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ABSTRACT 

This paper describes recent results from a partnership between the Sikorsky Aircraft Corporation and the Georgia 

Institute of Technology to develop, improve, and flight test a multi-aircraft collaborative architecture, focused on 

decentralized autonomous decision-making.   The architecture includes a finite-state machine, Voronoi mapping 

strategy, and real-time information sharing system designed to solve a challenge problem.  The architecture was 

implemented on a pair of Yamaha RMax helicopters outfitted with modular avionics, as well as an associated set of 

simulation tools. Simulation results for single- and multiple-aircraft scenarios are presented, along with a quadratic 

relationship between mapping speed and task completion time.  Further work suggested includes validation of 

simulation results in flight test with two real aircraft, as well as further exploration between search problem 

parameters and theoretical optimal performance. 

 

INTRODUCTION  

The market for unmanned aerial vehicles continues to 

grow.  In addition to the well-publicized military uses of 

unmanned and remotely piloted aircraft, there is an 

increased recognition of legitimate civil applications, such 

as law enforcement, search and rescue, pipeline and 

power line inspections, and so forth. 

In light of the ever-expanding applications and 

requirements, using a collaborating team, or swarm, of 

UASs will have many advantages over operating a single 

UAS. Owners/operators can invest in a number of simple, 

inexpensive aircraft, rather than a single aircraft.  A 

swarm presents a high degree of robustness, as the loss of 

a single aircraft no longer represents mission failure, nor 

excessive cost of replacement.  Moreover, the damage 

induced by a crash to people or property on the ground 
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becomes limited.  By definition, a swarm is in many 

places at once, meaning a wider sensor net can be cast. 

Heterogeneous sensor packages, which can be tailored to 

the mission and environment, can be added to or removed 

from the swarm very easily. 

However, there are costs associated with UAS 

collaboration. Establishing communication, task 

allocation, coordination, synchronization, collision 

avoidance, and an effective user interface are just part of 

the problem. 

This paper focuses on use of one or two 

heterogeneous aircraft to collaborate to solve a scenario-

driven challenge problem.  The aircraft are given the 

mission to find a fugitive who has entered a small urban 

area, where he has confederates ready to defend him 

against arrest.  The aircraft need to collaboratively and 

rapidly scan/map the area from a low altitude, find the 

fugitive’s hiding place, and force him into the open. 

Additionally, this paper presents a monocular vision-

based mapping system and its integration with 

collaborative map and search. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/16275081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:email@emailaddress.com
mailto:john.g.mooney@gatech.edu
mailto:dmagree3@gatech.edu
mailto:matthew.white@sikorsky.com
mailto:jonathan.hartman@sikorsky.com
mailto:vsahasrabudhe@sikorsky.com


 2 

Multi-robot coordination and information sharing has 

been studied by many researchers, primarily in the last 20 

years. These efforts have investigated multiple paradigms 

of control and coordination. Arkin (Ref. 1), Balch (Ref. 

2), and Parker (Ref. 3), for example, have focused on 

reactive behavior-based control and interaction.  This 

approach assumes minimal or no direct communication 

between robots, often relying upon the robot’s ability to 

observe the behavior of other robots to coordinate efforts.  

Other efforts have maintained decentralized control, but 

allowed robots to explicitly share state information (Ref. 

4).  Others use a fully-centralized approach, treating the 

system as a single “meta-robot” with a very high-

dimension configuration space (Refs. 5 and 6).  

Coordination of robotic aircraft has been studied 

extensively as well, though usually in the context of 

collision avoidance or formation control (Refs. 7 through 

9).  Previous work on autonomous collaborative search 

has demonstrated the effectiveness of spiral and lane-

based search patterns using appropriate objective 

functions and heuristics (Refs. 10 and 11). Vision-based 

mapping for UAVs has been investigated in the context of 

simultaneous localization and mapping in Weiss et al. 

(Ref. 12) and in Chawdhary et al. (Ref. 13). 

One note about terminology: in discussing the 

autonomous collaborative decision-making of multiple 

aircraft, the language can quickly because confusing and 

ambiguous with regards to which aircraft is being 

referenced.  For the purposes of this paper, when referring 

to each aircraft’s own resources, information, or 

decisions, the term “own ship” will be used and any 

aircraft outside of own-ship will be called “other-ship.” 

GENERAL APPROACH  

The challenge problem described in the 

INTRODUCTION includes many extremely complex 

aspects and was approached in a methodical manner to 

optimize key technology development.  In order to limit 

the scope of this work, several assumptions were made to 

establish a baseline approach.  These assumptions may be 

addressed in later work. Specifically, it is assumed that 

the suspect is hiding in a building, and that the suspect 

emerges from hiding and surrenders immediately upon 

one of the aircraft coming within a specified radius. 

State Machine Architecture 

For this mission, the aircraft acts as a finite-state machine 

to transition between relevant flight modes.  In MAP 

mode, the aircraft scans the search area to build terrain 

model.  FIND BLDGS mode analyzes the terrain model to 

find likely hiding places. SELECT NEXT and SEARCH 

modes alternate between searching a likely hiding place 

and selecting which place to search next. If the aircraft 

finds the fugitive, it transitions into CORRAL mode and 

otherwise transitions to LOITER if all other tasks have 

been accomplished. 

INIT MAP

FIND
BLDGS

SELECT
NEXT

SEARCH

CORRAL

LOITER

 

Figure 1. The finite-state machine model of the map 

and search algorithm. 

Terrain Representation 

Prior work (Refs. 14 and 15) used three-dimensional 

evidence grids to maintain a model of the local terrain.  

This approach was used successfully for obstacle 

avoidance and had previously been used by Scherer, et al. 

in a similar manner (Ref. 16). A brief summary of the 

approach is included here.  

An evidence grid represents a space of interest as a 

three dimensional array, using it to store a measure of 

likelihood of a particular point in space being occupied.  

This likelihood is updated when the sensor receives a 

measurement, according to rules specific to the sensor’s 

characteristics.  A particularly useful version of this 

evidence grid uses log-odds as the measure of likelihood 

or ‘belief’: 

 
 

If subsequent measurements are assumed to be 

independent, then this belief function can be updated by 

simply adding (or subtracting) the log-odds of occupancy 

according to the sensor model and new measurements. 

 
 

The last term on the right hand side of this equation is 

a characteristic of specific sensor chosen. The sensors 

used in this work include a scanning laser and monocular 

camera feature point detection. 

Subsequent work modified this approach to use a 

“two-and-a-half-dimensional” paradigm by flattening the 

three dimensional array into three two-dimensional 

arrays: one with terrain height, one with a measure of the 

confidence in that terrain height, and a third keeping track 

of the time of observation. While the rules to update the 

2½ D grids are a bit more complicated than an ordinary 

evidence map, and there is some information lost, the 

more compact terrain representation is more conducive 

for data sharing over a wireless network. 
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Mapping Strategy 

While mapping, the aircraft divides the search area into 

two categories: observed and unobserved. The algorithm 

then expands the edges of the observed areas into the 

unobserved areas until the edges converge on one another.  

This convergence effectively forms a Voronoi graph.  The 

nodes of this graph represent central points of the 

unobserved areas.  Each node has an associated value 

which measures the distance of these centers from the 

nearest edge in a 1-norm sense.  Thus, the value of the 

node roughly indicates the size of the unobserved mass 

(Figures 2, 3 and 4). 
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Figure 2.  An example of the mapping in progress.  

The yellow triangles represent the first aircraft 

seeking the point marked with the green triangle.  The 

yellow squares are the second aircraft seeking the 

green square.  Blue areas have been explored, red 

areas have not. 
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Figure 3.  A surface plot of representing the Voronoi 

diagram.  Red areas are farthest from the edge of 

explored space. 

 

 

Figure 4.  Overhead view of explored space with the 

candidate aimpoints plotted in green. 

Using this information, each aircraft in the network 

selects an aimpoint which balances the competing 

objectives of maximizing new area measured with flying 

the minimum distance. The aircraft flies toward this point 

until the mapping algorithm selects another aimpoint. 

Hide Location Detection 

Once the entirety of the search area has been observed, 

the resultant map is analyzed to extract information about 

potential hiding places for the fugitive. The work 

presented here follows a three-step process borrowed 

from computer vision: threshold the terrain map, execute 

blob detection, and fit a rectangle to each blob to 

approximate the footprint of the building. 

The thresholding step used here is very simple—any 

pixels of the map that are higher than an arbitrary value 

are marked as ‘1’, while all other pixels are marked ‘0’.  

This threshold value is selected to be the minimum 

characteristic height of likely hiding places.  Hiding 

places must be high enough to exclude small changes in 

terrain height or changes in the height map due to bushes 

or small trees.  Hiding places also must be high enough to 

ensure that individual terrain features are distinguishable 

from one another—occasionally, noise or aliasing in the 

map can cause unconnected features to appear connected. 

The algorithm then uses a single-pass blob detection 

routine (Ref. 17) to identify distinct structures in the 

search area.  Blobs that are only a single pixel are 

excluded as they are unlikely to be large enough to 

represent a real hiding place. 

The individual blobs are then fit to rectangular shapes 

using a moment of inertia analysis.  The total “inertia” 

about the north and east axes is computed along with the 

“center of mass”.  The moments and products of inertia 

are computed at the blob center using the parallel axis 
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theorem, and finally the eigenvectors of the inertia matrix 

are computed to find the principal axes of each blob.  

Since it is assumed that the hiding areas are rectangular 

buildings, the eigenvalues can be used to compute the 

estimated length and width of each. Figure 5 shows the 

result from an example case of this process. 

 

Figure 5. Output of an example building-detection 

routine. 

Data Sharing 

A key part of collaboration is effective and efficient 

communication. This work continues to build on the work 

presented in Reference 15. For this scenario, the aircraft 

must provide the following data: observations of terrain, 

current mode of operation, , and own-ship position and 

velocity.  Adding to the challenge is that we want each 

aircraft to operate relatively independently, yet maintain a 

nearly common operating picture.  Finally, the aircraft 

need to send only essential information at some minimum 

rate in order to preserve limited wireless bandwidth. 

Here we assume that each aircraft trusts own-ship 

sensors over all others.  This is a reasonable assumption 

for shared terrain data, as terrain sensors on the own-ship 

are subject to fewer errors and are likely to be providing 

more relevant information. Second, we assume that recent 

observations are more trustworthy than older 

observations. 

When the aircraft receives a terrain map update from 

the others in the network, it accepts the other aircraft data 

unless the data conflicts with own-ship data and the own-

ship data is younger than a specified age. 

Once the aircraft transition from mapping mode into 

search mode, one of the aircraft (selected arbitrarily) runs 

the building detection routine and sends the list of 

buildings to the other.  The aircraft from that point 

forward share changes to their mode and the number of 

the building which they will search next. 

Finally, the aircraft share their state data in order to 

facilitate collision avoidance.  This data is a trivial 

amount of information compared to the terrain map 

updates. 

Collision and Obstacle Avoidance 

An implied task during multi-ship operations close to 

terrain is to avoid collision with both obstacles and other 

aircraft. This work relies on previously reported results 

for obstacle avoidance (Ref. 14), which was accomplished 

by commanding a high-performance climb to maintain a 

specified clearance from terrain or obstacles laterally and 

vertically.  Collision with other aircraft is avoided by 

cancelling the own-ship’s commanded velocity 

component toward an other-ship when within a specified 

clearance distance. 

Vision-based Mapping 

The collaborative mapping and search system described 

in this paper is designed to be agnostic to the vehicle or 

sensing method. The searching vehicle need only be 

capable of generating location data for the map and/or 

following the commanded trajectory during search. This 

allows heterogeneous agents to participate in the 

collaborative mission. One particularly attractive method 

for generating location data for the map is to use a 

monocular camera. Monocular cameras are inexpensive 

and are standard payloads on many UAVs. This section 

outlines the monocular vision-based mapping system 

integrated into collaborative mapping and search. More 

details can be found in Reference 18. 

The monocular vision-based mapping system uses 

feature points from a video stream to initialize and update 

a database of 3D point locations and associated 

covariances. The database of point location forms a state 

vector for an extended Kalman filter. As new video 

frames become available, image features are extracted and 

matched to the expected image location of database 

points. The resulting residual is used to update the state 

vector and covariances of the database points. Points that 

converge to within a specified uncertainty are used to 

update the evidence grid terrain model. 

The 3D point locations in the database are 

parameterized as presented in Ref. 19 with an anchor 

point in space (in this work the location of the vehicle 

when the point was initialized) and the azimuth, elevation 

and inverse depth to the feature location. The use of this 

parameterization has a key advantage over a Cartesian 

parameterization: the uncertainty distribution of the 

feature points is more nearly Gaussian in inverse depth, 

and therefore better suited to the the EKF estimation 

framework. This fact results in faster convergence in 
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depth, a crucial requirement for fast searching and using 

the terrain map for obstacle avoidance. 

Figures 6 and 7 show a simulation of the vision-based 

mapping system integrated with the obstacle avoidance 

system. The vehicle was flown in an oval and an obstacle 

was placed in the middle of one of the legs. The path of 

the vehicle is shown in Figure 6, and the resulting terrain 

map is shown in Figure 7. 

 

Figure 6. Flight path used for vision-based mapping. 

Figure 7. Example terrain map produced by 

monocular camera feature points. 

Search Sequencing 

The process to select the next search location is a 

“greedy-with-exceptions” heuristic.  While it is not 

necessarily optimal with time, it is straightforward, is 

consistent with the level of decentralization in the system, 

is light on resource usage, and unpredictable. 

The aircraft considers the nearest unsearched hide 

location, and checks if that location is legitimately 

claimed by another aircraft.  If another aircraft is closer 

and would also select the location as its next destination, 

then the candidate is rejected and a new candidate is 

considered.  Otherwise the candidate is selected and the 

aircraft transitions to search mode.  For the purposes of 

this work, “searching” a hide area, means simply flying 

around the perimeter of the search area. 

TEST AIRCRAFT AND EXPERIMENT 

GTMax  

A pair of Yamaha RMAX-based research UAVs, Figure 

8, were utilized for the simulation and flight test activities 

under this effort (Ref. 20).  The system consists of four 

major elements: the basic Yamaha RMAX airframe, a 

modular avionics system, baseline software, and a set of 

simulation tools. 

 

Figure 8.  Yamaha RMAX instrumented with 

Differential GPS, inertial measurement, 

magnetometer, sonar altimeter, and camera. 

 

 

Figure 9.  The second RMAX with nose-mounted laser 

range finder. 

The hardware components that make up the baseline 

flight avionics include general purpose processing 

capabilities and sensing.  The research avionics 

configuration includes: 

 2 Embedded PCs 

 Inertial Sciences ISIS-IMU Inertial Measurement 

Unit 

 NovAtel OEM-4, differential GPS 
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 Prosilica GC1380H monocular camera 

 Sick LD-MRS laser scanner, Figure 9 

 Custom made ultra-sonic sonar altimeter  

 Honeywell HMR-2300, 3-Axis magnetometer  

 Actuator control interface 

 Vehicle telemetry  (RPM, Voltage, Remote Pilot 

Inputs, low fuel warning) 

 11 Mbps Ethernet data link and an Ethernet 

switch  

 FreeWave 900MHz serial data link 

The baseline navigation system running on the 

primary flight computer is a 17 state extended Kalman 

filter.  The states include: vehicle position, velocity, 

attitude (quaternion), accelerometer biases, gyro biases, 

and terrain height error.  The system is all-attitude capable 

and updates at 100 Hz (Ref. 21).  The baseline flight 

controller is an adaptive neural network trajectory 

following controller with 18 neural network inputs, 5 

hidden layer neurons, and 7 outputs for each of the 7 

degrees of freedom (Ref. 22).  These 7 degrees of 

freedom include the usual 6 rigid-body degrees of 

freedom plus a degree of freedom for rotor RPM.  The 

baseline flight controller and navigation system, which 

coupled with the simple baseline trajectory generator, is 

capable of automatic takeoff, landing, hover, forward 

flight up to the maximum attainable by the helicopter 

(around 85 feet/sec) and aggressive maneuvering. 

Test Parameters and Metrics 

To test the map and search architecture, the aircraft were 

presented with a search area modeled on McKenna 

MOUT site at Fort Benning, Georgia, and initially 

stationed outside of it with sensors oriented away from 

the area.  The aircraft were then commanded to execute 

the search, with the experiment repeated varying 

commanded search speed and one versus two aircraft 

involved (see Table 1). 

Table 1. Experiment Parameters. 

Parameter Value  

Nominal Search Speed 5 ft/s to 30 ft/s, 

increments of 5 (single ship) 

Max. Acceleration 5 ft/s
2
 

Mapping Altitude 75 ft 

Sensor Range ~200 ft 

Map Resolution 10 ft 

Threshold Height 10 ft 

Plan Max Update Rate 1 Hz 

Search Area 

Dimensions 

480 ft x 530 ft 

Commanded Aircraft 

Separation 

75 ft  

(~6 rotor diameters) 

To compare the performance of the different search 

parameters, we measured the time to complete the 

mapping task.  For the multi-aircraft scenario, the distance 

between aircraft and the amount of terrain updated per 

transmission were also reported.  Typical flight paths over 

terrain will also be presented.  

SIMULATION RESULTS 

Single-Aircraft  

Figure 10 shows a typical flight path history overlaid on 

imagery of the simulated search area.  The starting 

position of the aircraft is denoted by the small green 

square, the final position by the small red triangle.  The 

cyan rectangle denotes the limits of the search area.  Note 

that the aircraft will travel outside the search area if it 

positions the sensor in a way to view the desired aim 

point.  Other simulations with the same parameters 

resulted in similar though not identical flight paths.  

Though this pattern is clearly the fastest, the randomness 

will make the UAV a much harder target to either predict, 

engage, or evade. 

 

Figure 10. Flight path over search area, single aircraft 

at 20 ft/s. 

Figure 11 shows a comparison of the mapping times 

for the several commanded mapping speeds.  The 

relationship between the two seems to be roughly 

quadratic.  Low flight speeds simply cover the ground at a 

very slow pace. At higher flight speeds, however, the 

aircraft may not have enough control authority to point its 

sensor at the desired location. For this aircraft and these 

parameters, it appears the optimal search speed is between 

15 and 20 ft/s. 

The building detection algorithm accurately 

identified the set of buildings in every scenario, with 

results each time similar to those shown in Figure 5. 
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Figure 11. Time to complete mapping at varying 

mapping speed. 

Multiple Aircraft  

Introducing a second aircraft helped speed the 

accomplishment of the task, though not drastically.  A 

flight path for a mapping speed of 5 ft/s is shown in 

Figure 12.  Again, the flight paths are quite random-

looking, though due to the much slower flight speeds are 

far more angular.  Again, the building detection logic 

provided accurate results in each case. The task 

completion times were significantly improved at the high 

and low ends of the simulated speeds, and more modestly 

at the mid-range. 

 

Figure 12. Flight path over search area, two aircraft at 

5 ft/s. 

 

Figure 13. Time to complete mapping at varying 

mapping speeds, comparison between single and 

multi-aircraft scenarios. 

This result suggests that there an optimal 

configuration can be found in general for a given search 

area, sensor capability, and set of available aircraft.  If 

such a relationship can be found, this search strategy 

could be readily scaled up or down for other applications.  

Additionally, the example search area used in this work 

was relatively dense with buildings, which limited the 

sensors’ instantaneous range as both work on line-of-

sight.  A more spread out or flat area would probably be 

completed in significantly less time. 

Figure 14 shows the aircraft separation over the 

course of the task, as compared to the minimum 

commanded separation distance.  This periodicity of this 

graph suggests that at higher speeds, the aircraft seem to  

get into phase with each other—flying in toward an aim 

point at the same time, then circling outward to get in 

position to measure the next selected point, and repeating.  

The graph also confirms that the simple collision 

avoidance logic is effective. 
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Figure 14. Aircraft separation, multiple flight 

conditions. 

CONCLUSIONS 

A mapping-and-search architecture was demonstrated 

single and multiple aircraft with heterogeneous sensor 

packages at varying flight speeds. A roughly quadratic 

relationship between the mapping speed and task 

completion time was shown. With the addition of a 

second aircraft, performance was improved, particularly 

in the regimes where the single-ship performed poorest. 

Future work includes further refinement and multi-aircraft 

flight test to validate simulation results.  Additionally, the 

results suggest future investigation to find the relationship 

between the parameters and performance and to find a 

scale-independent measure of a search task. Finally, 

further work is required to address aspects of the 

challenge problem not considered this work, such as 

suspect identification, tracking, and collaborative 

shepherding. 
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