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SUMMARY

Spin systems are powerful mathematical models widely used and studied in
Statistical Physics and Computer Science. This thesis focuses on two specific spin
systems of particular combinatorial interest: colorings and weighted independent sets
(hard-core model).

In many spin systems, there exists a phase transition phenomenon: there is a
threshold value of a parameter such that when the parameter is on one side of the
threshold, the system exhibits the so-called spatial decay of correlation, i.e., the
influence from a set of vertices to another set of vertices diminishes as the distance
between the two sets grows; when the parameter is on the other side, long range
correlations persist. The uniqueness problem and the reconstruction problem are two
major threshold problems that are concerned with the decay of correlations in the
Gibbs measure from different perspectives.

In Computer Science, the study of spin systems mainly focused on finding an effi-
cient algorithm that samples the configurations from a distribution that is very close
to the Gibbs measure. The Glauber dynamics is a typical Markov chain algorithm
for conducting such sampling. In many systems, the convergence time of the Glauber
dynamics also exhibits a threshold behavior: the speed of convergence experiences a
dramatic change around the threshold of the parameter.

The first two parts of this thesis focus on making connections between the phase
transition of the convergence time of the dynamics and the phase transition of the
reconstruction phenomenon in both colorings and the hard-core model on regular
trees. A relatively sharp threshold is established for the change of the convergence

time, which coincides with the reconstruction threshold. A general technique of upper
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bounding the conductance of the dynamics via analyzing the sensitivity of the recon-
struction algorithm is proposed and proven to be very effective for lower bounding
the convergence time of the dynamics.

The third part of the thesis provides an innovative analytical method for estab-
lishing a strong version of the decay of correlation of the Gibbs distributions for many
two spin systems on various classes of graphs. In particular, the method is applied
to the hard-core model on the square lattice, a very important graph that is of great
interest in both Statistical Physics and Computer Science. As a result, we signifi-
cantly improve the lower bound on the uniqueness threshold for the square lattice and
thereby improve the range of the parameter of interest where the Glauber dynamics

has fast convergence (i.e., rapid mixing).
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivations

Spin systems are powerful mathematical models widely used and studied in Statistical
Physics, Applied Probability and Computer Science. The concept of a spin system
originated from Statistical Physics as an idealized model to study a physical system
at equilibrium such as magnetic materials and lattice gases. Mathematically, a spin
system is comprised of a finite graph G = (V, E') with vertices V' modeling the particles
or individuals and edges E modeling the interactions. A configuration for a vertex
or a set of vertices is an assignment of one of the spins to each vertex. Different
configurations have different likelihoods of appearing in the model of the equilibrium
state of the system. The likelihood comes in two ways: one is from the spin of each
vertex, each spin may have a different weight; the second way is from the interactions
among the vertices, i.e., there are different weights assigned to edges depending on
the different spins at the endpoints of the edge. Indeed, this can be made into a
formal probability statement and we are able to define the probability space called
the Gibbs measure over the set of configurations, which represents the equilibrium
state of the finite system.

For spin systems in Statistical Physics, when studying magnetic materials, the
underlying graph G typically becomes a lattice (usually a two-dimensional or three-
dimensional grid) and each site represents an atom. The states of a site specify the
“up” or “down” magnetic moment of the atom and edges are modeling the interaction
among the neighboring atoms. For the lattice gas model, sites are the possible places

where atoms of non-negligible size can reside and can be either “occupied” or “vacant”



with the constraint that no two neighboring sites can be both occupied at the same
time so that atoms will not overlap. Researchers have been using this general modeling
tool to understand properties of the equilibrium states of various systems including:
how the particles/individuals affect each other in the equilibrium states, how the

physical system reaches equilibrium, and also whether long range correlations exist.
1.1.1 Phase Transitions

Perhaps, the most important object in the study of spin systems in Statistical Physics
is to understand the phase transition phenomenon. A phase transition is said to
occur when a microscopic change in the parameters of the system causes a dramatic
macroscopic change in the properties of the system. It is quite common in our daily
life, such as when water boils into steam or freezes to ice. A more sophisticated
example is the so-called “spontaneous magnetization”; if we put a piece of metal into
a magnetic field for a while and then remove the external magnetic field, sometimes the
metal is still magnetized, i.e., the magnetic moments of most of the atoms stay in the
state “up” (or “down”) simultaneously. Physicists discovered that depending on the
materials, when the temperature is sufficiently high, the magnetization will not persist
after removing the external field, while when the temperature is low, magnetization
does persist after the removal and spontaneous magnetization happens. There is
a critical temperature for spontaneous magnetization to appear; it only happens
when the temperature is below a certain threshold value. Generally, why such phase
transitions exist is not an easy question to answer. For spontaneous magnetization,
this is exactly what Ernst Ising intended to answer in his original study of the now
famous Ising model in the 1920s [33].

The (ferromagnetic) Ising model is the simplest and most widely studied example
of a spin system. It is defined on a finite graph G = (V, E). In this model, each

vertex is assigned a spin from the set @ = {—1,+1}. A configuration o is a function



from V' to ). Each configuration is weighted by

wo)=esp (5 Y olwolv) ],

(u,v)EE

where 5 > 0 is a real number called the inverse temperature. The entire space of
the configurations with positive weight is denoted as 2 = Q. In the Ising model, all
the assignments have positive weights and hence it is a soft-constraint model. The
partition function Z = Zg =), .qw(c) is the total sum of the weights over all the
configurations in €2. Then, one can define a probability space over €, i.e., u(o) =
w(o)/Z. This measure is called the Gibbs measure and is one of the main subjects
we study in this thesis. It is easy to see that, since § > 0, in this probability space,
the configurations with more edges having the same assignments on both endpoints
are more likely to appear.

We can assign a boundary condition to a spin system by fixing an assignment of
spins to a fixed set of vertices (called the boundary). Different boundary conditions
will result in different conditional Gibbs measures on the internal vertices which are
not on the boundary. For instance, if the graph G is a A-regular tree with height h,
one can fix the configurations on the leaves, and this derives a conditional probability
space for the configurations on the internal (non-leaf) vertices. In the ferromagnetic
Ising model, if we assign the vertices Lj on level h to be all 41, then in the conditional
Gibbs measure on the non-leaf vertices, the vertices are biased to choose 41 instead of
—1 as their spins since the model favors those configurations that put the same spins
on the both endpoints of each edge. On the other hand, if we assign the boundary
with all —1 as their spins, then the internal vertices are biased to choose —1. When
no boundary condition is assigned to the system, we say the system has free boundary
conditions and the distribution is called the free Gibbs measure.

The Ising model on the square lattice Z? is the major model for studying spon-

taneous magnetization. Mathematically, we can characterize and understand the



phenomena of spontaneous magnetization in the following way using boundary con-
ditions. Let r be the origin of the square lattice Z? and R,, be the finite n by n
rectangle (subgraph) of Z? centered at the origin 7. Now, we fix the configurations
on the boundary of the rectangle R, to all +1 (as shown in Figure 1), one of the
extremal boundary conditions that biases the conditional distribution of the origin r
in favor of +1. This is similar to putting an external magnetic field around a piece
of metal. Let p, , denote the conditional probability of the origin r being +1 under
the all +1 boundary condition for the subgraph R,. Similarly, one can put all —1
around the rectangle and hence define the corresponding conditional probability p_ ,,
of r being +1 under the all —1 boundary condition. In this case, the conditional
distribution of the origin is biased toward —1, i.e., p_, <1 —p_,. It is not hard
to see that the effect of any other boundary condition to r is in between the all +1
and all —1 boundary conditions: any boundary condition cannot bias the origin r to
favor +1 more than the all +1 boundary condition can do, and neither can it bias

the origin to —1 more than the all —1 boundary can do.

Figure 1: A all 4+ boundary condition for Ising model on the sub-lattice Rg. The
conditional probability of the origin r being +1 is py o.

We consider the effect of the boundary condition to r when the boundaries move



off to infinity, i.e., let n — oo, which mimics the removal of the external magnetic

field. Hence, let

py = limp,, and p_= limp_,.
n—00 n—00

Now we ask whether p, equals p_. It turns out that there is a critical inverse tem-
perature (.(Z?) such that if 8 < (.(Z?*) (the temperature is high), then p, = p_, and
we say the model exhibits decay of correlation from the boundary to vertices deep
in the interior and when 8 > (.(Z?) (the temperature is low), then p, # p_, and
therefore the effect of the boundary condition persists, which corresponds to the per-
sistence of the magnetization after removing the external magnetic field. The value
of the critical temperature .(Z?) has been known since 1944 by Onsager [53]. An
alternative formulation of the above phase transition phenomenon is known as the
uniqueness problem asking whether the infinite Gibbs measure on the infinite graph
72 is unique or not. The critical value for this phase transition is hence called the
uniqueness threshold. We will discuss the details of infinite-volume Gibbs measures
in Chapter 2.2. Behind those rigorous mathematical formulations for infinite-volume
Gibbs measures, it is the existence of decay of correlations from the boundaries to
the origin over the finite subgraphs that plays the essential role in the uniqueness
problem.

Besides the square lattice, uniqueness problem can be defined for spin systems on
other infinite graphs, such as the A-regular infinite tree Ta. For the Ising model,
the critical value for the uniqueness of infinite Gibbs measure on Tp is at §.(Ta) =
arctan(x5) (see, e.g., Preston [56]). This critical value is called the tree uniqueness
threshold for the Ising model. Generally, the uniqueness problem is equivalent to the
decay of correlation from the all +1 and the all —1 boundary conditions to the origin
r as n — oo. When the spin system is in the uniqueness phase, there is no long

range correlation among the vertices and hence different boundary conditions have

the same limiting influence on internal vertices; on the other hand, when the system



is in the non-uniqueness phase, the effect of the worst case boundary conditions
persist even when the boundaries are very far away. In this thesis, we will develop a
general technique that can be used to improve lower bounds of conjectured uniqueness

thresholds for various spin systems.
1.1.2 Glauber Dynamics and Phase Transition of Mixing Time

In Computer Science, the study of spin systems mainly focuses on finding efficient
algorithms for sampling configurations from distributions that are very close to the
corresponding Gibbs measures. It was shown by Jerrum, Valiant and Vazirani [36]
that having an efficient sampling algorithm for the Gibbs measure is equivalent to
having a fully polynomial randomized approximation scheme (FPRAS) for the cor-
responding partition function of the spin system. Typically, computing the partition
function of a spin system exactly is known to be #P-complete (see, e.g., [34]). It is
also interesting to study the dynamical questions in a finite system: how does the
system evolve from an initial pre-assigned configuration to the equilibrium state, i.e.,
the Gibbs measure, and how long does it take to do so. A key stochastic process to
study is called the Glauber dynamics which, on the one hand, is considered a basic
model for simulating the actual evolution of the physical system and, on the other
hand, is the heart of Monte Carlo Markov chain algorithms for performing the sam-
pling from Gibbs measures. The Glauber dynamics is a Markov chain on the state
space ). The “heat-bath” Glauber dynamics works in the following way: at each step
we pick a random vertex v, all vertices other than v maintain the same spins and we
update the spin of v according to the Gibbs measure conditioning on the spins of the
neighbors of v. The heat-bath Glauber dynamics is an ergodic and reversible Markov
chain with the Gibbs measure u = pg as its stationary distribution.

There are several ways to measure the convergence speed of Markov chains. The

mixing time Ty, of the Glauber dynamics is the number of steps the dynamics needs



to perform so that starting from any initial configuration, the final distribution is close
to the stationary distribution. When the mixing time is polynomial in the number
of vertices, the Glauber dynamics naturally gives an efficient sampling algorithm for
the Gibbs measure, and in this case, we say the Markov chain is rapidly mixing. The
relaxation time 7.y, defined as the inverse of the spectral gap of the Markov chain,
is a different measurement of how fast the dynamics converges to the equilibrium
measure. Readers can refer to Chapter 2.3 for formal definitions of the above concepts.

The pursuit of understanding the speed of convergence of Markov chains on spin
systems never comes to an end. In the last two decades, numerous results have been
proven for both the upper and lower bounds on the mixing time for spin systems
under different parameter settings. Generally, it is conjectured that for spin systems
on various graphs (such as trees, lattices and graphs with bounded degrees), there
is a threshold for the parameter of the system such that the mixing time of the
Glauber dynamics experiences drastic change when the parameter varies around the
threshold. A major part of this thesis is devoted to develop a methodology that
clarifies the threshold behavior of mixing times for certain spin systems on regular
trees.

For the Ising model, recent studies (see, e.g., [8, 52, 74, 67]) have been gradually
revealing the fundamental reason why such a phase transition for the mixing time
could exist, making more explicit connections to the properties of the equilibrium
states of the spin systems.

It appears that for general graphs, the mixing time of the Glauber dynamics has
a phase transition at the tree uniqueness threshold. For the class of graphs with
maximum degree A, it was shown by Mossel and Sly [52] that the phase transition
for the mixing time of the Glauber dynamics on the Ising model occurs at the tree
uniqueness threshold 8.(Ta) = arctanh(55). They show that when 8 < 3.(Ta), the

mixing time of the Glauber dynamics is O(nlogn) where n is the number of vertices



in the graph. Previously, it was shown by Gerschenfeld and Montanari [28] that the
mixing time of the Glauber dynamics is exp(£2(n)) on random A-regular graphs with
high probability when 5 > £.(Ta).

However, note that for more restricted classes of graphs, the thresholds for the
mixing time of the Glauber dynamics might be different than the tree uniqueness
threshold. The phase transition for the mixing time has been known for the Ising
model on Z? since the early 1990s (see, e.g., [44, 43]). Tt is shown that when the inverse
temperature 8 < $.(Z?), in the region that the correlation decays exponentially in the
distance from the boundary to the origin, the Glauber dynamics is rapidly mixing.
When B > B.(Z?), the mixing time is lower bounded by exp (2(y/n)). In these
studies, the connection between the spatial decay of correlation in the Gibbs measure
and the mixing time of the Glauber dynamics has been observed and established for
the Ising model on the square lattice. The uniqueness threshold of the Ising model
on the square lattice is the phase transition threshold of the mixing time for the
corresponding Glauber dynamics.

Interestingly, for the A-regular tree itself and some of the locally tree-like graphs
such as planar graphs, the phase transition for the mixing time does not seem to be
at the uniqueness threshold. It is conjectured that the phase transition threshold for
the mixing time of the Glauber dynamics in the regular tree case is at the so-called

reconstruction threshold. This connection is what we investigate next.
1.1.3 The Reconstruction Threshold

For the regular tree T, there is another way to generate an infinite Gibbs measure,
called broadcasting (see, e.g., [51]). As suggested by its name, the process generates
spin assignments from the root down to infinity by a homogeneous Markov chain. For
example, in the case of Ising model, the broadcasting process works in the following

way:



e The root is assigned a spin uniformly at random from {—1,+1};

e For each vertex, select the spins for its b children independently at random

according to the transition matrix

i.e., each child of v will have the same spin as v with probability 1 — ¢ and the

opposite spin with probability e.

One can easily check that this indeed generates the free Gibbs measure over the whole
tree by noticing that if the broadcasting process stops at height h, the distribution of
the configurations is exactly the same as the Ising model with g = % In % on the A-
regular tree of height h with free boundary conditions. An important question related
to the broadcasting process is called the reconstruction problem. It addresses the ques-
tion of how much information the root passes to its descendants in the broadcasting
process. As we can see during the above broadcasting process, the information of the
root’s spin is being lost in some sense as the spins pass from the parents to their chil-
dren. However, when one has all the assignments at the leaves, it may still be possible
to recover the root’s original spin with a non-trivial probability. The reconstruction
problem asks over random boundary conditions generated by the broadcasting pro-
cess, whether in expectation the assignment of the root can be recovered with a
non-trivial probability or not. As compared to the uniqueness problem which con-
cerns the decay of correlation from the worst case boundary conditions (such as the
all +1/—1 boundary conditions for the Ising model), in the reconstruction problem,
it concerns the average decay of correlations for the influence from all the boundary
conditions. Readers can refer to Chapter 2.3 for formal details. The reconstruction
problem was first studied in Statistical Physics for understanding the free Gibbs mea-

sure of the Ising model on the infinite tree. For years, it has also been widely studied



in Computational Biology as a method of reconstructing evolutionary trees (see, e.g.,
[14]), and in Computer Science to model tree communication networks. It turns out
that there are again threshold behaviors for reconstruction problems in many spin
systems.

A general connection between the reconstruction and the convergence time of
the Glauber dynamics was shown by Berger et al. [8]. They showed for general
spin systems that O(n) relaxation time on the complete tree (with free boundary
conditions) implies non-reconstruction on the tree. Recently, for the Ising model, the
picture of the mixing time of the Glauber dynamics on the A-regular tree is actually
completed and the phase transition was shown to happen exactly at the reconstruction
threshold. A new work of Ding et al. [17] gives very sharp bounds on the mixing time
of the Glauber dynamics for the Ising model on the complete tree. They illustrate
that the dynamics undergoes a phase transition at the reconstruction threshold by
showing that when 8 = 3, = arctanh(1/y/A — 1), the mixing time is lower bounded
by Q(nlog®n). When 8 < f3,, the mixing time was already known to be O(nlogn) by
Martinelli et al. in [46] and when § > f3,, the mixing time is precisely lower bounded
by Q(nf(A)) for some concrete function f(A, ) > 6§ > 1, as established by Berger
et al. in [8].

While in the Ising model it seems that the pictures of uniqueness, reconstruction,
mixing time and their connections are quite clear for various classes of graphs, it is
not the case for other spin systems such as colorings and weighted independent sets.
The difficulties arise from the fact that both colorings and weighted independent sets
are hard-constraint models. They possess different combinatorial properties of their
own, which make it impossible to directly apply the existing methods used for Ising
models. These two hard-constraint models are the main subjects that we study in

this thesis.
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1.2 Colorings, Weighted Independent Sets and Our Results

Colorings and weighted independent sets (hard-core model) are the spin systems of
particular interest in Combinatorics and Computer Science. In the colorings problem,
one is given a finite graph G = (V, E) and a set of k colors. The valid configurations
are proper k-colorings of G where each vertex is assigned one of k£ colors from the
set [k] = {1,2,...,k} and for every edge e € E, the colors on the endpoints of
e are different. The Gibbs measure is the uniform distribution over all the valid
configurations. In the hard-core model, one is given a finite graph G = (V, E) and a
real number A called the activity. The configurations are independent sets (subsets of
V where there are no edges between the vertices) of the graph G and each independent
set I is weighted by raising the activity A > 0 to the power of the number of vertices in
I,i.e., w(I) = Al The partition function is Z = > rcy w(I) and the Gibbs measure
assigns each independent set I with probability w(I)/Z. We will formally define these
models and concepts in a more general setting later in Chapter 2.1. For k-colorings,
Jonasson [37] established that the tree uniqueness threshold is at k.(Ta) = A + 2.
Kelly [38] proved that the tree uniqueness threshold for the hard-core model is at
Ae(Ta) = %-

The mixing times of the Glauber dynamics for these two models are heavily stud-
ied. For instance, for k-colorings on graphs of maximum degree A, Jerrum [35] showed
that the Glauber dynamics is rapidly mixing when the number of colors & > 2A.
Later, Vigoda [73] established that the Glauber dynamics is rapidly mixing when
k> % which is still the best known result for k-colorings on general graphs. When
restricting the class of graphs by imposing minimum girth requirements or the pla-
narity, we can establish rapid mixing for smaller k, with respect to A [21, 24, 31, 32].
When k£ < A + 2, it is easy to verify that the Glauber dynamics on graphs of maxi-
mum degree A is not ergodic for some graphs. However, we do not know whether it

is true that the Glauber dynamics is always rapidly mixing whenever k is above the
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tree uniqueness threshold k.(Ta) = A + 2.

For the hard-core model on graphs of maximum degree A, the exact threshold of
the phase transition for the Glauber dynamics is not known either. However, recently
a remarkable connection was established between the computational complexity of
approximating the partition function for graphs of maximum degree A and the tree
uniqueness threshold A\.(Ta). On the positive side, Weitz [74] showed a deterministic
fully-polynomial time approximation algorithm (FPAS) for approximating the par-
tition function for any graph with maximum degree A, when A < A.(Tx) and A is
constant. On the other side, for every A > 3, it was shown that unless NP = RP,
there does not exist an FPRAS for the partition function for graphs of maximum
degree at most A when A.(Ta) < A, as shown by Sly [67] and later improved by
Sly and Sun [68] and Galanis et al. [25]. The algorithmic result of Weitz and the
hardness of approximation result of Sly suggest that the uniqueness threshold for the
infinite A-regular tree is the right threshold for the phase transition of the mixing
time of the Glauber dynamics on the class of all graphs with maximum degree A.
The underlying reason is that the A-regular tree is considered to be the extremal case
for the decay of correlations amongst all graphs of maximum degree A.

For these models, to get precise thresholds for the mixing times of the Glauber
dynamics in the setting of general graphs is extremely challenging. However, as illus-
trated earlier in the Ising model, the tree uniqueness threshold is not the threshold
for having an efficient sampling algorithm or approximating the partition function in
polynomial time for many classes of graphs with more structural information. In this
thesis, we develop new analytical methods to study colorings and weighted indepen-
dent sets on graphs with extra structures (such as square lattices and trees) and hence
we are able to prove new bounds for the uniqueness thresholds and mixing times of
the Glauber dynamics on these graphs. We now summarize our major contributions

below.
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1.2.1 Uniqueness Threshold for the Hard-core Model on Z?

Our first main result focuses on the well-studied particular case of the hard-core model
on the square lattice Z?2, and provides a new lower bound for the uniqueness threshold,
in particular taking it well above the tree uniqueness threshold A.(T4) which is the
best previous result of the lower bound proved by Weitz [74].

Empirical evidence suggests that the critical point \.(Z?) ~ 3.796 [26, 6, 57]. But,
unlike the Ising model on Z? where the critical value of the uniqueness threshold is
known, both upper and lower bounds on the possible uniqueness threshold \.(Z?) are
significantly far from this conjectured point. The possibility of there being multiple
such . is not ruled out, although no one believes that this is the case. From below, van
den Berg and Steif [72] used a disagreement percolation argument to prove \.(Z?) >
lf—;C where p, is the critical probability for site percolation on Z2 Applying the
best known lower bound on p. > 0.556 for Z? by van den Berg and Ermakov [71]
implies \.(Z?) > 1.252.... Prior to that work, an alternative approach aimed at
establishing the Dobrushin-Shlosman criterion [19], yielded, via computer-assisted
proofs, A\.(Z?) > 1.185 by Radulescu and Styer [59], and \.(Z?) > 1.508 by Radulescu
[58].

These results were improved upon by Weitz [74] who showed that \.(Z?) >
Ae(Ty) = 27/16 = 1.6875. For the upper bound, a classical Peierls’ type argument
implies \.(Z?) = O(1) [18]. Recently, results of Randall [60] and later improved by
Blanca et al. [11] show slow mixing of the Glauber dynamics for A > 5.3646. The up-
per bound for the uniqueness threshold \.(Z?) is also established at 5.3646 by them,
which is a significant improvement of the upper bound to a relatively small value
from what was previously known.

In this thesis, we propose a new analytical way to establish a strong version of
the decay of long range correlation (the so-called strong spatial mizing condition, see

Chapter 2.2 for a formal definition). Our technique refines and builds on the tree of
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self-avoiding walks approach of Weitz [74], resulting in a technical sufficient criterion
for the strong spatial mixing (and hence uniqueness) to hold on the hard-core model.
The new criterion achieves better bounds on strong spatial mixing when the graph has
extra structures, improving upon what can be achieved by just using the maximum
degree. The methodology we adopt is general and applicable to other spin systems
for a general class of regular graphs (see, e.g., [65]). Applying our technique to Z2
we prove that strong spatial mixing holds for all A < 2.48, improving upon the work
of Weitz that held for A < 27/16 = 1.6875. Our results imply a fully-polynomial
deterministic approximation algorithm for estimating the partition function. In the
square lattice, for any vertex v, the number of vertices that are within radius ¢ from
v grows polynomially in ¢, and hence the square lattice is called an amenable graph.
It was shown by Dyer et al. [23] that for amenable graphs, if strong spatial mizing
holds, then the Glauber dynamics is rapidly mixing. Therefore, for the hard-core
model on the square lattice, as a corollary of our decay of correlation results, we
improve the range of the activity A where the Glauber dynamics is rapidly mixing on
the square lattice. In summary, we prove the following theorem. This is a joint work
with Ricardo Restrepo, Jinwoo Shin, Prasad Tetali and Eric Vigoda [61], published
in Probability Theory and Related Fields, 2012.

Theorem 1. The following hold for the hard-core model on Z? for all X < \* = 2.48:

1. Strong spatial mizing holds on 7.
2. There is a unique infinite-volume Gibbs measure on Z>.

3. For every finite subgraph G of Z*, Weitz’s algorithm [7}] gives a fully-polynomial
time approzimation scheme (FPAS) for approximating the partition function

2(G).

4. For every finite subgraph G of 72, the Glauber dynamics has O(nlogn) mizing

time.

14



1.2.2 Phase Transitions of Convergence Times for the Glauber dynamics
on Trees

The second main result we present is about the conjectured phase transition for the
mixing time of the Glauber dynamics for k-colorings on the A-regular tree. Note
that for the A-regular tree, we always use b = A — 1 to denote the branching factor.
Sly [66] and Bhatnagar et al. [10] show that the reconstruction threshold occurs at
k. =b(140(1))/Inb. It was believed that the place where the mixing time transition
happens coincides with the reconstruction threshold on regular trees.

Our interest in the reconstruction threshold on trees is its apparent connection to
the threshold for the efficiency of certain local algorithms on locally-tree like graphs,
such as sparse random graphs G(n,c/n) (where each edge appears with probability
c¢/n for some constant ¢ > 1) and planar graphs. For colorings, the reconstruction
threshold k, on the tree is believed to be intimately connected to the threshold for the
efficiency of local algorithms for the sampling problem on locally tree-like graphs. The
evidence in support of that belief is that the the geometry of the space of solutions
on sparse random graphs appears to change dramatically near (and possibly at) the
reconstruction threshold; see [2, 28, 49]. Hayes et al. [32] recently proved that the
Glauber dynamics for any planar graph with maximum degree A mixes in polynomial
time when k& > 100A/In A, which is a constant factor away from the reconstruction
threshold for the regular tree. Their result for the Glauber dynamics of colorings on
planar graphs suggests that the reconstruction threshold may have connections to the
mixing time of the Glauber dynamics on planar graphs as well.

For k-colorings on the A-regular tree, in Goldberg et al. [29] a non-trivial lower
bound of the mixing time is established when the number of colors k < ﬁ, which
is below the reconstruction threshold. In contrast, Lucier and Molloy [42] show an
upper bound of the mixing time using the canonical flow approach (c.f., [41] Chapter

13.5). However, the upper bound is a high degree polynomial of n and hence it is not
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tight enough to establish the existence of a phase transition. Here, we provide a more
precise picture for the phase transition of the mixing time than provided by the results
in [29, 42]. Our main result gives (nearly) sharp bounds on the mixing time Ty, and
relaxation time Tiq.y of the Glauber dynamics of k-colorings for the A-regular trees,
establishing a phase transition at the critical point £ = b(1 + 0,(1))/Inb. This is a
joint work with Prasad Tetali, Juan Vera and Eric Vigoda [70], published in Annals
of Applied Probability, 2012. We prove that:

Theorem 2. For the Glauber dynamics of k-colorings on the (b + 1)-regular tree T

of n vertices and height H = |log, n| satisfies the following:

1. For all € >0 and all k£ = (9 .

Inb

Q(nlnn/(b poly(Inbd))) < T

IN

O(n**toWInn),

Q(n)

IN

Trelax

IN

O(n1+ob(l)).

2. Foralle>0andallk;:(1++)lnb:

Q(n1+5_0b(1)) < Toix < O(n1+€+°b(1)1nn),

Q(nlJrefob(l)) < T‘relax < O(n1+6+°b(1)).

where the oy(1) functions are O(Inlnbd/Inb) for the upper bounds, (14 ¢€)/b¢ for
the lower bounds when 0 < € < 1 and exactly zero for the lower bounds when

€ > 1. The constants in the Q(-) and O(-) are universal constants.

Our third main result is for the Glauber dynamics of the hard-core model on
the complete tree, where we have the same phase transition phenomena around the
reconstruction threshold. For the hard-core model, the existence of the reconstruction
threshold follows from Mossel [50, Proposition 20]. By recent works of Bhatnagar et
al. [9] and Brightwell and Winkler [13], it is known that the critical w, = (Inb+ (1 +

0(1))InInb)/b where w is the real positive solution of A = w(1 + w)?’.
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Figuring out the mixing time for the hard-core model on trees is indeed a more
complicated question to answer correctly than for k-colorings. Martinelli et al. [47]
showed that for the hard-core model on the (b + 1)-regular tree of height h with
free boundary condition the relaxation time is O(n) for all A (and the mixing time
is O(nlogn)). Hence, for the hard-core model, unlike in the Ising and colorings
models, the Glauber dynamics on the tree with free boundary condition does not
have connections to the reconstruction threshold. Our interest was whether there is
a boundary condition for which there is such a connection.

We prove there is a connection by explicitly constructing a boundary condition for
which the relaxation time slows down at the reconstruction threshold. The boundary
condition is constructed to mimic the measure generated by the broadcasting process
for the hard-core model on the infinite trees. Here is the formal statement of our
results. It is a joint work with Ricardo Restrepo, Daniel Stefankovic, Juan Vera and

Eric Vigoda [62], published in SODA 2011.

Theorem 3. For the Glauber dynamics of the hard-core model with activity A =
w(l + w)? on the (b + 1)-reqular tree of n wvertices and height H = |log,n|, the
following hold:

1. For all w <Inb/b:

For every boundary condition,
Q(n) S Trelax S O(nH_Ob(l))'
2. For all § >0 and w=(1+0)Inb/b:

(a) For every boundary condition,
Trelax S O(n1+6+0b(1))-
(b) There exists a sequence of boundary conditions for all H — oo such that,

Teotax = Q(n1+5/2—0b(1)) _
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Overview of the Organization

The remainder of the thesis is organized as follows. In Chapter 2, we formally
define spin systems, Gibbs measure, the Glauber dynamics and related background
concepts used in the thesis. In Chapter 3, we introduce a general method that relates
reconstruction to a lower bound on the mixing time of the Glauber dynamics on trees.
We then apply the method to k-colorings and the hard-core model, to derive the lower
bound results in Theorem 2 and Theorem 3. In Chapter 4, we use various coupling
techniques to prove the upper bounds given in Theorem 2 and Theorem 3. We also
establish a connection between the log-Sobolev constant and the spectral gap of the
dynamics for the complete trees that is near optimal in order to sharply bound the
mixing time. Finally, we discuss the uniqueness problem for the hard-core model on
the square lattice in Chapter 5. Here, we introduce an analytical tool to improve the
range where the spatial mixing condition holds for a general class of regular infinite

graphs.

18



CHAPTER 11

PRELIMINARIES

In this chapter we formally define the spin systems, Gibbs measures, the uniqueness
problem, the reconstruction problem, the Glauber dynamics, mixing time and related

concepts.

2.1 Nearest Neitghbor Spin Systems

Let G = (V, E) be a (finite) graph and @ be a finite set called spins. Let & = |Q]. A
configuration o of the graph is a function from V to @, i.e., an assignment for each
vertex v € V with a spin ¢ € (). We can define a probability measure y = ug over
all the configurations, which is called the Gibbs measure.

Let the external field A be a fixed real vector of length k£ and the interaction
matrix B be a fixed k by k matrix with entries in RU{£o00}. For each o € Q, let the

weight of the configuration be defined as:

w(o)=exp | Y Blo(u),0(v)) + ) Ao(v))

(uv)EE veV
The set of all the configurations with positive weights is denoted as 2 = Qg.

Let Z = Y .qw(0) be the partition function which is the total sum of the weights
over all the configurations. Then, the Gibbs distribution p is defined as for o € €2,
(o) = w(o)/Z. Note that, when the graph G is clear in the context, the notations
for p, Q2 and Z will always omit G in the subscription for simplicity.

To measure the similarity of two probability distributions, usually we use the

notion of total variation distance which is defined as follows.

Definition 4. For probability distribution p and v on the space €2, the total variation
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distance || — v|| 1y is defined as

=l = 5 3 lao) — vo)] = max (A4) — v(4)].

oeQ Ace
The ferromagnetic Ising model mentioned in the introduction can be defined using
the above notions by setting @ = {+1, -1}, A(+1) =0,A(—1) =0 and B(3,j) = ijf
for all 7,7 € ). In this thesis, we mainly study the following two hard constraints

spin systems: k-colorings and the hard-core model.

Example 2.1.1. The k-proper coloring is a spin system with |Q| = k spins. Fach
valid configurations is a proper k coloring of the underlying graph G, i.e., the assign-
ments of two vertices cannot be the same if there is an edge between the vertices. The
Gibbs measure is uniform distribution over all the proper colorings. Fitting into the

general spin systems setting, the coloring model is the same as setting B(i,i) = —oo,

B(i,7) =0 fori# j and A(i) = 0.

Example 2.1.2. Weighted independent set (hard-core) model, is a spin system with
two spins: occupied and unoccupied. Fach valid configuration is an independent set of
the underlying graph G. An independent set of the graph G is defined as a subset I of
vertices V' such that there is no edge between the vertices in I. Each independent set
I is of weight NI where X\ > 0 is called activity. When X > 1, the system is in favor
of independent sets with larger sizes and when A\ < 1, the system is in favor of smaller
independent sets. When X\ = 1, the Gibbs distribution is the uniform distribution over

all independent sets. Putting into the context of general spin systems, here the matrix

B is defined by the following table:

unoccupied occupied
unoccupied 0 0
occupied 0 —00
And the site activity A(unoccupied) = 0, A(occupied) = log(\). Generally, we will use

Q ={0,1} and let spin 0 represent “unoccupied” and spin 1 represent “occupied”.
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Now we are going to study the conditional Gibbs distribution on a set of vertices,
say U, when the configurations on another set of vertices distinct from U, say S,
is fixed. To do this, we introduce the concept of boundary condition. A boundary
condition is a fixed partial assignment to the vertex set V. Formally, let S be a subset
of V. Then, a boundary condition p is an assignment from S to (). We can then

define the space of valid configurations according to the boundary condition:

Qp = Qg = {0 € Ql(S) = p(S)}.

O—0O—0
o0—0

O—0O—0—0

—O0—O0—0O0—0O0—0O0—0—0

—O0—O0—0—0O O

—O0—0O0——0—0

O—0O0—0O0—0
—O0—0O—O0

o—0—O0

I

Figure 2: Both blue and green vertices are in the set S and 0SS are the green vertices.
The white vertices are hence in the set V' \ S.

7 \ \

We will use the notation 95 to denote the set of vertices that are on the boundary

of S with respect to V'\ S (See Figure 2 for an example), i.e.,
0S ={seSFweV\S (v,s) € E}

The probability measure i, = pg,p is then defined as the conditional probability
distribution on Q¢ , for each configuration that agrees with the boundary condition

p on set S, i.e., for each o € Q,,



where

Zp=Zgp= Z w(o).

UEQG,p

The conditional Gibbs distribution j, can be also viewed as the probability dis-
tribution on the space Q¢ with G’ = (V'\ S, E) (e.g., the white vertices and edges in

Figure 2). For each configuration 7 € Q¢, let

_ p(rop)
olT) = >, u(rop)

where 1 is the Gibbs distribution on the graph G. For any two assignments n; : 57 —
Q and 1, : Sy — Q with S; NSy = ), the concatenated function 7, o 75 is defined as
the assignment from S; U Sy to @ such that it agrees with 7; on S; and with 7, on
Sy. From this point of view, for any fixed graph G, it is immediate to check that ;¢
actually only depends on the assignments on 0S.

To extend the definition of the Gibbs measure from finite graphs to infinite graphs,
the following well-known DLR (Dobrushin-Landford-Ruelle) compatibility conditions
[27] is used.

Definition 5. A probability measure v over the configurations on the infinite graph
G = (V,E) is a Gibbs measure if, for any subset T of V' such that V \ T is finite,
any boundary condition p on 0T and almost surely every T € Q(G) that agrees with

p, we have
V(UV\T|0T = TT) = MG,p(UV\T)a

where according to the definition, pq p is the Gibbs measure on the finite graph of G

restricted on the vertex set V- \ T with the boundary condition p.

Note that jg, only depends on the assignment on 07" and when the graph G
is locally finite, i.e., the degree of G is bounded, then 0T is finite and hence pg ,
is enumerable with respect to the assignments to 07. In many works, the finite

dimension measures g, are called the specification. It is clear that all the spin
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systems we defined previously over the finite graphs give valid specifications and it
is well known that for any specification, at least one infinite Gibbs measure always

exists [27].
2.2 Uniqueness, Weak and Strong Spatial Mixing

As we saw in the introduction, for the Ising model on infinite tree, we can write a
sequence of boundary conditions and it is known that when an appropriate sequence
of boundary conditions is chosen, the weak limit of the conditional Gibbs distribution
exists and gives a valid infinite Gibbs measure (see, e.g., [27]). When two sequences
of boundary conditions are different, the infinite Gibbs measures we obtain from the
limits may be different. Hence, there may be coexistence of several infinite Gibbs
measures for the same specification . One of the central questions in the study of
the spin systems is the so-called the uniqueness problem asking whether the system
admits more than one several infinite Gibbs measures.

In fact, the set of infinite measures forms a simplex and any infinite measure can be
written as a convex combination of extremal Gibbs measures. Therefore, to determine
whether the infinite Gibbs measure is unique or not, it is sufficient to study those
extremal measures. It has been proved that the extremal Gibbs measures can always
be defined as the the weak limit of the measures specified by a sequence of boundary
conditions on finite subgraphs of the infinite graph. This nice fact gives us a more
constructible way to understand and manipulate the infinite Gibbs measures. As we
view an extremal measure as the limit of a sequence of finite boundary conditions,
we can treat the uniqueness problem as whether different sequences of boundary
conditions have substantially different effects to the interior in the limit, i.e., whether
the information from the boundaries can affect the probability distributions of the
configurations on the internal vertices. For an infinite graph, the Gibbs distribution

for the specification p is unique if and only if the following condition holds. The
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results mentioned in this paragraph are summarized in [27].

Proposition 6. A specification p admits unique Gibbs measure on infinite graph
G = (V, E) if and only if for any finite region S C V', there is a sequence of finite
regions S C S1 C Sy--- C S, C ... that U,~oS, =V, and for any two configuration

o and n, the following holds:

where for eachn, o, (same formn,) corresponds to the boundary conditions o on V\S,,
i.€., the configurations outside S, are fixed to be o. And ufﬂ s the projection of the

measure fi,, on §2(S).

This inspires the concepts of various spatial mixing conditions which are the suf-
ficient conditions for establishing the uniqueness.

Our results about spatial mixing are mainly for two spin systems, especially for
the hard-core model, and therefore it is convenient to define them in terms of the
hard-core model to simplify the notations.

Let G = (V,E) be a (finite) graph. For v € V, let a,(v) = ag,p(v) denote
the marginal probability of v being set to “unoccupied” in the measure pq , with a
boundary condition p on the vertex set S C V.

The first spatial mixing property is Weak Spatial Mixing (WSM). Here we consider
a pair of boundary configurations on a subset S and consider the “influence” on the
marginal probability that a vertex v is unoccupied. WSM says that the influence on

v decays exponentially in the distance of S from wv.

Definition 7 (Weak Spatial Mixing). For a finite graph G = (V, E), in the spin
system with Gibbs distribution p, WSM holds if there is a 0 < v < 1 such that for

everyv € V, every S C 'V, and every two boundary conditions p,m on S,

|ap(v) _0471(”” < VdiSt(U’S)a
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where dist(v, S) is the graph distance (i.e., length of the shortest path) between v and

(the nearest point in) the subset S.

The second property of interest is Strong Spatial Mizing (SSM). The intuition is
that if a pair of boundary configurations on a subset S agree at some vertices in S then
those vertices “encourage” v to agree. Therefore, SSM indicates that the influence on
v decays exponentially in the shortest distance from v to the subset of vertices where

the pair of configurations differs.

Definition 8 (Strong Spatial Mixing). For a finite graph G = (V, E), in the spin
system with Gibbs distribution p, SSM holds if there is a 0 < v < 1 such that for
everyv € V, every S CV, every S C S, and every two boundary conditions p,mn on
S where p(S\ 5") =n(S\9),

|ap(v) = an(v)] < TS,

Note that since dist(v, T") < dist(v,T"\ 5), SSM implies WSM. We can specialize
the above notions of WSM and SSM to a particular vertex v, in which case we say
that WSM or SSM holds at v. If the graph is a rooted tree, we will always assume
that the notions of WSM and SSM are considered at the root.

For the hard-core model on a graph G = (V, E), for a subset of vertices S and a
fixed configuration p on S, the effect of the boundary condition p on G is equivalent
to modifying the graph G to an induced subgraph G’ in the follow way: for each
v € S that is fixed to be unoccupied we remove v from G, and for each v € S that
is fixed to be occupied we remove v and its neighbors N(v) from G. In this way we

obtain the following observation which will be useful for proving SSM holds.

Observation 9. For a graph G = (V, E) and v € V, in the hard-core model, SSM
holds in G at vertex v iff WSM holds for all the induced subgraphs G' of G at vertex
v. To be precise, by induced subgraphs we mean graphs obtained by considering all the

vertex induced subgraphs of G and taking the component containing v.
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2.3 Broadcasting Process and Reconstruction

The broadcasting process is a way to generate an infinite probability measure over
the configurations on regular infinite trees starting from the root. It simulates the
process of how the information is broadcasted from the root to other vertices in a
tree communication network (see, e.g., [51]). Given an infinite tree Ta of branching
factor b = A — 1, a set of spins @ with |Q| = k and a k by k stochastic matrix B,
the broadcasting process does the following. The assignment to the root is randomly
selected from some initial distribution 7. We denote the root’s assignment as o,.
Then, each child of the root is assigned with spins independently randomly according
to the distribution B(o,,-). This procedure is carried on from the root level by
level down to the infinite. Usually, we use v = v(G, B) to denote the probability
distribution generated by the broadcasting process. Here we give two examples of the

broadcasting processes which we will study later.

Example 2.3.1. For k-coloring on the complete tree Ta, the broadcasting model is
quite straightforward. The initial distribution for the assignment o, of the root is
1/k for each color. Then, each child of the root is choosing a color from Q \ {o,}
independently and uniformly randomly. The corresponding stochastic matriz B is

defined as:
e B(i,i) =0;
e B(i,j) = =5 for all i # j.
The broadcasting process for the hard-core model is a bit complicated.
Example 2.3.2. Let w be the real positive solution of the equation
A =w(w+ 1)

Initially the root is unoccupied with probability ;W—erll and occupied with probability
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s=—. The 2 by 2 stochastic matriz is then defined as:

2w+1"
1w
1 0

Let L, denote the vertices that are at distance n from the root, i.e., the n'* level of
the tree. We use o, to denote the projection (restriction) of the configuration o € Q
to the vertex set L,. We use P’ to denote the conditional probability measure of the
configurations on L, given that the root is assigned with the spin 7. The so-called

reconstruction problem is defined as follows.

Definition 10 (Reconstruction Problem, see, e.g., [51]). The reconstruction problem

for Ta and B is solvable if there exists i,7 € ) such that

lim ||P}, — P, >0,

n—oo

where || — pi2|| 7y is the total variation distance between two distributions py and po.

From the definition, we can see that the reconstruction problem is concerning the
difference between two conditional distributions on the configurations of L, when
the broadcasting process starts with different assignments on the root as n — oc.
There are several equivalent definitions of the reconstruction solvability and readers
can refer to [51] for more details. We will use the following, which asks whether a

typical assignment of the leaves influences the conditional measure at the root.

Definition 11 (Reconstruction Problem). For the measure v generated by the broad-
casting process B on Ta, the reconstruction problem is solvable if there exists a spin

q € Q such that

I Epe i, (0(7) = 0) = v{o(r) = )] >

where o, (n(r) = q) is defined as the marginal conditional probability of the root r

being colored q given the boundary condition o at the vertices L.
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Note that the reconstruction problem is not solvable if and only if the correspond-

ing broadcasting measure on the infinite tree is extremal (see, e.g., [27, 51]).

2.4 Glauber Dynamics and Bounds on Convergence Times

The (heat bath) Glauber dynamics is a discrete time Markov chain (X;) for sampling
from the Gibbs distribution y for a specific spin system on a given graph G = (V, E).

The transitions X; — X1 of the Glauber dynamics are defined as:
e Choose a vertex v uniformly at random;
e For all w # v set Xyi1(w) = Xy(w);

e Set X;11(v) = ¢ with probability p,(v = @), where p is the boundary condition
defined on V' \ {v} and p(w) = Xi(w) for all w € V '\ {v}.

When a boundary condition p is specified for the Glauber dynamics, the state space
is restricted to €2,.

Let P(-,-) denote the transition matrix of the Glauber dynamics, and P'(-,")
denote the t-step transition probability. The total variation distance at time ¢ from

initial state o is defined as

1P, )~ mllrv = 5 3" 1P, ) — mC)].

The mixing time T,,;, for a Markov chain is then defined as
Thix(€) = mtin{maX{HPt(o, ) =7|rv} <€}

In many papers, € is often set to be a fixed number, e.g., € = 2—18 This is due to the
well-known fact that Tic(e) < Tmix(i) log % We denote T, mix(2—le) as Thix-

Let Ay > Ay > -+ > Ajg| be the eigenvalues of the transition matrix P. The
spectral gap cgqp is defined as 1 — Ay, The relaxation time Tielax of the Markov chain

is then defined as ¢}

Jap» Uhe inverse of the spectral gap. It is an elementary fact that
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the mixing time gives a good upper bound on the relaxation time (see, e.g., Theorem

5 in [22]), which we will use in our analysis:
Trelax = O<Tm1x) (1)

Note that our definition of relaxation time following [8, 46] is slightly different from the
standard definition, the inverse of the absolute spectral gap which is (1—max{|As|, | A }) ™!
(see, e.g., Chapter 13 in [41]). It is a standard fact that by passing to a lazy chain
(%P + %I ) which makes no move with half probability, the two definitions are iden-
tical. Introducing the laziness to the Glauber dynamics only adds an extra factor of
two to the mixing time, therefore it will not affect our asymptotic results.

To lower bound the mixing and relaxation times we analyze the conductance.
The conductance of the Markov chain on €} with transition matrix P is given by

¢ = mingcq{Ps}, where ®g is the conductance of a specific set S C 2 defined as

ZJES Zneg W(U)P(Uv 77)
7(S)m(S) '

b =

Roughly speaking, the conductance ®g measures the probability of being in the
set S and getting out of S in the next step of the transition following the Markov chain
transition matrix P. A general way to find a good upper bound on the conductance
is to find a set S such that the probability of escaping from S is relatively small.
The well-known relationship between the relaxation time and the conductance is

established in [39] and [64] and we will use the form
Trelax = Q(l/q)) ) (2)

for proving the lower bounds.
We will also work with the logarithmic Sobolev constant of a (finite) Markov
chain. We briefly recall here the variational definition of both the spectral gap and

the log-Sobolev constant.
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Let f be a function (vector) from € to R, m be the stationary distribution over
2 and p be any probability distribution over Q. Let D(f) be the standard Dirichlet

form of the heat-bath Glauber dynamics defined as:
1 / /
D(f) =5 > (flo) = f(o)’m(0)P(o, ).

Let E,(f) be the average of f under the distribution p, and let Var,(f) :=

E,(f?) = E%(f) be the corresponding variance, which can also be written as:

Var, (1) = 5 3 S (F(0) — £l

Let Ent,(f) := E,(flog f) — E,(f)log(E,(f)). When it is clear what the under-
lying distribution is, we will drop the subscript p in the notation Ent(f).

The spectral gap ¢y, is equivalently defined as (see, e.g., Chapter 13 in [41])

D)
o = (1)

The log-Sobolev constant ¢, is defined as (see, e.g., [16]),

D(VT)

sob — inf 5
Coob = 150 Ent(f)

where the infimum in both equations is over non-constant functions f.
From this definition, it is more clear that the relaxation time Tiejax = 1/Cgap 1S a
good measurement of the convergence speed, since it is not hard to show that, for

any function f,

Varr (P'f) < (1 = cgap)* Var(f).

A similar inequality about the entropy form Ent(P*f) holds for the log-Sobolev con-
stant.

As for the upper bounds on the mixing time of the dynamics, one can use the
following well-known relationship between the mixing time and the relaxation time
(see, e.g., Theorem 12.3 in [41]):

1
Tre ax-*
meW)l

Tmix S log (
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By applying the above relationship, one usually gets an additional factor of n for the
upper bound of the mixing time. To save this factor of n, one may use the following
relationship between the mixing time and the inverse of the log-Sobolev constant (see

e.g. [16] for more details):

Thix = O(csotlnln (3)

miﬂaeml{ﬂ(a)}) '
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CHAPTER II1

LOWER BOUNDS ON THE RELAXATION TIME AND

MIXING TIME

In this chapter we will establish the connection between the reconstruction solvability
and the upper bound of the conductance and hence the lower bound of the relaxation
time and mixing time of the Glauber dynamics.

This chapter is organized in the following way. First, we will introduce the con-
cept of reconstruction algorithms, which are effective algorithms for recovering the
assignments at the root given the configurations on the leaves when the reconstruction
problem is solvable. Then, we will show a simple but strong connection between the
conductance of the Glauber dynamics and the so-called sensitivity of a reconstruc-
tion algorithm. We analyze a reconstruction algorithm (FR) for k-colorings and a
reconstruction algorithm (BW) for hard-core model respectively and establish upper
bounds for the conductances in both models. As a result, we are able to establish

good lower bounds of the relaxation time and the mixing time.

3.1 Conductance and Reconstruction Algorithms

Let us denote the finite A-regular tree of height h as Tj, when the degree A is clear
in the context. Let v, be the projection of the broadcasting distribution v (defined
in Chapter 2.3) of the entire infinite tree onto the first h levels of the tree, i.e., v,
is the distribution on the configurations of 7}, generated by the broadcasting process
with a broadcasting matrix B. For the tree T},, we use L to denote the leaves L, for
simplicity.

A reconstruction algorithm is a function A : Q(L) — Q U @’ (ideally efficiently
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computable) such that A(oy,) and o(r) are positively correlated for random configu-
rations o ~ v,. One can imagine that for a configuration o, only the configurations
on the leaves are exposed to the algorithm A and the task of algorithm A is to take
the configurations o}, at the leaves L as the input and tries to guess (compute) the
configuration o(r) at the root. When the context is clear, we write A(c) instead of
A(oy). The set @' is a set of extra symbols that is different from the spins in @ for the
reconstruction algorithm to use. Usually, if a good reconstruction algorithm outputs
a symbol in Q' for the root, it means that the uncertainty for the configuration at
the root is high given the configurations at the leaves.

Under the Gibbs measure vy, the effectiveness of A is the following measure of
the covariance between the algorithm A’s output and the marginal at the root of the

actual measure:
Tha= 1;%13 h(A(o) =o(r) =x) — (A(o) = x)vp(o(r) = z)] .

If it is the case that

liminfr, 4 =c¢y >0
h—o0 ’

for some positive constant ¢y (independent of the number of vertices n and height
h), then we say that A is an effective reconstruction algorithm. In words, an effective
algorithm, is able to recover the spin at the root, from the information at the leaves,
with a nontrivial success, when h — oo. Notice that reconstruction (defined in
Definition 11) is a necessary condition for the existence of an effective reconstruction

algorithm, since

Boiy (|10, (n(r) = 2) = vn(n(r) = 2)[]
> Eoww, [lto, (n(r) = 2) —vn (n(r) = )| 1(A(0) = z)]

Boiy 1oy, (n(r) = 2) 1(A (o) = 2)] = vi(A(0) = )vn(o(r) = z)

v

v

Tn,A,
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where 1(-) is the indicator function. We define the sensitivity of A, for the configu-
ration o € Q(T},), as the fraction of vertices v such that switching the spin at v in o
changes the final result of A. More precisely, let ¢"7¢ be the configuration obtained

from changing ¢ at v to spin c¢. Define the sensitivity as:
Sa(o) = %#{v €L:3ceQ Al0™) £ Alo)}.
The average sensitivity S, is hence defined as
Sy = gleiél{gAJ}, and Sy, = B,y [Sa(0)1(A(0) = z)].

It is fine to define the average sensitivity without the indicator function, which only
affects a constant factor in the analysis. We are doing so to simplify some of the
statements and proofs.

Typically when one proves reconstruction, it is done by presenting an effective
reconstruction algorithm. Using the following theorem, by further analyzing the
sensitivity of the reconstruction algorithm, one obtains an upper bound on the con-

ductance of the Glauber dynamics.

Theorem 12. Suppose that A is an effective reconstruction algorithm. Then, the

conductance ® of the Glauber dynamics satisfies ® = O (SA).

Proof. Throughout the proof let m := v3,. Consider the set U = {o: A(c) = 1}.
Without loss of generality, we can simply assume that spin x = 1 is the one that is

minimized for S Az @s in the definition of S4. Recall that P is the transition matrix
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of the Glauber dynamics. Then,

B — deu (o) ZweL > T (w)#o(w),A(T)£A(e )P(Ua 7)
v (U)(1 == (0))
< ZUGU (o) ZweL Do 7 (w)#o(w),A(T)#A(0) (l (T))
- m(U)(1 —W(U))
e T0)E Sy 15¢ € Q A0" ) # ()
- m(U)(1 == (U))
o e 7(0)84(0)
= w01 - w(0))
- S
n 7T7(U)(1 —7(U))
< % by the definition of rj, 4 and |Q| > 2.
Th,A

Because the algorithm is effective, we have that liminf, . (rp4) = ¢o > 0 and
hence for all h big enough, 7, 4 > ¢o/2. Therefore, ®r; < (15,4) 7254 = O(S4), and

hence,

® <Oy =0 (Sa),
which completes the proof of the theorem. n

In the following two sections, we will use the above Theorem 12 to establish the
upper bound of the conductance and hence prove the lower bounds of the mixing
time and relaxation time of the Glauber dynamics in Theorem 2 for k-colorings and

Theorem 3 for hard-core models on the A-regular trees.

3.2 Colorings

Here we first give a simple reconstruction algorithm for colorings, then we will bound
the conductance via analyzing this algorithm. Specifically, we will prove the following

theorem for the conductance.

Theorem 13. For all € > 0, there exists by such that, for all b > by, for k = m,

the conductance of the Glauber dynamics on the (b+ 1)-reqular tree T' of n vertices
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and height H = |log,n| satisfies the following:
d=0 (n*(lﬂLe*Ob(l))) ’

where the oy(1) function is (1 + €)/b¢ for the lower bounds when 0 < € < 1 and
exactly zero for the lower bounds when € > 1. The constants in the O(-) are universal

constants.

Then, by the relationship between the conductance and the relaxation time in
Eq. (2) and the relationship between the relaxation time and the mixing time in
Eq. (1), we are able to lower bound both the relaxation time and mixing time by
Q (n't<=>W), and hence prove the lower bounds in Theorem 2.

The intuition why the Glauber Dynamics slows down when k£ < b/1Inb is that for
a typical configuration of the complete tree, the configuration of the root is hard to
change. The children of the root will have all the colors appearing and hence in order
to change the color of the root, the dynamics has to first change the spin of one of the
children such that the root has a choice to switch to some other colors. As we will
show later, this is impossible since the configuration of the root is actually frozen by
the configurations on the leaves, i.e., there is a subtree of the complete tree such that
if one wants to change the color of the root, then one has to start from the leaves.
There is no “free” internal vertex.

The algorithm (denoted as FR, stands for “frozen”) is a function that maps each
o € Q(Ty) to QU{<$}, where the diamond mark < is a special color called “unknown”.
It works in a bottom up manner from the configurations on the leaves: for each
parent v of the leaves, if its children contains all colors in @ except for o(v), then
the algorithm marks v to color o(v) (denote the mark of v as FR(o,v)); otherwise,
FR(o,v) = ¢. Then, the algorithm marks the vertices two level above the leaves in
the same manner recursively. The mark of the root is the output of the algorithm.

Formally, we describe the algorithm as below. The configuration o is called frozen if
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Algorithm 1 FR(o,v) : Reconstruction Algorithm for Colorings
if v is not leaf then
for w e N~(v) do
FR(o,w)
end for
if [{FR(o,w):w e N~ (v)} \ {{¢} =¢—1 then
return FR(o,v) + Q \ {FR(o,w) : w € N~ (v)}
else
return FR(o,v) < ¢
end if
else
return FR(o,v) + o(v)
end if

FR(o,r) = o(r) meaning that the root configuration of ¢ is uniquely determined by
the configurations on the leaves.

In coloring o € Q(Ty), we say a vertex v is frozen in o if in the subtree T, the
coloring o (L(T,)) of the leaves of T, forces the color for v. In other words, v is frozen
in o if: for all n € Q where n(L(T,)) = o(L(T})), we have n(v) = o(v) and hence
FR(o,v) = o(v). Note, by definition, the leaves are always frozen. If the vertex v
is not frozen, then FR(o,v) = . Observe that for a vertex to be frozen, its frozen
children must “block” all other color choices. This is formalized in the following

observation as in [29].

Observation 14. A non-leaf vertex v is frozen in coloring o if and only if, for every

color ¢ # o(v), there is a child w of v where o(w) = ¢ and w is frozen.

Using this inductional way of defining a vertex being “frozen” in a coloring, we
can further show the following lemma. It is a generalization of Lemma 8 in [29], which

only applied to the case € > 1.

Lemma 15. For any € € (0,1), in a random coloring of tree Ty, the probability that
a vertex of the tree is not frozen is at most b=°. For the leaves in Ty, by definition,

they are always frozen.
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Proof of Lemma 15. The proof is very similar to the proof of Lemma 8 in [29]. We
include it