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In the Langevin formalism, the delicate balance maintained between the fluctuations in the system
and their corresponding dissipation may be upset by the presence of a secondary, space-dependent
stochastic force, particularly in the low-friction regime. In prior work, the latter was dissipated
self-consistently through an additional uniforitmean-field friction [T. Shepherd and R.
Hernandez, J. Chem. Phy%15 2430(2001).] An alternative approach to ensure that equipartition

is satisfied relies on the use of a space-dependent friction while ignoring nonlocal correlations. The
approach is evaluated with respect to its ability to maintain constant temperature for two simple
one-dimensional, stochastic potentials of mean force wherein the friction can be evaluated explicitly
when there is no memory in the barriers. The use of a space-dependent friction is capable of
providing qualitatively similar results to those obtained previously, but in extreme cases deviations
from equipartition may be observed due to the neglect of the memory effects present in the
stochastic potentials. @005 American Institute of PhysidDOI: 10.1063/1.1870875

I. INTRODUCTION The central question explored in this work is whether a
he th ¢ diffusi fixed barri single uniform effective friction suffices even when the
In the theory of diffusion processes over fixe arrlers'Langevin system is subjected to an external space-dependent

numerous SIUd'e.S haye shown that the dissipative term n thsetochastic potential. The behavior of a Brownian particle dif-
Langevin equation is rarely constant along the reactio

; ‘8 Lo r}using across various subsets of this class of potentials has
coordinate"® A general rate theory when the friction is both . i X5 Thi o
space and time dependent has been developed to account Rﬁen the SUbJeCt_ of intense rese - This activity has_
this phenomenon over the entire friction regifie. One  |argely been motivated by the discovery of resonant activa-
might naively expect that a space-dependent componeﬁ'P” in which the rate of transport over a stochastic barrier
must be included in the friction kernel to capture the essenexhibits a maximum as a function of the correlation time in
tial dynamics of a given system. However, this is not alwayghe fluctuations of the barrier height.
the case. Several groups have shown that the average dy- Simulations of these systems have only recently been
namical properties may still be adequately described by @erformed in the low-friction regime, where deviations from
generalized Langevin equation with space-independent fricequipartition may occur, due to an inability to adequately
tion even when the reaction coordinate has a strong spatialescribe the friction in the presence of an additional stochas-
dependencé’®'* An analysis by Haynes and Voth con- tic force?*?® The extension into this regime is essential to
cluded that the key factor is not whether the friction is SpaCQ)ropeﬂy model the diffusive dynamics of Weak|y bound ad-
dependent, since it genera”y will be, but rather how the friC‘SorbateS on a metal Surfa%Gez_7AS a phenomenok)gica' de-
tion varies along the reaction coordinafen particular, they scription for the substrate, the use of periodic stochastic

suggest that the symmetry of the space-dependent friCtiOBotentials—such as  those used herein and
with respect to the barrier can be used as a metric for evalbbreviouslﬁ“'zs'zs

ting the role of the friction in the d ics. Simil duct —as a model for the effective potential ex-
ating the roie ot the friction In tne dynamics. similar produc perienced by the adsorbate allows one to account for the
and reactant states will give rise to simil@ymmetrig fric-

. - time-dependent nature of the surface while retaining the sim-
tion components about the transition state. Perhaps surpris- P )

ingly, an antisymmetric friction does not have a significantp"(.:ity associateq With the Langeyin formalism. The incorp.o-
impact on the dynamics, while a symmetric friction can re-rf"‘t'On of aq add|t|onal_stochast|c force, h_owever, may_ glye
sult in large deviations from the predictions of standard ratd!S€ t0 an imbalance in the system leading to a deviation
theories  for processes  with space—independenfl"om equipartition, particularly in the low-friction regime

friction. 3468131 Ths the Langevin model with a uniform where the magnitudes of the internal and external fluctua-
effective friction can often approximate the dynamics of pro-ions may become comparable. In previous work, the dissi-

jected variables even if the formal projection would havepation of this excess energy was achieved through a self-
required a space-dependent model. consistent approach in which the friction constant is

renormalized iteratively until equipartition is satisfiédhis

dAuthor to whom correspondence should be addressed; Electronic maifzenormal'zanon IS appro_mmate because it does not eXp|ICIt|¥
hernandez@chemistry.gatech.edu. account for the correlations between the external stochastic
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forces across space and time, but rather uses a single mefm two different classes of one-dimensional stochastic po-
friction to dissipate these forces at times longer than theitentials. The first of these is a sinusoidal potential taking the
correlation times. general form

A possible improvement to the self-consistent approach 1 o
can be obtained by allowing the friction to be space depen- U(x;t) = {Eb+ —n(t)} [sin(—) + 1],
dent while explicitly ignoring the memory in the stochastic 2
potential. In the special case where the stochastic potentigh which the barriers fluctuateoherentlywith each other.
has no memory, this treatment is exact. However, this apThe second is constructed using a series of merged-harmonic
proximation is often not justified when modeling real sys-oscillators(MHOSs) in which each barrier is allowed to fluc-

tems, and therefore the model potentials employed are chquate independentlyincoherently of one another, and is
sen to have an exponentially decaying memory of their pasipecified by

states. In the most extreme cases, these correlations can re-

3

1 02 0 -
sult in deviations from equipartition during the course of the 2Ko(X = Xm) for X < X< Xn,
simulation, although the space-dependent friction dissipates  U(x;t) =4 Vi + 2kk(x - x5)? for x;, < x < x, (4)
such fluctuations correctly in most situations. The general %ko(x—x%ﬂ)z for X', < x < Xﬁﬁl,

conclusion appears to be that the more detailed space-
dependent approach is in qualitative agreement with the selfvhere themth well and adjacent barrier are centeredjt
consistent approach and hence, as in the fixed barrier caser-\/2+m\ andxﬁqzm)\, respectively. The connection points
Langevin systems with stochastic forces may be dissipatedre chosen to ensure continuity in the potential and its first
by a single(though renormalizeduniform friction. derivative such that®,= +ko\/(2ko—2k:)+m\. As opposed
The conclusions of this work are supported by a study ofo the sinusoidal potential, the width of the MHO barriers
two different classes of one-dimensional problems in whichvaries stochastically in time according to the relatidrr
the particle diffuses across a periodic array of coherent o[ky+5(m,t)], which, in turn, defines the barrier heigblfn
incoherent barriers. These two cases can be specified by—kok;)\zl(Sko—Skﬁq). The remaining parameters in the po-
sinusoidal or merged-harmonic-oscillator potentials, respectentials are chosen such that the lattice spacing is 4 and the
tively. For such simple forms of the stochastic potential, anathermal energy of the particle is 1/6 of the average value of
lytic expressions for the friction as a function of the spatialthe barrier heights.
coordinate can readily be obtained and are presented in Sec. The stochastic termy(t) is defined as an Ornstein—
Il. The resulting Langevin dynamics across these potentialslhlenbeck process governed by the following differential
dissipated either uniformly or through the space-dependerdquation:

friction are illustrated in Sec. Ill.
. 7(t) 202
) =-——+\—<¢O (5)
Il. LANGEVIN MODEL WITH STOCHASTIC Te e
POTENTIALS with the probability distribution
An equation of motion describing the diffusion of a par- 1 7(t)?
ticle influenced by a stochastic potential of mean force can ~ P(7[t]) = eXP = 52 (6)
; . . \2ma? 2
be adequately described by a phenomenological Langevin
equation of the form and time correlation
v=— (v + &1t) + F(x;1), (2) ) lt—t'|
(n)7(t"))=c®exp - —|. ()
whereF(x;t)=-V,U(x;t) is an external stochastic force and Te

¥(t) is the friction required to dissipate both the thermalThe variance of the distribution is given hy?, 7. is the
forces and those due to the external stochastic potential. Th&yrelation time, and(t) is an additional white noise source.
thermal bath is described kyt), which is a Gaussian white The distribution of barriers heights for the sinusoidal poten-
noise source with time correlation given by the fluctuation-jz| is given directly by the distribution of(t), but due to the
dissipation relatior(FDR) nature of the expression for the barrier heights of the MHOs,
(EM)E)) = kg Tyndt - t). (2)  the resulting distri'buti.on for this potent?al takes on a more

complex form which is sharper and slightly skewed com-
In the limit that F(x;t)=F(x;0) for all t, these equations pared with Eq.(6). As a result, a much smaller range of
reduce to the Langevin equation witt)=yy. Otherwise,  fiyctuations is allowed for the MHO than the sinusoidal po-
the question remains as to what is the appropriate form ofential to ensure that the distribution does not become sig-
(). Two approaches for addressing this question are presificantly non-Gaussian. More details on the exact behavior
sented in Secs. Il B and Il C, after first describing the explicitgf the MHO barrier heights are provided in Ref. 24.
forms of the stochastic potentials.

B. Uniform dissipation

A. Stochastic potential representation In previous worke* a self-consistent procedure was de-

The space-dependent frictig8DF) that arises from the veloped to ensure that the evolution of the system using Eq.
fluctuations inF(x;t) can readily be evaluated analytically (1) remains in thermal equilibrium. This was accomplished

Downloaded 10 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



114111-3 Dissipating the Langevin equation J. Chem. Phys. 122, 114111 (2005)

through an iterative procedure in which the friction, given by 2k Ty (x;t) = (£(t)2) + (SFy(x;1)?). (10)
the sum of the two contributions from the thermal bath and . . _ .

the stochastic potential, i.ey= v+ ye, is renormalized ac- The ther.mal ﬂ_uctuatlons are Ohmlc as given in &), and
cording to the relation the relationship for the fluctuations in the forcedB(x;t)

=Fy(x;) =(Fy(x;1)),, where the average is taken with re-

W2(1)) spect to the auxiliary stochastic variable The average
Y = y(m(Tn) (8)  value of the force can be determined according to the usual
b integrals,

o]

The friction for the next iteration is determined from the
-f dnP(n)V,U(x;t)

value of the friction at the current step scaled by the magni-

tude of the deviation from equipartition seen in the dynamics  (Fy(x;t)) = p
until convergence is reached to within a desired accuracy. f dnP(7)
The main criticism to this approach lies in the approximation —o0

made in developing Eq8) in which the stochastic potential where the fluctuations in the force are governed by the sto-

IS tr(_eate_d as a Ipcal NOISE Sourae, obeying a fluctuation- chastic Ornstein—Uhlenbeck procesg, whose probability
dissipation relation equivalent to E(R). However, the sto- L
distribution is given by Eq(6).

chastic potentials have memory and are therefore nonlocal in . o
nature leading to nonvanishing cumulants at third and higher . The remaining steps of the derivation rely upon the spe-
cific form of the potential. As an illustration, the SDF is

orders. These effects are included, but only in an average
manner, to second order in this approach. €valuated explicitly below for the simpler sinusoidebher-
end stochastic potential(The results for the incoherent
MHO potential can be found in the Appendixhe deriva-
tion begins by direct evaluation of E¢LO) for the specific
C. Space-dependent dissipation class of potentials. As remarked above, the first term repro-
duces the FDR, Eq2), for the thermal forces. Ignoring the
correlation in the forces at different times, the second re-
duces to

: 11

An alternative approach to dissipating the external sto-
chastic force relies on replacing the space- and time-
dependent frictiony(x,t) by a space-dependent friction
v(x[t]), satisfying a local FDR. Given that the size of the e wx\ [~ 1 )2
fluctuations inF(x;t) depends o at a givent, a Brownian  (OFu(i?*) = 20052(?)f d”(Eb*’ 5”) P(7)
particle moving quickly across the surface will experience a -
series of forces whose relative magnitudes depend on the w 1 2
particle’s velocity. However, when the Brownian particle - lzcos<w—x>f d??(Eb+‘77> P(n)} . (12
moves slowly, the particle will sample only the local fluctua- 2 2 2
tions of the stochastic potential in the vicinity of its local
positionx. In this regime, the particle arrives at a local quasi-
equilibrium which must necessarily satisfy the FDR locally. (SFy(x:1)?) = ﬁc 52< ) (13)
This suggests that the dissipation should not be uniform, but ulx 16
rather should depend on position, and therefore indirectly on
time. It should be noted that while the mean-field approachUpon substitution into Eq(9), the explicit form of the SDF
described in the preceding section, is capable of includlnd]S
the average of the correlations between the fluctuations, the a?m? X
approximation made here does not account for any of the Yt = {7th+ %—Cc’g(?)} (14)
memory effects. However, in the limit that there is no
memory in the external stochastic potential, the followingThis is the simplest possible form for this result, and is due
results are exact. to the separability of the potential into a sum of deterministic

The question now arises of how to explicitly describe theand linear stochastic terms. In fact, it is easily shown that for
friction constant in the presence of an additional fluctuating®ny separable potential of the form
force resulting from the potentials of mean force given in U(x:t) = U(x) + POWX), (15)
Egs. (3) and (4). The friction constant must dissipate the

excess energy that arises from the fluctuating forces througthereU(x) is the deterministic component of the potential of
a local space-dependent FDR, mean force, the additional friction due to the stochastic po-

tential is given by

The Gaussian integrals are readily evaluated to yield

ke Tyc(x;t) = (F(x; 1)), 9)
(SFy(x; %) = [V W) f do(77” = mP(7), (16)
where the cumulative force is simply the sum of the thermal

Gaussian noise and the stochastic force arising from the exrovided the distribution is normalized. The MHO does not
ternal potential F.=F,+F. Assuming the respective fluc- satisfy the condition of Eq(15) and hence its friction cor-
tuations in the bath and potential are uncorrelated, i.erection cannot be obtained by E(L6). The form of the
(SFnoF ) =0, Eq.(9) reduces to friction correction for the MHO consequently contains more
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FIG. 1. Representative fluctuations over one period of the MHO potentiaFIG. 2. Representative fluctations over one period of the sinusoidal potential
and force(top pane), and the resulting space-dependent frictiottom  and force(top panel, and the resulting space-dependent frictitottom
pane). The numerical component in the bottom panel is displayed as thepane). The numerical result is displayed as the solid black line, with the
solid black line, with the analytic result, given in the Appendix, as the dottedanalytic result, given by Eq(15), shown as the dotted white line. The
white line. The temperature is 2/3, the variance is 0.22, and the thermgbarameters used are the same as in Fig. 1.

friction is 0.08.

these locations. This leads to a vanishing contribution to the
terms, but the requisite approximatigthat the forces are total friction from the space-dependent component at these
uncorrelated at different timgsnters the derivation in a con- points. In the well region, the behavior of the SDF for the

ceptually equivalent way. sinusoidal and MHO potentials is inherently different. The
SDF for the MHO is zero outside of the barrier region since
D. Mean first-passage times the wells do not fluctuate by construction. However, the sinu-

The d . f th ¢ h terized b thsoidal potential fluctuates continuously throughout leading to
€ dynamics of the system were characterized by g i ion correction along the entire reaction coordinate.

mean first-passage HmM@MFPT) of a particle to escape its Consequently, the magnitude of the friction correction in

mt'rt]'al m'rllllmv?l.tﬁnd e_st;bhs? ahqu?SI-eqtu|I|tt_Jr||umtr\]/ylth|n artl)- simulations employing the sinusoidal potential are slightly
other wetl, YWt periodic, Stochastic potentass, this may eIarger than that in those employing the MHO. But, as illus-

accomplished by defining a region of the phase space of thi‘f“ated below, this effect does not have a dramatic effect on
particle bounded by an energetic constraiithe MFPT is the resulting,dynamics

simply the average of a sufficient number of first-passage Values of the friction corrections calculated from the it-

processes into this region, with thg corre;ponding Fa‘e giVe@rative and space-dependent approaches for the MHO and
by the inverse of the.MF.PT' While the Incorporation Of. aFinusoidaI potentials are displayed in Table | with the values
§pace-dppendent frlct|on in the alg'onthm for the NUMENCAt the thermal friction listed in the left-most column. The
integration of the equations of motion would seemingly "variance and correlation time for both potentials is 0.22 and

sult in a dramatic increase in computational expense, thz:-.\L respectively. The resulting temperatutigT=(v2)), are
actual effort is comparable to the previous mean-field ap-" '

e also listed for the space-dependent approach. The friction
proach because the preliminary convergence procedure for L . L
the friction constant is now unnecessary. correc_tlt_)n in the self-conS|§tent method ensures ngpartltlon
by definition and therefore is not listed. The magnitude of the
SDF for all values ofr, follow accordingly; however, this is
the only value with respect to the given variance for which
The analytic and numerical space-dependent compaoany deviation from equipartition is observed. As can be seen,
nents of the friction over one period of the MHO and sinu-both the self-consistent and space-dependent components of
soidal potentials can be seen in the bottom panel of Figs. fhe total friction for each potential provide negligible contri-
and 2, respectively, with the numerical results averaged ovesutions for this variance since the magnitudes of the fluctua-
500 representative trajectories. The top panels display thions in the barrier height are relatively small. Therefore the
fluctuations in the potential and the resulting forces that giveotal friction is a sum of a large thermal component and a
rise to the space-dependent friction. The analytic forms ofpace-dependent contribution. The slight differences in the
the SDF, displayed as the dotted white line, agree with thenagnitudes of the SDF for the two potentials can be attrib-
corresponding numerical results, and exact agreement is olbited to the piecewise nature of the MHO potential. The par-
tained upon further averaging. The fluctuations in the forcesicles spend most of the simulation time in the wells which
reach a maximum at approximately the midpoint between thelo not fluctuate. A contribution to the total friction from the
minima and maxima, where deviations from the averagespace-dependent term is included only when the energeti-
force take on the largest values. The fluctuations in the poeally limited particle accumulates enough energy to explore
tential are largest at the barriers, while the forces are zero ahe upper portion of the MHO potential.

Ill. RESULTS AND DISCUSSION
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TABLE I. The average of the friction correctiong calculated by the iterative self-consistéf} and space-
dependenfSDPF approaches for the MHO and sinusoidal potentials. The resulting temperatures are also in-
cluded for the space-dependent friction. In all cases the temperature {@2/i3ts of a standard temperature,
k,To). The variances?=0.22 and the correlation time=1.

MHO Sin
Vth (¥edo (¥e)spr <UZ>SDF (¥edo (¥r)soF <02>SDF
0.08 0.00 0.01 0.67 0.00 0.03 0.69
0.2 0.00 0.01 0.67 0.00 0.03 0.68
0.4 0.00 0.01 0.67 0.01 0.03 0.67

To further explore the accuracy of the space-dependergarticle effectively experiences the average, stationary poten-
approach, the sinusoidal potential has been studied with @al from which the dynamics were calculated. In the limit of
tenfold increase in the variance from 0.22 to 2.2. The valueifinite correlations, fluctuations in the potential are nonex-
of the friction correction from these simulations are listed inistent, and therefore the particle experiences a single realiza-
Table 1l. The displayed correlation times are those that tion of the potential with constant barrier heights determined
exhibit the largest resonant activation. Consequently, iby the initial value sampled from the distribution. The MF-
memory effects in the barrier heights are important in deterPTs displayed in Fig. 4 obtained with a larger variance alters
mining the friction constant, it should be manifested herethe magnitude of the resonant activation, but influences the
Although not shown for brevity, outside this region of the results for the two approaches equally. The results from the
correlation time, the magnitudes of the deviations fromsimulations with a space-dependent friction are systemati-
equipartition decrease rapidly, but the size of the spaceeally shifted to lower MFPTs as seen in all three figures. This
dependent components remains roughly constant. Similarlyrend is most readily explained through the trends in Table I.
the corresponding corrections arising in the self-consistenin the low-friction regime, an increase in the friction in-
method also approach zero. As can be seen from Table Il, thereases the corresponding rate of transport. The average
space-dependent approach results in a correction that gpace-dependent contribution is always larger than its re-
roughly constant for all values of the correlation time, while spective mean-field counterpart, and is expected to have the
the iterative approach does exhibit some variation with  largest effect on the results with the smallest thermal friction.
This is the expected result since the space-dependent frictiofhe fluctuations present along the entire reaction coordinate
assumes the fluctuations in the potential are local and ther®f the sinusoidal potential do not appear to have a dramatic
fore, ignores any correlation in the barrier heights. The iteraeffect on the dynamics. The results in Fig. 5 for the sinu-
tive approach, however, is capable of incorporating thesoidal potential follow the same trend as those in Figs. 3 and
memory of the potential into the friction correction, but only 4 for the MHO potential indicating that the SDF approach is
in an average manner. As a consequence, significant deviaapable of adequately describing the fluctuations in the sys-
tions from equipartition may be observed when simulationdem. Aside from the shift, the general behavior of the MFPT
are performed with a space-dependent friction that ignoress adequately reproduced by both methods, particularly at
the correlation effects, as illustrated by this extreme exampldarger values of the thermal friction when the space-

Figures 3 and 4 display the MFPTs obtained for thedependent component becomes less significant. At this level
MHO potential with the results from the space-dependenbdf description, each of the two approaches for constructing
and self-consistent approaches in the top and bottom panelhe friction are capable of capturing the essential dynamics
respectively. The results in Fig. 3 have been calculated usingf the system. However, some advantage is gained by using
a variance ofa®>=0.05, while those in Fig. 4 use’=0.22. the self-consistent method because it ensures the system is
The corresponding results for the sinusoidal potential using &ept at constant temperature for all values of the correlation
variance of 0.22 can be seen in Fig. 5. The values on théme throughout the simulation, while the space-dependent
broken axis represent the numerically calculated MFPTs irapproach may lead to deviations in extreme cases. The most
the limits of correlation timer.. In the zero-correlation time significant difference between the two methods can be seen
limit, the fluctuations in the potential are so rapid that theat intermediate correlation times, in which the resonant acti-

TABLE Il. The average of the friction correctiof- calculated by the iterative self-consistéfj and space-
dependent approachéSDP for the sinusoidal potential. The resulting temperatures are also included for the
space-dependent friction method. The temperature is 2/3 in all cases and the vafia@c2

7.=1071 =10 =10

Yth (¥ro (¥F)soF <v2>SDF (Yo (¥F)soF <v2>SDF (¥ro {¥F)soF <U2>SDF

0.08 0.04 0.28 0.72 0.05 0.29 0.74 0.01 0.28 0.68
0.2 0.04 0.28 0.71 0.05 0.29 0.72 0.01 0.28 0.68
0.4 0.04 0.28 0.70 0.06 0.29 0.71 0.01 0.28 0.67
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FIG. 3. The mean first-passage tim&~PT) for a particle diffusing across FIG. 5. The MFPT for a particle diffusing across the sinusoidal stochastic
the MHO stochastic potential are displayed for two possible scenarios of theotential are displayed for two possible scenarios of the dissipative mecha-
dissipative mechanism. The top panel uses space-dependent friction and thesm. Other than for the change from the MHO to the sinusoidal potential,
bottom displays the uniform friction determined by the self-consistentthe parameters are the same as in Fig. 4.

method. The variance for both is 0.05, and the three lines correspond to

values of the thermal friction of 0.08solid curve with x symbols 0.2

(dashed curve with trianglgsand 0.4(dotted-dashed curve with squares Of the stochastic potentials. The numerical results are in ex-

The symbols on the broken axis represent the numerically calculated MFPTgg|lent agreement with analyt|c expressmns descrlblng the
at the limits of the correlation time.
space-dependent friction. The resulting dynamics have been
) . ) o compared to those obtained using an alternate approach in
vation observed from the iterative approach is slightly moréyhich a uniform correction is calculated self-consistently.
pronounced. This can particularly be seen in the MFPTS\|though the latter approach does effectively include the
when the friction case takes on the smallest valueyQf time correlation between the barrier fluctuations at long
=0.08. Since the resonant activation arises from correlationmes, the former does not in any sense. This neglect may
in the barrier heights, it is not surprising that simulationsresylt in deviations from equipartition in some extreme
incorporating a friction capable of accounting for this phe-cases. However, both approaches are capable of capturing
nomenon can have a noticeable impact on the dynamicghe essential dynamics of the system and lead to the now-

even if it does so only in an average manner. expected resonant activation phenomenon. Consequently, the
central result of this paper is that the Langevin dynamics of
IV. CONCLUSIONS a particle under external stochastic potentials can be properly

The space-dependent friction arising from the presenc?'SS'pated by a single uniform renormalized friction without

of a secondaryexterna) stochastic potential in the Langevin oss of qualitative(and often quantitatijeaccuracy.

equation has been explicitly derived for two simple classes Thg roIe.of the memory time in an external stocha§t|c
potential acting on a particle described by a generalized

Langevin equation of motion is still an open question. In this

2000 ; oo ; limit, there would presumably be an interplay between the
1500% ] memory time of the thermal friction and that of the stochas-
: W ] tic potential. When the latter is small compared to the former,
10003 a-a_, a-h-d-A R the quasiequilibrium condition central to this work would no
fesogygygesomy longer be satisfied by the particle, and hence it is expected
500 - 1 that a nonuniform(and time-dependenfriction correction
& I 1 would then be needed.
B 2000 § 3 ————t+—+—+—+—+—+—+—1 3
- — W ]
1500 | 1
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APPENDIX: EXPECTATION VALUES OF F ,72

The piecewise nature of the MHO potential results in a 2 exp(— ﬁ)
piecewise form for the associated SDF. Although incoherent, P’(7) = — ,
every barrier gives rise to the same averages, and hence the \2mo? 1+ er(L;)
procedure needs to be carried out only over a small region

V2%
defined by the closed intervg,x: . The limits of integra-

tion over this region can be determined from the expression
for the connection points where erfx) is the standard error function. Use of the nor-

malization condition reduces the average force to

(A7)

A
x"m:—k';*+m)\, (A1)
2ky — 2k,

(Fu(x;t)) = ko(x = &) = [ko(x = X2) + ko(x = X5)]

Xf*dnpfwmx—xﬁq)f" AP’ ().
ko\ ko

- v @ n
= - my e (A2) (A8)

wherekﬁ]:—[k0+ 7(t)]. This can equivalently be expressed as

At the top of the barrier, wher_=x’ 7(t)=. In the inter-
mediate region for arbitrary, The remaining integrals are readily computed; the explicit
form of the average force is

Ko\ x
7(t) = 2x— V) 2Ao=17. (A3)
Fu(x;t)) = ko(x = xt

Otherwise, at the minimum whea,=x2, 7(t)=-kq. Fulxit) =kt =w .

Although it is apparent from the expression for the bar- 1- er( L)
rier height that the corresponding distribution is non- 0 .t V2
Gaussian, the resulting forces are Gaussian with the prob- ~ [ko(2x =X = X7 —ko
ability given by Eq.(6). The average force for a givenis 1+ erl(,—?)
simply the weighted average of the forces wheis in the V2

(

respective regiongx%, X, and(x;,, &), which correspond to 2 7)?
7 regions of(—ky, ") and(%",%). The resulting integral for (x—xE) TR T, 2
m

the average value d¥(x;t) is now + =
. by V202 ( o )
1 +er —
" ” V252
f_ko d7F(X)P(7) + L* d7F(X)P(7) (A9)
(Fu(x;t)) = - . (A4) : .
The second quantity to be computed is the average of the
dzP(7) square of the force, and the derivation follows tfeiove of

o the average force. The limits of integration are the same and
Here, one must be careful in determining which portion ofthe Qaus_5|an integrals (_:an_be caICL_JIated in the same manner.
Again using the normalization requirement, the first integral

the force to use in the above equation. For example, when=""
is eliminated such that

n<17, the majority of the force is due to the barrier portion
of the potential, not the well component. The average can
thus be expressed as

(Fu(x;1)2) = kK3(x = )

Fut) == | dpke(x=x}P’ .
( u )) fn* 7Ko( m) (n) + [kg(x_ X21)2— k(ZJ(X— XﬁoZ]f ) dyP’(7)
7
n *
+ | dylke+ 9)(x=x)P' (1), A5 7 )
f_ 7](k0 7])( m) (77) ( ) + 2k0(X— Xﬁ])Zf d7]7]P (7])
ko
whereP’(7) is defined through the normalization condition, 2 7 ,
ie., +(x=x)? [ dyPP' (7). (A10)
ko
7 ”
dP’()+f dnP'(9) =1, (A6)
f_ko K 7 K The first two integrals are the same as before, and the third
can be obtained with little effort. The resulting mean squared
which leads to the probability distribution force is
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