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Summary 

 

The demand for energy and cost efficient buildings has made architects and 

contractors more aware of the resources consumed by the built environment. While the 

actual economic and environmental costs of future construction can never be 

completely predicted, energy simulations and cost modeling have become accepted 

ways to guide the design and construction process by comparing possible outcomes. 

These tools are now commonplace in the construction industry, and researchers are 

continuing to develop new and innovative strategies to optimize building design and 

construction. Previous research has proven that genetic algorithms are effective 

methods to evaluate and optimize building design in situations that contain a large 

number of possible solutions. The technique makes a computationally difficult multi-

optimization process possible but is still a reactive and time consuming process that 

focuses on evaluation rather than solution generation. 

This research presented in this paper builds upon established multi-objective 

optimization techniques that use an energy simulator to estimate a conceptual 

building’s energy use as well as construction cost. The study compares simulations of a 

simplified model of a 3-story inpatient hospital located in Atlanta, Georgia using a 

defined set of variables. A combined global minimum of annual energy consumption 

and total construction is sought after using a method that utilizes a genetic algorithm.  

The second phase of this research uses a modified approach that combines the 

traditional genetic algorithm with a seeding method that utilizes previous results. A new 

set of simulations were established that duplicates the initial trials using a slightly 
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modified set of design variables. The simulation was altered, and the phase one trials 

were utilized as the first generation of simulated solutions.  

The objective of this thesis is to explore one method of making energy use and cost 

estimating more accessible to the construction industry by combining simulation 

optimization and indexing. The results indicate that this study’s proposed augmented 

approach has potential benefits to building design optimization, although more 

research is required to validate this hypothesis in its entirety. This study concludes that 

the proposed approach can potentially reduce the time needed for individual 

optimization exercises by creating a cumulative, robust catalog of previous 

computations that will inform and seed future analyses.  

The research was conducted in five general stages. The first part defines the research 

problem and scope of research to be conducted. In the second part, the concepts of 

genetic algorithms and energy simulation are explored in a comprehensive literature 

review. The remaining parts explain the trial simulations performed in this study. Part 

three explains the experiment’s methodology, and part four describes the simulation 

results. The fifth and final part looks at what the possible conclusions that can be made 

from analyzing the study’s results. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1. Research Motivation 

Buildings, both during their construction phase and occupancy lifecycle, consume a 

large amount of both monetary resources and natural resources. In the US alone, “the 

design, construction, and operation of buildings account for 20 percent of U.S. 

economic activity and more than 40 percent of energy used and pollution generated” 

(US Green Building Council, 2003).  However, this trend cannot continue, and buildings 

will need to drastically reduce their energy emissions in the near future. To combat the 

environmental degradation caused by buildings, organizations and governments 

worldwide are imposing regulations that reduce building energy use and emissions 

drastically.  

The 2030 Challenge is one such program that requires incremental reductions in fossil 

fuel energy in buildings every five years, with the ultimate goal of carbon-neutral 

buildings by the year 2030. In 2007, a law passed requiring all new US federal buildings 

and major renovations to meet the energy performance standards of the 2030 

Challenge, and a bill has been recently introduced in Congress that contains a stricter 

national building energy code shaped by the challenge. In addition, the 2030 

Challenge has officially been adopted by “The National Governors Association, The 

National Association of Counties, International Council for Local Environmental 

Initiatives, the states of Minnesota, Illinois, New Mexico, Washington State, and 

numerous cities and counties,” and similar measures have been put into law in 
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California, Ohio, Oregon, and Vermont (Architecture 2030, 2012). This movement is not 

confined to the United States. The European Commission also has official plans for a 

European Union energy policy that reduces greenhouse gas emissions 20% by the year 

2020 (Hamdy, Hasan, & Siren, 2011). 

While environmental standards are increasing, there is also increasing pressure for 

building construction to be more cost-effective. Construction accounts for a sizeable 

portion on the economy. According to the US Department of Commerce, the total 

construction market in 2008 was $1.8 trillion and accounted for 13.4% of the $13.2 trillion 

U.S. GDP. That same year, new commercial and residential building construction 

constituted 6.1% of the GDP alone (US Green Building Council, 2012). Yet the amount 

spent on the construction industry is highly impacted by the state of the economy as a 

whole. Reed Construction Data compiled the Department of Commerce statistics and 

found that the total annual US construction spending decreased 7.4% in 2008, 

decreased 15% in 1009, and further decreased 11% in 2010 (Markstein, 2011).  

Another measure of the construction industry is the Architecture Billings Index (ABI), a 

measurement compiled by the American Institute of Architects (AIA) Economics and 

Market Research Group. The ABI is a diffusion index derived from a monthly survey that 

“is a useful leading indicator of future levels of nonresidential construction activity” 

(Baker & Diego, 2005). More specifically, the ABI provides approximately a nine to 

twelve month “glimpse into the future of nonresidential construction spending activity.” 

From May 2011 to May 2012, the ABI was showing construction decline for six months 

and growth for seven months (American Institute of Architects, 2012). In essence, the 

ABI has indicated that the near future of the construction economy continues to be 
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unstable. In these circumstances, it is reasonable to assess that construction projects 

need to be cost-effective and economical in order to be built. 

The combined circumstances of environmental awareness and economic fluctuation 

create a vast necessity for buildings to be both cost-efficient and energy efficient, and 

optimizing these two objectives of building construction is perhaps the most crucial task 

for the construction industry.  

 

1.2. Problem Definition 

The demand for high performance, low cost buildings necessitates an efficient way of 

evaluating potential construction. Conceivably, every un-built construction project has 

an unlimited number of possible configurations, which is defined as the “design 

problem.” Every identified scheme that satisfies the project’s requirements can be 

considered a solution to that particular problem. During the design phase of a project, 

architects, engineers, contractors, and owners make numerous design decisions that 

significantly narrow the amount of solutions considered. Still, there are still typically large 

amounts of solutions that are acceptable. The ultimate solution can either be selected 

arbitrarily or by using a scientific-based method of evaluation. Previous research has 

shown that optimization techniques using energy simulation tools can be effective in 

exploring the set of possible solutions (Wright, Loosemore, & Famani, 2002).  

The practice of evaluating solutions using energy simulation, however, takes a large 

amount of set up and computation time. The drawbacks of these methods limit the 

usefulness of utilizing such techniques on a large scale across the construction industry. 



4 
 

These pitfalls are examined more in depth in Chapter 2 literature review portion of this 

research. 

Therefore, the general research problem statement of this thesis is: “Can an iterative 

process be outlined in a way that would make a first cost material and energy trade-off 

analysis tool capable of facilitating the generation of solutions in addition to evaluating 

solutions?” 

 Given this objective, the research problem is defined as finding a process that can 

efficiently and effectively evaluate cost and energy optimization at a pace that stays 

relevant throughout the design and construction phases of a project. In this way, a 

multi-objective optimization method can potential inform building design and 

construction in an interactive manner. 

The obvious way to create a faster optimization method capable of keeping pace with 

real-world construction decision-making would involve developing a less time 

consuming and more efficient optimization tool. Many previous researchers have 

already focused on making more efficient optimization using genetic algorithms (Dreo, 

Petrowski, Siarry, & Taillard, 2005). Some of these methods will also be examined in the 

Chapter 2 literature review portion of this paper.  

The research proposed in this thesis builds upon those foundations and suggests one 

more augmentation. Traditionally, each multi-objective optimization study that uses 

genetic algorithms begins with a random sampling of possible solutions, generically 

called the population. This thesis proposes a specific method of initializing an 

optimization exercise by utilizing past trials for the initial population of a new 

optimization trial, regardless of whether the trials have exactly similar parameters or 
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variables. The hypothesis of this research is that multi-objective optimization will come at 

a faster rate when trials are used cumulatively. Alternatively, if unsuccessful, this method 

will prove to not be a faster way than traditional genetic algorithms to uncover optimal 

solutions or will fail to uncover optimal solutions all together. 

 

1.3. Project Scope 

To test the overall premise of this thesis argument, a specific study needed to be 

created. This section outlines the overall scope of research including optimization goals, 

overall parameters, variables, constants, and general constraints. The actual values 

used in the study are outlined in detail in the methodology chapter of this research. 

A hypothetical test building located in the climate of Atlanta, Georgia was used for the 

purposes of this study.  The building function is modeled after patient bed unit wing of 

an inpatient healthcare facility. The building was modeled as a generic building mass 

consisting of three-stories, with dimensions related to the standard modules of an 

inpatient hospital. Generically, the size of hospital developed for the energy model 

related approximately to a 100-bed inpatient facility. Each story was comprised of five 

zones, one for each perimeter wall, and one central zone.  

The two optimization goals focused on material cost and building energy use. The 

specific fitness objectives used are estimated initial material cost per conditioned area 

and simulated yearly energy use per conditioned area. Five variables of building 

orientation and percent glazing were parametric and tested for optimization.  
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In all, four trials were conducted to analyze the research hypothesis: one trial 

established the study, two trials were conducted as controls, and a final trial was used 

to test the research hypothesis. This process is shown in Figure 1.1, where Steps 1 and 2 

perform the first three trials utilizing the traditional approach as outlined in the literature 

review. Step 3 performs the augmented approach as proposed in this research. Step 4 

is the comparison of the trial results.   

 

 

Figure 1.1. Research Process 
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The remaining properties of this hypothetical building were based on a combination of 

assumptions and the author’s experience as a professional architect. Generally, the 

majority of the building’s properties such as location, building massing, and building 

type are considered not relevant to the research as they remained the same values for 

both the control and test trials. These constants are therefore only important in that they 

remained a neutral base used to measure the effectiveness of the two optimization 

methods used in the study.  

However, the values used in this research still strived to be accurate in order to provide 

a realistic background for the study. Also, the use of practical parameters was utilized in 

order to demonstrate the possible applicability of this research in a real-world situation. 

A healthcare building was chosen due to the high energy use and critical nature of 

that building subsector, and the Atlanta climate was chosen based on the location of 

the research. In truth, the specifics are arbitrary but needed to be specified for a 

complete energy simulation. Refer to Table 1.1 for a brief description of how each trial’s 

parameters differed from one another. These parameters are described in full in the 

methodology section of this thesis. 

 

Table 1.1. Description of Trials Proposed in Current Research 

Trial Run(s) Description 

Trial  1 Single Pane Glazing 

Random initial population 

Trials 2A & 2B Double Pane Glazing 

Random initial population 

Trial 3 Double Pane Glazing 

Seeded initial population 
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CHAPTER 2: BACKGROUND & LITERATURE REVIEW 

 

 

2.1 Introduction to Energy Analysis 

The recent demand for energy efficient buildings has made energy analysis a well-

researched tool for finding optimal building design solutions. While energy analysis 

alone will not save the environment, it can be used as an integral tool in combatting 

the enormous energy strain caused by building and construction. One study looking at 

the energy use and carbon dioxide implications for residential homes in New Zealand 

articulated this point: “The global key to reducing carbon dioxide emissions to the 

atmosphere is the use of renewable clean energy. Until this becomes economically 

feasible, the short-to-medium-term response is to reduce energy use and increase 

energy efficiency” (Buchanan & Honey, 1994). 

This section provides an overview of why energy analysis has gained popularity, how 

energy analysis is currently being used in the construction industry, and the effect of 

Building Information Modeling (BIM) on energy analysis. The final part of this section 

reviews some of the challenges that building energy analysis faces. 

 

2.1.1. The Demand for Energy Efficient Buildings 

Buildings account for a great deal of energy consumption and pollution around the 

world. The design, construction, and operation of building account for more than 40 

percent of energy consumption and pollution in the US (US Green Building Council, 
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2003).  This trend has gained the attention of architects, builders, and owners as well as 

politicians, developers, and the general public. Metrics have been put in place to 

measure and reduce the amount of energy used and emissions emitted for building 

construction and operation around the globe. The ambition to reduce the harmful 

environmental impacts of buildings is taking place in many countries and across 

multiple building sectors. 

US Buildings 

As stated in the Research Motivation section of this paper, new regulations that control 

the use of fossil fuels are becoming commonplace in the United States. A 2007 law 

requires all federal buildings to meet certain energy performance standards, and similar 

regulations are taking into effect in jurisdictions across the country on the municipal, 

state, and regional level (Architecture 2030, 2012). 

International Buildings 

This movement spans the globe. A few years ago, the United Nations held a 

conference in Copenhagen, Denmark called the 2009 United Nations Climate Change 

Conference, regularly referred to as the Copenhagen Summit. This conference 

negotiated an international agreement based on six key messages presented by the 

Sustainable United Nations (SUN) and the United Environmental Program Sustainable 

Buildings and Climate Initiative (UNEP-SBCI). The six points addressed were summarized 

in a paper by Bernardes et al (2011) and are as follows: 

1. The building sector has the most potential for delivering significant and cost-

effective GHG emission reductions; 
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2. Countries will not meet emission reduction targets without supporting energy 

efficiency gains in the building sector; 

3. The building industry is committed to action and in many countries is already 

playing a leading role; 

4. Significant co-benefits including employment will be created by policies that 

encourage energy efficient and low-emission building activity; 

5. Failure to encourage energy-efficiency and low-carbon when building new 

or retrofitting will lock countries into the disadvantages of poor performing 

buildings for decades. 

In December of 2009, the Copenhagen Accord was drafted by multiple countries 

including the United States, China, India, Brazil, and South Africa (Bernardes, Benetto, 

Marvuglia, & Koster, 2011). While the Copenhagen Accord in a major international 

agreement, the effect of energy consciousness can be seen in smaller ways around the 

world as well.  

Hospital Energy Use 

This current study is proposing the energy analysis of a hypothetical inpatient hospital 

located in Atlanta, Georgia. Hospitals, as part of the greater commercial building 

sector, make up a large portion of energy used in building construction and operations. 

“The commercial building sector is responsible for 18% of US energy use and is the 

fastest growing demand sector.” A Energy Information Agency 2007 report projected 

that commercial energy consumption would grow by 1.5% per year (Griffith, et al., 

2008). 
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Healthcare buildings, in particular, have a challenge to reduce energy consumption. 

“Healthcare buildings are the second most energy-intensive building type” (Burpee & 

Loveland, 2010). In 2003, US healthcare facilities used 594 trillion Btu. This accounted for 

9% of all building energy use that year. As a portion of transportation, industrial, and 

building sectors combined, healthcare buildings accounted for 4% in the US, and 

approximately 1% of energy consumption worldwide. 

 

2.1.2. Traditional Approaches to Energy Analysis 

There are multiple approaches to building energy modeling (BEM) and no concrete 

methodology agreed upon by the construction industry. A recent energy modeling 

guide published by the American Institute of Architects (AIA) recommends developing 

energy models for all building design projects and outlines the following rules of thumb: 

decide whether energy modeling is appropriate, integrate energy modeling early in 

the process, develop a smart work plan, set performance goals and benchmarks, 

identify constraints, balance performance indicators, explore synergies, explore passive 

systems, eliminate unnecessary systems, compare alternatives, and illustrate your 

analysis (AIA, 2012).  

As these broad steps suggest, the AIA guide proposes no in depth processes to achieve 

these goals, and only generic summaries are provided for each category. Table 2.1 is a 

table from that literature that summarizes the benefits and goals of energy modeling 

during each phase of a design and construction project.  
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Table 2.1. Broad Energy Goals & Benefits 

extracted from (AIA, 2012)  

 

 

 

To gain an understanding how energy analysis simulation is used in current design 

practice, the researcher conducted an interview with the energy simulation 

coordinator at a large US-based architectural firm (Wolfe, 2012). The firm that he works 

at specializes in hospitality, sports, and healthcare architecture, with roughly 1,200 

employees in twenty-nine worldwide office. Twenty-two of those offices are located in 

the United States. A large architecture firm such as this one has a dedicated 

sustainability department which handles all energy analysis simulation and data. 

For ease of comparison, the design firm focuses on one metric that indicates energy 

use of a building normalized by building size. This metric is typical for demonstrated 
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annual building energy use and is called Energy Use Index, or EUI. “The EUI for a building 

is the total amount of energy used by the building, most commonly electricity and 

natural gas, per square foot of floor area, metered on an annual basis. Buildings’ EUI are 

often reported in units of KBtu/SF/Year. This is a way of comparing different buildings to 

each other, much like comparing different cars to each other using a miles per gallon 

rating” (Burpee & Loveland, 2010). 

For a usual project designed at the firm where the interviewed sustainability coordinator 

worked, the EUI is calculated and compared in four different ways: 1) existing building 

performance based on region and/or building type, 2) baseline simulations using code 

minimum standards, 3) simulations based on proposed building geometry and 

materials, and finally, 4) actual post-occupancy data (Wolfe, 2012). Figure 2.1 diagrams 

these four steps and shows which building phase each is loosely associated with. 
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Figure 2.1. Current Steps in the Practice of Energy Modeling 

 

 

The four energy consumption methods occur chronologically as the building design 

begins, becomes solidified, and is completed. Figure 2.2 below is taken from the AIA 

Energy Modeling Guide (2012) and is an illustration of how the first three steps of this 

process can be compared. The pie charts shown represent steps one, two, and three 

from left to right. The largest pie chart shows the EUI and energy break down of an 

existing building (Step 1). The middle pie chart then shows an estimated baseline of an 

addition to that building using minimum code requirements (Step 2). The final and 

smallest pie chart represents a possible energy use estimation of the proposed design 

solution (Step 3). 
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Figure 2.2. Example EUI Comparison of Potential Building Designs 

extracted from (AIA, 2012) 

 

 

In the information gathered from the interviewed sustainability coordinator, the energy 

analysis performed by his firm is used in an attempt to understand the implications of 

their design decisions and utilize energy analysis software to help guide a project to 

consume less energy. However, the process lacks a great deal of feedback and is not a 

precise exercise. The main criticism of such an approach is that the designs are 

ultimately not affected by the energy simulations, and that such methods do little to 

result in reduced energy consumption. These concerns are addressed later in this 

research. 

The remainder of this section outlines the four steps outlined from the interview with the 

sustainability coordinator of the previously mentioned design firm. 
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Step 1: Existing Data and Building Survey 

When a project begins, the energy analysis team tries to find EUI data of existing 

buildings of that particular project type in the region. This provides a very general start 

point of what can be expected of a typical building in terms of energy consumption. 

The most common database to find this information is the Commercial Buildings Energy 

Consumption Survey (CBECS) which was performed in 2003 by the US Energy 

Information Administration.  This database is the most extensive end-use survey 

performed for US energy consumption by building type and organized by region. 

CBECS is currently developing an updated survey in collaboration with stakeholder 

involvement with the USGBC, ASHRAE, AIA, NREL, EPA, various universities and trade 

associations and other organizations (Energy Information Administration, 2012). The 

survey is used for official government statistics, and is an excellent source of real-world 

data about the energy performance in the commercial sector” (Griffith, et al., 2008). 

Another resource for finding existing building end-use energy consumption is the Energy 

Star Target Finder.  Projects design to earn the ENERGY STAR certification should use the 

Target Finder to determine their energy performance score, but the no-cost tool can 

also be used generally to find data and set energy targets. Target Finder is also used 

per building type and region, and uses the CBECS database as a complimentary data 

source (Energy Star, 2012).  

In addition, other organizations are currently compiling post-occupancy energy usage 

reports that are anticipated to be published very soon. These efforts include the 

University of Washington in collaboration with the Northwest Energy Efficiency Alliance 

(NEEA, 2012), the Commercial Building Initiative within the US Department of Energy 
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(DOE, 2012), the Lawrence Berkeley National Laboratory hospital benchmarking study 

(LBL, 2012), and the National Renewable Energy Laboratory (NREL, 2012). All of these 

sources will help establish baseline energy consumption for future projects based on the 

actual end-use data. 

Step 2: Baseline Simulations 

A baseline simulation is one that uses basic project data to determine what a standard 

project’s energy consumption based on building type, location, orientation, building 

envelope, number of stories, and square footage.  The process is that the building basic 

size and program square footage is determined, as well as location. Using code 

minimum ASHRAE 90.1 performance goals, the data is input into the energy analysis 

software. At this stage, the building is not yet designed and shown as a simple mass with 

appropriate size and shape. Sometimes a minimal amount of glazing and building 

envelope constraints are added to the energy model, and the simulation is run four 

times – once for the building oriented toward each cardinal direction. 

Although the existing building survey can establish what current buildings in the region 

are consuming, it is helpful only as a reference point and not useful for comparison 

purposes. There are various reasons for this. First, there are many factors that cannot be 

determined strictly based on the end-use surveys. For example, the types of fuel used or 

the types of mechanical systems have a large impact on energy usage but are not 

reported in detail in most post-occupancy energy analysis surveys. Second, a building’s 

actual energy performance is greatly based on usage, operations, and commissioning. 

Again, these issues are usually hard to determine for existing facilities, therefore there 

can be no control factor for comparison purposes.  
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The interviewed architecture firm using the energy analysis program eQuest, developed 

by the US Department of Energy, as the software for whole-building energy simulations. 

This organization believes that eQuest is the most accurate and simple technology for 

designers to evaluate their designs in terms of energy consumption. Other programs 

used by the firm include Ecotect and Autodesk Vasari, which provide sun shading and 

day lighting analysis, as well as wind tunnel analysis. These software packages are 

utilized mostly for their superior graphical outputs, however, and not for creating 

accurate energy use data. 

Step 3: Proposed Design Simulations 

Once a baseline energy use is established based on simple building parameters, the 

building enters the design phase where the building shape and location on the site is 

defined, the building envelope and materials are established, and the building systems 

are determined. Using the same eQuest software, the building data is updated to 

reflect the design and the simulation is run once again. By comparing the proposed 

design to the baseline simulations, the designers get information on how their design 

decision effects the building’s energy consumption. 

This step is the most critical and most intensely studied portion of energy modeling 

because it is essentially an estimate of how the actual building will perform when fully 

operating. This is also the energy modeling step that will be focused on over the course 

of this research.  
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Step 4: Post-Occupancy Energy Consumption Data 

The architecture firm is in the process of trying to gather post-occupancy energy data 

of their designed buildings after construction.  Post-occupancy data is information 

collected after the building is completed and once the building is in use. The benefit of 

this information is to validate design decisions and provide learning opportunities for 

future projects. Such information is difficult to gain access to, however, for multiple 

reasons. Even though many advanced organizations do use such analysis for facilities 

management, many institutions do not measure or record such data. The cost of 

procuring the data may be prohibitive, from the necessary sensors to gauge specific 

energy use to the software used to compile such data to the personnel required to 

track and make sure such systems are appropriately working. Of course, base energy 

use can always be gained through simple records like utility bills, however this brings up 

the aspect of breaching an organization’s privacy. 

It must be clarified that post-occupancy data is different than commissioning. 

Commissioning ensures that the building systems are functioning properly according to 

its design. While this is tangentially related to energy use, the explicit purpose of 

commissioning is not to reduce consumption even though that is usually the outcome 

from making the systems work as designed. 

 

2.1.3. Energy Analysis Challenges 

Along with the benefits of energy analysis for buildings and building systems come new 

challenges that must be addressed. One challenge is that simulation results are often 
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confused with real-world data. It is a largely held belief in the construction industry that 

simulations should only be compared to other simulations and not be compared to 

actual usage (Wolfe, 2012). Comparing like simulations provide for controlled options 

with all other settings remaining equal. This allows for discerning ramifications of each 

option in a controlled environment. 

Another challenge spoken about by the interviewed sustainability coordinator is that 

simulations also cannot be compared to actual building usage because of 

environmental factors. By nature, a simulation is not reflective of a real-world situation, 

with many assumptions and predictions occurring to make the simulation provide 

decent output. When simulations are compared to one another, these assumptions are 

the same. Yet comparing to real world phenomena will most certainly not match those 

assumptions. One example is the use of weather data. Simulations often utilize averages 

of past weather conditions as their data input. If we compare a year of that simulation 

model’s energy use with an actual building’s annual energy use, we can understand 

immediately that the actual yearly weather will not match the simulated data, and 

therefore the numbers will never be comparable no matter how accurate the 

simulations were. Therefore, design firms like the one interviewed never rely on the 

numbers extracted from energy models and only compare like simulations to each 

other (Wolfe, 2012). 

Another large hurdle the energy simulations face is the time they take to perform. The 

traditional methods for obtaining and analyzing energy model analysis are a 

substantially lengthy process, and the results lag in time by the time they are delivered. 

This can make the analysis obsolete because the original answers sought in the energy 
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model are often “irrelevant by the time they are delivered” (Bazjanac, 2008). For this 

reason, energy analysis on real-world projects has minimal impact on the final building 

designs. 

The last obstacle worth noting for energy model analysis in building design is the issue of 

placing it within the traditional building design and construction process. The previously 

cited AIA guide outlines broad ideas of how an energy model can be incorporated 

into the various stages of building design and construction (see Table 2.1), but there is 

not a definitive answer as to when and how energy models are inserted into the actual 

process of design and construction. 

Some researchers argue that this is because energy modeling does not fit into 

traditional building process. One study explicitly states that BEP simulation does not fit 

into the integrated BIM processes that the construction industry demands, nor does it 

match well with progressive AIA models of project delivery (Bazjanac, 2008). 

That same study continues by stating that because energy modeling does not fit well 

into construction practices, the preparation for energy modeling usually starts too late 

during the design. Traditional energy modeling, the research suggests, starts only after 

the design is largely developed, making analysis available only after “fundamental 

design decisions, potentially critical to energy performance of the future building, have 

already been made” (Bazjanac, 2008). 

Because of all these reasons, energy analysis is minimally used in the current 

construction industry. One analysis predicts that it is possible that less than 1% of typical 

new US buildings constructed have the involvement of some form of energy modeling. 
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This is because simulation is seen as too costly, too labor intensive, and too slow to 

deliver any real results (Bazjanac, 2008). 

 

2.2. Introduction to Building Optimization 

Over the years, “hundreds of optimization algorithms have been developed” (Zhang, 

2012). In general, they belong to three broad groups: 1)gradient based methods; 2) 

direct nonpopulation-based search methods; and 3) population-based search 

methods. “Only the last group of algorithms are capable of handling multi-objective 

and/or multi-constraint (often called multi-criteria) problems” (Zhang, 2012). Since the 

current research involves multi-objective optimization, the literature review and 

precedent studies will focus on those methods.  

 

2.2.1. Multi-Objective Optimization in Building Design 

It is widely recognized that building and engineering construction problems are 

complicated. “Most engineering problems are characterized by several non-

commensurable and often competing objectives to be optimized. Due to trade-offs 

involved, such problems usually have no unique, perfect solution” (Fonseca & Fleming, 

1995). Intertwining factors such as cost, materials, schedule (time), performance, safety, 

and many others would like to optimized by the construction team, but there is most 

likely not a single solution that can optimize all factors simultaneously. Instead, there is a 

multi-dimensional solution set that can uncover the optimized solutions of each factor, 

which is called the Pareto-optimal set.  



23 
 

The Pareto-front is the maximal set of non-dominated elements (Cvetkociv & Parmee, 

1998). A solution is considered non-dominated if the “improvement in any objective 

can only be achieved at the expense of degradation of other objectives, and can only 

be discriminated on the basis of expert knowledge of the problem” (Fonseca & 

Fleming, 1995). In this sense, another name for the Pareto-front is the Trade-Off surface 

(Dreo, Petrowski, Siarry, & Taillard, 2005). Figure 2.3 shows a generic Pareto-front 

diagramming the optimization of two fitness objectives. One example dominated 

solution is shown below the Pareto-curve. The Utopia Point is a non-attainable point that 

refers to a hypothetical solution that would maximize the fitness of both objectives 

simultaneously. 

 

 

Figure 2.3. Ideal Pareto-optimal graph 

extracted from (Gagne & Andersen, 2010). 
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The benefits of using Pareto optimization are that all objective are considered 

simultaneously, every element of the Pareto front is a good solution, and it maintains the 

diversity of solutions. The disadvantage of the Pareto method is that it is general 

computationally expensive, especially if the number of objectives or search space is 

large (Cvetkociv D. &., 1998). The traditional method of aggregating multi-objectives is 

to somehow combine or transform all objectives into a single-objective function. This 

has the opposite advantages in that it reduces the optimization to a simpler form that 

can be more easily computed using traditional optimization methods. However, issues 

arise as to how exactly to weight or normalize varying objectives, especially when the 

exact objectives can change over time or trade-offs want to be considered (Cvetkociv 

& Parmee, 1998).  

One study that used Pareto optimal solutions for building design was performed in 1987 

and looked at the relationship of four performance criteria used to influence the 

schematic design of an open plan office building. The performance factors measured 

were thermal load, daylight availability, planning efficiency, and capital cost. The 

outputs of these three study objectives are shown in Figure 2.4. The variables discussed 

in this study were window geometry, wall construction, roof construction, orientation, 

shape, floor area, and massing. The researchers conducted a case study for an office 

building in Perth, Australia and created Pareto-Optimal graphs where thermal load is 

plotted against capital cost, planning efficiency, and daylight. These simple graphs 

offer a powerful educational tool “in understanding the relationships between design 

decisions and the criteria considered” (D'Cruz & Radford, 1987). 
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Figure 2.4. Ten Representative Pareto Performances 

extracted from (D'Cruz & Radford, 1987) 

  

 

More recently, researchers looked into using an iterative procedure to analyze the 

Pareto-front of a multi-dimensional optimization problem that was difficult to 

computationally derive. The goal of their research was to break down the problem into 
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smaller-dimensional Pareto-optimal sets strictly for visualization purposes. For example, 

they created a graph of the bi-criterion problem of optimizing capital and operating 

costs for the construction of a chemical plant. While the problem was over simplified to 

create the graph, the visualization of the trade-off was priceless for someone looking at 

the implications of decreasing the capital costs of the project (Zilinksas, Fraga, & 

Mackute, 2006). The researchers imply that the visualization seen in Figure 2.5 is far more 

useful than the cryptic output of a computationally difficult multiobjective problem that 

has implications not fully understood by the design team. The graph is actually a 

reduction of a nine-dimensional case study, where lambda corresponds to the 

eigenvalues of the set of feasible points in the multi-dimensional search space. 

 

 

 

Figure 2.5. Pareto set of a Bi-criterial Problem 

extracted from (Zilinksas, Fraga, & Mackute, 2006). 

 

 



27 
 

It is important to note the Pareto-Optimal sets are not the only method in determining 

multiobjective optimization for building construction.  “The idea of multi-criteria 

decision-making methods is so natural and attractive that thousands of articles and 

books have been devoted to the subject” (Turskis, Zavadskas, & Peldschus, 2009). One 

widely used multi-criteria decision making tool is Analytic Hierarchy Process (AHP). An 

example of this use in combination with game theory was proposed in a 2009 study 

involving wall construction types in Lithuanian housing (Turskis, Zavadskas, & Peldschus, 

2009). However, this research will focus on the Pareto-Front method for the purpose of 

narrowing the discussion topic. 

 

2.2.2. Multi-Objective Optimization in Building Energy Simulations 

Building energy analysis can be optimized through search because of the complex 

relationship of both linear and discrete variables that make optimization strictly through 

mathematics difficult. Therefore, simulations present a way for discrete and difficult 

continuous variable problems to transform into a single performance variable that is 

conceived through simulated application. 

In 2006, the National Renewable Energy Laboratory (NREL) published a conference 

paper outlining the practical application of automated multivariate optimization tools 

for energy analysis (Ellis, Griffith, Long, Torcellini, & Crawley, 2006). In that paper, the 

authors describe that using traditional trail-and-error evaluations of building options is 

human-driven method that is inefficient. The process amounts to a “limited search for 

an optimal solution.” When it comes to building simulation, the authors argue that 

automated optimization can evaluate large numbers of potential solutions that both 
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refine optimized outcomes as well as minimize the possibility of converging on local 

maxima. 

According to their research, this optimization search is also “best formulated as a 

multicriteria, or multiobjective, sear for a set, or Pareto-optimal front, of optimal 

solutions.” Such multi-objective approaches recognize that oftentimes there is more 

than one variable that can be optimized, and that those variables are sometimes at 

odds with each other. The prime example in terms of building energy optimization is the 

aspects of project cost and project performance, which they demonstrated 

graphically in Figure 2.6.   

 

 

Figure 2.6. Pareto Front of Optimal Solutions 

extracted from (Ellis, Griffith, Long, Torcellini, & Crawley, 2006). 
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It is conceivable that focusing on only one factor could limit the usefulness of any 

optimization exercise. For example, a certain cost optimization exercise with on 

objective and all other performance criteria assumed could produce a lowest cost 

solution. What that solution may not tell is that perhaps a minimal raise in project cost 

could drastically improve performance. This kind of minimum sacrifice for maximum 

gain may appeal to building designers or owners if they are aware. When trade-offs like 

these can occur, it is beneficial to present the designer with a range of optimal solutions 

“that can be used to inform decision-making.”  

Of course, the performance can be converted into a single objective or cost amount 

to simplify optimization. For example, a cost objective and energy use objective can be 

combined into a single monetary amount, but this type of consolidation would rely on a 

single, static price of fluctuating energy costs. Another example would be combining 

two objectives using a weighted proportion, based on the importance of each fitness 

goal as perceived by the researcher. Not only do these methods simplify the 

optimization process into a single objective problem at the potential danger of limiting 

their usefulness, but search algorithms make these additional steps unnecessary.  

As the NREL (2006) paper points out, “The preferred search algorithms for finding the 

Pareto-Optimal front can separately and simultaneously minimize both cost and 

performance. This is opposed to the more common approach of attempting to 

aggregate and weight different metrics into a single performance index.” 

The National Renewable Research Laboratory researchers have access to distributed 

computing networks that essentially create a super-computer that can run up to 252 

simultaneous simulations. Each simulation in their study could take up to two minutes, 
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but the researchers also ran trials to determine which variables could be tweaked to 

greatly speed up the simulations while minimally effecting optimized outcomes. In 

addition, NREL researchers equipped their study with preprocessing to “autobuild” 

simulation input files and had access to extensive costing databases. With their 

equipment and technology, the NREL researchers were able to perform 545 simulations 

in only 2.5 hours, an average of 16.5 seconds per trial. With these instruments, it is fairly 

easy for the researchers to assert that “with today’s computing power, the bottleneck is 

no longer simulation run time, but rather the human time to handle input and output.” 

The average designer, however, does not normally have access to computing power 

or technology of that nature. While the NREL researchers were able to run a “brute 

force” trial where possible solution in the search space was simulated and organized 

based on optimization, they also recognized the need for only analyzing selective 

solution sets within the search space. The question then remains as to what is the most 

effective way of uncovering the optimal Pareto-Front solutions while not analyzing 

every option. If only random solutions in the search space were tested, it would be hard 

to imagine the entire Pareto-Front being uncovered. Therefore, various methods were 

created that systematically and strategically test the search space in order to maximize 

the optimal solutions uncovered while minimizing the solutions being tested. 

For explanation, the experiment undertaken in this research will be used as a simple 

example. The design problem was narrowed down to five variables with ten possible 

values each for this study. This equates to 100,000 possible solutions. A standard 

personal computer may take around 70 seconds to perform an energy simulation of 

that nature. If every solution was possibility was simulated using the “brute force” to find 



31 
 

the optimal, it would take almost 82 days of pure computing time. Conversely, 

simulating 500 possible solutions, or ½% of the solution set, at random will take much less 

time but may not lead to uncovering an optimal solution. Researchers are finding 

strategic ways of simulating small percentages of the solution set while still finding 

reasonably optimal solutions. 

One such area of research that attempts to address this challenge is referred to as 

metaheuristics. The term is appropriate as metaheuristics builds on the basic heuristic 

methods that concern an iterative trial-and-error processes that uncover built 

knowledge through discovery and aggregated learning. While there are a great many 

metaheuristic methods, most can be grouped into four broad categories: simulated 

annealing, evolutionary algorithms, tabu search methods, and ant colony algorithms 

(Dreo, Petrowski, Siarry, & Taillard, 2005). 

The benefit of metaheuristic methods is that they can reconcile both difficult discrete 

optimization problems and difficult continuous optimization problems, and they can 

also be extended to tackle multiobjective optimization, multimodal optimization, 

dynamic optimization, and the recourse to parallel implementations (Dreo, Petrowski, 

Siarry, & Taillard, 2005). Given any solution set, one can use classical methods of 

optimization to incrementally improve the outcomes by through “iterative 

amelioration,” or iterative optimization.  

The risk of that method is that solutions can become trapped at local optima, and the 

optimized outcome is greatly affected by where the initial solution began. Figure 2.7 

demonstrates a simple optimization graph that has many local minima. If a study 

started at point c0 on the graph and only looked at progressively better adjacent 
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solutions, then the output would most likely become trapped in defining cn as an 

optimal solution because. At that point, every adjacent solution is less fit. However, as 

one looks at the entire solution set, it is obvious that better solutions exist. 

 

 

Figure 2.7. Example of Local Minimum 

extracted from (Dreo, Petrowski, Siarry, & Taillard, 2005). 

 

 

Metaheuristics, on the other hand, all have mechanisms to avoid becoming trapped at 

local minima. These methods are therefore superior to traditional optimization in that 

they can reliably determine the global optimum. 

 

2.3. Introduction to Genetic Algorithms 

The multi-criterion optimization method used in the proposed research is called a 

genetic algorithm. The reasons for choosing this methodology is articulated in more 

depth in Chapter 3: Methodology portion of this paper. The remainder of this section will 
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provide a background of genetic algorithms and how they have been used in other 

studies. 

 

2.3.1. Single-Objective Genetic Algorithms (GA) 

One compelling metaheuristic method that has been used in construction optimization, 

as well as building energy simulation optimization, is called evolutionary algorithms 

(EA’s) or genetic algorithms (GA’s). As the name implies, GA’s are algorithms that are 

loosely based on models of genetic change in a population of individuals. Initially, the 

algorithms define a randomly-selected population within the search space. This 

population is called the “solution set.” Each solution has their variables defined as a 

string of characteristics that make up its identity. To complete the analogy, this 

characteristic set of “genes” is called a chromosome. The fitness of each solution is 

determined based on the optimization parameters, and the samples are subsequently 

ranked (DeJong, 1988).  

As indicated by the metaphor, the solution set will “evolve” based on the fittest 

individuals and the process is repeated over many generations of simulation. There are 

a large number of variations that have been used to tweak the specific details of GA’s, 

but three main operators are generally associated with the organized population. They 

are the principles of selection, crossover, and mutation. 

The selection operator chooses the fittest instances of the population for reproduction 

based on the goals of the optimization. The crossover operator then takes the fittest 

solutions and mimics biological recombination by splicing and switching their 
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chromosomes at strategic points. In essence, this is analogous to two parents 

distributing a portion of their genes to offspring, and the children do not always receive 

the same amount of characteristics from each parent.  

The last operator is the mutation operator that randomly switches genes within a 

chromosome string. One main way that all optimization methods guard from 

converging at a local optimum is by allowing some non-optimal solutions to continue in 

the process. Such a strategy allows the solution set to temporarily become less optimal, 

with the goal of discovering global optimal solutions not necessarily near the current 

search set. The mutation strategy is essential the main way that GA’s allow sub-optimal 

solutions to enter the solutions set, and they results are therefore prevented from staying 

at a local optimal (Mitchell, 1998).  

The great appeal of mimicking natural selection is the idea of searching for optimal 

solutions in a huge number of possibilities (Mitchell, 1998). The terminology used to 

describe a large search space becoming the optimal solution set is convergence. 

Much research has focused on determining the best combination of selection, 

crossover, and mutation factors that will lead to the most beneficial convergence. 

Typical factors are the number of individuals in the solution set, the number of 

individuals to become parents, the method of crossover, the rate of mutation, and the 

number of generations. This balancing act of methods recognizes that an optimal 

solution set that converges too fast may still become trapped in a local optimal search 

space, but the convergence that occurs too slow may take a prohibitively long time 

and a large amount of computing power to reach any optimal solution set at all. 
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One example of a research team testing these factors in determining the accuracy of 

GA’s occurred in 1997. At that time, the researchers found that although the results 

were promising, GA’s could not yet compete with conventional algorithms in terms of 

accuracy. Using a shortest path optimization problem that looked at the minimum path 

distance across a varying number of nodes, they found that GA’s discovered the 

optimal solution 100% of the time for small problems that contained only 6 nodes and 10 

paths. When the problem used 32 nodes and 66 edges, the performance fell to 98%. 

The performance then dropped significantly when the difficulty of the problem was 

increased to 70 nodes and 211 edges, finding the optimal only 64% of the time (Gen, 

Cheng, & Wand, 1997). Of course, the accuracy was also affected by population size 

and frequency of the generations. Better results will be accomplished if there are more 

search space tests. As we will see later in this paper, great strides have been made to 

make genetic algorithms more accurate in selecting optimization. 

 

2.3.2. Multi-Objective Genetic Algorithms (MOGA) 

Multi-objective genetic algorithms (MOGA’s) are different than single-objective GA’s 

simply in the fact that they measure more than one fitness objective simultaneously. This 

provides a major divergence for how the GA works, however, since simple GA’s can 

closely relate the fitness of the solution with its selection for reproduction and MOGA’s 

cannot. In other words, the fittest solutions will become parents of future generations 

with a simple GA. With multi-objective GA, the selection of parents related to the 

Pareto-Front, which may include less fit solutions for any particular objective (Fonseca & 

Fleming, 1995). 
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Multi-objective genetic algorithms (MOGA’s) have been improved by introducing 

various factors and utilizing various methods, as described in (Coello Coello, 2006). In 

fact, the term MOGA is sometimes associated with a specific method within the 

general field of Multi-Objective Evolutionary Algorithms (MOEA’s), although this 

research paper is using it in the generic sense as a multi-objective extension of simple 

GA’s. In addition, there have been many versions of MOEA’s that are specifically 

developed to find the Pareto-front, such as Strength Pareto Evolutionary Algorithms 

generations one and two (SPEA, SPEA2). This research will not discuss the full details of 

each method.  

Because these multi-objective evolutionary algorithms have improved over time, they 

are now being used in a variety of practical applications. In the field of engineering, 

MOEA’s are being utilized in electrical engineering, hydraulic engineering, structural 

engineering, aeronautical engineering, robotics and control. In the field of industrial 

applications, where this research is focused, applications of MOEA’s have been used to 

inform design, manufacture, scheduling, and management. Finally, MOEA’s have been 

used in a variety of scientific applications like chemistry, physics, medicine, and 

computer science (Coello Coello, 2006). 

One specific example of using MOEA’s in engineering tested MOEA methods for 

groundwater monitoring applications for varying degrees of complexity. The study 

looked at the fidelity of using such an MOEA application by comparing algorithm 

solutions to reference set. One other factor they looked at was computational time. 

Their study found that testing 18 or less well test cases was computationally easy, 

however the “enumeration of the 25 test cases” took 6 days of continuous computing 
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on their machine. The study concluded that the Pareto-optimal solutions set of each 

test case that were brought to a performance level of 80% created a linear scaling of 

Pareto set size versus problem size (Kollat & Reed, 2007). A graph of their output is shown 

in Figure 2.9. 

 

 

Figure 2.8. Example Calculation of the E-performance Metric 

extracted from (Kollat & Reed, 2007) 

 

 

2.3.3. Multi-Objective Genetic Algorithm Use in Building Energy Analysis 

The research conducted in this thesis builds upon a large number of previous studies 

that explore building optimization through the use of GA’s. There have been multiple 

research papers exploring the role that multi-objective genetic algorithms can play in 

the optimization of building performance using energy analysis and simulation 

techniques. Many of these research efforts also use the Pareto-optimal front as the 
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method for determining various trade-offs between the different objective goals. The 

following are brief summaries of some of the research already performed on this topic. 

A study done in 2002 looked at three objectives for buildings: capital expenditure, 

operating cost, and occupant thermal comfort (Wright, Loosemore, & Famani, 2002). 

Their focus was on the application of the multi-criterion decision making (MCDM) 

methods. The MCDM process has two elements: “1) the designer must make a decision 

as to which pay-off between the criteria results in the most desirable design solution; 2) 

a procedure to search for one or more solutions that reflect the desired pay-off 

between the criteria” (Wright, Loosemore, & Famani, 2002). This particular study also 

used the specific MOGA method as defined in other research papers. In this instance, 

MOGA refers to a specific form of multi-objective evolutionary algorithm that treats 

criteria as “goal restraints” and penalizes the Pareto rank of infeasible solutions. 

The study looked at various design days for the analysis of HVAC systems: a summer 

design day, a winter design day, and a swing design day. The researcher trials were 

evaluated progressively, from one design day optimization to three design day 

optimization and looked at the design day energy costs versus the thermal comfort. The 

metric used for operating costs looked at hot water from a gas fired boiler and chilled 

water from an electric powered chiller. The price of electricity fluctuated based on the 

peak demand, and the gas price remained constant. The metric for thermal comfort 

was represented by the maximum predicted percentage of dissatisfied (PPD). Overall, 

the design day was measured in a total operating cost and maximum PPD to measure 

performance. 
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The problem’s variables were restricted to looking at the HVAC system. “The size of the 

HVAC system is represented by the width, height, number of rows, and number of water 

circuits of each coil and the supply fan diameter. The maximum water flow rate to 

each coil is also a problem variable. The size of the heat recovery device has been 

fixed as has the return fan diameter. This adds a further 11 problem variables, which 

together with the control variables, gives a total of 200 problem variables” (Wright, 

Loosemore, & Famani, 2002). 

The researchers concluded that the multi-criterion genetic algorithm exhibited fast 

progress toward the Pareto-optimal solutions. Even before a truly Pareto-optimal 

solution was yet discovered, the trails yielded feasible solutions within very few 

generations. This allows designers relatively fast feedback indicating the potential 

implications of their design decisions. The study predicts that multi-criterion genetic 

algorithm based optimizers have great potential and may “be used in the design 

process to enhance the understanding of the characteristic behavior of the building 

and design solutions” (Wright, Loosemore, & Famani, 2002). From that study, Figure 2.9 

below illustrates the Pareto-front obtained by looking at the two objectives of energy 

cost and cost pay-off. The following Figure 2.10 shows the progression of the studies 

generations using the multi-objective genetic algorithm. The initial generation becomes 

more refined as a Pareto-front for the 21st generation, and even more optimized for the 

final generation. 
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Figure 2.9. Energy Cost vs. PPD pay-off for Difference Building Weights 

extracted from (Wright, Loosemore, & Famani, 2002). 

 

 

 

Figure 2.10. Convergence of the MOGA Search 

extracted from (Wright, Loosemore, & Famani, 2002). 
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Another research study also looked at using multi-objective genetic algorithms in 

determining optimal HVAC design (Caldas & Norford, 2003). This study built off previous 

work that looked the use of GA’s in designing HVAC systems. The research included 

introducing a GA to schedule loading controls in lighting and cooling to optimize HVAC 

performance while maintaining certain constraints related to thermal comfort (PPD) as 

well as others. 

In addition to strictly looking at the design of the HVAC system, the researchers explored 

the use of using GA’s to optimize the building envelope. Their work was performed in 

three phases which looked at various optimization problems that dealt with the building 

envelope and used a GA to control a DOE-2 building-energy simulation program that 

evaluated the energy consumption of each variable through simulation. 

The first phase of work by the researchers looked at the lighting and space conditioning 

systems by optimizing the window size and placement. The second phase of work 

performed by the researchers analyzed the optimization of building materials. The 

building materials investigated included various types of air layers, insulation materials, 

and concrete blocks. They ran simulations for two climates: Chicago and Phoenix. Using 

two climate zones provided examples of how optimization can uncover differing Pareto 

optimums depending on the relationship of solutions to varying types of fitness. The 

researchers then looked at an example trial located in a Beijing climate that studied 

the implications of various glazing types. The third phase that the researchers worked on 

“employed to alter building form to optimize the trade-off of lighting and heating 

energy” (Caldas & Norford, 2003). The Pareto-front of the researcher’s apartment solar 

study is shown in Figure 2.11 below. 
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Figure 2.11. Pareto Front for Apartment Solar Study 

extracted from (Caldas & Norford, 2003). 

 

The researchers conclude the GA’s have been successfully applied to many problems 

concerning building energy use and HVAC systems. The authors also predict that GA’s 

will come in to more prevalent usage when energy analysis modeling program become 

easier to use (Caldas & Norford, 2003). Nine years later, this prediction is almost true. 

Ecotect (Autodesk, 2012) and Autodesk Vasari (Autodesk, 2012) are user friendly 

programs that utilize energy analysis software. Already the uses of evolutionary 

algorithms are being experimented with such platforms. In addition, the Grasshopper 

plug-in to shape modeling program Rhino is also becoming a graphical user-friendly 

coding tool (Grasshopper, 2012). This has led to Grasshopper extensions that utilize 

evolutionary computing like Galapagos evaluate fitness to formalize building shapes 

(Rutten, 2012). Such fitness objectives as energy analysis have already been used with 

Galapagos to determine optimal building form. 
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A study published in 2005 continues the research of multi-objective genetic algorithms 

with energy analysis, but looks at green building design much more holistically rather 

than simply the HVAC system (Wang, Zmeureanu, & Rivard, 2005). The paper looks 

again at the variables included in the initial stages of building design: orientation, 

building shape, window type, window-to-wall ratio, wall construction type (based on 

variables determining each layer of the wall sandwich), and roof construction (based 

on variables determining each layer of the roof sandwich). Each variable is defined as 

either discrete or continuous and given certain constraints. 

Instead of measuring energy costs, the study attempts to look at the entire energy use 

of the building through Life Cycle Analysis (LCA). In order to combine energy use which 

is easily identifiable with less easily measureable energy use such as natural resource 

depletion, the research looks at the life cycle environmental impact using exergy. The 

definition of exergy is beyond the scope of summarizing this study. The use of exergy 

analysis in this case is used to combine resource depletion and waste emissions into one 

single objective function as well as combining fuel and nonfuel materials. The 

cumulative exergy consumption (CExC) used in the study combined pre-operation 

exergy consumption, operation exergy consumption, embodied energy of consumed 

fuel, mass of nonfuel material, life expectancy of the building, and other energy related 

factors. The LCA program ATHENA (ATHENA, 2012) was used to measure and score the 

LCA of each solution. 

The researchers concluded the study by identifying the Pareto-optimal front of their 

trials. The graphical nature of mapping the Pareto-front allowed them to identify explicit 

trade-offs as well as easily analyze the data output. For example, groupings of Pareto-
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optimal solutions showed discrete regions with different optimal solutions.  Also, certain 

variables like orientation and window ration converged to the same value for all Pareto 

solutions. Those specific objectives were found to have definite optimal solutions. As 

shown in Figure 2.12, other variables like aspect ratio and insulation materials vary within 

different Pareto solutions or Pareto zones (Wang, Zmeureanu, & Rivard, 2005). 

 

 

Figure 2.12. Distribution External Population in Performance Space 

extracted from (Wang, Zmeureanu, & Rivard, 2005). 

 

 

A research study published in 2009 looked at the optimal design method for building 

energy systems using genetic algorithms (Ooka & Komamura, 2009). Using a modified 

form of multi-objective genetic algorithm called Multi-Island Genetic Algorithm (MIGA). 

The authors contend that MIGA is a more efficient GA because it divides each 

generation into sub-populations called islands, with the genetic operations are 
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performed independently on each sub-population. Quite simply, this method creates 

parallel runs of each GA within each single trial of the GA, thereby increasing the rate 

of convergence without narrowing on a local optimum. 

The researchers describe their search to achieve optimal building operations as a four-

step process: 1) select basic system for the energy systems, 2) optimize the equipment 

capacity of each energy system (using MIGA), 3) optimize the operational process of 

each energy system (using MIGA), and 4) select the best design by comparing each 

local optimal solution. The energy demand data for this study is the default data of the 

CASCADE III energy simulation program released by the Society of Heating, Air-

Conditioning and Sanitary Engineers of Japan, which is based on statistical data from 

real hospitals (Ooka & Komamura, 2009). 

A final example of the use of MOGA’s used in building energy optimization is a study 

published in 2010 that researched the design of outer windows and their effect on 

indoor environmental design (Suga, Kato, & Hiyama, 2010). Using energy analysis 

software called modeFrontier combined with MOGA code, the analysis studied the four 

objectives of energy consumption, cost of glass, uniformity of indoor illumination, and 

draft performance when windows were opened. 

In this case, the uses of genetic algorithms were beneficial because all factors were 

discrete values: 14 discrete values for window vertical size, 16 discrete values for 

window horizontal size, and various discrete possibilities for window placement totaled 

1680 discrete options for window size and location. In addition, 91 discrete glass types 

were used. For each solution set, there were four types of analysis performed: an optical 

analysis assessed the daylight factor and uniformity, radiation analysis was used for PMV 
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control, heat load calculation were used for energy analysis, and CFD analysis was 

used to assess draft performance. Figure 2.13 shows the four-objective cluster analysis 

graphs extracted from the study. 

In addition to looking at how the Pareto optimal solutions clustered, the research 

analyzed the impact of various MOGA factors. They compared the effectiveness of 

each MOGA run by changing the crossover rate, the mutation rate, and the population 

size. Each trial had a different amount of generations because the trial was designed to 

stop when there were no additional Pareto-optimal solutions found during any 

generation. The researchers concluded that “by using multivariate analysis techniques, 

we were able to extract knowledge from the resulting Pareto-optimal solutions set that 

could not be ascertained using engineering approaches, including the trade-off 

relationships between objective functions” (Suga, Kato, & Hiyama, 2010). 

 

 

Figure 2.13. Analysis of Pareto-optimal Solution Sets Derived via Full Search 

extracted from (Suga, Kato, & Hiyama, 2010). 
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A prime reason for using GA’s is due to the discrete nature of building variables. 

Differential equations that rely on continuous variables are not as effective in finding 

optimal solutions in building applications. As one NREL research paper explains the best 

formulation for optimization is a multi-objective search for Pareto-optimal solutions. The 

paper continues by saying that “for buildings, search methods need to handle discrete 

variables and should attempt to identify a broad portion of the Pareto-optimal front. 

Genetic algorithms are applicable to discrete variables” and have been studied in the 

building context by multiple research teams (Ellis, Griffith, Long, Torcellini, & Crawley, 

2006). 

In general, studies that use GA’s to find non-dominated, Pareto-optimal are effective. 

One heavily cited study exploring building energy costs and thermal comfort 

successfully revealed that a multi-criteria GA is not only able to find optimal solutions, 

but that demonstrated “rapid evolution towards the Pareto optimal solutions. In 

particular, it is possible to find feasible solutions within very few trial solutions” (Wright, 

Loosemore, & Famani, 2002).  

Additional research that compared GA’s with other optimization methods concluded 

that the study of evolutionary algorithms has shown as a “great help of statistical 

models in driving the evolution of the best solution in large and complex search 

spaces.” The researchers had combined GA’s with neural network analysis to study 

optimized building controls and tested both single and multi-objective optimization. 

Their experiments found GA’s to be very effective and provide “very satisfactory” results 

for both methods (Zemella, de March, Borrottid, & Poli, 2011). Another recent study 

pertaining to building control systems was equally successful. That research combined 
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GA’s and fuzzy logic to optimize an agent-based intelligent control system for a cooling 

coil (Navale & Nelson, 2012). 

To summarize, Tressidder et al. (Tresidder, Zhang, & Forrester, 2011) argued that for all 

the methods proposed to efficiently search the design space for the optimum design, 

“one of the most successful and extensively studied methods [are] evolutionary 

algorithms. These use Darwinian concepts of selection, sexual reproduction, mutation 

and crossover to ‘evolve’ better buildings from an initial sample population. This 

method has been shown to be effective at finding optimum designs.” 

The last studies mentioned above were researching energy efficient building solutions. 

Energy efficiency is a common optimization problem within the literature pertaining to 

building optimization, and many of the studies cited in this paper evaluate their 

experiments using that metric as well. One paper summarizes this point by citing 

numerous examples of past research that demonstrate how GA’s are capable of 

finding large numbers of distinctly different low-energy designs, have been used to find 

environmentally optimal buildings, have been utilized successfully for analyzing building 

performance and LCA, and have been combined with artificial neural networks to 

optimize building controls (Bernardes, Benetto, Marvuglia, & Koster, 2011). 

Cost optimization is also found in building optimization studies, but to a much lesser 

degree and usually using proxy values that allow cost optimization without strictly 

analyzing building construction cost. This is probably because using construction cost as 

a metric is difficult to defined in terms of actual costs. As the research report from NREL 

indicates: “Cost data are still problematic, especially for HVAC systems and equipment. 

Costs are also volatile” (Ellis, Griffith, Long, Torcellini, & Crawley, 2006). 
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In spite of their hesitation to measure costs, that same NREL report underscores the 

importance of cost analysis to the process of optimizing building construction. For this 

reason, the research presented in this paper does factor construction costs, yet with an 

understanding that readers should be skeptical of the actual dollar amounts presented. 

Although great efforts were made to obtain realistic cost data for the purposes of 

analysis, the cost parameters remained constant throughout the trials and results should 

only be analyzed as a comparative measure.  

 

2.3.4. Practical Challenges 

These research described in this literature review not only informs future study on what is 

possible, they also warn of certain challenges. Based on the previously reviewed 

background research, the main difficulties of conducting or reproducing genetic 

algorithm experiments of this nature are computing power, genetic algorithm 

convergence, and energy analysis result fidelity. This section briefly describes the nature 

of each of these challenges as well as this research’s proposed methods of handling 

these issues. 

Computing Power 

Most of the precedent studies this paper reviewed used far more computational 

resources than what is accessible to the personal computer user or even commercial 

firm. The previously cited NREL study (Ellis, Griffith, Long, Torcellini, & Crawley, 2006) that 

automated EnergyPlus model simulations acknowledged this fact by asserting that “the 

tool currently requires considerable computing resources and is intended for in-house 
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research to assist in DOE-funded research in support of the goal of zero-energy 

building.” 

Many of the computer systems used in these studies are beyond the reach of normal 

contractors, architects, and building owners who desire energy modeling to optimize 

their construction. For example, the web-based “best-fit” baseline study of 300,000 

simulations performed by Burton & Shaxted (2012) took over fourteen days and used 

two computer clusters in parallel, one 96-core private cluster and one 320-core cloud 

based cluster. Other experiments cited in this paper used a university computer cluster 

to evaluate 1,036,800 design solutions (Zhang, 2012), and another took a weekend to 

carry out 34,560 simulations on a 256-core Linux cluster for a total execution time of 

roughly 27 hours (Zhang & Korolija, 2010).  

Genetic Algorithm Convergence 

As described previously in this section, convergence is the term used when genetic 

algorithms close in on an optimal solution. However, there may be many local 

optimums that are inferior to the global optimum within the design space. GA’s that 

converge too fast may have found local optima rather than the global optimum. GA’s 

that converge too slowly may never find the target of an optimal solution. 

Diversity is the main key defense against converging on a local optimum. Having a 

large amount of diversity within the design space ensures a variety of solutions are 

evaluated, and that reduces the probability of a GA fixating on a local optimum. The 

population size, parent selection, mutation rate, and crossover method are all factors 

that affect convergence.  
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In truth, however, the methods used in GA analysis are stochastic, and no amount of 

study can guard against premature convergence. “Premature convergence is a 

common problem with EAs. One of the strategies to tackle this is to perform several 

independent optimisation runs in parallel, therefore increase the chance of finding the 

global optimum” (Zhang, 2012).  

This random nature of genetic algorithms means that any two trials, even ones using 

identical methods, can potentially provide very different results. Previous optimization 

research using genetic algorithms often use multiple trials to validate results. (Zhang, 

2012). Although a large amount of simulation runs proved too computationally 

exhaustive for the equipment used in this research, attempts are made to reproduce 

some trials more than once in order to provide more robust results.  

Energy Analysis Result Fidelity 

Energy models are virtual simulations and will never be completely accurate predictors 

of future building performance. It is important, however, that the energy simulations are 

seen as realistic interpretations of what can happen over the course of a building’s 

lifespan. Some researchers are skeptical. One study summarized the findings of a body 

of research and concluded: “traditional energy performance simulation and analysis is 

in general based on potentially arbitrary model definitions.” That same study also claims 

that energy analysis “quantitative results are not reproducible and can be trusted only 

under special circumstances: It typically results in over–prediction of energy savings in 

buildings” (Bazjanac, 2008). 

Another researcher describes the shortcoming of energy analysis in this way: “Most 

commercial buildings do not perform as well in practice as intended by the design and 
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their performances often deteriorate over time” (Pang, et al., 2011). Two previously 

cited research studies tackled this premise by comparing EnergyPlus simulation results 

with real-world data compilation. In general terms, these two studies found that 

although the overall correlation was acceptable, there were some drawbacks to 

making direct comparisons between the virtual and real worlds. 

The study of EnergyPlus simulations synchronized with real-time building data sensors 

articulated the difficulties of exactly matching the two formats (Pang, et al., 2011). One 

issue was matching weather data with the energy simulations. Generally, simulations 

use historical weather data based on geographic location, but real-time special 

weather files needed to be created to exactly match real-time analysis. Also, 

computation time is an issue. By default, the EnergyPlus time step is 15 minutes, 

meaning that output results are compiled in simulated 15 minute increments. While this 

level of coarseness is appropriate for general results, it was insufficient for complete 

comparison. The authors suggested the use of one-minute time steps for future 

research, but that would increase the computational resources required by a factor of 

fifteen. 

The other drawback to comparing simulated results to real-world data is that humans 

are not as predictable as a model. Much of the discrepancy found in the research 

compiled by Pang et al. (2011) could be accounted for by human interactions that 

strayed from the programmed usage. For example, one night of energy simulation 

predication was wildly incorrect in the energy use that actually occurred. It turns out 

that this incongruity was the result of someone leaving the lights on overnight, an action 

not predicted by the computer model.  
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The other study conducted by NREL (Griffith, et al., 2008) compared EnergyPlus 

simulation results to data compiled by 2003 CBECS real-world survey data. As previously 

mentioned, most of the commercial sectors were in overall agreement with the energy 

models. According to the report, the “modeling tends to track the survey results fairly 

well across difference subsectors, except for education, food service, inpatient health, 

and public order and safety” (Griffith, et al., 2008). A graph over their findings 

comparing EnergyPlus model output with 2003 CBECS survey data can be seen in 

Figure 2.14 below.  

 

 

Figure 2.14. Total EUI: 2003 CBECS Survey and Modeling by Subsector 

taken from (Griffith, et al., 2008) 
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Unfortunately, the current research is investigated energy usage of an inpatient 

healthcare facility, one of the subsectors that do not align in the above findings. This 

thesis still focuses on healthcare facilities because of their energy intensive use and the 

fact that they are critical building types. Reducing energy consumption in healthcare 

buildings in any capacity will greatly reduce building energy use overall. 

Yet that is not as relevant to the current study because the simulation data extracted 

are not intended for real-world use. The data from this experiment is intended to find 

optimal design solutions based on similar virtual simulations. Therefore, each result is 

relied upon solely for comparative reasons. While it is ideal to have realistic outputs to 

insinuate real-world implications, that is not the objective of this research. The current 

research will not encounter the issues of incongruous weather data, human interaction 

diversions, or real-world implications because it does not propose using the results in a 

real-world application. 

 

2.4. Research Precedents 

While many previous research studies have relevance to the topics introduced in this 

current thesis, the details of research methodology used in this thesis were modeled 

after a limited number of specific research precedents. These precedents are 

described in this section, along with the reason they were chosen as examples to be 

expanded upon.  Some precedents are examples of proven methods of performing 

genetic algorithms; some are examples of experiments expanding on those proven 

methods of performing genetic algorithms; and the last form of precedent evokes the 
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idea of indexing energy simulation results for the purposes of future building design 

decision.  

The objective of this research is to test a method that makes the genetic algorithm 

optimization process generally more efficient for problems concerning building design 

and construction. Previous studies have had the same goal and looked at addressing 

the practical challenges outlined in the previous section. The following is an overview of 

some precedent research that inspired this thesis.   

 

Table 2.2. Table of Precedent Research and Benefits 

 

Precedent Research Optimization Benefit 

1. Genetic Algorithm 

Parameters for Efficient 

Convergence 

The ability to find a global optimal 

solution with the least amount of 

time and resources. 

2. Automated BIM Energy 

Analysis 

Reduce energy model set-up 

time. 

3. Real-time Energy 

Simulation 

Reduce energy model 

optimization time and minimize 

delayed results. 

4. Simulation Indexing and 

“Best Fit” Comparisons 

Reduce optimization initialization 

time. 

5. Initial Population Seeding Reduce optimization 

performance time. 

 

 

Table 2.2 above lists the categories of optimization efficiency that were evaluated and 

researched. Next to each category is a brief description of how each method tries to 

make the optimization process more efficient. 
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For the general premise of efficient optimization, the current research advocates all the 

methods described in Table 2.2 which can conceivably be used in agreement and 

conjunction. For the purposes of experiment, however, this thesis will narrow its focus 

solely on reducing optimization initialization time, which is articulated in items 4 and 5 

above.  

Item 4 advocates indexing a large database of simulation results. These results, while 

admittedly not completely appropriate to every design problem, can be used on a 

“best fit” basis to begin the process of a new optimization exercise. The premise is that a 

“best fit” baseline is already partially optimized and can reduce the amount of initial set 

up time required when compared to starting an optimization exercise from scratch. 

Item 5 reduces total optimization time by performing a partial-optimization sub-routine 

before the actual optimization trial.  

This research modifies the traditional genetic algorithm method with a process that 

combines the precedent studies from items 4 and 5 in Table 2.2. The point of departure 

of this thesis is in proposing the use of a “best fit” solution from a simulation index to 

actually be the partially optimized initial population. In this way, the simulation index is 

the initial population seeding for future simulations.  

The following sections describe all of the five precedent methods listed in Table 2.2 

above in more detail.  
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2.4.1. Genetic Algorithm Parameters for Efficient Convergence 

The method of performing genetic algorithms used in this thesis was largely based upon 

the work of Wang et al. (2005) who used a multi-objective genetic algorithm to optimize 

a hypothetical green building. This work was chosen as a model because it was a clear 

and concise approach that built upon established research. The study used 

optimization goals of minimizing energy use and LCC to create an optimal building 

design. The variable parameters used for their experiment included building orientation, 

glazing type, and percent glazing among other variables. 

The GA employed in both the Wang et al. (2005) study and this thesis utilizes the 

framework proposed by Fonseca and Fleming (1998), with some exceptions. The Wang 

et al. (2005) study expands on this GA and utilizes an improved “structured GA.” Their 

research performs a tournament ranking method and performance improvement 

techniques of mating restriction and elitist strategies. In Fonseca and Fleming’s (1998) 

work, the rank of an individual is equal to “one plus the number of solutions in the 

current population that dominate it” (Wang, Zmeureanu, & Rivard, 2005). Each solution 

in the population is given a rank based on that assessment.  

The entire population is then sorted based on rank, and a normalized fitness value is 

established for each solution based on the sum of the entire population. This process is 

set up so that the lowest Pareto-ranked individual received the maximum normalized 

fitness value. This method establishes fitness proportionate selection for mating, which 

chooses parents based on probability. The selection is random, but the solutions with 

the highest fitness value have the most probability of being selected. That probability is 

determined by the proportion of their fitness value to the compiled fitness value of the 
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entire population. The benefit of such a method is the premise that less fit solutions may 

have some positive characteristics and they are given a chance to reproduce while still 

favoring the fitter individuals during selection. 

The work of Suga et al. (2010) studied which genetic algorithms produced the best 

results, in that which provided reasonable convergence on an optimized solution with 

the least amount of computation. That research attempted to optimize building’s 

window design based on multi-objective criteria that had four separate goals: minimize 

energy consumption, minimize cost, maximize window uniformity, and maximize 

window draft performance. The study analyzed seven different trials of GA using that 

same research problem and compared the results. Each trial outputted slightly different 

Pareto-optimal sets, which allowed them to make conclusions regarding the optimal 

GA parameters of population size and mutation rate.  

Suga et al. (2010) found that minimizing the population size drastically reduced 

computation time (also called calculation cost). Reducing the population too much, 

however, has the potential to reduce the accuracy of achieving a truly optimal solution 

set. Their research found that “reducing the population size to 100 had no impact on 

solution accuracy, while a reduction to a size of 50 was observed to reduce solution 

accuracy drastically.”  

Another GA parameter established by Suga et al. (2010) was the mutation rate. They 

found that establishing a mutation rate too high or too low leads the Pareto-optimal set 

to converge rather slowly. In addition, those mutation rates deemed too high or low 

affected the overall accuracy of the resulting solution set. They assessed that “a 

mutation rate of 0.05 is optimal.”  
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The goal of this thesis is to not merely replicate a GA model, but to compare an 

augmented GA trial against the traditional model. This aspect of research was 

generally established by another precedent study of low-energy building optimization 

(Tresidder, Zhang, & Forrester, 2011). This study attempts to find the Pareto-optimal 

solutions of the same design problem twice: once using traditional stand-alone GA 

methods, and once using an augmented that method with additional optimization sub-

routines. This method of interim optimization was called “surrogate modeling” in their 

research. However, the cost of using the optimization sub-routine versus its benefits was 

not clearly defined.  

The Tresidder et al. (2011) paper also was chosen as a model study due to its content: 

building efficiency was the general objective, window glazing percentage was used as 

one of the parameter variables, and jEPlus was the computational tool. Notable 

features of the research that do not apply to the current topic are: the use of a single 

objective fitness function rather than a multi-objective one, differing specific GA 

parameters, and optimal analysis based on an earlier “brute force” simulation effort. 

The last point indicates that all possible solutions in the design space were simulated so 

that the true optimal solutions could be known. While this is a beneficial method in 

knowing how close any particular GA generated Pareto-optimal set is to the global 

optimum, the computational resources required to perform this analysis was beyond 

the scope of this research. 
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2.4.2. Automated BIM Energy Analysis 

Building Information Modeling (BIM) has created an easier way to create energy 

analysis models. Because BIM models are embedded with information like material and 

cost data, this data can easily be extracted in order to analyze the design. In addition, 

the use of three dimensional modeling in BIM models allows energy analysis models to 

be created more easily and be streamlined into the process. 

BIM is starting to become commonplace in the Architecture, Engineering, and 

Construction (AEC) industry, although still in its early phases. The technology is quickly 

being adopted by more firms because an integrated model leads to a more 

streamlined project. Still, it is not ubiquitous in the architecture world. Only 16% of AIA 

member-owned architecture firms had BIM software in 2006 (Zeiger, 2008). Although 

that percentage is small, the number of firms utilizing BIM software will inevitably grow. 

For example, a 2010 survey of project starts by Texas Construction magazine found 29 

out of 55 projects used BIM in some capacity (Buckley, 2010). 

One of the main benefits and issues of BIM purported by experts is that decision made 

in the early design phases “have a major influence on the overall project costs” 

(Baldwin, Austin, Hassan, & Thorpe, 1999). This can be a benefit if the BIM model guides 

decisions based on optimization of project objectives, but it can also be a problem if 

the information is mismanaged in the beginning project stages. The latter scenario can 

ultimately result in costly problems due to improper design decision made too early in 

the project without the proper analysis.  

BIM has the potential to be a powerful took in analyzing optimal design considerations. 

Energy models and cost models can be used directly from BIM models, making it 
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efficient to analyze multi-objective problems with very little additional effort. As one 

researcher stated, “Building Information Modeling (BIM is emerging as an innovative 

way to manage projects. Building performance and predictability of outcomes are 

greatly improved by adopting BIM. As the use of BIM accelerates, collaboration within 

project teams should increase, which will lead to improved profitability, reduced costs, 

better time management and improved customer/ client relationships” (Azhar, Hein, & 

Sketo, 2008). 

The use of BIM models also allows the entire AEC design process to be reconsidered. 

Traditional building design is comprised of limited design options with minimal iterations 

and most time dedicated to management. One research paper proposes that the 

inclusion of BIM in the process makes the building design process more amenable to 

design processes used in other industries like those used in the aerospace industry 

(Flager & Haymaker, 2009).  These more technical industries like aerospace engineering 

focus on simulation to create many design options for optimization, and use less time 

managing the outputs. As the researchers conclude, “Decisions made early in the 

design process have a significant impact on the life-cycle economic and 

environmental performance of buildings. Engineering simulation supported by product 

models is becoming state-of-the-art practice in the AEC industry. However, the 

potential of this technology to inform early-stage design decisions has not been fully 

realized because current tools and processes do not support the rapid generation and 

evaluation of design alternatives” (Flager & Haymaker, 2009). 

Yet extracting energy modeling information from a BIM application is by no means 

automatic. One process being developed uses the internationally recognized IFC file 
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format to map BIM components to elements used for conceptual phase energy 

analysis (Building SMART Norway, 2009). In that process, BIM input data includes: 

building geometry, the layout and configuration of spaces, building orientation, 

building usage, internal loads and schedule for lighting, occupants, equipment, HVAC 

systems, space conditioning requirements, utility rates, and weather data.  

The energy analysis output may include: assessment of the space and building energy 

performance for the compliance with regulations and targets, overall estimate of the 

energy use by space and for the building and an overall estimate of the energy cost, 

time based simulation of the energy use of the building and time based estimate of 

utility costs, lifecycle estimate of the uses and cost for the building (Building SMART 

Norway, 2009). 

Once BIM is converted into a usable energy model format, it must be coupled with a 

building simulation program, which in turn can be coupled with an optimization system 

to investigate optimal energy efficiency. This process involves three basic steps: 1) 

prepare the simulation job of the specific energy model; 2) run the simulation program; 

and 3) collect the results for comparison and analysis (Zhang, 2012).  

 

2.4.3. Real-time Energy Simulation 

A study comparing EnergyPlus results to real-world data took a different approach to 

the traditional energy modeling which segregates the energy model from real-world 

data. The Building Controls Virtual Test Bed developed by Lawrence Berkeley National 
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Laboratory does not simply compare virtual trials with a real-world database, it provides 

a platform to synchronize and exchange data with EnergyPlus simulations in real-time. 

The researcher’s reasoning is that conventionally, EnergyPlus is used for off-line analysis 

of building design and HVAC sizing. “With the increasing need to improve building 

performance, the use of simulation to assess the actual performance of buildings is 

starting to gain more attention” (Pang, et al., 2011). Like the previous study, the 

comparison of virtual and real-world results worked well together in terms of total 

electric power consumption overall.  Even so, there were specific drawbacks 

uncovered in the study, many of which were discussed as practical challenges of 

optimization in the previous section.  

 

2.4.4. Solution Indexing and “Best Fit” Comparisons 

The penultimate topic of specific precedent research has to do with indexing solution 

sets. This current research had a number of precedent studies to draw upon regarding 

indexing energy simulation results in order to quickly and easily identify possible solutions 

for future designs. 

The overall notion is that by indexing simulation results, future studies and real-world 

building design applications would at least have comparable reference points during 

their initial phases. Otherwise, each project is essentially starting from scratch. Zhang 

(2012) addressed this issue when he noted: “One of the main reasons is that 

optimisation problems involved in building design and operation vary vastly in nature, 

whereas there is not a ‘generic’ algorithm that is suitable for all problem types. To solve 
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a problem effectively, researchers have to master the optimisation techniques, often by 

the means of implementing their own algorithms.”  

One study conducted by NREL (Ellis, Griffith, Long, Torcellini, & Crawley, 2006) is 

developing tools to automate the process of creating and running EnergyPlus 

simulation models across a wide array of parameters. The research uses a broad search 

engine that defines the EnergyPlus models and then indexes all input data and results 

files. 

Another research study found in the literature makes the database accessible on the 

web in order to give building creators and users an easy-to-use tool that provides a 

starting point to building design that inserts energy modeling in the forefront of the 

design. The tool “matches a ‘best-fit’ baseline energy model drawing from industry 

publications specific to a particular building type and allows building owners to 

determine appropriate energy conservation measures.” The tool then filters the models 

based on best energy performance. Finally, the database of energy models and 

conservation measures “are then paired with matching incentives and industry partners 

who can design, fund or implement the recommendations, focusing specific and 

pointed advice at building owners” (Burton & Shaxted, 2012). The study ultimately used 

jEPlus to index over 300,000 energy simulations for a variety of “best-fit” baseline energy 

models. 
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2.4.5. Initial Population Seeding 

The concept proposed in this thesis of beginning a GA with a non-random and partially 

optimized population also has precedent in previous research. A study by Hamdy, 

Hasan, & Siren (2011) had the aim of achieving low-emission and cost-effective design 

solutions and suggests “seeding” the initial GA population with non-random solutions. 

They argue that “since GA starts searching by randomly sampling within an optimization 

solution space and then uses stochastic operators to direct a process based on 

objective function values, a large number of generation are usually required to achieve 

an acceptable Pareto front.” They also claim that a high quality of Pareto-optimal 

solutions cannot be guaranteed by using random sampling and a specified number of 

GA generations. 

The Hamdy et al. (2011) research differs from the current study in that they proposed 

using a three phase system: 1) a preparation phase, 2) a GA phase, and 3) a refine 

phase. The current study proposes consecutive GA phases be used to generate initial 

population. In addition, whereas the precedent research has a refine phase that 

considers realistic stopping criteria, the current experiment simply stops after five 

generations. There are many other differences, but the last notable one is that the 

Hamdy study also uses a “brute force” technique to evaluate its findings. 
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CHAPTER 3: METHODOLOGY 

 

 

The goal of this thesis is to investigate an augmented genetic algorithm method that 

provides a general cost savings with reasonable accuracy. With respect to building 

optimization, the aim was to produce an effective solution within a timeframe that 

provides useful information at the right time during the design and construction process. 

To do test the proposed approach, the augmented genetic algorithm was compared 

to a traditional genetic algorithm. Refer to Figure 3.1 for a diagram of the four general 

steps used in this study.  

 

 

Figure 3.1. Diagram of Research Method 
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This chapter outlines the methodology utilized in this research and is divided into three 

sections. The first part provides descriptions of the steps taken to perform the 

experiment. This section also illustrates how the last trial run initial set up is different from 

its predecessors. The second part summarizes the parameters and framework set up to 

fulfill the proposed experiment. The final section describes the research’s potential 

implications as well as its limitations. 

 

3.1. Research Methods 

This section describes the methods of optimization and indexing used in this thesis 

experiment. The first method is using a traditional GA that was extrapolated from the 

research precedents. The second method uses an augmented GA approach that uses 

a cumulative index to initialize the optimization exercise. The process of indexing 

solutions is also described in this section. 

In general terms, Figure 3.2 compares the two GA method decision trees. One can see 

that every step is identical in each trial with the exception of the creation of initial 

population. The following section describes each step in greater detail. 
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Figure 3.2. Comparison of Optimization Methods Used in the Research 

 

 

3.1.1. Research Set Up 

This section outlines the basic research set up performed to initialize the experiment, 

and further information about the exact properties and tools used during the set up are 

outlined in great detail later in this section. The experiment was initialized with the 

creation of the energy model. The energy model was created in part using the 

EnergyPlus simulation add-on programs EP-Launch and IDF Editor.  

As a concept for possible applicability, the current research wanted to be accessible to 

all computers. Therefore, the approach taken was to perform all simulations on a 

standard personal computer with four-core processing capabilities and a 2.4 GHz 

processor running Windows 7, 64 bit. All screenshots provided in this section are taken 
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from the researcher’s personal computer to illustrate the steps of research that was 

performed.  

Figure 3.3 shows a screenshot of the EP-Launch program. The input IDF file shown is the 

actual energy model data file, and the weather file for Atlanta, Georgia is also shown 

being utilized. The series of buttons on the lower portion of the dialogue box indicate 

the many output formats that are potentially created through the energy simulation. 

 

 

Figure 3.3. Screenshot of EP-Launch Used for the Energy Model 
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Figure 3.4 shows the actual energy model file used for the simulations using the IDF 

Editor program. All data pertaining to the energy model can be created or edited 

using this dialog. For example, the screenshot provided highlights the materials and 

material properties found in the energy model. Those materials are then compiled into 

construction assemblies, which are subsequently assigned to building geometries. 

 

 

 

Figure 3.4. Screenshot of IDF Editor Used for the Energy Model 
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3.1.2. Optimization Methods 

Two types of trials were preformed: 1) Traditional Genetic Algorithm, and 2) Augmented 

Genetic Algorithm. The first trial (Trial 1) used the traditional method and established the 

study as well as the simulation index. The second and third trials (Trials 2A & 2B) also used 

the traditional method and were used as controls. The final trial (Trial 3) used the 

augmented method and was subsequently compared with Trials 2A & 2B for general 

effectiveness.  

Traditional Genetic Algorithm Process 

The traditional GA is performed in a series of five steps, outlined below: 

Step 1. Create an initial population of 100 solutions. For each solution, the 

values of each variable are chosen at random. Therefore, each 

solution is itself a random selection with the search space. 

Step 2. Each solution is evaluated in terms of fitness. Every solution is 

simulated in EnergyPlus using the batch jEPlus interface. 

Construction cost and energy use data is automatically calculated 

by the energy simulation. The results from every solution are 

compiled and given a Pareto rank based on dominance and then 

sorted by rank.  

Step 3. The solutions are selected based on their proportional fitness as 

compared to the entire population. The better the fitness, the more 

likely a solution is to be chosen. In this way, the fittest solutions will 

be selected more often but less fit options still have the potential to 
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be selected. Less fit solutions may have optimal traits even though 

their overall fitness is not optimal. These selected solutions will 

become the parents of the next generation of one hundred 

solutions. Therefore, two hundred selections occur (two parents for 

each child). Solutions are weighted proportionally but selected at 

random. A single solution can be selected multiple times. 

Step 4. The next generation of one hundred solutions is created. These 

solutions are often called children during this stage, since they are 

the product of two parent solutions. We will define each parent as 

either Parent 1 or Parent 2. Child creation is done in two phases: 

crossover and mutation. With only five variable traits, a single-point 

crossover was used. The crossover location was chosen at random. 

The variable traits of Parent 1 are passed to the child up to the 

crossover point, and the variable traits of Parent 2 are passed to 

the child after the crossover point. Mutation of each trait was given 

a 5% chance of mutating to a random value. There was no 

mechanism to prohibit a mutation that results in the same trait. 

Step 5. The children become the solution population for the next 

generation, and the process restarts at Step 2. If it is the final 

generation, the children become the last solution population. A set 

number of five generations were used for this study. 
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Trials 1, 2A, and 2B were all performed using the five steps above. To avoid premature or 

local convergence as a baseline control, Trial 2 in the current experiment was 

conducted twice (Trials 2A and 2B). Because this trial acted as the control for the 

experiment, it was important to make sure that the results were as valid as possible. For 

this reason, Trial 2 was done twice. This provided analysis that would demonstrate 

whether the controls were consistent and reliable, and also created multiple controls for 

the experimental trial with which to compare. Trial 3 used an augmented process as 

described in the next section. 

 

 

Figure 3.5. Screenshot of jEPlus 
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jEPlus is the program used for Step 2 of performing batch simulations that ultimately 

determine a solution’s fitness. Figure 3.5 above shows a screenshot of that program. The 

dialog box shows the input EnergyPlus and weather files utilized, the specified 

parameters used for batch processing, and a preview window that allows manipulation 

of the input files to insert parameter placeholders.  

 

 

Figure 3.6. Screenshot of Excel Database 

 

 

Step 3 through 5 were performed in Excel and automated using Visual Basic Macros. 

Seen in the screenshot of Figure 3.6, an automated algorithm was created to compile 

the data from the energy simulation output files, and one was created to give each 
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solution a Paret-rank based on fitness. A final sub-routine was created to perform the 

sorting, selecting, reproduction, and mutation of the genetic algorithm. 

Augmented Genetic Algorithm Process 

For the augmented GA, most of the process remains true to the traditional process. In 

fact, Step 2 through Step 5 are identical to the steps outlined in the previous section. 

The only step that differs is the first. Rather than identifying 100 solutions at random for 

the initial population, this study suggests using a population set from a previous trial, 

regardless of whether the variables match exactly. 

In this experiment, the final solution set of Trial 1 was used for the initial population of Trial 

3. Since Trial 1 used single glazing as the window type and Trial 3 used double glazing as 

the window type, the Pareto rank of Trial 1 was not necessarily true for Trial 3. Therefore, 

the following steps were used to prepare the initial population set for Trial 3. 

Step 1. The final population of Trial 1 had the Pareto rank removed. 

Step 2. Construction costs of each solution were recalculated by 

substituting the cost of double glazing in lieu of single glazing. The 

amount of each material was known through energy simulation 

output data. This process was performed by a simple Excel macro. 

Step 3. The solution set was re-ranked based on the revised construction 

costs. The energy use could not be easily recalculated, since that 

would involve performing an entirely new set of simulations. 

Therefore, the rank of the initial population does not truly reflect the 

optimization goals of Trial 3.  
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Step 4. The traditional GA process is started (see Step 2 of Section 3.2.2.) 

One of the two fitness measures (cost but not energy performance) were included in 

the ranking method to prepare the initial population for Trial 3. So even though the 

actual Pareto-rank is not established for the beginning of Trial 3, the authors suggest 

that the solution set has already undergone “partial optimization.”  

The hope that this added starting measure will allow faster convergence on the global 

optimum because it is starts as more optimal than random. To analyze this hypothesis, 

Trial 3 is compared with Trials 2A and 2B. All three trials have the exact same variables, 

but Trials 2A and 2B are performed with initial random populations and act as controls 

for comparison. 

 

3.1.3. Solution Indexing Method 

The current research index process was mainly taken from a study that used GA’s to 

investigate multi-objective façade optimization for daylighting design (Gagne & 

Andersen, 2010). The method used in that paper is straightforward: an external memory 

holds a set of all non-dominated solutions produced over the course of the process. A 

non-dominated solution is one that is more fit in at least one fitness objective than all 

other solutions. However, for the current research expanded upon that to index the 

entire set of all solutions in an external memory database. The reason for this is because 

the aim of the current study is to utilize past solutions for future energy modeling 

investigations. A non-optimal, dominated solution in one trial may be a Pareto-optimal 

solution in another trial, so all solutions are kept in a database and evaluated based on 
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fitness for every trial. Figure 3.7 is adapted from a figure shown in the research of Gagne 

& Andersen (2010) and shows the GA process used in the current study combined with 

the external memory solution indexing. 

 

 

Figure 3.7. GA Process with Solution Indexing 

Adapted from (Gagne & Andersen, 2010). 

 

 

Essentially, researchers have been attempting to index previously performed energy 

simulations into accessible databases. The goal is that even though each building 
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problem is fundamentally different and has a unique design space, one can at least 

find a similar solution set to build upon. The initial solution space will then be optimized 

according to the specific design problem. If there is a large enough database 

established, then there can be a partially optimized solution set for every building 

condition. This current research couples the notion of indexing simulation results with 

seeding the initial GA population. 

 

3.2. Research Framework 

In order to investigate whether the augmented approach works, a traditional GA was 

employed using the fundamentals used in the research precedents outlined in the 

previous section. The remainder of this chapter outlines the specific parameters used in 

this study. 

 

3.2.1. Genetic Algorithm Parameters 

This thesis presents a similar approach to the study by Wang et al. (2005) as described in 

the literature review. While the basic features of that study were maintained in this 

research, the approach was simplified. The building optimization proposed in this 

experiment aims to minimize total energy use and cost. In this instance, however, the 

simplified metric of construction cost is substituted in place life-cycle analysis. The 

number of variable parameters explored in this study is also reduced to only including 

building orientation, glazing type, and percent glazing with the exclusion of other 

variables. 
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This paper’s study executes a simple GA that follows Fonseca and Fleming’s (1998) 

fitness assignment and population ranking based on proportionate fitness selection. 

With this method, a non-dominated solution is given a Pareto rank of 1. Dominated 

solutions are given a rank equal to the number of solutions that dominated it. The 

Pareto-rank algorithm used in this study was modeled after the pseudo-code described 

in Duh & Brown (2007) which states that dominance is defined by the existence of at 

least one solution that has at least one objective solution smaller than the current 

individual. Niche induction methods to promote population diversity were not 

performed in this study. 

For the GA parameters used in this study, the work of Suga et al. (2010) was applied as 

a precedent. The lessons learned from their research were used to reduce the 

probability of improper convergence. Using their research as a guide, the population 

size used in this research experiment was set to 100, and the mutation rate used in this 

research was 5%. 

The precedents described in this section have defined the framework and parameters 

that will be utilized in this thesis. See Table 3.1 below for a summary of the GA framework 

established in this section.  
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Table 3.1. Defined Genetic Algorithm Parameters 

Operator Method 

Fitness Evaluation Fonseca and Fleming’s Pareto ranking method 

Selection Fitness proportionate selection 

Population size 100 

Crossover Random single-point crossover 

Mutation rate 5% mutation rate, mutates to a random 

parameter value 

Fitness Sharing None 

 

 

3.2.2. Energy Simulation Fitness Goals  

The two fitness goals defined in the multi-objective optimization are initial construction 

cost and total energy use. The units used in the construction cost estimate are in US 

dollars per conditioned building area in square meters ($/m2). For conversion purposes, 

1 m2 is equivalent to 10.76 SF. The units used in the estimated annual energy use are net 

source energy in mega joules per conditioned building area in square meters (MJ/m2). 

Although the majority of this research utilizes SI units, annual energy use will be 

converted to Imperial units in certain instances to for comparisons to other research. 

The Imperial equivalent is called energy use intensity (EUI), and is calculated in kBtu/ft2. 

Site energy is the amount of energy consumed by a building as reflected in measured 

power usage utility bills. Source energy is a “more accurate measure of a building’s 

energy footprint, because it includes energy that is lost during production, transmission, 

and delivery to the building” (AIA, 2012). 
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3.2.3. Energy Model & Simulation Constants 

The base energy model was initially created with the help of the online resource 

EnergyPlus Example File Generator developed and supported by NREL and the DOE 

(DOE, 2012). The file generator takes basic inputs for building information and creates 

necessary files for energy simulation. An example simulation is also performed through 

the online resource, and shape files are created for use with CAD software or 

OpenStudio. All of this information was then e-mailed to the researcher of this thesis. 

The input provided to the file generator is outlined in Table 3.2. The dimensions of the 

building reflect standard thirty foot modules and 14’-0” floor to floor heights for inpatient 

hospitals. A traditional US calendar is used in terms of work week and holiday 

scheduling, and the lighting and heating/cooling schedules are based on typical 

healthcare operations. Many of the remaining inputs were left as default, with the 

understanding that the defaults would remain constant throughout all trials because 

consistent results were important for comparative analysis. 
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Table 3.2. EnergyPlus File Generator Input 

Parameter Input 

Target Standard 

Performance 

AHSRAE 90.1-2007 

Units English 

EnergyPlus Version EnergyPlus 7.1 

Building Locations Atlanta, GA 

Building Type Healthcare (Inpatient) 

Number of floors 3 

Orientation 0 

Zone Layout Perimeter and Core Zoning 

Floor to Floor 

Height 

14’-0” 

Geometry 

Configuration 

Rectangle 

Length 1 30’-0” 

Length 2 120’-0” 

Roof Type Insulation Entirely above Deck 

Wall Type Steel-Framed 

Building Activity Smart Default 

Building 

Fenestrations 

Smart Default 

HVAC System 

based on 

ASHRAE 90.1-2004 Appendix G Types 

Outside Air Smart Default 

Service Water 

Heating 

None 

Photovoltaics None 

 

 

After receiving the example file, the EnergyPlus model was checked and revised based 

on the exact study. The Atlanta weather file was downloaded from the website for 

subsequent trials, and a city terrain input was identified due to its urban location. The 

material thermal and cost properties used in this study are the default ones that come 

with the Energy Plus package. The default percent glazing was 40% for each façade, 

but that parameter was changed to a variable parameter as explained later in this 
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section. Figure 3.8 is a graphic representation of the test building shown in Google 

SketchUp using the OpenStudio plug-in. 

 

 

Figure 3.8. Building Geometry of Hypothetical Study Building. 

 

 

3.2.4. Energy Simulation Variables 

In order to be efficient and use the average computer system, the current research 

used far less design variables that the majority of works cited as precedents. There are a 

vast number of parameters that can be focused on, but for simplicity this research 

focused on five variable parameters. The simplicity used in this research is not 

anticipated to affect the validity of this study’s claims, as the trials are tested against 

each other and not against other data. In addition, providing fewer variables will not 
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make the energy simulations any less exact. A complete energy model is used for the 

test, and the simplicity is only pertaining to the amount of parameter variables 

established.  

The five variable parameters used in this study are building orientation, percent of 

glazing on the north façade, percent of glazing on the east façade, percent of glazing 

on the south façade, and percent of glazing on the west façade. Each variable has 

ten possible values: orientation ranged from 0 to 45 degrees in 5 degree intervals, and 

percent glazing ranged from 1% to 90% for each façade. Each parameter has 10 

possible values, for a total of 100,000 possible design solutions. Table 3.3 summarizes the 

possible parameter values. 

 

Table 3.3. Research Variables. 

Variable Parameter Possible Parameter Values 

Building Orientation (in degrees) 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 

Amount of North glazing (percent) 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 

Amount of South glazing (percent) 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 

Amount of East glazing (percent) 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 

Amount of West glazing (percent) 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 

 

 

As mentioned previously, one benefit of using GA’s is the ability to simulate discrete 

variables. This is particular useful in building research because of the selection of 

material types and assemblies that could be used in various ways. For example, a brick 



85 
 

façade and metal panel façade can be two variables used in a single optimization 

exercise. This particular research used discrete variables, however it is recognized that 

they could have substituted for continuous variables in this instance. It was the goal of 

the research to use a methodology using discrete variables, and so the variable chosen 

in this experiment were not allowed to be continuous or averaged. 

In all, four trials were performed. The first trial (1) used a traditional genetic algorithm 

modeled after previous research. The glazing type for the first trial is single pane glazing. 

The second (2A) and third (2B) trials use the same process as the first trial, except with 

different parameter values. The glazing type used for these trials is double pane with an 

air gap. The third trial (3) also used the double glazed parameters, but had a seeded 

initial population seeded. Trial 3 was seeded with augmented results from trial 1, which 

was simulated using the single pane glass. Table 3.4 once again shows the research 

trials in a table format.  

 

Table 3.4. Description of Research Trials 

Trial Run(s) Description 

Trial  1 Single Pane Glazing 

Random initial population 

Trials 2A & 2B Double Pane Glazing 

Random initial population 

Trial 3 Double Pane Glazing 

Seeded initial population 
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The portion of wall that was not glazing was defined as spandrel glass backed with 3 

inches of insulation and an interior of ½” gypsum board sheathing. This made the 

perimeter wall conceptually a curtain wall system where the percent glazing can easily 

be changed through various panel spacing. The thermal effect of mullions of joint 

connections were not considered in this study. 

Determination of Variables 

The variables were determined through a conceptual framework that promoted a set 

of results based on simple prediction.  In other words, the researcher used past 

experience to decide which variables would hopefully make for a productive study. In 

that vein, glazing insulation and reflective properties were heavily examined.  

One study used as a model for glazing investigation researched the effect of building 

orientation and percent glazing covered by blinds for multi-objective cost and thermal 

optimization (Littlefair, Ortiz, & Das Bhaumik, 2010). The study showed that shading that 

covers glazing always produces a reduction of cooling demand and an increase in 

artificial lighting and heating. Although the cooling energy reduction could achieve 

upwards of 50% savings, the authors concluded that cooling savings need to be 

balanced against increases in heating and lighting energy use. 

A second study focused on window type properties and surface area to perform multi-

objective optimization on building retrofits (Asadi, da Silva, Henggeler, & Dias, 2012). 

Table 3.5 from this study was considered in articulating the glazing type and cost. 
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Table 3.5. Characteristics of Alternative Windows 

extracted from (Asadi, da Silva, Henggeler, & Dias, 2012). 

 

 

The following sub-sections outline the thought that went into deciding the glazing types 

based on their thermal and cost properties. In must be reiterated that ultimately these 

values are not important to the outcome of the study. The experiment of the study will 

look at comparing one optimization method against another, and these glazing 

variables will remain equal in all trials. Yet the current study can only be strengthened 

by presenting more or less realistic values for energy simulation purposes, and so great 

effort was made to find appropriate values for each parameter. 

Glazing Thermal Properties 

According to construction texts, the thermal resistance of a ¼” single pane of glass (RSI 

= 0.16) is approximately two times less than a 1” double paned glazing panel 

comprised of two ¼” glass panels and an air gap  (RSI = 0.35) (Allen, 1999, p. 659). That 

information was recalculated and combined with data regarding spandrel glazing 

backed with R-10 insulation (California Energy Commission, 2006) to create Table 3.6. 
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The thermal properties found in Table 3.6 were deemed to have enough variation to 

provide a good design space of which to perform a GA. 

 

Table 3.6. Thermal Insulating Values of Glazing Assemblies. 

Material Description Thermal Insulating Values at 

center of assembly (U-Factor) 

Single pane glass, ¼” thick 6.29 

1” Double pane glass, ¼” glass 

with air gap 

2.84 

Single pane spandrel glass with 

R-10 insulation between framing 

members 

0.804 

 

 

Ultimately, the values found in the EnergyPlus material libraries were used for the actual 

energy simulations. The glazing construction material library was used for the glass 

materials, the gas material library was used to define the air space, and the spandrel 

assembly combined materials found in the base EnergyPlus material library. Table 3.7 

summarizes the EnergyPlus materials used in the study, and Table 3.8 lists the glazing 

properties defined by the EnergyPlus material libraries.  

 

 

 

 

 



89 
 

Table 3.7. EnergyPlus materials used for construction assemblies. 

Construction Layer (Outside 

to Inside) 

Material Definition 

Vision Glass 

(single glazing) 

Layer 1 CLEAR 6MM 

Vision Glass 

(double glazing) 

Layer 1 CLEAR 6MM 

Layer 2 AIR 13MM 

Layer 3 CLEAR 6MM 

Spandrel Glass Layer 1 F09 Opaque spandrel glass 

Layer 2 I03 75mm insulation board 

Layer 3 GP01 ½ GYPSUM 

 

 

Table 3.8. Glazing material properties defined in EnergyPlus. 

Material 

Property 

SINGLE CLEAR 6MM DBL CLR 6MM/ 13MM AIR 

U-factor 6.144 2.716 

SC 0.94 0.81 

SHGC 0.815 0.701 

Tsol 0.775 0.604 

Tvis 0.881 0.781 

 

 

Glazing Cost Properties 

Cost values of the majority of elements used in the EnergyPlus model were defined by 

the default values found in the program. Since the glazing assemblies were the 

variables, special attention was paid to get them as close to realistic as possible. For 

construction cost data, RS Means Building Construction Cost Data 68th Annual Edition 

(RS Means, 2010) was used as the standard metric. It was assumed that labor was to be 
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equal for all applications, the 2010 bare material costs were entered as the associated 

material costs in the EnergyPlus model.  

 

Table 3.9. Costs of Variable Building Materials 

Material Assembly $/SF $/m2 

Single glazing, ¼” thick $5.35 $57.58 

1” thick double glazed with 

two ¼” thick panes 

$21.00 $226.04 

Spandrel glass for non-

vision areas, over 1,000 SF 

$14.30 $153.92 

3” rigid insulation $0.40 $4.31 

 

 

Notable to the study is that the spandrel construction assembly has a greater cost than 

single glazing but a lower cost than double glazing. Theoretically, this will mean that a 

solution involving single glazing will be more expensive the less glass it has. If thermal 

values are considered, however, more glass will mean less energy efficiency.  

Conversely, a solution involving double glazing will want to minimize glazing to reduce 

material cost. The theoretical optimization in that instance is not a straightforward, as 

the double glazing has considerably better insulating properties than the single glazing. 

Due to these fundamental dynamics, these were the variables considered in the 

current study. 
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3.2.5. Research Tools 

The three primary computation tools used to conduct this research were Microsoft 

Excel, EnergyPlus, and jEPlus. Microsoft Excel was used as a database. Original Visual 

Basic macros were written and executed to process bulk sorting and filtering within the 

Excel program. EnergyPlus is a widely used and highly respected energy simulation 

software frequently used to estimate building energy use.  

Unlike eQuest, the energy modeling program described in this research’s literature 

review, EnergyPlus is purely a simulation engine that analyzes numerical data. The 

program has no user interface, although some minimal applications come with the 

program download. While eQuest may be easier for firms looking at 3D models and 

using energy wizard guidance to create energy models, EnergyPlus can efficiently use 

non-graphical data to perform simulations. Because this research will be running large 

amounts of simulations, simple data inputs and outputs were preferable.   

jEPlus works in conjunction with EnergyPlus as a front-end, Java application that batch 

processes large numbers of energy simulations. Because energy analysis is completely 

impacted by how results are derived, and this thesis relies heavily on energy simulation 

results, both EnergyPlus and jEPlus will be described in detail. 

EnergyPlus 

The EnergyPlus program began development by the DOE in 1995, but was not the first 

iteration of building simulation software. In fact, whole-building simulation has been 

used for over 30 years, and researchers have “long used such tools to represent large 

portions of the building stock” (Griffith, et al., 2008).  
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For more than 20 years prior to 1995, “the US government supported development of 

two building energy simulation programs, DOE-2 and BLAST.” After many complaints of 

the inefficiency involved with having two parallel, and similarly capable and 

compatible, programs supported by the government, a forum was held in 1995 

regarding the issue. In 1996, the DOE took the initiative to develop a new energy 

simulation program. This new program was EnergyPlus and the project team includes: 

US Army Construction Engineering Research Laboratories (CERL), University of Illinois (UI), 

Lawrence Berkeley National Laboratory (LBNL), Oklahoma State University (OSU), GARD 

Analytics, and DOE (Crawley, et al., 2001). 

EnergyPlus combines the best capabilities and features from both DOE-2 and BLAST, as 

well as adds additional features (Crawley, Lawrie, Pederson, & Winkelmann, 2000). 

EnergyPlus works by simulating building performance at predetermined time steps. The 

results for each step are aggregated in simple data files that easily allow users to 

“access specific results without modifying the calculation engine.” The output results 

are also formatted in standard file formats so they can be readily opened in common 

database and CAD applications (Crawley, et al., 2001). 

An important feature of EnergyPlus is that it has extensively and continually been 

evaluated in terms of simulation accuracy through comparative and analytical testing 

(Crawley, et al., 2001). One study of twenty major building energy simulation programs 

found EnergyPlus had most of the capabilities tested by the study, and more 

capabilities than the majority of other programs under review. The study highlighted 

EnergyPlus’ integrated solutions by stating that they provide “more accurate space 

temperature prediction – crucial for system and plant sizing, occupant comfort and 
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thermal health calculations.” These integrated solutions, the authors suggest, also allow 

users to evaluate realistic system controls, radiant heating and cooling systems, and 

other features (Crawley, Hand, Kummert, & Griffith, 2005).  

There is no formal user interface for EnergyPlus, as it is primarily a simulation engine 

(Crawley, Lawrie, Pederson, & Winkelmann, 2000). Today EnergyPlus does come with 

user interface add-ons such as EP-Launch and IDF Editor, used to perform simulations 

and update simulation files, respectively. The program is currently available to 

download for free at the DOE website (US Department of Energy, 2012). 

Third-party applications have also been developed to provide more intuitive user 

interfaces for the EnergyPlus simulation engine. One of the most popular third-party 

add-ons is developed by NREL and is called OpenStudio. The OpenStudio program 

provides a versatile graphic interface for EnergyPlus and can be used as a plug-in for 

the 3D modeling software Google SketchUp. The ability to create EnergyPlus models 

with a simple modeling program like SketchUp has expanded the availability of utilizing 

the powerful simulation engine of EnergyPlus to less advanced computer users. 

OpenStudio and the OpenStudio SketchUp plug-in can also be downloaded for free 

online (NREL, 2012). 

EnergyPlus Applications 

EnergyPlus has been used in a variety of research studies. A significant number of those 

studies also include the use of genetic algorithms for energy efficient optimization. This 

paper highlights some of those studies that contain both GA and energy analysis as 

they are pertinent to this research topic. 
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One study performed in 2011 combined EnergyPlus simulations with an evolutionary 

neural network design to design energy efficient building facades (Zemella, de March, 

Borrottid, & Poli, 2011). Many authors combine the use of GA’s with dynamic controls to 

study optimal energy reduction through automatic systems in this manner. Another 

research article published in 2012 combined GA’s with artificial neural networks to 

optimize chiller operation in office applications. The authors of that paper also used 

EnergyPlus to perform their simulation trials (Congradac & Kulic, 2012).  

Both of these examples of using EnergyPlus as a simulation engine combined with 

evolutionary optimization were deemed successful, but authors Congradac & Kulic 

(2012) took their validation a step further. They combined their simulation results with 

data compiled from a series of real-world experiments performed on constructed office 

buildings to verify their findings.  

Other studies also compare EnergyPlus applications to real-world situations. One study 

commissioned by NREL investigated EnergyPlus results as compared to data from the 

2003 CBECS commercial building survey. The research team modeled a large 

population of EnergyPlus models based on the building characteristics from the 2003 

CBECS data in order to ask the question: “How well do results from a set of EnergyPlus 

models for the whole sector agree with 2003 CBECS?” 

In total, the results from 4,820 models were compared with the 2003 survey in terms of 

site EUI. The NREL findings concluded that there was an overall agreement of 12% 

between the simulations and the real-world data, a level “deemed acceptable given 

the level of scatter in the survey data” (Griffith, et al., 2008). The specific outcomes 
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regarding the healthcare sector will be discussed in the Research Challenges sub-

section of this chapter.  

jEPlus 

jEPlus is described by its developers as a “convenient tool for managing large and 

complex parametric simulations.” Essentially, jEPlus is a simple tool that allows users to 

describe multiple parameters and parameter values for EnergyPlus simulations, and 

then automatically creates and performs those EnergyPlus simulation jobs (Zhang & 

Korolija, Performing complex parametric simulations with jEPlus, 2010). 

jEPlus Applications 

The jEPlus program has been utilized in a number of studies that want to explore large 

numbers of simulations, which makes the program well suited for GA optimization.  One 

study demonstrated that concept explicitly by conducting experimental trials of both 

single and multi-objective optimization problems using jEPlus coupled with GA 

framework. The authors of that study summarize:  Once the optimization scheme 

decided and search space defined within a jEPlus project, the GA can be “coupled 

with jEPlus to perform optimization.” All necessary input and output files for running the 

EnergyPlus simulations are referenced by jEPlus (Zhang, 2012). 
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3.3. Research Implications and Limitations 

Research Implications 

As mentioned previously in this thesis, the implication of the proposed research is the 

possibility of a more efficient optimization process that can adapt to the fast-paced 

and fluctuating world of building design and construction. Given the goal of this 

research is to develop a reasonably accurate set of optimal solutions without 

specialized computer resources and within a practical timeframe, the successfulness of 

this experiment can be conceptually significant toward the practices of building design 

and construction optimization. 

The benefits of using “best fit” initial solutions from a cumulative index have the 

possibility to make a much more efficient genetic algorithm. For example, even the 

small index sample created from this experiment could possibly benefit future energy 

optimizations that pertain to healthcare buildings, building located in a similar climate 

to Atlanta, or even dissimilar building types of the same general shape. If those future 

simulation results are also compiled into the index, the database will become even 

more robust. The larger the index, the more common characteristics can be found in 

any potential building problem to apply “best-fit” initial solutions.  

If utilized on a large scale, the index database can accumulate data relating to all 

aspects of the buildings, not just energy use and construction cost. In addition, the 

building parameters and information stored in the database can combine real-world 

data, simulation data, and other database information. All of these possibilities 

combined have the potential to lead to a continuous optimization process where all 

phases of design and construction can be optimized starting with a “best fit” set of 
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solutions that pertain to the current design problem. Subsequently, all outcomes and 

results from those analyses will be added to the cumulative database. Figure 3.9 shows 

a conceptual diagram of this process. 

 

 

Figure 3.9. Conceptual Framework for Continuous Optimization using Index Solutions 

 

 

Another potential impact this research has on the building design process concerns the 

relative speed of gaining potential results. A practical problem outlined earlier in this 

research explained the delay in getting energy model results in time to affect the 

building design and construction process. The proposed approach of this research has 

the potential to combine efficiency with cumulative results to branch out optimization 

exercises and run them in parallel as the building design progresses. 
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Figure 3.10 shows how the cumulative optimization trials can be expanded upon and 

run in parallel during the design and construction process. The practical application of 

such a feature would occur when the design parameters change during the building 

design phases. For example, an additional construction material may need to be 

added to the evaluation after the schematic design phase. Another example is if 

potential parameter values in initial optimization trials are reduced or expanded upon 

in subsequent phases. These optimization trials will continue with the more solidified 

parameters, but they will also be still analyzed against the cumulative index for 

comparison. 

 

Figure 3.10. Conceptual Branching of Optimization During Design Process 
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Research Limitations 

I addition to speaking of the potential beneficial implications of this research, it is 

equally important to recognize its limitations. The weakness of this research mainly 

resides in the reduction of scope and relying on comparative analysis over a complete 

and absolute analysis. 

The minimization of this experiment to four trials is inadequate to fully test the 

implications of this proposed approach, and therefore any results should be considered 

initial indicators rather than conclusive evidence. The reduction of design problem into 

so few variable parameters also limited the ability to test the augmented algorithm. The 

other known drawback of chosen parameters is that they are continuous values of 

orientation and percent glazing that have been converted into discrete values. 

The results and analysis in the following chapters are only valid for general comparisons 

in terms of both optimization time and cost, and optimal solution accuracy. This is 

because the scope of this research did not include in depth computer analysis of 

computation time or exact optimization performance. This research also did not use a 

“brute force” method or other methods to determine the actual global optimal 

solutions for each trial.  

For the purposes of this research, a reasonable optimization time period was generally 

one that an average computer user could accomplish in one business day. The optimal 

results were compared against each other and not analyzed for their actual 

effectiveness. While these aspects are worthwhile of study, they were not considered in 

this research and regarded as beyond the scope of this thesis study.  
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CHAPTER 4: RESULTS 

 

 

4.1. General Results 

In general, the trials were conducted without incident. Each trial of five generations 

took approximately one day to set up, run, and compile data.  

Every simulation in the current experiment took approximately 70 seconds on average 

to complete if run individually. The authors of one of the studies mentioned in the 

literature review (Zhang & Korolija, 2010) calculated that each simulation took an 

average of 83.69 seconds to perform, which aligns fairly well with each simulation run 

on this researcher’s personal computer. 

With jEPlus, the simulations were batch-processed in a staggered manner, with a 

maximum of four simulations running simultaneously, due to the simulated four-core 

limitation of the personal computer. When run with jEPlus, the batch computation of 

each generation took approximately 90 minutes, and so a total trial of five generations 

took almost 8 hours of computation time. This meant that each trial of 5 generations for 

this experiment took 8 to 10 hours, including the manual and semi-automated pre- and 

post-processing and sorting of data.  

In summary, the current research was highly cognizant of computational time due to 

the precedent studies and ensured that the number of variables used could be 

accommodated without special computer clusters. Each trial run was performed over 

the course of one day, for a total of four days of computation time. Yet four trials are 

not necessary in real-world applications, they were conducted for comparison and 
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analytical purposes.  In practice, each building will only require one trial to find Pareto-

optimal design solutions for energy analysis, and one day seems reasonable to 

accomplish this task. 

As demonstrated below, Trial 1 was able to find a large amount of Pareto-optimal 

solutions within the design space. Trial 1 also enjoyed a smooth Pareto-curve and a 

rather evenly distributed variety of design solutions within the population. Trials 2A, 2B, 

and 3 were not as fortunate. There seemed to be a small number of Pareto-optimal 

solutions, and the design solutions were fairly striated. These trials also seemed to not 

enjoy as broad of a design space to work with. 

These initial observations suggest that the variables of building orientation and amount 

of glazing do not have the same impact when the window type is a double glazing 

system rather than a single glazing system. This intuitively makes sense, as the thermal 

insulating properties and costs of double glazing are closer in both respects to the non-

vision spandrel system comprising of the rest of the building. With less distinction 

between the window and non-window systems, there is less variation in energy and 

cost results which in turn shrinks the potential design space.  

Optimization exercises are not immune to performing on non-ideal problems, and a 

well-functioning GA process will be able to function whether or not the solution space is 

beautifully diverse and provides a smooth Pareto curve. In that respect, the GA utilized 

in the current study seemed to perform satisfactorily in every trial. 
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Benchmark Trial 

To begin the study, the initial Energy model was simulated with the constraints 

described in Trial 1. The variable parameters were assigned values of a building 

orientation of zero degrees and 40% glazing on all four facades. This single performance 

was to provide a benchmark simulation run and to assess whether the results were 

reasonable. The energy model was assumed to be strong if the simulated results were 

reasonably close to standard energy performance data.  

After the simulation was performed, the estimated annual energy use was converted 

into kBtu/SF/year in order to assess EUI. The EUI of the single simulation was 301.69 

kBtu/SF/year. The EnergyStar Target Finder (Energy Star, 2012) found the median hospital 

within the Atlanta climate area to have a source energy EUI of 428 kBtu/SF/year and a 

site energy EUI of 202 kBtu/SF/year. Another study found baseline site energy EUI in the 

Northwest United States to be from 260 to 270 kBtu/SF/year (Burpee & Loveland, 2010). 

These results are deemed in the acceptable range with no red flag showing any major 

flaw with the energy model set up. 

 

4.2. Results from Trials 

Each trial produced a large number of output files and results. This section highlights the 

findings of each trial. Specifically, each trial will show a graph that indicates the Pareto-

optimal curve for its first generation and its last generation. These graphs are intended 

to illustrate the nature of each design space. Secondly, the progression of Pareto-

optimal solutions is illustrated in a graph for each of the trials. These are the ideal 
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diagrams that show convergence toward an optimum. Finally, each trial includes a 

graph that indicates the Pareto-optimal set of the external population index. 

Descriptions of noteworthy results are also included where applicable. Appendix B 

includes the results from all trials and generations for reference. 

 

4.2.1. Results from Trial 1 (Base Experiment) 

Graphically, the initial population for Trial 1 generation 1 appears to have a good 

distribution of the design space (see Figure 4.1). Of the 100 solutions, 14 were unique 

non-dominated solutions that create the Pareto-front.  

As the graph demonstrates, Pareto-front begins to uncover the nature of the design 

space, even only after the first generation. The median optimal solution appears to 

hover around $150/m2, where the energy performance varies but the cost remains 

largely the same. Because this research did not use the “brute force” method of 

simulating all possible solutions, it is not known what the true optimal solutions are.  

For the solutions where energy use is below this threshold, the cost is shown to increase 

proportionally with the decrease in energy use. Conversely, the solutions with energy 

consumption greater than that threshold have less of an effect on the solution cost, 

which remains largely in the same range for those solutions. These findings are in line 

with the research expectations.  

For each successive generation performed for Trial 1, more non-dominated solutions 

were uncovered. Generations 1 through 5 had 14, 21, 21, 33, and 42 unique Pareto-

optimal solutions, respectively.  



104 
 

As Figure 4.2 shows, the Pareto-curve becomes smoother and more complete after 5 

generations. The results are also visibly less striated for the final generation. The design 

space observations from the first generation are still generally true, and the extents of 

the original search space remain more or less the same. 

Figure 4.3 illustrates the Pareto-front progressing toward more global solutions over the 

course of each generation. Figure 4.4 shows the results of all five generations combined 

and given a Pareto-rank relative to the entire external indexed population. When the 

entire indexes of all generations were ranked, the result was 52 total unique, non-

dominated solutions. Of those non-dominated solutions, 1 was a solution originating 

from the first generation’s population, 7 were from the second generation, 10 were from 

the third, 16 were from the fourth, and 18 were from the final generation. Figure 4.4 also 

shows the solutions with a Pareto-rank of 2 and 3. These can be thought of as second 

and third-level tiers of optimality. Pareto-optimal, non-dominated solutions were given a 

rank of 1. 
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Figure 4.1. Trial 1 Generation 1 Results 

 

 

 

Figure 4.2. Trial 1 Generation 5 Results 
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Figure 4.3. Trial 1 Pareto-optimal Results Across 5 Generations 

 

 

 

Figure 4.4. Trial 1 Pareto-optimal Curve of External Index 
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4.2.2. Results from Trials 2A & 2B (Controls) 

In stark contrast to the easily legible generation 1 results in the first trial, Trials 2A had a 

largely dense first generation where the design space is graphically obscured. As seen 

in Figure 4.5, all of the results fall into a narrow range of cost with the exception of one 

outlier. The range of energy use varies greatly, and the cost is minimally reduced as the 

energy use decreases. The reason for this variability remains unknown. 

The one major feature of the design space that the initial generation sheds light on is 

the relationship of fitness values for cost and energy usage. While Trial 1 saw a Pareto-

curve that insinuated cost and energy efficiency were conflicting goals, the first 

generation of Trial 2A immediately illustrates that the two goals are in alignment for 

those sets of parameters. As the energy use decreases, the cost also seems to 

decrease.  

However, as more solutions from the design space are found, as seen in Figure 4.6, the 

picture changes. The final generation again indicates conflicting goals. As energy use 

decreases, the cost increases dramatically. Therefore, the goals are in fact still 

conflicting, and the first generation simply did not uncover the true Pareto-front. 

Each successive generation uncovered more Pareto-optimal solutions, but not nearly as 

many as Trial 1. For Trial 2A, the unique, non-dominated solutions were 2, 2, 3, 8, and 8 

for generations 1 through 5, respectively. The final generation indicates a clearer 

picture the design space. 
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Figure 4.6 also is telling, as it shows the non-dominated solutions becoming drastically 

more optimal for each generation. In fact, no solutions in generations 1 through 4 

dominate the Pareto-optimal set from the final generation’s population. The 8 unique, 

non-dominated solutions shown in Figure 4.7 against all solutions in Trial 2A came from 

the last generation. That graph also differentiates the solutions with a Pareto-rank of 3. 

No solutions had a rank of two when compared against the entire external index 

population. 

 

 

Figure 4.5. Trial 2A Generation 1 Results 
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Figure 4.6. Trial 2A Generation 5 Results 

 

 

 

Figure 4.7. Trial 2A Pareto-optimal Results Across 5 Generations 
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Figure 4.8. Trial 2A Pareto-optimal Curve of External Index 
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In addition, the results converged quickly, as evidenced in Figure 4.11. The cost fitness 

evaluation did not get improved after generation 3, and all of the non-dominated 

solutions are bunched together. Of the total 8 unique, non-dominated solutions 

compared to the entire trial solution set, 1 was from the third generation, 4 were from 

generation 4, and 4 from the final generation (see Figure 4.11 and Figure 4.12). 

 

 

 

Figure 4.9. Trial 2B Generation 1 Results 
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Figure 4.10. Trial 2B Generation 5 Results 

 

 

 

Figure 4.11. Trial 2B Pareto-optimal Results Across 5 Generations 
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Figure 4.12. Trial 2B Pareto-optimal Curve of External Index 
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Figure 4.13. Comparison of Pareto-optimal Results for Trials 2A & 2B 
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Figure 4.14. Trial 3 Generation 1 Results 

 

 

Figure 4.15. Trial 3 Generation 5 Results 
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Figure 4.16 shows a big leap in non-dominated solutions from the first to second 

generation of Trial 3. However, the Pareto-front barely moved after converging on that 

design space after generation 3. Figure 4.17 demonstrated the Pareto-optimal solutions 

of Trial 3 when analyzed against the indexed population of the entire trial. Of the 7 

ultimate non-dominated solutions in that population, none come from the first or last 

generation. 2 originated in the second generation, 3 in the third, and 2 more in the 

fourth. This is the first time we have seen a final trial generation not producing at least 

one new, unique non-dominated solution. 

 

 

Figure 4.16. Trial 3 Pareto-optimal Results Across 5 Generations 
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Figure 4.17. Trial 3 Pareto-optimal Curve of External Index 
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this research for lack of a “brute force” testing method, this study will use the term 

“perceived optimal” for the solution with the best all-around fitness value as found from 

the three combined trials.   

Trial 3 came across the perceived optimal solutions after only its third generation, as 

opposed to Trial 2B which found that solution after the fourth generation. As mentioned 

earlier, Trial 2A never converged on the perceived optimal after 5 generations. 

 

 

Figure 4.18. Comparison of First Generation Non-Dominated Solutions 
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Figure 4.19. Comparison of Final Generation Non-Dominated Solutions 
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In addition, Trial 1 shows a wide range of fitness goals in terms of both cost and 

performance. Trials 2A, 2B, and 3 are relatively narrow in solution range when 

compared to Trial 1. This result also is not surprising when considering the glazing 

properties. The double glazing cost is a closer match to the non-glazed portion of the 

building, making the cost not as variable depending on how much glazing there is on 

the building. The same concept holds true for the thermal properties. The double 

glazing is more comparable to the spandrel system, and therefore less energy swings 

can be recorded depending on how much or how little glazing is installed. 

 

 

 

Figure 4.20. Trials 2A, 2B, and 3 Simulation Index Non-Dominated Solutions 
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Figure 4.21. Non-Dominated Solutions from All Trials Index 
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CHAPTER 5: CONCLUSIONS 

 

 

This study concludes that the proposed approach of seeding an initial population for a 

genetic algorithm with non-exact but similar previous studies can potentially improve 

results and reduce the computation time. The hypothesis stated in this research was not 

found null, and therefore not disproved. Ultimately, much more study is needed to 

conclusively demonstrate the complete validity of this proposed process, but these 

preliminary results are promising. 

Hopefully, other research combining energy simulation indexing with partially optimized 

seeding will continue. The next steps would be to create a robust catalog of previous 

computations that will inform and seed future analyses. Eventually this process could be 

efficient enough to be applied in real-world applications and keep pace with real-time 

projects. In addition, this process has potential to reduce computational costs and time 

to a manageable level that is accessible to typical owners, contractors, and architects.  

In the end, this process, or a similar method, has the potential to truly reduce building 

energy consumption and increase energy efficiency through dynamic energy 

modeling. 
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APPENDIX A  
 

 

Energy Simulation Output Data Formatting 

 

Table A.1. Integer Variable Keys 

Integer Building Orientation 

(degrees from N) 

Percent Glazing 

(percent) 

0 0 1 

1 5 10 

2 10 20 

3 15 30 

4 20 40 

5 25 50 

6 30 60 

7 35 70 

8 40 80 

9 45 90 

 

 

Table A.2. Simulation Job Prefix Key 

Trial Generation Simulation 

Job Prefix 

Trial Generation Simulation Job 

Prefix 

Trial 1 Gen 1 A Trial 2B Gen 1 K 

Gen 2 B Gen 2 L 

Gen 3 C Gen 3 M 

Gen 4 D Gen 4 N 

Gen 5 E Gen 5 O 

Trail 2A Gen 1 F Trial 3 Gen 1 P 

Gen 2 G Gen 2 Q 

Gen 3 H Gen 3 R 

Gen 4 I Gen 4 S 

Gen 5 J Gen 5 T 
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APPENDIX B  

 

 

Results from Trials 

Note: The following tables show non-dominated solutions from the external index for 

each trial. All solutions from every generation are compiled and given a Pareto rank as 

compared to the entire index, and all generations had a population of 100 solutions. 

Duplicate solutions in the following tables were removed for clarity. 
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Table B.1. Trial 1 Non-Dominated Results 
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D44 3695.13 151.35 1 5 2 8 0 1 

D63 4076.16 146.82 0 5 5 8 1 1 

D71 4315.82 132.85 0 9 0 9 1 1 

D79 3316.04 159.93 1 3 1 9 1 1 
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E90 2953.4 175.05 1 3 1 6 0 1 
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Table B.2. Trial 2A Non-Dominated Results 
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Table B.3. Trial 2B Non-Dominated Results 
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Table B.4. Trial 3 Non-Dominated Results 
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