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Abstract—In this paper we study the controllability of  followersby spreading throughout the network. We explore
networked systems with static network topologies using tde  the controllability of the overall system under this segtin
from algebraic graph theory. Each agent in the network acts oy majin result is a tight lower bound on the rank of the
in a decentralized fashion by updating its state in accordace - . . .
with a nearest-neighbor averaging rule, known as the conseis cont.rollablllty matrix -for any graph stlructure with po_églb
dynamics. In order to control the system, external controlnputs ~ Multiple leaders. This lower bound is based on distances
are injected into the so called leader nodes, and the influeeds  of nodes to the leaders, representeddatance-to-leaders
propagated throughout the network. Our main resultis a tight  (LD) vectors. More precisely, it is the maximum length
lower bound on the rank of the controllability matrix. This o sequences obtained by arranging these LD vectors in a
bound is derived using the distances of nodes to the leaders, . . . .
and valid for systems with arbitrary network topologies and certain way we calpseudo monotonically Increasing (PMI)
possibly multiple leaders. order. Moreover, we also present an algorithm for computing

this lower bound. This problem was studied for single-leade
. INTRODUCTION networks in [14], and a lower bound was obtained using the

Decentralized control of networked multi-agent systemdistance partition with respect to the leader. In this waovk,
has received a considerable amount of attention during th&ckle the general problem with possibly multiple leaders
last decade. Numerous applications of decentralized coby extending the use of distance based relationships to such
trol laws have been studied including flocking (e.g., [2])cases.
alignment and formation control (e.g., [1]-[4]), distriled The organization of this paper is as follows: Section Il
estimation (e.g., [6]), sensor coverage (e.g., [5]) and dipresents some preliminaries related to the system dynamics
tributed control of robotic networks (e.g., [7]), to name aand algebraic graph theory. In Section lll, we present our
few. In a distributed framework, a global task is achieved bgontrollability analysis. Section IV provides an algonth
the local interactions of agents among each other withott compute the proposed lower bound on the rank of the
a centralized control. In this framework, a fundamentatontrollability matrix for arbitrary networks. Finally,e8tion
guestion is whether such a decentralized system can Weprovides the concluding remarks.
controlled by directly manipulating only some of the agents
This question motivates our analysis of the controllapitit
networked systems. Consider a networked system of agents that utilize

Controllability of networked systems was initially ad-the same nearest neighbor averaging rule, known as the
dressed in [8], where a connection between the specti@nsensus equation, to govern their dynamics. For each
properties of the underlying graph modelling a networkparticular agent, the consensus equation is given as
and the controllability of the system was analyzed. A more .
topological analysis of the problem was later presented in Ti= Z (x5 — i), @)
[9] with an emphasis on how the symmetry with respect
to the leader node affects the controllability of the systenwhere z; is the state of agent, and A is the set of
More general conditions were presented in [10], [11] by inagents neighboring agentWithout loss of generality, let us
troducing equitable partitions in the analysis. These ept&c assume that; € R, and the interactions among the agents
were extended along with additional results in [12]. In [13]are encoded via a static undirected graph= (V, E). In
these equitable partitions were used to obtain an upperdouthis graph, each node in the node sét= {1,2,...,n},
on the rank of the controllability matrix. Recently, disten corresponds to a particular agent, and the edge sef,
partitions are used in [14] to obtain a lower bound on th& x V, is the set of unordered paifs, j) depicting that the
rank of the controllability matrix for single-leader netsks. nodesi andj are neighbors. In this context, neighbor nodes

In this paper we analyse leader-follower networks in whiclare the ones that have the measurements of each other’s
the agents utilize a nearest-neighbor averaging rule. Sorstates.
agents, called thieaders support external control inputs that The consensus equation provides a simple, yet powerful
ultimately influence the dynamics of all other agents namelfpundation for decentralized control strategies that can b

II. PRELIMINARIES

JEN;



utilized in various tasks, including coverage control, -con [1l. CONTROLLABILITY OF LEADER-FOLLOWER
tainment control, distributed filtering, flocking and fortioe NETWORKS

control. With all agents utilizing the consensus equation, |n this section we will analyse the controllability of the
their states asymptotically converge to the stationarymifa system given in (6). In particular, we present relationship
and only if the underlying graph is connected [3]. between the network topology and the rank of the con-
Assume that we would like to control this network simplytro|ability matrix for such systems. We start this section
by applying external control signals to some of the nodegy referring to the results based on the equitable partition
Without loss of generality, let the first nodes be the leaders presented in [11], [13].
taking the external control inputs, and let the remair(ing- A partition of a graphG = (V, E) is given by a mapping
m) nodes be the followers whose dynamics are governed by. v/ _ {C1,Cs,...,C,}, wheren(i) denotes the cell that
(1). Let themn dimensional control input be represented byyode i gets mapped to, and we ugen(r) to denote the
vectoru. Then, the dynamics of the leader nodes satisfy domain to whichr maps, i.e.dom(n) = {C1,Cs,...,Cy}.

& = Z (xj —x;) + [ul;, fori=1,2...,m. (2) Definition (External Equitable Partitiom)A partition 7 of a
JEN; graphgG with cells C1,Cs, ..., C, is said to be arexternal
equitable partition(EEP) if each node in celC; has the

; jth . .
where, [u]; denotes thel er_1try of the con_trol vectow.  came number of neighbors in cell; for everyi # ;.
When the external control signals are applied to the leader '

nodes, their effect on the dynamics propagates to the rest ofln the controllability analysis, we are particularly inter

the nodes through the underlying network. ested in themaximal leader-invarianEEP of a graph. An
Our main goal here is to characterize the controllabilit)FEP is said to bdeader-invariantif the leader nodes are

of the overall system under this setting. In particular, wénapped to singleton cells, and such a mapping is said to be

are interested in the dimension of the controllable subspadnaximalif no other leader-invariant EEP with fewer number

and aim to relate it to the structure of the underlying nekworof cells exists. Note that for any graghthere is a unique

from a graph theoretic perspective. To this end, we use sorfigaximal leader-invariant EEPy*. Examples of maximal

basic tools from algebraic graph theory, in particular théeader-invariant EEPs are depicted in Fig. 1.

degree matrix, the adjacency matrix, and the graph Lapiacia

Let A be then x n degree matrix associated with the
graph. The entries o are given as
C_ [N ifi=
(AL = { 0 otherwise, (3)

where|A;| denotes the cardinality of;, and it is equal to
the number of neighbors of node G Ga

. . . v . .
The adjacency matrixd, is ann x n symmetric matrix Fig. 1. Maximal leader-invariant EEP’s for two networks, andGs. G

with its entries given as has a single leader namely whereasg, has two leaders namely and 2.
[Aly { Lif (z’,j)_e 2 4 Maximal leader-invariant EEPs are useful structures in
0 otherwise. the controllability analysis since the states of the noties t

appear in the same cell of the maximal leader-invariant EEP

The graph Laplacian, is simply given as the difference )
asymptotically converge to the same value [11].

of the degree and the adjacency matrices,

L=A-A (5) Theorem 3.1[11] If G is a connected graph with* being

its maximal leader-invariant EEP, then for &ll; € dom(7*)
In light of (1) and (2), the dynamics of the leader-follower

network withm leaders can be given as Jm (2, () — 21(t)) = 0,Vk, L € ™ HE). (8)
& = —Lx + Bu, (6) In light of Theorem 3.1, one can at most be able to control
. _ all of the average state values within each cell of ttie
wherex = [21,x,...,z,]" is the state vector obtained by Hence, the cardinality ofom(7*) provides arupper bound

stacking the states of each individual node, &hi$ annxm  on the rank of the controllability matrix as given in [13].
matrix with the following entries
| e Theorem 3.2 [13] Let G be a connected network, antt
[Blij = { 0 otherwise (7) denote its maximal leader-invariant EEP. Given the dynamic
' in (6), the rank of the controllability matrix’, satisfies

Note that (6) represents a standard linear time-invariant X
system and it relates the system dynamics to the graph rank(T') < |77, ©)
topology through the graph Laplacian. where|7*| is the cardinality ofdom(7*).



The upper bound given in Theorem 3.2 is quite usefulsing (7) and (12), thé'" entry of the vecto A — A)"b;

in analyzing the controllability of a leader-follower neivk. can be expressed as follows:

For instance, one can conclude that a system is not com- , -

pletely controllable if there exists non-singleton celsits [(A=A)bli = [(A-4) ]“;

maximal leader-invariant EEP. However, all the cells being - - —
singletons does not necessarily imply that the network is = Al + Z(_l) [Smlik- (14)
completely controllable. _ ) ) m=0 )

Next, we present our main result,lawer boundon the AS A s the adjacency matrix of the grapbi"];x. is equal to
rank of the controllability matrix when multiple leadersear the number of paths of lengthfrom nodei to nodek. Since
present. In [14], the authors present a lower bound fdhe distance of nodeto the leader nodg is dyx, [A"]ix = 0
single-leader networks. To this end, they utilize the disea for &l 0 < r < di. Hence, (13) and (14) together imply
partition of an underlying graph with respect to its leadier. that[(A —A)"bi]; = 0 for all 0 < r < dix. Furthermore,
this partition all the nodes that are at the same distance frd?!u99ingr = dq;. into (14), we get

the leader are mapped into a §ing|e c.elll. It is shown there [(A = A)Hrby]; = [A%* ), (15)
that the rank of the controllability matrix is greater than o . _
equal to the number of cells in this partition. where [A%*];. is equal to the number of paths with the

shortest lengthd;x, from nodei to the leader nodé, and

Theorem 3.3 [14] Let G be a connected single-leader net-for a connected graph it is non-zero.

. . o . ]
work, and rp denotes its distance partition with respect . '
to the leader. Given the dynamics in (6), the rank of the In a network withm leaders, for each nodeve can define

- . 7 anm dimensional vectorj;, containing the distance of node
controllability matrix, I', satisfies .
1 to each of the leaders.

[mp| < rank(T), (10)  Definition (Distance-to-Leaders (LD) Vector)For each

: . : ... nodei, the LD vectord; is defined as
where|rp| is the number of cells in the distance partition. ! !

1"

Similar to the single-leader case, the distances of nodes di=[dn diz ... dim (16)

from the leaders appear as the fundamental property in ourwhere,d;; denotes the distance of nodéo the leader;.

analysis. We start our analysis with the following proposit - , .
In our controllability analysis, we utilize the sequences

- of these LD vectorsD = (d*,d?,...,d"!), where|D|
Proposition 3.4 Let G = (V, E) be a conntehcted network genotes the length of sequenbe In this representation, we
with the dynamics in (6), and lef. be thes™ column of 4.5 the lower indices corresponding to the node labels, and

the input matrixB. Then, for any nodeé and leaderk, use the super indices to denote the order of the particular
0 it 0<r < di vector in the sequence. In particular, we are interestetlan t
[(=L)"by]i = { A if 7 = du (11)  pseudo-monotonically increasing (PMi¢quences defined as
’ ’ follows,

where L is the graph LaplacianA is the adjacency matrix

of the graph, andi, is the distance of nodéto the leader Definition (Pseudo-Monotonically Increasing (PMI) Se-

guence) Given a set of vectors € R™, we call a sequence

nodek: of these vectors PMI, if each in the sequence has an entry
Proof: that is strictly smaller than the corresponding entries|Ibf a
Using the equality in (5)(—L)" can be expanded as the follqwing vectors in that sequence, i.e., for evgfyvec-
tor, v*, in such a sequencd, an indexk, € {1,2,--- ,m}
r—1 satisfying,
(D) = (A= A) = A"+ 3 (-1)"S,,  (12) Wik, > [k, Ve > p. (17)
m=0

) ) Example:Consider a set of six vectors,
whereS,,, is the sum of all matrices that can be represented

as a multiplication in whichA4 appearsm times andA {{ 0 } [ 1 ] { 1 } { 2 ] [ 2 } { 3 ]}
appears: — m times. Note that sincé\ and .4 have only CI IR N2 T - 2 A O S R 2 I A
non-negative entries, any matrix that can be represented th A vector sequence satisfying the rule in (17) can be
way has only non-negative entries. Moreover, sidcas a

diagonal matrix with positive entries on the main diagonal, o) 3 9 @ @
it doesn’t add or remove zeros when multiplied by a matrix. D = ({ 3 } , { o } ; [ ® } ; [ 9 ] ; { 9 D .

Hence,S,,, has zeros only at the same locations48, and
the following condition is satisfied: For each vector® in this sequence, the indey satisfying

(17) is marked with a circle. Note that heré = [ 0 } and

[Sm]ik =0 << [.Am]ik =0. (13) 3



k1 = 1, as the first element of all other vector$, where

q > 1, is greater than the first element of which is 0.
3

0 1

we havek, = 2, as the second element of all the vectots
for ¢ > 2 are greater than the second elementtfand so
on.

Similarly, for the second vector in the sequence=

|D3| = 6, whereas for both systems the actual ranks of the
controllability matrices are equal to 6. Note that in gehera
there is not a unique PMI sequence with the maximum
possible length, yet we present sample sequenoésand
D3, in Fig 2.

By combining the lower bound in Theorem 3.5 and
the upper bound in Theorem 3.2 we obtain the following
corollary for the rank of the controllability matrix for any

Theorem 3.5 For any connected leader-follower network,connected leader-follower network with the dynamics given
let D be the set of all PMI sequences, D, of LD vectors, angh (6).

|D*| = max | D| be the maximum length for such sequences.

Then the rank of the controllability matriX;, satisfies

rank(T") > |D*|. (18)

Proof:
For a system witlh nodes, the controllability matrix is given
as

r=[B (-L)B (-L)’B (-L)"'B ]. (19)

Now, consider vectors of the form

(=L)™by,, (20)

wherer, = [d”]x,, andb;, denotes thek;h column of the
input matrix B. Let d”? be the LD vector of node, i.e.
d? = d;. Then, we haver, = [d;]x, = d,, and from
Proposition 3.4, we know that th&" entry of the vector in
(20) is non-zero and equal fod"#];,. Also, for any node
j with [d;]x, > [di]s, we have thej*" entry of the vector

Corollary 3.6 Let G = (V,E) be a connected network
with the dynamics given in (6). LéD*| be the maximum
length for PMI sequences of LD vectors, antl be the
maximal leader-invariant EEP of;. Then, the rank of the
controllability matrix, I', satisfies

|D*| < rank(T) < |7*|. (22)

IV. COMPUTING THE LOWER BOUND

In this section we present an algorithm to compute the
lower bound mentioned in Theorem 3.5. Note that the main
contribution of this work is the derivation of this lower
bound, not its computation. However, here we also illustrat
one possible way of computing it through a simple algorithm.

Let S = {d1,ds,...,d,} be the set of all LD vectors for
a given graph. Given these vectors, let us consider a way of
iteratively generating PMI sequences. L€ be the set of
all LD vectors that can be assigned as e element of

in (20) equal to zero. Using this along with the definition ofsuch a sequench. According to these definitiong; = .

PMI sequences, we conclude that the |D*| matrix

[ (=L)"be, (—L)"2by, (=L)"2*1bg ey ], (21)

Once a vector fronC, is assigned as thg!" element of
the sequencef?, and an index,, satisfying (17) is chosen,
Cp+1 can be obtained frond’, as

has full column rank since each column has a non-zero entry

that none of the preceding columns have. Note that for every

p€{1,2,...,|D*|}, we haver, = [dP];, <n— 1 since the

Cpt1=Cp\{d € Cp | [d]k, < [d"]k,}- (23)

distance between any two nodes is always smaller than or/n Order to obtain longer sequences, this iteration must
equal ton — 1. Hence, each column of the matrix in (21) isbe continued untilC, = 0. However, in general there are
also a column of’, and rank ofl" is greater than or equal to too many possible sequences that can be obtained this way,

rank of the matrix in (21). Thus, we havenk(T") > |D*|.
[

and it is not feasible to find the maximum length for PMI
sequences by searching among all these possibilitiegddst

The lower bound presented in Theorem 3.5 is tight ad® Present a necessary condition for a PMI sequence to

have the maximum possible length. This necessary condition

there are infinitely many graphs satisfying it with equality’ << |
Cycle graphs with any two adjacent nodes being |eader§|’gn|f|ca_ntly lowers the number of sequences that needs to
or path graphs with an end node being a leader are sorig considered.

examples of such cases. As an illustration of the lower bound

in (18), consider a network with a single leader. In that cas€roposition 4.1 Let D* be a PMI sequence of LD vectors
the LD vectors,d;, are one dimensional, hence the longestith the maximum possible length, then ¢ entry, d?,

PMI sequence starts with and monotonically increases to Satisfies
the maximum distance from the leader. The length of this
sequence is equal to the maximum distance plus one, which

is equal to the number of cells in the distance partition with  Proof: Assume, for the sake of contradiction, this is
respect to the leader. Thus, for one dimensional case thist true. Then, there exists an LD vecthrc C,, such that
lower bound is equal to the one presented in [14]. A coupll;]x, < [d”]x,. By the construction of a PMI sequenasg,

of examples with multiple leaders are depicted in Fig. 2can not be added to this sequence afferHowever,d; can

For those networks, the lower bounds on the dimension die placed right beforg? since its index:,, satisfies the rule

the controllable subspaces are computed/ag = 5, and of the sequence. Hence, we obtain a longer PMI sequence by

[dp]kp = min [d]k

deC, v (24)
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Fig. 2. Leader-follower network$j; andGs, each having two leaders namely, 1 and 2. Each node has itsetsional distances-to-leaders (LD) vectors,

shown next to itself. For each network, a sample PMI sequeiittethe maxi
corresponding to the index satisfying the rule in (17) islei.

placingd; right befored?, which leads to the contradiction
that D* does not have the maximum possible length. m

Note that in obtaining the lower bound, we only care

about the lengths of sequences, not about their actuaéentri

Hence, if for anyd;, d; € C, we have[d;]., = [d;]x, =

dmicn [d]x,, then we do not care whethéy or d; is added to
€Cy

the sequence a# since the resulting’,; will be same as

long ask,, is chosen as the index satisfying the rule in (17).

Thus, as far as the sequence length is concerned, the o
important decision at each step of the sequence generat

is the choice ofk,. Based on this observation, we present

an algorithm that can be used to compute the lower boun

In this algorithm we define a new variablg, as the set of
all possible non-empty sets, that can be obtained at step
p. Initially this set only includes the set of all LD vector$,
since there is a uniqu€é; namelyS. For each sucld’,, one
can obtainm (number of leaders) differert,;; depending
on the choice ofk,. Once, these”,;, are computed, we
remove all the previous’, and store the non-empty, 4

sets inC, and continue the iteration. lterations stop when

C = . We keep a counter variablein the algorithm and it
is incremented by one every tinteis updated for the next
step. Once we readh = (), the final value of? gives us the
maximum possible lengthD*| of PMI sequence.

mum possible length is given. For each vectahése sequences, the entry

Algorithm |

1:initialize: C = {S} and{ =0
2:while C#0
3: C=10
fori=1to|C|
for j=1tom

Clictyni+j =Ci\{d €C; | [d]; = min [d];}

i

end for
end for
c=c\{CceC| C=0
c=cC
: {=0+1
12 : end while

d.
13 :return ¢

00~ O T

nlﬁi}:.
ion -
11

For instance, consider the netwogk with two leaders
shown in Fig. 2. We can represent the flow of Algorithm |
as a tree structure shown in the Fig. 3. In this tree diagram,
each node at a given level corresponds to an element of
C that is computed in the line 6 of Algorithm | in the”
iteration of the while loop. Algorithm will terminate after
the fifth iteration of the while loop as all thogks will be
empty sets.

V. CONCLUSION

In this paper we presented a graph theoretic analysis on
the controllability of leader-follower networks with palsly
multiple leaders. In particular, we presented a tight lower
bound on the rank of the controllability matrix of such
systems with arbitrary interaction graphs. This lower tbun
is based on the distances of nodes from the leaders. We
also presented an algorithm to compute this lower bound
for any leader-follower network. This lower bound may find
its applications in various problems such as selectingdesad
in a network that are sufficient to establish a certain leyel o
controllability.
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C_Q C1o c_ll 512 51 514 515 C_16
513 514 C_15 516 517 (»718 C_19
2 3
21’710

A tree representation for the flow of Algorithm | foretlsystemG; in Fig. 2. Each time thevhile loop is completed, the algorithm moves to

the next level. Each node at the same level represents ayart’; computed in line 6 of the algorithm in the correspondingaitien of the while loop.

The right child of a nodeZ; corresponds t@; \ {d € C; | [d]1 = min
dec;

7

[d]1}, whereas, the left child corresponds@p\ {d € C; | [d]2 = min [d]2}.
dec;

For exampleC, at level 3 is a right child of> at level 2, and is obtained by deleting all LD vectors with thmimum first index fromC> at level 2,

1

and 3

1
namely 9

. All C; are explicitly given below the tree diagram. In the fifth éton of the while loop, each compute is an empty set

and the algorithm terminates. The number of levels in the, tséored in the variablé, corresponds to the required lower bound.
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