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Chemical reaction dynamics within anisotropic solvents
in time-dependent fields

Eli Hershkovits® and Rigoberto Hernandez
Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry,
Georgia Institute of Technology, Atlanta, Georgia 30332-0400

(Received 16 August 2004; accepted 14 October 2004; published online 14 December 2004

The dynamics of low-dimensional Brownian particles coupled to time-dependent driven anisotropic
heavy particlegmesogensin a uniform bath(solven) have been described through the use of a
variant of the stochastic Langevin equation. The rotational motion of the mesogens is assumed to
follow the motion of an external driving field in the linear response limit. Reaction dynamics have
also been probed using a two-state model for the Brownian particles. Analytical expressions for
diffusion and reaction rates have been developed and are found to be in good agreement with
numerical calculations. When the external field driving the mesogens is held at constant rotational
frequency, the model for reaction dynamics predicts that the applied field frequency can be used to
control the product composition. @005 American Institute of Physics.

[DOI: 10.1063/1.1829252

I. INTRODUCTION construct a formalism—that in some limits—fills in these
gaps.

The stochastic or Brownian motion of a particle in a One step toward understanding the dynamics in aniso-
uniform solvent is generally well understob8The dynam-  tropic liquids would thus be the development of a lyotropic
ics is less clear when the solvents respond in a nonuniform ahodel consisting of a Brownian particle in the presence of a
time-dependent manner, although such problems are not ugime-dependent driven mesogEhAnother step toward this
common. For example, the dynamical properties of a suspemyoal is the analytic and/or numerical solution of such. In the
sion in a liquid crystal can be projected onto an anisotropigresent work, the rigorous construction necessary for the first
stochastic equation of motici. Other examples may in- of these steps is not attempted. Instead, a naive phenomeno-
clude diffusion and reaction in supercritical liquitlquids logical model describing the dynamics in lyotropic liquids
next to the liquid vapor critical poirf;®and growth in living  has been constructed. It serves as a benchmark for the devel-
polymerizatior® opment of techniques useful in analyzing the dynamics of

The flow properties of liquid crystals have generally Brownian particles dissipated by an anisotropic solvent
been analyzed from the perspective of macroscopithrough a time-dependent friction. In particular, the lyotropic
nematohydrodynamic$. Therein, liquid crystals have been liquid is assumed to be nematic, i.e., thealamitio me-
classified according to the presence or absence of solverdogens are assumed to be rodlike as is the case with mineral
Pure liquid crystals containing no solvent are called thermomoieties in watet! The mesogens are further assumed to be
tropic in part because they have exhibited strongone dimensional and rigid, and a series of additional simpli-
temperature-dependent behavior. A suspension of nematéying assumptions have been invoked. A physical system rig-
gens (anisotropic moleculgswithin a simple solvent is orously satisfying all these assumptions may not exist, but
known as a lyotropic liquid. The presence of nematogenshe benchmark may still exhibit some of the important dy-
leads to different transport properties within the solvent thamamics that has been seen in real liquid crystals in the pres-
would be seen in a pure simple liquid alone. The additionaknce of magnetic fields with time and space instabilitres.
complexity is a result of the coupling between the velocity Another step toward understanding the dynamics in aniso-
field and the average direction of the nematogens. As a reropic liquids is the rigorous solution of a thermotrogpiem-
sult, the dynamics of a particle in the liquid crystal is dissi-atic) model in which the dilute Brownian particle diffuses or
pated by a friction whose form is that of a tensor and not dsomerizes in a solvent that consists exclusively of me-
scalart! The actual drag can be further complicated by thesogens. It is based on the possible connection to a rotating
presence of topological discontinuities in the liqifdio our  nematic liquid system previously obsend’ and on the
knowledge, analytic solutions for the diffusion of Brownian analytic understanding of the dynamics in nematic liquids in
particles in these general environments are not known. Tha few special casé$:*®For this thermotropic case, we do not
situation for a reactive solute is even less clear as no analytiattempt to develop a microscopic model of the friction and
formalism has been constructed. In the present work, winstead make assumptions based on the known properties of
isotropic liquids.
dpresent address: Department of Electrical and Computer Engineering, In general, the complicated microscopic dynamics of a

Georgia Institute of Technology, Atlanta, GA. subsystem coupled to a many-dimensional isotropic heat
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bath can be projected onto a simple reduced-dimensional stanisotropic solvent is manifested in these models by way of
chastic equation of motion in terms of the variables of thea time-dependent friction that is externally driven. The dif-
subsystem alone. In the limit when the fluctuations in thefusion of free Brownian particles dissipated by a time-
isotropic bath are uncorrelated, the equation of motion is thelependent environment is described in Sec. IV. The numeri-

Langevin equatich(LE), cal methods for calculating reactions rates needed to extend
the solutions of these models to include nontrivial potentials
q=p, (1a  of mean force are presented in Sec. V A. Analytical approxi-
mations for otherwise-rigorous rate formulas are derived and
p=—V'(q)— yp+ &(1), (1b) compared to the numerical results in Sec. V B. A discussion

of the validity of all of these approaches and possible appli-

whereq andp are the position and momenta vectors in masstations concludes the paper in Sec. VI.

weighted coordinatesi.e., mass equals opeV(q) is the
system potentialy is the friction, and¢ is a Gaussian ran-

dom force due to the thermal bath fluctuations. The friction

and the random force are connected via the fluctuation dig!- A NAIVE LYOTROPIC MODEL WITH ROTATING
sipation theorem, EXTERNAL FIELDS

9 A naive model describing a particle propagated in an
(&(ty) é(ty))= 2y S(ty—ty) 2) anisotropic solvent is motivated in this section in the context
B of diffusive or reactive dynamics within a lyotropic solvent.

where the average is taken over all realizations of the force$n€ connection between the model and realizable lyotropic
at the inverse temperatugg = (kgT) "*]. The LE can rep- solvents is only a loose one. No attempt is made here to do a
resent the generic problem of the escape rates of a thermalf{orous projection of the detailed complex modes of the
activated particle from a metastable well when the thermalYOtropic solvent onto the subsystem dynamics. The lyotro-
energy is much lower then the barrier heighthe one- PIC liquid is assumed to consist of rodlike mesogens and a
dimensional LE has been solved in the asymptotic limits ofiNiform isotropic liquid solvent. It is further assumed that
weak and strong friction by Krame?sA general solution for ~ there exists a single tagged motion characterized by an ef-
weak to intermediate friction was found by Melnikov and fective coordinateq that describes the subsystem—e.g., a
Meshkov!® This result was subsequently extended to the enProbe particle or reacting pair of particles—whose dynamics

tire friction range in the turnover theory of Pollak, Grabert, 'S Of interest. This tagged motion is taken to be one dimen-
and Hangi2° The reactive rates for a multidimensional LE sional for simplicity. The effective mass,, associated with
have been obtained exactly in the strong® and weak the tagged subsystem is also assumed to be well separated
friction2 limits and approximately in between these limits from the smaller mass of the_ isotropic liquid, and the larger
through a multidimensional turnover thedfyThe LE can Mass of the(anisotropi¢ rodlike mesogens. Consequently
also describe the dynamics of a subsystem under an applidd€ @gged motion can be described as that of a Brownian
external force, and has led to the observation of such inteff@rticle at positiory experiencing a dissipative environment

esting phenomena as stochastic resondhe resonant due to the interactions with the isotropic liquid and the me-

activation®>3! and rectified Brownian motiott—3° sogens.

When the fluctuations in the isotropic bath do not decay '€ model is further simplified by assuming that the
quickly in space or in time, the dynamics are known to beM&S0gens of given concentratiordo not interact with each

described by the generalized Langevin equatiGiE).® other. This ideal-solute assumption is certainly realized at
The activated rate expression for a particle described by W €nough concentrations that the mean spacing between
GLE is also well knowr?”38 Less understood are the exact Mesogens is long compared to their effective interaction dis-

rates when the friction dissipates the subsystem differentij2Ce-(It would be easy to achieve such concentrations even
at different times in a nonstationary GLE-like equa- at relatively high cor_1centrat|ons if the |nteract_|on po_te_nnals
tion 5913394041\ g netheless, the models developed in this2® har_d core.The_ ideal-solute mesogens WI|! exhibit no
work contain the flavor of this nonstationarity in that the LE Oriéntational order in the absence of external fields.

is driven by an external periodic field through the friction In real nematic liquids there are |.nteract|ons between the
rather than through a direct force on the system. Consel€S0gens that result from cooperative forces. They, as well

quently the result of this study also provides insight into the®S Poundary effects on the rods, are excluded within the
dynamics of systems driven out of equilibrium. model of this work. The orientation of all the rods is firmly

The primary aim of the paper is the development of analfixed by a magnetic fieldhomogeneous director figlavith

lytical and numerical techniques to obtain the diffusion andnclination d relative to they axis,

reaction rates of a subsystem dissipated by a time-dependent

driven anisotropic solvent in various limits. A naive model H,=Hgsing, (3a
for a nematic lyotropic liquid and its various underlying as-
sumptions is presented in Sec. Il as one paradigmatic ex-

ample for the accuracy of the methods described in this Hy=Hocoso, (3b)
work. Another model based on an experimental system of the
rotating nematic liquid is described briefly in Sec. Ill. The H,=0. (30
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parameter when one measures only the dynamics along a
specific direction but not when one is interested in the aver-
age diffusion or reaction of the chosen subsystem with re-
spect to all directions.

In cases when the magnetic field of Eg) rotates with
frequencyw, then the Brownian particle experiences a fric-
tion,

y(t) = yo(mR?+ 2RI|coswt|) 5)

that is periodic in time. Including the dissipation of the ro-
tating mesogens will not change this friction, but will add a
0 finite temperature to the bath due to rotational dissipation. As
long as this amount of heat is much smaller then the bath
temperature, the friction in Eq5) is well defined and can
be used as the friction entirely dissipating the Brownian
particle.

jan]

FIG. 1. A Brownian particle with a diametera2moves with velocityo
inside a mixture of an isotropic liquid and calamitic mesogens. The me-
sogens have a lengthof the same order of, a negligible width, and

concentratiorc. The mesogens are oriented by an external magneticl-iield I1l. A NEMATIC MODEL WITH EXTERNAL
The magnetic field is characterized by the angtelative tov. Under these
conditions, the Brownian particle collides withmR2+2RI|cosd|) me- ROTATING FIELDS

it time. . . .
S0gens per unit ime While the naive model described above does capture

some of the features of liquid crystal diffusion, it is nonethe-
This strong field assumption—all the mesogens will orientless too simplistic. Experiments of pure nematic liquids un-
uniformly in the direction oH—also ensures that there is no der @ rotating magnetic fieltt'” can serve to illustrate the
angular momentum transfer in collisions between the mePOssibility of solvent responses characterized by time-
sogens and diffusing Brownian solutes. The environment i§épendent viscosity. In these experiments, the homogeneous
clearly anisotropic, and a Brownian particle diffusing director field of a nematic liquid confined between two par-
through it would experience different dissipative forces de-2llel glass plates was aligned in the plane of the plates by
pending on the direction of its motion. The suspended parStrong magnetic field. The magnetic field was also rotated at
ticle is assumed to have a spherical shape with a raius constant velocity within this plane. For many of the experi-
The particle velocity (t) is restricted to the direction. The mental conditions, the nematic liquid retained uniform align-
number of collisions per unit time between the Brownianment but its homogeneous director field followed the mag-
particle and the mesogens is simplyR2+ 2RI|cosé)vc. netic field with a constant phase lag. Finding an expression
This result is illustrated in Fig. 1. Further assuming that eacfOr the viscosity in a nematic liquid is far more complicated
of the mesogens has a thermal distribution of velocities anghen for an isotropic liquid. It has five coefficietftsand
noting the mass difference between the mesogens and tiflepends on the orientation of the director, the velocity, and

environment, the friction force on the Brownian particle is the velocity gradient. This problem was only partially solved
proportional to the number of collisions. This gives a friction for some special cases. One case obtains the effective viscos-

coefficient ity in a suspension of small particles in a nematic ligtfid.
The key simplifications are that the small particles are as-
y=vo(mR?+2Rl|cos4d)), (4)  sumed to be not much larger than the nematogens and with

_ _ _ o spherical shape. The friction coefficient has the simple form,
where vy, is a proportionality constant characteristic of the

system. The viscosity of the isotropic liquid leads to addi-
tional dissipation that is manifested as an additional constant
term to the overall friction. However, in those cases whenwhere the expression for constant coefficieiitand B may
this isotropic friction is dominated by the friction of E@), be found in Ref. 18. A second case treats the limit in which
its effect is small and insufficient to blur the anisotropy of the chosen particle in a nematic liquid has a large spherical
the system. For further simplicity, therefore, in what follows, shape'* The resulting effective friction is composed of an
the isotropic friction due to the homogeneous solvent will beisotropic term and an anisotropic term that depends on the
assumed to be zero without loss of generality as long as thangle between the director and the particle velocity. The an-
actual isotropic friction is weak in this sense. isotropic expression is a little more complicated than &g,.

The instantaneous inclinatiof(t) has a large influence but its leading order terms also involve girand co%. In
on the short-time dynamics of a particle whose motion isboth of these cases, the nematic liquid is assumed to be
measured only along an initially chosgraxis. Without this  firmly oriented by a strong external field and the friction
restriction, a fixedd will not influence the dynamics because force is taken to be much larger than the elastic forces in the
the particle motion will necessarily average over all direc-nematic liquid. Thus the naive model described in the pre-
tions. As a result, the inclination can be used as a controteding section does exhibit both a uniform constant term and

fi=a(Ad,+Bcog 0), (6)

Downloaded 08 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



014509-4 E. Hershkovits and R. Hernandez J. Chem. Phys. 122, 014509 (2005)

an anisotropic oscillatory term that are in qualitative— 200.0
though not quantitative—agreement with more detailed
models.
150.0 .
A
IV. FREE BROWNIAN DIFFUSION <
IN AN ANISOTROPIC SOLVENT 1000 ]
. }
The motion of a free Brownian particle in the time- 5
dependent friction field of Eq5) can be described by the v 50.0 |
Langevin equation, ’
P=—"Y0p(D)P+ YD&), (7
0.0 .
where the time-dependent coefficients, 0.0 100.0 t 200.0 300.0
B(1) = (V)2 (83

_ FIG. 2. The mean square displacement of a free Brownian particle in the
$(t)=a+cog wt), (8b) naive lyotropic bath model has been obtained by direct integration and

have been chosen to describe the periodic behavior of thgrough the use of the analytical expression in 8@ at various frequen-

. . . .. cies w of the driving rotating magnetic field. In the former integration
naive Iyotroplg mOdel_ and the hydrpdynamlcal .f”Ct.'0n Lerms method, 100 000 trajectories were sufficient to obtain convergence. In the
in pure nematics as simply as possible. The noise is related taxter, the average is taken over an ensemble of 100 000 particles starting at

the friction by the fluctuation dissipation relation, time t=0 with inclination perpendicular to the velocity, and overlays the
results of the former within the resolution of the figure.

2
<f<t>§<t')>=%5(t—t'). ©

The strengtha of the isotropic term has been chosen to be
1.05 throughout the illustrations in this work to emphasizethe particle. As will be shown below, the diffusivity in the
the anisotropic effects, but different physically-realizabletime-dependent environment deviates from the linear corre-

strengths do not lead to different conclusions. lation known to result in the constant friction environment.
The solution to the equation of motidi) is In Fig. 2, the mean square displacement of a Brownian
t particle whose motion is measured only along an arbitrary
p(t)=poexd — VOG(t)Hft dtygh(ty) €(ta) one-dimensional axis is plotted as a function of time at vari-
° ous applied frequenciesm. The average behaviorof the
xXexfd — yo{G(1) = G(t1)}], (100 mean square displacement is linear with time, as in the con-
wherep, andt, satisfy the initial conditionp,=p(t,), and  stant friction regime, but it also contains fluctuatiofis
the integrated frictiorG(t) is defined as time) around the average whose frequency depends on the
¢ external field. It is important to note that the overall slope of
G(t)=J dt, ()2 (11)  the mean square displacement depends on the frequ&ncy
to

that is, the diffusivity shows strong dependencewondence
The velocity correlation function is readily calculated to be by changing the frequency of the external field, it becomes
possible to control the diffusivity of the Brownian particles.

1
(p(t)p(ty))= Eexp(— Yol G(t1) +G(t,) The analytical result of Eq(13) was used to check the
accuracy of the numerical integrator employed in propagat-
—2G[min(ty,t5)1}). (120  ing particles in a time-periodic white noise bath. A fourth-

grder integrator was developed based on the Taylor method

in Refs. 13 and 42 and is outlined in Appendix A. Such an
algorithm is extremely useful as a check for nonstationary

The square mean displacement of the free particle after tim
t is the double integral,

_ 2
([a(H—a(to)9) problems in which the integration time can be very long. The
t o[t new algorithm agrees with the analytical result up to time
- Jtoﬁodtldt2<p(tl)p(t2)> (133 steps of sizeSt=0.5 in the dimensionless units of time de-

fined in Eq.(7). In general, the time step required to achieve

a given accuracy decreases as either the frequency or friction

increases.

. . These results are limited to diffusion in one dimension.
+f dtlf dt, exd yo{G(t;) —G(ty)}]]. (13p  When studying the motion in the plane defined by the rotat-

to t ing magnetic field an average has to be taken over all the

A similar expression was developed by Drozdov and Tutkerdirections. The integrated friction function, E(L1), for a

for the case of fluctuations in the local density of supercriti-particle with the initial velocity inclined with angler rela-

cal solvent. The result in Eq13) leads to the diffusivity of tive to the magnetic field at the tinte=0 is

1 t ty
:E[J; dtlft dt2 qu—'yO{G(tl)_G(tz)}]
0 0
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800.0 ' ' ‘ ' q=—VV(q) — yod(t)q+ (1) &(t), (16)

whereq is now a relative mass-weighted coordinate between

600.0 r 1 the interacting particles and is the potential of mean force
between the particles. The remaining symbols are the same
2000 | as in the preceding section. Phenomenological rate

constants—e.g., transition from one metastable state of the
potential to another or to infinity—cannot be calculated ana-
200.0 L - lytically when the potential is of a more complex form than
that of the harmonic oscillator. Direct numerical evaluation
of these rates is usually quite time consuming because the
00,5 500 1000 1500 2000  250.0 time _scales involved in the problem are widely varyir_lg. T_he
t reactive flux method reduces much of the computation time
FIG. 3. The normalized average displacement of an ensemble of freby initiating the trajectories at the barrfett has been used
BrO\-Nni.an particles in the preser?ce ofg periodic friction is displayed as io (_)btam react|ve_ exact thermal escape rates in t_he Statlonary
function of time. The driving frequencies ase=0.1, 0.2, 1, 10, and 0 from limit both numerically and exactly, and to obtain approxi-
top to bottom. The result for the fixed case=0) has been calculated mate rates under a variety of limiting approximations. In the
analytically using Eq(15)..The remaining results are qbtained nu_me_rica]ly present case, the problem is nonstationary at short times but
by averaging over Brownian particles with velocities in random inclination . . . . . .
relative to the magnetic field at the initial tinte= 0. Note that the slopes— retains an average stationarity at SUf_ﬂmeme long times. The
viz., the diffusion rate—increase with decreasing strategy is consequently to generalize the rate formula for
stationary systems. It must now include processes in which
stationarity is required only when the observables are inte-
grated over a period equal to that of the external periodic
perturbation.
In all of the calculations performed here to illustrate the
(14) approach, the potential has been chosen to have the form of

1B)<(a®-q(0)y2>

2a t
G(t+7)= 7y, @°t+ ;sn’{w(H )]+ >

N siN2w(t+7)]

4o a symmetric quartic potential,
After some elementary algebra, the integration in Ecp) V(q)=q*-2g? (17)
with G as in Eq.(14) for the case of a constant magnetic field ’
leads to the average diffusion coefficient, in which the two minima represent two distinct metastable
1 a states separated by a dimensionless barrier of unit height.

(DYg=—s ————, (15) (Note that for simplicity, all observables in this work are
YoB (32—1)3/2 written in dimensionless units relative to the choice of this

of a Brownian particle in a plane. The diffusivity of the effective barrier and the particle masshe reactive rate has
Brownian particle in a rotating field at various frequenciesP&€n calculated for particles with inverse temperatires0

has been obtained numerically and is shown in Fig. 3. As caff 20- These temperatures are low enough to give a well-
be seen, at the measured range, where the frequency is largéfined phenomenological rate when the reactive flux
than zero, the diffusivity is a monotonic decreasing function""€thod is employed in the constant friction case, but not so
of the frequency. This result suggests the use of the appliefW that trajectories are needlessly slow even when one ob-
field frequency to control the diffusive transport of the t&ins the rate by direct methods.
Brownian particle. A. Rate formula and numerical methods

In thea=1 limit of this model, there is a divergence in

the averaged diffusion constant over all the directions at con‘;th The t;tanfcliard afhprg%ch for CalCtUI?t'ngﬁg?Ct'o? gates,
stant magnetic field. This limiting behavior is a consequen e reactive flux method, assumes stationarity.In estab-

“Sishing its validity, the rate formula needs to be checked b
of a transition from diffusive to ballistic motion at the incli- ">"'N9 'S Va'.'hy’d. € rate r?rz]u aneeas 1o he chec ed by
nation in which#=s. That is to say, that it is an artifact of comparison with direct methods measuring the phenomeno-

the model in so far as the physical system it represents WouI@g'?al rates between reacte.m'ts and pro.ducts. In this gectlon,
never take on the value af= 1, and hence would not exhibit a direct gpproach for. obtalnlpg rgtes in the n'or?statlona'ry
an infinite diffusion. Nonetheless, the model above serves t62S€s of interest o this work is reviewed and similarly vali-

demonstrate the accuracy of the numerical and analytical forqate_d' The results of this ap_proach are subsequently used to
malism whena is far from 1. motivate an averaged reactive flux formula appropriate for

the nonstationary case.

In the direct approach, one simply calculates the rate of
population transfer from the reactant populationto the

The assumptions introduced in Sec. Il are also applicableroduct populatiom.. The initial population is assumed to
to the description of the reactive interactions between twde thermally distributed entirely at the reactant side. The
Brownian particles. Neglecting the hydrodynamic interactionlatter assumption is valid because the Boltzmann distribution
as before, the dynamics can be described by the timds the steady state solution of the system restricted to the
dependent Langevin equation, reactant regiorfAppendix B. Assuming that a simple first-

V. REACTION RATES IN A TIME-PERIODIC FRICTION
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order master equation describes the rate prot&spendix TABLE I. The integral method of Eq(19) is compared to the stationary

B), the population in the reactant well can be solved directveactive-ﬂux methqd gf Eq21) _in cglculating the activated rate across the
double-well potential in a rotating field of frequenay All the calculations

as, are performed at the same bath temperature suchBi¥tit 10, and at three
n (t)—ﬁ t different values ofy illustrative of the low, intermediate, and high friction
&7 a_ exp — | dt/\'(t)], (18 limits. Here and elsewhere, all values are reported in the dimensionless units
Ny(to) =N, to of Eq. (16).

where the relaxation rate(t)=k*+k~ is the sum of the w

forward (k) and reverseK ") rates, and, is the popula-
tion in the left well at equilibrium. At equilibrium, for a
symmetric potentiah(t) =n.(t)=N/2 whereN is the total Integral method X10® 1.17<10° 155<10° 85x10°
population of Brownian particles. In a nonequilibrium bath, Reactive flux 210°  2x10°  2x10° 23x10°
such as is seen in the model described in Sec. II, that has ©

oscillatory components with a maximum recurrence time,

then a phenomenological rate may still be obtained by aversates ay=1 0 0.1 ! 10
aging at sufficiently long times compared to the maximumintegral method ~ 1.X107° 2.2x10°° 2.9x10°° 3x10°°

Rates aty=10 0 0.1 1 10

recurrence time. In particular Reactive flux 1.&4105 1.6x10° 1.6x10° 25x10°
NC -
— ! !
M= to"(t ydt (199 gatesay=005s 0 0.1 1 10
1 n.(t)—N/2 Integral method ~ 3.810°° 1.55x10 % 1.47x10°° 2.05x10°
__ n o (19b) Reactive flux 3x 107° 3.15<10°° 1.76x10°° 1.9x10°°
t—t, N2 |

The second equality was introduced by Frishman and
Pollak** as a construction that can lead to long time stability o _ _
thereby ensuring a substantial plateau tfth@he instanta- odic friction Eq. (8). The direct and reactive-flux rates at

neous flux can be found using the differential expreséfon, different frequencies and different friction constants are com-
pared in Table I. The two do not always agree and the dif-

i(na_ ne) (208 ference can be as much as an order of magnitude. This result
dt should not be surprising because of the nonstationarity of the
problem. However, correlation functions for this system do
=—In(n,—n,). (20h  become stationary when one averages over the period of the
dt external perturbation. This suggests that Exl) should be

The numerical calculation of either of the direct rate for- further averaged over the initial time during a period of the
mulas requires the direct integration of a large number ofxternal field, yielding the average reactive flux rate,
trajectories all initiated in the reactant region. Consequently, o (270 (S[x(7)IX(7)O[x(t+ 1))
it will only be accurate when the numerical integrator is ac-  «(t)= —f T
curate for times that are sufficiently long to capture the rate 0 (6)
process. This holds at the moderate temperat(near V¥ (There is a formal proof in Appendix BA comparison be-
=10) explored in this work for which Eq€19) and (200  tween the direct rates and the average reactive-flux rate is
lead to the same result. The first method was used in all %resented in Table Il. The numerics were performed at a
the direct calculations in this work because it tends to b@emperature gV*=10) that is high enough to enable direct
more stable. calculation of the rate within a few hours of CPU time on a

The direct methods are time consuming and it is practicurrent workstation. As can be seen from the table, there is
cally impossible to apply them at low temperatures. As wassery good agreement between the methods. Equé#inis
mentioned at the beginning of this section, the typical soluthe central result of this paper, and represents the factttbat
tion of this problem is the use of the reactive flux method. Itreactive flux method is valid for the case of a time-dependent
samples only those states that traverse the dividing surfacpath when a proper averaging is taken over the period of the

—\(t)=

Na—Nc

(22)

For stationary systems, the reactive fluk is external field This result is critical for the numerical calcu-
N (8[9(0)1§(0) [ q(t)]) Igtlon of rates because the dlrgct approaches are cost prohlbl-
k= 8(q) , (21 tive when the temperature is much smaller then barrier
(6(a)) height. In this section the reactive flux method has been gen-

where the characteristic equatiépg(t) ] for a trajectory is 1  eralized to include out-of-equilibrium systems in cases in
if the particle is in the right well at timeand zero otherwise, which an external force perturbs a bath that is coupled to a
and the Diracé function ensures that all the particles arereactive system. The resulting thermal flux is defined only
initially located at the barrietat x=0). The angle brackets after averaging over the time period of the external perturba-
represent the averaging over the thermal distribution of theéion. Using the nonaveraged rate expression would lead to
initial conditions. undefined rates because the reactive system is so far out of
One might naively assume that the rate expression in Egequilibrium. A detailed explanation can be found in Appen-

(21) might still hold in the nonstationary case of time peri- dix B.
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TABLE Il. The integral method of Eq(19) is compared to the average reactive-flux method of (8) in
calculating the activated rate across the double-well potential in a rotating field of frequeang various

friction constantsy. The potential and inverse temperatug/{=10) are the same as in Table I. At each entry,

the integral method result is written above the more approximate average reactive-flux result. To aid the eye, the
latter is also signaled by parentheses.

Y
o) 0.005 0.05 0.5 1 10

0.1 3x10°8 1.55x10°° 2.3x10°° 2.1x10°° 1.15x10°°©

(2.78x1079) (1.51x10°%) (2.3x10°%) (2.1x10°%) (1.18<10° %)

0.5 2.8<10°8 1.43x10°° 2.22x10°° 2.1x10°° 1.375<10°°

(2.62x1079) (1.45x10°%) (2.23x10°%) (2.13x10°%) (1.41xX1075)

1.0 3x10°8 1.45<10°° 3x10°° 2.7x10°° 1.45x10°°

(2.7x1079) (1.39x10°%) (3.01x10°%) (2.7x10°%) (1.47x1075)

5.0 3x10°8 1.9x107° 3.25x10°° 2.8x10°° 1.2x107°

(2.7x107°9) (1.86x10° %) (3.26x10° %) (2.86x10°%) (1.14x10°9)

10.0 3x10°° 1.92x10°® 3.25x10°8 2.7x10°8 8.6x10°°

(2.7x107°) (1.92x10°%) (3.35x10°%) (2.78<10°9) (8.87x10°9)
B. Analytical approximations by the time lagr relative to the start of an oscillation in the
1. Weak friction friction of Eq. (8). Trajectories in one dimension can be cal-

. . culated up to a quadrature directly from energy conservation,
For the stationary problem, Mel'nikov and Meshkdv P q y 9y

developed a perturbation technique to find the reactive flux at t
weak to moderate friction limi° The expansion parameter q(t)zq(to)+2J't dtvE—=V(q). (28)
of the method is the energy logsthat a particle starting at 0

the barrier experiences while traversing the well. Its value i3 the case of the double-well potential defined by E),
5=1vBs, (23)  theinstanton aE = V¥*—viz, the periodic orbit on the upside-

i ) o ) ) ~down potential—can be obtained analytically. The results for
wheres is the action of a frictionless particle starting with e

zero momentum at the barrier and returning back to the top

of the barrier after traversing a periodic orftite instantoj 1 (V2+2-¢?
e, tQ)=— 5| —(—— (29
q
o (=)
S=f pz(t)dt=f pdg. (24  and momentum,
—e a(—)
The resulting rate is p(a)=+2q\2—q (30
k=krstY, (25 as a function ofg follow readily. By substitution into Eg.

(27), the energy loss parameter is obtained directly with re-
spect to the time lag relative to the start of an oscillation in
the friction of Eq.(8), i.e.,

wherekrsy= w/2me #V is the transition state theory rate
is the frequency at the bottom of the reactant well &tids
the barrier heightand the depopulation factdf is

2 2
1 (= _ V2 o \/E-i- \/ﬁ
Y(b‘):exp[zf In{1—exd — S(\2+1/4)]} 5(7)—27Bf0 dq[a+005{ Fhl————|tor
1 x\2qv2— 2. 31)
N2+ 1/4 ] (29 The nonstationary rate formula for a time-periodic driving

friction can thus be written as the product of the TST rate

The nonstationary analytic rate expression can now b%nd a generalized depopulation factor averaged eyver
obtained by analogy to the formulation of the average

reactive-flux rate in which the rate is averaged over the pe- _ 1
riod of driving term. In particular, the energy loss, Y[o]= JO drY[é(7)], (32
o(r)= Vﬁﬁ Y(t+7)%p?(t)dt (27)  in analogy with Eq(25).

The validity of the analytical result of Eq32) for the
is now obtained as a function of the possible initial configu-rate can be checked in the low friction regime in which
rations of the driving term which are, in turn, parametrizedY ()~ 6. Taking the average over a period yields the result,

Downloaded 08 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



014509-8 E. Hershkovits and R. Hernandez J. Chem. Phys. 122, 014509 (2005)

TABLE IIl. The transmission coefficients for the escape rlatacross a P 2 :
quartic potential at3V*=10 and y=0.005 obtained using the average q bd—7d &(t) (34

reactive-flux method of Eq(22) with the analytical Mel'nikov-Meshkov  \where the fixed frictiony and stochastic forcé(t) satisfy
expression(33) for 8. An ensemble of 100 000 trajectories has been propa-tha regular fluctuation dissipation relatipiiq. (2)] andi wy,
gated in each of the reactive-flux calculations. . - . .

is the imaginary frequency at the barrier. It was shown that

® the reaction rate for this case’q4°
Rates aty=0.005 0.1 1 10 Ap @q +
k= — 5—exp—BVY), (395
MM [Eq. (33)] 854<10°2  854x10°2  854x10 2 wp 27
k(t) [Eq. (22)] 7.5x10 2 7Xx1072 7.5x107?

wherewy is the frequency of the reactant well aind, is the
imaginary eigenvalue of the homogeneous part of B4¢).

The latter is related to the exponential divergence in the tra-
jectories near the barrier,

I 10} 27w
Y[&]% Efo 5(7‘)d7‘ q(t)ocexbt. (36)
8 1 At strong friction in the nonstationary problem, the re-
=—|a%+ 5) _ (33  action rate expression is also dominated by the trajectories in
3 the barrier region. Equatiof85) can still be used for the

This result is in good agreement with the averaged reactiveates, though nowk(t) is the time-dependent eigenvalue of

flux rate formula of Eq(22), as;t shown in Table Il at a low the homogeneous part,

friction value (y,=0.005), BV*=10, and various frequen- .. N I

cies. Even within this weak friction regime, as the friction a+yé(H)g-eq=0 (37)

increases, the approximation leading to E8p) will break  of the nonstationary stochastic equation of motion. The so-

down. The direct evaluation of E432) corrects this error, lution of this equation is not trivial. A possible way to solve

and also leads the rate to depend on the frequency of thi&e problem is found in Ref. 31. It is easier to extract the

driven friction (Fig. 4). eigenvalue numerically from the exponential divergence of
trajectories starting near the barrier top,

2. Strong friction
9 . (38)

q(t)ocexp{f)\b(t’)dt’
The reaction rate in the overdamped regime of the LE is t

well knpwn.z The central idea is that the motion in phase 1 periodicity of the time dependent coefficient in E2i7)
space is strongly diffusive in this regime. The rate is consea44s also to a periodicity iNy(t). If A, is the time average
quently dominated by the dynamics close to the barrier. Ayt (e time-dependent eigenvalue of E87) over a period,
the vicinity of the barrier top, the potential can be approxi-inan fort much larger than the period, E(@8) is analogous
mat_ed by an inve_:rted parabolic potential and the LE at theEq.(%) with;b in the exponent. Replacementiaf by A, in
barrier can be written as the rate expressiofiEg. (35)] provides good agreement with
the averaged reactive-flux rates as shown in the high friction

0.000040 columns of Table IV.

CG—O1=0.005

0.000030 T 3. Weak to high friction

The results of the two previous sections have motivated
the redefinition of the components of the rate formula in the
low and high friction limits of the nonstationary time-
periodic problem. Retaining these assignments in the station-
ary turnover rate formufd suggests the nonstationary turn-
over rate,

: : : — N wg (Y[8])?
-0.5 0.0 0.5 1.0 =
In(e) wp 27 Y[26]

~  0.000020 F

E

E:
0.000010 |

G B i ~ A B==== =

0.000000
~-1.0

exp(— BVH). (39

FIG. 4. The activated escape ratesf particles in a quartic potential and The prefactors from the nonstationary turnover rate are com-
solvated by an anisotropic time-dependent liquid is obtained as a function oghared to those from the averaged reactive-flux rate at the
the driving frequgncya{ using two numer_lcal methods descnb_ed in this inverse temperaturg=20 in Table IV and in Fig. 5. As can
work. The numerical direct rate of E¢L9) is shown by dashed lines, and . .
the averaged reactive-flux rate of EQ2) is shown by solid lines. In the be seen, there. IS avery gOOd agreement between the qumer|-
former, an ensemble of 250000 initial conditions were used to achievecal and analytic results at the very weak and strong friction
convergence, and the corresponding numerical values are summarized jimits. Therein the results differ by no more than 5%
Table lll. In the latter, the average was performed over an ensemble . ;

100 000 trajectories, yielding the results in a wall-clock time that was ar?{hrOUghOUt the_ frequency rgnge, an err_or margin smaller than
order of magnitude faster than that for the direct rate calculations. In altN€ €rror bars in the numerical calculations. At moderate fric-

cases, the inverse temperatyge* is 10. tion and low frequencies, however, the differences—on the
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TABLE IV. The average reactive-flux method of Eg2) is compared to the analytic approximation of E8P)

in calculating the activated rate across the quartic potential in a rotating field of frequear@yvarious friction
constantsy. The inverse temperaturg@y*=20) is higher in contrast to the previous tables. At each entry, the
more approximate average reactive-flux result is written above the analytic result. To aid the eye, the former is
also signaled by parentheses.

y
o 0.005 0.05 0.5 1 5 10
0.1 (0.14 (0.514 (0.64 (0.61) (0.424 (0.325

0.13 0.51 0.62 0.56 0.381 0.32
0.5 (0.14 (0.52 (0.62 (0.61) (0.432 (0.373
0.13 0.474 0.625 0.595 0.44 0.366
1.0 (0.14 (0.539 (0.694 (0.67 (0.451) (0.376
0.132 0.5 0.72 0.708 0.457 0.366
5.0 (0.15 0.7 (0.829 0.7 (0.39 (0.283
0.147 0.691 0.825 0.7 0.372 0.282
10.0 (0.159 (0.729 (0.82 (0.689 (0.3D) (0.21)
0.148 0.720 0.821 0.683 0.3 0.219

order of 10%—cannot be explained by error in the numericatape rates. It is clear from the results that there is a frequency
calculations alone, and may be significant. Corrections oeffect on the reaction rates. For the specific example studied
improvements in the approximations leading to the connechere, the effect can modify the reaction rate.

tion formula of Eq.(39) are also of interest, but not pursued

further in this work. Recall that the turnover escape rate exy|. DISCUSSION AND CONCLUSIONS

pression for the LE with constant friction was obtained
through the solution of the equivalent Hamiltonian
formalism?° A similar approach for the solution of a Hamil-

In this work, several techniques for obtaining the dy-
namics of interacting Brownian particles that are coupled to

tonian equivaledf of the stochastic time-dependent bath & time-dependent thermal bath have been discussed. Two

problem may lead to a fruitful solution. However, even in theModels, one of dynamics in lyotropic liquids and one for

constant friction case, the turnover formula can give rise tdjynamlcs in pure nematic liquid under a periodic external
small systematic error. With these reservations, the approx?c-'eId has been brought as examples of such systems. The

mate rate formula can be used to obtain time-dependent efodels include a new mechanism for stochastic dynamics in
which an external force is used to drive the thermal bath.

There is no net injection of energy to the Brownian particles
in the bath due to the driving force, hence they keep their
equilibrium properties. Yet observables such as reaction and
diffusion rates are modified. The existence of a steady state
that retains the equilibrium enables one to express out-of-
equilibrium observables with respect to averaging over the
equilibrium. This is the Onsager regression hypothéss
pendix B. We used this to extend known methods for calcu-
lating the reaction rates in the constant friction to nonstation-
ary baths. Extensive computation effort was used to illustrate
the diffusive and reactive rates for an effective Brownian
particle in the naive anisotropic liquid bath model with ro-
tating magnetic field. However, the numerical and analytical
tools that have been modified and developed in this work are
1o Y 00 05 10 appropriate for any model with time-dependent friction.
In(e) The construction introduces new control parameters into
the problem; namely, the external force amplitude and fre-
FIG. 5. The activated escape ratesf particles in a quartic potential and uency. We concentrated on the latter and exhibited the fre-
solvated by an anisotropic time-dependent liquid is obtained as a function 09 'd d f diffusi d . in th
the driving frequency» comparing the reactive-flux approach to an analyti- quency epen .ence ora US|On_an reaptlon rates In the na-
cal result.(The latter is expected to be accurate here—and not in Fig. 4 oive model. This dependence is not linear and changes
Table ll—because the inverse temperature has been increased fh20. dramatically with the friction strength. The enhancements in
solid line corresponds to the numerical result calculated using the averageﬂi]e reaction rate and the diffusion coefficient are not the
reactive-flux rate method of E€R2) and the dashed line corresponds to the . . . . . .
turnover formula in Eq(39). The numerical calculations were performed by same, i.e., the maximum in the diffusion rate as a function of

averaging over an ensemble of 250 000 trajectories. the external frequency is not the same as the maximum in the
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rate. This nonlinear behavior could be used to enhance reac-

tion diffusion processes, such as cluster nucleation, by up to  Gran™ a|

a few order of magnitude. ) . )
In the extension of the naive model to more realistic — (244 3yPPP)N2]Za+ [ = V" h+ Y2+ 24

nematic liquids, the cooperative effects of the liquid cannot

be omitted. There are phenomenological difficulties in defin- +7W/2¢]24

ing friction and the fluctuation dissipation relation in liquid

crystals. To the best of our knowledge such a theory is still

not fully developed. The development of such a theory baseg . =a

on microscopic assumptions is an extremely challenging

problem. Boundary effects and elastic forces will create dy- _ 1 . 3 .

namical microdomains characterized by differing uniform di- +3yyPp)h— [ -3 Py + y( 3yt + > wzw) } hz]

rectors in a real nematic under rotating magnetic field. The

theory for dynamics in nematics will have to deal also with X Zy+H{=V" g+ y2y°+ {p+4y¢2¢+[pov’"¢

the spatial inhomogeneities. These are among the challenges . : . :

to future work in trying to better understand the diffusive +5y2 i+ Ay 2y + ) =V g+ 43 1h) Zy

dynamics in lyotropic liquids. " m "’ :
Y yoropie 1 L2V YR — P+ PV g BV = 3 — 992y

Zo+[—yhP—2¢

. 1. ’
Yyt 5

: (A2)

A ¢h2 ¢<3>h3 ZiH =y (
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integrator to be computed very economically despite the
seemingly large number of terms contained above. In fact,
the most time-consuming part of the scheme is the calcula-
tion of the random numbers. Although the fourth-order inte-

A high-order integrator was developed for the regular LEgrator has been expanded in terms of the stochastic variables,
or GLE in Ref. 42. A modified algorithm for time- and space- the neglected higher-order terms have coefficients that de-
dependent friction was developed for the explicit GLE with pend on the friction and frequencies to high order. Conse-
exponential memory kernel in the frictidA.This appendix quently, the algorithm loses its efficiency at high friction or
introduces the numerical scheme necessary for solving @ the high frequency domain. For a given problem, a com-
time-dependent stochastic equation, equation of motion, aparison of the fourth-order algorithm to lower-order algo-
the form of Eq.(7). rithms such as the velocity Verlet algorithtis advisable to

A finite difference scheme is used to propagate the soluensure that the requisite accuracy is achieved. Though not
tion over a small time step. At each iteration, the propagatopresented explicitly here, such comparisons have been per-
is expanded to fourth order with respect to the time stegormed with favorable agreement for the models of this
using a strong Taylor schefiéThe resulting integrator can work. The fourth-order integrator is accurate, and equally

APPENDIX A: FOURTH-ORDER INTEGRATOR
FOR THE LE WITH PERIODIC FRICTION

be decomposed into two uncoupled terms, importantly, provides a substantial savings in computational
time.
q(t+h):qdel(pvqat)_"qrar(pvqat)a (Ala)
P(t+h)=Pge( P.0.t) + Prad P, 1). (Alb)  APPENDIX B: REACTIVE-FLUX METHOD FOR

The deterministic terms that are collected withip,andpget SYSTEMS IN NONSTATIONARY ENVIRONMENT

are those that remain in a fourth-order Taylor expansion of The reactive-flux formalism is an efficient numerical
the deterministic equation of motion after removing any termtool for calculating the escape rates of Brownian particle
that includes a stochastic variable. The deterministic propafrom a metastable well at low temperatures. The derivation
gator can be calculated numerically with any fourth-orderof the reactive-flux method is well formulatédn this ap-
deterministic scheme; the fourth-order Runge-Kutta methogbendix, the derivation is recapitulated in oder to emphasize
was chosen for this worfé the new considerations that emerge because of nonstationar-
The random propagatofgiving rise to the stochastic ity. The corner stone for any rate calculation in a nonequilib-
contribution, g,,, and p,,) includes all terms up to fourth rium system is “the Onsager regression hypothesisThis
order that include stochastic variables. For the present casBypothesis asserts that “the relaxation of macroscopic non-
the random integrator for the space and momenta leads to thegjuilibrium disturbances is governed by the same laws as the
contributions, regression of spontaneous microscopic fluctuations in an

Downloaded 08 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



014509-11  Reaction dynamics within anisotropic solvents J. Chem. Phys. 122, 014509 (2005)

equilibrium system.®® The two basic assumptions of the re- well, andA=(k"+k~) as in the text. The Onsager regres-
gression hypothesis are the existence of an equilibrium andsion hypothesis enables the connection to the equilibrium
considerable(large separation of time scales between theaveraged expression,
motion of the subsystem and that of the overall relaxation of

80[q(te) 186 q(t t
the system. (o0[q(to)] [ZI( ) :eXF{J' A (t)dt (B4)
The proof of the existence of an equilibrium in a system (o0[a(to)]%) to
is more readily obtained through an analysis of the probabll-rakmg the time derivative of both sides leads to
ity distribution W(q,p;t) of the Brownian particles rather
than the explicit trajectories calculated using the LE. The(59[Q(to)]59[Q(t)] vt
equation of motion for the distribution is the Fokker—Planck 2 —Mtexp — [ AMU)dt (B53)
(o6[a(to)]9) 0
equationt
~—N\(1). (B5b)
J The last equality is a result of the large time scale separation
_W . - — = — [ — .
(.pit) [ aq P [ V(@)= vo¥ (O)p] So far there is no real difference from the standard deriva-

tion. In the usual derivation, the assumption of stationarity

would now permit the modification of the numerator into the
ﬁ ‘/’Z(t)] W(a.p;t), (BD) form of a flux correlation function. This cannot be performed

in the present time-dependent case. However, stationarity can
which corresponds to the nonstationary LE in Eg. A  be regained in this system by averaging over the period of
direct substitution of the Boltzmann distribution confirms the time-dependent friction. In practice, this can be achieved
that it is indeed a solution of this equation. From this one caPy initiating the subsystem at various time shifteelative to
deduce that the Boltzmann distribution is the equilibriumsome arbitrary time origin in the time-dependent friction. An
distribution for systems with time-dependent friction. It integration over the period of E¢B5) leads to the averaged
might seems strange that equilibrium does not change wheierm of the reactive flux,

2

the system is driven by a time-dependent forcing friction. 2nlo  (Sq[7I[q(7)]16[q(t+7)])
The key point is that the force is coupled only to the bath— T 5
The bath is taken to be infinite dimensional and absorbed th&” (o0la(n)]%)

energy extract by the force. This, of course, does not mean
that the system dynamics is not modified. On the contrary, as
has been shown in the paper, the diffusivity and reaction
rates are modified by the periodicity of the externally driven w (270
friction. The time scales relevant to the second assumption ~_— dra(7) (B6b)
are the period; of the external force, the transient tinagof 2m
the system, the typical escape timgof a thermal particle,
and the observation time. By construction of the naive
model and the choice of its parametrization, these times folThe bar in the definition ok indicates the average over time
low the simple inequality: £;or 7o) <7<7.. As such, the period of the time-dependent friction. Equati@®6) is the
system necessarily satisfies both of the assumptions needaderaged reactive-flux rate for the nonstationary system with
to apply the Onsager hypothesis. periodic friction. The above algebra also justifies the exten-
The rate constants may be obtained from a first-ordesion of the Mel'nikov—Meshkov theory to the time-
master equation representing the population dynamics, dependent friction case averaged over a period of the exter-
nal perturbation described in Sec. V B.

:ijZﬂ'/wdT<50[Q(T)]0[Q(t+T)D (B63)

27 (s6[a(m)1?)

= sf (B60)

N (t)=—k" (H)ny(t) + k™ (t)n(t), (B2a)

hc(t) — k*(t)na(t) —k~(t)ngt), (B2b) ;H. R_liske_n,The FokkerPlanck EquationSpringer, New York, 1989
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