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A time-dependent no-recrossing dividing surface is shown to lead to a new criterion for identifying
reactive trajectories well before they are evolved to infinite time. Numerical dynamics simulations
of a dissipative anharmonic two-dimensional system confirm the efficiency of this approach. The
results are compared to the standard fixed transition state dividing surface that is well-known to
suffer from recrossings and therefore requires trajectories to be evolved over a long time interval
before they can reliably be classified as reactive or nonreactive. The moving dividing surface can be
used to identify reactive trajectories in harmonic or moderately anharmonic systems with
considerably lower numerical effort or even without any simulation at all. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2206587�
I. INTRODUCTION

It is perhaps surprising how many problems in chemis-
try, physics, and biology can be reduced to the simple model
of diffusion over a barrier.1 Although chemical reactions in
all phases of matter provide the prime example,2,3 a plethora
of systems that evolve from suitably defined “reactant” to
“product” states are amenable to a description in this
framework.4–9 Transition state theory3,10,11 �TST� or one of
its descendants12–14 is often used to approximate the rate of
these reaction processes. This theory is based on the assump-
tion that the reaction rate is determined in a small volume of
the phase space near the barrier. It is then possible to define
a dividing surface separating reactants from the products and
obtain the rate from the flux through this surface. The opti-
mal location of the dividing surface is that which minimizes
the number of recrossings—the fundamental idea of varia-
tional transition state theory.15–19 When the system of interest
can be viewed as isolated from its environment, as in low-
density gas phase chemical reactions, TST may indeed pro-
vide an excellent approximation to the rate. However, most
processes of interest do not take place in isolation, but rather
in a complex environment where interactions between the
system and its surroundings occur on time scales comparable
to that of the reaction. In a reaction occurring in the con-
densed phase, for instance, the dynamics of the solute is
strongly coupled to that of the solvent. In this case, the fun-
damental assumption of TST, that the dividing surface is
crossed once and only once, no longer holds.20–23 On the
time scale of the reaction event, fluctuations of the environ-
ment will almost inevitably cause recrossings of the dividing
surface that lead to an overestimation of the rate.

To overcome the recrossing problem, many TS dividing
surfaces have been suggested in the literature3,19,24,25 which
provide systematic �and simple� approximations to the opti-
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mal TS dividing surface. In some cases, the dividing surface
has been identified in the infinite-dimensional phase space
consisting of the system and an explicit set of bath
oscillators.25–27 This approach leads to an excellent approxi-
mation to the rate.13,25 Interestingly, the same result was sub-
sequently obtained without recourse to the explicit heat bath
model, using instead a collective reaction coordinate contain-
ing the influence of the bath directly.28

In a recent series of papers,29,30 we reformulated the re-
crossing problem using a dividing surface that is itself mov-
ing stochastically so as to avoid recrossings. The motion of
that surface follows the unique trajectory—named the TS
trajectory—that never leaves the barrier region. Any reactive
trajectory crosses the moving surface once and only once,
whereas a nonreactive trajectory does not cross at all. This
construction extends the approach of Ref. 28 in that it pro-
vides not only a reaction coordinate, but also the complete
geometric structure by specifying all of the unstable and
stable degrees of freedom globally.31 The previous purely
analytic studies29,30 are complemented here with a numerical
investigation of the reaction dynamics for a two-dimensional
stochastic nonlinear model. It will be shown that the moving
dividing surface offers considerable computational advan-
tages over the traditional fixed surface. Its use can signifi-
cantly reduce the simulation time required to distinguish be-
tween reactive and nonreactive trajectories. Indeed, for a
harmonic barrier it identifies reactive trajectories a priori, so
that the need to simulate their dynamics does not arise at all.
In an anharmonic system, the identification of reactive tra-
jectories by the moving surface is no longer exact. Neverthe-
less, for moderately strong anharmonicities it provides a use-
ful approximation, and its advantages over the fixed surface
are retained. In addition, the moving TS surface introduces
novel observables that characterize the reaction process on a
microscopic level. Most prominently, it allows one to define

a unique reaction time for each individual trajectory.

© 2006 American Institute of Physics10-1
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The outline of this paper is as follows: In Sec. II, the
two-dimensional stochastic nonlinear model that is the focus
of the computational studies in this work is defined and the
construction of the moving TS dividing surface and its asso-
ciated geometric structures is briefly reviewed. In Sec. III,
the ensemble of trajectories is specified by a thermal distri-
bution of particles localized at the conventional TST dividing
surface. This barrier ensemble is reminiscent of the weight-
ing distribution in standard rate expressions and is appropri-
ate even in nonlinear cases. Its simple structure also readily
leads to the analytic determination of several observables of
the model system in the harmonic limit �Sec. IV�. They are
in precise agreement with the numerical results presented in
Sec. V. The latter section also demonstrates that the observ-
ables converge faster when evaluated using the moving di-
viding surface rather than conventional numerical methods,
both in the harmonic limit and in systems with anharmonic
barriers. This observation is particularly useful in the anhar-
monic case when the chosen system is not amenable to ana-
lytic approaches.

II. PRELIMINARIES

Although the general theory is applicable to systems
with an arbitrary number n of degrees of freedom, the fol-
lowing discussion will be restricted to n=2 coordinates un-
der the influence of a stochastic bath. This choice can be
made without loss of generality because it exhibits all the
salient features of the higher-dimensional cases: It can en-
compass an unbound �reactive� direction and a bound bath
mode whose interaction with the reactive mode is strong
enough to require its explicit description. The coupling of the
modes is described by a Taylor expansion about a transition
point �or col� on the potential energy surface. Such a model
with a minimum number of nonlinear terms is described in
this section. It will be used in the following to study the
effect of increasing anharmonicity on the identification of
reactive trajectories.

To set the stage for the following investigations, the con-
struction of the moving TST dividing surface and the asso-
ciated invariant manifolds is summarized in the remainder of
this section. The reader interested in a full exposition is re-
ferred to Refs. 29 and 30, where the formalism was first
introduced.

A. The two-dimensional dissipative model

A prototypical reactive system within a solvent may be
described by the Langevin equation32

q̈��t� = − �qU�q��t�� − �q̇��t� + ���t� . �1�

The vector q here denotes a set of n=2 mass-weighted co-
ordinates, U�q� the potential of mean force governing the
reaction, � a symmetric positive-definite friction matrix, and
���t� a fluctuating force assumed to be Gaussian with zero
mean. The subscript � represents randomness by labeling
different instances of the fluctuating force. The latter is re-
lated to the friction matrix � by the fluctuation-dissipation

32
theorem
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����t���
T�t���� = 2kBT���t − t�� , �2�

where the angular brackets denote the average over the in-
stances � of the noise. Although not strictly necessary, the
friction is often taken to be isotropic, i.e.,

� = �I , �3�

with a scalar friction constant �.
The reactant and product regions in configuration space

are separated by a potential barrier whose position is marked
by a saddle point q0

‡=0 of the potential U�q�. In its vicinity,
the potential is approximately harmonic and can always be
written in a diagonal normal form. In general, anharmonic
terms will be present in the potential. In the neighborhood of
the saddle point, where the reaction rate is determined, they
are only moderately strong, but usually not negligible. In this
work, we include a typical �even� higher-order nonlinear
term and focus on the potential

U�x,y� = − 1
2�x

2x2 + 1
2�y

2y2 + kx2y2, �4�

where the position vector is written as q= �x ,y�, and the con-
stant k quantifies the nonlinear coupling of the different de-
grees of freedom. Note that the nonlinearity in the potential
�4� is symmetric in the coordinate system and neglects other
fourth order terms that are typically retained in the analysis
of anharmonic barriers. �See, e.g., Ref. 33, in which such
coupled anharmonic potentials have been used to study the
H+H2�H2+H reaction and bound vibrational systems.�
However, as discussed in the Appendix, it is amenable to an
analytic treatment that simplifies the numerical computation
of the forward and backward trajectories, while providing
sufficient coupling to break the exact integrability of the har-
monic system.

In the special case k=0, the system is globally harmonic.
In this case, the constructions outlined below yield a moving
dividing surface that is strictly free of recrossings. If k�0,
deviations from the harmonic dynamics will arise outside the
TS region that may lead to error in the identification of re-
active trajectories. Nonetheless, the wealth of microscopic
detail that the moving dividing surface reveals can most eas-
ily be illustrated using the harmonic limit. This is shown in
Secs. II and V A. The real power of the numerical method,
however, lies in addressing nonlinear systems; the accuracy
of the approximate identification of nonlinear reactive trajec-
tories is discussed in Sec. V B.

With the potential �4�, the Langevin equation �1� reads

q̈��t� = �q��t� + O�q�
3� − �q̇��t� + ���t� , �5�

where

� = ��x
2 0

0 − �y
2 � �6�

is the matrix of second derivatives of U�q�. The nonlinear
terms in �5�, which stem from the anharmonic contributions
to the potential �4� will be ignored in the remainder of this
section, where an exact dividing surface for the harmonic
limit will be constructed. The full nonlinear equation of mo-
tion �1� will be taken up again in the numerical calculations

of Sec. V B. The following presentation can easily be gener-
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alized to N spatial dimensions if y is understood to denote an
�n−1�-dimensional vector and the corresponding squared
frequency �y

2 an �n−1�-dimensional symmetric matrix
whose eigenvalues need not be degenerate.

B. The transition state trajectory

As was shown in Refs. 29 and 30, Eq. �5� can be rewrit-
ten in phase space, z= �q ,v�, with v= q̇, as

ż��t� = Az��t� + � 0

���t�
� �7�

with the 2n-dimensional constant matrix

A = � 0 I

� − �
� , �8�

where I is the n�n identity matrix. The matrix A is readily
diagonalized to yield the eigenvalues � j and the correspond-
ing eigenvectors V j. Equation �7� then decomposes into a set
of 2n independent scalar equations of motion

ż�j�t� = � jz�j�t� + ��j�t� , �9�

where z�j are the components of z in the basis V j of eigen-
vectors of A and ��j are the corresponding components of
�0,���t��.

A particular solution of Eq. �9� is given by

z�j
‡ �t� = 	
−�

0

e−�j	��j�t + 	�d	 if j such that Re � j 
 0,

− 

0

�

e−�j	��j�t + 	�d	 if j such that Re � j � 0.�
�10�

Whereas a typical trajectory will eventually descend into ei-
ther the reactant or the product wells, the trajectory given by
Eq. �10� has the important property29,30 that it remains in the
vicinity of the saddle point for all time. In this respect it
resembles the equilibrium position on the saddle that repre-
sents the unique trajectory in the absence of noise that never
descends from the saddle. We named this distinguished tra-
jectory the transition state trajectory in Refs. 29 and 30 be-
cause it plays as central a role in the TST in a noisy envi-
ronment as the equilibrium point does in conventional TST.
Although the integral representation �10� defines the TS tra-
jectory, it does not provide the most efficient way of calcu-
lating it. In fact, by means of an algorithm that we introduced
in Ref. 30 an instance of the TS trajectory can be sampled
almost as efficiently as an instance of the fluctuating force
itself.

C. The relative dynamics

Once the TS trajectory z�
‡�t�= �q�

‡�t� ,v�
‡�t�� is given, any

other trajectory under the influence of the same noise can be

described in relative coordinates

ownloaded 03 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. 
�z�t� = ��q�t�
�v�t�

� = z��t� − z�
‡�t� , �11�

where the TS trajectory serves as the origin of a moving
coordinate system. The relative coordinate vectors can be
written without a subscript � because they satisfy the noise-
less equation of motion

�q̈�t� = ��q�t� − ��q̇�t� , �12�

or, in phase space,

�ż�t� = A�z�t� �13�

and are, therefore, independent of the noise. Using the eigen-
vectors of A, one can construct invariant manifolds and a
no-recrossing surface of the noiseless relative dynamics. Ac-
cording to Eq. �11�, they can then be regarded as being at-
tached to the TS trajectory and being carried around by it. In
this way one obtains moving invariant manifolds and a mov-
ing no-recrossing surface in the phase space of the full, noisy
dynamics.29,30

In the two-dimensional case of the potential in Eq. �4�
under isotropic friction as specified in Eq. �3�, the eigenval-
ues of A can be found explicitly

�u = − 1
2 �� − ��2 + 4�x

2�, �s = − 1
2 �� + ��2 + 4�x

2� ,

�14�
�t1 = − 1

2 �� − ��2 − 4�y
2�, �t2 = − 1

2 �� + ��2 − 4�y
2� .

The corresponding eigenvectors read

Vu =
1

0

�u

0
�, Vs =

1

0

�s

0
� ,

�15�

Vt1 =
0

1

0

�t1

�, Vt2 =
0

1

0

�t2

� .

These simple analytic results are obtained because isotropic
friction leads to a decoupling of the reactive and the trans-
verse degrees of freedom. The eigenvectors Vu and Vs span
the reactive x−vx subspace, whereas Vt1 and Vt2 span the
transverse subspace y−vy.

The knowledge of the eigenvectors allows one to explic-
itly specify the coordinate transformation between position-
velocity coordinates �x ,�y ,�vx ,�vy and the diagonal coor-
dinates �xu ,�xs ,�xt1 ,�xt2 that characterize a phase space
point via �x=�i�xivi. In the reactive subspace, these trans-
formations read

�x = �xu + �xs, �vx = �u�xu + �s�xs, �16�

with the inverse

�xu =
�vx − �s�x

�u − �s
, �xs =

− �vx + �u�x

�u − �s
. �17�

For all values of � and �x, the eigenvalue �u is positive,

whereas �s is negative. They correspond to one-dimensional
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stable and unstable subspaces within the reactive degree of
freedom which, together with representative trajectories, are
illustrated in Fig. 1. The coordinate �xu determines the fate
of a trajectory in the remote future. Trajectories with �xu

�0 descend into the product well, those with �xu
0 into
the reactant well. Similarly, a stable coordinate �xs�0 indi-
cates a trajectory that comes out of the product well in the
distant past, whereas a trajectory with �xs
0 comes out of
the reactant well. A forward-reactive trajectory that changes
from reactants to products is thus characterized by �xs
0
and �xu�0, whereas a backward-reactive trajectory has
�xs�0 and �xu
0. Each reactive trajectory crosses the line
�x=0 once and only once. This line, or in several degrees of
freedom the hypersurface defined by this condition, can
therefore serve as a recrossing-free dividing surface between
reactants and products. Furthermore, the invariant stable and
unstable subspaces themselves act as separatrices between
reactive and nonreactive trajectories. Once the initial condi-
tion of a trajectory is known relative to these separatrices, it
can unambiguously be classified as reactive or nonreactive.

III. THE BARRIER ENSEMBLE

The rate calculation of infrequent events—such as that in
chemical reactions—can be greatly simplified by sampling
trajectories in the transition state region rather than in the
reactant region.34–38 The transition path sampling technique,
for example, focuses exclusively on reactive trajectories and
therefore mitigates the difficulty of studying high-
dimensional systems.39–43 Nonetheless, the rate of infrequent
events has long been known to be described by a flux-flux
correlation function relative to a fixed dividing surface.36,44,45

�But see Ref. 46 for a recent enhanced-sampling strategy to
smooth the potential and thereby speed up the calculations.�
One difficulty in computing the correlation function, how-
ever, is the need for the simulated trajectories to be evolved
for very long times simply to determine which trajectories

FIG. 1. Phase portrait illustrating the relative dynamics in the reactive de-
gree of freedom. Dashed lines indicate the stable and unstable manifolds of
the equilibrium point, and the dotted arrows display the corresponding
eigenvectors that span the diagonal coordinate system. Solid curves illus-
trate representative trajectories. White dots indicate two possibilities for the
position and velocity of the TS trajectory at time t=0, the vertical lines the
corresponding barrier ensembles. The probability density is given by the line
widths.
are reactive. We will show below that the use of the time-
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dependent TST dividing surface may allow one to resolve
that question in a more efficient way by identifying the na-
ture of the trajectory—viz., reactive or not—at significantly
earlier evolution times.

In order to sample the reactive trajectories efficiently, it
is useful to use initial conditions in which all the particles are
placed on the fixed TST dividing surface �x=0� at t=0. That
choice guarantees that the trajectories will cross the surface
at least once, but it does not prevent them from recrossing it.
Consistent with the Boltzmann weighting in the flux-flux-
correlation function,36,44,45 the initial conditions are distrib-
uted along the stable transverse direction y and the velocities
according to the probability density function,

f�x,y,vx,vy� = �2kBT�3/2�y��x�

�exp�− ��y
2y2 + vx

2 + vy
2�/2kBT� . �18�

This choice defines the barrier ensemble. The integration of
the Boltzmann-weighted flux of these states gives the TST
estimate of the numerator of the rate expression. If all these
states were reactive and never recrossed �returned to� the
fixed TST dividing surface, this estimate would be exact. The
questions to be resolved below concern the deviation of the
true dynamics from this TST estimate. These question will
be investigated for both harmonic and anharmonic barriers.
In all cases, the initial conditions will be sampled from the
same barrier ensemble �18�.

A stochastic trajectory is determined not only by its ini-
tial condition, but also by the specific instance of the fluctu-
ating force that is acting upon it. In a full-fledged rate calcu-
lation, for example, an average has to be taken over both the
initial conditions and the noise. The focus of this paper, how-
ever, is the information that can be obtained about the mi-
croscopic reaction dynamics using the moving TS surface.
For simplicity, a particular instance of the noise has therefore
been used to illustrate most of the results. Nevertheless, the
calculations presented here were repeated for several such
noise sequences always leading to the same qualitative con-
clusions and thereby confirming that the results shown here
are indeed typical. �These are not shown here for the sake of
brevity.� While averages over the noise will tend to wipe out
much of this microscopic detail, it is instructive to confirm
the convergence of the identification of trajectories in calcu-
lating averages. In what follows, the average of the forward
and backward reaction probability will be used to illustrate
the convergence and degree of accuracy achievable using the
moving TS surface to identify the reactive trajectories.

IV. ANALYTIC RESULTS

Although anharmonicities have to be addessed in a typi-
cal chemical system, it is helpful to begin with the harmonic
limiting case because it is amenable to an analytic treatment.
On one hand, the harmonic limit illustrates the level of mi-
croscopic detail in which the moving TST method allows one
to describe the reaction mechanism. On the other hand, the
analytic results derived here provide a benchmark against
which the performance of the numerical calculations of Sec.

V can be assessed.
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A. Reaction probabilities

The fate of individual trajectories in the barrier ensemble
�18� can easily be determined if their initial conditions are
transformed into relative coordinates. The projection onto the
reactive degree of freedom is illustrated in Fig. 1. Since in
space-fixed coordinates the barrier ensemble is centered
around q=v=0, the distribution function in relative coordi-
nates is peaked at the stochastic position �q=−q�

‡�0�, �v=
−v�

‡�0�. It reads explicitly

f rel��x,�y,�vx,�vy�

= �2kBT�3/2�y exp�− ��y
2��y + y�

‡�2

+ ��vx + vx�
‡ �2 + ��vy + vy�

‡ �2�/2kBT����x + x�
‡� .

�19�

The forward-reactive part of the ensemble is formed by
those trajectories whose initial velocity �vx is so large that
the trajectory lies above both the stable and the unstable
manifold of the equilibrium point. The knowledge of the
eigenvectors �15� allows one to locate these separatrices
quantitatively. Reactive trajectories are thus found to be char-
acterized by the condition

�vx � �vx,min ª �− x�
‡�s if x�

‡ � 0,

− x�
‡�u if x�

‡ 
 0.
� �20�

Therefore, the probability for a member of the barrier en-
semble to be forward-reactive is given by

Pf =
 d�x

�vx��vx,min

d�vx
 d�y

�
 d�vyf rel��x,�y,�vx,�vy�

= �2kBT�−1/2

�vx,min

�

d�vx exp�− ��vx + vx�
‡ �2/2kBT�

=
1

2
erfc��vx,min + vx�

‡

�2kBT
� , �21�

which has been written in terms of the complementary error
function47

erfc�x� =
2

�



x

�

exp�− t2�dt . �22�

In a similar manner, backward-reactive trajectories satisfy

�vx 
 �vx,max ª �− x�
‡�u if x�

‡ � 0,

− x�
‡�s if x�

‡ 
 0,
� �23�

and their probability in the ensemble is

Pb =
1

2
erfc�−

�vx,max + vx�
‡

�2kBT
� . �24�

B. Reaction times

In contradistinction to a space-fixed dividing surface, the

moving TS surface is crossed once and only once by each
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reactive trajectory. This allows us to define a unique reaction
time �t‡ for each reactive trajectory. It is the time when the
trajectory crosses the dividing surface, relative to the initial
time when the coordinates are specified by the barrier en-
semble. If the initial conditions �xu�0� and �xs�0� in the
reactive degree of freedom are prescribed, the reaction time
can be calculated explicitly. The dynamics of the reactive
degree of freedom is given by

�xu�t� = �xu�0�e�ut, �xs�t� = �xs�0�e�st. �25�

The dividing surface is characterized by the condition �x
=0, which can be rewritten in relative coordinates as �xu=
−�xs. The reaction time �t‡ at which this condition is satis-
fied is easily found to be

�t‡ =
1

�u − �s
ln

− �xs�0�
�xu�0�

=
1

�u − �s
ln

�vx�0� − �u�x�0�
�vx�0� − �s�x�0�

.

�26�

It is defined for all initial conditions that are either forward
or backward reactive. For a forward-reactive trajectory,
�vx�0��0. Because �u�0 and �s
0, it can easily be seen
from Eq. �26� that �t‡�0 if �x�0�
0, as it should be for
trajectories that start on the reactant side of the dividing sur-
face and are still to cross it. Similarly, a trajectory with
�x�0��0 is already on the product side, and its reaction time
is negative. A backward-reactive trajectory, on the other
hand, has an initial velocity �vx�0�
0. In this case, �t‡


0 if �x�0�
0 and �t‡�0 if �x�0��0.
If the initial position �x�0� is fixed, the reaction time

�26� tends to zero as �vx�0�→�. Trajectories with large ini-
tial velocities cross the barrier fast. On the other hand, as the
separatrices that bound the reactive region are approached,
i.e., �vx�0�→�u�x�0� if �x�0��0 or �vx�0�→�s�x�0� if
�x�0�
0, trajectories keep barely enough energy to cross
the barrier, and their reaction times tend to +� or −�, respec-
tively.

Once the reaction time is given as a function of initial
conditions, the distribution for the forward- or backward-
reactive part of the barrier ensemble �18� is readily obtained.
In the former case, its probability distribution function is
given by

p��t� =
1

Pf

 d�x


�vx��vx,min

d�vx

�
 d�y
 d�vyf rel��x,�y,�vx,�vy�

����t − �t‡��x,�vx,�y,�vy�� . �27�

The normalization factor 1 / Pf accounts for the fact that only
the forward-reactive part of the ensemble contributes to the
distribution.

The distribution function �27� can in its most convenient
form be written in terms of the dimensionless scaled time

‡ ‡
�	 = ��u−�s��t . It then reads
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p̃��	‡� =
1

�u − �s
p��	‡/��u − �s��

=
�r�

�Pf

e�	‡

�1 − e�	‡
�2

exp�− � r

1 − e−�	‡ + w�2� ,

�28�

where

r =
q�

‡�0���u − �s�
�2kBT

, �29�

w =
v�

‡�0� − �uq�
‡�0�

�2kBT
. �30�

The reaction probability Pf can be written in terms of r and
w as

Pf = � 1
2 erfc�r + w� if r � 0,
1
2 erfc�w� if r 
 0.

� �31�

The valid range of �	‡ is 0
�	‡
� if q�
‡�0��0 and −�


�	‡
0 if q�
‡�0�
0. The distribution function �28� is nor-

malized so that its integral over that range is one. Remark-
ably, the distribution depends only on the two parameters r
and w, even though the system dynamics and the distribution
of initial conditions are determined by the five parameters
�b, �, T, q�

‡�0�, and v�
‡�0�.

In a similar manner, the distribution of reaction times
can be computed for the backward-reactive part of the en-
semble. The result is again given by Eq. �28�, except that the
valid range is now −�
�	‡
0 if q�

‡�0��0 and 0
�	‡


� if q�
‡�0�
0. To obtain the proper normalization, the

reaction probability Pf in the prefactor of Eq. �28� must be
replaced by the backward-reaction probability Pb, which in
terms of the scaled parameters reads

Pb = � 1
2 erfc�− w� if r � 0,
1
2 erfc�− r − w� if r 
 0.

� �32�

As can be seen from Fig. 2, the reaction-time distribu-
tion �28� is highly asymmetric around its peak. The probabil-
ity distribution function is flat at 	=0, where all of its de-
rivatives are zero. For large �	�, it decays exponentially like

p��	‡� � 	
re−�r + w�2

�Pf

e−�	‡
if q�

‡�0� � 0, �	‡ → + � ,

re−w2

�Pf

e�	‡
if q�

‡�0� 
 0, �	‡ → − � . �
�33�

Because the distribution is so highly asymmetric, the average
reaction time will be significantly larger than the most prob-
able reaction time that is indicated by the maximum of the
distribution function.

V. NUMERICAL RESULTS

As soon as the anharmonicities of the potential in a re-

alistic chemical system have to be taken into account, the
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equations of motion can no longer be solved analytically, and
recourse must be taken to numerical methods. In what fol-
lows, the initial conditions, at t=0, are chosen from the dis-
tribution in Eq. �18�. All trajectories are evolved forward and
backward in time to t= ±Tint /2 using the stochastic integra-
tion algorithm introduced by Ermak and Buckholz.48,49 For
the backward propagation, the integration scheme was modi-
fied as described in the Appendix. In a conventional calcula-
tion of the exact rate expresssion, reactive trajectories are
identified according to the positions they attain at the start
and end of the integration interval. Trajectories that at t=
−Tint /2 and t= +Tint /2 are located on opposite sides of the
space-fixed dividing surface x=0 are classified as forward or
backward reactive; others are classified as nonreactive. This
criterion, however, is only reliable if the total integration
time Tint is sufficiently large. At short times, recrossings of
the dividing surface introduce unavoidable errors.

An alternative criterion for the identification of reactive
trajectories is obtained if the space-fixed dividing surface is
replaced by the moving TS surface described above. In the
most naive implementation, trajectories can be classified as
reactive if they are on opposite sides of the moving TS sur-
face at t= ±Tint /2. If the moving-TS-surface algorithm is
used instead, Tint can be reduced by as much as a factor of 2
while still obtaining nearly accurate results. In addition,
given that the moving TS surface is exactly free of recross-
ings in the harmonic limit and approximately so in an anhar-
monic potential, the integration can be stopped as soon as a
trajectory crosses the moving surface. There is no need to
follow the trajectory further and check for recrossings.
Therefore, when the moving TS surface is used, the actual
integration time will on average be much smaller than the
nominal integration time Tint.

The reliability of this identification is illustrated below

FIG. 2. The distribution �28� of reaction times �a� for w=1 and r=0.2
�solid�, r=0.5 �dashed� and r=1 �dotted�, �b� for w=−1 and r=−0.2 �solid�,
r=−0.5 �dashed� and r=−1 �dotted�.
using the two-dimensional saddle point potential of Eq. �4�
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with and without anharmonicity, k. In all of the numerical
calculations, the units are chosen for simplicity such that
kBT=1. The friction is isotropic, with �=0.2 in these units,
and selected so as to be near the turnover between the
energy- and space-diffusion limited regimes. Although most
of the calculations assume the same fixed noise sequence,
averages of the forward and backward reaction probabilities
over the noise are also shown below. In the former, the num-
ber of trajectories is fixed at Nt=15 000, which is large
enough to make statistical errors negligible. In the single-
noise calculations on the two-dimensional harmonic barrier,
the transverse frequency �y =1.5, and the barrier frequency is
set to �x=1.0. The latter is reduced to �x=0.75 for the noise
averaging and in the nonlinear cases in order to accentuate
the nonlinear coupling.

A. Harmonic systems

A typical reactive trajectory and the TS trajectory in the
harmonic limit �k=0�, are shown in Fig. 3. Clearly, the
space-fixed dividing surface x=0, in contrast to the moving
TS surface, is crossed many times. The respective percent-
ages of trajectories classified either as reactive and nonreac-
tive using the fixed dividing surface are displayed as a func-
tion of integration time in Fig. 4. Because all trajectories
start on the dividing surface, at very short times, every tra-
jectory is classified as either forward or backward reactive.
Subsequent recrossings of the transition state result in tran-
sient fluctuations of the reaction probabilities that slowly ap-
proach the true, long-time values. Figure 4 also shows the
percentage of trajectories that are nonreactive as well as
those that cross the fixed dividing surface only once at Tint

=0. The latter comprise the majority of the reaction events,
whereas the percentage contributed by reactive trajectories is
comparatively small. Nevertheless, the fluctuations in the
computed reaction probabilities that are caused by recross-
ings are considerable.

Because recrossings are crucial to the performance of the
algorithm, it is instructive to analyze them in more detail.
Figure 5 shows the average number of recrossings per trajec-
tory as a function of the total integration time. The trivial
crossing of the dividing surface that all trajectories undergo

FIG. 3. The evolution of a member of the ensemble and the transition state
trajectory depicted as the gray and black lines, respectively. The underlying
potential is included, and the fixed transition state x=0 is highlighted by the
heavy black line. The time-independent projection is shown on the base of
the figure. The sample trajectory is backward-reactive since it is a reactant in
the future and product in the past. As can be seen, the transition state tra-
jectory remains in the vicinity of the barrier for all times.
at t=0 is not included. The number increases monotonically
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as the trajectories cross and recross the transition state. Even-
tually, it reaches a plateau as they leave the barrier region
and are lost into either the product or reactant states. In ad-
dition, Fig. 5 decomposes the total number of recrossings
into those recrossings that occur on trajectories that are
found to be forward reactive, backward reactive, or nonreac-
tive at the given integration time. Because the classification
of a particular trajectory can change with increasing integra-
tion time, these contributions are not monotonic. Most
prominently, as the number of nonreactive trajectories de-
creases almost to zero at Tint�2 �see Fig. 4�, the contribution
of nonreactive trajectories shows the same behavior. For
large integration times, the largest contribution to recrossings
stems from nonreactive trajectories, which are bound to re-
cross the dividing surface at least once. In fact, a comparison
of Figs. 4 and 5 reveals that nonreactive trajectories on av-

FIG. 4. Reaction probabilities calculated using the fixed dividing surface
displayed as a function of total integration time. The fractions of forward
reactive, backward reactive, and nonreactive trajectories are shown as the
solid, dashed, and dotted lines, respectively. The dash-dotted line represents
the fraction of trajectories that cross the surface only once at Tint=0. In these
simulations, Nt=15 000 trajectories were integrated, the friction constant �
=0.2, and the barrier frequency is �x=1.

FIG. 5. The number of recrossings �dot-dashed line� of the fixed transition
state normalized by the total number of trajectories. The components of the
total that resulted in a forward-reactive or backward-reactive trajectories are
shown as the solid and dashed lines, respectively. Recrossings that resulted
in a nonreactive trajectory are displayed as the dotted line. The simulation

parameters are the same as in Fig. 4.
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erage recross more than three times before they finally leave
the barrier region. Most of the reactive trajectories, by con-
trast, do not recross, and their contribution to the recrossing
statistics is much smaller. Asymptotically, both forward and
backward reactive trajectories recross on average approxi-
mately 0.25 times.

The dynamics is greatly simplified if the moving TS sur-
face is used instead of the fixed one. Reaction probabilities
computed using either surface are compared in Fig. 6. Be-
cause the trajectories start at a distance from the moving TS
surface, the corresponding rates are zero for short integration
times. They then steadily increase toward the true long-time
probabilities. Since the dividing surface cannot be recrossed,
the asymptotic values are approached monotonically. The er-
ratic fluctuations of the computed reaction probability that
the fixed surface produces are absent if the moving TS sur-
face is used, so that a strict lower bound for the reaction
probability is obtained even for very short integration times.
In quantitative terms, the moving TS surface identifies a tra-
jectory as reactive if its reaction time �t‡ lies within the
integration interval, so that the finite-time reaction probabil-
ity for a forward reaction is given by

Pf�Tint� = Pf � Prob���t‡� 

Tint

2
� , �34�

and a similar expression for the backward-reaction probabil-
ity. The reaction probabilities computed from the moving TS
surface are therefore determined by the distribution �28� of
reaction times. The convergence toward the long-time prob-
ability is described by the long-time tail �33� of the reaction-
time distribution and is exponentially fast. Indeed, Fig. 6
shows that reaction probabilities computed using the moving
TS surface converge much faster than those obtained from
the fixed surface. Moreover, in cases such as the current
problem, in which the separatrices between reactive and non-
reactive trajectories are known exactly, the reaction prob-

FIG. 6. Reaction probabilities as a function of integration time calculated
using the moving �solid curves� or the fixed �dashed curves� dividing sur-
face. The upper set of curves represents forward-reactive probabilities, with
the lower set depicting the corresponding back reactions. The dotted curves
indicate the asymptotic values Pf =0.3332 and Pb=0.4993 calculated from
Eqs. �31� and �32�, respectively. The simulation parameters are the same as
in Fig. 4.
abilities Pf and Pb can be computed a priori, without having
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to perform any numerical simulations. The values obtained
from Eqs. �31� and �32� are also indicated in Fig. 6. They
agree precisely with the asymptotic probabilities obtained
from the simulation. Thus, the moving TS surface can pro-
vide accelerated convergence in the rate for finite-time com-
putations for linear problems.

The analytic reaction probabilities, Eqs. �31� and �32�,
for the harmonic barrier represent the limiting values that are
obtained for one instance of the noise using a large number
Nt of trajectories. To obtain a macroscopically observable
reaction probablity, one has to average these results over a
large number N� of realizations of the noise. That average
cannot be obtained analytically, but it can be easily calcu-
lated by a numerical quadrature. It provides a useful bench-
mark for the convergence of the computational schemes with
respect to Nt and N�. Figure 7 illustrates the forward and
backward reaction probabilities, averaged over N� realiza-
tions of the noise, as a function of N� and for different values
of Nt. The solid and dashed curves are obtained if reactive
trajectories are identified through the criteria provided by the
fixed and the moving TS surfaces, respectively. As expected
for a symmetric barrier, forward and backward reaction prob-
abilities converge toward the same limit. Moreover, the dis-
tributions of forward and backward reaction probabilities
agree, as shown in Fig. 8. For large Nt, the results in Fig. 7
agree with the analytic value displayed as the dot-dashed
curve in the figure’s bottom panel. Therein, dotted curves are
used to indicate the 95% confidence interval to further illus-
trate that the simulations are converging toward the correct
limit as expected.

FIG. 7. The reaction probabilities averaged over different instances of the
noise on the harmonic potential for four different values of the number of
trajectories �Nt� in the ensemble. The solid lines depict the results predicted
by Eqs. �31� and �32�. The dashed and dotted lines are the results obtained
using the respective fixed or moving dividing surfaces. In the harmonic case,
these two surfaces provide the same results and are indistinguishable. For
the case of Nt=1000 the light dotted lines display the 95% confidence in-
terval with respect to the number of noise sequences sampled �N��. The
simulation parameters are the same as those defined in Fig. 9.
The simulation results in Fig. 7 that employ the conven-
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tional criterion for identifying trajectories have been com-
puted using the large integration time Tint=21.5, to illustrate
the exact results within the error bars of the number average.
However, it should be clear from Fig. 4 that the moving-TS-
surface criterion often identifies reactive trajectories in less
than half this time, and once so identified a trajectory does
not need to be integrated further. Given that the calculation
of the moving surface itself—which amounts to the calcula-
tion of the TS trajectory—takes roughly as much computa-
tional effort as the integration of an ensemble trajectory,
computational savings can thus be obtained from the use of
the moving surface whenever the number Nt of trajectories
per noise sequence is larger than 2.

B. Nonlinear systems

The true test for the usefulness of the moving transition
state lies in its ability to identify reactive trajectories beyond
the linear regime. If nonlinearities are present, the relative
coordinate �11� does not achieve a complete separation of the
relative motion from the motion of the TS trajectory. There-
fore, the moving dividing surface will not strictly be free of
recrossings. However, if the nonlinearities are weak, recross-
ings can be expected to be rare. In these cases, the moving
dividing surface will be recrossing free to a useful approxi-
mation. Indeed, our results indicate that its advantages over a
fixed dividing surface persist well beyond the harmonic
limit.

We investigate the performance of the moving dividing
surface in the example of the potential �4�, with the coupling
constant k now taking nonzero values. The reaction prob-
abilities for several different values of k are displayed in Fig.
9. To accentuate the anharmonicity, the barrier frequency
was reduced to �x=0.75 to allow trajectories to spend more
time in the barrier region before escaping. For the transverse
frequency, the value �y =1.5 was retained. Evidently, for suf-
ficiently long integration times the moving transition state
provides essentially the same result as the fixed dividing sur-
face for all values of the coupling constant up to k=0.1.
However, the reaction probabilities converge toward the long
time limit monotonically and much faster than those com-

FIG. 8. The distribution of reaction probabilities in the harmonic limit cal-
culated from Eq. �31� and �32� from N�=20 000 different instances of the
noise. The x symbols display the results for forward-reactive probabilities
and the o symbols are for backward-reactive. The simulation parameters are
the same as those defined in Fig. 9.
puted with the fixed dividing surface. Therefore, the compu-
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tational advantages that the moving surface offers in the har-
monic limit persist even in the presence of quite substantial
nonlinearities. Eventually, of course, the use of a moving
dividing surface based upon the harmonic approximation
ceases to be meaningful, as can be seen for k=0.5 and k=1.
For the specific instance of noise used in these calculations,
the results obtained from the moving and fixed dividing sur-
faces remain in agreement for the backward-reactive trajec-
tories, whereas a substantial difference arises for the
forward-reactive trajectories. As is to be expected of any
TST scheme, in these cases the moving dividing surface
overestimates the reaction probability because any trajectory
that crosses the surface is assumed to be reactive, whereas
the possibility of recrossings is neglected. Although not
shown, a different instance of the noise does not change the
trends observed in Fig. 9.

As in the harmonic limit, the computational advantages
of the moving dividing surface in systems with moderate
nonlinearities stem from the fact that it is approximately free
of recrossings. This is illustrated in Fig. 10. The average
number of recrossings per trajectory of the fixed transition
state exhibits similar behavior for small to moderate values
of the coupling constant. It approaches approximately one
recrossing per trajectory in the long-time limit. In these
cases, the number of recrossings of the moving dividing sur-
face is so much smaller than the corresponding number for

FIG. 9. Reaction probabilities as a function of integration time calculated
using the moving �solid line� or fixed dividing surface �dashed line� for
various values of the coupling constant. The time step has been reduced to
8�10−6 for convergence and the barrier frequency changed to �x=0.75 to
accentuate the nonlinearity. For the case k=0, the results for the reaction
probabilities as calculated from Eq. �31� and �32� are included as the dotted
lines.
the fixed surface that it is not visible in the figure. At larger
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coupling, the number of recrossings of the fixed dividing
surface does not converge to a finite long-time limit, but
instead increases linearly with the integration time. The onset
of a similar behavior occurs at approximately the same value
of Tint for the moving dividing surface as well.

This increase in the number of recrossings for both the
fixed and the moving surfaces is caused by a small percent-
age of trajectories in the ensemble that never leave the TS
region for negative times, but rather get trapped in an oscil-
lation in the stable transverse degree of freedom y. If the
value of y is sufficiently large, the reactive degree of freedom
x in the potential �4� ceases to be unstable but instead be-
haves as a harmonic oscillator with a �possibly large� effec-
tive frequency �̃x

2=ky2−�x
2. As a result of these fast oscilla-

tions in the reactive degree of freedom, the dividing surfaces
are crossed many times. This mechanism has been confirmed
by a detailed trajectory analysis, which for brevity we do not
show. It is a rather peculiar feature of our model potential
due to the presence of only one higher order coupling term in
the potential �4�. We would not expect that such aberrant
behavior would arise in a typical system.

It is clear from Fig. 9 that for moderately strong anhar-
monicities the moving transition state correctly identifies the
overall number of reactive trajectories. However, that num-
ber is a macroscopic observable, and it is not immediately
clear whether, on a microscopic level, individual reactive
trajectories are identified correctly. The fraction of trajecto-

FIG. 10. The average number of recrossings of the moving transition state
�solid lines� and the fixed transition state �dashed line� normalized by the
total number of trajectories for given values of the coupling constant. The
simulation parameters are the same as those defined in Fig. 9. The values for
the moving transition state are too small to be seen on the same scale in the
top four panels.
ries that are identified correctly by the moving transition
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state is displayed in Fig. 11, where the “correct” identifica-
tion for a given trajectory has been assumed to be given by
the fixed dividing surface for a sufficiently long integration
time. In the cases of weak to moderate coupling, the classi-
fication obtained from the moving dividing surface is correct
for all trajectories, but, as expected, it begins to fail for cou-
pling strengths around k=0.5. The fact that the identification
of the backward trajectories is poorer than that for the for-
ward trajectories at large k is not surprising. The initial
distribution—particles located at the naive fixed transition
state with forward velocity—disfavors backward trajectories
which must recross the fixed TS at least twice more in order
to reach the appropriate boundary conditions. Nevertheless,
Fig. 11 confirms that the favorable behavior of the moving
surface that is apparent in Fig. 9 indeed reflects a correct
description of the underlying microscopic dynamics.

Figure 12 displays the noise-averaged reaction probabili-
ties for the fixed and moving dividing surfaces for a coupling
of k=0.1. The results display the same convergence behavior
in both cases, except that for the moving TS surface they are
shifted to larger values by roughly 5%. This small error is
due to the small percentage of trajectories that recross the
moving dividing surface, as seen for a particular instance of
the noise in Fig. 10. Because the potential barrier described
by Eq. �4� is symmetric even for k�0, the average values of
the forward and backward reaction probabilities Pf and Pb

are equal. The simulation results converge rapidly, with re-

FIG. 11. The fraction of correctly identified trajectories according to the
moving transition state. The correct identification of a trajectory is that
defined by the fixed transition state at the end of the simulation, Tint=21.
The correctly identified backward-reactive or forward-reactive trajectories
are displayed as the solid and dashed lines, respectively. The simulation
parameters are the same as those defined in Fig. 9.
spect to both Nt and N�, toward their limiting value. These
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results demonstrate that the moving TS surface retains its
reliability and its computational advantages for moderate
values of the anharmonicity upon noise averaging as well as
for a single instance of the noise.

VI. CONCLUDING REMARKS

We have recently developed an analytic method for con-
structing a time-dependent stochastic dividing surface that is
strictly free of recrossings.29,30 In the present work, it has
been shown that this moving dividing surface can be used to
identify reactive trajectories reliably in linear and nonlinear
systems. In the harmonic limit, the moving dividing surface
attached to the TS trajectory is strictly free of recrossings,
while in more general �nonseparable� cases it is approxi-
mately so. The identification of reactive trajectories using the
moving dividing surface has been seen in this article to be
fairly accurate even in the presence of large anharmonic cou-
pling. It can be obtained in roughly half the time that is
required to confirm the nature of a trajectory by numerically
evolving it to its final state.

In several of the calculations presented in this article,
observables have been calculated for a particular instance of
the noise while averaging over the initial conditions of the
subsystem. In such restricted averages, the use of the moving
surface reduces the computational cost of the calculation by
a factor of 2 or more. A typical average of an observable,
however, requires one to include multiple instances of the
noise. When the average is performed using the machinery of
the moving TS surface, the TS trajectory must be generated
for each instance of the noise. If only one system trajectory is
calculated for each noise sequence, the computational effort

FIG. 12. The reaction probabilities across an anharmonic potential �with a
coupling of k=0.1� are shown as a smooth function of the number of dif-
ferent instances of the noise �N�� and a discrete function of the number of
trajectories �Nt� used to represent the ensemble average. The dashed lines
and dotted lines result from the use of the fixed or moving dividing surfaces
in the identification of trajectories, respectively. Note that the ordinate
ranges over the very narrow interval between 0.37 and 0.41, and hence the
converged exact and approximate approaches are nearly equal. The simula-
tion parameters are the same as those defined in Fig. 9.
to calculate both the sample trajectory and the moving TS
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surface is about the same as calculating a single �longer�
trajectory. Improved CPU performance can still be obtained
if one recognizes that the average should be taken by sam-
pling several trajectories for each noise sequence. Apart from
the insight into the microscopic reaction dynamics that the
moving dividing surface offers, it consequently also provides
computational advantages in the calculation of macroscopic
observables. Moreover, the computation can be readily par-
allelized because the algorithm is embarrasingly parallel
when sampling across the trajectories associated with a given
noise sequence. �Indeed, although not discussed explicitly in
the text, the codes have been parallelized across several
CPUs with near linear scaling.�

In summary, we envision at least two approaches in
which the TS-trajectory criterion for reactive trajectories will
be useful in calculating reaction rates: �i� In harmonic �or
nearly harmonic� systems, the algorithm described here pro-
vides a formally exact expression for the reaction probability
given a noise sequence. This term and related averages can
be used to substantially reduce the required computational
time because it limits the numerical effort to a sampling of
the noise. �ii� In arbitrary anharmonic systems, the criterion
can be used to reduce the computational effort to calculate
any correlation function—such as that in the reaction-rate
expression—that relies on the correct identification of reac-
tive trajectories. The rate expression and other related ob-
servables that can take advantage of the identification of re-
active trajectories will be calculated in future work. As an
illustration, the TS-trajectory criterion was seen in this work
to converge the forward and backward reaction probabilities
even in a fairly anharmonic case. Thus the central result of
this work is that the moving dividing surface can be used
reliably and efficiently to identify reactive trajectories.
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APPENDIX: THE NUMERICAL INTEGRATOR

The simulations of the reaction dynamics presented in
Sec. V require one to follow a stochastic trajectory numeri-
cally from t=0 both forward in time to t=T /2 and backward
in time to t=−T /2. For the forward propagation, a standard
stochastic integration scheme48,49 has been implemented. The
backward integration requires special care if one wishes to
follow the same stochastic trajectory both forward and back-
ward in time. The modification of the integration scheme that
is necessary to this end is described here.

The forward numerical integrator for Langevin
equations48,49 takes the form

r�t + �t� = r�t� + c1v�t� + c2a�t� + �r , �A1�

v�t + �t� = c3v�t� + c4a�t� + c5a�t + �t� + �v , �A2�

where a�t� is the acceleration caused by the potential of

mean force, the ci are numerical coefficients that depend on
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the time step �t and the damping constant �, and the random
variables �r and �v are sampled from a known Gaussian
distribution. Time reversal in this algorithm can be obtained
through a shift in time by −�t so that t becomes t−�t and t
+�t becomes t. This replacement and a simple reorganization
leads to

r�t − �t� = r�t� − c1v�t − �t� − c2a�t − �t� − �r , �A3�

v�t − �t� =
1

c3
�v�t� − c4a�t − �t� − c5a�t� − �v� . �A4�

The backward step �A3� cannot be evaluated as it stands
because the acceleration a�t−�t� depends on the position
r�t−�t� that is yet to be determined. To circumvent this prob-
lem, we substitute Eq. �A4� into Eq. �A3� to obtain

r�t − �t� = r�t� −
c1

c3
�v�t� − c5a�t� − �v�

− �r + � c1c4

c3
− c2�a�t − �t� . �A5�

When the acceleration a�t−�t� is expressed in terms of the
position r�t−�t� through the equation of motion, Eq. �A5�
becomes an implicit equation for the positions r�t−�t� at the
earlier time. For all but the simplest potentials, it cannot be
solved explicitly. Specifically, for the anharmonic potential
�4�,

U�x,y� = − 1
2�x

2x2 + 1
2�y

2y2 + kx2y2,

it leads to the coupled equation system

x�t − �t� = X�t� + � c1c4

c3
− c2���x

2x�t − �t�

− 2kx�t − �t�y�t − �t�2� , �A6�

y�t − �t� = Y�t� − � c1c4

c3
− c2���y

2y�t − �t�

+ 2kx�t − �t�2y�t − �t�� , �A7�

where X�t� and Y�t� denote the contributions of the first three
terms in Eq. �A5�. In the harmonic limit k=0, the two equa-
tions uncouple and can be solved for simple explicit expres-
sions for the position updates. For nonzero k, Eqs. �A6� and
�A7� represent an implicit integration scheme. It can be con-
verted into an explicit method by rearranging the terms into

x�t − �t� =
X�t�

1 − �c1c4/c3 − c2���x
2 − 2ky�t − �t�2�

, �A8�

y�t − �t� =
Y�t�

1 + �c1c4/c3 − c2���y
2 + 2kx�t − �t�2�

. �A9�

The denominators in Eqs. �A8� and �A9� are updated using
Eqs. �A6� and �A7�, but the unknown corrections involving
a�t−�t� are neglected because the coefficient c1c4 /c3−c2 is
of second order in the time step �t. This leads to

x�t − �t� �
X�t�

1 − �c1c4/c3 − c2���2 − 2kY�t�2�
, �A10�
x
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y�t − �t� �
Y�t�

1 + �c1c4/c3 − c2���y
2 + 2kX�t�2�

. �A11�

Finally, we insert these approximations into the right-hand
sides of Eqs. �A8� and �A9� to obtain an explicit integration
scheme backwards in time.

1 New Trends in Kramers’ Reaction Rate Theory, Understanding Chemical
Reactivity, Vol. 11, edited by P. Talkner and P. Hänggi �Kluwer, Dor-
drecht, 1995�.

2 W. H. Miller, Faraday Discuss. Chem. Soc. 110, 1 �1998�.
3 D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem. 100,
12771 �1996�.

4 C. Jaffé, S. D. Ross, M. W. Lo, J. E. Marsden, D. Farrelly, and T. Uzer,
Phys. Rev. Lett. 89, 011101 �2002�.

5 W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, Chaos 10, 427
�2000�.

6 T. Komatsuzaki and R. S. Berry, Adv. Chem. Phys. 123, 79 �2002�.
7 C. Jaffé, D. Farrelly, and T. Uzer, Phys. Rev. Lett. 84, 610 �2000�; Phys.
Rev. A 60, 3833 �1999�.

8 B. Eckhardt, J. Phys. A 28, 3469 �1995�.
9 M. Toller, G. Jacucci, G. DeLorenzi, and C. P. Flynn, Phys. Rev. B 32,
2082 �1985�.

10 D. G. Truhlar, A. D. Issacson, and B. C. Garrett, Theory of Chemical
Reaction Dynamics, edited by M. Baer �CRC, Boca Raton, FL, 1985�,
vol. 4, pp. 65–137.

11 P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 �1990�,
and references therein.

12 R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 �1980�.
13 E. Pollak, H. Grabert, and P. Hänggi, J. Chem. Phys. 91, 4073 �1989�.
14 V. I. Mel’nikov and S. V. Meshkov, J. Chem. Phys. 85, 1018 �1986�.
15 D. G. Truhlar and B. C. Garrett, Annu. Rev. Phys. Chem. 35, 159 �1984�.
16 E. Pollak, J. Chem. Phys. 93, 1116 �1990�.
17 E. Pollak, J. Chem. Phys. 96, 8877 �1992�.
18 S. C. Tucker and E. Pollak, J. Stat. Phys. 66, 975 �1992�.
19 S. C. Tucker, in New Trends in Kramers’ Reaction Rate Theory, edited by

P. Hänggi and P. Talkner �Kluwer, The Netherlands, 1995�, pp. 5–46.
20 J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 83, 3172

�1985�.
21 J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 84, 1788

�1986�.
22 J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 89, 4833

�1988�.
23 E. Pollak and P. Talkner, Phys. Rev. E 51, 1868 �1995�.
24 J. T. Hynes, in Theory of Chemical Reaction Dynamics, edited by M.

Baer �CRC, Boca Raton, FL, 1985�, vol. 4, pp. 171–234.
25 E. Pollak, J. Chem. Phys. 85, 865 �1986�.
26 R. Zwanzig, J. Stat. Phys. 9, 215 �1973�.
27 A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 �1981�, Ann.

Phys. �N.Y.� 149, 374 �1983�.
28 R. Graham, J. Stat. Phys. 60, 675 �1990�.
29 T. Bartsch, R. Hernandez, and T. Uzer, Phys. Rev. Lett. 95, 058301

�2005�.
30 T. Bartsch, T. Uzer, and R. Hernandez, J. Chem. Phys. 123, 204102

�2005�.
31 C. C. Martens, J. Chem. Phys. 116, 2516 �2002�.
32 R. Zwanzig, Nonequilibrium Statistical Mechanics �Oxford University

Press, London, 2001�.
33 R. Hernandez, J. Chem. Phys. 101, 9534 �1994�.
34 J. C. Keck, Adv. Chem. Phys. 13, 85 �1967�.
35 J. C. Keck, Discuss. Faraday Soc. 33, 173 �1962�.
36 D. Chandler, J. Chem. Phys. 68, 2959 �1978�.
37 E. K. Grimmelmann, J. C. Tully, and E. Helfand, J. Chem. Phys. 74,

5300 �1981�.
38 P. A. Rejto and H. C. Andersen, J. Chem. Phys. 92, 6217 �1990�.
39 C. Dellago, P. Bolhuis, F. S. Csajka, and D. Chandler, J. Chem. Phys.

108, 1964 �1998�.
40 C. Dellago, P. Bolhuis, and D. Chandler, J. Chem. Phys. 110, 6617

�1999�.
41 P. G. Bolhuis, D. Chandler, C. Dellago, and P. Geissler, Annu. Rev. Phys.

Chem. 53, 291 �2002�.
42 C. Dellago, P. G. Bolhuis, and P. Geissler, Adv. Chem. Phys. 123, 1
�2002�.

Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



244310-13 Identifying reactive trajectories J. Chem. Phys. 124, 244310 �2006�

D

43 J. MacFadyen and I. Andricioaei, J. Chem. Phys. 123, 074107 �2005�,
10.1063/1.2000242.

44 T. Yamamoto, J. Chem. Phys. 33, 281 �1960�.
45 R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 �1965�.
46 C. Xing and I. Andricioaei, J. Chem. Phys. 123, 034110 �2006�.
ownloaded 03 Apr 2013 to 130.207.50.154. This article is copyrighted as indicated in the abstract. 
47 M. Abramowitz and I. A. Stegun, Pocketbook of Mathematical Functions
�Verlag Harri Deutsch, Frankfurt/Main, 1984�.

48 D. L. Ermak and H. Buckholz, J. Comput. Phys. 35, 169 �1980�.
49 M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids �Ox-

ford, New York, 1987�.
Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions


