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Sensory Feedback in a Half-Center Oscillator Model
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Abstract—We hypothesize that one role of sensorimotor feed-
back for rhythmic movements in biological organisms is to
synchronize the frequency of movements to the mechanical reso-
nance of the body. Our hypothesis is based on recent studies that
have shown the advantage of moving at mechanical resonance
and how such synchronization may be possible in biology. We test
our hypothesis by developing a physical system that consists of a
silicon-neuron central pattern generator (CPG), which controls
the motion of a beam, and position sensors that provide feedback
information to the CPG. The silicon neurons that we use are inte-
grated circuits that generate neural signals based on the Hodgkin-
Huxley dynamics. We use this physical system to develop a model
of the interaction between the sensory feedback and the complex
dynamics of the neurons to create the closed-loop system behavior.
This model is then used to describe the conditions under which
our hypothesis is valid and the general effects of sensorimotor
feedback on the rhythmic movements of this system.

Index Terms—Central pattern generators, rhythmic movements,
sensorimotor feedback, silicon neurons.

I. INTRODUCTION

FEEDBACK is an essential part of any effective control
system, including neural systems. Animals are capable

of interacting with their environments through complex coor-
dinated movements that would be impossible without some
form of feedback. In particular, rhythmic movements, such as
walking, swimming, and breathing, comprise a large portion
of the movements made by animals. Central pattern generators
(CPGs) are groups of interconnected neurons that can produce
rhythmic electrical patterns that underlie such movements. It is
clear that CPGs must be influenced by sensorimotor feedback
to compensate for changing environments, however the exact
nature of this interaction is still unclear [1].

We hypothesize that an additional purpose of sensory feed-
back for rhythmic movements is to synergize the nervous
and musculoskeletal systems so that the resulting frequency
of movement is related to the body’s mechanical resonance.
There are several advantages for matching this mechanical
resonance: conservation of energy, reduction of jitter during
movements, and improvement of cycle-to-cycle repeatability
[2], [3]. Modeling studies have been done recently to under-
stand the role of sensory feedback and mechanical resonance
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in biological systems [4]–[7]. However, one factor that was
not addressed thoroughly in these studies was the complex
nonlinear dynamics of the neurons.

We are developing silicon neurons that can create complex
neural dynamics in real time and with very low power consump-
tion, and we have previously used them to implement a CPG [8],
[9]. Because of these properties of the silicon neurons, we have
long term goals of using them as controllers for autonomous
machines and in biomedical technologies such as implantable
neural stimulators and funtional electrical stimulation (FES). In
addition to testing our hypothesis, this work is a study of how
these silicon neurons will behave in the context of a closed-loop
system.

To test our hypothesis we have implemented a closed-loop
model of biological rhythmic movement control that is based on
a silicon neuron CPG. The properties of these silicon neurons
make it possible to study such a system with complex neural
dynamics while it operates in real time and in a real-world envi-
ronment. We believe that studying a physical model will provide
insights that would be more difficult to obtain from computer
simulations alone because of the ability to tweak parameters and
immediately observe the effects. Our study of this system has
led to the development of a model that can describe the rela-
tionship between sensory feedback, mechanics, and neural pat-
tern generator and how that relationship creates the steady-state
system frequency.

II. IMPLEMENTATION OF THE CLOSED-LOOP SYSTEM

The closed-loop system that we implemented is a generic
model of biological rhythmic movement control about a joint or
body segment that has a single mechanical degree-of-freedom.
Fig. 1 shows both a high-level block diagram and the physical
implementation of this system. A CPG excites a pair of antago-
nistic muscles that move the limb or body segment from side to
side. To close the loop, the CPG receives proprioceptive feed-
back from position sensors.

When implementing the physical system we chose to emu-
late some of the components in software to provide greater flex-
ibility. Fig. 1(B) shows that the calculation of the total force
acting on the mass and the total synaptic current for each of the
neurons are implemented as numerical simulations of mathe-
matical models running on a real-time control board. The hard-
ware components are the silicon neurons and a physical mass,
which was used so that we did not have to simulate the nonide-
alities of operating in a real-world environment. Consequently,
a dc electric motor was used to provide the forces that acted
on the mass. The interaction between simulation and hardware
components is done via the real-time control board, which also
facilitates the changing of parameters while the system is op-
erating. As such, we could easily adjust parameters such as the
mechanical resonant frequency to test our hypothesis.
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Fig. 1. Two representations of the closed-loop system. (A) A high level block
diagram of the closed-loop system. The silicon neurons are SN1(2) and the solid
dots represent inhibitory synapses. The position sensors are shown as S . The
”musculoskeletal mechanics” block represents a pair of antagonistic muscles
acting about a joint. The active force production of the muscles is modeled as
F , and the passive properties of the musculoskeletal system are represented
with the mass, springs, and dampers. (B) A schematic of the physical implemen-
tation in A. The real-time control board implements the mathematical models of
the musculoskeletal mechanics and the synapses. The inputs to this board are the
membrane potentials of the two silicon neurons, V , and the position sensor
from the shaft of the electric motor, x. The outputs of the board are the voltages
that represent the total synaptic current into each silicon neuron, V , and
the signals that encode the torque and direction of the electric motor.

A. Implementing the CPG With Silicon Neurons

The CPG consists of two neurons with reciprocal inhibition (a
half-center oscillator), which is the simplest configuration that
can produce two distinct electrical patterns with a given phase
relationship for exciting antagonistic muscles. The reciprocal
inhibition produces this pattern by causing one of the neurons
to be inhibited while the other is spiking. The neurons reverse
states according to the interaction between the individual neuron
dynamics and the dynamics of the reciprocal inhibition.

The CPG was implemented with a pair of silicon neurons, for
which typical bursting patterns are shown in Fig. 2. We showed
previously that the silicon neurons faithfully implement the dy-
namics of the Hodgkin–Huxley formalism (see Appendix for
equations that describe the dynamics of the silicon neuron), and
that the CPG is capable of producing a wide variety of bursting
behaviors as the model parameters are varied. The silicon neu-
rons that we used for this work contain a set of voltage-depen-
dent conductances that were based on a mathematical model of
the leech heart interneuron (HN) [10]. We used this model be-

Fig. 2. Bursting at the canonical parameter values. The time series show both
the membrane potentials and the synaptic currents of the two silicon neurons
in the half-center oscillator. The dashed lines that are associated with the mem-
brane potentials represent the synaptic threshold voltage. The flat regions of the
synaptic currents represent I = 0.

cause the HN neuron exhibits a wide variety of robust bursting
behaviors and because the mathematical model has been ex-
tensively verified through experimental studies [11]. In addi-
tion to a leak conductance, , each silicon neuron has six
voltage-dependent conductances: 1) , a fast sodium conduc-
tance with inactivation, 2) , a persistent sodium conductance
with activation only, 3) , a fast potassium conductance that
also inactivates, 4) , a slower potassium conductance with
activation only, 5) , a slow calcium conductance with inac-
tivation, and 6) a hyperpolarization activated conductance.
For each of these conductances, we can control independently
the reversal potentials, maximal conductances, activation/inacti-
vation time constants, and activation/inactivation half-maximal
potentials. The slopes of the activation/inactivation functions
are fixed at biological values.

The reciprocal inhibitory synapses of this CPG were imple-
mented with a combination of hardware and software. The real-
time control board computed the value of the synaptic currents
based on the measured membrane potential of each neuron. The
board then output these values as voltages that were converted
to currents using standard operational amplifier circuits (see
and in Fig. 1). We chose a mathematical synapse model that
could be implemented relatively easily with analog integrated
circuits in the future. This model contains a single state variable
and is based on the alpha function [12]

(1a)

where is the post-synaptic current, is the maximal
synaptic conductance, is the activation state vari-
able, is the synaptic reversal potential, and is the post-
synaptic membrane potential. The dynamics of the activation
variable, , are given by

(1b)

where is the time constant, is the steady-state value
of as a function of the pre-synaptic membrane potential, .
The steady-state function of is given by

if
if (1c)
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where is the threshold voltage for the action potential and
is the slope of the steady-state activation function. Equation (1b)
is a first order ODE that produces the exponential rise and fall
of the alpha function. The synaptic currents for the reciprocal
inhibition to each silicon neuron are also shown in Fig. 2.

B. Implementing the Mechanical System

The mechanical system, as shown in Fig. 1, models an an-
tagonistic muscle pair and the passive properties of the mus-
culoskeletal system. The real-time control board computed the
total force acting on the mass based on a mathematical model of
the mechanical system, the measured position of the mass, and
the activity of the CPG. This total force value was then used to
control the electric motor.

To make it easier to analyze the closed-loop system behavior,
we chose to simplify the mechanical dynamics as much as pos-
sible without loosing biological relevance. We chose the Hill
muscle model [13] because it is relatively simple and is widely
used to represent the active and passive components of the force
produced by muscle. The behavior of the Hill model is equiva-
lent to the position of the mass as a function of time. The full Hill
model is shown in Fig. 1 as the passive and active mechanical
components, which also contain nonlinearities. The passive me-
chanics of this model create a third order system, and the use of
a third order mechanical system complicates the analysis when
testing our hypothesis about resonant frequency. To further sim-
plify the analysis, we made . Physiologically, this cor-
relates to tendons that are much stronger than the passive elastic
properties of the muscle and soft tissue. Under this assumption,
the model reduces to a second order system described by

(2)

In the Laplace domain, the transfer function of this second-order
system is

(3)

where is the transfer function, is the
laplace transform of the position, is the Laplace transform
of the active force, is the mass, is the nat-
ural frequency, and is the quality factor. The
magnitude and phase of the transfer function is given by

(4)

where is the frequency of the active force input. The res-
onant frequency is the frequency at which the magnitude re-
sponse peaks. For , or zero damping, the resonant fre-
quency is equivalent to . However, if the damping is nonzero
(i.e., all practical cases) the resonant frequency changes and is

Fig. 3. The active force generated by the CPG. The top trace is the membrane
potential of neuron SN1, and the dashed line indicates the threshold voltage for
spike detection. The bottom trace is the force signal that is calculated by filtering
the detected spikes. The force signal for SN2 is similar but shifted in phase. The
dashed line indicates a value of zero active force. The position signal, x, is also
shown superimposed on top of the F signal. The dashed line for the position
signal represents the resting position. The zero-phase points for the position and
CPG are denoted by t for F and t for the position signal.� is the phase
difference between F and x.

dependent upon the damping. The resonant frequency for any
is given by

(5)

For there is no peak in the magnitude response, but
the natural frequency, , remains a system property.

The active forces, and , generated by the muscles were
calculated from the membrane potentials of SN1 and SN2 as
shown in Fig. 3. The membrane potentials were rectified above
a threshold voltage and the resulting waveforms were filtered
with a first-order low-pass filter. This filter represents the trans-
formation of the motor neuron action potentials to the active
force produced by the muscle [14]. The time constant of the
filter was 100 ms, which approximated the observed minimum
spiking period. The force waveform illustrates the summation
of action potentials to tetanus due to the difference in time con-
stants between the filter and the action potentials. The force for
each neuron was computed separately and the total active force
is given by .

To simplify the model, we did not include the nonlinearities
of the length and velocity dependencies of the muscle when
calculating the active force. The length approximation assumes
the muscle is neither overly stretched or compressed [13]. The
velocity approximation assumes the muscle is either stretched
or compressed at relatively high velocities. The net effect of
these approximations is an over- or underestimation of the ac-
tive force, which will change the amplitude of the oscillations
for rhythmic movements. However, these changes should not
impact the qualitative results of our model.
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Because the mass and the motor are physical entities, they add
nonlinear friction components to the dynamics. These compo-
nents were significantly impacting our analysis. Thus, we added
a negative damping term that saturated at high velocities to 2 to
make the system more linear for smaller displacements. This
term is given by

(6)

where is the force added to compensate for the nonlineari-
ties, is the saturation value, and is the damping coeffi-
cient in the linear region.

The mathematical model of the mechanical components in
Fig. 1 was implemented in software on the real-time control
board to compute the total force acting on the mass. The calcu-
lated value of the force was then split into the magnitude, ,
and sign. The set the duty cycle of a pulse-width mod-
ulated (PWM) signal, which determined the amount of torque
produced by the electric motor. The sign of the force set the
direction of the current going to the electric motor, which de-
termined the direction of rotation [15]. An additional gain term
was added so that did not saturate the PWM signal, which
would create nonlinear behavior.

C. Implementing Sensory Feedback

The sensory feedback, as shown in Fig. 1, represents proprio-
ceptive sensors that synapse onto the CPG. These sensors were
implemented as mathematical models on the real-time control
board using the measured position of the mechanical system.
The value of the feedback synaptic current was then summed
with synaptic currents from the reciprocal inhibition to create
the total current injected into each silicon neuron.

Again, we wanted to keep the model for these sensors as
simple as possible without loosing biological relevance. Pro-
prioceptive sensors are typically unidirectional, have either me-
chanical or neural saturation, and produce signals relative to a
natural resting state [1]. As shown in Fig. 1, the sensory feed-
back in our system models two unidirectional position sensors,
each of which makes an ipsilateral synaptic connection to one of
the CPG neurons. The output of the position sensors is a smooth
signal that we assume is proportional to a spike frequency of a
neuron. Thus, the position signals are used directly as the presy-
naptic input to the feedback synapses. We chose to use ipsilat-
eral inhibition as shown in Fig. 1 because it is biologically rele-
vant and produced the most stable behavior due to the negative
feedback [1].

The feedback synaptic current is calculated with the same
model that was used for the reciprocal inhibitory synapses (1a).
However, for the feedback synapses we ignore the synaptic time
constants because they are at least an order of magnitude smaller
than the mechanical time constants, and thus will not have an
impact on the current. The feedback synaptic currents are give
by

(7a)

(7b)

where is the feedback current for SN1(SN2), is
the maximal synaptic conductance, is the slope of the ac-

TABLE I
CANONICAL VALUES FOR THE MECHANICAL SYSTEM PARAMETERS AND

FEEDBACK SYNAPTIC PARAMETERS

tivation function where the sensor signal is zero, is the
position threshold that can provide hysteresis in the sensors,

is the signal from the sensor for SN1(SN2), is
the reversal potential of the feedback synapse, and
is the membrane potential. The feedback connectivity is deter-
mined by how the sensor signals are paired with the membrane
potentials in (7b). The reversal potential determines whether the
feedback is excitatory or inhibitory. The two unidirectional po-
sition sensors, , are created by half-wave rectifying the
position signal in each direction relative to the resting state. The
resting state for the sensor is the state in which the muscles are
not actively producing force and no external forces are acting
on the mass.

D. Characterizing the System

In order to study this system we defined a set of parameters
to create a canonical behavior, to which we compared our other
results. We determined previously a set of parameters for the
silicon-neuron CPG to produce a typical bursting pattern (see
Appendix ) [9]. The canonical values for the mechanical and
sensory feedback components are displayed in Table I. To fa-
cilitate the testing of our hypothesis, the parameters, and ,
were set by specifying the values for and in the simula-
tion. We set for all practical values of and .
The negative damping parameters, and , were set to
optimize linearity at small amplitudes. The value of the feed-
back synaptic conductance, , was chosen because it was the
minimum value that created stable oscillations over the range
of . This range of was chosen be-
cause it matched the range of burst periods that was possible
from the half-center oscillator as the intrinsic neuron parame-
ters were varied about their canonical values [9]. The value of

was chosen so that the activation function saturated at a po-
sition angle of approximately 1 rad. was chosen to create
inhibitory synapses and so that the sensory feedback
would not have hysteresis.

In addition to choosing a canonical parameter space, there
was no guarantee that the mechanical parameters, and ,
would accurately describe the physical behavior of the system
because of the nonlinearities and additional parameters intro-
duced by the dc motor and the coupling to the mass. Therefore,
we measured the frequency response of the mechanical section
in isolation from the rest of the system and for different values
of . The resulting data are displayed in Fig. 4, which suggests
that the mechanical system is sufficiently linear in the frequency
range of interest from 0.1–0.5 Hz.
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Fig. 4. Results from measuring the impulse response of the isolated mechanical
system. The effective values of ! and Q were extracted from the data via
curve fits to the inverse laplace transform of (3). ! = 0:2 for all data. The
three different responses are parameterized by Q = 0:4 for the overdamped
case, Q = 1:5 and Q = 5:2 for the underdamped cases.

III. DEVELOPING A STEADY-STATE FREQUENCY MODEL FOR

THE CLOSED-LOOP SYSTEM

To test our hypothesis, we first determined how the steady-
state frequency is created in the closed-loop system. Our results
show that this frequency is determined by the phase properties
of the CPG and mechanical systems. While the phase proper-
ties of a linear mechanical system are well-defined, those of the
nonlinear CPG are not. We first characterize the CPG’s phase
curves in the open-loop system. We then use this relationship to
develop an empirical model that explains the steady-state oscil-
lation frequency in the closed-loop system.

A. Analysis of the Sensory Feedback

To better understand the closed-loop system, we first ana-
lyzed the open-loop response of the CPG by measuring the
“transfer function” between the feedback synaptic input and the
neural signals. The open-loop system was created by discon-
necting the position sensors from the feedback synapses and
applying a sinusoidal input signal instead. A sinusoid was used
because it resembles the position oscillations of the closed-loop
system. The frequency and amplitude of the sinusoid were
varied systematically and the corresponding amplitude and
phase shift of the neural oscillations were measured.

To quantify the phase difference the system must be synchro-
nized and there must be a zero-phase point defined for each
signal. Fig. 3 illustrates the zero phase points and how the phase
difference was measured. The zero-phase point for the sinu-
soidal feedback signal was defined at zero radians1 with a posi-

1As mentioned in Section II-C, the feedback signal represents the firing fre-
quency of sensory neurons and we are assuming that this firing frequency is lin-
early proportional to the position. To make the analysis easier, we set the propor-
tionality constant to 1. As such, the feedback signal is equivalent to the position
of the mechanical system. Because the mechanical position is rotational, the po-
sition is expressed in radians. Thus, the units for the amplitude of the feedback
signal are in radians.

tive derivative (shown as ). The zero-phase point for the CPG
was defined as the first spike of each burst of the membrane
potential of SN1 (shown as ). SN1 was chosen because it
drives the position positive, which correlates to the zero phase
point of the feedback signal. The spikes were detected with a
threshold of 1 V, and the first spikes of the burst periods were
detected with a time threshold of 1 sec after the last spike from
the previous burst period. For the closed-loop system we use
the half-center oscillator (CPG) signal as the reference. There-
fore, we measured the phase difference relative to this point as

, where is the phase difference, is the
time of the zero phase point of the half-center oscillator that oc-
curs before the corresponding zero phase point of the feedback
signal, , and is the period of the oscillations.

Fig. 5(A) and (B) displays the phase response of the half-
center oscillator with respect to frequency and amplitude of the
feedback signal. For clarification, we define four new terms: 1)

is the burst frequency of the half-center oscillator in isola-
tion from any external synaptic inputs; 2) is the frequency
of the input signal that was applied to the feedback synapses;
3) is the amplitude of the input signal; 4) is the system
frequency either in the open-loop or closed-loop configuration.

The data displayed in Fig. 5 define approximately the param-
eter space in which the CPG synchronized to the input signal
(i.e., ). We found that synchronization was depen-
dent upon both the frequency of the input relative to the CPG
and the amplitude of the input. When the feedback
synaptic current is introduced in the spiking part of the burst pe-
riod. As a result, the spiking is subdued and the bursting transi-
tions into the inhibited state, thus advancing the state of the CPG
oscillations. When the feedback is introduced in the
inhibited part of the burst period, augmenting the reciprocal in-
hibition in the CPG and delaying the phase of the CPG oscilla-
tions. Fig. 5(B) illustrates the relationship between the input’s
frequency and the steady-state phase difference. The linear na-
ture of this frequency-phase relationship for a given amplitude
indicates that there is a constant time delay between the onset
of the feedback and the termination of spiking [shown by in
Fig. 5(C) and (D)]. The frequency–phase curves for the different
amplitudes intersect at the natural frequency of the half-center
oscillator. The phase difference at this frequency is slightly less
negative than because the duty cycle is not ex-
actly 50%.

The input’s amplitude changes the magnitude of the feedback
synaptic current, which directly affects the amount of phase ad-
vance or delay of the CPG oscillations. Fig. 5(A) and (B) il-
lustrates the relationship between the input amplitude and the
synchronization of the CPG to the input. First, the time delay,

, is directly dependent upon the amplitude of the input. Larger
amplitudes generate larger feedback synaptic currents that can
more quickly inhibit spiking or create longer duration inhibited
states, thus creating greater phase advances or delays in the CPG
oscillations. Thus, for synchronization to occur at frequencies
that are significantly different from , larger input amplitudes
are required as shown in the data. Second, once the amplitude
is large enough to saturate the feedback synaptic conductance,
further increases in amplitude have no change in effect. At such
large amplitudes the feedback synaptic conductance changes
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Fig. 5. Open-loop phase response with a sinusoid of given amplitude and frequency applied as the feedback signal. Each datum in (A) and (B) represents the
average phase difference over a 30-s interval. (A) Phase difference with respect to the amplitude of the feedback signal and parameterized by linearly changing
frequency bounded by the indicated values. The horizontal dashed line indicates the phase difference for ! = ! � 0:17 Hz. The vertical dashed line indicates
the amplitude at which the feedback conductance begins to saturate. (B) Phase with respect to the frequency of the feedback signal and parameterized by amplitude.
(C) and (D) Time series data corresponding to the circled data points from (A). The dashed line for SN1 indicates the threshold voltage for spike detection. The
dashed line for I and g indicates a value of 0 nA and 0 nS. The scale bars at the bottom of the figure are for the corresponding column of traces.

very quickly to it’s maximal value [see Fig. 5(D)], making the
steady-state phase difference constant at approximately the duty
cycle of the half-center oscillations. When , the large
amplitude feedback terminates spiking earlier in the burst pe-
riod and then augments the reciprocal inhibition for a given pe-
riod of time. The result is an extra amount of time that the neu-
rons are inhibited and a decrease in the duty cycle, and conse-
quently, phase. When the phase shift saturates at ap-
proximately because the feedback dominates the
inter-burst inhibition instead of the reciprocal inhibition of the
CPG. This large amplitude effect can be seen in Fig. 5(A) in the
data that are to the right of the vertical dashed line. The phase is
relatively constant for a given frequency, and as the frequency
increases the phase decreases.

B. The Steady-State Frequency Model

The steady-state frequency, , of the closed-loop system
is based on the phase responses of the mechanical system, de-
scribed by (4), and the half-center oscillator, described in Fig. 5.
The phase response of the mechanical system defines the rela-
tionship between the input force and the resulting position of
the mechanical system. In the previous section we defined the
open-loop phase relationship to be between the half-center os-
cillations and the position of the mechanical system. When the
loop is closed, the phase response of the CPG and mechanical
system must sum to zero. Because we defined the open-loop
phase response of the CPG as a negative phase, the CPG’s phase
response and the mechanical system’s phase response must be
the same. Therefore we can plot the phase relationships of both
the CPG and the mechanical system on the same axes (as shown

Fig. 6. An illustration of the steady-state frequency model. The bode plot of
the mechanical system is plotted for Q > 1=

p
2 and Q < 1=

p
2. For the top

figure, the arrows pointing in opposite directions indicate regions of negative
feedback with respect to the amplitude response. The arrows pointing in the
same directions indicate regions of positive feedback. The CPG’s phase curves
are denoted by the dashed lines, which are parameterized by the strength of the
feedback. These particular lines were calculated using linear regression on the
data in Fig. 5(B).

in Fig. 6) and the intersection of the two curves should indicate
the resulting steady-state frequency.
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Fig. 7. (A)–(C) System frequency, position amplitude, and phase data with respect to variation of ! for three different fixed values of Q, which
are indicated above each column. The data are denoted by the black-dotted curves, for which each point was measured at a different value of
! = [0:1; 0:15; 0:2; 0:25;0:3; 0:35;0:4; 0:45;0:5] Hz and the arrows indicate the direction of increasing ! . The smooth curves represent the frequency
response of the mechanical system for three different values of ! (left is 0.1 Hz, center is 0.3 Hz, and right is 0.5 Hz). The magnitude responses of the
mechanical system are normalized to the lowest-frequency value. The natural CPG frequency, ! = 0:17 Hz. The dashed lines indicate the two extremes of
the feedback phase curves from Fig. 5(B). (D) Time series for three different values of ! = [0:1;0:3;0:5] Hz as indicated by the larger data points in B. The
position signal (black) is superimposed on the membrane potential of SN1 (gray). The dashed lines indicate both the threshold voltage for calculation of active
force production and the position of 0 rad. The scale bars at the bottom indicate a time length of 1 s and an amplitude of 0.25 V or 0.25 rad accordingly.

In Fig. 6, the CPG’s phase curves are parameterized by
weak–strong feedback instead of amplitude. This transition was
based on qualitative experimentation, which revealed that the
slope of these CPG phase curves was based on the “strength”
of the feedback synapses. Strong feedback is the ability to
terminate spiking almost instantly [see Fig. 5(D)], and weak
feedback causes the spike frequency to decrease gradually [see
Fig. 5(C)]. While the position amplitude affects the feedback
strength directly, there are other factors such as the maximal
conductance parameter of the synapses and the intrinsic neuron
dynamics that also affect the strength.

As shown in Fig. 6, the frequency response of the mechanical
system also affects the position amplitude. This dependency cre-
ates a complex interaction between the CPG and the mechanical
system in which the phase response determines the frequency, the
frequency affects the position amplitude, and the position ampli-
tude affects the phase. This interaction is further complicated be-
cause the mechanical system’s amplitude response changes with
respect to . For , the mechanical system is over-
damped and there is no resonant peak in the magnitude of the fre-
quency response. For this case, if the system frequency increases,
the position amplitude will decrease. The decrease in amplitude
is represented by a greater slope in the CPG’s phase curve, as
shown in Fig. 6. As the slope increases, the intersection of the
two curves occurs at a lower frequency. Thus, an increase in fre-
quency is countered by a subsequent decrease in frequency due
to the decrease in amplitude as shown by the opposing arrows in
Fig. 6. For , the mechanical system is underdamped,
and an increase in the system frequency will have different ef-
fects on the amplitude depending on the relationship between the
system frequency and the resonant frequency, . For ,
the amplitude increases with respect to frequency as shown in
Fig. 6. The increasing amplitude will cause the system frequency
to increase further because the slope of the CPG’s phase curve
decreases. Thus the system frequency will continue to increase
until it becomes greater than or equal to as shown by the ar-
rows pointing in the same direction. For , the amplitude

decreases with respect to frequency as shown in Fig. 6. The de-
creasing amplitude will cause the system frequency to decrease,
countering any increase in system frequency.

IV. ANALYSIS OF STEADY-STATE OSCILLATIONS IN THE

CLOSED-LOOP SYSTEM

The steady-state frequency model can be used to describe
the behavior of the closed-loop system as different parameters
are varied. The mechanical parameters correlate to biological
changes such as growth and injury, and co-contraction, which
can immediately change the stiffness of a joint [5]. The intrinsic
neuron parameters are often used to model the modulation of
neural activity in biological systems [16]. We show that our hy-
pothesis is valid under certain circumstances, and also use the
steady-state frequency model to describe the general effects of
sensory feedback on rhythmic movements.

A. Variation of and

We first explored the closed-loop system by varying the nat-
ural frequency of the mechanical system, , and the quality
factor, , of the mechanical system and the results are displayed
in Fig. 7.2 This data can be described using the steady-state fre-
quency model that was presented in Fig. 6. Two primary mecha-
nisms interact to change the frequency at which the phase curves
intersect. First, as is increased, the position amplitude de-
creases according to (4) and the mechanical system’s phase
curve is shifted to the right. Second, as the position amplitude
decreases, the magnitude of the feedback decreases, effectively
increasing the slope of the CPG’s phase curve.

Fig. 7(A) illustrates the case for an overdamped mechanical
system. The position amplitude for is approxi-
mately 0.2 rad, and continues to decrease with increasing .
The corresponding increase in the slope of the CPG’s phase curve
causes the system frequency to decrease despite the shift of the

2If Q > 1=
p
2 and is constant, then varying ! is equivalent to varying !

as described in (5).
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Fig. 8. System behavior with respect to the combined variation of the intrinsic neuron parameters �g and �g . (A) Illustrates the open-loop amplitude and phase
data with respect to system frequency. (B) Illustrates the closed-loop amplitude and phase data with respect to system frequency. The data are plotted on the Bode
Plot of the mechanical system for which the parameters ! = 0:2Hz and Q = 6:0. The calculated amplitude response of the mechanical system was normalized
to the dc value; however, the system data were not normalized, and are plotted as the logarithm of the measured value. In general, increasing �g increases the system
frequency as shown by the arrows in the lower left of each plot. The three groups of data in each plot represent three different values of �g as specified by the
legends.

mechanical system’s phase curve. The large gap between the me-
chanical system’s phase curve and the datum for is
due to a decrease in the duty cycle of the half-center oscillations.

Fig. 7(B) illustrates the case for a moderately underdamped
mechanical system.Becauseof the increase in , thepositionam-
plitude is slightly larger than for the overdamped case. As such,
the system frequency follows the intersection of the curves as the
mechanical system’s frequency response is shifted. However, for

, the amplitude decreases significantly as shown
in Fig. 7(B) and (D). As a result, the feedback becomes weaker
and the intersection of the two phase curves occurs at lower
frequencies because of the increasing slope of the CPG’s phase
curve. As the slope continues to increase the system frequency
becomes closer to the natural half-center frequency. Fig. 7(D)
illustrates these effects in the time series of the data. For small
amplitude oscillations, the feedback has very little influence on
the CPG and thus the frequency of oscillations is determined by
the CPG and the phase relationship by the mechanical system.

Fig. 7(C) illustrates the case for a highly underdamped me-
chanical system. Although the amplitude decreases with ,
the feedback conductance is saturated because the position am-
plitude is greater than 1 rad for all values of . As a result, the
data lie along the CPG’s phase curve for the saturated feedback
conductance, and the change in system frequency is dependent
primarily upon the shifting of the mechanical system’s phase
curve.

Analysis of Fig. 7 reveals that, for high the system can syn-
chronize to the mechanical resonant frequency. The mechanical
system’s phase curve is centered around , and for high ,
the slope is very steep. If the CPG’s phase curve intersects the
mechanical system’s phase curve on the central “vertical” por-

tion, the system frequency will be close the mechanical resonant
frequency. At lower values of the slope of the mechanical
system’s phase curve is much less. Under these conditions, the
mechanical system and CPG phase curves can intersect over a
much wider range of frequencies.

B. Effects of the Neuron Parameters on the Steady-State
Frequency

In the previous section, we assumed that the bursting prop-
erties of the neurons were fixed. In this section, we show how
the neuron dynamics affect the steady-state frequency model
by varying the neuron parameters while fixing the mechanical
parameters. In general, varying the neuron parameters impacts
the burst frequency and spike frequency of the natural oscilla-
tions of the half-center oscillator [17]. According to our model,
changes in burst period shift the CPG’s phase curve horizon-
tally. Changes in spike frequency impact the strength of the
feedback synapses and thus affect the slope of the CPG’s phase
curve. In particular, the maximal conductances and are
varied because they model the effects of neuromodulators and
were found to produce the broadest range of burst periods and
spike frequencies [9]. We varied these parameters for the cases
of a highly underdamped ( ) and an overdamped (

) mechanical system. For each case, , which
is similar to the intrinsic burst frequency of the half-center os-
cillator at the canonical parameters.

Fig. 8 illustrates how the parameters and affect the
system behavior for both the open-loop3 Fig. 8(A) and closed-

3The open-loop system was created by disconnecting the sensory feedback
from the half-center oscillator.
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loop Fig. 8(B) system. The effects of varying these maximal
conductances on the burst period, spike frequency, and duty
cycle of the half-center oscillations were measured previously
[9]. Increasing increases relatively linearly both the spike
frequency and burst period. Increasing decreases the burst
period nonlinearly and decreases slightly the spike frequency
[9]. The open-loop data also show that the amplitude and phase
of the position signal are relatively well described by the fre-
quency response of the mechanical system. The vertical offset
of the three data traces in Fig. 8(A) is due to a decrease in spike
frequency for decreasing . The decreased spike frequency
decreases the active force generated by the muscle model, re-
sulting in a smaller position amplitude. In contrast, the spike
frequency is relatively independent of , and as a result, the
data tend to follow the magnitude and phase response of the
mechanical system.

Applying the steady-state frequency model to Fig. 8(B)
shows that the feedback causes the system to oscillate at
approximately the mechanical resonant frequency. As the
maximal conductances are varied, they change the slope and
location of the CPG’s phase curve. Because the mechanical
system’s phase curve has a vertical component (see Sec-
tion IV-A), the intersection of the two phase curves is most
likely to occur near the mechanical resonant frequency.

For , the half-center bursting has very
strong plateau potentials, which create a lower burst frequency
and higher spike frequency. Because of these bursting proper-
ties, the feedback is insufficient to terminate spiking even if the
conductance is saturated. This behavior is roughly equivalent to
weak feedback and can be represented by increasing the slope
of the CPG’s phase curve. The decrease in is equivalent to
shifting the CPG’s phase curve to the left. These two effects
cause the intersection of the mechanical and CPG phase curves
to occur near the mechanical resonant frequency.

For , the plateau potentials are not as
strong, which strengthens the feedback and increases the burst
frequency. These effects correlate to a rightward shift and a
decrease in the slope of the CPG’s phase curve. The resulting
intersection of the phase curves occurs at a higher system
frequency and the phase difference is closer to .

For , the CPG produced anti-phasic
bursting only when combined with values of that were
also below canonical values. The result of this parameter set
was weak plateau potentials and reduced ability of the cell
to recover from inhibition. Together, these effects strength-
ened the inhibitory sensory feedback, which would cause the
intersection of the phase curves to occur at a higher system
frequency and larger phase difference. These data are indicated
by the oval in Fig. 8(B) and show that the system frequency is
higher as predicted by our model, but that the phase is offset
from the ideal mechanical phase curve. This offset is correlated
with a 10% reduction in the duty cycle of the CPG oscilla-
tions as shown in Fig. 9. This data shows that the position is
phase shifted to correlate with the end of a burst. This phase
shift would lie along the mechanical system’s phase curve at

if the duty cycle of the CPG were 50%.
These data indicate that, if the mechanical system can be char-

acterized with a higher value, there are two conditions that

Fig. 9. Time series for the circled data in Fig. 8. The position signal (black)
is superimposed on the membrane potential of SN1 (gray). The dashed lines
indicate both the threshold voltage for calculation of active force production
and the position of 0 rad. The scale bars at the bottom indicate a time length of
2 s and an amplitude of 0.5 V or 0.2 rad accordingly.

will cause the closed-loop system to oscillate near the mechan-
ical resonant frequency: 1) if the natural frequency of the CPG
is less than the mechanical resonant frequency and the feedback
is of the appropriate strength or 2) if the natural frequency of the
CPG is higher than the mechanical resonant frequency and the
feedback is relatively strong. It is often observed that isolated
CPGs have slower frequencies than the movements of intact an-
imals [11]. To create this condition, perhaps there is some form
of long-term potentiation of the synapses within the CPG that is
guided by the sensory feedback.

Many biological systems, such as insect walking, can be de-
scribed with overdamped mechanics ( ) [18], [19]. In-
creasing the damping decreases the amplitude of movement for
a given force input (4) and produces a mechanical phase curve
that is monotonically decreasing. Because of these properties,
the intersection of the two phase curves can occur over a much
broader range of frequencies [compare Figs. 8(B) and 10(B)].
As such, the natural frequency of the CPG has a greater im-
pact on the closed-loop system frequency. Fig. 10 displays the
open-loop and closed-loop system data for the case of an over-
damped mechanical system, . The burst properties are
varied in the same manner as was done for the underdamped
system.

For , the large plateau potentials, high spike
frequency, and small amplitude of movement creates very weak
feedback. As a result, the CPG’s phase curve is almost vertical
and the closed-loop system frequency is not significantly dif-
ferent from the open-loop frequency for smaller values of .
For larger values of , the feedback does have some impact be-
cause the closed-loop system is capable of oscillations that were
not evident in the open-loop system. These oscillations arise
because the larger values prevent the neurons from hyper-
polarizing, which lowers the plateau potentials and makes the
feedback stronger [9]. The stronger feedback implies a higher
system frequency according to our model because of the re-
duced slope of the CPG phase curve. Fig. 10(B) shows that the
system frequency increases with respect to increasing .

For and , the ampli-
tude of movement is even smaller than it was for

because of the lower spike frequencies. The smaller am-
plitudes create less feedback to the CPG. However, in these re-
gions of the parameter space, the CPG’s plateau potentials are
not as large and so the feedback, while less, is stronger than
it was for . The stronger feedback causes
the slope of the CPG’s phase curve to decrease, resulting in
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Fig. 10. Same format as the data presented in Fig. 8, except for this data set Q = 0:4. (A) Illustrates the open-loop amplitude and phase data with respect to
system frequency. (B) Illustrates the closed-loop amplitude and phase data with respect to system frequency.

a closed-loop system frequency that is higher than the open-
loop frequency. This result supports observations from biolog-
ical studies showing that CPGs, when extracted from the ner-
vous system, have slower frequencies than the movements of the
intact animal [1]. Our steady-state frequency model predicts this
phenomenon because the intersection of the two phase curves
must occur at a frequency that is greater than the natural fre-
quency of the half-center oscillator.

V. CONCLUSION

In this paper, we presented the implementation and analysis
of a closed-loop system, consisting of a biologically realistic
half-center oscillator, a second-order linear mechanical system,
and position feedback. The half-center oscillator is constructed
with two silicon neurons, each with six voltage-dependent con-
ductances. The mechanical system consists of a physical mass
driven by a dc electric motor. The motor is controlled by the
CPG and the position of the mass is fed back to the CPG via
ipsilateral inhibitory synapses. We studied the effects of the
closed-loop system on the neuron dynamics of the CPG and
developed a model for mechanisms that create a steady-state
system frequency.

We were able to use this steady-state frequency model to de-
fine principles that may underlie biological rhythmic movement
control. It is well established that sensorimotor feedback influ-
ences the motor patterns of CPGs, but the exact nature and pur-
pose of the influence is unclear [1]. The results from this work
describe a possible synergy that exists between the mechanical
properties of the system, CPG, and sensory feedback.

Our model suggests that when the mechanical properties are
more characteristic of an underdamped system, the resulting
system frequency is influenced more by the mechanical reso-
nance than the CPG. Movements such as running and hopping fit
into this category because, for efficiency, the body takes advan-
tage of the mechanical energy stored in the system. It has been
suggested that the mechanical resonance is not a fixed property
of a biological system and can be influenced significantly by ac-
tivating muscles at particular phases of a rhythmic movement.
As such, the phase of the movement cycle in which a muscle
is activated determines whether it is used to store energy, dis-
sipate energy, or actively produce force [19]. In addition, the
co-contraction of an antagonist muscle pair can be used to stiffen
the movement about a given joint, which changes the damping.
These changes to the mechanical resonance set the overriding
frequency of movement, while changes in the strength of the
feedback or in the natural characteristics of the CPG vary the
system frequency as slight deviations from this mechanical reso-
nance. A number of physiological mechanisms including presy-
naptic facilitation, second messenger systems, and descending
synaptic input to the CPG could underlie such neural changes
on a short time scale.

In contrast, when the mechanical properties are more charac-
teristic of an overdamped system, our model suggests that the re-
sulting system frequency is influenced more by the CPG and the
strength of the feedback than the mechanical properties. Move-
ments such as walking and swimming fit into this category be-
cause a significant amount of damping is created either by the
environment or the body itself to make the movements smooth
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and controlled. In this scenario, our model suggests a novel
mechanism for varying the frequency of movement. Namely,
that the feedback strength could be adjusted instead of the nat-
ural frequency of the CPG. We indicated in Section IV-B that
the ”strength” of the feedback is determined by the relationship
of the feedback synaptic efficacy to the complex dynamics of the
CPG. Thus, any change in the efficacy of the feedback synapses
will have a direct impact on this feedback strength. According
to our model this change in feedback strength adjusts the slope
of the CPG’s phase curve, which corresponds to a change in
the closed-loop system frequency. Physiologically, the feedback
synaptic efficacy could be adjusted through a mechanism such
as presynaptic facilitation or depression, which is often associ-
ated with the axons of sensory neurons. Such a control structure
would make it much easier for higher neural centers to make
fine adjustments of rhythmic movements than trying to directly
control the natural frequency of a complex CPG.

One of the major goals of functional electrical stimulation
(FES) is to restore the ability to walk, which is a rhythmic move-
ment. A thorough understanding of the relationship between
pattern generators and sensory feedback could improve the con-
trol strategies of FES systems. The results presented here sug-
gest that, in addition to the motor units, the sensory feedback
should be an important part of any control strategy to artificially
illicit rhythmic movements.

In the sense that our model of the closed-loop system is based
on equal phase relationships between the CPG and the mechan-
ical system, it is independent of the complexity contained in
that system. However, one of our goals was to understand the
role that the complex neural dynamics might play in the control
of rhythmic movements. We found that the neural dynamics fit
into our model of the closed-loop system in that they impact the
strength of the synaptic feedback and the shape of the CPG’s
phase curve. For example, for the same amount of feedback (i.e.,
same amplitude of movement), the feedback was weaker when
the neurons exhibited strong plateau potentials.

We could change the neural complexity by changing the
number of neurons in the CPG and/or the complexity of the
individual neurons. Simpler neuron dynamics tend to express a
less rich set of behaviors or have fewer state dependent behav-
iors [20]. It would seem likely that for less complex neurons,
the feedback strength would be more predictable with respect
to the individual neural dynamics. Changes to the complexity
of the CPG and the neurons will also impact the shape of the
CPG’s phase curve. We plan to explore how these changes to
the phase curve impact the synchronization of the system.

There were several parameters of this system that we have not
yet explored. One of the more obvious is the feedback synaptic
conductance, which has a direct impact on the strength of the
feedback. As shown in Fig. 7, the system frequency is directly
dependent on the amplitude of oscillations because of it’s im-
pact on feedback strength. In biology, the feedback conductance
is likely controlled through some form of presynaptic facilita-
tion or depression. According to our model, one reason for co-
ordination between the feedback gain and the musculoskeletal
mechanics could be to help maintain movement at a given fre-
quency. Another aspect that we wish to address in the future is
the effects of noise, mismatch, and imperfections. We purposely

stifled such properties as much as possible to make the anal-
ysis tractable. However, this system is ideally suited for studying
these properties because they are an inherent part of the system.
We plan to use this system to study how adaptation and modula-
tion are used in biology to work around these imperfections [21].

APPENDIX

The equations that describe the silicon neurons are fundamen-
tally similar to the Hodgkin-Huxley formalism. These equations
are summarized with the following equations:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

where is the membrane capacitance, is the membrane po-
tential, and is a current. For (10)–(15), the subscript

. Equation (9) describes the leak cur-
rent, for which is the leak conductance and is the
leak reversal potential. Equation (10) describes the current for
the conductances Na, K1, and Ca, which are characterized with
both an activation variable, , and an inactivation variable,

. is the maximal conductance and is the reversal po-
tential. The activation variable is raised to a fixed power of

because of a property of the integrated circuits. Equa-
tion (11) describes the current for the conductances P, K2, and h,
which have only an activation variable. Equation (12) and (13)
describe the dynamics of the activation and inactivation vari-
ables. and are the activation and inactivation time con-
stants, and and are the steady-state activation
and inactivation functions. Equation (14) and (15) describe the
steady-state functions as functions of the membrane potential.

and represent the slopes of these functions and
and represent the half-maximal potentials.
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