
1

Studying the Performance of Cooperative Delivery
Techniques to Support Video-on-Demand Service in

IPTV Networks
Aytac Azgin, Member, IEEE,, Ghassan AlRegib, Senior Member, IEEE, Yucel Altunbasak, Fellow, IEEE

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia 30332–0250

Email: aytaca@gatech.edu, alregib@gatech.edu, yucel@ece.gatech.edu

Abstract—In this paper, we study the use of peer-assisted
server-based cooperative transmission strategies in IPTV net-
works for the delivery of on-demand services to end users. The
proposed techniques aim to support the resource efficient delivery
of on-demand content to end users in a timely manner. Within
the proposed framework, a cooperative transmission strategy
suggests that users who have access to the requested content
cooperatively transmit to the targeted set of users. In doing so,
we can minimize the servicing requirements at the server side
and improve the scalability performance in the network. We
conducted extensive simulations using different request arrival
models and showed that significant performance improvements
can be achieved with the proposed delivery techniques to enable
efficient access to an ever growing on-demand content. We also
showed the robustness of the proposed techniques in regard to
variations observed in network state.

Index Terms—Internet Protocol TeleVision, Video-on-Demand
service, cooperative networking, peer-to-peer streaming, content
delivery networks.

I. INTRODUCTION

IN recent years, user demand for the delivery of broadcast
content over IP infrastructure has seen a significant increase

[1]. Through rapidly evolving server-assisted on-demand con-
tent delivery services, such as Youtube and Netflix [2], live
broadcast services (also known as the IPTV services), such as
U-verse, and peer-assisted on-demand streaming services, such
as Sopcast or PPLive [3], [4], we have observed a substantial
increase in the amount of content that is immediately made
available to the end users [5], [6]. Due to this mutually
evolving content delivery cycle, the amount of bandwidth
required to timely service the user requests has also seen a
significant increase [7], [8]. To continue to support the diverse
service quality requirements for the continually increasing user
demand, it is of critical importance to come up with resource
efficient content delivery techniques.

An important characteristic of content delivery networks
(live or on-demand) is that a substantial portion of the video
traffic (or the network load) can be attributed to the most
popular content [9], [10], [11], [12]. That is because a linear
increase in the popularity of a content results in an exponential
increase in the number of users receiving the content, thereby

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

leading to popularity models based on the power law distri-
bution (e.g., Zipf distribution [12]). To overcome the sudden
increase in user demand, caching policies are typically utilized
to distribute the load in the network by giving higher priority
to the delivery of more popular content (see [13] and the
references within). However, continual increase in network
size and user demand may drive the cost of caching policies
higher than what is initially expected by the service providers,
thereby limiting their efficiency in handling the on-demand
traffic. The bandwidth requirements for the received requests
(e.g., 3 Mbps for the standard-definition (SD) streams and
8Mbps for the high-definition (HD) streams) and the–likely to
be long–activity duration associated with the content requested
therefore make it a necessity to more efficiently manage the
available resources by further distributing the network load.

To achieve these objectives, we propose a cooperative
delivery framework that requires peers, who have immediate
access to the content being requested, to transmit together to
maximize the resource usage efficiency in the network. The
origin of our idea lies in the cooperative diversity principle
utilized in wireless networks to maximize the network lifetime
(see [14] and references within). Cooperative diversity creates
a virtual multiple-input-multiple-output (MIMO) array in the
network to efficiently distribute the energy resources when
delivering traffic from one node to another through multiple
relay points. Through successive cooperative transmissions,
energy utilization per node can be significantly reduced at each
transmission hop, thereby allowing the nodes to utilize their
energy resources more conservatively and evenly to achieve a
higher network lifetime.

However, cooperation in wireless networks is limited to the
use of individual nodes, hence the performance improvements
strongly depend on the network topology. We do not have such
restrictions in wireline networks due to the use of dedicated
servers that can actively participate in the cooperation phase
to support the delivery process. Therefore, we can utilize
the results from cooperative networks in a more flexible
manner. Specifically, in a wireline setting, to achieve similar
performance improvements, we can replace node budgets that
are correlated to energy usage in a wireless setting with ones
correlated to bandwidth usage. Also note that, in wireline
networks, we assume each user to have a limited uplink
budget (e.g., K bytes per month). Hence, unfair resource

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/16275097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

allocation can cause some users to consume their budget
earlier, potentially leading to a noticeable decrease in the
number of users that can participate in the cooperative delivery
phase and thereby significantly limiting the future cooperation
gains. For these reasons, our work puts greater emphasis on the
fairness performance, which is defined based on Jain’s fairness
index [15].

In short, the proposed research in this paper applies the
cooperation principle to IPTV networks to achieve the fol-
lowing objectives: (i) maximize the servicing capacity in the
network by minimizing the servicing overhead through the
dedicated server, and (ii) increase the operational lifetime of
the network by fairly distributing resources to session peers
(i.e., clients that subscribe to the same multicast session),
where the term operational lifetime refers to the timeframe
on the clients’ willingness or capability to cooperate. To
achieve our objectives, we propose two cooperative content
delivery techniques, Cooperative First-Come-First-Serve (C-
FCFS) technique and Cooperative Weighted Fair Queueing
(C-WFQ) technique.

We can summarize our contributions as follows:

• We present the design of a peer-assisted server-based on-
demand content delivery framework for IPTV networks
that explicitly supports fair resource allocation among
session peers through adaptive resource management
while introducing minimal servicing overhead at the
server side. To maximize the peer participation ratio, the
proposed framework limits cooperation to the active peers
(i.e., peers that are part of an ongoing session and actively
participate the same session as both a receiver and a
transmitter).

• We assign fairness-driven utility weights to each active
peer for the duration of the content delivery phase to
determine (i) the amount of content to be delivered
by each peer and (ii) the transmission rate assigned to
each of them. We dynamically adjust these weights to
improve the fairness performance at the peers in regards
to resource allocation by successively limiting the burden
on the earlier arrived peers.

• We present an in-depth analysis of the proposed frame-
work using three different request arrival models to
measure the impact of correlated and/or bursty arrivals on
the system performance. Through exhaustive simulation
studies, we show that significant bandwidth savings can
be achieved by effectively combining asynchronous mul-
ticast session deliveries with patching unicast services
through session peers and the dedicated server.

The rest of the paper is organized as follows. In Section
II we describe our system model. We discuss the algorithmic
details of the proposed C-FCFS and C-WFQ techniques in
Sections III and IV, respectively. We present the preliminary
analysis of the proposed techniques in Section V. We in-
vestigate the impact of varying the request arrival rates on
system performance in Section VI. We discuss the practical
limitations for implementing the proposed techniques and our
proposed modifications in Section VII. Section VIII introduces
the related works, and we conclude our paper in Section IX.

II. SYSTEM MODEL

We illustrate the basic architecture of an IPTV network in
Figure 1. Within the given framework, Super Head-End (SHE)
is the location where live content is acquired and real-time
encoding of video broadcasts take place. The national content
generated at the SHE is then forwarded over the core network
to the regional Video Hub Offices (VHOs), which also provide
real-time encoding services for the local broadcast and on-
demand services. Content acquired/generated at the VHOs is
then distributed to the local Video Switching Offices (VSOs),
each of which forwards the incoming IPTV traffic to end-
users over the access networks. In the current research, we
focus on the operation at the VHO, which serves thousands of
clients and which is responsible for the delivery of on-demand
content.

Assume that there are nj users that request session sj’s
multicast within a certain timeframe, which we refer to as ∆T .
The request times are given by Treq,ij , where 1 ≤ i ≤ nj

and (Treq,ij − Treq,1j) ≤ ∆T , ∀i ∈ sj . Ideally, each user
expects to join the targeted session’s multicast at the time of its
request. However, since the delivery of the on-demand content
is typically initiated starting from the beginning, it becomes
impractical to initiate a multicast session for each received
request, especially when the sessions are long (e.g., duration
of 2 hours) and the requests arrive on a frequent basis.

To circumvent these limitations, we propose a cooperative
delivery framework, for which the basic operations are shown
in Figure 2. The proposed framework shown in Figure 2
utilizes a dedicated server (also referred to as the video server),
which is essentially responsible for coordinating the received
requests and allocating resources, and nj = k + 1 clients
each of which makes a join request for session sj . Here,
after the ith client makes a session-join request to the video
server using the message Reqi, it also makes a request to join
the source multicast for sj . To guarantee an almost instant
playout 1, we need to deliver the requested packets to each
client at a rate that is at least equal to the delivery rate
for the source multicast, which we refer to as WM . In our
framework, we also assume that the clients have a downlink
capacity of Wd > 2×WM , which allow the clients to support
the simultaneous delivery of session multicast and unicast
patch streams. Also note that, during the activity period of a
session, resource availability at each session peer satisfies the
following relationship based on the initially defined servicing
requirements: a peer that arrives to the system at time ti is
assumed to have access to session data from the interval (0, δ)
at time tj , where δ ≥ tj − ti.

To deliver the requested packets in time, the proposed
architecture utilizes the session peers first (using the Pdata
stream) and the video server second (using the Udata stream
for unicast transmissions). Note that, the server also uses
the Mdata stream for its multicast transmissions (i.e., session
multicasts). Each client that has access to the requested
content becomes a potential source for servicing the future

1We omit the brief delay (which equals almost one round trip time (RTT)
between two peers) that is required to coordinate among session peers and
deliver the requested resources from the session peers to a requesting client.

3

ACCESS

NETWORK

AGGREGATION AND

DISTRIBUTION

NETWORK
IP/MPLS CORE

NETWORK

National

IPTV Server

Core Router

Aggregation

Router

Access

Point

STB

Stream

Server
Regional

IPTV Server

Aggregation

Router

Core Router

Support

Server

SUPER HEADEND

VIDEO HUB

OFFICE

VIDEO SWITCHING

OFFICE

VoD and QoS

Regional

Broadcast

Access

Point
STB

Fig. 1: Architecture of an IPTV network.

Req2

Reqk

Req3

UdataS→k+1

UdataS→k

UdataS→3

UdataS→2
UdataS→1

Req1

Peer 1

Reqk+1

Pdatai→ {i+1,i+2,...}

Peer 2

Peer 3

Peer k

Mdata

Mdata

Mdata

Req

Req

Req

MdataS→1

MdataS→3

MdataS→k+1

MdataS→k

Udata Udata

Udata

MdataS→2

Video Server

Mdata → Multicast Stream

Udata → Unicast Stream

Pdata → Peer Stream

― → Direct stream

- - → Indirect stream

Access

Point

Access

Point

Access

Point

...

Peer k+1

Fig. 2: Cooperative transmission framework.

requests. To communicate the delivery information to session
peers, the dedicated server uses session-based multicast control
channels and unicast control channels (which is also used for
error recovery support). Multicast control channel is used for
the delivery of commonly shared information (i.e., assigning
unique identifier to peers and include the matching information
in regards to IP addresses for the peers in the multicast
control message). Unicast control messages are used to deliver
information on the peer assignments.

In short, for all the received requests, there exists two
main delivery sources, i.e., session peers and the video server.
However, as we mentioned earlier, video server is merely
considered as an optional source, especially for the unicast-
based deliveries. In our framework, video server is only used
to compensate for the lack of resources at the client side, i.e.,
when the session peers cannot provide the sufficient resources
required to support the minimum delivery guarantees for the
given request.

An important parameter of choice for the proposed archi-
tecture is the ∆T parameter, which represents the minimum
waiting time for the content delivery server to initiate a
new multicast session. As the duration of a multicast session
increases, it becomes crucial to establish breathing instances
in time, where the system can generate a new multicast session
to accommodate for the needs of the newly arriving requests
without violating the system constraints.

If the ∆T value is not properly assigned, clients may expe-
rience huge, and oftentimes unacceptable, session initialization
delays. Choosing a small/large value for ∆T determines
how efficiently the system resources are distributed among
the session peers and the dedicated server. For instance, by
choosing a larger value for ∆T , we would be increasing the
burden at the client side, whereas, by choosing a smaller value
for ∆T , we would be increasing the burden at the server side.
Therefore, to optimize the resource usage efficiency in the
network, we need to carefully study the relationship between
request arrival process and the ∆T value, and evaluate the
tradeoffs associated with its selection.

We next give an in-depth overview of the proposed coop-
erative content delivery techniques that aim to improve the
resource usage efficiency in the network.

III. COOPERATIVE FIRST-COME-FIRST-SERVE (C-FCFS)
APPROACH

C-FCFS approach is designed based on the following prin-
ciple: a session peer targets a single client and serves a single
request at any given point in time and assigns a constant
delivery period for each received request. The reason why
we refer to the proposed approach as C-FCFS is because the
requests are serviced on a first-come-first-serve (FCFS) basis
at each session peer.

∆ T

ν1 ν2 ν3 ν4

t1 t2 t3 t4

patching

ν1 and server patching

ν1 , ν2 and server

patching

ν3 and server

patching

ν1 , ν2 , ν3 and server

Peers join kth multicast stream Peers join [k+1]th multicast stream

ν5 ν6 ν7

Fig. 3: Transmission events for the C-FCFS approach.

The basic operation for the C-FCFS approach is explained
as follows. After the most recent join request, all session peers
that have partial access to the requested content are asked to
deliver an amount that is proportional to their initially assigned
transmission weights (we will discuss this shortly). Since a
session peer can only service a single request, any session
peer that is busy responding to earlier received requests at the
time the new request is received has to wait until it becomes
idle. We illustrate the operation of the C-FCFS approach in
Figure 3, which shows the join period for the kth and the (k+
1)th multicast streams corresponding to the same session. As
soon as the join request from ν2 is received, patching service,
which refers to the delivery of session data that the client has
not yet received because of joining the multicast session late,
is delivered through the dedicated server and the idle peer
ν1. When ν4 makes a join request, patching service is initially
delivered through ν3 and the server, as ν1 and ν2 are servicing
ν3’s request. However, as soon as ν1 and ν2 finish servicing
ν3’s request, they can join ν3 and the server to deliver the
patching data to ν4. At each instance, delivery rate through the
server is adapted to match the servicing requirements, i.e., if
the delivery rate through the peers is greater than the minimum

4

required rate, then the server stops delivering patching service
for the given request, and vice versa.

To enable fair access to the available resources, transmission
weights are dynamically varied by taking into account the
impact of previous transmissions, i.e., the amount of data each
user had delivered by the time the new request is received.
Since any user, which makes a join request, needs to receive
the synchronization data–the content delivered by the source
multicast up until the time of request–with proper timing
(i.e., as if the transmissions are coming from a dedicated
server that uses a unicast stream), time-varying delivery rates
should allow the user to access the received session data at
the original source multicast rate, WM , that is, Drcv(t) ≥
WM × (t − Treq,j), where, Drcv(t) represents the amount
of data delivered to the peer by t for the given request,
Treq ≤ t ≤

(
2 × Treq − T1

)
, and T1 represents the start

of transmission time for the multicast session targeted by
the given request. The boundary conditions assume that, in
the worst case, client receives the synchronization data at the
source multicast rate.

Delivery rate requirements also suggest that, at any given
point of time, the amount of data delivered to the user should
be greater than or equal to the amount of data delivered by
the hypothetical unicast stream through the dedicated server.
Therefore, if the overall support through the session peers
cannot satisfy the minimum delivery requirements, then we
deliver the additionally requested resources through the video
server.

In short, after client νi makes a join request to receive
session sj at time Ti,j , we calculate the resources that each
session peer is expected to deliver as follows:

Dk,i = WM × (Ti,j − T1,j)/
k−1∑
l=1

(
wl(Ti,j)/wk(Ti,j)

)
(1)

where Dk,i represents the amount of data that νk is expected
to deliver in response to νi’s request, T1,j represents the
starting time for sj’s multicast, and wk(T) represents the
weight assigned to νk at time T . Note that, in our framework,
dedicated server initiates the multicast sessions reactively, i.e.,
each multicast session starts with a new request.

To determine the user weights, we use the following equa-
tion:

wk(Ti,j) =

(⌈
1−Bk(Ti,j)/Bj,max

⌉+)αi,k

(2)

where Bj,max represents the maximum amount of data each
session peer is allowed to deliver during the lifetime of sj’s
multicast, Bk(Ti,j) represents the amount of data already
delivered by νk by the time Ti,j , and αi,k represents the
normalization metric assigned to νk for νi’s request. 2

Note that, by varying the value of the parameter αi,k, we
can determine the convergence speed for the user weights to
the limiting value of zero. Using a higher αi,k value allows
a session peer reach the limit faster, thereby improving the
fairness performance at the cost of increased server usage.
Note that, we can dynamically update the normalization metric

2⌈x⌉+ = max(x, 0)

in response to changes observed in system state. In doing so,
we can promptly react to sudden changes observed in, for
instance, resource availability at the peers or the video server.

Equation (2) suggests that session peers who have delivered
the most by the time of request are given the least priority
during the resource assignment process. In doing so, we can
gradually shift the main source of peer delivery away from
the early arriving users and towards the late arriving users.
As a result, we can improve the fairness among session peers.
Additionally, if the peers observe varying uplink rates, the
order of the packets delivered through the peers is updated by
prioritizing the delivery of the earlier (or later) synchronization
data segment through session peers with higher (or lower)
uplink capacity.

IV. COOPERATIVE WEIGHTED FAIR QUEUEING (C-WFQ)
APPROACH

To further and more efficiently utilize the resources at
the client side, for the second approach, we focus on the
individual transmission subperiods (i.e., each of which starts
when a new request is received or the servicing of an earlier
request finishes), instead of assigning a constant delivery
period for each received request. Specifically, each session
peer targets all the active requests for the duration that they
are allowed to service, which depends on various factors, such
as resource availability, resource usage history, etc. As the
number of available session peers varies from one transmission
subperiod to the next, so as the user weights and the expected
contribution from each session peer.

At the beginning of each transmission subperiod, we update
the user weights based on the earlier peer contributions for the
given session. After each received request, we probe all the
available peers to request their support. Since each session
peer is allowed to service multiple requests at once, as in the
case of Weighted Fair Queuing, we need to properly distribute
the available resources to the active requests.

We illustrate the basic operation for the C-WFQ approach
in Figure 4. Anytime a new request is received, each session
peer reallocates its resources to accommodate the bandwidth
requirements for the newly arrived request. In the given
figure, when ν1 and ν2 receive a join request from ν4, they
immediately start to service ν4’s request while also continuing
to service ν3’s request but at a lower servicing rate. Since ν3
is only expected to service ν4’s request, it fully allocates its
resources to service ν4’s request. We next explain in detail the
operation of the proposed delivery framework.

∆ T

ν1 ν2 ν3 ν4

t1 t2 t3 t4

patching

ν1 and server patching

ν1 , ν2 and

server

patching

ν1 , ν2 , ν3 and

server

Peers join kth multicast stream Peers join [k+1]th multicast stream

ν5 ν6 ν7

patching

ν1 , ν2 and

server

patching

ν1 , ν2 , ν3 and server

Fig. 4: Transmission events for the C-WFQ approach.

5

Assume that user νi makes a request for session sj at time
Ti,j . At the beginning of each session, we reset the counter
that represents the user count to 1, hence, by Ti,j , the number
of requests that arrive for sj–after it is created–is equal to
i − 1. For the time being, let us assume that users have
unlimited transmission capacity along the downlink channel,
allowing any number of session peers to be utilized during
the synchronization phase. We can therefore use the following
equation to find the weights for the peer contributions:

ωk(Ti,j) =

(⌈
1−Bk(Ti,j)/Bj,max

⌉+)βi,k

(3)

where, for k < i, Bk(Ti,j) represents the contribution from
νk by Ti,j and βi,k represents the normalization metric for C-
WFQ. Similar to the C-FCFS approach, we determine the size
of expected delivery by each session peer using the following
equation:

Dk,i = WM × (Ti,j − T1,j)
i−1∑
l=1

(
wl(Ti,j)/wk(Ti,j)

)
(4)

where k < i.
We next determine how to effectively distribute the available

peer resources to multiple requests’ use at each session peer.
Since C-WFQ allows session peers to target multiple clients at
once, if resource availability at a session peer is not sufficient
to deliver the requested content at the desired rate, then a
resource reallocation policy is needed to make the best use of
available resources at the given peer. For that purpose, we use
the following methodology.

We initiate the resource reallocation phase by finding the
minimum required delivery rate for each session peer as
follows:

Wkl,min(Ti,j) = Dk,l(Ti, j)/(Tl1,j − Til,j) (5)

where Wkl,min(Ti,j) represents the minimum required delivery
rate for session peer νk in response to νl’s request at time
Ti,j , Dk,l(Ti,j) represents the updated value for the expected
delivery from νk to νl at Ti,j , and Tli,j equals

(
Tl,j − Ti,j

)
.

We next determine the total amount of resources that νk
needs to allocate to each active request it has received:

W ′
k,min(Ti,j) =

i∑
l=k+1

Wkl,min(Ti,j) (6)

where W ′
k,min(Ti,j) represents the minimum required delivery

rate by νk at Ti,j .
We can then calculate the initial rate assigned by νk to each

active request it has received as follows:

Wk,l(Ti,j) =

(
W

(k)
u −W ′

k,min(Ti,j)
)∑

∀m
(
ζ∗k,m/ζ∗k,l

)
+Wkl,min(Ti,j) if

W ′
k,min(Ti,j)

W
(k)
u

< 1

W
(k)
u∑

∀m
(
ζ∗k,m/ζ∗k,l

) otherwise

(7)

where W
(k)
u represents the available bandwidth along the

uplink channel at user νk, and ζ∗k,l is given by:

ζ∗k,l = γk,l ×Wkl,min(Ti,j) (8)

where γk,l represents the weight assigned to νl’s request at
νk. Here, weight parameters are mainly used to prioritize
certain requests, for instance, requests with shorter deadlines
(i.e., earlier received requests) or higher resource needs (i.e.,
latest received requests). Due to space limitations, we assume
γk,l = 1, suggesting that all the requests are assigned the same
priority.

We next update the initially assigned weights based on the
overall resource availability for each active request to further
reduce the server’s contribution. Specifically, assume that, for
νl’s request, the amount of available resources at the session
peers is given by:

Υl(Ti,j) =
∑

∀k∈C(l)

Ŵkl,min(Ti,j) (9)

where C(l) represents the cooperation set for
νl’s request and Ŵkl,min(Ti,j) is given by
W

(k)
u /

∑
∀m

(
Wml,min(Ti,j)/Wkl,min(Ti,j)

)
Assume that WM,l(Ti,j) represents the minimum delivery

rate requirement for νl’s request at time Ti,j . When resources
at the session peers are barely enough to service all the active
requests, WM,l(Ti,j) is expected to be equal to WM . Since
we aim to minimize the resource usage rate at the server side,
we first determine whether Υl(Ti,j) is less than or greater
than WM,l(Ti,j) and by how much its value differs from
WM,l(Ti,j) (i.e., γl(Ti,j) = |Υl(Ti,j)−WM,l(Ti,j)|). If, for
instance, Υl(Ti,j) > WM,l(Ti,j), then we can allocate a por-
tion of these resources, which amounts to γl(Ti,j) bits per sec-
ond, to other requests’ use without violating the service quality
requirements for νl’s request. Assume that Γ+ represents the
set of requests, for which the available resources at the session
peers are more than sufficient to satisfy the service quality
requirements (i.e., ∀l ∈ Γ+, Υl(Ti,j) > WM,l(Ti,j)), and Γ−

represents the set of requests, for which the available resources
at the session peers are not sufficient to satisfy the service
quality requirements (i.e., ∀l ∈ Γ−, Υl(Ti,j) ≤ WM,l(Ti,j)).
Then we can determine the total amount of resources that can
be reallocated to other requests’ use as follows:

Υ+ =
∑

∀l∈Γ+

(
Υl(Ti,j)−WM,l(Ti,j)

)
(10)

We can also determine the additional resources that would
initially be requested from the server at Ti,j as follows:

Υ− =
∑

∀l∈Γ−

⌈
WM,l(Ti,j)−Υl(Ti,j)

⌉+ (11)

• If Υ+ < Υ−, then only a subset of the requests can be
serviced without requiring additional assistance from the
dedicated server.

• If Υ+ ≥ Υ−, then resource requirements for all the avail-
able requests can be met without requesting additional

6

assistance from the dedicated server. 3

In short, resources at the session peers are reallocated as
follows:

W ∗
k,l(Ti,j) =

Ŵkl,min(Ti,j)×

[
1− min(Υ−,Υ+)

Υ+

×
(
1− WM,l(Ti,j)

Υl(Ti,j)

)]
if l ∈ Γ+

Ŵkl,min(Ti,j)×
WM,l(Ti,j)

Υl(Ti,j)
if l ∈ Γ−

(12)
After the resources are reallocated at the session peers, we

need to also ensure that the local bandwidth constraints are met
at each session peer. For instance, if at νk,

∑
∀l W

∗
k,l(Ti,j) >

Wu,k, then we need to reduce the delivery rates assigned by
νk to each of its active requests. In a similar way, if at νk,∑

∀l W
∗
k,l(Ti,j) < Wu,k, then it becomes possible to assign

more resources to the active requests at νk. For that purpose,
we use the following procedure:

1. Set pseudo-active session peer set to U , where a pseudo-active
peer refers to an active session peer that has additional resources
to allocate for the currently active requests.

2. Update rates at each νk, where
∑

∀l W
∗
k,l(Ti,j) ≥ Wu,k, by

multiplying the assigned rates with Wu,k/
∑

∀l W
∗
k,l(Ti,j), and

update set U = U \ νk.
3. Check for final assignments at each active session peer and

determine additionally needed resources by active requests.
Specifically, ∀l ∈ Γ−, find

∑
∀k∈C(l) W

∗
k,l(Ti,j) and check

whether or not it is less than WM,l(Ti,j). If it is, then keep
request in Γ−, otherwise Γ− = Γ− \ l.

4. Next, for all requests in Γ−, find delivery ratio υl, which equals∑
∀k∈C(l) W

∗
k,l(Ti,j)/WM,l(Ti,j).

5. Starting with the request in Γ− that observes the lowest delivery
ratio, l = mink υl, reallocate resources for the given request at
each session peer νm belonging to the set C∗(l) = C(l) ∩ U ,
starting with peer that services the least number of requests
in Γ−. Resources are reallocated at each selected peer by
borrowing resources from requests that experience a delivery
rate greater than session multicast rate. Remove l from Γ−.

6. Continue to reallocate resources by going back to Step 5 as
long as the following is true: C(Γ−) ∩ U ̸= ∅.

7. If additional resources are needed to meet service quality
requirements for active requests, then allocate remainder of the
resources through dedicated server.

Finally, resource allocation rate at each session peer is
updated whenever the servicing of a request finishes and
the resources used by the given request are released at the
peer servicing the given request. For that purpose, a similar
procedure is used to redistribute the released resources to the
active requests starting with the request that receives resources
through the server at the highest rate.

3Note that, the above statement is valid as long as the session peers have
full access to the requested resources. For instance, if a peer has available
bandwidth but not the content to service a given request, then we cannot
transfer the peer’s resources to service another request, thereby requiring the
server to continue to assist the delivery process even though the overall peer
bandwidth availability is greater than what is needed to service all the active
requests.

TABLE I: Simulation Parameters

LS 100 min.
∆T 5× κ min., where κ ≤ LS/5
Wd 25 Mbps
Wu 1 Mbps
WM 3 Mbps
λS 1/20 reqs/sec
Bmin 2× LS ×WM bits
Bmax 2×

(
Wu/WM

)
×Bmin bits

(α, β) (1, 1)

V. PERFORMANCE ANALYSIS

In this section, we use a simulation-based study to inves-
tigate the performance of the proposed content delivery tech-
niques when the request arrival process is modeled by using
the (homogeneous) Poisson process. We list the simulation
parameters in Table I, where, LS represents the session length,
∆T represents the mean time spacing between two successive
sessions, Wu (or Wd) represents the available servicing ca-
pacity along the users’ uplink (or downlink) channel, WM

represents the source multicast rate, λS represents the request
arrival rate, Bmin represents the maximum amount of data
that can be delivered-at the source multicast rate-during the
activity lifetime of a session 4, and

(
α, β

)
represent the zero

convergence rates for the assigned weights for the C-FCFS
and C-WFQ approaches, respectively.

The value of Bmax is chosen to ensure that client νi that
transmits continuously during the lifetime of session sj ends
up with a worst-case scenario weight of wi(T1,j +2LS,j) ≥ 0
by the end of sj’s activity lifetime, thereby limiting the peer
contribution to 2× LS,j/ρi, where ρi = WM/Wu,i. 5

In our study, we mostly focus on the following performance
measures: (i) average and maximum bandwidth usage at the
server side, (ii) synchronization latency, which refers to the
delivery time of unicast-transmitted session data (i.e., patching
stream), and (iii) fairness index for peer-bandwidth usage.
Note that, to obtain the fairness results we use Jain’s fairness
index, which is defined based on the following equation [15]:

Fν,j =

(∑Nj

i=1 Bi(∆Tj)
)2

Nj ×
∑Nj

i=1 Bi(∆Tj)2
(13)

where Fν,j represents the level of fairness observed in band-
width usage for peers connected to session sj , and Nj repre-
sents the number of peers connected to session sj during the
same period (i.e., ∆T). The value of Fν,j ranges from 1/Nj

(worst-case scenario attained when only one peer delivers data)
to 1 (best-case scenario attained when each peer delivers the
same amount of data).

4Since a request that arrives at t needs to be serviced by (2t−T1), where
T1 represents the starting point for the session’s multicast, the maximum
delivery duration for a session is given by 2×LS ×WM , when ∆T attains
the highest possible value of LS .

5The continual delivery period for a session peer is typically much smaller
than

(
2× LS,j

)
, since, as we will show shortly, the resource optimal value

of ∆T is smaller than the value of LS,j .

7

A. Results for the C-FCFS approach

We start our analysis by focusing on the impact of varying
the ∆T parameter on the overall servicing overhead at the
video server, for which the results are shown in Figure 5d,
which depict the results for both the unicast-based and the
multicast-based servicing overhead. Specifically, in Figure 5d
we illustrate the results for the minimum required delivery
rate at the dedicated server that meets the service quality
requirements at the client side. As shown in Figure 5d,
we achieve the resource optimal results when ∆T equals
≈ 14 minutes (i.e., ∆T ∗ = 14). In general, we can explain
the relationship between servicing overhead and ∆T parameter
as follows:

• ∆T < ∆T ∗ → the number of multicast streams for
the given session is increased unnecessarily, causing
multicast portion of the server traffic to dominate the
overall servicing overhead at the server side.

• ∆T > ∆T ∗ → the desired usage rate for the session
peers during synchronization phase is increased unnec-
essarily, forcing the video server to increase its unicast-
based servicing rate faster than it decreases the multicast-
based servicing rate.

Since the interarrival times between consecutive join re-
quests are exponentially distributed, we can approximate the
expected value for the unicast-based servicing overhead during
a single activity period, which lasts for 2×∆T , as follows 6:

E[BS,u] = WMµS(N
2 +N)(ρ− 1)2/(2ρ2 + 2ρ) (14)

where µS represents the average time spacing between two
successively received requests (µS = 1/λS), ρ represents the
average number of session peers required to service a given
request and is given by the equation WM/E[Wu], and N is the
average number of requests received during a single activity
period (i.e., N = ∆T/µ).

Using (14) we can find the average servicing rate for the
received requests as follows:

E[WS] ≈
(1 + ∆T/µS)(ρ− 1)2

4(ρ2 + ρ)/WM
+

WM × LS

2∆T
(15)

Figure 5a shows the results for E[WS], which represents
the expected servicing overhead at the server side, as we vary
the value of ∆T . The theoretical results shown in Figure 5a
coincide nicely with our earlier simulation-based results shown
in Figure 5d that assumed a value of 3 for the parameter ρ
(i.e., each peer has an uplink bandwidth capacity of 1 Mbps).
We observe that the ∆T value that achieves the minimum
servicing overhead decreases as we increase the value of ρ;
and as the value of ρ goes to 1, optimal results are achieved
when ∆T = LS . These results are expected since decreasing
the value of ρ increases the effectiveness of delivering the
content through the peers.

Next, we study the relationship between session length (LS)
and the resource optimal timing for the stream refresh in-
stances, i.e., ∆T ∗/LS , for which the simulation-based results
are shown in Figure 5e when ρ = 3. Using (14) we can

6For more detailed discussion on our analysis see Appendix.

approximate the value of ∆T ∗ (i.e., the resource optimal value
for ∆T) using min

(√
2LSµSρ(ρ+ 1)/(ρ− 1)2, LS

)
.

We show the theoretical results for the ratio ∆T ∗/LS in
Figure 5b as we vary the value of ρ. We observe that as
we increase the value of LS , the ratio of ∆T ∗/LS starts
to converge, where the point of convergence is inversely
proportional to the value of ρ. We also show the numerical
values for the optimal ∆T parameter in Figure 5c. These
results suggest that the value of ∆T that achieves the minimum
servicing overhead at the server side introduces a fairly limited
increase in overhead at the client side, since peer contributions
decrease as we decrease the value of ∆T . Therefore, the
selected ∆T ∗ value presents a good tradeoff point between
server overhead and peer contributions. We observe that,
compared to unicast-only delivery scenario, at the same ∆T ∗

value, the proposed approach achieves 68% improvement in
the servicing overhead.

Another important statistical measure for the proposed
framework is the distribution for the maximum bandwidth
usage at the server side (per session), which illustrates the
worst-case resource allocation scenario by the service provider.
We need to carefully examine the given distribution so as to
optimize the servicing cost at the server side, especially when
multiple sessions are taken into consideration. We show the
results in Figure 6a for the overall capacity usage (i.e., the
total bandwidth usage by the unicast and multicast streams).
We observe that the results do not deviate significantly from
the mean value, as we increase the value of ∆T , suggesting
a stable performance.

We next study the relationship between maximum band-
width usage at the server side and mean servicing overhead,
for which the results are shown in Figure 6b. We observe that
as we increase the value of ∆T , max-to-mean usage initially
experiences a sharp increase in value, after which it starts
to converge (to a value of 2.5, for the given scenario). The
results also illustrate the relative impact of unicast-based and
multicast-based overhead on the overall server capacity usage,
i.e., multicast traffic dominates at the smaller ∆T values, and
unicast traffic dominates at the higher ∆T values. Also note
that, since the max-to-mean server capacity ratio experiences
a convergence in trend, depending on the chosen ∆T value,
service provider can effectively use this relationship to pre-
allocate its resources to different sessions with the objective
of optimizing the overall capacity usage in the network and
minimizing the overall servicing cost.

We next investigate the impact of ∆T parameter on the
synchronization latency for the early processed requests, i.e.,
requests that are serviced earlier than their corresponding
deadlines, for which the results are shown in Figure 6c. In our
simulations, we observed that (i) on average, approximately
18% of the received requests are serviced earlier than their
respective deadlines, and (ii) for the earlier serviced requests,
average delivery latency is reduced by 35%.

For the given framework, earlier servicing time typically
suggests higher peer involvement for the received requests.
Since dedicated server is essentially used to satisfy the min-
imum servicing requirements, earlier servicing time can only

8

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16
x 10

7

Refresh interval for the VoD multicast (∆T)

E
xp

ec
te

d
se

rv
ic

in
g

ov
er

he
ad

 (
bp

s)

ρ = 1
ρ = 2
ρ = 3
ρ = 4

(a) Expected servicing overhead.

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Session length (min.)

∆T
* /

L S

ρ = 2
ρ = 3
ρ = 4

(b) Ratio between ∆T ∗ and LS .

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Session length (min.)

R
es

ou
rc

e
op

tim
al

 ∆
T

 v
al

ue
 (

m
in

.)

ρ = 2
ρ = 3
ρ = 4

(c) ∆T ∗ vs. LS .

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16
x 10

7

Refresh interval for the VoD multicast (∆T)

M
ea

n
se

rv
er

 o
ve

rh
ea

d
(b

ps
)

(d) Average servicing overhead.

10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

VoD stream length (in minutes)

T
im

in
g

fo
r

th
e

m
in

im
um

 s
er

ve
r

ov
er

he
ad

(e) ∆T ∗/LS .

0 20 40 60 80 100
0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

0.865

Refresh interval for the VoD multicast (∆T)

F
ai

rn
es

s
in

de
x

fo
r

pe
er

-b
an

dw
id

th
 u

sa
ge

(f) User fairness results.

Fig. 5: Expected and measured performances for C-FCFS.

10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (
bp

s)

(a) Distribution for the maximum servicing over-
head.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 to
 m

ea
n

se
rv

er
 c

ap
ac

ity
 u

sa
ge

E[max(W
S,unicast

)] / E(W
S
)

E[max(W
S
)] / E(W

S
)

(b) Max-to-mean server capacity usage ratio.

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

Refresh interval for the VoD multicast (∆T)

S
yn

c
la

te
nc

y
vs

. d
el

iv
er

y
de

ad
lin

e

(c) Earliness measure for the processed requests.

Fig. 6: Overhead and latency performances for C-FCFS.

be achieved if we can satisfy E[Nj] ≥ WM/W
[j]
u , where

Nj represents the number of session peers servicing the jth
request and W

[j]
u represents the average uplink bandwidth

availability for the peers servicing the jth request.
Since C-FCFS technique requires session peers to respond

to the received requests one at a time and the requested content
is delivered by session peers in a bursty delivery mode, as
long as the overall resources at the session peers are more
than sufficient to satisfy the minimum delivery rate guarantees,
requested content can be delivered at a faster rate to the user
making the request. As a result of this bursty delivery process,
requests that are delivered earlier experience a noticeable
decrease in the perceived delivery latency.

Lastly, we show the fairness performance for the C-FCFS
technique in Figure 5f. In general, we observe acceptable

results for the fairness performance, i.e., E[Fν,j] > 0.8. The
results improve as the value of ∆Tj increases (i.e., the number
of session peers that can actively contribute to the content
delivery process increases). Consequently, user resources can
be more evenly distributed to the incoming requests leading
to the improvements observed in Figure 5f.

B. Results for the C-WFQ approach
In this section, we analyze the performance of the C-WFQ

approach, when (homogeneous) Poisson process is used to
model the request arrival process and the system parameters
are chosen according to Table I.

We first investigate the overhead performance at the dedi-
cated server. In Figure 7a we show the results corresponding
to the average servicing overhead. Compared to the C-FCFS

9

0 20 40 60 80 100
1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

7

Refresh interval for the VoD multicast (∆T)

M
ea

n
se

rv
er

 o
ve

rh
ea

d
(b

ps
)

(a) Bandwidth utilization at the server.

0 20 40 60 80 100
0

5

10

15

20

25

Session length (min.)

R
es

ou
rc

e
op

tim
al

 ∆
T

 v
al

ue
 (

m
in

.)

ρ = 2.5
ρ = 3
ρ = 4

(b) ∆T ∗ vs. LS .

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Session length (min.)

∆T
 /

L S

ρ = 2.5
ρ = 3
ρ = 4

(c) Ratio between ∆T ∗ and LS .

0 10 20 30 40
0.86

0.87

0.88

0.89

0.9

0.91

0.92

Refresh interval for the VoD multicast (∆T)

F
ar

in
es

s
in

de
x

fo
r

pe
er

-b
an

dw
id

th
 u

sa
ge

(d) User fairness results.

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

x 10
8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (
bp

s)

(e) Distribution for the maximum servicing over-
head.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 to
 m

ea
n

se
rv

er
 c

ap
ac

ity
 u

sa
ge

E[max(W
S,unicast

)] / E[W
S
]

E[max(W
S
)] / E[W

S
]

(f) Max-to-mean server capacity usage ratio.

Fig. 7: Expected and measured performance statistics for C-WFQ.

approach, with the C-WFQ approach, we observe a noticeable
decrease in resource utilization at the server side, especially at
higher ∆T values. Since the C-WFQ approach utilizes session
peers more efficiently, perceived improvement in the servicing
overhead increases as the number of session peers increases
(or as we increase the value of ∆T).

However, if we compare the resource optimal performances
of the two approaches, we observe close results with minor
differences. To be specific, when compared to C-FCFS, with
C-WFQ, we observe ≈ 10% improvement in the resource
optimal servicing overhead. Furthermore, the optimal overhead
is attained at a ∆T value that is ≈ 20% higher than that of the
C-FCFS approach. The reason for that is because, due to using
peers more efficiently, the C-WFQ approach requires more
peers to achieve the optimal overhead when compared to the
C-FCFS approach. Consequently, we can utilize the resources
at the peers more evenly, thereby leading to higher fairness
index values as evidenced by the results shown in Figure 7d.
Also note that, a higher ∆T ∗ value suggests higher flexibility
in generating new session streams at the video server, thereby
giving the server more freedom in the decisions it makes.

Using a procedure similar to the one we used for the C-
FCFS technique, we can approximate the theoretical overhead

for the C-WFQ approach using the following equation:

E[WS] ≈ WM

4ρ2
×

[
(ρ− 2)(ρ− 1)

µ/∆T
+
(
2ρ2 + ρ− 4

)
+
ρ2(LS − 2µ) + µ(3ρ− 2)

∆T/2

]
(16)

which is valid when ρ > 2. 7

Then, using (16) we can approximate the value for ∆T ∗

using ∆T ∗ ≈ min
(√

2LSρ2/λS

(ρ−2)(ρ−1) , LS

)
In Figures 7b and 7c, we illustrate the relationship between

the resource optimal ∆T ∗ parameter and the session length.
When compared to the theoretical results for the C-FCFS
approach, we observe a noticeable increase in the value of
∆T ∗ (≈ 20% increase).

Since the C-WFQ approach allows session peers to dis-
tribute their resources more efficiently (when compared to
the C-FCFS approach), minimum required servicing rate
at the server side increases at a slower rate. If we com-
pare the resource optimal ∆T ∗ values for both approaches,
we observe that the function r∆(ρ) which is defined as
∆T ∗

c−wfq(ρ)/∆T ∗
c−fcfs(ρ) and which approximately equals√

ρ×(ρ−1)
(ρ−2)×(ρ+1) shows the characteristics of a long-tailed dis-

tribution. To be specific, the ratio r∆(ρ) initially experiences

7We require different approximations at lower ρ values. For the sake of
simplicity, and since we are mostly interested in low peer uplink bandwidth
availability, we only present the results that correspond to the scenarios with
ρ > 2.

10

a sharp decrease as we increase the value of ρ (i.e., decrease
from 2 at ρ = 2.2 to 1.225 at ρ = 3), after which it shows
a slower decline in value eventually converging to 1 (when
both of their values converge to 0.1 × LS , which equals
10 minutes).

Next in Figure 7e we show the variations observed in
the maximum bandwidth usage at the server side. Similar to
the above results, we observe noticeable improvement in the
servicing capacity usage due to more efficient use of session
peers. However, unlike the C-FCFS approach, the relative ratio
between the maximum capacity usage and mean servicing
overhead is much higher for the C-WFQ approach, as shown
in Figure 7f. That is because the worst-case performances of
the two approaches converge as we increase the value of ∆T .

We also observe that (when we compare equations (15) and
(16)) as we increase the value of ρ, the overall advantage
of C-WFQ over C-FCFS in regards to the optimal overhead
decreases, with both approaches attaining the same value when
ρ is within the range of (5.7, 5.9). As we increase the value
of ρ further, we observe the C-FCFS approach to slightly
outperform the C-WFQ approach (≈ %2). These results are
expected, since the overall bandwidth availability decreases as
we increase the value of ρ, and we observe less advantage in
distributing the highly limited peer resources to many requests’
use.

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

Refresh interval for the VoD multicast (∆T)

Sy
nc

 la
te

nc
y

vs
. d

el
iv

er
y

de
ad

lin
e

Fig. 8: Earliness measure for the processed requests (LS =
100m).

Fairness Mean Overhead Max Overhead
0

5

10

15

20

25

30

35

40

45

50

Performance metrics (ρ = 3)

Pe
rc

en
til

e
im

pr
ov

em
en

ts
 w

ith

re
sp

ec
t t

o
C

PM
 (%

)

C-FCFS

C-WFQ

Fig. 10: Performance improvements when compared to CPM.

Lastly, we investigate the synchronization latency perfor-

mance of the C-WFQ approach. In our simulations, we observe
that less than 1% of requests are delivered earlier to the
clients. Specifically, we find that on average 9.26× 10−2% of
the received requests are delivered earlier, when the C-WFQ
approach is used. In other words, almost all the requests are
delivered at the request deadline, which coincides with the
objectives stated for the C-WFQ approach. Specifically, since
the C-WFQ approach aims to deliver the requested packets
within the deadline by distributing peer resources to multiple
requests at once, oftentimes minimal resources are utilized
(at the peers) for each active request to allow for efficient
servicing of the received requests.

Additionally, for requests that are processed earlier, Figure 8
shows the variations observed in the perceived latency values
as we vary ∆T . We observe that as we increase the value of
∆T , we reduce the synchronization latency (from ≈ 15% at
∆T = 5 min. to ≈ 3% at ∆T = LS), which is expected
as increasing the value of ∆T also increases the total amount
of data that needs to be delivered per session peer. As the
session peers hit the the uplink capacity barrier faster at
higher ∆T values, session peers start to reduce the bandwidth
they allocate per request to a value around or less than the
minimum required servicing bandwidth for the given request.
Consequently, with the help of the dedicated server, we can
service most of the received requests at the minimum required
delivery rate.

C. Performance comparisons to Cooperative Peer-assist and
Multicast (CPM)

In this section, we compare the performance of the pro-
posed cooperative delivery techniques to that of Cooperative
Peer-assist and Multicast (CPM) approach proposed in [16],
which divides each session into multiple chunks of 30-second
duration. We briefly explain the operation of CPM as follows
(as it is implemented in our simulation framework): (i) each
session starts with a unicast request to the content delivery
server (CDS) to receive the first chunk immediately from the
server, (ii) clients continue to make requests for the following
chunks as long as they have sufficient bandwidth availability
along the downlink channel, (iii) if a viable multicast session
is already scheduled for the requested chunk, then client is
added to that multicast session, (iv) otherwise, if there are
peers with direct access to the requested chunks (through
caching), server responds with information on those peers (i.e.,
a small randomly chosen set of peers) and the client makes
its request to the received set of peers using a randomized
order, (v) and, if no available peer is found to respond to the
request, a new multicast session is scheduled based on the
delivery deadline for the received request.

Additionally, we made the following assumptions for CPM
to make its operation compatible with our framework: (i) no
pre-caching is allowed, i.e., users are only allowed to request
chunks from CDS or peers connected to the same session, (ii)
the number of pending requests is limited by the bandwidth
availability at the client side. Due to space limitations, we will
present the results on the most crucial performance measures,
i.e., mean server overhead, fairness measure, and the maximum
bandwidth requirements at the server side.

11

2.5 3 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Ratio between W
M

 and W
U

 (ρ)

M
ea

n
S

er
vi

ci
ng

 O
ve

rh
ea

d
(b

ps
) CPM

C-FCFS
C-WFQ

(a) Bandwidth utilization

C-WFQ C-FCFS CPM
2

3

4

5

6

7

8

9

10

x 10
7

Utilized cooperative delivery technique (ρ = 3)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (
bp

s)

(b) Maximum servicing overhead

0 20 40 60 80 100

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Refresh interval for the VoD multicast (∆T)

F
ai

rn
es

s
in

de
x

fo
r

pe
er

 b
an

dw
id

th
 u

sa
ge

C-FCFS
C-WFQ
CPM

(c) User fairness

Fig. 9: Performance comparison between CPM and the proposed techniques.

In Figure 9a we show the results for the mean servicing
overhead, when each proposed technique uses the resource
optimal refresh period (∆T ∗). We observed an improvement
of 24% with the C-FCFS technique and 33% with the C-
WFQ technique, when ρ equals 3. We also observed that
the improvements increased (or decreased) as the value of
ρ is decreased (is increased). These results suggest that our
techniques utilize the peers more efficiently than CPM. We
continued to observe an improvement in the servicing over-
head even as we reduce the bandwidth availability at the
client side. Note that, the reason for the decrease in the
improvement can be explained with the fact that the overall
contributions through the peers become less comparable to the
actual bandwidth requirements to service the clients’ requests
in a timely manner.

Next in Figure 9b we present the results for the maximum
bandwidth usage when ρ equals 3. We observed on average
40% (in the case of C-FCFS) to 46% (in the case of C-
WFQ) improvements for the maximum bandwidth requirement
at the server side when compared to CPM. Since server side
resources are typically provisioned based on the worst-case
scenario for user demands, our results suggest significant
reduction in the service provisioning costs. The increased
performance improvements can be explained with the way the
resources are requested from the server. In CPM, resources
for future chunks are requested earlier to meet the deadline
requirements, allowing multicast sessions to be established
earlier to service future requests, limiting the use of peers,
especially when the chunk duration is long.

The next set of results, which are illustrated in Figure 9c,
focus on the fairness performance (when ρ equals 3). We
observe an improvement of 6.2% (in the case of C-FCFS)
to 13.5% in fairness performance when compared to CPM.
Since our techniques adjust the level of peer contributions on
a regular basis during the run of a session, requested resources
can be distributed more evenly to the session peers, allowing
high usage peers to reduce their contributions as more peers
join the system.

Figure 10 summarizes our results and shows the percentile-
based improvements for each approach separately with respect
to CPM, validating our claims in regards to the resource usage
efficiency for the proposed cooperative delivery techniques.

VI. IMPACT OF VARYING THE REQUEST ARRIVAL
PROCESS

In Section V, we analyzed the performance of the proposed
techniques using the Homogeneous Poisson Process (HPP) to
generate independent and identically distributed arrival events
for session join requests. However, in IPTV networks, requests
typically arrive to the system based on a time-varying and
bursty arrival process (i.e., different arrival rates at different
times of the day and batch arrivals at the start of the hour
and/or half-hour) [12].

In this section, we take into account these characteristics
of IPTV networks to investigate the impact of utilizing more
generalized request arrival processes on the performance of
the proposed techniques, and compare the results to that of
HPP-based request arrival process.

In the following study, we specifically focus on two arrival
processes: Inhomogeneous (or Non-homogeneous) Poisson
Process (IPP) to illustrate the impact of time-varying arrival
rates, and Markov Modulated Poisson Process (MMPP) to
evaluate the impact of traffic burstiness.

A. Inhomogeneous Poisson Process
To generate the parameters for the Inhomogoneous Poisson

Process we use the following methodology. We first use a two-
state Markov model to determine the state transitions for the
request arrival rates, i.e., whether to increase it or to decrease
it. For that purpose, we define two states, referred to as S+

IPP

and S−
IPP , to represent these transitions, i.e., if the system is

in state S+
IPP we increase the arrival rate, and if the system

is in state S−
IPP we decrease the arrival rate.

In our model, we also assume that the selected rate stays
constant for a period of TIPP (where TIPP is assumed to be
equal to one second in our analysis). We then initialize the
request arrival rate to 1 and set the initial state to S+

IPP . We
next implement the following steps recursively for the duration
of our simulation:

• When the system is in state S+
IPP , we increase the request

arrival rate by λ+
IPP (i.e., λ(t) = λ(t− 1) + λ+

IPP).
• When the system is in state S−

IPP , we decrease the
request arrival rate by λ−

IPP (i.e., λ(t) = λ(t−1)−λ−
IPP).

• To also ensure that the selected rate stays within certain
boundaries, (i.e., λIPP,min < λ(t) ≤ λIPP,max) we apply

12

the following check after each update: if the current state
is S+

IPP , then λ(t) = min(λ(t), λIPP,max); and if the
current state is S−

IPP , then λ(t) = max(λ(t), λIPP,min).
For λIPP,min we assumed a value of 1 and for λIPP,max

we assumed a value that equals the desired ratio between the
maximum and the minimum rates (e.g, 15 or 20). 8

After the preliminary values for λ(t) are determined to
represent the arrival rates for the duration of the simulation
run, we can finalize the request arrival rates as follows:

λIPP (t) = λIPP × λ(t)/
∑
∀τ

λ(τ) (17)

where λIPP represents the mean request arrival rate to the
dedicated server.

1) Initialization Phase: To initialize the values for the time-
varying arrival rates, we use the following arbitrarily chosen
parameters for the 2-state Markov model: p = 0.5 and q =
0.5, where p represents the probability of switching from state
S+
IPP to state S−

IPP , and vice versa. Furthermore, we varied
the values for the λ+

IPP and λ−
IPP parameters between 1 and

10. Assuming that the values for λ+
IPP and λ−

IPP are drawn
from the same distribution, we can represent their values using
a single measure, which we refer to as δ. Note that, the selected
input parameters create frequent transitions in the perceived
arrival rates, for which the rate of change is proportional to
the selected value for the δ measure, as shown in Figure 11a
when E[δ] = 1, and in Figure 11b when E[δ] = 10.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Simulation time (minutes)

λ(
t)

E[δ] = 1

(a) Slowly-varying case

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Simulation time (minutes)

λ(
t)

E[δ] = 10

(b) Fast-varying case

Fig. 11: Arrival rates for different IPP processes.

2) Results for the C-FCFS technique: We start by analyzing
the distributions for the maximum servicing overhead at the
dedicated server, for which the results are shown in Figure 12.
Compared to our earlier results, we observe up to 60% increase
in the maximum overhead at the dedicated server with IPP-
based arrivals. We observe similar results for the average
servicing overhead as shown in Figure 13, with ≈ 20%
increase in the resource optimal bandwidth requirements.

These results are expected as the time-varying arrival rates
create occasional bursts, during which the server is probed
more frequently. Furthermore, we observe in Figure 14 that
the ratio between the maximum and the mean overheads
increases from ≈ 2.5 to ≈ 2.7 suggesting that the use of time-
varying arrival rates causes the requirements on the maximum

8If it is also required to change the rates at each state transition point, then
we can implement an additional update on the system state when the λ(t)
becomes equal to the boundary points, i.e., when λ(t) = λmin change the
system state at time t to S+

IPP , and when λ(t) = λmax change the system
state at time t to S−

IPP .

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (b
ps

)

Fig. 12: Maximum joint unicast/multicast servicing overhead
for C-FCFS.

0 20 40 60 80 100
2

3

4

5

6

7

8

9

10

11

12
x 10

7

Refresh interval for the VoD multicast (∆T)

M
ea

n
se

rv
er

 o
ve

rh
ea

d
(b

ps
)

C-FCFS
C-WFQ

Fig. 13: Average servicing overhead with IPP -based arrivals.

servicing capacity to increase faster than the requirements on
the mean servicing bandwidth.

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 to
 m

ea
n

se
rv

er
 c

ap
ac

ity
 u

sa
ge

C-FCFS: E[max(W
S,unicast

)] / E[W
S
]

C-FCFS: E[max(W
S
)] / E[W

S
]

C-WFQ: E[max(W
S,unicast

)] / E[W
S
]

C-WFQ: E[max(W
S
)] / E[W

S
]

Fig. 14: Max to mean ratio for the servicing overhead with
IPP -based arrivals.

Next we analyze the latency performance. The results are
shown in Figure 15a. We observe that 17.6% of the requests
are serviced earlier. As the number of requests, which require
explicit support from the server side, increases, we observe
an increase in the number of requests that are serviced at
the minimum required rate, instead of the minimum available
rate (which is typically higher than WM , if the clients are the
main source of delivery). As a result, the latency performance
also degrades, as the requests are serviced later. For instance,

13

compared to the HPP-based scenario, when ∆T = LS , the
earliness measure decreases from ≈ 35% to ≈ 24%.

(a) C-FCFS

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

Refresh interval for the VoD multicast (∆T)

S
yn

c
la

te
n
cy

 v
s.

 d
e
lv

ie
ry

 d
e
a
d
lin

e

(b) C-WFQ

Fig. 15: Earliness measure for the processed requests.

Lastly, we investigate the fairness performance of the C-
FCFS approach for the given scenario. The results are shown
in Figure 16. The results are very similar to that of the HPP-
based scenario, suggesting that the time-varying arrival rates
have negligible impact on the way the resources are allocated
at the session peers.

0 20 40 60 80 100

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Refresh interval for the VoD multicast (∆T)

Fa
irn

es
s

in
de

x
fo

r p
ee

r-b
an

dw
id

th
 u

sa
ge

C-FCFS
C-WFQ

Fig. 16: User fairness with IPP -based arrivals.

3) Results for the C-WFQ technique: We next present the
results for the C-WFQ approach. In Figure 17 we show the
results for the maximum servicing overhead at the server side,
and Figure 13 shows the results for the average servicing
overhead.

The overhead performance is consistent with that of the C-
FCFS approach. We observe a significant increase in the max-
imum servicing overhead due to the use of IPP-based request
arrivals. The main difference between the two approaches is
that the mean servicing overhead increases at a faster rate when
compared to the increase observed in the maximum servicing
overhead. As shown in Figure 14 maximum to mean server
capacity usage ratio drops to 3.4 (for the IPP-based scenario)
from 3.6 (for the HPP-based scenario).

Since time-varying bursty arrivals limit the contribution
from the session peers, regardless of the approach we use,
during the periods where the requested resources significantly
exceed the level of support offered by the session peers, the
amount of resources requested from the server side stay around
the same level. That is why, we observe around 35 Mbps
increase in average bandwidth requirements at the server

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

x 10
8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (b
ps

)

Fig. 17: Maximum servicing overhead for C-WFQ.

side for both of the given approaches. Since the C-WFQ
approach performs better in more typical scenarios, such level
of increase has a more significant impact on the overall results.

Lastly, we observe similar results for the latency and fair-
ness performances. We find that the number of requests that are
delivered earlier continue to stay small (around 8.87×10−2%),
except that we observe higher variance in the earliness measure
values, as shown in Figure 15b. Furthermore, as shown in
Figure 16, we continue to observe very good fairness results
as the fairness measure continues to stay around the value
0.91.

B. Markov Modulated Poisson Process

We next study the impact of using a Markov Modulated
Poisson Process (MMPP) based arrival process on the per-
formance of the proposed content delivery techniques. To
generate the MMPP-based arrivals, we use a discrete-time two-
state ON-OFF model where the arrivals occur during the ON
state based on the underlying Poisson process, and no arrivals
occur during the OFF state. We illustrate the state transitions
in Figure 18, where the parameters p and q represent the
probability of making a transition from ON state to OFF state
and from OFF state to ON state, respectively. Here, by varying
the values for the {p, q} parameters, we can adjust the level
of burstiness observed in the incoming traffic.

ON OFF

1-p

1-q

p

q

Fig. 18: State transitions for the two-state on-off model.

We can summarize the process we use to generate the arrival
events as follows.

• First, we divide the simulation period into 1 second-long
observation periods.

• Next, we generate the state transition events using the
selected values for the {p, q} parameters.

• Lastly, we use the information on the underlying Poisson
process for the ON state to generate the arrival events for
the join requests.

14

In our simulations, to study the basic performance measures,
we used two different set of values for the {p, q} parameters
that correspond to mid-level and high-level burstiness in the
incoming traffic.

The first model, which we refer to as mmpp1, uses the
following values: {p, q} = {0.06, 0.01}, which suggests, on
average, 7 times increase in the request arrival rate during the
ON state. The second model, which we refer to as mmpp2,
uses the following values: {p, q} = {0.05, 0.005}, which
suggests an 11 times increase in the request arrival rate during
the ON state.

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (b
ps

)

Fig. 19: Maximum servicing overhead for C-FCFS with
mmpp1-based arrivals.

1) Results for the C-FCFS technique: We first analyze
the overhead performance under the mmpp1 scenario. We
show the results for the maximum servicing overhead at the
server side in Figure 19. We observe that the system reacts
to the arrival of bursty traffic better, when the arrival events
are limited to occur at specific periods. We still observe an
increase in overhead compared to the HPP-based scenario,
however, the performance degradations are limited to 25%
instead of 60% that we observed for the IPP-based scenario.

0 20 40 60 80 100
2

3

4

5

6

7

8
x 10

7

Refresh interval for the VoD multicast (∆T)

M
ea

n
se

rv
er

 o
ve

rh
ea

d
(b

ps
)

mmpp
1

mmpp
2

Fig. 20: Average servicing overhead for C-FCFS with mmpp-
based arrivals.

Furthermore, we observe very little change in the average
overhead performance, for which the results are shown in
Figure 20. For instance, we observe ≈ 10% increase in
the minimum required overhead, which is achieved when
∆T ∗ = 0.2 × LS . To validate these results, in Figure 21 we

also investigate the impact of ∆T on the maximum to mean
server capacity usage ratio. We observe that the max-to-mean
ratio converges to 2.8 for the given scenario, suggesting a more
controlled increase in the average overhead requirements.

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 to
 m

ea
n

se
rv

er
 c

ap
ac

ity
 u

sa
ge

mmpp
1
: E[max(W

S,unicast
)] / E[W

S
]

mmpp
1
: E[max(W

S
)] / E[W

S
]

mmpp
2
: E[max(W

S,unicast
)] / E[W

S
]

mmpp
2
: E[max(W

S
)] / E[W

S
]

Fig. 21: Max-to-mean ratio for servicing overhead for C-FCFS
with mmpp-based arrivals.

We next analyze the performance of the C-FCFS technique
under the mmpp2 scenario. In Figure 22, we show the results
for the maximum server capacity usage. As expected, the
overhead performance degrades as we increase the burstiness
ratio. We observe that compared to the mmpp1 scenario, the
average value for the maximum required overhead increases
by ≈ 10%. This is essentially caused by the noticeable
increase we observe in the range of values corresponding to
the maximum capacity usage (around 50%).

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (b
ps

)

Fig. 22: Maximum servicing overhead for C-FCFS with
mmpp2-based arrivals.

We also observe a similar trend in the average overhead
performance, for which the results are shown in Figure 20.
However the increase is less noticeable when compared to
the maximum overhead performance (less than 10% increase
at the resource optimal ∆T value, and less than 5% when
∆T = LS).

We show the results corresponding to the the max-to-mean
ratio performance for the servicing overhead in Figure 21,
which suggests a limiting value of 3, when ∆T = LS . Since
the mean arrival rate is kept constant, increasing the burstiness
also increased the duration of the OFF periods. As a result,
session peers had more time to service their requests and, in
doing so, prevent the server from over allocating its resources.

15

We lastly want to comment on the latency and fairness
performances. The results are very close for both scenarios and
suggest negligible changes for the given performance measures
(i.e., for both arrival scenarios, approximately 18.5% of the
requests are serviced earlier, with an average earliness measure
of 35%). The main difference between these two scenarios is
that increasing the burstiness level caused a decreasing trend in
the fairness performance. Since the requests oftentimes arrive
in batches, session peers have less opportunity in time to
allocate their resources in a more distributed manner. As a
result, session peers are not utilized at the desired rates, which
in turn lowers the perceived fairness index values.

2) Results for the C-WFQ technique: We show the results
for the mean servicing overhead under mmpp1 arrival scenario
in Figure 23, which suggests a noticeable improvement when
compared to the HPP-based arrival scenario: we observe 10%
improvement in the resource optimal overhead, and ≈ 15%
improvement in overhead when ∆T = LS .

Furthermore, as shown in Figure 24, the worst-case per-
formance for the servicing overhead also improves (by more
than 20%) when compared to the HPP-based arrival scenario.
As a direct consequence of this, max-to-mean server capacity
usage ratio reduces to ≈ 3.4 (from ≈ 3.6) as evidenced by the
results shown in Figure 25.

10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

Refresh interval for the VoD multicast (∆T)

M
ea

n
se

rv
er

 o
ve

rh
ea

d
(b

ps
)

mmpp
1

mmpp
2

Fig. 23: Average servicing overhead for C-WFQ with mmpp-
based arrivals.

We can use a similar reasoning to that of the C-FCFS
approach to explain the cause of the perceived performance
improvements. As the session join requests arrive in shorter
timeframes separated by longer idle periods, session peers
can serve the received requests more efficiently. Because of
the longer breaks in between bursts, peers can allocate more
resources per request. As a result, server is utilized at a lower
rate on average.

When we increase the burstiness level, we observe similar
results for the average servicing overhead, for which the results
are shown in Figure 23. The main difference between the two
scenarios is that the resource optimal overhead is attained at
a lower ∆T value.

On the other hand, we observe a noticeable increase in the
maximum servicing capacity usage, specifically at higher ∆T
values (i.e., when ∆T > 25), as the perceived performance
is affected the most by the increase in the burstiness level.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (b
ps

)

Fig. 24: Maximum servicing overhead for C-WFQ with
mmpp1-based arrivals.

As shown in Figure 26, compared to the mmpp1 scenario,
we observe ≈ 25% increase in maximum capacity usage at
the server side, which also causes a significant increase in the
converging value for the max-to-mean usage ratio, from ≈ 3.4
to ≈ 4, as shown in Figure 25.

These results are expected as the increased number of
requests received during the ON periods also increase the
burden on the server side as it becomes more difficult for
the session peers to service them at the desired rate. However,
on average such increase in maximum server usage capacity
is compensated by the increased length of the OFF periods,
allowing peers to finish up their requests faster.

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 to
 m

ea
n

se
rv

er
 c

ap
ac

ity
 u

sa
ge

mmpp
1
: E[max(W

S,unicast
)] / E[W

S
]

mmpp
1
: E[max(W

S
)] / E[W

S
]

mmpp
2
: E[max(W

S,unicast
)] / E[W

S
]

mmpp
2
: E[max(W

S
)] / E[W

S
]

Fig. 25: Max-to-mean ratio for servicing overhead for C-WFQ
with mmpp-based arrivals.

Consequently, for both scenarios, we observe a noticeable
increase in the number of requests that are serviced earlier.
Specifically, we observe ten times increase in the number
of requests serviced earlier with the mmpp1 and mmpp2
scenarios (around 0.8%) when compared to the HPP- and
IPP-based arrival scenarios. Furthermore, we observe that the
earliness index for these requests also increases to ≈ 20%.

Lastly, for all the considered ∆T values, we observe that
the fairness index stays around the 0.91 level.

VII. PRACTICAL CONSIDERATIONS

In Sections V and VI, we assumed the use of generalized
processor sharing (GPS) model by the session peers to deliver

16

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
8

Refresh interval for the VoD multicast (∆T)

M
ax

im
um

 b
an

dw
id

th
 u

sa
ge

 (b
ps

)

Fig. 26: Maximum servicing overhead for C-WFQ with
mmpp2-based arrivals.

the requested content to end users. However, from a practical
standpoint, we can only support the sharing of resources at the
packet level. In a time-constrained on-demand delivery system,
such restrictions on peer delivery process play a significant
role on the user perceived performance. Specifically, since
resources are allocated at the packet level, latency require-
ments dictate a lowerbound on each peer’s transmission rate.
Since the decoding process can only initiate after all the
dependent packets are received, the latency for a block of
dependent packets is determined by the delivery time of the
latest delivered packet within the given block.

Therefore, to satisfy the latency requirements within a
packet-by-packet GPS framework [17], we need to make a few
modifications to our original architecture. We can summarize
the proposed changes as follows:

• First, we use a weighted round robin (WRR) approach to
distribute the resources to the set of active transmitters.
We assign the weights based on the allocated transmission
rates. At each round, session peer νi delivers ki packets,
where ki is determined as follows:

ki = ⌊Wu/Wu,min⌋ (18)

where Wu,min represents the minimum uplink bandwidth
availability for the given transmitter set. The information
on which peer delivers which set of packets is determined
by the server and delivered to the active peers over a
multicast control channel. Since the delivery rates are
only updated after each join/leave event (as in the case
of C-WFQ), the overhead associated with the delivery of
these packets will be negligible.

• Secondly, we set an upper bound on the number of
sessions to which a session peer can contribute. As
the number of sessions that a peer services increases,
we observe a similar amount of decrease in bandwidth
availability per session at the given peer. Because of
the latency constraints, we cannot allow a continual
decrease in the available bandwidth at the session peers
per request. For that purpose, we set a constraint on the
system latency and refer to it as TL,sys, which represents

the maximum delivery latency for a given packet. 9

We can then determine the constraints on the minimum
bandwidth availability using the following equation:

W ∗
u,min = lp/TL,sys (19)

where lp represents the packet size. In short, each session
peer needs to have a bandwidth availability of at least
W ∗

u,min to service a request. Any resource allocation rate
lower than W ∗

u,min results in the request getting dropped
and the unused portion of peer resources are distributed
to the remaining active requests.

Since the proposed changes only affect how the resources
are distributed to each active request and the overall bandwidth
usage through the session peers stay constant, we expect the
proposed modifications to have a limited impact on the system
performance.

In a peer-assisted system, to achieve the desired quality
of experience levels we also need to have an explicit error
recovery scheme. The proposed framework uses the dedicated
server for that purpose. Note that, we are essentially inter-
ested in providing reliable delivery during the synchronization
phase. We achieve this by dividing the on-demand content
into multiple transmission blocks, create repair packets for
each block, and deliver them to the clients. The protection
levels can be negotiated during the session join phase and,
if necessary, the assigned protection levels can be modified
based on feedback received from the clients.

Additionally, to satisfy the basic requirements for an on-
demand system within the proposed framework (such as skip
or fast-forward), we can assign the user to an ongoing session
that was initiated earlier than the most recently created session
and deliver the requested packets accordingly, through the
session peers and/or the dedicated server. Since the timing
information is readily available at the dedicated server, it
can make the best (i.e., resource optimal) decision on which
session to assign the client to.

Another important concern in our implementations is the
processing and communication overheads associated with the
update process. In practice, we can alleviate such concerns
by dynamically switching between the computationally effi-
cient C-FCFS technique and the resource efficient C-WFQ
technique. The characteristics of the request arrival process
has been studied extensively over the years (e.g., see [4]) and
it has been observed that the incoming load to the system
can be estimated in time, which is especially true for the on-
demand traffic as it experiences less variations when compared
to the request arrival process for the live content. Hence, we
can set a threshold for the system load to determine which
approach to choose while initiating the sessions to achieve the
optimal tradeoffs between processing overhead and resource
usage efficiency.

Lastly, we discuss the impact of non-homogeneous band-
width availability at the client side with specific emphasis on
the uplink bandwidth availability due to its enormous impact
on peer usage efficiency. In our earlier analysis, we assumed

9For the sake of simplicity, we ignore the impact of propagation delay (dp)
on the system latency (DS), since we assume DS ≫ E[dp].

17

the peers to have the same limitations in their capabilities (i.e.,
sharing the same values for the downlink/uplink bandwidth
availability), even though the proposed cooperative delivery
techniques explicitly support the use of variable rates. To
study the impact of variable rates on the servicing overhead
and the fairness performances, we focus on two specific
scenarios: (i) constant uplink bandwidth availability (CuBW)
scenario which assumes W

(ν)
u = 1Mbps, ∀ν ∈ S, and

(ii) variable uplink bandwidth availability (VuBW) scenario
which assumes W

(ν)
u = Uniform(500Kbps, 1.5Mbps) with

E[W
(ν)
u] = 1Mbps. We illustrate the comparative results for

the mean servicing overhead and the fairness performances in
Figures 27 and 28.

0 20 40 60 80 100
2

3

4

5

6

7

8
x 10

7

Refresh interval for the VoD multicast (∆T)

M
ea

n
se

rv
er

 o
ve

rh
ea

d
(b

ps
)

C-FCFS with CuBW
C-FCFS with VuBW
C-WFQ with CuBW
C-WFQ with VuBW

Fig. 27: Mean servicing overhead for variable peer uplink
bandwidth availability with HPP-based arrivals.

0 20 40 60 80 100

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Refresh interval for the VoD multicast (∆T)

Fa
irn

es
s

in
de

x
fo

r p
ee

r-b
an

dw
id

th
 u

sa
ge

C-FCFS with CuBW
C-FCFS with VuBW
C-WFQ with CuBW
C-WFQ with VuBW

Fig. 28: User fairness for variable peer uplink bandwidth
availability with HPP-based arrivals.

Our results suggest that varying the uplink bandwidth
availability at the client side has limited impact on the
servicing overhead, which is expected as the average peer
bandwidth availability converges to the mean value as more
peers join the session. Note that, from the perspective of a
newly arriving client νi, it makes little difference whether
or not the earlier arrived peers experience different uplink
bandwidth availabilities as the main attention is given on the
overall bandwidth availability (i.e.,

(∑
j<i W

(νj)
u

)
). On the

other hand, since each peer contributes to cooperative delivery
phase at a different rate (depending on the uplink bandwidth
availability), we observe ≈ 6 − 8% loss in the fairness

performance. Also note that, the performance degradations
observed in the fairness measure can be reduced by further
lowering the maximum allowed peer contributions per session
per peer, however, at the cost of increased servicing overhead
at the server side.

VIII. RELATED WORK

Multimedia streaming has been studied extensively over the
last two decades, leading to many successful implementations
over the years (for more detailed overview of the state-of-
the-art techniques see [18], [19], [13], [20] and the references
within). We can generally categorize these approaches into
three main categories: server-based solutions, peer-based so-
lutions, and hybrid solutions (i.e., peer-assisted server-based
solutions or server-assisted peer-based solutions).

The earliest content delivery solutions focused on the use of
dedicated servers to deliver the requested content using unicast
streams. Specifically, for each received request, a unicast
connection is established between the server and the client
over which the video stream is delivered, thereby suggesting
a linear increase in the servicing overhead as the number of
requests increases. As a result, unicast-based solutions are
considered to be impractical due to bandwidth limitations
and scalability related concerns. To overcome the limitations
introduced by unicast-based solutions, batching techniques
were proposed that utilize the idea of periodically broadcasting
the session streams (e.g., [21], [22], [23]). 10 Within this
framework, two approaches have gained the most attention.
The first approach assumes that the server broadcasts the
whole content in a single session through successively created
broadcast streams (e.g., [24]), while the second approach
divides the content to multiple segments before delivering
them over parallel streams (e.g., [25], [26], [27]). However,
regardless of the approach being used, limiting the delivery
of session streams to periodic broadcasts typically introduces
additional latencies, thereby creating a near VoD solution
instead. To more effectively utilize the idea of bandwidth-
efficient batching in a more time-sensitive manner, patching
techniques were proposed that combine regular broadcasts (or
multicasts) with patching streams (e.g., [28], [29]). Within
this framework, a client can join an ongoing multicast session
immediately without waiting for the start of the next multicast
session, while at the same time receiving the earlier delivered
data over a second stream. Then the client can start the
decoding process as soon as the buffering requirements are met
based on the rate that is used to deliver the patching stream.
For instance, in [30] the authors proposed a threshold-based
multicast approach that is capable of adapting the frequency
of initiating a new multicast session based on the arrival
times of requests. In doing so, when compared to policies that
initiate non-overlapping multicast sessions, bandwidth require-
ments can be significantly reduced. These improvements can
be further increased by introducing multicast-based patching

10Note that, in earlier works, the term broadcast stream is used to refer to
streams that are generated with no request from the client side, whereas the
term multicast stream is used to refer to streams that are generated based
on client requests. In the remainder of this section, we use these terms
interchangeably as we essentially focus on the delivery process.

18

streams, and allowing clients to merge using two or more
multicast streams (e.g., [31]).

However, despite these advantages, server-based solutions
typically underperform when servicing a large set of clients.
Therefore, to achieve the desired performance results, we need
to either limit the number of clients (e.g., by not admitting new
users to the systems or increasing the blocking probability)
or increase the number of servers (which may significantly
increase the operational costs). Neither result is desired, and
so to achieve a more scalable and dynamic delivery frame-
work, peer-based solutions were proposed. These solutions
initially focused on the delivery of live streams to limit the
overhead at the client side [32], [33]. However, due to shifting
user interests from live to on-demand streaming services,
resource limitations at the peers have started to become a
major limiting factor in achieving the targeted quality of
experience (QoE) levels [34]. The unique characteristics of the
on-demand content delivery services (e.g., users receiving the
same content at different timings or supporting functionalities
like fast-forward/rewind) was a major factor for the perceived
limitations and the efficiency loss observed in peer-based
solutions.

To solve the limited-resources problem in a more scalable
framework, cooperation among peers is integrated as a feature
to support server-based solutions by requiring peers to imple-
ment a distributed caching system (see [35], [36] for earlier
discussions). Specifically, each peer is required to allocate a
small amount of their local storage (e.g., a few hundred MBs
to a few GBs) to support this process. By distributing resources
to session peers and using them as a potential delivery source,
we can significantly reduce the server-side requirements [37].
Our approach falls in this category.

Over the last decade, various hybrid-based solutions were
proposed, and these approaches typically differ in the ways the
content is segmented, the segments are distributed to peers, the
delivery of segments are scheduled at the peers, and the server
is utilized (e.g., [38], [39], [40], [41], [42], [16]). One of the
earliest solutions in this category was CoopNet, which only
utilized the peers, who have previously cached the content they
had received, during server overloads [38]. To minimize the
problems associated with node/link failures and to improve
the average servicing quality, multiple description coding
(MDC) is used on the content delivered through the peers.
However, since the peers are utilized only during overload
periods, flash crowds can easily lead to dropped requests and
additional processing delays. In [39] the authors proposed a
tree-based approach, referred to as P2Cast, that is based on
the idea of grouping requests, which arrive to system close
in time, to form a session by creating a multicast tree at the
application layer, which is referred to as the base tree. Clients
then receive the session data by first joining the base tree,
which is initially created by the server, and then receiving
the patching service through the server or an earlier-arrived
peer. However, patching service is limited to a single source
and the threshold parameter, that is used to decide on which
requests to group, is not updated based on the incoming load.
In [40] the authors proposed a batching-based framework,
which utilized a chaining-based patching service. Specifically,

session multicasts are initiated at the server at specific intervals
and, upon joining a session, a client νi receives two streams,
session multicast from the server and patching data from the
previous client, νi−1. However, since the multicast sessions
are streamed over non-overlapping intervals, late arriving peers
can put significant burden on the system, thereby leading to
poor fairness results. A similar approach was proposed in [42],
referred to as the P2P batching (PPB) approach, which allowed
the patching process to use a single peer as a source. However,
the success of the PPB approach relies on the assumption
that each peer has an uplink bandwidth availability that equals
the delivery rate for the session multicast (WM), which may
not always be the case, thereby limiting the use of peers for
the patching service. Furthermore, the problems associated
with time-varying arrival rates and the resultant impact on
the proposed policy, and the fairness related concerns are
not investigated. In [41] a push-based peer-delivery model is
proposed, which is based on the idea of proactive resource
caching. Specifically, peers are expected to acquire the on-
demand content proactively from the content delivery server
during low activity periods and contribute to the resource
distribution phase using the locally stored content. However, in
a diverse network that consists of unwilling peers or peers with
limited resources a push-based model may not be a feasible
solution.

The closest approach to ours to date was proposed in
[16], and it was referred to as the cooperative peer-assist and
multicast (CPM) approach. The framework proposed in [16]
separates the video content into 30-second long chunks and
each chunk is delivered separately by either the assisting peers
or the dedicated video server. To receive these chunks, clients
need to sequentially go through the video server, the directory
server, and the peers. If the request can be serviced by the
video server, using an already scheduled multicast before the
deadline associated with the chunk expires, then the request
is serviced through the video server. Otherwise, peers are
probed to deliver the requested chunk. However, this probing
process may introduce additional latencies and communica-
tion overhead. Furthermore, even though the authors showed
significant improvements in the servicing overhead, relying
on a single peer to deliver a long continual chunk is not
a practical approach unless it is supported by explicit error
recovery techniques, which may also lead to inefficient use
of system resources. To improve the recovery performance
during such phases, in CPM, clients are allowed to switch to
a different peer to receive the requested chunks at the cost of
additional latency. Also note that, in the case of local failures,
CPM cannot guarantee the reliable delivery of the requested
session data to the client.

Unlike the CPM approach, our framework supports com-
munication in a more fluid way, as the server is responsible
for assigning the peers and initiating the delivery process at
the time of request and at each point of system state change
(i.e., incoming peers or start of a new service, or, departing
peers or finish of an earlier service). As the clients request
resources from the peers that have immediate access to the
requested content through the same multicast, no additional
search is required to find the cooperatively delivering peers.

19

Furthermore, we explicitly address the fairness concerns in
our framework by putting strict limits on peer contributions,
whereas in CPM fairness is achieved implicitly during the
initial peer assignment phase using a randomized selection
without taking into account other measures. Another crucial
difference between CPM and our approach is observed in
the use of chunks for delivering the session data. Because
of the messaging overhead CPM introduces for each chunk,
smaller sized chunks cannot be utilized efficiently, whereas our
work can dynamically adjust the chunk size depending on the
number of peers connected to a session without introducing a
significant overhead (as update messages are only transmitted
during peer-join or service-finish instances).

IX. CONCLUSION

In this paper, we developed two novel cooperative delivery
techniques with the objective of improving the scalability
performance of the network by minimizing the reliance on
the use of video server for the delivery of on-demand content.
For that purpose, we used the session peers to distribute
the resources in the network. Additionally, we integrated fair
resource allocation policies into the proposed content delivery
techniques to maximize the cooperation among session peers.
We dynamically adapt the peer delivery rates and delivery
size for requests based on the system state. We performed
extensive simulation studies to analyze the most critical perfor-
mance measures for the proposed framework and showed the
advantages of using the developed techniques. We observed
significant improvements in the server utilization rate allowing
the network to scale more efficiently in the number of clients
supported and the number of services provided.

REFERENCES

[1] W.-Pk. Yiu, Xing Jin, and S.-H.G. Chan, “Challenges and approaches
in large-scale P2P media streaming,” IEEE Multimedia, vol. 14, no. 2,
pp. 50–59, 2007.

[2] P. Gill, M. F. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic character-
ization: a view from the edge,” in ACM IMC, 2007, pp. 15–28.

[3] Y. Lu, B. Fallica, F. A. Kuipers, R. E. Kooij, and P. V. Mieghem,
“Assessing the quality of experience of SopCast,” International Journal
of Internet Protocol Technology, vol. 4, no. 1, pp. 11–23, 2009.

[4] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement
study of a large-scale P2P IPTV system,” IEEE Transactions on
Multimedia, vol. 9, no. 8, pp. 1672–1687, Dec 2007.

[5] Y. Xiao, X. Du, J. Zhang, F. Hu, and S. Guizani, “Internet protocol
television (IPTV): The killer application for the next-generation Inter-
net,” IEEE Communications Magazine, vol. 45, no. 11, pp. 126–134,
Nov 2007.

[6] I. Bermudez, M. Mellia, and M. Meo, “Investigating overlay topologies
and dynamics of P2P-TV systems: The case of SopCast,” IEEE JSAC,
vol. 29, no. 9, pp. 1863–1871, Oct 2011.

[7] K. Kerpez, D. Waring, G. Lapiotis, J.B. Lyles, and R. Vaidyanathan,
“IPTV service assurance,” IEEE Communications Magazine, vol. 44,
no. 9, pp. 166–172, 2006.

[8] P. Diminico, V. Gopalakrishnan, R. Jana, K.K. Ramakrishnan, D.F.
Swayne, and V.A. Vaishampayan, “Capacity requirements for on-
demand IPTV services,” in 3rd International Conference on Communi-
cation Systems and Networks (COMSNETS), Jan 2011, pp. 1–10.

[9] C. Costa, I. Cunha, A. Borges, C. Ramos, M. Rocha, J. Almeida, and
B. Ribeiro-Neto, “Analyzing client interactivity in streaming media,” in
ACM WWW, 2004, pp. 534–543.

[10] M. Vilas, X.G. Paneda, R. Garcia, D. Melendi, and V.G. Garcia, “User
behavior analysis of a video-on-demand service with a wide variety of
subjects and lengths,” in 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, 2005, pp. 330–337.

[11] W. Zheng, “Understanding user behavior in large-scale video-on-demand
systems,” in Proceedings of ACM EuroSys, 2006, pp. 333–344.

[12] T. Qiu, Z. Ge, S. Lee, J. Wang, Q. Zhao, and J. Xu, “Modeling
channel popularity dynamics in a large IPTV system,” in ACM
SIGMETRICS/Performance’09, 2009, pp. 275–286.

[13] K. A. Hua, M. A. Tantaoui, and W. Tavanapong, “Video delivery
technologies for large-scale deployment of multimedia applications,”
Proceedings of the IEEE, vol. 92, no. 9, pp. 1439–1451, Sep. 2004.

[14] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperative diversity,”
IEEE Tr. on Communications, vol. 51, no. 11, pp. 1927–1948, Nov 2003.

[15] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
DEC Research Report TR-301, Sep 1984.

[16] V. Gopalakrishnan, B. Bhattacharjee, K.K. Ramakrishnan, R. Jana, and
D. Srivastava, “CPM: Adaptive video-on-demand with cooperative peer
assists and multicast,” in IEEE INFOCOM, 2009, pp. 91–99.

[17] A. Parekh, A Generalized Processor Sharing Approach to Flow Control,
Ph.D. thesis, MIT, 1992.

[18] L. Gao, J. Kurose, and D. Towsley, “Efficient schemes for broadcasting
popular videos,” in ACM NOSSDAV, 1998.

[19] A. Hu, “Video-on-demand broadcasting protocols: A comprehensive
study,” in IEEE INFOCOM, 2001, pp. 508–517.

[20] J. Choi, A. Reaz, and B. Mukherjee, “A survey of user behavior in
vod service and bandwidth-saving multicast streaming schemes,” IEEE
Communications Surveys and Tutorials, vol. 14, no. 1, 2012.

[21] C. C. Aggarwal and J. L. Wolf, “On optimal batching policies for
video-on-demand storage servers,” in IEEE International Conference
on Multimedia Computing and Systems, 1996, pp. 253–258.

[22] H. J. Kim and Y. Zhu, “Channel allocation problem in VoD system
using both batching and adaptive piggybacking,” IEEE Transactions on
Consumer Electronics, vol. 44, no. 3, pp. 969–976, Aug. 1998.

[23] N. L. S. da Fonseca and R. D. A. Facanha, “The look-ahead-maximize-
batch batching policy,” IEEE Tr. on Multimedia, vol. 4, no. 1, pp. 114–
120, Mar. 2002.

[24] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery
to provide a scalable and interactive video-on-demand service,” IEEE
JSAC, vol. 14, no. 5, pp. 1110–1122, Aug. 1996.

[25] S. Viswanathan and T. Imielinski, “Pyramid broadcasting for video on
demand service,” in IEEE MMCN, 1995, pp. 66–77.

[26] K. A. Hua and S. Sheu, “Skyscrapper broadcasting: a new broad-
casting scheme for metropolitan video-on-demand systems,” in ACM
SIGCOMM, 1997, pp. 89–100.

[27] L. Juhn and L. Tseng, “Fast data broadcasting and receiving scheme for
popular video service,” IEEE Tr. on Broadcasting, vol. 44, no. 1, pp.
100–105, Mar. 1998.

[28] K. A. Hua, Y. Cai, and S. Sheu, “Patching: a multicast technique for
true video-on-demand services,” in ACM ICM, 1998, pp. 191–200.

[29] Y. Cai, K. A. Hua, and K. Vu, “Optimizing patching performance,” in
IS&T/SPIE MMCN, 1999, pp. 204–215.

[30] L. Gao and D. Towsley, “Threshold-based multicast for continuous
media delivery,” IEEE Tr. on Multimedia, vol. 3, no. 4, pp. 405–414,
Dec. 2001.

[31] D. Eager, M. Vernon, and J. Zahorjan, “Minimizing bandwidth require-
ments for on-demand data delivery,” IEEE Transactions on Knowledge
and Data Engineering, vol. 13, no. 5, pp. 742–757, 2001.

[32] X. Zhang, J. Liu, B. Li, and T. S. P. Yum, “Coolstreaming/donet: A
data-driven overlay network for efficient live media streaming,” in IEEE
INFOCOM, 2005, pp. 2102–2111.

[33] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Anysee: Peer-to-peer
live streaming,” in IEEE INFOCOM, 2006, pp. 1–10.

[34] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang,
“Challenges, design and analysis of a large-scale P2P-VoD system,” in
ACM SIGCOMM, 2008, pp. 375–388.

[35] S. Acharya and B. C. Smith, “MiddleMan: A video caching proxy
server,” in ACM NOSSDAV, 2000.

[36] S. Paknikar, M. Kankanhalli, K. R. Ramakrishnan, and S. H. Srinivasan,
“A caching and streaming framework for multimedia,” in ACM Multi-
media, 2000, pp. 13–20.

[37] C. Huang, J. Li, and K. W. Ross, “Can Internet video-on-demand be
profitable?,” in ACM SIGCOMM, 2007, pp. 133–144.

[38] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking,”
in ACM NOSSDAV, 2002.

[39] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2cast: Peer-to-peer
patching scheme for VoD service,” in ACM WWW, 2003, pp. 301–309.

[40] J.-F. Paris, “A cooperative distribution protocol for video-on-demand,”
in IEEE ENC’05, 2005, pp. 240–247.

20

[41] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,
and M. Varvello, “Push-to-peer video-on-demand system: Design and
evaluation,” IEEE JSAC, vol. 25, no. 9, pp. 1706–1716, Dec. 2007.

[42] K.-M. Ho, W.-F. Poon, and K.-T. Lo, “Video-on-demand systems with
cooperative clients in multicast environment,” IEEE Tr. on Circuits and
Systems for Video Technology, vol. 19, no. 3, pp. 361–373, Mar. 2009.

APPENDIX
EXPECTED BANDWIDTH USAGE AT THE SERVER SIDE

We start our analysis by initially making the following
assumptions:
‡ To simplify our analysis, we assign integer values to ρ,

i.e., ρ ∈ Z.
‡ Session join requests arrive in intervals of µ seconds,

where µ = 1/λ (since the arrival process is based on the
Poisson process). 11

‡ System time is initialized to τ = 0.
We determine the time-averaged servicing rate by evaluat-

ing the resulting servicing overhead for each newly arrived
request.

⋄ CASE I: ρ = 2

For the first case, we assume WM = 2Wu, where Wu

represents the uplink bandwidth at the user side. The first
request, ι0 made by ν0, initiates the multicast session and
requires no additional unicast streaming from the server. The
second request, ι1 made by ν1, arrives at µ and can be serviced
by two sources, server and ν0. Since ν0 can service at a rate
of Wu, to satisfy the following servicing requirements:∑

i≤l

(
Wrcv,i × δti

)∑
i≤l δti

≥ WM , (20)

remaining resources are received from the server at a rate of
Wu.

Since ι1 is serviced at WM , its servicing finishes at τ2 =
2µ. Hence, the third request (ι2 by ν2) that arrives at 2µ can
immediately start receiving synchronization data from both ν0
and ν1. As a result ι2 requires no additional resources from
the server. Since ι2 is serviced at WM , its servicing finishes
at 4µ.

When the fourth request (ι3 by ν3) arrives to the system at
τ3 = 3µ, it initially sees only ν2 as available, a condition that
stays valid till τ4 = 4µ. As a result, until τ4, ν3 is also serviced
by the server at a rate of Wu. During the interval (τ3, τ4), ν3
receives one third of its requested data. After t4, it can receive
the remaining data (2WMµ) from all the available peers, for
a total rate of 3Wu = (3/2)WM , leading to a finish time of
4µ+4µ/3. We can recursively use this procedure to determine
the resources required at the the server. We show some of these
results in Table II, where ι represents the request count, τA (or
τF) represents the request arrival (or finish) time, and B

(ρ)
S,u(ι)

represents the amount of data delivered by the server to service
the ιth request.

11In the text, we explained how a multicast session is created, at ∆T
intervals, to accommodate the requests received during the next ∆T period.
In practice, the optimal solution necessitates a new multicast session to be
created only after receiving a request for it. Hence, often a non-zero gap
exists between successive sessions. However, the 2nd assumption allows the
sessions to be created at the boundary instances so long as ∆T is an integer
multiple of µ.

TABLE II: ρ = 2

ι τA B
(2)
S,u(ι) τF

1 µ µWu 2µ
2 2µ 0 4µ
3 3µ µWu 4µ+ 4µ/3
4 4µ 4µWu/3 4µ+ 4µ/3 + 4µ/3
5 5µ 5µWu/3 4µ+ 8µ/3 + 4µ/3
· · · · · · · · · · · ·

k > WM/Wu kµ kµWu/3 4µ+ 4(k − 2)µ/3

If we sum up the servicing bandwidth requirements for
requests up to the N th, we obtain the following equation for
the unicast servicing bandwidth:

B
(2)
S,u =

∑
∀ι

B
(2)
S,u(ι) =

WM × µ× (N2 +N)

12
(21)

≀⋄
⋄ CASE II: ρ = 3

For the second case, we set WM = 3Wu. The only
difference between the current case and the previous is when
the peers start receiving at a rate greater than the source
multicast rate WM , which occurs after the fourth received
request. The results for the second case are shown in Table III.

TABLE III: ρ = 3

ι τA B
(3)
S,u(ι) τF

1 µ 2µWu 2µ
2 2µ 2µWu 4µ
3 3µ 2µWu 6µ
4 4µ 4µWu 15µ/2
5 5µ 5µWu 9µ
· · · · · · · · · · · ·

k ≥ WM/Wu kµ kµWu 3(k + 1)µ/2

Similar to the previous case, we can determine the band-
width requirements for the unicast service as follows:

B
(3)
S,u =

∑
∀ι

B
(3)
S,u(ι) =

WM × µ× (N2 +N)

6
(22)

≀⋄
We obtained similar expressions for the other scenarios as

well, allowing us to generalize the bandwidth requirements as
follows:

E[B
(ρ)
S,u] =

WM × µ× (N2 +N)

2× (ρ2 + ρ)/(ρ− 1)2
(23)

We can determine the overall bandwidth requirements at
the server side by summing up the unicast and multicast
bandwidth requirements. For that purpose, we used a session-
based approach, i.e., we focused on the lifetime of a single
session. Assuming that the multicast delivery for the originat-
ing session starts at τ = 0, we focused on the requests that
arrive during the lifetime of that session, i.e., requests arrive
within (0, LS). For the given approach, we can determine the
overall bandwidth requirements as follows:

B
(ρ)
S = E[B

(ρ)
S,u]×

(
κ− 1 + ς/∆T

)
+ κWMLS (24)

where κ equals the number of multicast sessions created during
the lifetime of a single session and is given by ⌈LS/∆T ⌉, and

21

ς equals LS−(κ−1)∆T . The activity period for the κ sessions
depends on the speed of processing for the received requests
and it equals LS + (κ − 1)∆T in the worst case (i.e., from
the perspective of maximum bandwidth utilization, worst case
scenario occurs when the servicing of the requests finishes by
the end of the last session multicast) or 2LS in the best case
(best case scenario occurs when the last arrived request, which
arrives at ≈ LS is serviced on average at the source multicast
rate). Using the worst case scenario, we can determine the
average servicing overhead as follows:

E[W
(ρ)
S] =

B
(ρ)
S

LS + (κ− 1)∆T
(25)

In the text, we used an approximation on the above ap-
proach, by setting κ to LS/∆ and approximated the duration
of the activity period as 2LS independent of the value assigned
to ∆T . Note that the approximation yields a root mean squared
error value of ≈ 0.94Mbps for our baseline example (i.e.,
WM = 3Mbps, µ = 20ms, LS = 100m, and ρ = 3), when
compared to the results for the worst case scenario.

We used a similar procedure for the C-WFQ case. The only
difference between the two scenarios is that, for C-WFQ, we
assumed the client to divide its uplink bandwidth equally to
all the requests that it had received and accepted.

