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Abstract— In this paper we study the controllability of
networked systems with static network topologies using tools
from algebraic graph theory. Each agent in the network acts
in a decentralized fashion by updating its state in accordance
with a nearest-neighbor averaging rule, known as the consensus
dynamics. In order to control the system, external control inputs
are injected into the so called leader nodes, and the influence is
propagated throughout the network. Our main result is a tight
lower bound on the rank of the controllability matrix. This
bound is derived using the distances of nodes to the leaders,
and valid for systems with arbitrary network topologies and
possibly multiple leaders.

I. I NTRODUCTION

Decentralized control of networked multi-agent systems
has received a considerable amount of attention during the
last decade. Numerous applications of decentralized con-
trol laws have been studied including flocking (e.g., [2]),
alignment and formation control (e.g., [1]-[4]), distributed
estimation (e.g., [6]), sensor coverage (e.g., [5]) and dis-
tributed control of robotic networks (e.g., [7]), to name a
few. In a distributed framework, a global task is achieved by
the local interactions of agents among each other without
a centralized control. In this framework, a fundamental
question is whether such a decentralized system can be
controlled by directly manipulating only some of the agents.
This question motivates our analysis of the controllability of
networked systems.

Controllability of networked systems was initially ad-
dressed in [8], where a connection between the spectral
properties of the underlying graph modelling a network,
and the controllability of the system was analyzed. A more
topological analysis of the problem was later presented in
[9] with an emphasis on how the symmetry with respect
to the leader node affects the controllability of the system.
More general conditions were presented in [10], [11] by in-
troducing equitable partitions in the analysis. These concepts
were extended along with additional results in [12]. In [13],
these equitable partitions were used to obtain an upper bound
on the rank of the controllability matrix. Recently, distance
partitions are used in [14] to obtain a lower bound on the
rank of the controllability matrix for single-leader networks.

In this paper we analyse leader-follower networks in which
the agents utilize a nearest-neighbor averaging rule. Some
agents, called theleaders,support external control inputs that
ultimately influence the dynamics of all other agents namely

followers by spreading throughout the network. We explore
the controllability of the overall system under this setting.
Our main result is a tight lower bound on the rank of the
controllability matrix for any graph structure with possibly
multiple leaders. This lower bound is based on distances
of nodes to the leaders, represented asdistance-to-leaders
(LD) vectors. More precisely, it is the maximum length
of sequences obtained by arranging these LD vectors in a
certain way we callpseudo monotonically increasing (PMI)
order. Moreover, we also present an algorithm for computing
this lower bound. This problem was studied for single-leader
networks in [14], and a lower bound was obtained using the
distance partition with respect to the leader. In this work,we
tackle the general problem with possibly multiple leaders
by extending the use of distance based relationships to such
cases.

The organization of this paper is as follows: Section II
presents some preliminaries related to the system dynamics
and algebraic graph theory. In Section III, we present our
controllability analysis. Section IV provides an algorithm
to compute the proposed lower bound on the rank of the
controllability matrix for arbitrary networks. Finally, Section
V provides the concluding remarks.

II. PRELIMINARIES

Consider a networked system ofn agents that utilize
the same nearest neighbor averaging rule, known as the
consensus equation, to govern their dynamics. For each
particular agenti, the consensus equation is given as

ẋi =
∑

j∈Ni

(xj − xi), (1)

where xi is the state of agenti, and Ni is the set of
agents neighboring agenti. Without loss of generality, let us
assume thatxi ∈ R, and the interactions among the agents
are encoded via a static undirected graphG = (V,E). In
this graph, each node in the node set,V = {1, 2, . . . , n},
corresponds to a particular agent, and the edge set,E ⊆
V ×V , is the set of unordered pairs(i, j) depicting that the
nodesi andj are neighbors. In this context, neighbor nodes
are the ones that have the measurements of each other’s
states.

The consensus equation provides a simple, yet powerful
foundation for decentralized control strategies that can be



utilized in various tasks, including coverage control, con-
tainment control, distributed filtering, flocking and formation
control. With all agents utilizing the consensus equation,
their states asymptotically converge to the stationary mean,if
and only if the underlying graph is connected [3].

Assume that we would like to control this network simply
by applying external control signals to some of the nodes.
Without loss of generality, let the firstm nodes be the leaders
taking the external control inputs, and let the remaining(n−
m) nodes be the followers whose dynamics are governed by
(1). Let them dimensional control input be represented by
vectoru. Then, the dynamics of the leader nodes satisfy

ẋi =
∑

j∈Ni

(xj − xi) + [u]i, for i = 1, 2 . . . ,m. (2)

where, [u]i denotes theith entry of the control vectoru.
When the external control signals are applied to the leader
nodes, their effect on the dynamics propagates to the rest of
the nodes through the underlying network.

Our main goal here is to characterize the controllability
of the overall system under this setting. In particular, we
are interested in the dimension of the controllable subspace,
and aim to relate it to the structure of the underlying network
from a graph theoretic perspective. To this end, we use some
basic tools from algebraic graph theory, in particular the
degree matrix, the adjacency matrix, and the graph Laplacian.

Let ∆ be then × n degree matrix associated with the
graph. The entries of∆ are given as

[∆]ij =

{

|Ni| if i = j

0 otherwise,
(3)

where|Ni| denotes the cardinality ofNi, and it is equal to
the number of neighbors of nodei.

The adjacency matrix,A, is ann × n symmetric matrix
with its entries given as

[A]ij =

{

1 if (i, j) ∈ E

0 otherwise.
(4)

The graph Laplacian,L, is simply given as the difference
of the degree and the adjacency matrices,

L = ∆−A. (5)

In light of (1) and (2), the dynamics of the leader-follower
network withm leaders can be given as

ẋ = −Lx+Bu, (6)

wherex = [x1, x2, . . . , xn]
T is the state vector obtained by

stacking the states of each individual node, andB is ann×m

matrix with the following entries

[B]ij =

{

1 if i = j

0 otherwise.
(7)

Note that (6) represents a standard linear time-invariant
system and it relates the system dynamics to the graph
topology through the graph Laplacian.

III. C ONTROLLABILITY OF LEADER-FOLLOWER

NETWORKS

In this section we will analyse the controllability of the
system given in (6). In particular, we present relationships
between the network topology and the rank of the con-
trollability matrix for such systems. We start this section
by referring to the results based on the equitable partitions
presented in [11], [13].

A partition of a graphG = (V,E) is given by a mapping
π : V → {C1, C2, . . . , Cr}, whereπ(i) denotes the cell that
node i gets mapped to, and we usedom(π) to denote the
domain to whichπ maps, i.e.,dom(π) = {C1, C2, . . . , Cr}.

Definition (External Equitable Partition): A partitionπ of a
graphG with cellsC1, C2, . . . , Cr is said to be anexternal
equitable partition(EEP) if each node in cellCi has the
same number of neighbors in cellCj for every i 6= j.

In the controllability analysis, we are particularly inter-
ested in themaximal leader-invariantEEP of a graph. An
EEP is said to beleader-invariant if the leader nodes are
mapped to singleton cells, and such a mapping is said to be
maximalif no other leader-invariant EEP with fewer number
of cells exists. Note that for any graphG there is a unique
maximal leader-invariant EEP,π∗. Examples of maximal
leader-invariant EEPs are depicted in Fig. 1.

G1 G2

1 1

2

Fig. 1. Maximal leader-invariant EEP’s for two networks,G1 andG2. G1

has a single leader namely1, whereasG2 has two leaders namely1 and2.

Maximal leader-invariant EEPs are useful structures in
the controllability analysis since the states of the nodes that
appear in the same cell of the maximal leader-invariant EEP
asymptotically converge to the same value [11].

Theorem 3.1 [11] If G is a connected graph withπ∗ being
its maximal leader-invariant EEP, then for allCi ∈ dom(π∗)

lim
t→∞

(xk(t)− xl(t)) = 0, ∀k, l ∈ π∗−1(Ci). (8)

In light of Theorem 3.1, one can at most be able to control
all of the average state values within each cell of theπ∗.
Hence, the cardinality ofdom(π∗) provides anupper bound
on the rank of the controllability matrix as given in [13].

Theorem 3.2 [13] Let G be a connected network, andπ∗

denote its maximal leader-invariant EEP. Given the dynamics
in (6), the rank of the controllability matrix,Γ, satisfies

rank(Γ) ≤ |π∗|, (9)

where|π∗| is the cardinality ofdom(π∗).



The upper bound given in Theorem 3.2 is quite useful
in analyzing the controllability of a leader-follower network.
For instance, one can conclude that a system is not com-
pletely controllable if there exists non-singleton cells in its
maximal leader-invariant EEP. However, all the cells being
singletons does not necessarily imply that the network is
completely controllable.

Next, we present our main result, alower boundon the
rank of the controllability matrix when multiple leaders are
present. In [14], the authors present a lower bound for
single-leader networks. To this end, they utilize the distance
partition of an underlying graph with respect to its leader.In
this partition all the nodes that are at the same distance from
the leader are mapped into a single cell. It is shown there
that the rank of the controllability matrix is greater than or
equal to the number of cells in this partition.

Theorem 3.3 [14] Let G be a connected single-leader net-
work, and πD denotes its distance partition with respect
to the leader. Given the dynamics in (6), the rank of the
controllability matrix,Γ, satisfies

|πD| ≤ rank(Γ), (10)

where|πD| is the number of cells in the distance partition.

Similar to the single-leader case, the distances of nodes
from the leaders appear as the fundamental property in our
analysis. We start our analysis with the following proposition.

Proposition 3.4 Let G = (V,E) be a connected network
with the dynamics in (6), and letbk be thekth column of
the input matrixB. Then, for any nodei and leaderk,

[(−L)rbk]i =

{

0 if 0 ≤ r < dik
[Ar]ik if r = dik

(11)

whereL is the graph Laplacian,A is the adjacency matrix
of the graph, anddik is the distance of nodei to the leader
nodek.

Proof:
Using the equality in (5),(−L)r can be expanded as

(−L)r = (A−∆)r = Ar +
r−1
∑

m=0

(−1)r−mSm, (12)

whereSm is the sum of all matrices that can be represented
as a multiplication in whichA appearsm times and∆
appearsr − m times. Note that since∆ andA have only
non-negative entries, any matrix that can be represented this
way has only non-negative entries. Moreover, since∆ is a
diagonal matrix with positive entries on the main diagonal,
it doesn’t add or remove zeros when multiplied by a matrix.
Hence,Sm has zeros only at the same locations asAm, and
the following condition is satisfied:

[Sm]ik = 0 ⇐⇒ [Am]ik = 0. (13)

Using (7) and (12), theith entry of the vector(A −∆)rbk
can be expressed as follows:

[(A−∆)rbk]i = [(A−∆)r]ik

= [Ar]ik +

r−1
∑

m=0

(−1)r−m[Sm]ik. (14)

As A is the adjacency matrix of the graph,[Ar]ik is equal to
the number of paths of lengthr from nodei to nodek. Since
the distance of nodei to the leader nodek is dik, [Ar]ik = 0
for all 0 ≤ r < dik. Hence, (13) and (14) together imply
that [(A − ∆)rbk]i = 0 for all 0 ≤ r < dik. Furthermore,
pluggingr = dik into (14), we get

[(A−∆)dikbk]i = [Adik ]ik, (15)

where [Adik ]ik is equal to the number of paths with the
shortest length,dik, from nodei to the leader nodek, and
for a connected graph it is non-zero.

In a network withm leaders, for each nodei we can define
anm dimensional vector,di, containing the distance of node
i to each of the leaders.

Definition (Distance-to-Leaders (LD) Vector): For each
nodei, the LD vector,di is defined as

di =
[

di1 di2 . . . dim
]T

, (16)

where,dij denotes the distance of nodei to the leaderj.

In our controllability analysis, we utilize the sequences
of these LD vectors,D =

(

d1, d2, . . . , d|D|
)

, where |D|
denotes the length of sequenceD. In this representation, we
drop the lower indices corresponding to the node labels, and
use the super indices to denote the order of the particular
vector in the sequence. In particular, we are interested in the
pseudo-monotonically increasing (PMI)sequences defined as
follows,

Definition (Pseudo-Monotonically Increasing (PMI) Se-
quence): Given a set of vectorsv ∈ R

m, we call a sequence
of these vectors PMI, if eachv in the sequence has an entry
that is strictly smaller than the corresponding entries of all
the following vectors in that sequence, i.e., for everypth vec-
tor, vp, in such a sequence,∃ an indexkp ∈ {1, 2, · · · ,m}
satisfying,

[vq]kp
> [vp]kp

, ∀q > p. (17)

Example:Consider a set of six vectors,
{[

0
3

]

,

[

1
2

]

,

[

1
3

]

,

[

2
1

]

,

[

2
2

]

,

[

3
0

]}

A vector sequence satisfying the rule in (17) can be

D =

([

0©
3

]

,

[

3
0©

]

,

[

2
1©

]

,

[

1©
2

]

,

[

2©
2

])

.

For each vectorvp in this sequence, the indexkp satisfying

(17) is marked with a circle. Note that herev1 =

[

0
3

]

and



k1 = 1, as the first element of all other vectorsvq, where
q > 1, is greater than the first element ofv1 which is 0.

Similarly, for the second vector in the sequence,v2 =

[

3
0

]

,

we havek2 = 2, as the second element of all the vectorsvq

for q > 2 are greater than the second element ofv2, and so
on.

Theorem 3.5 For any connected leader-follower network,
let D be the set of all PMI sequences, D, of LD vectors, and
|D∗| = max

D∈D
|D| be the maximum length for such sequences.

Then the rank of the controllability matrix,Γ, satisfies

rank(Γ) ≥ |D∗|. (18)

Proof:
For a system withn nodes, the controllability matrix is given
as

Γ =
[

B (−L)B (−L)2B . . . (−L)n−1B
]

. (19)

Now, consider vectors of the form

(−L)rpbkp
, (20)

whererp = [dp]kp
, andbkp

denotes thekthp column of the
input matrix B. Let dp be the LD vector of nodei, i.e.
dp = di. Then, we haverp = [di]kp

= dikp
, and from

Proposition 3.4, we know that theith entry of the vector in
(20) is non-zero and equal to[Arp ]ikp

. Also, for any node
j with [dj ]ki

> [di]ki
we have thejth entry of the vector

in (20) equal to zero. Using this along with the definition of
PMI sequences, we conclude that then× |D∗| matrix
[

(−L)r1bk1
(−L)r2bk2

. . . (−L)r|D∗|bk|D∗|

]

, (21)

has full column rank since each column has a non-zero entry
that none of the preceding columns have. Note that for every
p ∈ {1, 2, . . . , |D∗|}, we haverp = [dp]kp

≤ n− 1 since the
distance between any two nodes is always smaller than or
equal ton− 1. Hence, each column of the matrix in (21) is
also a column ofΓ, and rank ofΓ is greater than or equal to
rank of the matrix in (21). Thus, we haverank(Γ) ≥ |D∗|.

The lower bound presented in Theorem 3.5 is tight as
there are infinitely many graphs satisfying it with equality.
Cycle graphs with any two adjacent nodes being leaders,
or path graphs with an end node being a leader are some
examples of such cases. As an illustration of the lower bound
in (18), consider a network with a single leader. In that case,
the LD vectors,di, are one dimensional, hence the longest
PMI sequence starts with0 and monotonically increases to
the maximum distance from the leader. The length of this
sequence is equal to the maximum distance plus one, which
is equal to the number of cells in the distance partition with
respect to the leader. Thus, for one dimensional case this
lower bound is equal to the one presented in [14]. A couple
of examples with multiple leaders are depicted in Fig. 2.
For those networks, the lower bounds on the dimension of
the controllable subspaces are computed as|D∗

1 | = 5, and

|D∗
2 | = 6, whereas for both systems the actual ranks of the

controllability matrices are equal to 6. Note that in general
there is not a unique PMI sequence with the maximum
possible length, yet we present sample sequences,D∗

1 and
D∗

2 , in Fig 2.
By combining the lower bound in Theorem 3.5 and

the upper bound in Theorem 3.2 we obtain the following
corollary for the rank of the controllability matrix for any
connected leader-follower network with the dynamics given
in (6).

Corollary 3.6 Let G = (V,E) be a connected network
with the dynamics given in (6). Let|D∗| be the maximum
length for PMI sequences of LD vectors, andπ∗ be the
maximal leader-invariant EEP ofG. Then, the rank of the
controllability matrix,Γ, satisfies

|D∗| ≤ rank(Γ) ≤ |π∗|. (22)

IV. COMPUTING THE LOWER BOUND

In this section we present an algorithm to compute the
lower bound mentioned in Theorem 3.5. Note that the main
contribution of this work is the derivation of this lower
bound, not its computation. However, here we also illustrate
one possible way of computing it through a simple algorithm.

Let S = {d1, d2, . . . , dn} be the set of all LD vectors for
a given graph. Given these vectors, let us consider a way of
iteratively generating PMI sequences. LetCp be the set of
all LD vectors that can be assigned as thepth element of
such a sequenceD. According to these definitions,C1 = S.
Once a vector fromCp is assigned as thepth element of
the sequence,dp, and an indexkp satisfying (17) is chosen,
Cp+1 can be obtained fromCp as

Cp+1 = Cp \ {d ∈ Cp | [d]kp
≤ [dp]kp

}. (23)

In order to obtain longer sequences, this iteration must
be continued untilCp = ∅. However, in general there are
too many possible sequences that can be obtained this way,
and it is not feasible to find the maximum length for PMI
sequences by searching among all these possibilities. Instead,
we present a necessary condition for a PMI sequence to
have the maximum possible length. This necessary condition
significantly lowers the number of sequences that needs to
be considered.

Proposition 4.1 Let D∗ be a PMI sequence of LD vectors
with the maximum possible length, then itspth entry, dp,
satisfies

[dp]kp
= min

d∈Cp

[d]kp
(24)

Proof: Assume, for the sake of contradiction, this is
not true. Then, there exists an LD vectordj ∈ Cp such that
[dj ]kp

< [dp]kp
. By the construction of a PMI sequence,dj

can not be added to this sequence afterdp. However,dj can
be placed right beforedp since its indexkp satisfies the rule
of the sequence. Hence, we obtain a longer PMI sequence by



D∗

1
=

[

0

3

]

,

[

3

0

]

,

[

2

1

]

,

[

1

2

]

,

[

2

2

]
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[

0
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[

1
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[

2
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[

3

0

]
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[

0

1

]

[

1

0

]

[

2

1

]

[

3

2

]

[

2

3

]

[

1

2

]
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D∗

2
=

[

0

1

]

,

[

1

0

]

,

[

2

1

]

,

[

1

2

]

,

[

2

3

]

,

[

3

2

]
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Fig. 2. Leader-follower networks,G1 andG2, each having two leaders namely, 1 and 2. Each node has its 2-dimensional distances-to-leaders (LD) vectors,
shown next to itself. For each network, a sample PMI sequencewith the maximum possible length is given. For each vector inthese sequences, the entry
corresponding to the index satisfying the rule in (17) is circled.

placingdj right beforedp, which leads to the contradiction
thatD∗ does not have the maximum possible length.

Note that in obtaining the lower bound, we only care
about the lengths of sequences, not about their actual entries.
Hence, if for anydi, dj ∈ Cp we have[di]kp

= [dj ]kp
=

min
d∈Cp

[d]kp
, then we do not care whetherdi or dj is added to

the sequence asdp since the resultingCp+1 will be same as
long askp is chosen as the index satisfying the rule in (17).
Thus, as far as the sequence length is concerned, the only
important decision at each step of the sequence generation
is the choice ofkp. Based on this observation, we present
an algorithm that can be used to compute the lower bound.

In this algorithm we define a new variable,C, as the set of
all possible non-empty setsCp that can be obtained at step
p. Initially this set only includes the set of all LD vectors,S,
since there is a uniqueC1 namelyS. For each suchCp, one
can obtainm (number of leaders) differentCp+1 depending
on the choice ofkp. Once, theseCp+1 are computed, we
remove all the previousCp and store the non-emptyCp+1

sets inC, and continue the iteration. Iterations stop when
C = ∅. We keep a counter variablèin the algorithm and it
is incremented by one every timeC is updated for the next
step. Once we reachC = ∅, the final value of̀ gives us the
maximum possible length,|D∗| of PMI sequence.

Algorithm I

1 : initialize: C = {S} and` = 0
2 : while C 6= ∅
3 : C̄ = ∅
4 : for i = 1 to | C |
5 : for j = 1 to m

6 : C̄(i−1)nl+j = Ci \ {d ∈ Ci | [d]j = min
d∈Ci

[d]j}

7 : end for
8 : end for
9 : C̄ = C̄ \ {C ∈ C̄ | C = ∅}
10 : C = C̄
11 : ` = `+ 1
12 : end while
13 : return `

For instance, consider the networkG1 with two leaders
shown in Fig. 2. We can represent the flow of Algorithm I
as a tree structure shown in the Fig. 3. In this tree diagram,
each node at a given levelp corresponds to an element of
C̄ that is computed in the line 6 of Algorithm I in thepth

iteration of the while loop. Algorithm will terminate after
the fifth iteration of the while loop as all thosēCis will be
empty sets.

V. CONCLUSION

In this paper we presented a graph theoretic analysis on
the controllability of leader-follower networks with possibly
multiple leaders. In particular, we presented a tight lower
bound on the rank of the controllability matrix of such
systems with arbitrary interaction graphs. This lower bound
is based on the distances of nodes from the leaders. We
also presented an algorithm to compute this lower bound
for any leader-follower network. This lower bound may find
its applications in various problems such as selecting leaders
in a network that are sufficient to establish a certain level of
controllability.



C̄1 =

{[

0

3

]

,

[

1

2

]

,

[

1

3

]

,

[

2

1

]

,

[

2

2

]}

; C̄2 =

{[

1

2

]

,

[

1

3

]

,

[

2

1

]

,

[

2

2

]

,

[

3

0

]}

Level 1:

C̄1 =

{[

0

3

]

,

[

1

2

]

,

[

1

3

]

,

[

2

2

]}

; C̄2 = C̄3 =

{[

1

2

]

,

[

1

3

]

,

[

2

1

]

,

[

2

2

]}

; C̄4 =

{[

2

1

]

,

[

2

2

]

,

[

3

0

]}

Level 2:

C̄1 =

{[

0

3

]

,

[

1

3

]}

; C̄2 = C̄3 = C̄5 =

{[

1

2

]

,

[

1

3

] [

2

2

]}

; C̄4 = C̄6 = C̄7

{[

2

1

]

,

[

2

2

]}

; C̄8 =

{[

3

0

]}

;Level 3:

Level 4: C̄1 = C̄8 = C̄12 = C̄14 = C̄15 = C̄16 = {}; C̄2 = C̄3 = C̄5 = C̄9 =

{[

1

3

]}

; C̄4 = C̄6 = C̄7 = C̄10 = C̄11 = C̄13 =

{[

2

2

]}

;

C̄1

C̄3 C̄4 C̄7 C̄8

C̄3 C̄4 C̄5 C̄6 C̄7 C̄8 C̄9 C̄10 C̄11 C̄12 C̄13

C̄1 C̄2 C̄3 C̄4 C̄5 C̄6 C̄7 C̄8 C̄9 C̄10 C̄11 C̄12 C̄13 C̄14 C̄15 C̄16 C̄17 C̄18 C̄19

Level 5: C̄1 = C̄2 = C̄3 = · · · = C̄19 = {};

Level 1

Level 2

Level 3

Level 4

Level 5

C̄1 C̄2

C̄1 C̄2

C̄1 C̄2

C̄2

C̄3 C̄4

C̄5 C̄6

C̄14 C̄15 C̄16

Fig. 3. A tree representation for the flow of Algorithm I for the systemG1 in Fig. 2. Each time thewhile loop is completed, the algorithm moves to
the next level. Each node at the same level represents a particular C̄i computed in line 6 of the algorithm in the corresponding iteration of the while loop.
The right child of a nodēCi corresponds tōCi \ {d ∈ C̄i | [d]1 = min

d∈C̄i

[d]1}, whereas, the left child corresponds tōCi \ {d ∈ C̄i | [d]2 = min
d∈C̄i

[d]2}.

For example,C̄4 at level 3 is a right child ofC̄2 at level 2, and is obtained by deleting all LD vectors with theminimum first index fromC̄2 at level 2,

namely

[

1
2

]

and

[

1
3

]

. All C̄i are explicitly given below the tree diagram. In the fifth iteration of the while loop, each computed̄Ci is an empty set

and the algorithm terminates. The number of levels in the tree, stored in the variablè, corresponds to the required lower bound.
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