to be the censored version of Xu, which is restricted, in

addition, to change the configuration at vertex ut at time t only if γt = 1 (if γt = 0

then Xt = Xt−1).

We will “censor” u in the following way to ease the calculation of the coupling

probability. To couple both copies (Xt) with (Yt) using L it is enough to get the

root to agree in both copies, and then get the leaves to agree. Given a sequence

u, we call a “scan” a subsequence ui0 , ui1 , . . . , uib where the root is visited and then

all the leaves, that is ui0 = r and {ui1 , . . . , uib} = {w1, . . . , wb}. We define γu as

a 0/1 sequence maximizing the number of non-overlapping scans in u1, . . . , uT (if

there is more than one such sequence just choose an arbitrary one). We say that

γu is a k-scanning of u if the sequence (ut)t≤T :γut =1 consists of at least k scans. Let

Sk = {u : γu is a k-scanning}, the set of sequences that contain at least k scans before

time T .

Notice that under the coupling L, when the root is unoccupied, to get the leaves

to agree it is enough to just update(choose) them. Thus, the coupling probability

after one scan is the probability of coupling the root (when updated), which is at

least 1/(1 + λ). Therefore,

PrL [Xu,γu
T 6= Y u,γu

T ] ≤
(

1− 1

λ+ 1

)k
for all u ∈ Sk. (27)
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Now to prove (25), let k = 3(1 + λ) ln(b+ 1). We have

PrL [XT 6= YT ]

=
∑
u

PrL [Xu
T 6= Y u

T ]PrU [u]

≤ PrU [u 6∈ Sk] +
∑
u:u∈Sk

PrL [Xu
T 6= Y u

T ]PrU [u]. (28)

First we bound PrU [u 6∈ Sk]. Let τu be the first time u contains k consecutive scans

(τu is a positive random variable which can be equal to∞). By the coupon collector,

EU [τu] = k(b+ 1)(1 + ln b). Using Markov’s inequality we have,

PrU [u 6∈ Sk] = PrU [τu > 20k(b+ 1)(1 + ln b)] ≤ 1/20. (29)

Now to bound PrL [Xu
T 6= Y u

T ] we use the following Censoring Lemma of Peres and

Winkler.

Lemma 37 (Theorem 1.1 in [54]). For any u, γ, and t,

Xu
t �d X

u,γu
t and Y u,γu

t �d Y u
t .

Also,

∥∥µXu
t
− π

∥∥
TV
≤
∥∥µXu,γu

t
− π

∥∥
TV

and,
∥∥µY ut − π∥∥TV

≤
∥∥µY u,γut

− π
∥∥
TV
. (30)

Notice that the above Censoring lemma allows us to bound the variation distance,

but only starting at the extremal initial configurations. As the extremal configurations

are not necessarily the worst case for variation distance, we can not use the censoring

Lemma alone. But, as discussed before, the monotonicity of the local coupling allows

us to assume extremal initial configurations.

To bound the coupling probability in terms of the coupling probability of the

censored chain, we use as an intermediate proxy the variation distance the following
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manner.

PrL [Xu
T 6= Y u

T ]

≤
∑
v∈V

PrL [Xu
T (v) 6= Y u

T (v)]

=
∑
v∈V

∥∥µXu
T (v) − µY uT (v)

∥∥
TV

≤ (b+ 1)
∥∥µXu

T
− µY uT

∥∥
TV

≤ (b+ 1)
(∥∥µXu

T
− π

∥∥
TV

+
∥∥µY uT − π∥∥TV

)
≤ (b+ 1)

(∥∥∥µXu,γu
T
− π

∥∥∥
TV

+
∥∥∥µY u,γuT

− π
∥∥∥

TV

)
by the Censoring lemma (30)

≤ (b+ 1)(1− 1/(λ+ 1))3(λ+1) ln(b+1) by Proposition 4.7 in [41] and (27)

≤ 1/(b+ 1)2,

where the first equality is by the fact that for any monotone coupling of monotone

two spin system, when projecting on a specific vertex v, there is actually only one

way to couple and hence the probability equals to the total variation distance. The

penultimate inequality follows by applying Proposition 4.7 in [41] to the total vari-

ation distances
∥∥∥µXu,γu

T
− π

∥∥∥
TV

and
∥∥∥µY u,γuT

− π
∥∥∥

TV
, then using (27) to bound the

probabilities of couplings. Proposition 4.7 in [41] is a well-known inequality that

upper bounds the total variation distance between two distributions ν and µ by the

probability of X 6= Y for any coupling (X, Y ) of µ and ν.

Combining with (28) and (29), we have that:

PrL [XT 6= YT | X0 = ηmax, Y0 = ηmin] ≤ 1

20
+

1

(b+ 1)2
,

which implies (25) and thus Lemma 36 follows.

4.2 Colorings

Let τ ? here be the relaxation time of the Glauber dynamics for k-colorings on the

star graph G? with b = ∆ − 1 vertices of degree 1. Again, by the block dynamics
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argument, we are able to bound the relaxation time Trelax of the dynamics on the

whole tree using the bounds for τ ?.

Theorem 38. The relaxation time Trelax of the Glauber dynamics for k-colorings of

the ∆-regular tree with height H satisfies

Trelax ≤ (τ ?)H .

Therefore, proving the upper bounds in Theorem 34 reduces to the problem of

getting tight upper bounds of the relaxation time τ ? of the Glauber dynamics on G?.

In [42], the authors used a canonical path argument to bound τ ? = O(b3+εk) for any

ε > 0. Instead, here we use two different coupling arguments to show the following

two theorems for τ ?.

Theorem 39. For any ε > 0, there exists b0 > 0 such that, for any b > b0, the

mixing and relaxation times of the Glauber dynamics on G? using k = b
(1+ε) ln b

colors

are O(b1+ε ln2 b). When ε = 0, the mixing and relaxation times are O(b ln4 b).

Theorem 40. For any ε > 0, there exists b0 > 0 such that, for any b > b0, the

mixing and relaxation times of the Glauber dynamics on G? using k = (1+ε)b
ln b

colors

are O(b ln b).

It can be shown that the relaxation time is actually O(b) when k > b/ ln b, from

our analysis. However, unless we can also eliminate the constant factors and thereby

show a very sharp bound of at most b, the extra ln b factor makes little difference to

the relaxation time of the dynamics on the whole tree.

The most difficult (and also interesting) case turns out to be when k < b/ ln b.

We will prove Theorem 39 in Section 4.2.1 and Theorem 40 in Section 4.2.2. Having

Theorems 39 and 40 in hand, we can then apply Theorem 38 to get the upper bounds
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on the relaxation time as stated in Theorem 34. We get

Trelax =


O(b ln b)H = O

(
n1+(ln ln b+O(1))/ln b

)
, if k = (1 + ε)b/ ln b;

O(b ln4 b)H = O
(
n1+(4 ln ln b+O(1))/ln b

)
, if k = b/ ln b;

O(b1+ε ln2 b)H = O
(
n1+ε+(2 ln ln b+O(1))/ln b

)
, if k = b/((1 + ε) ln b).

To then get the desired upper bounds on the mixing time of the whole tree we

need a slightly more advanced tool, the logarithmic Sobolev constant of the Markov

chain. By adapting Theorem 5.7 in Martinelli, Sinclair and Weitz [46] to our setting

of colorings, we establish and improve (in Section 4.2.4) the following relationship

between the inverse of the log-Sobolev constant c−1
sob and the relaxation time Trelax of

the Glauber dynamics on trees.

Theorem 41.

c−1
sob ≤ Trelax · 2b ln(k).

Since the inverse of the log-Sobolev constant gives a relatively tight upper bound

on the mixing time (see Inequality (3) in Chapter 2), using Theorem 41 we are able

to complete the proofs of the upper bounds in Theorem 34.

4.2.1 Upper Bound on Mixing Time for k < b/ ln b

In this section, we upper bound the mixing time of the Glauber dynamics on the

star graph G? = (V,E) when k = b/((1 + ε) ln b) for any ε ≥ 0. To be more precise,

let V = {r, `1, ..., `b}, where r refers to the root and `1, ..., `b are the b leaves and

E = {(r, `1), ..., (r, `b)}.

We use the maximal one-step coupling, originally studied for colorings by Jerrum

[35] to upper bound the mixing time of the Glauber dynamics on general graphs. For

a coloring X ∈ Ω, let AX(v) denote the set of available colors of v in the coloring X,

i.e., Aσ(v) = {c ∈ C : ∀u ∈ N(v), σ(u) 6= c}. The coupling (Xt, Yt) of the two chains is

done by choosing the same random vertex vt for recoloring at step t and maximizing
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the probability of the two chains choosing the same update for the color of vt. Thus,

for each color c ∈ AXt(v)∩AYt(v), with probability 1/max{|AXt(v)|, |AYt(v)|} we set

Xt+1(v) = Yt+1(v) = c. With the remaining probability, the color choices for Xt+1(v)

and Yt+1(v) are coupled arbitrarily.

We prove the theorem by analyzing the coupling in rounds, where each round

consists of T := 20b ln b steps. Our main result is the following lemma which says

that in each round we have a good probability of coalescing (i.e., achieving Xt = Yt).

Lemma 42. For all ε ≥ 0, there exists b0(ε) such that for all b > b0(ε) if k =

b/((1 + ε) ln b) and T = 20b ln b for all (x0, y0) ∈ Ω× Ω, the following holds:

Pr [XT = YT | X0 = x0, Y0 = y0] ≥


(20(1 + ε)bε ln b)−1, if ε > 0;

(20 ln3 b)
−1
, if ε = 0.

It is then straightforward to prove Theorem 39.

Proof of Theorem 39. For ε > 0, let pT := (20(1 + ε)bε ln b)−1; and for ε = 0 let

pT := (20 ln3 b)−1. By repeatedly applying Lemma 42 we have, for all (x0, y0),

Pr [X2iT 6= Y2iT | X0 = x0, Y0 = y0] ≤ (1− pT )2i ≤ 1/2e

for i = 1/pT . Therefore, by applying the Coupling Lemma, the mixing time is

O((1 + ε)b1+ε ln2 b) for ε > 0 and O(b ln4 b) for ε = 0.

Before formally proving Lemma 42 we give a high-level overview of its proof. We

will analyze the maximal one-step coupling on the star graph G?. We say a vertex v

“disagrees” at time t if Xt(v) 6= Yt(v), otherwise we say the vertex v “agrees”. We

denote the set of disagreeing vertices at time t of our coupled chains by

Dt = {v ∈ V : Xt(v) 6= Yt(v)},

and we use DL
t = Dt \ {r} to represent the set of disagreeing leaves. When we use

the term “with high probability” in this section, it means that the probability goes

to 1 as b goes to infinity.
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If the coupling selects a leaf ` to recolor at time t, then the probability that

` disagrees in Xt and Yt is at most 1/(k − 1), and with probability at least (k −

2)/(k − 1), the leaf will use the same color that is chosen uniformly at random from

C \ {Xt(r), Yt(r)}. We also know that if we simply assign a random color from C to

each leaf, with probability at least Ω(1/(bε ln b)), there is a color in C that is unused in

any leaf. This last point hints at the success probability in the statement of Lemma

42.

We analyze the T -step epoch in three stages. The warm-up round is of length

Tw := 8(b + 1) ln b steps. We will show in Lemmas 45 and 46 that with good proba-

bility, after the warm up, all of the leaf disagreements will be of the same form in the

sense that they will have the same pair of colors.

The next stage is of a random length T1, which is defined as the first time (after

Tw) where we are recoloring the root and the root has a common available color in (Xt)

and (Yt). We prove in Lemma 47, that with probability Ω(1/bε ln b), T1 < 4(b+1) ln b.

We then have probability at least 1/2 of the root agreeing after it is updated, and then

after at most T2 := 4(b + 1) ln b further steps we are likely to coalesce since we just

need to recolor each leaf at least once before the root changes back to a disagreement.

We begin our proof of Lemma 42 with a basic observation about the maximal

one-step coupling.

Observation 43. Let C(DL
t ) :=

⋃
`∈DLt
{Xt(`), Yt(`)} denote the set of colors that

appear in the disagreeing leaves at time t. Then, AXt(r)⊕ AYt(r) ⊆ C(DL
t ).

This is simply because those colors that appear on the leaves with agreements are

both unavailable in Xt and Yt for the root. We now analyze the first stage of the

T -step epoch.

Proposition 44. The probability that in T0 = 4(b+1) ln b steps, the coupling (Xt, Yt)

(or the Glauber dynamics (Xt)) will recolor the root at most 20 ln b times and recolor

every leaf at least once is at least 1− 2b−3.
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Proof. Using the union bound the probability that there is a leaf which is not recolored

in T0 steps is at most

b

(
1− 1

b+ 1

)4(b+1) ln b

≤ b−3.

Now, let N be the number of times the root is recolored in T0 steps. The expectation

E [N ] is 4 ln b. Then, by the Chernoff bound (see, e.g., Theorem 4.5 Part 2 in [48])

Pr [N ≥ 20 ln b] ≤ Pr [N ≥ (1 + 4)E [N ]] ≤ b−3.

Therefore the lemma holds by the union bound.

Then we will prove that in Tw = 2T0 steps, with high probability all of the leaf

disagreements are of the same type when ε > 0.

Lemma 45. For any ε > 0 and k > (1+ε)b/ ln b, for any pair of initial states (x0, y0),

Pr
[
∀` ∈ DL

Tw , XTw(`) = YTw(r) ∧ YTw(`) = XTw(r) | x0, y0

]
≥ 1−O

(
1

bε

)
.

Proof. The idea is that if we just look at one chain, say (Xt), then after T0 steps,

with high probability the root is frozen. Moreover, the root is likely to continue to

be frozen for the remainder of the Tw steps since we recolor the root at most O(ln b)

times. In the worst case the root is frozen to a disagreement, say Xt(r) = 2 and

Yt(r) = 1. Then after recoloring a leaf ` at time t′ where t < t′ < Tw, the only

possible disagreement is Xt′(`) = 1, Yt′(`) = 2. Hence, it suffices to recolor each leaf

at least once.

Let E be the event that in the first T0 steps, every leaf is recolored at least once

and in another 4(b + 1) ln b steps, every leaf is recolored again at least once and the

root is recolored at most 20 ln b times. We are first going to bound that for t > T0,

Pr [|AXt(r)| > 1 | E ] ≤ 1

(1 + ε)bε ln b
:= p0, (31)

and the same thing happens for Yt.
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Let GW be the graph with b isolated vertices {v1, ..., vb}, corresponding to the

leaves {`1, ..., `b}. Let (Wt) be a Glauber process on GW using k − 1 colors from

another color set CW . We are going to define W0 and couple (Wt) with (Xt) such

that |AXt(r)| = |AWt| + 1 at any time t, where AWt := {c ∈ CW : ∀vi,Wt(vi) 6= c}.

To do this, for every t we are going to define a bijection ft : C \ {Xt(r)} → CW

such that ft(Xt(`i)) = Wt(vi) for all i. Notice that if such a bijection exists then

|AXt(r)| = |AWt |+ 1.

At time t = 0, pick any bijection f0 from CW to C \ {X0(r)}. Define W0 by

W0(vi) = f(X0(`i)) for all i. We will update ft only when we choose the root to

recolor at time t in the coupling of (Wt) and (Xt). To do the coupling at time t+ 1,

we first choose a vertex v in G? to recolor:

• if v = `i, then we choose a random color c different from Xt(r) to recolor v.

Correspondingly, we choose the vertex vi in GW to recolor using color ft(c).

• if v = r, then we choose a random color c from AXt(r) to recolor the root in

G?. Correspondingly, we update the mapping ft in the following natural way:

ft(Xt−1(r)) = ft−1(c), (and ft(c) is undefined).

Since (Wt) itself is a Glauber process that recolors the vertices of GW uniformly

at random from CW , conditioning on E , simple calculations yield that for any t > T0,

Pr [|AWt | ≥ 1 | E ] ≤ 1

(1 + ε)bε ln b
.

Then (31) follows by coupling.

Since the same thing happens for (Yt) and the root is recolored at most 20 ln b

times, then by the union bound, conditioning on E , the probability that at each time

we try to recolor the root after T0 steps, the root is always frozen in both copies is

at least 1− (40 ln b)(p0) = 1− 40/((1 + ε)bε) . Finally, by Proposition 44, E happens

with high probability, and hence the lemma holds.
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Note that for the warm-up stage, we need to show, with probability at least

1/poly(log b), that for ε ≥ 0, all of the leaf disagreements are of the same type in

O(b ln b) steps. This is easier to prove for the ε > 0 case – that this happens with

high probability, if we run the dynamics for Tw = 8(b+1) ln b steps. For the threshold

case when ε = 0, we will prove a slightly weaker lemma, in the sense that the successful

probability will be at least Ω(1/ ln2 b).

Lemma 46. Let T ′w = T0 + 2b ln ln b. For k = b/ ln b, for any pair of initial states

(x0, y0),

Pr
[
∀` ∈ DL

T ′w
, XT ′w(`) = YT ′w(r) ∧ YT ′w(`) = XT ′w(r) | x0, y0

]
≥ 1/(2 ln2 b).

Proof. We use a different approach to prove this lemma, since it is not true that the

root will still always be frozen during T ′w steps with high probability.

Let T0 = 4(b + 1) ln b. We first prove that after T0 steps, with high probability,

the number of disagreeing leaves is at most O(ln b), namely:

Pr
[
|DL

T0
| ≥ 4 ln b | X0 = x0, Y0 = y0

]
≤ 2

b2
. (32)

To prove (32), we construct a simpler process that stochastically upper bounds the

number of disagreements. We define the following Markov chain (Ut) on 2-colorings

of the graph GU which consists of b isolated vertices {v1, ..., vb}. We view the set of

colors as {0, 1}. In each step, a random vertex vi is chosen, then with probability

1/(k− 1), vi is recolored to 1, and with probability 1− 1/(k− 1), vi is recolored to 0.

Let DU
t = {v ∈ {v1, v2, ..., vb} : Ut(v) = 1}. The initial state U0 is constructed in the

following way: for any i > 0, U0(vi) = 1 if and only if x0(`i) 6= y0(`i). By associating

the b vertices of GU with the leaves of G?, we can easily couple the process (Ut) with

(Xt, Yt) such that |DU
t | ≥ |DL

t |.

Let E denote the event that all of the vertices of GU are recolored at least once

in T0 steps. Note, Pr [E ] ≥ 1− 1/b2. Conditioned on E , the expected size of |DU
T0
| is
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b/(k − 1) ≈ ln b. Then we have

Pr
[
|DU

T0
| ≥ 4 ln b

]
≤ Pr

[
|DU

T0
| ≥ 4 ln b | E

]
+ Pr [E ]

≤ 2

b2
.

Where, for the last inequality, we have used the Chernoff bounds (see, e.g., Theorem

4.5 Part 2 in [48]). Since |DU
t | ≥ |DL

t |, this proves (32).

Hence, with high probability there are O(ln b) disagreeing leaves in G? at time

T0. Notice that from time T0, if we recolor all of the disagree leaves before we recolor

the root again, then all of the remaining disagreements in the leaves will be of the

same type (more precisely, for such a leaf ` that becomes a disagreement at time t

we will have that Xt(`) = YT0(r) and Yt(`) = XT0(r)), and this implies the desired

conclusion of the lemma. To this end, let E2 be the event that the root is not chosen

from recoloring from time T0 to T ′w. Let E3 be the event that each leaf in DL
T0

is

recolored at least once in the interval of times [T0, T
′
w]. By simple calculations, we

have that:

Pr [E2] ≥ ln−2 b, Pr [E3 | E2] ≥ 1− O(1)

ln b
. (33)

Therefore, conditioned on |DL
T0
| ≤ 4 ln b, from time T0 to T ′w with probability at least

2/(3 ln2 b), both E2 and E3 happen, which implies all of the leaf disagreements will be

of the same type at time T ′w.

In conclusion, combining the above bounds with (32), we proved that with prob-

ability at least 1/(2 ln2 b), all of the uncoupled leaves are of the same at time T ′w.

After we succeed in the warm-up stage meaning that all of the leaf disagreements

are of the same type, we enter the root-coupling stage, where we try to couple the

root. Let T1 be the first time that there is a common available color in the root and

the coupling chain selects the root to recolor, that is

T1 := TXY1 = min{t : AXt(r)
⋂

AYt(r) 6= ∅ and the root r is selected at step t}.
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Lemma 47. For ε ≥ 0, for any pair of initial states (x0, y0) where all of the leaf

disagreements are of the same type (i.e., there is a pair of colors c1, c2 such that for

all ` ∈ DL
0 , we have x0(`) = c1 and y0(`) = c2), we have

Pr
[
TXY1 < 4(b+ 1) ln b | (X0, Y0) = (x0, y0)

]
>

1

4(1 + ε)bε ln b
.

Proof. First of all, by Proposition 43, |AX0(r)⊕AY0(r)| ≤ 2. We are interested in the

time t when there is a common color available for the root in (Xt, Yt).

Let (Zt) be a Glauber process on the graphGZ of b+1 isolated vertices {v0, v1, v2, ..., vb}

in which v0 corresponds to the root and vi corresponds to the leaves `i for any i > 0.

The color set used in the process (Zt) is CZ = [k] \ {c1, c2}. Each step, (Zt) chooses

a random vertex and recolors it with a random color from the set CZ . Let TZ be the

stopping time on Z satisfying:

TZ1 = min{t > 2(b+ 1) ln b : |AZt | ≥ 1 and v0 is selected at the step t},

where AZt = {c ∈ CZ : ∀i ∈ [1, .., b], Zt(vi) 6= c} is the set of unused colors in

the vertices {v1, v2, ...vb}. We want to couple (Zt) with (Xt, Yt) in such a way that

TZ1 ≥ TXY1 for all the runs, and then if we show that for any initial state z0, we have

Pr
[
TZ1 < 4(b+ 1) ln b | Z0 = z0

]
>

1

4(1 + ε)bε ln b
. (34)

Then by the coupling, we know that the lemma is also true.

Now we are going to construct the coupling between (Zt) and (Xt, Yt) for t ≤ TXY1 .

Let z0 be the initial state satisfying that for any i ∈ [1, .., b], if x0(`i) = y0(`i) ∈ CZ

then z0(vi) = x0(`i), otherwise we give an arbitrary color to the vertex vi. On each

step t, we first randomly select a vertex in G? to update in (Xt, Yt) and accordingly

we select the corresponding vertex in GZ to update in Zt:

• If the vertex is a leaf `i:

(Xt, Yt) selects a random color c or a disagreement to update. If c ∈ CZ then

we give the same color to vi in Zt, otherwise we give a random color to vi.
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• If the vertex is the root r:

Recolor the root on (Xt, Yt) according to the maximal one-step coupling and

pick a random color in CZ to recolor v0 in Z.

Observe that, AZt ⊆ AXt(r)
⋂
AYt(r) for any 0 ≤ t ≤ TXY1 , which implies that

TZ1 ≥ TXY1 holds with probability 1. Now we will show that (34) holds. Let E be the

event that, in (Zt), every vertex in the graph GZ will be recolored at least once within

the first 2(b + 1) ln b steps. Let tz be the first time after time 2(b + 1) ln b when the

dynamics (Zt) recolors the root. For each color c ∈ CZ , define the indicator function

1c := 1{c 6= Ztz(vi),∀1 ≤ i ≤ b}. These indicator functions are negatively associated

to each other (c.f., Theorem 14 in [20]). It follows by elementary calculations that

conditioned on tz = t for some t > 2(b+ 1) ln b and for large enough b, we have

Pr [AZt 6= ∅ | tz = t]

≥ Pr [E ] · Pr [AZt 6= ∅ | tz = t, E ]

≥ 0.99Pr [AZt 6= ∅ | tz = t, E ] (since Pr [E ] > 1− 1/b2)

≥ 0.99

(
1−

∏
c∈Cz

Pr [1c = 0 | tz = t, E ]

)
(negative association)

≥ 0.99

1−

(
1−

(
1− 1

|CZ |

)b)|CZ |
≥ 1

3(1 + ε)bε ln b
. (35)

Since Pr [tz ≤ 4(b+ 1) ln b] > 1− 1/b2, by applying (35) we have

Pr
[
TZ1 < 4(b+ 1) ln b | Z0 = z0

]
≥

4(b+1) ln b∑
t=2(b+1) ln b

Pr [AZt 6= ∅ | tz = t] · Pr [tz = t]

≥ Pr [tz ≤ 4(b+ 1) ln b]

3(1 + ε)bε ln b

≥ 1

4(1 + ε)bε ln b
.

This completes the proof of Lemma 47.
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We also know that when the root is recolored, if |AX(r) ⊕ AY (r)| ≤ 2 and

|AX(r)
⋂
AY (r)| ≥ 1 holds, then the probability that the root will be recolored to

the same color in both X and Y is at least 1/2. Hence, at time T1 = TXY1 , with

probability at least 1/2 the root will become an agreement. Combining with Lemma

45, we proved that with probability at least 1/O((1 + ε)bε ln b) when ε > 0, starting

from arbitrary initial states (x0, y0), the root will couple in at most 12(b+1) ln b steps

and by that time all the disagreements (if there is any) in the leaves are of the same

type. When ε = 0, combining with Lemma 46, we get that the probability of the

same event happening is at least 1/O(ln3 b).

The last step is to let all of the disagreements in the leaves go away without

changing the root to a disagreement, again with constant probability, after T2 =

4(b+ 1) ln b more steps. Here is the precise statement of the lemma.

Lemma 48. For ε ≥ 0, consider a pair of initial states (x0, y0) where the root r agrees

(i.e., x0(r) = y0(r)) and all of the leaf disagreements are of the same type (i.e., there

is a pair of colors c1, c2 such that for all ` ∈ DL
0 , we have x0(`) = c1 and y0(`) = c2).

Then, with probability at least 1/2 after T2 = 4(b+ 1) ln b steps, we have XT2 = YT2.

Proof. First, observe that with high probability after T2 steps all of the leaves will

be recolored at least once. Assuming all of the leaves are recolored at least once, if

the root does not become a disagreement within these T2 steps, then all of the leaves

will be agreements. Therefore, we just need to show that the root will not change to

a disagreement in T2 steps with probability at least 3/5. This is done by a coupling

argument.

Let t2 be the first time when the root becomes a disagreement, that is, Xt2(r) 6=

Yt2(r). Note, since any disagreements on the leaves are colored c1 in X0 and c2 in Y0,

either Xt2(r) = c2 and/or Yt2(r) = c1. Therefore, we define the stopping times TX2
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and T Y2 as follows:

TX2 = min{t : Xt(r) = c2}, T Y2 = min{t : Yt(r) = c1}.

We can assume without loss of generality that X0(r) (and hence Y0(r)) does not equal

either c1 or c2. Otherwise, by the hypothesis of the lemma, there are no disagreements

in the leaves and hence X0 = Y0. Hence, our goal is to show that

Pr
[
TX2 ≤ T2 or T Y2 ≤ T2

]
<

2

5
.

And the main step is to show that

Pr
[
TX2 ≤ T2

]
<

1

5
. (36)

Let (St) be a random subset process on V (G?). Each time it picks a vertex v,

• If v 6= r, with probability 1/(k − 1), St+1 = St ∪ {v} and with probability

1− 1/(k − 1), St+1 = St \ {v};

• If v = r, if St = ∅ then St+1 = {r} otherwise St+1 = St.

Let us define T S = mint{t : r ∈ St}. We are going to couple (St) with (Xt) such

that {v ∈ V (G?) : Xt(v) = c2} ⊆ St. This implies T S ≤ TX2 . And if we can show

that Pr
[
T S ≤ T2

]
≤ 1/5 then we have proved inequality (36).

The coupling (Xt, St) is defined as follows. We start with S0 = X−1
0 (c2), the set

of vertices of color c2 in the initial coloring. Each time both processes picks the same

vertex v to update.

• If v = r, Xt and St act independently at this time.

• If v 6= r and Xt(r) 6= c2, then Xt chooses a random color different from the root

to recolor v and if that color is not c2, St+1 = St \{v} otherwise St+1 = St∪{v}.

• If v 6= r and Xt(r) = c2, then Xt chooses a random color different from c2 to

recolor v and if that color is not c1, St+1 = St \ {v} otherwise St+1 = St ∪ {v}.
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It is easy to see that this is a valid coupling. More importantly, it satisfies X−1
t (c2) ⊆

St.

Now we are going to show that Pr
[
T S ≤ T2

]
< 1/5 holds. It is not hard to show

that with probability at least 0.9, the first time when the root is updated is later

than 0.1b steps. We now condition on this event. The indicators of whether each leaf

is in St or not during those 0.1b steps are negatively associated (c.f., Theorem 14 in

[20]). Then by using the Chernoff bound with negative association among the random

variables (c.f., Proposition 7 in [20]), it can be shown that with high probability at

least ≥ 0.01b many different leaves are recolored before the first time we recolor

the root. Thus, together with the proof of Proposition 44, we can claim that with

probability at least 0.85, before the first t such that r ∈ St, at least 0.01b many leaves

have been recolored and root will be recolored at most 20 ln b times before T2. Denote

this event as E . We have

Pr
[
T S ≤ T2

]
≤ Pr

[
T S ≤ T2 | E

]
+ Pr

[
Ē
]
≤ Pr

[
T S ≤ T2 | E

]
+ 0.15.

In fact Pr
[
T S ≤ T2 | E

]
can be arbitrarily small when b grows, since at each time

t we update the root in (St), we know that the probability of St−1 = ∅ is at most

b−0.01(1+ε), and we know that the root updates at most 20 ln b times.

In conclusion, we proved inequality (36) and hence the lemma.

Finally, by combining Lemmas 45, 47 and 48 together, we can conclude that:

when ε > 0, with probability at least 1/(20(1 + ε)bε ln b) after t = Tw + T1 + T2 < T

steps of the coupling, we have Xt = Yt; when ε = 0, from Lemmas 46, 47 and 48, we

have that with probability at least 1/(20 ln3 b) after t = T ′w + T1 + T2 < T steps of

the coupling, we have Xt = Yt, which proves Lemma 42.

4.2.2 Upper Bound on Mixing Time for k > b/ ln b.

In this section we analyze the upper bound of the mixing time of the Glauber dynamics

on the star graph G? when k = (1 + ε)b/ ln b for ε > 0.
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We will analyze the maximal one-step coupling using a weighted Hamming dis-

tance. The root r will have weight w(r) = bε/2 > 1 and the leaves will have weight

w(v) = 1. For a set of vertices S, let w(S) =
∑

v∈S w(v). Recall that the set of

disagreeing vertices at time t of our coupled chains is denoted as

Dt = {v ∈ V : Xt(v) 6= Yt(v)}

. Let Dr
t denote whether there is a disagreement at the root.

We want to show that the coupling decreases the distance in expectation. Hence,

we say a pair of colorings (X0, Y0) are η-distance-decreasing if there exists a coupling

(X0, Y0)→ (X1, Y1) such that:

E [w(D1) | X0, Y0] < (1− η)w(D0).

To simplify the analysis of the coupling, we will use the following theorem of Hayes

and Vigoda [31] to utilize properties of the stationary distribution. The quantity

diam(Ω) is the diameter of Ω with respect to the Glauber dynamics. In our case, a

trivial bound is diam(Ω) ≤ 2b.

Theorem 49. [31, Theorem 1.2] Let η > 0. Suppose S ⊆ Ω such that every (X0, Y0) ∈

S × Ω is η-distance-decreasing, and

π(S) ≥ 1− η

16 diam(Ω)
,

then the mixing time is

Tmix ≤ 3η−1dln(32 diam(Ω))e.

We use S as the set of colorings where the root has many available colors. Along

the lines of the Dyer-Frieze [21] local uniformity results, we will prove the following

statement about the available colors for the root r in a random coloring.
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Lemma 50. Let X be a random coloring of the star graph on b vertices. For every

ε > 0, there exists b0, such that for all b > b0 and k = (1 + ε)b/ ln b,

Pr
[
|AX(r)| > b.9ε

]
> 1− exp(−b.99ε/10).

Proof of Lemma 50. Fix the color of the root to be c. Let σ be a random coloring

conditional on the root receiving color c. We are going to prove that

Pr
[
|Aσ(r)| ≤ b0.9ε | σ(r) = c

]
< exp(−b0.99ε/10).

For each color i ∈ C \ {c}, let Zi be the indicator function that c ∈ Aσ(r).

|Aσ(r)| =
∑

i∈C Zi. By Theorem 14 in [20], the Zi’s are negatively associated with

each other once the root is fixed. Note that for b sufficiently large,

E [|Aσ(r)|] ≥ k exp(−b/(k − 1))

≥ b0.99ε.

Now applying the Chernoff bound, which hold for negatively associated random vari-

ables (c.f., Proposition 7 in [20]), we have:

Pr
[
|Aσ(r)| ≤ b0.9ε | σ(r) = c

]
< exp(−b0.99ε/10).

Hence, we let the set S be those colorings X ∈ Ω where |AX(r)| ≥ b.9ε when we

use Theorem 49.

We need to analyze E [w(D1) | X0, Y0]. Note, when a leaf v is recolored, if the

root is a disagreement (i.e., X0(r) 6= Y0(r)) then with probability 1/(k − 1) we have
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X1(v) 6= Y1(v). Hence,

E
[
w(DL

1 ) | X0, Y0

]
=

∑
v∈V \{r}

w(v)
[
Pr [v is recolored] · Pr [X1(v) 6= Y1(v) | v is recolored, X0, Y0]

+ (1− Pr [v is recolored])1[X0(v) 6= Y0(v)]
]

=
b

b+ 1

1[r ∈ D0]

k − 1
+

(
1− 1

b+ 1

)
w(DL

0 ).

There is probability at most |DL
0 |/max{|AX0(r)|, |AY0(r)|} that X1(r) 6= Y1(r), when

the root r is recolored. Hence, for X0 ∈ S, we have:

E [w(Dr
1) | X0, Y0]

≤ w(r)
1

b+ 1

|DL
0 |

max{|AX0(r)|, |AY0(r)|}
+

(
1− 1

b+ 1

)
w(Dr

0)

≤ |D
L
0 |b−ε/3

b+ 1
+

(
1− 1

b+ 1

)
w(Dr

0).

Therefore, for (X0, Y0) ∈ S × Ω, we have:

E [w(D1) | X0, Y0]

≤ 1

b+ 1

(
1[r ∈ D0]

b

k − 1
+ b−ε/3|DL

0 |
)

+

(
1− 1

b+ 1

)
w(D0)

≤ w(D0) +
1

b+ 1

(
−w(D0) + 1[r ∈ D0]w(r)b−ε/3 + b−ε/3|DL

0 |
)

≤ w(D0) +
1

b

(
−1 + b−ε/4

)
w(D0).

Thus, they are η-distance-decreasing for η = (1− b−ε/4)/b.

Now applying Theorem 49, by Lemma 50 we have the necessary bound on π(S),

and thus conclude for b sufficiently large we have:

Tmix ≤ (6b ln b)/(1− b−ε/4) ≤ 12b ln b.

This completes the proof of Theorem 40.
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4.2.3 A Simple Generalization to k = o(b/ ln b).

In all of the previous sections, we assumed k = Cb/ ln b where C is constant. But we

are also interested in the case when k is constant, say a hundred colors, and what the

mixing time of the Glauber dynamics will be in this case. Let α = α(k, b) := b/(k ln b).

We would also like to see how to generalize the upper bound and lower bound analysis

assuming α is any function growing with b, that is when k is o(b/ ln b). Actually, all

of our proofs will be the same and we just need to slightly modify the statements.

For the upper bound, we change Lemma 42 and Lemma 47 into the following ones.

Lemma 51. Let T = 20b ln b. There exists b0, for all (x0, y0) ∈ Ω×Ω, all α(k, b) ≥ 2,

and all b > b0 the following holds:

Pr [XT = YT | X0 = x0, Y0 = y0] ≥ 1/(20α(k, b)bα(k,b) ln b).

Lemma 52. For any pair of initial states (x0, y0) where all of the leaf disagreements

are of the same type, then

Pr
[
TXY1 < 4b ln b | (X0, Y0) = (x0, y0)

]
≥ 1/(4α(k, b)bα(k,b)−1 ln b).

Then by the same argument as in Section 4.2.1, we are able to show that the

relaxation time of the Glauber dynamics on G? is upper bounded by O(αbα ln b).

Thus, the mixing time of the Glauber dynamics on the complete tree is bounded by

Tmix = O
(
nα+(lnα+2 ln ln b+20)/ln b lnn

)
,

and the relaxation time is bounded by

Trelax = O
(
nα+(lnα+2 ln ln b+20)/ln b

)
.

For the lower bound, we replace Lemma 15 and Lemma 16 into the following

lemmas.
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Lemma 53. In a random coloring of the tree T , the probability that a vertex of T is

not frozen is at most b−1.

Lemma 54.

Prσ∈Ω∗
[
Aσw1,z

| σ(w1) = c1)
]
≤ b−α(k,b).

Then, by exactly the same way as in Section 3.2, we can show that the mixing

time and the relaxation time of the Glauber dynamics on the complete tree T when

α ≥ 2 is lower bounded by Ω(nα) = Ω(nb/(k ln b)).

4.2.4 Bounding the Log-Sobolev Constant: Proof of Theorem 41

In this section we will analyze the log-Sobolev constant csob of the heat-bath Glauber

dynamics on the complete tree by comparing it with the spectral gap cgap. For

completeness, we prove Theorem 41, which is an improvement over the proof of

Theorem 5.7 in Martinelli, Sinclar and Weitz [46]. In their paper, they proved it for

the case of the Ising model on the complete tree with a fixed boundary condition,

although they observed that it holds more generally. For convenience, we will use the

same notation for the complete tree and its vertices, that is, T` stands for both the

complete tree of height ` and its vertices V (T`).

Let B ⊆ A ⊆ T be two subsets of the vertices on tree T . Let η ∈ Ω be a

configuration. Let Eη
A(f) be the expectation of f under a prefixed distribution µ in

the region A with boundary condition η. That is

Eη
A(f) =

∑
σ

µ(σ)

Z
f(σ)

where σ ranges over the configurations that are the same as η outside A (denoted as

σ ∼A η) and Z is the normalizing factor. The quantities VarηA and EntηA are defined

similarly. If we drop η then EA(f),VarA(f),EntA(f) become functions from Ω to

R. The following are standard facts concerning variance and entropy; the first being

the chain rule, and the second follows from the so-called tensoring property over a
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product distribution – see e.g., Proposition 5.6 of [40]. In the following, we will use

the fact that the distribution on configurations over the tree with the root removed,

has a product form over the subtrees rooted at the children of the root, to satisfy the

hypothesis for the tensoring property.

Proposition 55.

VarηA(f) = Eη
A(VarB(f)) + VarηA(EB(f)).

EntηA(f) = Eη
A(EntB(f)) + EntηA(EB(f)).

Proposition 56. Let A =
⋃
Ai where Ai are disjoint, and suppose that conditioning

on the boundary being η, the probability of Ai’s being in any configuration for different

i’s is completely independent. Then

VarηA(f) ≤
∑
i

Eη
A(VarAi(f)),

and

EntηA(f) ≤
∑
i

Eη
A(EntAi(f)).

Lemma 57. Let csob(`) be the log-Sobolev constant of the heat-bath Glauber dynamics

on the complete tree of height ` > 0 with the root being attached to an external vertex

with a fixed color, then

csob(`)
−1 ≤ csob(`− 1)−1 + α · cgap(`)−1,

where α = log(k−2)
1−2/(k−1)

= csob(0)−1.

Proof. Let f be any non-negative function. Let I be the set of vertices in the complete

tree T` without the root, i.e., I = T`\{root}. Let us first use Proposition 55 to analyze

the Ent(f):

Ent(f) = E(EntI(f)) + Ent(EI(f))
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We will bound E(EntI(f)) and Ent(EI(f)) separately. For E(EntI(f)), by Propo-

sition 56, it can be upper bounded as

E(EntI(f)) ≤
∑
v

E(EntTv(f)), (37)

where v ranges over all the children of the root of T` and Tv denotes the subtree of

T` rooted at the vertex v. Let η ∈ Ω(T`), then for a specific EntηTv(f), we then have

EntηTv(f) ≤ csob(`− 1)−1DTv(
√
f), (38)

where DTv(
√
f) is the corresponding Dirichlet form for the dynamics on the subtree

Tv. For the heat-bath Glauber dynamics, since P (σ, τ) 6= 0 only if they differ at a

single vertex, we can further derive that

DTv(f) =
1

2

∑
σ,τ

(f(σ)− f(τ))2µ(σ)P (σ, τ) (39)

=
1

2

∑
x∈Tv

Eη
Tv

(Var{x}(f))

where µ(σ) is the marginal distribution with respect to η.

Then, from (37), (38) and above we have

E(EntI(f)) ≤
∑
v

E(EntTv(f)) (by (37))

≤
∑
v

csob(`− 1)−1E(DTv(
√
f)) (by (38))

=
∑
v

csob(`− 1)−1E
(∑
x∈Tv

Eη
Tv

[Var{x}(f)]
)

(by (39))

= csob(`− 1)−1
∑
x∈I

E(Var{x}(f))

≤ csob(`− 1)−1D(
√
f) (by applying (39) again)

For Ent(EI(f)), EI(f) can be viewed as a function from {1, 2, ..., k − 1} to R

since those k − 1 values can represent the colors of the root (boundary). Therefore

Ent(EI(f)) is the entropy of the random variable EI(f) taking k−1 values uniformly

at random. It is well-known (see e.g. Appendix of [16]) that log(k−2)
1−2/(k−1)

is the inverse of
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the log-Sobolev constant of the random walk R on the complete graph Kk−1, which

jumps to stationarity in one step. Thus, letting α = log(k−2)
1−2/(k−1)

, we may upper bound

Ent(EI(f)) as follows.

Ent(EI(f)) ≤ αDR(
√
EI(f)) (by the log-Sobolev Inequality)

= αVarR(
√
EI(f)) (for the complete graph P (x, y) = πR(y))

= αVarT (
√
EI(f))

≤ α
(
E[EI(f)]− E2(

√
EI(f))

)
(by the definition of the variance)

≤ αE(
√
f)2 − E2(

√
f) (by the concavity of

√
x)

≤ αcgap(`)
−1D(

√
f) (by the definition of the spectral gap)

Putting everything together, we proved

Ent(f) = E(EntI(f)) + Ent(EI(f))

≤ csob(`− 1)−1D(
√
f) + αcgap(`)

−1D(
√
f),

then by the definition of csob, we get

csob(`)
−1 ≤ csob(`− 1)−1 + αcgap(`)

−1 .

Lemma 58. Let csob(`) be the spectral gap of the heat-bath Glauber dynamics on the

complete tree of height ` > 0 with the root being attached to an external vertex with a

fixed color, then for ` > 0, we have cgap(`) ≤ cgap(`− 1)/b.

Proof. Let D`(f) and Var`(f) be the Dirichlet form and the variance of function

f : Ω(T`) → R for the Glauber dynamics on the complete tree of height ` with the

root attached to an external vertex with a fixed color. Let P` denote the probability

transition of the dynamics, and let π` denote its unique stationary distribution.
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Let g be the eigenfunction such that cgap(` − 1) = D`−1(g)/Var`−1(g). Now we

are going to construct a function f : Ω(T`) → R, such that D`(f) ≤ D`−1(g) and

Var`(f) = Var`−1(g). Then, since

cgap(`) ≤
D`(f)

Var`(f)
≤ D`−1(g)

b · Var`−1(g)
= cgap(`− 1),

we prove the lemma.

Let A ⊆ T` be the set of non-leaf vertices of T`, i.e., A = T` \ L(T`), where L(T`)

is the set of leaves in the tree T`. There is a natural correspondence between vertices

in A and in T`−1. The function f is then defined as: for σ ∈ Ω(T`) and σ′ ∈ Ω(T`−1),

f(σ) = g(σ′) if the configuration σ agrees with σ′ on the subset A.

It is straightforward to show that Var`(f) = Var`−1(g). We will show D`(f) ≤

D`−1(g)/b. By definition,

D`(f) =
∑

σ,η∈Ω(T`)

π`(σ)P`(σ, η)(f(σ)− f(η))2.

For a subset of vertices S ⊂ T`, let

Ω(S) = {σ′ ∈ [k]S : there exists σ ∈ Ω(T`) where σ(A) = σ′}.

Let σ′, η′ ∈ Ω(A) be colorings of the internal vertices. Let φ, ψ ∈ Ω(L(T`)) be colorings

of the leaves. Finally, let ◦ be the concatenation operator as we previously defined,

thus σ′ ◦ψ = σ ∈ Ω(T`) where σ(A) = σ′ and σ(L(T`)) = φ. Then we can rewrite the

Dirichlet form as:

D`(f) =
∑

σ′,η′∈Ω(A)

∑
φ,ψ∈Ω(L(T`))

π`(σ
′ ◦ φ)P`(σ

′ ◦ φ, η′ ◦ ψ)(f(σ′ ◦ φ)− f(η′ ◦ ψ))2.

According to the definition of the Glauber dynamics, for configurations σ, η ∈

Ω(T`) which differ at more than one vertex, we have P`(σ, η) = 0. Let ⊕ denote the
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symmetric difference. Now we can rewrite the Dirichlet form as:

D`(f)

=
∑
v∈A

∑
σ′,η′∈Ω(A):

σ′⊕η′={v}

∑
φ∈Ω(L(T`))

[
(f(σ′ ◦ φ)− f(η′ ◦ φ))2π`(σ

′ ◦ φ)P`(σ
′ ◦ φ, η′ ◦ φ)

]
+
∑

v∈L(T`)

∑
σ′∈Ω(A)

∑
φ,ψ∈Ω(L(T`)):

φ⊕ψ={v}

[
(f(σ′ ◦ φ)− f(σ′ ◦ ψ))2π`(σ

′ ◦ φ)P`(σ
′ ◦ φ, σ′ ◦ ψ)

]

=
∑
v∈A

∑
σ′,η′∈Ω(A):

σ′⊕η′={v}

(g(σ′)− g(η′))2
∑

φ∈Ω(L(T`))

π`(σ
′ ◦ φ)P`(σ

′ ◦ φ, η′ ◦ φ)

 ,
since g(σ′ ◦ φ) = g(σ′ ◦ ψ) = f(σ′).

Thus we only need to consider when the sole disagreement is at an internal vertex.

We can further decompose based on whether the disagreement is an internal vertex

of the tree T`−1, which we denote as I, or a leaf of T`−1.

For v ∈ L(T`−1), the goal is to bound the sum
∑

φ π`(σ
′ ◦ φ)P`(σ

′ ◦ φ, η′ ◦ φ) by

π`−1(σ′)/(|T`−1|(k − 1)b), i.e., π`−1(σ′)P`−1(σ′, η′)/b. We have the following observa-

tion: Fix the vertex v, for each color c such that σ′ ⊕ η′ = {v} and η′(v) = c, the

quantity Q(c) :=
∑

φ π`(σ
′ ◦ φ)P`(σ

′ ◦ φ, η′ ◦ φ) are the same, i.e., Q(c) = Q(c′) for

any two colors c 6= c′ because of the symmetry. Therefore, in order to bound Q(c), it

is easier to bound
∑

c 6=σ′(v) Q(c) by π`−1(σ′)/(|T`−1|b). Then, by taking the average

over k− 1 colors, we are done. It is a straightforward calculation to upper bound the

sum of Q(c):

∑
c 6=σ′(v)

Q(c) = π`−1(σ′)
∑
φ

π`(σ
′ ◦ φ)

π`−1(σ′)

∑
c 6=σ′(v)

1{c ∈ Aσ′◦φ(v)}P`(σ′ ◦ φ, η′ ◦ φ)

= π`−1(σ′)
∑
φ

π`(σ
′ ◦ φ)

π`−1(σ′)

|Aσ′◦φ(v)| − 1

|T`||Aσ′◦φ(v)|

≤ π`−1(σ′)
1

|T`−1|b
, (40)

where by definition, Aσ′◦φ(v) is the set of available colors for vertex v in the
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configuration σ′ ◦ φ.

Recall, I denotes the internal vertices of T`−1, i.e., I = V (T`−1)\L(T`−1). Similarly,

for v ∈ I we have:

∑
σ′,η′∈Ω(A):σ′⊕η′={v}

[(g(σ′)− g(η′))2
∑

φ∈Ω(L(T`))

π`(σ
′ ◦ φ)P`(σ

′ ◦ φ, η′ ◦ φ)]

=
∑

σ′,η′∈Ω(T`−1):

σ′⊕η′={v}

(g(σ′)− g(η′))2π`−1(σ′)P`−1(σ′, η′)/b. (41)

Combining (40) and (41), and summing over v ∈ T`−1 we have shown that D`(f) ≤

D`−1(g)/b, which implies the lemma.

Proof of Theorem 41. Now we apply Lemma 57 inductively, and we get

c−1
sob = c−1

sob(H) ≤ α
(
1 + c−1

gap(1) + · · ·+ c−1
gap(blogb nc)

)
.

Then by applying Lemma 58 on the spectral gaps, we can conclude that

c−1
sob ≤ bαc−1

gap(H) ≤ c−1
gap · 2b log k.
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CHAPTER V

A CONDITION FOR SPATIAL MIXING

In this chapter we present a new general approach for proving the strong spatial mix-

ing property of the spin systems on various classes of graphs with regular structures,

which for the case of the hard-core model on Z2, improves the lower bound of the

uniqueness threshold to λc(Z2) > 2.48. In a subsequent paper, Sinclair et al. [65]

apply the approach to analyze the anti-ferromagnetic Ising model with arbitrary field,

and show that there is a deterministic fully polynomial approximation scheme for the

partition function up to the corresponding critical point on the d-regular tree.

There are various algorithmic implications for finite subgraphs of the Z2 when λ <

2.48. Our results imply that Weitz’s deterministic FPAS is also valid on subgraphs of

Z2 for the same range of λ. Thanks to the existing literature on general spin systems

([44, 45, 15, 23]), our results also imply that the Glauber dynamics has O(n log n)

mixing time for any finite subregion G = (V,E) of Z2 when λ < 2.48, where n = |V |.

It also provides an arguably simpler way to derive the main technical result of Weitz

showing that any graph with maximum degree ∆ has strong spatial mixing (SSM)

when λ < λc(T∆).

The technique we develop builds upon Weitz’s work to get improved results for

specific graphs of interest. We focus our attention on what is arguably the simplest,

not yet well-understood, case of interest namely the square grid, or the 2-dimensional

integer lattice Z2. Empirical evidence suggests that the critical point λc(Z2) ≈ 3.796

[26, 6, 57], but rigorous results are significantly far from this conjectured point. The

possibility of there being multiple such λc is not ruled out, although no one believes

that this is the case.
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To underline the difficulty in estimating bounds on λc, we remark that the exis-

tence of a (unique) critical activity λc remains conjectural and an open problem for

Zd, for d ≥ 2. In contrast, as mentioned in the introduction for the Ising model,

the critical inverse temperature βc(Z2) has been known since 1944 [53]; the corre-

sponding critical point for the q-state Potts model (for q ≥ 2) has only recently been

established (by Beffara and Duminil-Copin [7]) to be βc(q) = log(1 +
√
q), settling a

long-standing open problem. The lack of monotonicity in λ in the hard-core model

poses a serious challenge in establishing such a sharp result for this model. In fact,

Brightwell et al. [12] showed that in general such a monotonicity need not hold, by

providing an example with a non-regular tree.

5.1 Weitz’s Approach

Since our work builds on that of Weitz’s, we first describe the self-avoiding walk

(SAW) tree representation introduced in [74]. Given G = (V,E), we first fix an

arbitrary ordering >w on the neighbors of each vertex w in G. For each v ∈ V , the

tree Tsaw(G, v) is constructed as follows. Consider the tree T of self-avoiding walks

originating from v, additionally including the vertices closing a cycle as leaves of the

tree. The tree has a specially constructed boundary condition, which is described as

follow. We fix each leaf of T to be occupied or unoccupied. Suppose a leaf vertex

closes a cycle in G, say w → v1 → . . . v` → w, then:

• If v1 >w v` we fix this leaf to be unoccupied;

• Otherwise if v1 <w v` we fix the leaf to be occupied.

Note that by the natural of the hard-core model, if the leaf is fixed to be unoccupied

we simply remove that vertex from the tree. If the leaf is fixed to be occupied, we

remove that leaf and all of its neighbors, i.e. we remove the parent of that leaf from

the tree. The resulting tree is denoted as Tsaw = Tsaw(G, v). See Figure 3 for an

illustration of Tsaw for a particular example.
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Figure 3: Example of self-avoiding walk tree Tsaw. The above tree describes Tsaw(G, a)
with occupied and unoccupied leaves, while the below one is the same tree after
removing those assigned leaves. At each vertex, we consider the ordering N > E >
S > W of its neighbors where N,E, S,W represent the neighbors in the North, East,
South, West directions, respectively.

Weitz [74] proves the following theorem for the hard-core model, which shows

that the marginal distribution at the root in Tsaw(G, v) is identical to the marginal

distribution for v in G. For a graph G = (V,E), a subset S ⊂ V and configuration ρ

on S, for Tsaw = Tsaw(G, v), let ρ in Tsaw denote the configuration on S in Tsaw where

for w ∈ S every occurrence of w in Tsaw is assigned according to ρ.

Theorem 59 (SAW Tree Representation, Theorem 3.1 in [74]). For any graph G =

(V,E), v ∈ V , λ > 0, and configuration ρ on S ⊂ V , for T = Tsaw(G, v) the following
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holds:

αG,ρ(v) = αT,ρ(v).

Note, the tree Tsaw(G, v) preserves the distance of vertices from v in G, which

implies the following corollary.

Corollary 60. If SSM holds for Tsaw(G, v) for all v, then SSM holds for G. And

the correlation decay rates are the same in both.

The reverse implication of Corollary 60 does not hold since there are configurations

on S in Tsaw which are not necessarily realizable in G. Observe that if G has maximum

degree ∆, any SAW tree of G is a subtree of the regular tree of degree ∆.

5.1.1 Our Proof Approach

In summary, Weitz [74] first shows (via Theorem 59) that to prove SSM holds on a

graph G = (V,E), it suffices to prove SSM holds on the trees Tsaw(G, v), for all v ∈ V .

Weitz then proves that the regular tree T∆ “dominates” every tree of maximum degree

∆ in the sense that, for all trees of maximum degree ∆, SSM holds when λ < λc(T∆).

We refine this second part of Weitz’s approach. In particular, for graphs with extra

structure, such as G = Z2, we bound Tsaw(Z2) by a tree T ∗ that is much closer to it

than the regular tree T∆. We then establish a criterion that achieves better bounds

on SSM for trees when the trees have extra structure.

The tree T ∗ will be constructed in a regular manner so that we can prove properties

about it – the construction of T ∗ is governed by a (progeny) t×t matrix M, whose rows

correspond to t types of vertices, with the entry Mij specifying the number of children

of type j that a vertex of type i begets. We will then show a sufficient condition

using entries of M which implies that SSM holds for T ∗ and for any subgraph of T ∗,

including Tsaw(Z2). The construction of T ∗ is reminiscent of the strategy employed in

[4, 55] to upper bound the connectivity constant of several lattice graphs, including Z2.
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The derivation of our sufficient condition has some inspiration from belief propagation

algorithms.

As a byproduct of our proof that our new criterion implies SSM for T ∗, we get a

new (and simpler) proof of the second part of Weitz’s approach, namely, that for all

trees of maximum degree ∆, SSM holds when λ < λc(T∆).

5.2 Branching Matrices and Strong Spatial Mixing

As alluded to above, we will utilize more structural properties of self-avoiding walk

trees. To this end, we consider families of trees which can be recursively generated by

certain rules; we then show that such a general family is also analytically tractable.

5.2.1 Definition of Branching Matrices

We say that the matrix M is a t × t branching matrix if every entry Mij is a non-

negative integer. We say the maximum degree of M is

∆ = ∆(M) = max
1≤i≤t

∑
1≤j≤t

Mij,

the maximum row sum. Given a branching matrix M, we define the following family

of graphs. In essence, it includes a graph G if the self-avoiding walk trees of G can

be generated by M.

Definition 61 (Branching Family). Given a t×t branching matrix M, F≤M includes

trees which can be generated under the following restrictions:

◦ Each vertex in tree T ∈ F≤M has its type i ∈ {1, . . . , t}.

◦ Each vertex of type i has at most Mij children of type j.

In addition, we use the notation G = (V,E) ∈ F≤M if Tsaw(G, v) ∈ F≤M for all

v ∈ V .
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For example, the family F≤M with M = [∆] includes the family of trees with

maximum branching ∆. On the other hand, F≤M with M =

0 ∆ + 1

0 ∆

 describes

the family of graphs of maximum degree ∆+1, by assigning the root of tree T ∈ F≤M

to be of type 1 and the other vertices of the tree to be of type 2. Note that if M has

maximum degree ∆, then every G ∈ F≤M also has maximum degree ∆.

In this framework, Weitz’s result establishing SSM for all graphs of maximum

degree ∆ when λ < λc(T∆) can be stated as establishing SSM with uniform rate

for all G ∈ F≤M with M =

0 ∆

0 ∆− 1

; and we are interested in establishing its

analogy for general M. To this end, we will use the following notion of SSM for M.

Definition 62. Given a branching matrix M, we say SSM holds for M if SSM holds

with uniform rate for all G ∈ F≤M.

To establish SSM for M, it suffices to prove that SSM holds with uniform rate

for all trees in F≤M due to Corollary 60. In addition, note that SSM holds for

M =

0 ∆ + 1

0 ∆

 if and only if it holds for (∆) since the root of a tree T ∈ F≤M

is the only possible vertex of type 1 in T . In general, it is a simple fact that any

transient state of the branching matrix M has no effect on whether M has the SSM

property or not. Therefore, we can simply reduce any branching matrix to the one

with only the recurrent states.

5.2.2 Implications of SSM

We present a new approach for proving SSM for a branching matrix M. There are

multiple consequences of SSM for M as summarized in the following theorem. We

first state some definitions needed for stating the theorem.

Following Goldberg et al. [30] we use the following variant of amenability for

infinite graphs. Here we consider an infinite graph G = (V,E). For v ∈ V and a
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non-negative integer d, let Bd(v) denote the set of vertices within distance ≤ d from v,

where distance is the length of the shortest path. For a set of vertices S, the (outer)

boundary and neighborhood amenability are defined, respectively, as:

∂S := {w ∈ V : w /∈ S, and w has a neighbor y ∈ S} and rd = sup
v∈V

|∂Bd(v)|
|Bd(v)|

.

The infinite graph is said to be neighborhood-amenable if infd rd = 0.

Now we can state the following theorem detailing the implications of SSM of

interest to us.

Theorem 63. For a t×t branching matrix M, if SSM holds for M then the following

hold:

1. For every G ∈ F≤M, SSM holds on G.

2. For every infinite graph G ∈ F≤M, there is a unique infinite-volume Gibbs

measure on G.

3. If M has maximum degree ∆, if t = O(1) and ∆ = O(1), then for every (finite)

G ∈ F≤M, Weitz’s algorithm [74] gives an FPAS for approximating the partition

function Z(G).

4. For every infinite H ∈ F≤M which is neighborhood-amenable, for every finite

subgraph G = (V,E) of H, the Glauber dynamics has O(n2) mixing time. More-

over, if H = Zd for constant d, then for every finite subgraph G = (V,E) of H,

the Glauber dynamics has O(n log n) mixing time.

Proof. Part 1 is by the definition of SSM for M. The uniqueness result follows from

the fact that the infinite-volume extremal Gibbs measures on the infinite graph G can

be obtained by taking limits of finite measures, see Georgii [27] for an introduction to

infinite-volume Gibbs measures, and see Martinelli [43] for Part 2. Part 3 immediately

follows from the work of Weitz [74]. Finally, for Part 4, there is a long line of work
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showing that for the integer lattice Zd in fixed dimensions, for the Ising model SSM

on Zd implies O(n log n) mixing time of the Glauber dynamics on finite subregions

of Zd, e.g., see Cesi [15] and Martinelli [43] (and the references therein) for recent

results on this problem. These results for the Ising model are typically stated for a

general class of models, but that class does not include models with hard constraints,

such as the hard-core model studied here. Dyer et al. [23] showed a simpler proof for

the hard-core model that utilizes the monotonicity of the model. We use this result

of [23] in Theorem 1 to get O(n log n) mixing time for subregions of Z2. Goldberg et

al. [30, Theorem 8] showed that for k-colorings, if SSM holds for an infinite graph

G that is neighborhood-amenable, the Glauber dynamics has O(n2) mixing time for

all finite subgraphs of G. Their proof holds for the hard-core model which implies

Part 4.

5.3 Establishing SSM for Branching Matrices

In this section we present a sufficient condition (and one of its simplified conditions)

implying SSM for the family of trees generated by a branching matrix. As a conse-

quence of the approach presented in this section we get a simpler proof of Weitz’s

result [74] implying SSM for all graphs with maximum degree ∆ when λ < λc(T∆).

We then apply the condition presented in this section to Z2 in Section 5.4.1.

To show the decay of influence of a boundary condition ρ, a common strategy

is to prove some form of contraction for the ‘one-step’ iteration given in (42) below.

More generally, we will prove such a contraction for an appropriate set of ‘statistics’

of the unoccupied marginal probability.

Definition 64. A statistic of the univariate parameter x ∈ [a, b] is a monotone (i.e.,

strictly increasing or decreasing) function ϕ : [a, b]→ R.

For a t × t branching matrix M we consider a set of t statistics ϕ1, . . . , ϕt, one

for each type. For the simpler case when M = [∆] and hence t = 1, we have a single
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statistic ϕ. Our aim is proving contraction for an appropriate set of statistics of the

probability that the root of a tree is unoccupied.

We first focus on the case of a single type, hence, M = [∆], t = 1 and there is

a single statistic ϕ. Consider a tree T = (V,E) ∈ F≤M with root r. For v ∈ V , let

N(v) denote the children of v, and let d(v) := |N(v)| the number of children. Let

Tv denote the subtree rooted at v. We will analyze the unoccupied probability for a

vertex v, but v will always be the root of its subtree. Hence, to simplify the notation,

for a boundary condition ρ on S ⊂ V , let αρ(v) = αTv ,ρ(v), i.e., it always denotes the

marginal probability of the root v of the subtree Tv given the boundary condition ρ

restricted to Tv.

A straightforward recursive calculation with the partition function leads to the

following relation:

αρ(v) =


1

1+λ
if N(v) = ∅

1
1+λ

∏
w∈N(v) αρ(w)

otherwise.

(42)

Note, the unoccupied probability always lies in the interval I :=
[

1
1+λ

, 1
]
, i.e., for all

v, all ρ, αρ(v) ∈ I.

For v ∈ V , let mρ(v) := ϕ(αρ(v)) be the ‘message’ at vertex v. The messages

satisfy the following recurrence:

mρ(v) = ϕ

(
1

1 + λ
∏

w∈N(v) αρ(w)

)
= ϕ

(
1

1 + λ
∏

w∈N(v) ϕ
−1(mρ(w))

)
.

Our aim is to prove uniform contraction of the messages on all trees T ∈ F≤M.

To this end, we will consider a more general set of messages. Namely, we consider

messages m1, . . . ,m∆ where for every 1 ≤ i ≤ ∆, mi = ϕ(αi) and αi ∈ I :=
[

1
1+λ

, 1
]
.

This set of tuples α1, . . . , α∆ ∈ I contains all of the tuples obtainable on a tree.

For α1, . . . , α∆ ∈ I, let mi = ϕ(αi), 1 ≤ i ≤ ∆, and let

F (m1, . . . ,m∆) := ϕ

(
1

1 + λ
∏∆

i=1 ϕ
−1(mi)

)
.
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Ideally, we would like to establish the following contraction: there exists a 0 <

γ < 1 such that for all α1, . . . , α∆, α
′
1, . . . , α

′
∆ ∈ I,

|F (m1, . . . ,m∆)− F (m′1, . . . ,m
′
∆)| ≤ γ max

1≤i≤∆
|mi −m′i|,

where mi = ϕ(αi) and m′i = ϕ(α′i). We will instead show that the following weaker

condition suffices. Namely, that the desired contraction holds for all |αi − α′i| ≤ ε for

some ε > 0. This is equivalent to the following condition.

Definition 65. Let I =
[

1
1+λ

, 1
]
. For the branching matrix M = [∆], we say that

Condition (?) is satisfied if for all α1, . . . , α∆ ∈ I, by setting mi = ϕ(αi) for 1 ≤ i ≤

∆, the following holds:

‖∇F (m1, . . . ,m∆)‖1 =
∆∑
i=1

∣∣∣∣∂F (m1, . . . ,m∆)

∂mi

∣∣∣∣ < 1. (?)

Let us now consider a natural generalization of the above notion for a branching

matrix with multiple types. Let M be a t × t branching matrix. For 1 ≤ ` ≤ t, let

∆` =
∑t

k=1M`k denote the maximum number of children of a vertex of type `. Once

again, consider a tree T = (V,E) ∈ F≤M with root r. For v ∈ V , let t(v) denote its

type. As before, N(v) are the children of v, d(v) is the number of children of v, and

for a boundary condition ρ on S ⊂ V , αρ(v) is the unoccupied probability for v in

the tree Tv under ρ.

The recursive calculation in (42) for αv in terms of αw, w ∈ N(v), still holds. For

the case of multiple types, for v ∈ V , let mρ(v) := ϕt(v)(αρ(v)) be the message at

vertex v. The messages satisfy the following recurrence:

mρ(v) = ϕt(v)

(
1

1 + λ
∏

w∈N(v) ϕ
−1
t(w)(mρ(w))

)
.

For each type 1 ≤ ` ≤ t, we consider contraction of messages derived from all

α1, . . . , α∆`
∈ I. We need to identify the type of each these quantities αi in order

to determine the appropriate statistic to apply. The assignment of types needs to be
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consistent with the branching matrix M. Hence, let s` : {1, . . . ,∆`} → {1, . . . , t} be

the following assignment. Let M`,≤0 = 0 and for 1 ≤ i ≤ t, let M`,≤i =
∑i

k=1M`,k.

For 1 ≤ i ≤ t, for M`,≤i−1 < j ≤M`,≤i, let s`(j) = i.

For type 1 ≤ ` ≤ t, for α1, . . . , α∆`
∈ I, set mj = ϕs`(j)(αj), 1 ≤ j ≤ ∆`, and let

F`(m1, . . . ,m∆`
) := ϕ`

(
1

1 + λ
∏∆`

j=1 ϕ
−1
s`(j)

(mj)

)
.

Note,

mρ(v) = Ft(v)

(
mρ(w1), . . . ,mρ(wd(v))

)
where N(v) = {w1, . . . , wd(v)}.1 (43)

We generalize Condition (?) to branching matrices with multiple types by allowing

a weighting of the types by parameters c1, . . . , ct.

Definition 66. Let I =
[

1
1+λ

, 1
]
. For a t × t branching matrix M, we say that

Condition (??) is satisfied if there exist c1, . . . , ct, such that for all 1 ≤ ` ≤ t, for all

α1, . . . , α∆`
∈ I, by setting mi = ϕs`(i)(αi) for 1 ≤ i ≤ ∆`, the following holds:

∆∑̀
i=1

cs`(i)

∣∣∣∣∂F` (m1, . . . ,m∆`
)

∂mi

∣∣∣∣ < c`. (??)

The following lemma establishes a sufficient condition so that SSM holds for M.

Lemma 67. For a t×t branching matrix M, if for every 1 ≤ ` ≤ t, ϕ` is continuously

differentiable on the interval I =
[

1
1+λ

, 1
]

and inf
x∈I
|ϕ′`(x)| > 0, and if Condition (?) is

satisfied for t = 1 or Condition (??) is satisfied for t ≥ 2 then SSM holds for M, and

hence the conclusions of Theorem 63 follow.

Proof. For a tree T = (V,E) with root r, let α+L(r) and α−L(r) denote the marginal

probabilities that the root of T is unoccupied conditional on the vertices at level L

(i.e., distance L from the root) being occupied and unoccupied, respectively.

1Strictly speaking, F` requires ∆` arguments, so for (43) to hold in the case when d(v) < ∆` we
can simply add additional arguments corresponding to α = 1, which fixes these additional vertices
to be unoccupied (and therefore absent).
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The main result for proving Lemma 67 is that there exist γ < 1 and L0 <∞ such

that for every tree T ∈ F≤M and every integer L ≥ L0,

|α+L(r)− α−L(r)| ≤ γL. (44)

We first explain why (44) implies Lemma 67 and then we prove (44). Consider a

tree T = (V,E) with root r, and a boundary condition ρ on S ⊂ V . Set L = dist(r, S)

as the distance of S to the root of T . The hard-core model on bipartite graphs

has a monotonicity of boundary conditions (c.f., [23]) which implies that for odd L,

α+L(r) ≥ αρ(r) ≥ α−L(r), and for even L, α+L(r) ≤ αρ(r) ≤ α−L(r). Hence, for any

pair of boundary conditions ρ and η on S,

|αρ(r)− αη(r)| ≤ |α+L(r)− α−L(r)| .

Therefore, by the definition of WSM in Definition 7, proving (44) implies WSM for T .

Since this holds for all T ′ ∈ F≤M, by Observation 9, it implies SSM for all T ′ ∈ F≤M,

which implies SSM for M.

We now turn our attention to proving (44). Fix a t× t branching matrix M and

consider a tree T = (V,E) ∈ F≤M with root r. Given y ∈ [0, 1], let βL,v(y) denote

the marginal probability that the root of Tv is unoccupied given all of the vertices at

level L (in Tv) are assigned marginal probability y of being unoccupied (conditional

on its parent being unoccupied). Intuitively, βL,v(y) can be thought as the marginal

probability conditioned on a ‘fractional’ boundary configuration at level L. As in

(42), βL,r(y) satisfies the following recurrence for y ∈ [0, 1]:

βL,r (y) =


y if L = 0,

1
1+λ

if L > 0 and N(r) = ∅,

1
1+λ

∏
w∈N(r) βL−1,w(y)

otherwise.

(45)

From (45) and (42), it follows that α+L(r) = βL,r (1) and α−L(r) = βL,r (0). Hence,

in order to analyze the messages for α+L(r) and α−L(r), we will analyze the messages
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for βL,r(y). Therefore, for v ∈ V , let mL,v (y) = ϕt(v) (βL,v (y)). Analogous to (43),

we now have that:

mL,r(y) = Ft(r)

(
mL−1,w1 (y) , . . . ,mL−1,wd(r) (y)

)
where N(r) = {w1, . . . , wd(r)}.

Observe that for all y ∈ [0, 1], all L > 0, all v ∈ V , βL,v (y) ∈ I =
[

1
1+λ

, 1
]
, and hence

we can use Condition (??) to analyze mL,r.

Using the fact that βL,v (y) and mL,v (y) are continuously differentiable for y ∈

[0, 1], we have that for L > 0,

|α+L(r)− α−L(r)| = |βL,r(1)− βL,r(0)| ≤
∫ 1

0

∣∣∣∣∂βL,r (y)

∂y

∣∣∣∣ dy ≤
∫ 1

0

∣∣∣∂mL,r(y)

∂y

∣∣∣ dy
inf
x∈I

∣∣∣ϕ′t(r) (x)
∣∣∣ .

By the hypothesis of Lemma 67, we know that
∣∣∣ϕ′t(r) (x)

∣∣∣ > 0. Therefore, to prove

the desired conclusion (44), it suffices to prove that there exist constants K <∞ and

η < 1 such that for every tree T ∈ F≤M with root r, all L > 0,∣∣∣∣∂mL,r (y)

∂y

∣∣∣∣ ≤ ct(r)Kη
L−1. (46)

Note that K and η should be independent of T and L, but may depend on λ, ϕ1, . . . , ϕt

and c1, . . . , ct. The constant K will be the following:

K :=

λ∆ max
1≤`≤t

sup
x∈I
|ϕ′` (x)|

min
1≤`≤t

c`
,

and the constant η will be the constant implicit in Condition (??).

We will show (46) by induction on L. First we verify the base case L = 1. In this

case,

mL,r(y) = ϕt(r) (βL,r (y)) = ϕt(r)

(
1

1 + λyd(r)

)
.
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Thus,

∣∣∣∣∂mL,r (y)

∂y

∣∣∣∣ =

∣∣∣∣∣∣
∂ϕt(r)

(
1

1+λyd(r)

)
∂y

∣∣∣∣∣∣ since L = 1

≤ sup
x∈I

∣∣ϕ′t(r) (x)
∣∣ sup
y∈[0,1]

λd(r)yd(r)−1

(1 + λyd(r))
2 by the chain rule

≤ sup
x∈I

∣∣ϕ′t(r) (x)
∣∣λd(r)

≤ sup
x∈I

∣∣ϕ′t(r) (x)
∣∣λ∆

≤ ct(r)K by the definition of K.

This completes the analysis of the base case.

Now we proceed toward establishing the necessary induction step using the induc-

tive hypothesis. We have that

∣∣∣∣∂mL,r (y)

∂y

∣∣∣∣ =

∣∣∣∣∣∣
∂Ft(r)

(
mL−1,w1 (y) , . . . ,mL−1,wd(r) (y)

)
∂y

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d(r)∑
i=1

∂Ft(r)
(
m1, . . . ,md(r)

)
∂mi

· ∂mL−1,wi(y)

∂y

∣∣∣∣∣∣ where mi := mL−1,wi(y)

=

∣∣∣∣∣∣
d(r)∑
i=1

ct(wi)
∂Ft(r)

(
m1, . . . ,md(r)

)
∂mi

· 1

ct(wi)

∂mL−1,wi(y)

∂y

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d(r)∑
i=1

ct(wi)
∂Ft(r)

(
m1, . . . ,md(r)

)
∂mi

∣∣∣∣∣∣
× max

1≤i≤d(r)

1

ct(wi)

∣∣∣∣∂mL−1,wi(y)

∂y

∣∣∣∣ by Hölder’s inequality.

(47)

From (??), there exists a universal constant η < 1 such that∣∣∣∣∣∣
d(r)∑
i=1

ct(wi)
∂Ft(r)

(
m1, . . . ,md(r)

)
∂mi

∣∣∣∣∣∣ < η ct(r).
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Therefore, it follows that∣∣∣∣∂mL,r (y)

∂y

∣∣∣∣ ≤ η ct(r) · max
1≤i≤d(r)

1

ct(wi)

∣∣∣∣∂mL−1,wi(y)

∂y

∣∣∣∣ by (47) and the definition of η

≤ ct(r)Kη
L−1 by the inductive hypothesis.

This completes the proof of (46), and hence that of Lemma 67.

Condition (??) together with Lemma 67 is a natural message-passing way of ar-

gument to establish the strong spatial mixing (SSM). The proof is crystal clear and

easy to follow. However, sometimes with the understanding of Condition (??), it is

more convenient to work with a formulation which is more concise, concrete and easy

to manipulate. We present it as follows.

For each type i, we treat the row Mi of M as a multi-set and each entry Mi(j) of

the row denotes the number of elements the set Mi has for the type j. We use t(w)

to denote the type of vertex w ∈ Mi. The following lemma, which is re-stating the

previous lemma, provides such a condition for SSM to hold for the tree TM.

Lemma 68. Let a branching matrix M, be given. Assume then for each type i, there

is a positive integrable function Ψi such that

1− αi
Ψi(αi)

∑
w∈Mi

Ψt(w)(αw) < γ, (48)

for αw in the range [1/(1 + λ), 1] for each child w and for αi defined in (42) as a

function of αw’s. Then SSM holds for TM, i.e., WSM holds for all trees T in the

family F≤M with a fixed rate γ < 1.

Proof. We fix a tree T ∈ F≤M and we want to show that WSM holds for T as long as

the condition (48) is true. Note that, this condition is independent of the tree T we

choose. We assume that our boundary consists of all vertices at a fix distance from

the root and each vertex on the boundary is independently set to unoccupied with

marginal probability Γ ∈ [0, 1].
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Let αL,i(Γ) be the marginal unoccupied probability for a type i vertex v, with

distance L from the boundary, in the sub-tree Tv rooted at v. Putting this notation

into Equation (42), for any fixed tree T we have:

αL,i(Γ) =
1

1 + λ
∏

w∈Mi
αL−1,w(Γ)

, (49)

where αL−1,w(Γ) equals to 1 if the vertex w is not in the tree T , and otherwise is the

marginal unoccupied probability of vertex w in tree Tw with the fractional boundary

condition Γ.

By integrating over Γ we can see that if∣∣∣∣dαL,i(Γ)

dΓ

∣∣∣∣ ≤ γL, (50)

then WSM holds for T at the vertex v of type i as discussed in the beginning of

Section 5.4.

For a vertex v of type i, we have the following equation for the derivatives at αi

with respect to the boundary:

dαL,i(Γ)

dΓ
= −(1− αL,i(Γ))(αL,i(Γ))

∑
w∈Mi

dαL−1,w(Γ)

dΓ

1

αL−1,w(Γ)
. (51)

From (51) it is sufficient to show for all i and all αw ∈ [1/(1 + λ), 1],

(1− αi)(αi)
∑
w∈Mi

1

αw
< γ

to obtain (50) and hence WSM holds for T , where in the inequality αi is a function

of αw’s as defined in (42). Note that, from here we already obtain a condition that

implies the WSM holds for all tree T ∈ F≤M.

However, technically, it is hard to show the contraction of the above inequality

due to the nonhomogeneous marginal distributions αw from different children vertices

as well as the irregular structure of the trees. We instead use a monotonic mapping

ϕi (the messages from i to its parents) for each type i, and show that∣∣∣∣dϕi(αL,i(Γ))

dΓ

∣∣∣∣ ≤ γL, (52)
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which also implies that WSM holds for all trees T ∈ F≤M.

Setting Ψi(x) =
(
x · dϕi(x)

dx

)−1

, we have

1

αw
= Ψt(w)(αw)

dϕt(w)(αw)

dαw
,

and thus

dϕi(αi)

dΓ
= −(1− αi)

Ψi(αi)

∑
w∈Mi

Ψt(w)(αw)
dϕt(w)(αw)

dΓ
.

Notice that to obtain (52), from this last equation we just need the condition (48) to

be true.

5.3.1 Reproving Weitz’s Result of SSM for Trees

In this section, we aim at finding a good choice of statistics. First we find such

a statistic for the case M = [∆], i.e., the case of a single type, which enables us

to reprove Weitz’s result [74] that when λ < λc(T∆) SSM holds for every tree of

maximum degree ∆.

Using Lemma 67 (and the simpler condition (?) for the case of a single type) we

obtain a simpler proof of Weitz’s result [74] that for every tree T with maximum

degree ∆ + 1 (hence, for every graph G of maximum degree ∆ + 1) and for all

λ < λc(T∆+1) = ∆∆/(∆− 1)∆+1, SSM holds on T (and on G).

Theorem 69. Let us define

ϕ(x) =
1

s
log

(
x

s− x

)
,

where s = ∆+1
∆

. Then, Condition (?) holds for M = [∆] and λ < λc(T∆+1). Con-

sequently, SSM and the conclusions of Theorem 63 hold for M =

0 ∆ + 1

0 ∆

 and

λ < λc(T∆+1).

Proof. Note that the proof we are going to present also works when using Lemma 68.

First, a straightforward calculation implies that∣∣∣∣ ∂F∂mi

∣∣∣∣ =
1− α
s− α

(s− αi),
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where αi = ϕ−1(mi) and α =
(

1 + λ
∏∆

i=1 αi

)−1

.

Hence, we have

‖∇F‖1 =
∆∑
i=1

∣∣∣∣ ∂F∂mi

∣∣∣∣
=

∆∑
i=1

1− α
s− α

(s− αi)

≤ 1− α
s− α

∆

s−( ∆∏
i=1

αi

)1/∆
 by the arithmetic-geometric mean inequality

=
1− α
s− α

∆

(
s−

(
1− α
λα

)1/∆
)
. (53)

We now use the following technical lemma.

Lemma 70.

max
x∈[0,1]

(1− x)
(

1 + 1
∆
− (1−x

λx
)

1
∆

)
1 + 1

∆
− x

≤ ω

1 + ω
,

where ∆ is a positive integer and ω is the unique solution to ω(1 + ω)∆ = λ.

Using the above inequality (53) with Lemma 70, we have that:

‖∇F‖1 < 1 if
ω

1 + ω
·∆ < 1,

where ω is the unique solution of ω(1 + ω)∆ = λ. This leads to the desired condition

λ < λc(T∆+1) = ∆∆/(∆ − 1)∆+1 so that SSM holds for M = [∆]. Note that, this

is equivalent to SSM for M =

0 ∆ + 1

0 ∆

. This completes the proof of Theorem

69.

Proof of Lemma 70. Let us define

Φ∆(x) = (
1− x
λx

)
1
∆

and

f(x) =
(1− x)(1 + 1

∆
− Φ∆(x))

1 + 1
∆
− x

.
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Take the derivative of Φ with respect to x, we have

Φ′∆(x) = − Φ∆(x)

∆x(1− x)
.

It is easy to see that Φ∆ is a decreasing function in [0, 1] such that Φ∆(0) = +∞ and

Φ∆(1) = 0. Therefore it has a unique fixed point that can be shown to be x̄ = 1
1+ω

.

Moreover, it is the case that Φ∆(x) > x if and only if x < x̄. To prove the lemma, we

notice that

f ′(x) =
(1 + 1

∆
)(Φ(x)− x)

∆x(1 + 1
∆
− x)2

,

hence f ′(x) > 0 for x < x̄ and f ′(x) < 0 for x > x̄. This implies that f has a

maximum at x̄, namely f(x̄) = ω
1+ω

.

5.3.2 Sufficient Criterion One: The DMS Condition

Theorem 69 suggests choosing ϕj(x) = 1
sj

log
(

x
sj−x

)
with appropriate parameters

sj for a general branching matrix M. Under this choice, we obtain the following

condition for SSM.

Definition 71 (DMS Condition). Given a t× t branching matrix M and λ∗ > 0, for

s1, . . . , st > 1 and c = (c1, . . . , ct) > 0, let D and S be the diagonal matrices defined

as

Djj = sup
α∈[ 1

1+λ∗ ,1]

(1− α)
(

1− θj
(

1−α
λ∗α

)1/∆j

)
sj − α

and Sjj = sj,

where

θj :=

(∏
` c
Mj`

`

)1/∆j∑
` c`s`Mj`/∆j

and ∆j =
∑
`

Mj`.

We say the DMS Condition holds for M and λ∗ if there exist s1, . . . , st > 1 and c > 0

such that:

(DMS) c < c.

Theorem 72. If the DMS Condition holds for M and λ∗ > 0, then Condition (??)

holds with the choice of ϕj(x) = 1
sj

log
(

x
sj−x

)
for all λ ≤ λ∗. Consequently, SSM and

the conclusions of Theorem 63 hold for M and all λ ≤ λ∗.
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Proof. First, one can check that∣∣∣∣ ∂Fj∂mi

∣∣∣∣ =
1− α
sj − α

(sji − αi),

where αi = ϕ−1
ji

(mi) and α = 1

1+λ
∏∆j
i=1 αi

.

Hence, it follows that

∆j∑
i=1

cji

∣∣∣∣ ∂Fj∂mj

∣∣∣∣ =
1− α
sj − α

∆j∑
i=1

cji(sji − αi)

by the arithmetic-geometric mean Inequality

≤ 1− α
sj − α

 ∆j∑
i=1

cjisji −∆j

 ∆j∏
i=1

cjiαi

1/∆j


=

1− α
sj − α

 ∆j∑
i=1

cjisji −∆j

 ∆j∏
i=1

cji

1/∆j (
1− α
λα

)1/∆j


=

1− α
sj − α

(
1− θj

(
1− α
λα

)1/∆j

)
∆j∑
i=1

cjisji by the definition of θj

≤ 1− α
sj − α

(
1− θj

(
1− α
λ∗α

)1/∆j

)
∆j∑
i=1

cjisji

≤ Djj

∑
`

Mj`c`s` by the definition of Djj

< cj by the DMS condition.

which satisfies the desired condition (??) of Lemma 67. This completes the proof of

Theorem 72.

5.3.3 Sufficient Criterion Two: Linear Programming Condition

All of the above analysis use Lemma 67 as the bridge to establish the Strong spatial

mixing. Here we propose a more general way to use linear programming to solve the

functional inequality (48) in Lemma 68 to establish the SSM. In practice, this method

is a lot slower than the DMS condition, however, it does provide a better bound.

This is because DMS condition is just a simple guess of the “optimal” functions and
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since we have a concrete form of the functions, a lots of simplifications can be done

through calculations. In contrast, here we almost assume nothing is known and try

to use linear programming interpolation to find the optimal functions.

Notice that if Ψi is positive and bounded for all i then inequality (48) is equivalent

to

(1− αi)
∑
w∈Mi

Ψt(w)(αw) < Ψi(αi). (54)

The idea to solve (54) is simple. We will restrict the search for Ψi to a family of

positive piecewise linear functions with a finite number of discontinuities.

First of all, it is a simple fact that each αi is in the interval I = [1/(1 + λ), 1]. We

will divide I into a set of d consecutive sub-intervals of the same size. Define

Xk =
1

1 + λ
+ k

λ

d(1 + λ)
, for k = 0, . . . , d− 1.

To ease the notation define Yk = Xk+1 for k = 0, . . . , d − 1. Note that the intervals

[Xk, Yk] partition I. Since the only requirements of Ψi(x) are positive and integrable,

we restrict the search for Ψi(x) to the functions of the linear form −ai,kx+bi,k in each

interval [Xk, Yk] with ai,k, bi,k > 0.

Now, for each type i, the functional inequality can be decomposed according to

different combinations of the intervals of the variables αw which are type i’s children.

For each combination, we are able to write down a set of linear inequalities such that

it is a sufficient condition for the functional inequality to hold within that region.

To capture for which sub-intervals should (54) hold, we say that a tuple of indexes

k = (k0, k1, k2, . . . , k∆i
) is i-acceptable if the interval [Xk0 , Yk0 ] intersects the interval[

1

1+λ
∏∆i
j=1 Ykj

, 1

1+λ
∏∆i
j=1 Xkj

]
. We have the following theorem.

Theorem 73. In order for the functional inequality (48) to hold, it is enough for the

following set of linear constraints (a’s and b’s are the variables) to be feasible:
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For each i ∈ [t] and each i-acceptable tuple k

(1−Xk0)

∆i∑
j=1

(
bt(j),kj − at(j),kjXkj

)
< (bi,k0 − ai,k0Yk0) , (55)

where {t(j) : j = 1, . . . ,∆i} = Mi (as multisets)

For each i ∈ t and k = 0, . . . , d− 1

bi,k − ai,kYk > 0, 0 ≤ ai,k ≤M 0 ≤ bi,k ≤M. (56)

where M is some (big) constant.

Proof. Define Ψi(x) = bi,k − ai,kx for all x ∈ [Xk, Yk). Linear constraints (56) imply

that Ψi is non-negative and bounded. Thus it is enough to show (54) holds.

Now fix type i we have kw’s such that αw ∈ [Xkw , Ykw ] for each w ∈ Mi. Let

αi = 1/(1 + λ
∏

w∈Mi
αw), then

1

1 + λ
∏

w∈Mi
Ykw
≤ αi ≤

1

1 + λ
∏

w∈Mi
Xkw

.

Thus if ki is such that Xki ≤ αi ≤ Yki then the tuple k = (ki, kw1 , . . . , kw∆i
) is

i-acceptable.

Therefore,

(1− αi)
∑
w∈Mi

Ψt(w)(αw) = (1− αi)
∑
w∈Mi

(
bt(w),kw − at(w),kw(αw)

)
≤ (1−Xki)

∆i∑
j=1

(
bt(w),kw − at(w),kwXkw

)
< bi,ki − ai,kiYki from (55)

≤ Ψi(αi).

5.4 Hard-core Model on the Square Lattice Z2

In this section, we show how to construct the branch matrices for the two-dimensional

integer lattice Z2 and then apply the previous two conditions to improve the range of

λ where the strong spatial mixing holds, which gives the following theorem.
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Theorem 74. There exists a t × t matrix M such that Tsaw(Z2) ∈ F≤M and the

strong spatial mixing holds for F≤M when λ < λ∗ = 2.48.

By applying Theorem 63, from the above strong spatial mixing result we prove

Theorem 1.

At the end of this section, we will discuss about the obstacles and potential limi-

tations of using the tree recursion methods for showing the uniqueness on graphs.

5.4.1 Lower bound of the Uniqueness Threshold for Hard-core Model
on Z2.

Because of the regularity of Z2, we could use branching matrices M such that the

tree TM consist of all walks of Z2 truncated when closing a cycle of length less than or

equal to a certain constant. Clearly, TM is a super-tree of Tsaw(Z2), because any path

in TM will only avoid cycles of a certain length whereas paths Tsaw(Z2) are avoiding

all cycles. We first illustrate our approach by showing that Theorem 74 holds with

λ∗ = 1.8801 for a simple choice of M, denoted as M̂. We then explain how to extend

the approach to higher λ.

Avoiding Cycles of Length Four

The graph Z2 is translation-invariant, hence the tree Tsaw(Z2, v) is identical for

every vertex v ∈ Z2. Fix a vertex, call it the origin o, and let us consider Tsaw(Z2) =

Tsaw(Z2, ø). Each path from the root of Tsaw(Z2) corresponds to a self-avoiding walk in

Z2 starting at the origin. Any walk on Z2 starting at the origin o can be encoded as a

string over the alphabet {N,E, S,W} corresponding to North, East, South and West.

The tree Tsaw(Z2) contains such strings, truncated the first time the corresponding

walk completes a cycle. A relaxed notion of such a tree would be to truncate a walk

only when a 4-cycle is completed. Denote such a tree by T4, and clearly we have that

Tsaw(Z2) is a subtree of T4. Our first idea is to define a branching matrix M̂ so that

T4 ∈ F≤M̂, and hence Tsaw(Z2) ∈ F≤M̂.

To avoid cycles of length four, it is enough to track the last three steps of the
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walks. Labeling the paths using {N,E, S,W} as mentioned above, their branching

rule is easily determined. For example, a path labeled NWW is followed by paths

labeled WWS, WWN and WWW which corresponds to adding the directions S, N

and W respectively. As another example, a path labeled NWS is followed by paths

labeled WSW and WSS corresponding to adding the directions W and S to the

path, while adding the direction E would have resulted in a cycle of length 4. The

number of types in the corresponding branching matrix is ≤ 4+42 +43 ≤ 53. Indeed,

we can reduce the representation of such paths by using isomorphisms between the

generating rules among them. This results in 4 types in the following branching

matrix M̂:

M̂ =



0 4 0 0

0 1 2 0

0 1 1 1

0 1 1 0


, (57)

where the type i = 0, ..., 3 of a vertex (walk) in the tree represents the fact that a

continuation with a minimum of 4− i additional edges are needed to complete a cycle

of length 4.

Type 2

Type 3

Type 4

d b

c

f

d

i g

e

d

i g

e

g

Type 1

e

d b

e

d f f

c

j

f

j

c

e e

f

a

Figure 4: Assignment of the four types from matrix M̂ defined in (58) to the self-
avoiding walk tree Tsaw from Figure 3. In the circled area, we also draw redundant
leaves at vertex j which may appear in the branching rule, but not in Tsaw.
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See Figure 4 for an illustration of this branching matrix M̂. One can verify that

this branching matrix captures, inter alia, the self-avoiding walk trees from Z2:

Observation 75. For any finite subgraph G = (V,E) of Z2 and v ∈ V , Tsaw(G, v) ∈

F≤M̂.

For this branching matrix, one can check that the (DMS) condition of The-

orem 72 holds with λ∗ = 1.8801, S = Diag(1.040, 1.388, 1.353, 1.255) and c =

(0.266037, 0.100891, 0.100115, 0.0973861). As a consequence, we can conclude that

Theorem 74 and hence Theorem 1 holds for M̂ and λ∗ = 1.8801. One can also apply

the linear programming condition to the matrix, this will result in λ∗ = 1.92.

Generalization of the Matrix M̂

The primary reason why the branching matrix M̂ improves beyond the tree-

threshold of λ < λc(T4) = 27/16 = 1.6875 is that the average branching factor

of any T ∈ F≤M̂ is significantly smaller than that of the regular tree of degree 4.

In M̂, we have not yet taken into consideration the effect of the assignments of

closing a cycle in the walks. When we do that, we are able to construct much more

complex branching matrices providing better bounds. The trees generated by these

matrices become tighter than M̂ as a super tree of Tsaw(Z2) since when a walk closes

a cycle with an occupied assignment to a vertex u, this forces the parent of u to be

unoccupied, which further trims down the size of the tree.

Starting with T4, prune the leaves as is done in the construction of Tsaw(Z2), i.e.,

including the effect of the boundary conditions. Denote the new tree as T ′4. Clearly

we still have that Tsaw(Z2) is a subtree of T ′4. Let us illustrate the difference between

T4 and the pruned tree T ′4. We first fix an underlying order for the neighbors of each

vertex. To this end, say N > E > S > W and this prescribes an ordering of the

neighbors of each vertex. Consider a leaf vertex v′ in the tree T4 corresponding to

the vertex v in Z2 and to the path ρ in Z2. Since v′ is a leaf vertex in T4, ρ must

end with a cycle at v, say WNES. Since v was exited in the West direction at
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the beginning of the 4-cycle, and since W < N , the leaf vertex v′ would be labeled

occupied in Weitz’s construction, thus resulting in the removal of v′ and its parent

in the construction of T ′4. Note, every vertex w′ in T4 of type WNE has a child v′

of type NES, and consequently w′ (and its subtree) will be removed from the tree

in the pruning process to construct T ′4. Thus, after removing vertices of type WNE

(and similarly, WSE, SEN and ENW ) from T4, it is still the case that Tsaw(Z2) is a

subtree of the resulting tree (T ′4). This highlights why T ′4 has a significantly smaller

average branching factor than T4.

We can define a branching matrix M2, with 17 types (as illustrated in Figure 5 and

explained in Appendix A), such that T ′4 ∈ F≤M2 , and hence Tsaw(Z2) ∈ F≤M2 . We

can prove the DMS Condition is satisfied for M2 at λ∗ = 2.1625 and the LP condition

is satisfied at λ∗ = 2.30, which significantly improves upon our initial bound resulting

from considering T4.

Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9

Type 10 Type 11 Type 12 Type 13 Type 14 Type 15 Type 16 Type 17

Type 1

Figure 5: Shapes that the seventeen types (or labels) represent for M2 where T ′4 ∈
F≤M2 .

A natural direction for improved results is to consider branching matrices corre-

sponding to avoidance of larger cycles, while also accounting for the removal of vertices

prescribed by the construction of Weitz. For even ` ≥ 4, we use M`/2 to denote the

branching matrix generating the tree that contains all walks in Z2 truncated when

completing a cycle of length ≤ `, where these leaf vertices are occupied or unoccupied

according to Weitz’s construction based on some fixed homogeneous ordering <w of

neighbors for every vertex. By taking into account the boundary condition we obtain
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a smaller tree, however the number of types increases. For M3 there are 132 types,

and for M4 there are 922 types. Hence the computations become increasingly difficult

for larger `. We can make the following general observation from our construction.

Observation 76. For any finite subgraph G = (V,E) of Z2 and v ∈ V , Tsaw(G, v) ∈

F≤Mi
for any i ≥ 2.

Discussions about the DMS condition and the LP condition

The following table summarizes the threshold λ∗ we obtain for each Mi using both

the DMS condition and linear programming method:

Table 1: Bounds on λ∗ for each branching matrix Mi

Max length of Cycles Effect of Boundary # of Types DMS λ∗ LP λ∗

4 No 4 1.88 1.92
4 Yes 17 2.16 2.30
6 Yes 132 2.33 2.46
8 Yes 922 2.38 2.48

This proves that Theorem 74 holds for any λ < 2.48. The complete data for results

in the above table is given in the Online Appendix at http://www.cc.gatech.edu/

∼vigoda/hardcore.html. Note that one can further improve the bound on λ by using

more types for higher i and hence Theorem 74 will hold with the corresponding

activity λ∗. However, the number of types grows exponentially in the length of cycles

we avoid, which stops us from obtaining better results. In Section 5.4.3, we will

provide a numerical method to reduce the number of types in the matrix significantly,

where we also propose an interesting conjecture for reducing the number of types.

For the DMS condition, fast algorithms such as binary search can be use to find

the parameters due to the concavity of the candidate functions. Checking the DMS

condition for a given choice of parameters would have been a straightforward task,

were it not for the irrationality of the coefficients Djj. However, one can establish

rigorous upper bounds for Djj, based on concavity of the function (of α) used in the
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definition of Djj, in a suitable range of the parameters. These details will be discussed

further in Section 5.4.2.

As we can see, solving and checking the parameters for the linear programming

condition requires substantially larger amount of computing resource, but it does

provides a better bound and there is no irrational number issue involved. This does

not mean that the DMS condition has no value at all. Indeed, from the comparison

between them, we are able to see how much we gain by using a near “optimal” method

and understand that it seems impossible to have a simple close form for the optimal

statistics ϕi unlike in the one-type case.

One may also wonder how much we are able to prove about λ∗ if we are able to do

the computation for avoiding big cycles. We will then discuss about limitations of our

method by showing several examples in Section 5.4.4 and Section 5.4.5, which poten-

tially implies that the results obtained by the current methods cannot be improved

too much to get close to the conjectured threshold λc(Z2).

5.4.2 Verification of the DMS Condition

For any such matrix Mi, the verification of the DMS Condition relies on (i) ‘guessing’

appropriate values for the parameters S and c and (ii) formally verifying that DMS

Condition holds for the chosen S and c. In choosing desirable S and c, we employed

a heuristic random walk algorithm aided with binary search.

To verify that the DMS Condition holds for a given rational matrix S and vector

c is straightforward, provided we can obtain a rational upper bound for each type j

for the function:

fj(α) =
(1− α)

(
1− θj

(
1−α
λα

)1/∆j

)
sj − α

.

Indeed, due to the concavity of this function for 0 < θj ≤ 1, sj > 51/50 and λ > 27/16,
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2 it is always possible to find a provable upper bound for fj in such a regime. This

can be done, for example, by describing a suitable ‘envelope’ for fj consisting of a

piecewise linear function of the form:

gj (α) =


B` if α < α`

min{b` (α− α`) +B`, bu (α− αu) +Bu} if α` < α < αu

Bu if α > αu

where α`, αu are points such that b` > f ′j (α`) > 0, bu < f ′j (αu) < 0, B` > fj (α`) and

Bu > fj (αu). It is clear for any such function that gj(α) > fj(α), thus we obtain a

provable upper bound for fj using gj.

For every Mi in the above table, we provide S and c, along with appropriate

envelopes that lead to upper bounds D̂jj for the corresponding Djj. Then we verify

that the DMS Condition holds for the given values of λ by replacing Djj with D̂jj.

For i = 2, see Appendix A for the matrix M2 and the corresponding S, c, α` and αu.

For i = 3, 4 these values (M, S, c, α` and αu) are given in the Online Appendix at

http://www.cc.gatech.edu/∼vigoda/hardcore.html.

5.4.3 Reduction of the Branching Matrices M`

Usually, when one applies various methods trying to solve the functional inequality

(48), one has to face the fact that the dimension of the matrix Mi is huge, e.g., t = 922

for i = 4. A natural way to generate M is using a DFS program that enumerates

all the types by remembering the history of the self avoiding walk. However, there

are many types in such a matrix that are essentially the “same”. Here we provide a

heuristic method for finding those types that are the same.

Let C be a partition of the types in M, i.e., C = {C1, C2, ..., Ck} such that⊎k
i=1Ci = [t]. We define the partition to be consistent with M, if for every i ∈ [k],

2This is a nontrivial algebraic fact. It can be proved by transforming the second derivatives condi-
tion to a set of integer polynomial constraints and using the “resolve” function in MATHEMATICA
for the satisfiability of the constraints, which is rigorous by the Tarski-Seidenberg Theorem [69] for
the real polynomial systems [1] and the so-called cylindrical algebraic decomposition [5].
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each pair of types s, t ∈ Ci, the rows Ms and Mt are the same with respect to C, that

is ∑
j∈Ci′

Msj =
∑
j∈Ci′

Mtj, for all i′ ∈ [k].

Definition 77. Given M and a partition C of size k which is consistent, we define

the k-by-k matrix MC by,

MC
ii′ =

∑
j∈Ci′

Msj where s ∈ Ci.

We say M is reducible to a k-by-k matrix B if there is a consistent partition C such

that B = MC.

Lemma 78. For a partition C of size k,

F≤MC = F≤M and TMC = TM.

Proof. The argument is just a standard induction on the tree.

Now the question is how to find a good partition C easily. For a specific value λ <

WSM(TM), Let Vλ be the fixed points of the recurrences of the marginal distributions

defined by M. Our conjecture is

Conjecture 79. Let the partition C(λ) be the sets of types that have the same value

of the fixed points in Vλ, i.e., for each Ci ∈ C(λ), for all c ∈ Ci, Vλ(c) are the same.

If for all λ, the partitions C(λ) are identical, then C is a partition that is consistent

of M.

Using the intuition from Conjecture 79 we are able to find good partitions in prac-

tice. We simply run a dynamic programming algorithm on the tree TM to calculate

an approximation of the fixed points in Vλ. Once the approximation is good enough,

we simply make the partition according to this approximation. We then check the

consistency of the partition with M, and therefore, we know whether the resulting
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matrix generates the same tree as the original one or not by Lemma 78. Applying

this reduction to M3, the number of types goes down from 132 to 34, and for M4 the

number of types goes down from 922 to 162. This significant reduction in the size

of the matrices greatly reduces the number of constraints and variables in our linear

programming formulation.

5.4.4 Upper Bound on the SSM Threshold for Z2

As we know, previous approaches for lower bounding λc(Z2) work by establishing

WSM on Z2 by proving SSM on Tsaw(Z2). Hence, to provide an upper bound on these

approaches we want to upper bound the SSM threshold for Tsaw(Z2). We will show

that for λ > 3 that SSM does not hold on Tsaw(Z2) obtained from any homogeneous

ordering. Note that this does not imply anything about WSM/SSM on Z2, it simply

gives a limit for the current proof approaches.

To prove that SSM does not hold on Tsaw(Z2) we define a tree T ∗ that is a subtree

of Tsaw(Z2) and prove that WSM does not hold on T ∗ when λ > 3.

The tree T ∗ is easy to construct. We consider those walks on Z2 that only go

North, East and West. The branching rules can be written in the following finite

state machine way:

1. N → N | E | W

2. E → N | E

3. W → N | W

We The branching matrix corresponding to the above rule is

D =


1 1 1

1 1 0

1 0 1

 , (58)

where row/column 1,2 and 3 corresponding to North, East and West respectively.
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Proposition 80. The tree TD generated by the branching matrix D is a sub-tree of

Tsaw(Z2).

Proof. We will define an ordering >w for each w ∈ Z2 such that TD is a subtree of

Tsaw in a natural way. In Weitz construction, let T̂saw(Z2) be the tree of self-avoiding

walks of Z2 originating from the origin, including the vertices closing a cycle in the

walks as leaves. The tree TD consists of all those self-avoiding walks that never go

South, and thus, it is a sub-tree of T̂saw(Z2).

Now, in the second part of Weitz construction, some vertices are delete from

T̂saw(Z2) to obtain Tsaw(Z2). We need to show that not vertex from TD is deleted.

A vertex is deleted from T̂saw(Z2) because is an occupied leaf, or is the parent of

an occupied leaf. Leaves in T̂saw(Z2) correspond to walks finishing in a cycle, and

thus they do not belong to TD. Now suppose a vertex in TD is the parent of a leave

ζ in T̂saw(Z2). In this case, ζ corresponds to a path finishing in a cycle in Z2, say

· · · → w → v1 → . . . v` → w, and the move v` → w is a South move. To ensure that

we do not occupy ζ in T̂saw(Z2), we need to ensure that v1 >w v`, and for this we just

need to define for each vertex w in Z2, the North children as the smallest one in the

>w - ordering.

Note that, this proof works for the trees Tsaw(Z2) defined under any homogeneous

ordering. In any such Tsaw(Z2), it is easy to find a tree that is isomorphic to TD. For

this tree TD we can establish its WSM threshold as stated in the following result,

which immediately shows that SSM does not hold for Tsaw(Z2) when λ > 3.

Lemma 81. The weak spatial mixing threshold for the tree TD defined by D is at

λ = 3.

Proof. The matrix D is reducible, as defined in Definition 77, to the following 2× 2
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matrix:

B =

1 2

1 1

 . (59)

It is easy to check that B and D generate the same family of trees. Now the recur-

rences for the marginal distributions of both types derived from (42) are

f(x, y) =

(
1

1 + λxy2
,

1

1 + λxy

)
. (60)

Using some algebra, we are able to determine the fixed points of f(x, y) for λ > 1

(x0, y0) = (x0(λ), y0(λ)) =

(
4λ+

√
8λ+ 1− 1

8λ
,

√
8λ+ 1− 3

2(λ− 1)

)
.

We just need to check the eigenvalues of the Jacobian of the recurrences at the fixed

point, see e.g., [63]: If the largest eigenvalue is greater than 1, then the function

around the the fixed point is repelling and hence it is impossible for the boundary

conditions to converge to this unique fixed point. If the largest eigenvalue is strictly

less than 1, the function is contracting to the fixed point in its neighborhood. The

Jacobian at the fixed point (x0, y0) is the following:

J(λ) =

λx2
0y

2
0 2λy0x

3
0

λy3
0 λx0y

2
0

 . (61)

Denote the trace of J(λ) as tr(J(λ)) = λx0y
2
0(x0+1) and its determinant as det(J(λ)) =

−λ2x3
0y

4
0. The largest eigenvalue of J(λ) is then

ρ(λ) =
tr(J(λ))

2
+

(
tr(J(λ))2

4
− det(J(λ))

)1/2

,

It is easy to check for λ = 3, x0(3) = 2/3, y0(3) = 1/2 and ρ(3) = 1.

5.4.5 Tree with Different Thresholds for SSM and WSM

Brightwell et al. [12] give an example of hard-core model on trees that the WSM does

not imply the SSM for the same activity λ. Here, we present another example using

133



sub-trees of Tsaw(Z2). We can show a tree T ′ which is a supertree TD for which WSM

holds for some λ > 3.

To construct the tree T ′ we allow some South moves in the tree in a certain context.

In particular, we only allow that a South move happens when the path contains the

following substring: NNEESEN, i.e., a South move is allowed if and only if it is after

a sequence of NNEE moves and followed by another EN moves. The tree family can

be formalized in the following finite state machine way:

1. E → E | N

2. W → N | W

3. N → NN | E | W

4. NN → NN | NNE | W

5. NNE → N | NNEE

6. NNEE → N | E | NNEES

7. NNEES → NNEESE

8. NNEESE → NNEESEN

9. NNEESEN → NN | E

Let the matrix describing the above rules be denoted as D1.

Lemma 82. The tree TD1 that is generated by D1 is a super-tree of TD and is a

sub-tree of Tsaw(Z2).

The proof of the above proposition is similar to Theorem 81 except for that one

has to make the ordering more carefully so that everything works out. One can

numerically verify that the WSM threshold for the tree generated by D1 is above

λ = 3.01.
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Lemma 83.

WSM(TD1) > 3.01.

The rigorous proof is tedious but doable by straightforward calculations using

Mathematica.
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APPENDIX A

BRANCHING MATRIX OF 17 TYPES

As we explained in Section 5.4.1, for constructing M2 (i.e., the branching matrix that

represents the structure of trees of walks in Z2, avoiding cycles of length 4 accounting

removals of vertices), it is enough to track the last three steps of self-avoiding walks.

It is straightforward to verify that under the assignments of labels (or types) to walks

as explained below, it is the case that the tree T ′4 (cf. Section 5.4.1 for its definition)

is contained in the family F≤M2 where M2 is given as per (62).

Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9

Type 10 Type 11 Type 12 Type 13 Type 14 Type 15 Type 16 Type 17

Type 1

Figure 6: Shapes that the seventeen types (or labels) represent for M2.

◦ If the terminal edges of the path are NES (NWS, ESW , SWN), then assign

to it the label 14 (15, 16, 17, respectively).

◦ Else if the terminal edges are NE (NW , EN , ES, WS, WN , SE, SW ), then

assign to it the label 6 (7, 8, 9, 10, 11, 12, 13 respectively).

◦ Else if the terminal edges are N (E, W , S), then assign to it the label 2 (3, 4,

5 respectively).

◦ Otherwise (necessarily a path of length 0), assign the label 1.
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M2 =



0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0



(62)

Hence, for any finite subgraph G = (V,E) of Z2, Tsaw(G, v) is contained in the

family F≤M2 . Setting S, c, (α`, αu) as detailed below, and proceeding as described in

Section 5.4.1, we conclude that the DMS condition holds for λ∗ = 2.1625. Therefore,
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for all λ ≤ 2.1625, SSM holds with uniform rate γ ∈ (0, 1) for subgraphs of Z2.

(α`, αu) =



0.829647, 0.829704

0.579816, 0.579891

0.606359, 0.606453

0.638897, 0.638974

0.597921, 0.598001

0.627943, 0.627993

0.629560, 0.629638

0.635604, 0.635656

0.622289, 0.622374

0.638467, 0.638555

0.634357, 0.634417

0.637607, 0.637659

0.623116, 0.623202

0.658641, 0.658723

0.643530, 0.643595

0.666218, 0.666285

0.636866, 0.636945



c =



0.287690

0.101247

0.101683

0.102709

0.098046

0.100724

0.096228

0.105722

0.096053

0.101926

0.104926

0.100006

0.092699

0.100489

0.104415

0.097162

0.106246



S = Diag(1.040, 1.494, 1.432, 1.363, 1.45, 1.392, 1.412, 1.282, 1.407,

1.271, 1.28, 1.288, 1.442, 1.25, 1.256, 1.254, 1.272).
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