

## INBOUND SHIPMENT COORDINATION SENIOR DESIGN FINAL PRESENTATION DECEMBER 12, 2012



ADVISOR: DR. XIAOMING HUO CONTACTS: CHAD HERRING DAN GROSS SHASHANK BHARADWAJ MARYBETH BLACK LYNN BLAU NAKUL CHITALIA MARIA GUZMAN CAITLIN HOGAN JOHN MILLER SIDDHARTHA PENAKALAPATI

## **PROJECT OVERVIEW**



| Problem            | < 2% of shipments are part of multi-stop<br>pickups                                |
|--------------------|------------------------------------------------------------------------------------|
| Design<br>Strategy | Integer programming                                                                |
| Deliverable        | Excel tool of 1,233 vendor groups                                                  |
| Project Value      | 14,923 multi-stop pickup opportunities<br>\$9.1M reduction in transportation costs |



## INBOUND TRANSPORTATION NETWORK



#### 18 Rapid Deployment Centers (RDCs) & 633 Vendors

## PROBLEM







## **PROJECT FLOW**



## DATA

THE REP.

6

- Bid Rate
- Mode of Transportation
- Shipment Date

- Total Cost
- Volume
- Weight



#### Bid Rate from Boston to Los Angeles

## **DESIGN STRATEGY**







## MATLAB PRE-PROCESSING





## COST MODEL

.





## **OPTIMIZATION MODEL & CONSTRAINTS**

Objective Function

$$max\left\{\sum_{i}\sum_{j}s_{i,j}x_{i,j}+\sum_{k}\sum_{l}\sum_{m}s_{k,l,m}x_{k,l,m}\right\}$$

s.t.

1) 
$$\left[\frac{ORM_{i,j}}{50} + 2.5\right] * x_{i,j} \le 11$$

2) 
$$\left[\frac{ORM_{k,l,m}}{50} + 2.5\right] * x_{k,l,m} \le 11$$

- 3)  $\sum_{i} \sum_{j} x_{i,j,k} + \sum_{j} \sum_{l} x_{j,k,l} + \sum_{l} \sum_{m} x_{k,l,m} + \sum_{j} x_{j,k} + \sum_{l} x_{k,l} \le 1, \forall k$
- 4)  $x_{i,j} \in \{0,1\}$
- 5)  $x_{k,l,m} \in \{0,1\}$

## **OPTIMIZATION OUTPUT SAMPLE**



#### Independent Routes



Total Distance: 3,748.96 miles Total Cost: \$2,751.79

#### **Combined Routes**



Total Distance: 1,321.17 miles Total Cost: \$1,681.30 Savings: \$890.49



## POST PROCESSING OUTPUT SAMPLE



Five Most Frequently Combined Vendor Groups for all RDCs



#### ANALYSIS



#### Number of Multi-Stop Pickups Per RDC

|         |         | •       |
|---------|---------|---------|
|         | 2-Stops | 3-Stops |
| Minimum | 208     | 161     |
| Average | 620     | 209     |
| Maximum | 1121    | 309     |



#### ANALYSIS



#### Vendor Group Sizes Per RDC

|         | Groups of 3 | Groups of 4 | Groups of 5 |
|---------|-------------|-------------|-------------|
| Average | 52          | 13          | 3           |
| Total   | 940         | 240         | 53          |

### DELIVERABLE



#### State: MO | Vendor: 327123MO001 | RDC: 5023



#### **Inbound Vendor Coordination**

|     | State:   | MO          |   |      |      |  |
|-----|----------|-------------|---|------|------|--|
| Ver | ndor ID: | 327123MO001 | R | RDC: | 5023 |  |
|     |          |             |   |      |      |  |
|     | Run      |             |   | Clea | ar   |  |
|     |          |             |   |      |      |  |
|     |          |             |   |      |      |  |

#### Vendor Pairs and Triplets

| А           | В           | С            | Frequency | Sa | avings    |
|-------------|-------------|--------------|-----------|----|-----------|
| 327123MO001 | 50920MO001  | 6366820KS001 | 12        | \$ | 10,029.23 |
| 327123MO001 | 576006MO001 | 6366820KS001 | 5         | \$ | 3,211.14  |
| 327123MO001 | 50920MO001  | 73755MO001   | 5         | \$ | 5,725.12  |
| 14894KS001  | 327123MO001 | 6366820KS001 | 3         | \$ | 1,111.71  |
| 327123MO001 | 50920MO001  | 801613MO001  | 3         | \$ | 4,170.23  |
| 327123MO001 | 50920MO001  | 689130MO001  | 3         | \$ | 1,986.08  |
| -           | 327123MO001 | 6366820KS001 | 3         | \$ | 1,679.69  |
| -           | 10618NE001  | 327123MO001  | 2         | Ś  | 990.86    |

#### Vendor Groups

| Α           | В           | С            | D            | E            | Group Size |
|-------------|-------------|--------------|--------------|--------------|------------|
| 327123MO001 | 50920MO001  | 6366820KS001 | 689130MO001  | 801613MO001  | 5          |
| -           | 327123MO001 | 50920MO001   | 576006MO001  | 6366820KS001 | 4          |
| -           | 327123MO001 | 50920MO001   | 6366820KS001 | 73755MO001   | 4          |
| -           | 14894KS001  | 327123MO001  | 6366820KS001 | 689130MO001  | 4          |
| -           | -           | 10618NE001   | 327123MO001  | 801613MO001  | 3          |
| -           | -           | 327123MO001  | 689130MO001  | 817880MO002  | 3          |
|             |             |              |              |              |            |

#### **SUMMARY**



#### Problem:

< 2% of shipments are part of multi-stops

Design Strategy: IP optimization model

> Deliverable: Excel tool of 1,233 vendor groups

> > Project Value:14% of shipments are part of multi-stops\$9.1M in transportation cost savings



# QUESTIONS



# APPENDIX

## MATLAB DATA PRE-PROCESSING



- 1. The distance between vendors that are combined is limited to 225 miles.
  - a) For a two-stop from i to j: distance<sub>i,j</sub> < 225
  - b) For a three-stop from i to j and j to k: distance<sub>i,j</sub> + distance<sub>j,k</sub> < 225
- 2. The maximum weight that a 53-foot container can withstand is 42,000 pounds.
  - a) For a two-stop combining shipments i and j: weight<sub>i</sub> + weight<sub>i</sub>  $\leq$  42,000
  - b) For a three-stop combining shipments i, j, and k: weight<sub>i</sub> + weight<sub>i</sub> + weight<sub>k</sub>  $\leq$  42,000
- 3. The maximum volume that a 53-foot container can withstand is 3,000 cubic feet.
  - a) For a two-stop combining shipments i and j: volume<sub>i</sub> + volume<sub>j</sub>  $\leq$  3,000
  - b) For a three-stop combining shipments i, j, and k: volume<sub>i</sub> + volume<sub>j</sub> + volume<sub>k</sub>  $\leq$  3,000
- 4. The shipment date can move within the same calendar week as it is currently scheduled.
  - a) For a two-stop combining shipments i and j:
    - i.  $week_i = week_j$
    - ii. year<sub>i</sub> = year<sub>j</sub>
  - b) For a three-stop combining shipments i, j, and k:
    - i. week<sub>i</sub> = week<sub>j</sub> = week<sub>k</sub>
    - ii.  $year_i = year_j = year_k$

## **OPTIMIZATION VARIABLES**

HUR HUR

- Data parameters
  - i = j = k = l = m = {shipments}
  - Ø = {RDC}
  - s<sub>i,j</sub>: cost savings per truck if shipments i and j are combined
  - s<sub>k,l,m</sub>: cost savings per truck if shipments k, l, and m are combined
  - ORM<sub>i,j</sub>: distance<sub>ø,j</sub> + distance<sub>i,j</sub> distance<sub>ø,l</sub>
  - ORM<sub>k,1,m</sub>: distance<sub>Ø,m</sub> + distance<sub>1,m</sub> + distance<sub>k,1</sub> distance<sub>Ø,k</sub>
- Decision variables
  - x<sub>i,j</sub> = 1, if a truck drives directly from shipment i to shipment j
     0, otherwise
  - x<sub>k,l,m</sub> = 1, if a truck drives from the origin of shipment k to shipment m to shipment I
    - 0, otherwise



21



#### **Total Shipments Per RDC**



#### ANALYSIS



#### Total Number of Multi-Stop Shipments Per RDC







#### **Total Savings Per RDC**







#### Group Sizes per RDC



## HIGH FREQUENCY OPTIMIZATION MODEL

$$\max\left\{ \left( \sum_{i} \sum_{j} s_{i,j} x_{i,j} - \lambda_{1} * \sum_{a} \sum_{b} y_{a,b} \right) + \left( \sum_{k} \sum_{l} \sum_{m} s_{k,l,m} x_{k,l,m} - \lambda_{2} * \sum_{c} \sum_{d} \sum_{s} y_{c,d,s} \right) \right\}$$
s.t.
$$\sum_{i} \sum_{j} x_{i,j,k} + \sum_{j} \sum_{l} x_{j,k,l} + \sum_{l} \sum_{m} x_{k,l,m} + \sum_{j} x_{j,k} + \sum_{l} x_{k,l} \leq 1 \forall k \qquad (1)$$

$$\sum_{i} \sum_{j} \sum_{i} \sum_{j} x_{i,j} + \sum_{i} \sum_{m} \sum_{j} x_{i,j} \leq c_{1} * y_{a,b} \qquad (2)$$

$$\sum_{v(k)=cv(l)=d} \sum_{v(m)=c} \sum_{w(k)=cv(l)=c} \sum_{v(l)=e} \sum_{v(l)=e} \sum_{v(l)=e} x_{k,l,m} + \sum_{k} \sum_{l} \sum_{i} \sum_{m} x_{k,l,m} + \cdots + \sum_{v(k)=dv(l)=cv(m)=e} x_{k,l,m} + \sum_{v(k)=ev(l)=dv(m)=c} \sum_{w(k)=ev(l)=c} \sum_{v(m)=c} x_{k,l,m} + \sum_{v(k)=ev(l)=c} \sum_{v(m)=d} x_{k,l,m} + \sum_{v(k)=ev(l)=dv(m)=c} x_{k,l,m} \leq c_{2} * y_{c,d,e} \qquad (3)$$

$$x_{i,j} \in (0,1) \qquad (4)$$

$$x_{k,l,m} \in (0,1) \qquad (5)$$

$$y_{a,b} \in (0,1) \qquad (5)$$

HURREY S

25