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CHAPTER I

INTRODUCTION

Numerous problems that require a high computing power have existed since the emer-

gence of the first computers. However, although computing power has consistently

improved from increasing clock frequency, that improvement has mainly focused on

the performance of single-threaded applications. As a result, complex problems still

fell into the hands of people working in super-computing centers.

Given the particular time frame in which we are living, this is no longer the

case. With the advent of graphics-processing unit (GPU), ordinary programmers,

who used to have access to only multi-core processors, now have access to hundreds of

execution units. Additionally, with the emergence of general-purpose GPU computing

(GPGPU), the outcome is spectacular, a high number of programmers across the

globe starting to convert their scientific and engineering applications to GPGPU

computing. Many have reported speed-ups by a factor of more than 100 [83] on real-

world applications. Thus, it appears on the surface as though computer development

has reached the ultimate goal. However, it is important to assess whether this in

reality has actually occurred.

The design of the GPU architecture has advanced at a fast rate in the market, and

even a heterogeneous processor, which exhibits both CPU and GPU characteristics [9],

began to emerge in the market. However, such a change is not fast enough for a

programming model and programmers. Most programmers are still likely to keep

optimizing their application performance blindly; that is, they keep optimizing the

programs without first understanding the essential features of the architecture. This is

a serious problem, and it may eventually lead to a higher cost for software development
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in terms of time and money. Furthermore, although profiling tools exist in addition to

other parallelizing tools, they do have one limitation in common; they neither provide

insightful knowledge of the architecture nor capture essential architectural features

that affect performance. Thus, the relevant question then becomes rather than merely

running the tools or simulations, is it possible to use only essential features and gain

insight into performance?

To address this question, we proposed an analytical model that predicts per-

formance for GPUs [33] in 2009. The model is based on a technical premise that

memory-access cycles between multiple warps can be overlapped, and that amount of

memory-level warp parallelism (MWP) depends on available bandwidth and internal

dynamic random access memory (DRAM) cycles. Thus, by precisely knowing the

effect of bandwidth and types of memory accesses, an effective memory latency can

be calculated, thereby predicting an application’s performance.

The benefit of this modeling approach is that, unlike other established profiling

tools or hardware performance counters, the analytical model only uses key features

of the GPU architecture to predict performance. This means that a person using

this model is able to visualize performance-determining factors in a graph and point

out the factors that limit performance. Therefore, a programmer not only finds

performance-limiting factors, but also gains an in-depth understanding of the archi-

tecture. This work also provides several techniques for performance optimization

by suggesting the generation of more threads, notifying that memory bandwidth is

insufficient, and improving a memory transaction type to a coalesced memory-access.

Another important aspect of GPU-kernel optimization is power and energy sav-

ings. Most programmers so far have focused on performance optimizations because,

traditionally optimizing for performance is better for energy savings, since the execution-

time reduction often outweighs the benefits of other energy-saving techniques. How-

ever, in the GPU architecture, this is no longer true. In my previous work [34] in 2010,
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it was demonstrated that in some applications, there are different optimization points

for saving energy. This observation is based on a detailed power model that I devel-

oped by using an empirical method and a previous performance model; I proposed

the integrated power and performance prediction (IPP) framework to estimate an op-

timal thread and block configuration in compute-unified device architecture (CUDA)

language. This work, published in ISCA 2010, is based on the insight that not all

GPU cores need to be activated, depending on the type of application. Furthermore,

this work can be used with other power-management techniques such as core gating

and voltage scaling. In essence, the work demonstrates the benefit that when the

power-gating technique is employed for a bandwidth-limited application, using fewer

cores saves more than 10% of energy consumption.

In the future, we envision that a computer system will contain hundreds of cores.

The challenge lies in the fact that some applications run more efficiently on a CPU

than on a GPU. For this reason, most future processors will be heterogeneous in

nature; a processor will have both a CPU and a GPU. Therefore, it is mandatory

from both a performance and power perspective that work gets scheduled to a more

efficient core.

To address that issue, I co-developed a dynamic-compiler system, Qilin [66], that

reduces a programmers burden of mapping between a CPU and GPU. Based on the

performance model, Qilin effectively predicts how much computation needs to be

done on the CPU and on the GPU. Moreover, Qilin dynamically recompiles code and

performs automatic partitioning of data depending on input and workload charac-

teristics. The work shows that the best performance is achieved when the CPU and

GPU are efficiently used together. While this dynamic approach finds a balanced

workload distribution after a profiling phase, to reduce the overhead of profiling time

and to provide insights into CPU and GPU analytically, I propose a static-time ap-

proach that requires instruction mixture and input-data size information. This work
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will leverage my previous work, which models performance and power for GPU ar-

chitectures.

Finally, this research makes great strides in the analytical work domain. My work

provides an easy to use, but thoroughly informative, insight into how to improve

the performance and power efficiency of applications. It can also be extended to a

compiler domain to guide performance optimizations or to architecture-simulation

domains to provide fast and scalable simulation time. Because of this research, re-

searchers and scientists will program their applications for GPGPU computing more

easily and efficiently, thereby enhancing the discoveries of science and medicines.

1.1 Thesis Statement

An analytical model that predicts performance and power provides insights and can

assist energy-efficient execution for a many-core architecture, which is not limited to

a graphics processing unit.

1.2 Organization

The remainder of this document is presented as follows: Chapters II and III provide

the research work for modeling GPU performance and power. Chapter IV presents

the thermal analysis using customized thermospacer and thermocouples. Chapter V

presents the throughput model that is a significant extension of the performance work.

This work has modified the analytical model structure from bottom up, which en-

ables a more thorough analysis in terms of bandwidth, achievable performance given

instruction mixture, memory effect, etc. Chapter VI presents the related work to ana-

lytical modeling for performance and power, OpenCL, and energy-efficient execution

in the heterogeneous system. Chapter VII presents the conclusion and future re-

search directions. Appendix A introduces a preliminary work for investigating energy

efficiency using the analytical model.
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CHAPTER II

MODELING GPU PERFORMANCE

To provide insight into performance bottlenecks in massively-parallel GPU architec-

tures, an analytical model is proposed. The model can be used statically without

executing an application. The basic intuition of the model is that estimating the cost

of memory operations is the key component of estimating the performance of parallel

GPU applications.

The execution time of an application is dominated by the latency of memory

instructions, but the latency of each memory operation can be hidden by executing

multiple memory requests concurrently. By using the number of concurrently-running

warps,1 the amount of memory-bandwidth consumption, and the memory types, the

number of overlapping memory accesses can be predicted, which is quantified as the

memory warp parallelism (MWP) metric. Another metric that models computation is

defined as computation warp parallelism (CWP). CWP represents how much compu-

tation can be done by other warps while one warp is waiting for memory values. CWP

is similar to the arithmetic-intensity metric used in the GPGPU community [80],

which is defined as the number of mathematical operations per memory operation.

Then, by using both MWP and CWP values, the effective cost of memory requests

can be estimated, thereby predicting an overall execution time of a GPU program.

2.1 Background

A brief background on the GPU architecture and the programming model is discussed.

1A warp is a batch of threads that are internally executed together by the hardware.
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2.1.1 Background on the Programming Model

The compute-unified device architecture (CUDA) programming model is similar to a

single program multiple data (SPMD) software model. In other words, each thread in

a CUDA program executes the same code, but it accesses different memory locations

and registers.

The programming model uses a hierarchy of thread groups: grid, block, and

thread. A grid is a set of thread blocks that executes a kernel function, and each

block is composed of hundreds of threads. There are three memory spaces: local,

shared, and global. Local memory space is within a thread, shared memory space

is within a block, and global memory space is within a grid. Hence, threads within

a block can share data using shared memory, but across blocks, the data must be

written back to the global memory. All threads within a block run concurrently us-

ing fine-grain multi-threading. A barrier can be enforced within a block. However,

depending on the machine resources, blocks are not guaranteed to run concurrently.

CUDA also provides two read-only memory spaces: constant space, and texture space.

2.1.2 Mapping the Programming Model to the Architecture

Figure 1 shows the high-level view of a GPU architecture. The version of a GPU in the

figure is NVidia’s G80 architecture, which is applicable to these series of GPUs that

we actually used: 8800GTX, FX5600, 8800GT. This figure is also applicable to GT200

series such as GTX280 GPU that we used, since the architectural change for GT200

is at a more finer level than the figure shows. The architecture consists of a scal-

able number of streaming multi-processors (SM). Each SM contains eight streaming

processors (SP), two special function units (SFU), a multi-threaded instruction-fetch

unit, a read-only constant cache, and a 16KB shared memory [63].

Threads are dispatched to SM at the block granularity. The number of blocks

that can be assigned to SM depends on the available resources (e.g., register file size,

6



shared memory size, and thread-contexts size) and the amount of resources each block

uses. If the maximum number of threads is assigned to SM, the occupancy metric2

is one. During execution, SM forms a batch of 32 threads together, called a warp,

which is the granularity of single instruction multiple data (SIMD) execution.
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Figure 1: An overview of the GPU architecture.

Executing a warp instruction applies the same instruction to 32 threads, similar

to executing a streaming SIMD extension (SSE) instruction in X86. However, unlike

SSE instruction, the concept of warp is not exposed to the programmers, so they do

not have to explicitly write a program that utilizes hardware resources. Instead, the

architecture transparently forms a warp for execution.

The blocks that are running on one SM at a given time are called active blocks.

Since one block typically has several warps, which is the number of threads in a block

divided by 32, the total number of active warps per SM is equal to the number of

warps per block multiplied by the number of active blocks.

The shared memory is implemented as a static random access memory (SRAM),

whereas the global memory is implemented as a dynamic random access memory

(DRAM). The shared memory has very low access latency, which is almost the same

2The metric is the ratio of assigned threads to maximum thread contexts per SM. Higher occu-
pancy means more threads per SM, hence idle memory cycles are hidden more effectively with more
available threads.
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as that of accessing a register. However, when a warp accesses the shared memory

simultaneously causing bank conflicts to occur within a warp, additional delay occurs.

2.1.3 Warp Execution and Types of Memory Accesses

SM executes one warp as single instruction multiple threads (SIMT) and schedules

warps in a time-sharing fashion. The processor has enough functional units and

register ports to execute 32 threads together. Since SM has eight functional units,

as shown in Figure 2, issuing 32 threads takes four processor cycles for computa-

tion instructions.3 When a memory instruction is executed, SM generates memory

transactions and switches to another warp until all the memory values in the warp

are ready. Ideally, all memory requests within the warp can be combined into one

or more memory transactions. Unfortunately, that depends on the access patterns

within the warp, the first memory address, the requested data size, and the hardware

version (i.e., compute version). For the list of GPU products with different compute

versions, the CUDA manual[77] should be referenced.

SIMD Execution Unit

One warp One warp One warp

Inst 1

Inst 2

Inst 3

Inst 4

Figure 2: Warp execution.

To illustrate the high-level view of a memory transaction, Figure 3 illustrates the

three cases. Regardless of the hardware version, when the first-requested address

is aligned to 64 bytes, and the subsequent addresses are sequential, then only one

memory transaction is generated, as shown in Case (a) of Figure 3. However, if one

3A computation instruction means a non-memory instruction.
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of the conditions is not met, then either Case (b) or Case (c) can occur depending

on the GPU compute version. Case (b) will occur for the earlier versions of 1.0

and 1.1, where multiple memory transactions are generated. This consumes memory

bandwidth and degrades performance. Because SM is an in-order processor; the warp

cannot continue execution until all the memory transactions are serviced.

Figure 3: Memory transactions: (a) coalesced, (b) uncoalesced, (c) optimized.

For the versions of 1.2, 1.3, and higher, the number of memory transactions is

optimized by hardware to reduce the memory traffic, as shown in Case (c) of Figure 3.

Even if the first memory address is unaligned, the hardware will attempt to generate

two large memory transactions for each memory segment rather than generating one

transaction for each thread. To facilitate the discussion, a memory request is a

coalesced access if only one memory transaction is generated and an uncoalesced

access otherwise. A local-memory access is treated the same as a global-memory

access.

In this work, shared-memory access is treated the same as register access. In other

words, we assume that there will be no bank conflicts. The same approach is used

for constant and texture caches.
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2.2 Motivation

To motivate the importance of a performance analysis on the GPU architecture, the

example of three different implementations of the same algorithm is shown in Figure 4.

The SVM benchmark is a kernel extracted from the face-classification algorithm [101].

The performance of applications is measured on the QuadroFX5600 GPU. There

are three different implementations: naive, constant, and constant+optimized. The

naive version only uses the global memory. The constant version additionally uses

the constant memory.4 Unlike previous two versions, the constant+optimized version

optimizes memory accesses to generate coalesced memory transactions.

Figure 4 shows the execution time when the number of threads per block is varied.

Despite the changing number of threads, the number of blocks is adjusted to keep

the total work the same. The performance improvement of the constant+optimized

version and that of the constant version over the naive implementation is 24.36 and

1.79 times speed-up, respectively. Even though the performance of each version might

be affected by the number of threads, once the number of threads exceeds 64, the

performance does not vary significantly.
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Figure 4: Optimization impacts on the SVM benchmark.

Figure 5 shows the occupancy [77] values for the three versions. As mentioned

4The benefit of using the constant memory is that the memory has an on-chip cache per SM, and
register usage can be reduced, which can increase the number of running blocks in one SM.
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in Section 2.1.2, an occupancy is a ratio of assigned threads to maximum number of

thread contexts per SM. This means that the higher the occupancy, the more warps

exist inside the SM for context-switching during a long-latency memory access. Tra-

ditionally, this metric has been used for optimizing an application performance [102],

and programmers have attempted to reduce register usage and shared memory access

to increase occupancy.
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Figure 5: Occupancy values of the SVM benchmark.

Typically, a high occupancy is better for optimizing performance since many

threads can hide the DRAM latency more effectively. However, Figure 5 shows that

the occupancy metric does not sufficiently estimate the performance improvement.

First, when the number of threads per block is less than 64, all the three cases show

the same occupancy values even though the performance is different. Second, even

though the occupancy value is increased, performance does not improve for some

cases. For example, the performance of the constant version is not improved at all,

even though the occupancy is increased from 0.35 to one. The reason is that when

there are more warps than the available memory parallelism, the performance will

not significantly improve with the increasing number of warps. Hence, we need other

metrics to differentiate these three cases.
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2.3 Analytical Model

2.3.1 Introduction of the Analytical Metrics

The GPU architecture is a multi-threaded architecture. Each SM can execute multiple

warps in a time-sharing fashion while one or more warps are waiting for memory

values. As a result, the execution cost of concurrently-executed warps can be hidden.

The key purpose of the analytical model is to find out how many memory requests

can be serviced, and how many warps can be executed together while one warp is

waiting for memory values.

To represent the degree of warp parallelism, two metrics are introduced: memory

warp parallelism (MWP), and computation warp parallelism (CWP). MWP repre-

sents the maximum number of warps per SM that can access the memory simulta-

neously during one memory-access period of one warp. The time period from right

after one warp sends memory requests until all the memory requests from that same

warp are serviced is called one memory-waiting period. CWP represents the number

of warps that the SM can execute during one memory-waiting period plus one. A

value of one is added to include the warp itself that is waiting for memory values.

This addition means that CWP is always greater than or equal to one.

MWP is related to how much memory parallelism exists in the system. MWP is

determined by the memory bandwidth, memory-bank parallelism, and the number of

running warps per SM. MWP plays an important role in the analytical model. When

the MWP value is higher than one, the cost of memory access cycles from (MWP-1)

number of warps is all hidden since they are all accessing the memory system together.

The detailed algorithm of calculating the MWP is described in Section 2.3.2.

CWP is related to the program characteristic. It is similar to an arithmetic inten-

sity [80], which represents the number of mathematical operations per memory access.

However, unlike the arithmetic intensity, higher CWP means less computations per

memory access. CWP also considers timing information, while an arithmetic intensity

12



does not. CWP is mainly used to decide whether the total execution time is dom-

inated by the computation cost or the memory access cost. When CWP is greater

than MWP, the execution cost is dominated by the memory access cost. However,

when MWP is greater than CWP, the execution cost is dominated by the computation

cost.

2.3.2 The Cost of Executing Multiple Warps

To explain how executing multiple warps in each SM affects the total execution time,

several scenarios are illustrated in Figures 6, 7, 8, and 9. A computation-period

indicates the period when instructions from one warp are executed on the SM. A

memory-waiting period indicates the period when memory requests are being serviced.

The numbers inside the computation-period boxes and the memory-waiting period

boxes in Figures 6, 7, 8, and 9 indicate a warp identification number.

Using Figure 6a as the baseline example, each warp has only one set of computa-

tions and memory accesses. In other words, no next set of dependent computations

and memory accesses exists. Assume that the GPU memory system can service two

memory warps simultaneously. Since one computation period is roughly one-third of

one memory-waiting period, the SM can finish three warps’ computation periods dur-

ing one memory-waiting period. That means that MWP is two, and CWP is four. As

a result, the six computation periods completely overlap with other memory-waiting

periods. Hence, only two computations and four memory-waiting periods contribute

to the total execution cycles.

Figure 6b shows a more realistic example; the next dependent sets of computations

and memory accesses are added. The second computation period can start only after

the first memory-waiting period of the same warp is finished. The MWP and CWP

values are still the same as in Figure 6a. First, the SM executes four of the first

computation periods from each warp one by one. By the time the processor finishes
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the first computation periods from all warps, two memory-waiting periods are already

serviced. So, the processor can execute the second computation periods for these two

warps. After that, there are no ready warps. The first memory-waiting periods for

the remaining two warps are still not finished. As soon as these two memory requests

are serviced, the processor starts to execute the second computation periods for the

other warps. Surprisingly, even though there are idle cycles between the computation

periods, the total execution cycles are the same as in Figure 6a. When CWP is

higher than MWP, more computations from different warps can be finished during

one memory-waiting period. Hence, the cost of the computation periods can almost

always be hidden during a memory access.

Figure 6: CWP is greater than MWP: (a) eight warps, (b) four warps.

For both cases, the total execution cycles are the sum of two computation periods

and four memory-waiting periods. Using MWP, the total execution cycles can be

calculated by using Equation (1) and Equation (2) below. We divide Comp cycles

by #Mem insts to get the number of cycles for one computation period. Note that

the number of warps allocated per SM, N in Equation (1), is divided by MWP that

represents memory parallelism.

Exec cycles = Mem cycles×
N

MWP
+ Comp p×MWP (1)

Comp p = Comp cycles/#Mem insts (2)
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MWP is greater than CWP for some cases. Figure 7a shows that the system

can service eight memory warps concurrently. Since eight memory cycles are over-

lapped, the values of MWP and CWP are eight and four. Then, as soon as the first

computation-period finishes, the processor can process the next set of memory and

computation requests. The example in Figure 7a shows that the memory-waiting pe-

riods all overlap between each other except the last warp. Hence, the total execution

cycles are the sum of eight computation periods and only one memory-waiting period.

Figure 7b shows an example with the next sets of dependent computations and

memory accesses. Even with those next sets of instructions, since the memory access

cycles are overlapped between the warps, the total execution cycles are dominated

by the computation cycles, which are the sum of eight computation periods and only

one memory-waiting period. Hence, when MWP is higher than CWP, the execution

cycles can be calculated by Equation (3).

Figure 7: MWP is greater than CWP: (a) eight warps, (b) four warps.

Exec cycles = Mem p + Comp cycles×N (3)

Figure 8 shows an extreme case where not even one computation period can be

finished while one memory-waiting period is completed. Even if MWP is eight, the ap-

plication cannot take advantage of all the available memory parallelism. As a result,

the total execution cycles are eight computation periods plus one memory-waiting
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period. This example shows that while MWP determines the available memory par-

allelism on the specific hardware, CWP also plays an important role in determining

the execution behavior.

When an application does not have enough number of warps, the system cannot

take advantage of all the available warp parallelism. By definition, MWP and CWP

values cannot be greater than the number of active warps in SM, which is represented

by N term.

Figure 8: Computation cycles are greater than memory-waiting cycles.

Figure 9a shows the case when only one warp is running. Since there is no other

warp that SM can switch to, all the executions are serialized. Hence, the total execu-

tion cycles are the sum of the computation and memory-waiting periods, where both

CWP and MWP values are one in this case. Figure 9b shows two warps. Since MWP

is limited by N, MWP is two. Even if one computation period is less than half of

one memory-waiting period, because there are only two warps, CWP is two. Hence,

the total execution time is roughly half the sum of all the computation periods and

memory-waiting periods, as shown in Equation (4).

Exec cycles = Mem cycles×N/MWP + Comp cycles×N/MWP (4)

+ Comp p× (MWP − 1)

= Mem cycles+ Comp cycles+ Comp p× (MWP − 1)

16



Figure 9: MWP is equal to N: (a) one warp, (b) two warps.

2.3.3 Calculating the Degree of MWP

MWP is slightly different from memory level parallelism (MLP) [27]. MLP represents

how many memory requests can be serviced together. MWP represents the maximum

number of warps in SM that can access the memory system simultaneously during

one memory-waiting period. The main difference between MLP and MWP is that

MWP counts all memory requests from a warp as one unit, while MLP counts all

individual memory requests separately. As discussed in Section 2.1.3, one memory

instruction in a warp can generate multiple memory transactions. This difference is

important, because a warp cannot be executed until all values for a warp are ready.

MWP is tightly coupled with the DRAM system. In our analytical model, DRAM

system is modeled as a simple queue; each active SM consumes an equal amount of

memory bandwidth. Figure 10 shows the memory model and a time-line of memory

warps.

MWP represents the number of memory warps per SM that can be handled during

one memory-waiting period, represented by Mem L in Figure 10. The latency of each

memory transaction is at least Mem L cycles. Departure delay is the minimum

departure distance between two consecutive memory warps. Mem L is a round-trip

time to DRAM, which includes access time, address translation, and data transfer

time.
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Figure 10: Memory system: (a) memory model, (b) time-line of memory warps.

The amount of memory-level parallelism depends on the following parameters: an

available memory bandwidth, and a latency of the departure delay with respect to

Mem L cycles. For example, even with an infinite memory bandwidth, if departure

delay is significant, then fewer memory warps end up overlapping. As mentioned

previously, MWP is also limited by how many active warps are allocated per SM.

Therefore, MWP is modeled by Equation (5). MWP cannot be greater than the

number of warps per SM that reach the peak memory bandwidth, represented by

MWP peak BW , of the system. If fewer SMs are executing warps, then each SM

can consume more bandwidth than when all SMs are executing warps.

MWP = MIN(MWP Without BW, MWP peak BW, N) (5)

MWP peak BW =
Mem Bandwidth

BW per warp×#ActiveSM
(6)

BW per warp =
Freq × Load bytes per warp

Mem L
(7)

When an application does not reach peak bandwidth, MWP is a function of

memory-waiting period and departure delay. Figure 11 shows that the number of

overlapped warps is obtained by dividing Mem L by Departure delay. It also shows

that both terms depend on memory-access types and GPU hardware versions. This

is because, depending on the memory access type, a different number of memory
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transactions is generated, as shown in Figure 3. More transactions require additional

processing cycles, thereby increasing the departure delay term (Equation (15)). For

GPUs with the hardware versions of 1.3 and above, a memory request is optimized

into as few memory transactions as possible.

Figure 12 shows that the latency of memory warps is dependent on the memory ac-

cess type. For an uncoalesced memory request, since one warp requests multiple trans-

actions, which is represented by #Uncoal per mw, Mem L includes departure delays

for all the generated transactions. Departure delay also includes #Uncoal per mw

number of Departure del uncoal cycles. Mem LD is a round-trip latency to DRAM

for each memory transaction. In this model, Mem LD for uncoalesced and coalesced

memory types is considered the same, even though a coalesced memory request might

take a few more cycles because of a large data size. 5

Overlapping

# Warps
= Mem_L / 

Departure_delay

Figure 11: Effects of memory types and hardware versions on MWP.

Figure 12: Departure delays: (a) uncoalesced, (b) coalesced.

In an application, some memory requests are coalesced, and some are not. Since

5Mem LD refers to the average cycles for a single memory transaction. On the other hand,
Mem L considers multiple memory transactions generated from a memory request of a warp.
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multiple warps are running concurrently, the analytical model uses an weighted aver-

age of the memory latency of coalesced and uncoalesced memory types. A weight is

determined by the number of coalesced and uncoalesced memory requests, as shown

in Equation (10) and Equation (11).

2.3.4 Calculating the Degree of CWP

Once memory latency for each warp is calculated, obtaining CWP is straightforward.

CWP full is used when there are enough number of warps. When CWP full is

greater than N , which is the number of active warps per SM, CWP is N . Otherwise,

CWP full becomes CWP .

CWP full =
Mem cycles+ Comp cycles

Comp cycles
(8)

CWP = MIN(CWP full, N) (9)

2.3.5 Total Number of Executed Blocks Per SM

SM executes hundreds of threads concurrently. Depending on the application, the

total number of blocks assigned by the programmer varies. Some applications could

contain hundreds of blocks, while others could even contain thousands of blocks. As

mentioned in Section 2.1.1, threads are assigned to SM at block granularity, and we

assume that these blocks will uniformly spread out on the available number of SMs.

For example, if there are 30 SMs and 3000 blocks, each SM will fetch 100 blocks on

average. However, these 100 blocks cannot be assigned to SM at one time as current

GPU specifications only allow up to eight blocks maximum to be assigned at once

due to resource constraints. Hence, the number of blocks that can be assigned at

once depends on the amount of resources each block requires such as registers and

shared-memory usage per block. This occupancy information and the number of

blocks assigned to SM can be calculated at static time [77]. If only five blocks are
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assigned to SM, then each SM is expected to execute 100 blocks on average. Thus,

#Rep is introduced to represent how many times each SM is expected to repeat the

execution of certain number of blocks.

2.3.6 Total Execution Cycles

Several stages of calculations are necessary to obtain the total execution cycles. First,

a weight of uncoalesced and coalesced memory accesses is calculated, as shown in

Equation (10) and Equation (11).

Weight uncoal =
#Uncoal Mem insts

(#Uncoal Mem insts+#Coal Mem insts)
(10)

Weight coal =
#Coal Mem insts

(#Coal Mem insts+#Uncoal Mem insts)
(11)

The term, Mem L, represents an average latency of a memory access. Since

two types of memory accesses exist on GPU architecture, an effective latency is cal-

culated by considering the number of memory accesses for each type, as shown in

Equation (14).

Mem L Uncoal = Mem LD + (#Uncoal per mw − 1)×Departure del uncoal (12)

Mem L Coal = Mem LD +Departure del coal (13)

Mem L = (Mem L Uncoal ×Weight uncoal) + (Mem L Coal (14)

×Weight coal)

In DRAM system, depending on the type of a memory access, the cycles necessary

to process consecutive memory accesses are represented by Departure delay term, as

shown in Equation (15).
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Departure delay = (Departure del uncoal ×#Uncoal per mw)×Weight uncoal (15)

+Departure del coal ×Weight coal

Then, MWP , the memory-level parallelism metric, is calculated by finding the

minimum of MWP Without BW and MWP peak BW as shown in Equation (16)

and Equation (17).

MWP Without BW full = Mem L/Departure delay (16)

MWP Without BW = MIN(MWP Without BW full,N) (17)

Assuming no memory-level parallelism and computation-level parallelism exist,

a serialized cycles for memory and computation are calculated in Equation (18) and

Equation (19). For computation cycles, the term, M Factormodels different through-

puts of computation instructions.

Comp cycles = #Issue cycles×M Factor ×#total insts (18)

Mem cycles = Mem L Uncoal ×#Uncoal Mem insts (19)

+Mem L Coal×#Coal Mem insts

Since all the necessary work can not be computed in one round, Equation (20)

shows how many rounds of computations need to be executed.

#Rep =
#Blocks

#Active blocks per SM ×#Active SMs
(20)
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Table 1: Summary of the model parameters.
Model Parameter Definition Obtained
#Threads per block Number of threads per block Programmer
#Blocks Total number of blocks in a program Programmer
#Active blocks per SM Number of concurrently running blocks on one SM Based on machine resources [77]
#Active SMs Number of active SMs Based on machine resources
N Concurrently running warps on one SM Active blocks x Warps per block
#Comp insts Total dynamic number of computation instructions in one thread Source code analysis
#Mem insts Total dynamic number of memory instructions in one thread Source code analysis
#Coal Mem insts Number of coalesced memory type instructions in one thread Source code analysis
#Uncoal Mem insts Number of uncoalesced memory type instructions in one thread Source code analysis
#Synch insts Total dynamic number of synchronization insts in one thread Source code analysis
#Total insts Total dynamic number of instructions in one thread #Comp insts + #Mem insts
Mem LD DRAM access latency (Machine configuration) Table 5
Departure del coal Delay between two coalesced memory transactions Table 5
Departure del uncoal Delay between two uncoalesced memory transactions Table 5
#Coal per mw Number of memory transactions per warp (coalesced access) 1
#Uncoal per mw Number of memory transactions per warp (uncoalesced access) Source code analysis
Mem L Warp memory access latency, depends on memory type and HW Equation (14)
Issue cycles Number of cycles to issue one instruction (pipelined) 4 cycles [39]
Freq Clock frequency of the SM Table 2
#Threads per warp Number of threads per warp 32 [77]
Mem Bandwidth Bandwidth between DRAM and GPU cores Table 2

Finally, depending on the MWP and CWP values, the total execution cycles for an

entire application are calculated by Equation (21), Equation (22), and Equation (23).

Case1: If (MWP is N warps per SM) and (CWP is N warps per SM)

(Mem cycles + Comp cycles+
Comp cycles

#Mem insts
× (MWP − 1))×#Repw (21)

Case2: If (CWP >= MWP) or (Comp cycles > Mem cycles)

(Mem cycles ×
N

MWP
+

Comp cycles

#Mem insts
× (MWP − 1)) ×#Repw (22)

Case3: If (MWP > CWP)

(Mem L+Comp cycles ×N)×#Repw (23)

2.3.7 Cycles Per Instruction (CPI)

Cycles per Instruction (CPI) is commonly used to represent the cost of each instruc-

tion. Using total execution cycles, CPI is calculated by using Equation (24). Note

that CPI is the cost when an instruction is executed by all threads in one warp.
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CPI =
Exec cycles app

#Total insts× #Threads per block
#Threads per warp

× #Blocks
#Active SMs

(24)

2.3.8 Coalesced and Uncoalesced Memory Accesses

A latency of memory instruction is heavily dependent on the memory-access type.

Whether memory requests inside a warp can be coalesced or not depends on the

memory-system design and memory-access patterns in a warp. The evaluated GPUs

have two coalesced and uncoalesced polices. Earlier versions have differences com-

pared with more recent versions of 1.3 and higher. The difference is that stricter rules

are applied for a warp to be coalesced. For recent versions, the rules are relaxed; all

memory requests are coalesced into as few memory transactions as possible.

2.3.9 Synchronization Effects

The programming model supports a barrier synchronization. Since blocks are asyn-

chronously assigned to different SMs for execution, synchronization is only supported

between the threads inside the block. When SM executes this barrier instruction,

additional delay occurs, because the next instruction cannot be executed until all the

threads inside the block reach this barrier point.

Figure 13 illustrates the additional delay effect. Surprisingly, the delay is less than

one memory-waiting period. NpWB, introduced in Equation (25), is the number of

parallel warps per block. This term is used instead of MWP since only the warps

inside the block are synchronized.

Synch cost = Departure delay × (NpWB − 1)×#synch insts (25)

×#Active blocks per SM ×#Rep

NpWB = MIN(MWP, #Active warps per block) (26)
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Figure 13: Delays: (a) no synchronization, (b) synchronization.

Exec cycles with synch = Exec cycles app+ Synch cost (27)

The additional delay-per-synchronization instruction is the multiple ofDeparture delay,

(NpWB-1), and the number of blocks. The final execution cycles of an application

with synchronization are calculated by Equation (27).
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2.4 Experimental Methodology

2.4.1 List of GPU Architectures Used for Evaluation

Table 2 shows the list of GPUs used for the experiment. GTX280 supports 64-bit

floating-point operations, and it has a hardware version of 1.3, which improves un-

coalesced memory accesses. To measure the GPU kernel execution time, cudaEven-

tRecord function is used, which uses GPU shader-clock cycles. All the measured exe-

cution time is the average of ten runs. The benchmarks are compiled with NVCC [77]

compiler.

Table 2: The specifications of GPUs used in the experiment.
Model 8800GTX Quadro FX5600 8800GT GTX280
#SM 16 16 14 30
(SP) Processor Cores 128 128 112 240
Graphics Clock 575 MHz 600 MHz 600 MHz 602 MHz
Processor Clock 1.35 GHz 1.35GHz 1.5 GHz 1.3 GHz
Memory Size 768 MB 1.5 GB 512 MB 1 GB
Memory Bandwidth 86.4 GB/s 76.8 GB/s 57.6 GB/s 141.7 GB/s
Peak Gflop/s 345.6 384 336 933
Computing Version 1.0 1.0 1.1 1.3
#Uncoal per mw 32 32 32 [33]
#Coal per mw 1 1 1 1

2.4.2 Designing Micro Benchmark

To test the analytical model and find memory model parameters, a set of Micro

benchmarks is designed. The number of load instructions and computation instruc-

tions per loop is varied. Each benchmark has two memory-access patterns: coalesced

and uncoalesced. Table 3 summarizes the list of micro-benchmarks and shows the

number of memory and computation instructions per warp. The numbers inside the

parentheses show the number of floating-point instructions. For example, Mb1 has

no memory instructions, while Mb7 has six memory instructions.

Table 3: Characteristics of micro benchmarks.
# inst. per loop Mb1 Mb2 Mb3 Mb4 Mb5 Mb6 Mb7
Memory 0 1 1 2 2 4 6
Comp. (FP) 23 (20) 17 (8) 29 (20) 27(12) 35(20) 47(20) 59(20)
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2.4.3 Merge Benchmark

To test how the analytical model can predict typical GPGPU applications, six bench-

marks in the Merge work [62] are used. Table 4 describes each benchmark and

summarizes the characteristics. The number of registers used per thread and shared

memory usage per block are statically obtained by compiling the code with -cubin

flag. The rest of the characteristics are statically found in PTX code.

Table 4: Characteristics of merge benchmarks.
Benchmark Description Input size Comp Reg Shared Arith.

Insts Memory intensity

Sepia [62] Filter for artificially aging images 7000 x 7000 71 7 52B 11.8
Linear [62] Image filter for computing 9-pixels avg. 10000 x 10000 111 15 60B 3.7
SVM [62] Kernel from a SVM-based algorithm 736 x 992 10871 9 44B 13.3
Mat. (naive) Naive version of matrix multiplication 2000 x 2000 12043 10 88B 3
Mat. (tiled) [77] Tiled version of matrix multiplication 2000 x 2000 9780 - 24580 18 3960B 48.7
Blackscholes [77] European option pricing 9000000 137 11 36B 19

2.5 Results

2.5.1 Calculating Memory Model Parameters

Micro benchmarks are used to measure the parameters that are required to model

the memory system. Mem LD, Departure del uncoal, and Departure del coal pa-

rameters are varied to find the best-fitting values.

Table 5 summarizes the results. FX5600, 8800GTX, and 8800GT use the same

parameters. Departure del coal is related to the memory-access time to a single mem-

ory transaction. Departure del uncoal for GTX280 is larger than that of FX5600.

This is because there are more processing cycles associated with minimizing the num-

ber of memory transactions. The performance benefit of having fewer memory trans-

actions is greater than having a higher departure delay.

Table 5: Results of the memory-model parameters.
Model FX5600 GTX280
Mem LD 420 450
Departure del uncoal 10 40
Departure del coal 4 4
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Using the parameters in Table 5, CPI values for the micro-benchmarks are cal-

culated. Figure 14 shows the average CPI for both the measured values and the

predicted values. The results show that the average geometric mean of the error

is 5.4%. As the number of load instructions increases, the CPI increases. For the

coalesced cases of Mb1 C to Mb7 C, the cost of load instructions is almost hidden be-

cause of the high MWP. However, for the uncoalesced cases of Mb1 UC to Mb7 UC,

the cost of load instructions linearly increases with the number of load instructions.
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Figure 14: CPI of the micro benchmark.

2.5.2 Evaluation of Merge Benchmark

Figure 15 and 16 show the measured and estimated execution times of the Merge

benchmark on the FX5600 and GTX280. The number of threads per block is changed

from four to 512. The number 512 is the maximum value that one block can have

in the evaluated CUDA programs. Even though the number of threads is varied, the

programs calculate the same number of data elements. In other words, if the number

of threads in a block is increased, the total number of blocks is reduced to make the

total amount of work the same. Hence, execution times are mostly the same.

Figure 17 shows the measured and estimated CPI values across four GPUs. CPI

shows more information than execution time since CPI is also a performance metric.

For example, a CPI value that is close to four means that application is reaching the

peak performance, because four cycles are needed to issue one instruction to a warp.
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Figure 15: Execution time of the merge benchmarks on FX5600.

The average values of CWP and MWP per SM are shown in Figures 18 and 19,

respectively. Compared to other GPUs, 8800GT has the least amount of bandwidth,

resulting in the highest CPI in contrast to GTX280. Generally, higher arithmetic

intensity means lower CPI (i.e., lower CPI is higher performance). However, even

though the Mat.(tiled) benchmark has the highest arithmetic intensity, SVM has the

lowest CPI value. SVM has the highest MWP and the lowest CPI values, because

only SVM has fully coalesced-memory accesses.
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Figure 16: Execution time of the merge benchmarks on GTX280.

The MWP values in GTX280 are higher than the other GPUs, because even

29



though the most memory requests are not fully coalesced, the number of memory

transactions is optimized, which results in higher MWP. All other benchmarks are

limited by departure delay, which is also the reason why these applications never

reach the peak bandwidth.
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Figure 17: CPI of the merge benchmarks.

Figure 20 shows the occupancy of the Merge benchmark. Except Mat.(tiled) and

Linear, all other benchmarks have occupancy values that are higher than 70%. Hence,

the results show that occupancy is less correlated to the performance of applications.
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Figure 18: MWP per SM of the merge benchmarks.
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The geometric mean of the estimated CPI error on the Merge benchmark is 13.3%,

as shown in Figure 17. Generally, the error is higher for GTX280 than the rest of

evaluated GPUs, because the number of memory transactions is difficult to predict

due to optimizations by hardware.
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Figure 20: Occupancy of the merge benchmarks.
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2.6 More Validations and Insights

In this section, to further validate the analytical model, we implemented the instruc-

tion analyzer used by the GPU emulator (Ocelot [17]) for finding the dynamic number

of instructions. Also, to give further insights, we discuss in more detail topics such

as the effects of independent and dependent memory accesses, long-latency computa-

tions, divergent warp execution, and synchronization effects.

2.6.1 Insights Into The Model

The MWP value is limited by three factors: memory-level parallelism inside an ap-

plication, DRAM throughput, and bandwidth between SMs and GPU DRAM. The

throughput is dependent on DRAM configuration and the ratio of memory access

types (between coalesced and uncoalesced accesses). To visualize how MWP is af-

fected by the three components, we vary the number of warps and plot the corre-

sponding MWP values in Figure 21 and 22.
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Figure 21: MWP analysis: coalesced memory accesses.

The results show that uncoalesced memory accesses can never saturate available

memory bandwidth. Increasing the number of warps (through different parallelization

techniques or changing the occupancy) increases MWP up to 9 for coalesced case but

only up to 5 for the uncoalesced case.

Now, to provide insights into the analytical model, we revisit the example in Sec-

tion 2.2. Figures 23 and 24 show N, MWP without BW, MWP peak BW, MWP,
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Figure 22: Visualization of MWP (Top: coalesced case, Bottom: uncoalesced case).

and CWP for the Constant+Optimized case and Naive case from Figure 4, re-

spectively. Here, we explain the performance behavior with MWP peak BW and

MWP Without BW instead of MWP because the final MWP is the minimum of those

two terms and the number of running warps (N), as shown in Equation (5). The lim-

iting term for Figure 23 is 12 (MWP peak BW), and it is 2 (MWP Without BW) for

Figure 24.
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Figure 23: MWP, CWP analysis on the optimized SVM.

The main reason for this difference is that Constant+Optimized has coalesced

memory accesses, but Naive has uncoalesced memory accesses. Until N reaches

MWP peak BW, which is 40, increasing N reduces execution time for Constant+Optimized

since more warps can increase memory-level parallelism. However, in Naive, N is al-

ways greater than MWP without BW, so increasing N does not improve performance

since maximum memory-level parallelism is already reached.
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Figure 24: MWP, CWP analysis on the naive SVM.

2.6.2 Instruction Analyzer

To validate and facilitate the process of obtaining model inputs such as the number

of dynamic instructions, the instruction analyzer for Ocelot is implemented. When

Ocelot emulates a CUDA code on a CPU, our tool analyzes the execution, and pro-

duces outputs (Instructions, Threads/Blocks, Occupancy, etc) that can be passed to

the analytical model.

Figure 25 shows the output when the tool is used on the Merge benchmark suite.

The y-axis shows the error ratio between the hand analysis and the Ocelot execution.

The number beside the bar shows the absolute difference in number of instructions.
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Figure 25: Instruction count comparison.

The figure shows that the average error is 10.9% for computation instructions and

4.12% for memory instructions. Note that memory accesses have much more impact

on performance than the number of computations.

34



2.6.3 Effects of Dependent/Independent Memory Accesses

The Tesla architecture is an in-order processor within a warp. It stops issuing an

instruction from a warp if not all source operands are ready and switches to another

ready warp. When a warp generates a global memory request, if the subsequent

instructions do not source the outcome of the global load (i.e., the subsequent in-

structions are not dependent on the previous memory-requesting instruction), the

instructions can be still issued as long as all the source operands are ready. Hence,

global memory requests from the same warp could be serviced together if they (and

including all the instructions between two global load instructions) are not depen-

dent on the first load instruction. Figure 26 illustrates both cases (dependent and

independent instructions).

Figure 26: Illustration of dependent and independent memory accesses.

The numbers inside the computation and memory periods indicate the warp iden-

tification numbers, representing two to three warps per SM. In the dependent case,

two series of memory operations from the same warp are serialized (Part (a)). But
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in the independent case, since memory operations from the same warp can be ser-

viced concurrently, they are all parallelized as if there were four warps per SM rather

than two (Part (b)). Part (c) shows that there is one more warp than in Part (b)

and memory requests are independent. However, since the GPU system has limited

bandwidth, not all memory requests overlap. More detail is discussed with Figure 27

and 28 below.

40

45

50

80

90

100
DEP

INDEP

30

35

40

45

50

60

70

80

90

100

S
M

 (
N

)

m
e

 (
m

s)

DEP

INDEP

MO_DEP

MO_INDEP

N

20

25

30

35

40

45

50

40

50

60

70

80

90

100

p
rs

 p
e

r 
S

M
 (

N
)

ti
o

n
 T

im
e

 (
m

s)

DEP

INDEP

MO_DEP

MO_INDEP

N

10

15

20

25

30

35

40

45

50

20

30

40

50

60

70

80

90

100

W
a

p
rs

 p
e

r 
S

M
 (

N
)

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

DEP

INDEP

MO_DEP

MO_INDEP

N

0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

70

80

90

100

W
a

p
rs

 p
e

r 
S

M
 (

N
)

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

DEP

INDEP

MO_DEP

MO_INDEP

N

0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

70

80

90

100

16 48 80 112 144 176 208 240 272 304 336 368 400 432 464 496

W
a

p
rs

 p
e

r 
S

M
 (

N
)

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Threads per block

DEP

INDEP

MO_DEP

MO_INDEP

N

Figure 27: Effects of dependent and independent memory accesses.
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Figure 28: Model prediction of dependent and independent memory accesses.

To evaluate the effects of dependent/independent memory accesses on actual per-

formance, we design micro-benchmarks, where one benchmark is dependent on the

previous value of the memory load (DEP), while the other is not (INDEP). Both cases

have the same number of instructions and instruction mixtures. Figure 27 shows the

execution time of two cases as we increase the number of warps (i.e., all the threads
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execute the same code, so the total amount of work is also increased). When the

number of warps per SM is less than MWP, the execution time of INDEP is much

shorter than that of DEP. However, once N is greater than MWP, both benchmarks

have a similar execution time. The main reason is that when there are fewer warps

per SM and the following memory requests are independent, those requests can be

processed together, as shown in Figure 26b, thereby increasing effective memory-level

parallelism. Note that although only four warps are allocated per SM in Figure 28(b),

for independent memory accesses, the effective number of warps (Npw) is eight. But

as more warps are allocated beyond MWP, SM can find available warps regardless of

memory type; the performance between the two is similar, which is represented by

Figure 26C.

In our analytical model, we assume that all instructions within a warp are depen-

dent on the previous instructions. However, for memory requests, that will result in

a serialization of all memory requests in one warp. Therefore, the Npw term in Equa-

tion 28, which represents the effective parallel number of warps, is used. Typically,

the number of parallel warps is the same as the total number of warps per SM (N).

However, when there are independent memory requests and few warps, more warps

(i.e., more memory requests) can be executed in parallel. Therefore, the N term

should be replaced by Npw for a more thorough analysis when the number of warps

is less than MWP. We calculate this effective number of parallel warps by finding the

number of memory-independent requests.

Npw = N ×
#Ind mem req

(#Mem req −#Ind mem req)
(28)

MWP = MIN(MWP Without BW,MWP peak BW,Npw) (29)

The Npw term is only used for calculating effective MWP. As shown in Equation (29),

the term, Npw, can affect MWP only when N is less than either MWP Without BW
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or MWP peak BW , which explains the behavior in Figure 27. This is the same case

where there are not enough running warps. We believe that this example shows the

interrelated effects among the number of allocated warps per SM, types of memory

accesses, and MWP clearly.

Figure 28 shows the outcome of three models and actual measured value for

two different memory access cases: (1) independent memory accesses with the orig-

inal model: MODEL NOPW(IND), (2) independent memory accesses with the new

model: MODEL PW (IND), and (3) dependent memory accesses with new model:

MODEL PW (DEP). Figure 28 is an enhanced version of the boxed area in Figure 27.

The experiment demonstrates two important behaviors when the number of threads

is less than 48. First, for dependent-memory accesses, the execution time is not in-

creased linearly (almost the same). Second, the execution time of dependent-memory

accesses is much longer than that of the independent-memory accesses. The reason

the flat area exists is that when the number of warps is too small, even if we in-

crease the total work, the work takes almost the same amount of time because the

execution time is dominated by memory operations. The additional memory requests

due to additional warps are all serviced concurrently, thereby keeping total memory

operations the same. The results show that the predicted execution time using Fig-

ure 28(MODEL PW) estimates the execution time precisely for these two cases but

not with the old model (MODEL NOPW).

2.6.4 Long-Latency Computation Instructions

In our analytical model, we apply different instruction latencies based on the instruc-

tion types. Table 6 summarizes the throughput of instructions based on the CUDA

manual and our experimental measurement. A throughput of one means that each

functional unit can finish one operation per cycle, which results in eight operations
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(ops)/cycle since there are eight processing units per SM. 6 M Factor is modeled as

one when the throughput is eight ops/cycle and it is proportionately increased (more

cycles) as the instruction throughput is decreased.

Table 6: Instruction throughput.
Instructions Ops/cycle (M Factor)[M] M Factor [Experiment]

FPadd FPmul FPmad 8 (1) 1
Intadd 8 (1) 1
FPdiv 2 (4) 4.2
Intmul 2 (4) 4.3
Intdiv, Modulo Costly 30, 35

Floating-point (FP) operations have the maximum throughput compared to INT

operations in the evaluated GPU architectures. For FP instructions, the output is

generated for every cycle (pipelined). However, the throughtput for INT operations

is lower (less than 8 ops/s). We believe that INT operations are translated to mul-

tiple binary instructions at run-time (detailed information is not publicly available).

Therefore, effective ops/cycle is less than 8. Hence, we model this effective through-

put degradation by using the M Factor term. The throughput for FP operations such

as addition, multiplication, and multiply-addition are 8 ops/cycle. However, instruc-

tions such as modulo and integer multiplication take much longer latency, reducing

the throughput by the factors of 4.3 and 35, respectively.

Comp cycles = (#Issue cycles×M Factor)×#total insts (30)

Equation (30) shows the improved calculation for computation cycles over the previ-

ous Equation (18)

2.6.5 Divergent branches

When a warp diverges (i.e., diverges within 32 threads), the execution of diverged

warps is serialized [77]. 7 This means that while one path is executed, the threads on

6Ops/cycle is used in the CUDA manual. M Factor is introduced to to proportionately model
long-latency instructions.

7Several recent studies have focused on reducing unnecessary idle cycles during divergent execu-
tion [25, 95].
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the other path are idle. Figure 29 shows an example. The branch at basic block 1 in

the figure diverges. An active bitmap mask shows that the first four threads take the

taken path, while the rest takes the not-taken path. Basic block 2 also has a divergent

branch. Hence, there are three paths (B1B2B4B6B7, B1B2B5B6B7, B1B3B7) in this

example.

Figure 29: Illustration of a divergent execution.

Figure 30 shows the model predictions and the measured execution time. If the

model only takes the execution time of each individual path into account (the first

three bars in the figure), the execution time is much shorter than the actual exe-

cution time. In the current GPU architecture, all the divergent paths are serially

executed [25]. The all paths bar in the figure is the sum of all the paths in the

divergent branch, which shows only 6% delta with the actual measured time.

2.6.6 Effects of Synchronization

The cost of synchronization is modeled in Section 2.3.9 using Equation (25) and

Equation (27). To evaluate the synchronization cost in more detail, we compare the

performance delta between two programs in Figure 31, where the only difference is

the barrier instruction (bar.sync).

Figure 32 shows an experiment where only one SM is active (i.e., one block is
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Figure 30: Effects of divergent branches on the execution time.

Program A (Synchronization)

...

9: ld.global.f32 %f1, [%r8+0];

10: mov.f32 %f2, 0f41200000;

11: mul.f32 %f3, %f1, %f2;

12: bar.sync 0; //Synchronization

13: st.global.f32 [%r8+0], %f3;

Program B (No Synchronization)

...

9: ld.global.f32 %f1, [%r8+0];

10: mov.f32 %f2, 0f41200000;

11: mul.f32 %f3, %f1, %f2;

12: st.global.f32 [%r8+0], %f3;

Figure 31: PTX code for synchronization analysis.

used). When there is only one warp, there should be no performance penalty due

to synchronization. However, in the measured data, we still observe some minor

penalties from the bar.sync instruction. We estimate that this overhead is coming

from the fetch unit or other schedulers. Please note that using bar.synch just for one

warp is not a typical case, which might cause unexpected overhead. Programmers

should not use bar.sync just for one warp. As predicted, as we increase the number

of threads (warps) in the core, the cost of synchronization increases. The model

predicts the increasing cost accurately but with the absolute delta due to the initial

cost difference. In this experiment, we intentionally use only one SM for observing
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the cost.
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Figure 32: Synch delay: one block (one SM active).

Figures 33 shows the performance delta when all SMs are actively running multiple

blocks. Resource usage for each GPU kernel is manually controlled to allocate two

blocks per SM for BL2 and four blocks per SM for BL4. In this experiment, we

observe both the effect of the number of blocks and MWP. Increasing the number of

blocks also increases the cost of synchronization because memory requests are delayed

by intervention with warps in other blocks. Since the number of warps is still less than

MpWB, the synchronization cost is increased continuously. The model predictions

show that a high-level trend for synchronization is modeled. The geometric error for

BL2 is 19.65% and 11.42% for BL4. As previously mentioned in Section 2.3.9, with

respect to overall performance, synchronization delay cycles are not significant.

2.6.7 Limitations of the Analytical Model

Our analytical model does not consider the cost of cache misses such as I-cache,

texture cache, or constant cache. The cost of cache misses is negligible due to almost

a 100% cache hit ratio in most GPGPU applications. The current G80 architecture

does not have a hardware cache for the global memory. Typical stream applications

running on GPUs do not have strong temporal locality. However, if an application has

a temporal locality and a future architecture provides a hardware cache, the model
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Figure 33: Synch delay: two vs. four blocks allocated per SM.

should include a cache model. In future work, we will include cache models.

43



2.7 Summary

This chapter proposed and evaluated a memory parallelism-aware analytical model

to estimate execution cycles for the GPU architecture. The key idea of the analytical

model is to find the maximum number of memory warps that can execute in parallel, a

metric we called MWP, to estimate the effective memory instruction cost. The model

calculates the estimated CPI (cycles per instruction), which could provide a simple

performance estimation metric for programmers and compilers to decide whether

or not they should perform certain optimizations. Our evaluation shows that the

geometric mean of absolute error of our analytical model on micro-benchmarks is

5.4% and on GPU computing applications is 13.3%. We believe that this analytical

model can provide insights into how programmers should improve their applications,

which will reduce the burden of parallel programming.
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CHAPTER III

MODELING GPU PERFORMANCE AND POWER

The number of cores inside the chip, especially in GPUs, is increasing dramatically.

For example, GTX280 has 30 streaming multi-processors (SM) with 240 cores, and

the next generation GPU will have 512 cores [76]. Even though GPU applications are

highly throughput-oriented, not all applications require all available cores to achieve

the best performance. This study focuses on an important issue of saving energy

on many-core architecture. The issue is whether or not all available cores need to

activated every time an application is executed.

Figure 34 shows performance, power consumption, and energy efficiency as the

number of active cores is changed,1 where energy efficiency is obtained by dividing

performance by power. The power consumption increases as the number of cores

is increased. Depending on the circuit design, the gradient of an increase in power

consumption also changes.

Two different types of applications are shown in Figure 34. In Type 1, the perfor-

mance increases linearly, because applications can utilize all the computing powers

in the cores. However, in Type 2, the performance is saturated after a certain num-

ber of active cores as a result of bandwidth limitations [93, 103]. Once the number

of memory requests from cores exceeds the peak memory bandwidth, increasing the

number of cores does not lead to a better performance. For this work, the number

of cores that shows the highest performance per watt is called the optimal number of

cores.

In Type 2, since the performance does not increase linearly, using all the cores

1Active cores mean the cores that are executing a program.
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consumes more energy than using the optimal number of cores. However, for applica-

tion Type 1, utilizing all the cores consumes the least amount of energy because of a

reduction in execution time. The optimal number of cores for Type 1 is the maximum

number of available cores, but that of Type 2 is less than the maximum value. Hence,

if optimal number of cores can be predicted at static time, then either the compiler

or the programmer can configure the number of threads and blocks to utilize fewer

cores, or a dynamic thread manager can achieve the same task.
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Figure 34: Performance, power, and performance/watt vs. active cores.

To achieve this goal, an integrated power and performance (IPP) system is pro-

posed. Figure 35 shows an overview of the IPP system. It takes a GPU kernel as

an input and predicts both power consumption and performance together, whereas

previous models predict only the execution time or power consumption separately.

Moreover, IPP does not require architectural timing simulations or hardware perfor-

mance counters; instead IPP uses the outcomes of a timing model.

Performance/watt predictionGPU Kernel Performance Prediction

Power/Temperature Pred.
Optimal thread/block configuration

H/W Dynamic Power
Manager

Programmer

Compiler

Figure 35: Overview of the IPP system.

Using the power and performance outcomes, IPP predicts the optimal number of

cores that results in the highest performance per watt. Unlike previous works, IPP

demonstrates energy savings in a real GPU system. The results show that by using
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fewer cores based on the IPP prediction, we can save up to 22.09% and on aver-

age 10.99% of run-time energy consumption for the five memory bandwidth-limited

benchmarks. Furthermore, the amount of energy savings for GPUs that employ a

power-gating technique is predicted. The evaluations show that with power-gating,

IPP can save 25.85% of the total energy consumption for the five bandwidth-limited

benchmarks.

3.1 Background on Power

Power consumption can be divided into two parts: dynamic power and static power,

as shown in Equation (31).

Power = Dynamic power + Static power (31)

Dynamic power is the switching overhead in transistors, so it is determined by run-

time events. Static power is mainly determined by circuit technology, chip layout,

and operating temperature.

3.1.1 Building a Power Model Using an Empirical Method

Isci and Martonosi [44] proposed an empirical method to building a power model.

They measured and modeled the Intel Pentium 4 processor. Equation (32) shows the

basic power model discussed in [44]. It consists of the idle power plus the dynamic

power for each hardware component, where theMaxPower andArchitecturalScaling

terms are heuristically determined. For example, MaxPower is empirically deter-

mined by running several training benchmarks that stress fewer architectural com-

ponents. Access rates are obtained from performance counters. They indicate how

often an architectural unit is accessed per unit of time, where one is the maximum

value.
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Power =

n∑

i=0

(AccessRate(Ci)× ArchitecturalScaling(Ci)×MaxPower(Ci) (32)

+NonGatedClockPower(Ci)) + IdlePower

3.1.2 Static Power

As the transistor technology is scaled down, static power consumption is increased [8].

To understand static power consumption and temperature effects, static power models

are explained. Butts and Sohi [12] presented the following simplified leakage-power

model for an architecture-level study, as shown in Equation (33).

Pstatic = Vcc ·N ·Kdesign · Îleak (33)

Vcc is the supply voltage, N is the number of transistors in the design, and Kdesign

is a constant factor that represents technology characteristics. Îleak is a normalized

leakage current for a single transistor that depends on Vth, which is the threshold

voltage. Later, Zhang et al. [104] improved this static-power model to consider tem-

perature effects and operating voltages in HotLeakage software tool. In their model,

Kdesign is no longer a constant. It depends on temperature, where Îleak is a function

of temperature and supply voltage. The leakage current can be expressed, as shown

in Equation (34).

Îleak = µ0 · COX ·
W

L
· eb(Vdd−Vdd0) · v2t · (1− e

−Vdd
vt ) · e

−|Vth|−Voff

n·vt (34)

vt is the thermal voltage that is represented by kT/q, and it depends on temperature.

The threshold voltage, Vth, is also a function of temperature. Since v2t is the domi-

nant temperature-dependent factor in Equation (34), the leakage power quadratically

increases with temperature. However, in a normal operating temperature range, the

leakage power can be simplified as a linear model [92].
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3.2 Power and Temperature Models

3.2.1 Overall Model

GPU power consumption is modeled in Equation (32) [44]. GPU power term con-

sists of Runtime power and IdlePower terms, as shown in Equation (35). The

NonGatedClockPower term is not used in this model, because the evaluated GPUs

do not employ clock-gating technique. IdlePower is the power consumption when a

GPU is turned on, but no application is running. Runtime power is the additional

power consumption, which is the sum of run-time powers from all active SMs and

GPU DRAM, required to execute an application. The additional power from SMs

is modeled by RP SMs, and DRAM is modeled by RP Memory term, as shown in

Equation (36).

GPU power = Runtime power + IdlePower (35)

Runtime power =
n∑

i=0

RP Componenti (36)

= RP SMs+ RP Memory

3.2.2 Modeling Power for Streaming Multi-processors

To model the run-time power of SM, SM is decomposed into several physical com-

ponents, as shown in Equation (37) and Table 7. The texture and constant caches

are included in the SM Component term, because they are shared between multiple

SMs in the evaluated GPU system. One texture cache is shared by three SMs, and

each SM has its own constant cache. RP Const SM is a constant-runtime power

component for each SM. It models power consumption from several units, including

I-cache and the frame buffer, which always consume relatively a constant amount of

power when a core is active. A cumulative power from multiple SMs is obtained by
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Table 7: List of instructions that access each architectural unit.
PTX Instruction Architectural Unit Variable Name
add int sub int addc int subc int Int. arithmetic unit RP Int
sad int div int rem int abs int
mul int mad int mul24 int
mad24 int min int neg int
add fp sub fp mul fp fma fp Floating point unit RP Fp
neg fp min fp lg2 fp ex2 fp
mad fp div fp abs fp
sin fp cos fp rcp fp sqrt fp SFU RP Sfu
rsqrt fp
xor cnot shl shr mov cvt ALU RP Alu
set setp selp slct and or
st global ld.global Global memory RP GlobalMem
st local ld.local Local memory RP LocalMem
tex Texture cache RP Texture Cache
ld const Constant cache RP Const Cache
ld shared st shared Shared memory RP Shared
setp selp slct and or xor shr mov Register file RP Reg
cvt st global ld global ld const
add mad24 sad div rem abs neg
shl min sin cos rcp sqrt rsqrt set
mul24 sub addc subc mul mad cnot
ld shared st local ld local tex
All instructions FDS (Fetch/Decode/Schedule) RP FDS

Equation (38) as a simple summation.

n∑

i=0

SM Componenti = RP Int+RP Fp+RP Sfu+RP Alu+ (37)

RP Texture Cache +RP Const Cache+

RP Shared+RP Reg +RP FDS+

RP Const SM

RP SMs = Num SMs×

n∑

i=0

SM Componenti (38)

Table 7 summarizes the modeled architectural components used by each instruc-

tion type and the corresponding variable names in Equation (37). All instructions

access the fetch decode schedule (FDS) unit. For the register unit, all instructions ac-

cessing the register file are assumed to have the same number of register operands per

instruction. The exact number of register accesses per instruction depends on the in-

struction type and the number of operands, but we found that the power consumption

with respect to number of register operands is negligible.
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As Equation (32) shows, dynamic-power consumption is dependent on the access

rate of each hardware component. Isci and Martonosi used a combination of hardware

performance counters to measure access rates [44]. Since GPUs do not have any

speculative execution, access rates based on the dynamic number of instructions and

execution times can be estimated without using the hardware performance counters.

Equation (39) shows how to calculate RPcomp, the run-time power for each ar-

chitectural component such as RP Reg for register unit. RPcomp is the multipli-

cation of AccessRatecomp and MaxPowercomp. MaxPowercomp is described in Ta-

ble 8 and discussed in Section 3.2.4. Note that RP Const SM is not dependent on

AccessRatecomp.

Equation (40) shows how to calculate an access rate for each component. The

dynamic number of instructions per component, DAC per thcomp, is the sum of in-

structions that access an architectural component, as shown in Equation (41). Equa-

tion (42) shows the term, Warps per SM , which indicates how many warps are ex-

ecuted in one SM. The execution cycles are divided by four, because one instruction

is fetched, scheduled, and executed every four cycles. This normalization also makes

the maximum value of the AccessRatecomp term to be one.

RPcomp = MaxPowercomp × AccessRatecomp (39)

AccessRatecomp =
DAC per thcomp ×Warps per SM

Exec cycles/4
(40)

DAC per thcomp =

n∑

i=0

Number Inst per warpsi(comp) (41)

Warps per SM =

(
#Threads per block

#Threads per warp
×

#Blocks

#Active SMs

)

(42)

3.2.3 Modeling Power for Memory System

The evaluated GPU system has five different memory spaces: global, shared, local,

texture, and constant. The shared memory space uses a software-managed cache
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that is inside the SM. The texture and constant memories are located in the graphics

double data rate (GDDR) memory. The global and local memories share the same

physical graphics memory, hence RP Memory considers both memory spaces, as

shown in Equation (43). Shared, constant, and texture memory spaces are modeled

separately as SM components.

RP Memory =

n∑

i=0

Memory componenti (43)

= RP GlobalMem +RP LocalMem

3.2.4 Power Model Parameters

To obtain the power model parameters, a set of synthetic Micro benchmarks that

stresses different architectural components in the GPU is designed. For example, the

benchmark that stresses FP units contains a high ratio of FP instructions in a loop.

The optimum set of MaxPowercomp values in Equation (39) that minimize the

error between the measured power and the outcome of the equation is searched.

To avoid searching through a large space of values, the initial value for each archi-

tecture unit is estimated based on the relative physical die sizes of the unit [44].

Table 8 shows the parameters used for MaxPowercomp. Eight units require a spe-

cial linear approach [44]; an initial increase from idle to relatively low-access rate

causes a large granularity of increase in power consumption while a further increase

causes a smaller increase. The Spec.Linear column in Table 8 indicates whether the

AccessRatecomp term in Equation (39) needs to be replaced with the function of

0.1365 ∗ ln(AccessRatecomp) + 1.001375.

Figure 36 shows how the overall power is distributed among the individual archi-

tectural components for all evaluated benchmarks. Section 3.4 presents the detailed

benchmark descriptions and the evaluation methodology. On average, memory, idle-

power, and RP Const SM consume more than 60% of the total GPU power. Register

file and FDS units also consume higher power than other components, because almost
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Table 8: Empirical power parameters for architectural units.
Units MaxPower OnChip Spec.Linear
FP 0.2 Yes Yes
REG 0.3 Yes Yes
ALU 0.2 Yes No
SFU 0.5 Yes No
INT 0.25 Yes Yes
FDS (Fetch/Dec/Sch) 0.5 Yes Yes
Shared memory 1 Yes No
Texture cache 0.9 Yes Yes
Constant cache 0.4 Yes Yes
Const SM 0.813 Yes No

Global memory 52 No Yes
Local memory 52 No Yes

all instructions access these units.
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Figure 36: Power-breakdown graph for all the evaluated benchmarks.

3.2.5 Active SMs vs. Power Consumption

To measure the power consumption of each SM, another set of Micro benchmarks to

control the number of active SMs is designed. The benchmarks are designed such

that only one block can be executed in each SM. Thus, as the number of blocks is

varied, the number of active SMs is changed, too. Even though the evaluated GPU

does not employ power gating, idle SMs do not consume as much power as active

SMs do as a result of low-activity factors [82] (i.e., idle SMs do not change values in

circuits as often as active SMs). Hence, there are significant differences in the total

power consumption depending on the number of active SMs.
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Figure 37 shows an increase in power consumption as the number of active SMs

is increased. The maximum delta between using only one SM versus all SMs is 37

watts. Since there is no power-gating technique employed, the power consumption

does not increase linearly as the number of SMs is increased. Hence, a log-based

model instead of a linear curve is used, as shown in Equation (44). The memory-

power consumption is also modeled by following the log-based trend. Finally, run-time

power can be modeled by taking the number of active SMs as shown in Equation (48).
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Figure 37: Power consumption vs. Active SMs.

RP SMs = Max SM × log10(α× Active SMs + β) (44)

Max SM = (Num SMs×

n∑

i=0

SM Componenti) (45)

α = (10− β)/Num SMs (46)

β = 1.1 (47)

Runtime power = (Max SM +RP Memory) (48)

× log10(α× Active SMs+ β)
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3.2.6 Temperature Model

Traditionally,temperature models for CPUs have been represented by an RC model [90],

where the parameters are empirically found by using a step function experiment. In

this work, Equation (49) models the rising temperature, and Equation (50) models

the decaying temperature.

Temperaturerise(t) = Idle temp + δ
(
1− e−t/RC Rise

)
(49)

Temperaturedecay(t) = Idle temp + γ
(
e−t/RC Decay

)
(50)

δ = Max temp− Idle temp (51)

γ = Decay temp− Idle temp (52)

Figure 38 shows the estimated and measured temperature variations. Both the

chip temperature and the board temperature are measured with the built-in sensors

in the GPU.
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Figure 38: Modeling GPU temperature by using an RC function.

The effect of increasing temperature on power consumption is shown in Figure 39.

The power data shows that with increasing temperature, the power consumption is

increased. Max temp is a function of run-time power, which depends on application

characteristics. We discovered that the chip temperature is strongly affected by the

rate of GDDR accesses, as modeled in Equation (53). The model parameters are

summarized in Table 9.
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Figure 39: Effects of an increased temperature on GPU power consumption.

Max temp(Runtime Power) = µ× Runtime Power + λ+ (53)

ρ×MemAccess intensity

MemAccess intensity =
Memory Insts

NonMemory Insts
(54)

Table 9: Temperature parameters for GTX280.
Parameter Value
µ 0.120
λ 5.5
ρ 21.505
RC Rise 35
RC Decay 60

3.2.7 Modeling Increases in Static Power Consumption

Section 3.1.2 discussed the impact of temperature on static-power consumption. Be-

cause of the high number of processors in the GPU chip, we observed an increase in

run-time power as the chip temperature increased, as illustrated in Figure 40. To

model an increase in static-power consumption, the temperature model is included

in the run-time power model, as shown in Equation (49) and Equation (50). Since

we cannot control the operating voltage of the evaluated GPUs dynamically, only the

operating temperature is considered.
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Figure 40 shows that power increases gradually over time after the application

starts2 with the saturation power delta of 14 watts. This difference could be caused

by the increase in static-power consumption or by the increase in fan power. To find

the reason, the fan speed was changed from lowest to highest value. Unexpectedly,

the increase of fan power was only 4 watts. Hence, the remaining 10 watts is modeled

as the increase in static-power consumption. Equation (55) shows the comprehensive

power equation that includes the increased static-power effect, which depends on σ,

which is the ratio of power delta over temperature delta (i.e., σ = 10 / 22)). Note

that Runtime power0 is an initial power obtained from Equation (48), and the model

assumes a cold start. Temperature(t) in Equation (57) is obtained from Equation (49)

and Equation (50).
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Figure 40: Effects of the static power.

GPU power(t) = Runtime power(t) + IdlePower (55)

Runtime power(t) = Runtime power0 + σ ×Delta temp(t) (56)

Delta temp(t) = Temperature(t)− Idle temp (57)

2The initial jump of power consumption exists when an application starts.
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3.3 IPP: Integrated Power and Performance Model

In this section, the integrated power and performance (IPP) framework to predict

performance per watt and the optimal number of active cores is discussed. IPP uses

predicted execution times to estimate power consumption instead of using measured

execution times.

3.3.1 Execution Time and Access Rate Prediction

In Section 3.2, the power model that computes access rates by using measured ex-

ecution time information is developed. Predicting power at static time requires a

knowledge of access rates in advance. In other words, execution time of an applica-

tion is needed to predict power. We used a recently-developed GPU timing model [33]

to predict the execution time.

In the timing model, the total execution time of an application is calculated with

one of Equation (58), Equation (59), and Equation (60) based on the number of active

threads, MWP, and CWP values. MWP represents the number of memory requests

that can be serviced concurrently, and CWP represents the number of warps that can

finish one computation-period during one memory-access period. N is the number of

running warps. Mem L is an average memory latency where a latency of 430 cycles is

used for the evaluated GPU architecture. Mem cycles is the processor-waiting cycles

for memory operations. Comp cycles is the execution time of all instructions. Repw
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is the number of times that each SM needs to repeat the same set of computation.

Case1: If (MWP is N warps per SM) and (CWP is N warps per SM)

(Mem cycles+ Comp cycles+
Comp cycles

#Mem insts
× (MWP − 1))×#Repw (58)

Case2: If (CWP >= MWP) or (Comp cycles > Mem cycles)

(Mem cycles×
N

MWP
+

Comp cycles

#Mem insts
× (MWP − 1))×#Repw (59)

Case3: If (MWP > CWP)

(Mem L+ Comp cycles×N)×#Repw (60)

IPP calculates AccessRate by using Equation (61), where Predicted Exec Cycles

is calculated with one of the Equation (58),Equation (59), and Equation (60).

AccessRatecomp =
DAC per thcomp ×Warps per SM

Predicted Exec Cycles/4
(61)

3.3.2 Optimal Number of Cores for Highest Energy Efficiency

IPP predicts the optimal number of SMs that achieve the highest performance per

watt. As Figure 34 shows, the performance of an application can increase in two ways:

linear curve, and non-linear curve. For the linear case, the optimal number of SMs is

always the maximum number of cores. However, for the non-linear case, the optimal

number of SMs is less than the maximum number of cores. Hence, performance per

watt (Perf/W) can be calculated by using Equation (62).

Perf/W =
work/execution time(#cores)

power(#cores)
(62)

Equation (58),Equation (59), and Equation (60) calculate execution times. Among

the three cases, only Case 2 has a memory bandwidth-limited case. Case 1 is used

when there are not enough number of running threads in the system, and Case 3

models when an application is computationally intensive. So both Cases 1 and 3

would never reach the peak memory bandwidth.
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Once MWP peak BW reaches N , the application usually reaches the peak band-

width. Hence, based on Equation (6), the optimal number of cores can be calculated

by using the following equations to simplify the calculation.

if (1) (MWP == N) or (CWP == N) or (63)

(2) MWP > CWP or

(3) MWP < MWP peak BW

Optimal # of cores = Maximum available # of cores

else

Optimal # of cores =
Mem Bandwidth

(BW per warp)×N

3.4 Methodology

3.4.1 Power and Temperature Measurement

GTX280 GPU, which has 30 SMs and uses a 65 nm technology, is used in the evalu-

ation. Extech 380801 power analyzer to measure the overall system power consump-

tion. The raw data is sent to a data-log machine every 0.5 second. Each Micro

benchmark executes for an average of 10 seconds.

Since the input power to the entire system is measured, Idlepower System of 159

watts, is subtracted from the system input power to obtain GPU Power.3 Hence,

Idle Power is 83 watts. GPU temperature is measured with the nvclock utility, which

outputs board and chip temperatures. Temperature is measured every second.

To test the accuracy of the IPP system, the Merge benchmark [62, 33], five ad-

ditional memory bandwidth-limited benchmarks (Nmat, Dotp, Madd, Dmadd, and

Mmul), and one computation-intensive (i.e., non-memory bandwidth limited) bench-

mark (Cmem) are all used for evaluation. Table 4 describes each benchmark and

summarizes the characteristics. To calculate the number of dynamic instructions, a

3IdlePower System is obtained by measuring system power with another GPU card whose idle
power is known.
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GPU PTX emulator, Ocelot [49], is used.

3.5 Results

3.5.1 Evaluations of the Power Model

Figure 41 compares the predicted power consumption with the measured power for

the Micro benchmarks. According to Figure 36, the global memory consumes the

most amount of power. MB4, MB8, and MEM benchmarks consume much greater

power than the FP benchmark, which consists of mainly floating-point instructions.

Surprisingly, the benchmarks that use texture cache or constant cache also consume

high power. This is because both the texture cache and the constant cache have

higher MaxPower than that of the FP unit. The geometric mean of the error in the

power prediction for the Micro benchmark is 2.5%.
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Figure 41: Measured and predicted power consumption of micro benchmarks.

Figure 42 shows the access rates for each benchmark. When an application does

not have many memory operations, such as FP, dynamic access rates for FP and

REG can be very close to one. The access rate for Fetch-decode-schedule (FDS) unit

is one when an application reaches the peak performance of the machine.

Figure 43 compares the predicted power and the measured power consumptions

for the evaluated GPGPU kernels. The geometric mean of the power prediction error

is 9.18%. Figure 44 shows the dynamic access rates. The complete breakdown of the

GPU power consumption is shown in Figure 36. Bino and Conv have lower global
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memory-access rates than others, which results in less power consumption than others.

Sepia and Bs are high performance applications. This explains why they have high

REG and FDS values. All the memory bandwidth-limited benchmarks have higher

power consumptions even though they have relatively lower FP, REG, and FDS access

rates.
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Figure 42: Dynamic access rates of the micro benchmarks.
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Figure 43: Power prediction using the measured time of merge benchmarks.

3.5.2 Temperature Model

Figure 45 displays the predicted chip temperature over time for all the evaluated

benchmarks. The initial temperature is 57 degrees Celsius, the typical GPU cold

state temperature in the evaluated system. The temperature is saturated after 600

secs. The peak temperature depends on the peak run-time power consumption. The

final temperatures varies from 68 degrees Celsius for the INT benchmark to 78 degrees

Celsius for the SVM benchmark. Based on Equation (56), we can predict that the
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run-time power of SVM will increase by 10 watts after 600 seconds. However, for the

INT benchmark, it will increase by only 5 watts.
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Figure 44: Dynamic access rates of merge benchmarks.
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Figure 45: Peak temperature prediction for the benchmark.

3.5.3 Power Predictions Using IPP

Figure 47 shows the power prediction of IPP for both Micro benchmarks and Merge

benchmarks. The main difference is that Section 3.5.1 requires measured execution

times, while IPP predicts execution times. Using the predicted execution times could

have increased the error in power prediction. However, since the error of timing model

is not high, the overall error of the IPP system is not significantly increased. The

geometric mean of the power prediction of IPP is 8.94% for the GPGPU kernels and

2.7% for the Micro benchmarks.
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Figure 46: Power prediction using the IPP system for micro benchmark.

3.5.4 Performance and Power-Efficiency Predictions Using IPP

Based on the conditions in Equation (63), the benchmarks that reach the peak mem-

ory bandwidth are identified. The five merge benchmarks do not reach the peak

memory bandwidth, as shown in Table 4. CWP values in Bino, Sepia and Conv

are equal to or less than MWP values, so these benchmarks cannot reach the peak

memory bandwidth. Both SVM’s MWP of 5.878 and Bs’s MWP value of three are

less than MWP peak BW value of 10.8. Thus they cannot reach the peak memory

bandwidth either.

To further evaluate the IPP system, the benchmarks that reach the peak memory

bandwidth are synthesized; the third column in Table 4 shows the average memory

bandwidth of each application. One non-bandwidth-limited benchmark, Cmem, is

included as a comparison to bandwidth-limited benchmarks. For the experiment,

the number of active cores is changed by varying the number of blocks. We design

the applications such that one SM executes only one block. Note that, even though

different number of SMs are invoked for execution, the total amount of work stays

the same (i.e., the amount of work per SM changes). For the output metric, giga

instructions per second (GIPS)4 is used instead of giga floating-operations per second

(GFLOPS).

4GIPS is used as a performance metric, because performance should include non-floating point
instructions.
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Figure 47: Power prediction using the IPP system for merge benchmarks.

Figure 49 shows how GIPS varies with the number of active cores for both the

measured data and the predictions of IPP. Only Cmem has a linear performance

improvement in both the measured data and the predicted values. The rest of the

benchmarks show saturated performances as the number of active cores is increased.

IPP still predicts the GIPS values accurately except for Cmem. Although the pre-

dicted performance of Cmem does not exactly match the actual performance, IPP still

correctly predicts the trend. Nmat shows a higher performance than other bandwidth-

limited benchmarks, because it has a higher arithmetic intensity.

Figure 48 shows the actual bandwidth consumption of the experiment in Figure 49.

Cmem shows a linear correlation between the bandwidth consumption and the number

of active cores, but Cmem still cannot reach the peak memory bandwidth. The

memory bandwidths of the remaining benchmarks are saturated when the number of

active cores is around 19. This explains why the performance of these benchmarks is

not improved significantly after approximately 19 active cores.

Figure 50 and 51 shows GIPS per watt (GIPS/W) for the same experiment. The

results show both the actual GIPS/W and the predicted GIPS/W using IPP. Nmat

shows a salient peak point, but for the rest of benchmarks, GIPS/W has a very

smooth curve. As we have expected, only GIPS/W of Cmem increases linearly in

both the measured data and the predicted data.

Figure 52 shows GIPS/W for all the GPGPU kernels running on 30 active cores.

65



5 10 15 20 25 30
 Number of Active Cores

0

20

40

60

80

100

120

140

160

B
an

dw
id

th
 (

G
B

/s
) 

Dotp 
Madd 
Dmadd 
Mmul 
Nmat 
Cmem 

Figure 48: Bandwidth consumption vs. active cores.
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Figure 49: GIPS vs. active cores.

The GIPS/W values of the non-bandwidth-limited benchmarks are much higher than

those of the bandwidth-limited benchmarks. GIPS/W values can vary significantly

from application to application depending on the performance. The results also

include the predicted GIPS/W using IPP. Except for Bino and Bs, IPP predicts

GIPS/W values fairly accurately. The errors in the predicted GIPS/W values of Bino

and Bs are attributed to the differences between the predicted and the measured

execution times.

3.5.5 Energy Savings by Using Fewer Cores

Based on Equation (63), IPP calculates the optimal number of cores for a given

application by choosing the highest GIPS/W point among different number of cores.

IPP returns 20 for all the evaluated bandwidth-limited benchmarks and 30 for Cmem.

66



5 10 15 20 25 30
 Number of Active Cores

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
IP

S 
/ W

 

Dotp (IPP)
Madd (IPP) 
Nmat (IPP) 
Dotp 
Madd 
Nmat 

Figure 50: Perf/W vs. active cores for the first set of merge benchmarks.

5 10 15 20 25 30
 Number of Active Cores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

G
IP

S 
/ W

 

Cmem (IPP)
Dmadd (IPP) 
Mmul (IPP) 
Cmem 
Dmadd 
Mmul

Figure 51: Perf/W vs. active cores for the second set of merge benchmarks.

Figure 53 shows the difference in energy savings between the use of the optimal

number of cores and the maximum number of cores. The curve, Runtime+Idle,

shows the energy savings when the total GPU power is used in the calculation. The

curve, Runtime, shows the energy savings when only the run-time power from the

Equation (35) is used. Finally, the curve of Powergating is the predicted energy

savings if power-gating technique is applied. The average energy savings for Runtime

cases is 10.99%.

3.5.6 Energy Savings from Power-Gating Technique.

The current Nvidia GPUs do not employ any per-core power-gating mechanisms.

However, future GPU architectures could employ power-gating mechanisms as CPUs

have already made use of per-core power-gating technique [40].
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Figure 52: GIPS/W for the merge benchmarks.
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Figure 53: Energy savings using the IPP system.

To evaluate the energy savings in power-gating processors, we predict the GPU

power consumption as a linear function of the number of active cores. For example,

if 30 SMs consume 120 watts for an application, we assume that each core consumes

4 watts when per-core power-gating is applied. There is no reason to differentiate

between Runtime+Idle and Runtime since the power-gating mechanism eliminates

idle power consumption from in-active cores. Figure 53 shows the predicted amount of

energy savings for the GPU cores that employ power-gating. Since power consumption

of each individual core is much smaller in a power-gated system, the amount of energy

savings is much higher than the current GTX280 processors. When power-gating is

applied, the average energy savings is 25.85%. Hence, utilizing only fewer cores

based on the outcomes of IPP will be more beneficial in future per-core power-gating

processors.
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3.6 Extension of the work to Fermi GPU architecture

Figure 54: High-level view of Fermi GPU architecture (GTX580).

High-level characteristics of Fermi architecture are the following. (1) L1 cache

(co-exists with shared memory), (2) L2 cache (connected to all SMs), (3) Six DRAM

controllers, (4) GigaThread scheduler, (5) Register file, (6) 32 Cores (SPs) per SM, (7)

Two schedulers per SM, (7) FP Unit, INT Unit per SP, (7) Interconnection Network,

(8) SFUs, (9) LD/ST Units. The architecture contains both L1 and L2 caches, and six

DRAM controllers. Gigathread scheduler schedules workloads to different streaming

processors (SM). Inside the SM, a warp scheduler exists that schedules a workload

from a gigathread scheduler to a series of cores that contain computation units such

as FP and INT.

Table 10 summarizes the architectural changes. The notable changes include 32

streaming processors (SPs) and two warp schedulers inside the streaming multiproces-

sor (SM), whereas only eight SPs and one scheduler existed for previous architecture

version (e.g., GTX280). Furthermore, L1 and L2 data caches are available. L1 cache

co-exists with traditional shared memory and it can be configured at compile time or

at run time by using special API calls. The rest of the units such as register file and

shared memory show an increased capacity.
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Table 10: Comparison with GTX280.
Units GTX280 GTX580 Notes
SM 30 16
SPs per SM 8 32
Total SPs 240 512

L1 Cache None 16 KB / 48 KB Per SM, shared with shared memory
L2 Cache None 768KB One Unit, shared by all SMs
Shared Memory 16 KB 16 KB / 48 KB Per SM, shared with L1 cache
Register File 64 KB 128 KB Per SM
FDS (Fetch/Decode/Schedule) 1 2 Per SM
FP Unit 8 per SM 32 per SM Separate FP unit exists per SP
INT Unit 8 per SM 32 per SM Separate INT unit exists per SP
SFU Unit 2 per SM 4 per SM

LD/ST Unit 8 16
Interconnection Network Exist Exist
Compute Version 1.3 2.0
CoreFreq 1.3 GHz 1.54GHz
MemoryFreq 1.1 GHz 2.1GHz

3.7 Designing stressing benchmarks for cache and DRAM

Designing benchmarks for analyzing cache and DRAM in terms of performance and

power is not straightforward. Unlike CPU architecture design, GPUs have hundreds

of threads per SM that can simultaneously access the cache structure. As a result,

many lines could be evicted even before being used[57]. Hence, it is very important

to design benchmarks appropriately to stress the memory system (cache, DRAM)

correctly.

Figure 55 shows one example of our code design for stressing specific architectural

units. The figure shows a series of dependent loads, where the next-load location

depends on the previously-loaded value. To control this dynamic memory-access

locations, we intentionally preset the values with either zero or a non-zero value to

control cache accesses. To access DRAM mostly, the next loaded index should be

after the previous cacheline.

PTX version 2.0 introduced several cache operators that determine memory access

behavior, which can be set during the compilation time. The .ca operator is the

default that caches data in L1 and L2 with normal eviction policy. On the other

hand, the .cg operator bypasses L1 and caches data only in L2. In this study, we

leverage these specifiers to facilitate cache control. Note that all these control for
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Loop:

FP_INST

LDVAL = MEM_LD[INDEX]

INDEX += LDVAL

LDVAL = MEM_LD[INDEX]

INDEX += LDVAL

...

Jump Loop

Code 
Cache Operators

.ca : Cache at all levels

L1 and L2

.cg : Cache at global level only

bypass L1, cache in L2

Figure 55: Benchmark design for testing the memory system.

memory system is done without even making any changes to the actual kernel code

itself.

3.8 Methodology

3.8.1 Measurement

Figure 56 shows the power decomposition graph that includes the idle and runtime

power. First observation is that the idle power is very small (about 27 W). This is be-

cause Fermi incorporates aggressive idle-power optimization when no major workload

is running in the GPU. When CUDA kernel is invocated, then we observed a high

jump in power consumption, which was close to 64 watts. We believe that this is due

to activating various architectural units such as instruction fetching from memory,

gigathread scheduler being, and etc.

Use the small, non-cuda capable GPUFigure 56: Idle-power decomposition.

Since we measure the total system power, we need to eliminate the CPU power.
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Hence, to do this task, we take out the GPU physically from the motherboard, and the

same CUDA workloads are executed after commenting the kernel call. This closely

resembles the power that is consumed by CPU, that we want to eliminated. After

the experiment, Figure 56 shows that the power removed from CPU is 35 W. Using

this mechanism, approximating the power for GPUs is possible. We simply eliminate

the runtime power for CPU and idle power including the motherboard.

3.8.2 Implementation using Ocelot Emulator

To facilitate the benchmark analysis, we implement an instruction count analyzer

using Ocelot [17]. What we implemented is a tool that gets attached to the Ocelot

emulator system. The following Figure 57 shows the average dynamic instructions

per warp granularity, because the power and performance models are using the in-

structions reported at warp granularity. The sample output is shown in the below.

The first row shows the number of threads and blocks invoked for an application,

followed by a total number of dynamic instructions. The next category shows the

number of memory accesses, followed by the memory access type, which is either

coalesced or uncoalesced with the expected number of transactions. Then, the output

shows the instruction counts for all instructions types. These different instruction

types are sub-categorized and associated with a specific architectural unit. These are

used for power analysis purposes. Note that these numbers reported are at the warp

granularity, hence, if there are ten warps executed, then that ten number has to be

multiplied by this warp number. All these are taken cared by the analytical model.

3.8.3 Specialized Accessrate Functions

Section 3.2.3 first mentions about the specialized accessrate functions. This is nec-

essary, because the accessrate is counted at an instruction granularity. For example,

even if we have just one floating-point instruction, the corresponding hardware unit
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such as floating-point execution pipeline will be active for tens of cycles. This effec-

tively means that the actual accessrate is much higher than the value obtained at

an instruction granularity. Another graph feature is that, because aggressive power

optimizations (i.e., clock-gating, power-gating, etc) are prevalent, the initial access to

the structure produces a jump effect for power[44], as the unit becomes active from a

low-power state. Since every hardware unit is different, a different accessrate function

should be used.

Figure 58 shows different specialized accessrate functions that we designed and

tuned. The figure shows which architectural unit is using which function. Note that

the maximum power values for each unit and which specialized function is used is

determined after design space exploration, as discussed in Section 3.2.4.
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**************************************************************

Threads 256

Blocks 961

**************************************************************

Total 3159

**************************************************************

Memory_shared 0

Memory_local 0

Memory_const 1113

**************************************************************

CoalMem 0

UncoalMem 4

Coal_256bytes_transactions 0

Uncoal_256bytes_transactions 60

**************************************************************

abs 0 fp 0 int 0

add 449 fp 0 int 449

addc 0 fp 0 int 0

...

...

vshr 0 fp 0 int 0

vsub 0 fp 0 int 0

xor 0 fp 0 int 0

**************************************************************

Param 4

Texture 0

**************************************************************

Global_LD 3

Local_LD 0

Shared_LD 0

Global_ST 1

Local_ST 0

Shared_ST 0

**************************************************************

Figure 57: CUDA code of tiled matrix multiplication.
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Figure 58: Accessrate conversion for architecture components.
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3.9 Microbenchmark Analysis

Figures 59, 60 show the series of microbenchmarks and the power-model predictions.

Similar to GTX280, we have different sets of microbenchmarks with a different ratio

of memory-to-computations.
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Figure 59: Microbenchmark power comparison (Set I).
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Figure 60: Microbenchmark power comparison (Set II).

The benchmark name is followed by either EL1 and DL1, and S and D keywords.

EL1 means enabling L1 cache while DL1 disables it. S means accessing the same

location, whereas D means a different location. For EL1 and DL1, the same bench-

mark code is executed, but the only difference is whether L1 cache is enabled or not.

The same benchmark code is still executed for S and D, however, the difference is the

accessed memory location. For S, the same memory is accessed every time, hence the

L1 cache is mostly stressed out. However, for D, it is likely that L2 and DRAM are

stressed including L1. The power model prediction is 2.12%.

Figures 61, 62 show the accessrates for each benchmark, incorporating the effect
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of specialized accessrate conversion. For FP, INT, Shared, Const benchmarks, the

accessrate graph shows zero values for L1, L2, and DRAM. This is expected since

these benchmarks do not access memory. For benchmarks with D keywords, L1

access is disabled. With S keywords, depending on the benchmark, we have a varying

degree of L1, L2, DRAM accesses.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
at

io

INT
FP
REG
FDS
mem_shared
mem_const
L1
L2
mem_global

FP SHARED INT CONST MB10_EL1_S MB10_DL1_S MB10_DL1_D MB10_EL1_D

Figure 61: Effective microbenchmark access rates for architectural units (Set I).
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Figure 62: Effective microbenchmark accessrates for architectural units (Set II).

Figures 63, 64 show the power-breakdown graph for each benchmark. First, the

highest bar is from idle power. Because Fermi incorporates an aggressive idle-power

management, the idle power is very small. But a high increase of power consump-

tion occurs when a CUDA program is executed, modeled by Dynamic Const term.

Computationally-intensive benchmarks such as FP, INT do not access the memory

system in the kernel, so L1, L2, DRAM accessrate bars are zero. For memory bench-

marks with D keyword, L1 cache is zero as it is disabled. For benchmarks with S

keyword, all L1, L2, DRAM system are accessed with varying degrees.

3.9.1 Power-Parameter Results

Table 11 shows the power values for architectural units from the model and software

perspective. Note that we are not attempting an exact back-engineering to find
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Figure 63: Power breakdown for micro benchmarks (Set I).
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Figure 64: Power breakdown for micro benchmarks (Set II).

precise values for hardware units, but what hardware values can be used from software

perspective. Nevertheless, the estimates conform to high-level architectural changes

in Fermi. For example, the number of FP units have quadrupled, hence the values

have increased close to a factor of four. The number of schedulers in SM have doubled

in Fermi, and that effect is reflected in power values as well.

Table 11: Power parameters.
Units GTX280 GTX580 Increased by factor
FP 0.2 1.1 4 (Size is increased by four times)
INT 0.25 1.1 4 (Size is increased by four times)
REG 0.3 0.8 2 (Expect much higher increased due to heavy porting)
FDS (Fetch/Dec/Sch) 0.5 0.6 2 (Dual issue scheduler, expect more increase)
Shared memory 1 1.4 4 (L1, SharedMem shared together, higher increase, more logic)
Constant cache 0.4 1.0
Activation Part of SM Const 64 Constant increase when activated (Separate from idle power)
Global memory 52 28
L1 cache N/A 1.6
L2 cache N/A 12
SFU 0.5 0.6
Texture cache 0.9 0.9
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3.10 GPGPU Benchmarks

3.10.1 Results and Discussions

Figures 65, 66 show the power prediction for GPGPU benchmarks. The power model

is able to predict accurately, considering different access rates to different architectural

units. The overall prediction rate is 4.64%.

0
23
46
69
92

115
138
161
184
207

P
ow

er
 (

W
)

Measured
Predicted

SVM Bino Sepia Conv Bs

Figure 65: GPGPU benchmark power comparison (Set I).
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Figure 66: GPGPU benchmark power comparison (Set II).

First, a large power delta is observed between Bino (Binomial) and Bs (Blacksc-

holes). This is due to cache hit/miss. For example, Binomial has large number of

DRAM accesses, whereas Blackscholes and SVM have very high hit rates in L1 and

L2. Hence, from a number of accessed architectural units, Binomial has the largest

number of accesses as all L1, L2, and DRAM units are activated. However, the power

consumption is the smallest. The reason is that because DRAM is frequently ac-

cessed, the overall execution is slowed down severely, and this effectively lowers the

accessrates for all architectural units, hence the severe drop in power consumption.

Figures 68, 69 show accessrate values. SVM has the highest fetch/decode/schedule
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Figure 67: Cache access profile.

(FDS) value, meaning it is executed very efficiently, whereas Bino has a low corre-

sponding value. Even though SVM does not heavily access L2 and DRAM, because

of its highest execution efficiency, the measured power is similar to other benchmarks

that use many hardware units (i.e., Bino, Sepia, Conv, Bs access L2, DRAM, shared

memory, etc). Hence, it is not just the execution efficiency that determines power,

but the power also depends on how many, and how often each architectural units are

utilized.
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Figure 68: Effective GPGPU benchmarks accessrates (Set I).
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Figure 69: Effective GPGPU benchmarks accessrates (Set II).

Figure 70, 71 shows the power breakdown graph for GPGPU benchmarks. Each

benchmark exhibits different accessrates to different hardware units. SVM shows

higher power values compared to Bino, as SVM is executed more efficiently, utilizing

much of const and L1 cache.
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Figure 70: Power breakdown for GPGPU benchmarks (Set I).
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Figure 71: Power breakdown for GPGPU benchmarks (Set II).

An important point to observe is that even though measured and predicted power

values for benchmarks might look very similar to each other from Figures 65, 66,

analyzing power decomposition graphs concludes otherwise; different architectural

units with varying accessrates are contributing to the final value. Moreover, the

model is able to differentiate a large delta between SVM and Bino, which is more

than 30 watts.
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Figure 72: Comprehensive power breakdown graph for GTX580.

3.11 Energy-Efficient Execution

3.11.1 Controlling the Number of Active SMs

Unlike Figure 37 where the power increases as a sub-linear line, Fermi architecture

produces a linear line in Figure 73. This shows that Fermi is able to minimize the

power from unused streaming processors (SM) more effectively. We initially found
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Figure 73: Controlling the number of active cores with model prediction.

that the idle power is at 27 W, which is a low value. But the power reading jumps

to 93 W even if only one SM is activated. We observed that from that point, as

more SMs are activated, only a little fraction of power value is added, eventually
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producing a linear line. This actual experiment producing a delta of 60 W is not

small enough to be ignored. This reading should be taken advantage of when running

real applications.

Figures 74, 75,and 76 show that depending on the number of warps per SM (N),

the degree in which the bandwidth saturation occurs is different. For example, when

N is 8, all the benchmarks show a linear line, which means there is no bandwidth

degradation. Interestingly, when N is 16, Mmul and Cmem show not much degrada-

tion while the rest of the benchmarks show more degradations. And when N is 32,

all show bandwidth degradation.

Because the bandwidth of GTX580 is very large, the model predicts no band-

width saturation will occur for these benchmarks. Furthermore, the previous model

approach does not distinguish between each application’s demanded bandwidth (i.e.,

some applications shoot memory requests frequently due to independent memory

accesses, but some do not due to large computations in between memory accesses,

etc). For example, the previous model will predict the same point between Mmul and

Dmadd, although the degree at which they saturate is clearly different.

To address these problems and to improve the analytical model, Chapter V re-

visits these benchmarks and explain more in detail, with model predictions shown in

Figure 119.
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Figure 74: Memory benchmark result using N equal to eight.
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Figure 75: Memory benchmark result using N equal to 16.
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Figure 76: Memory benchmark result using N equal to 32.
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3.12 Other Measurements

3.12.1 Correlation between GIPS vs. Power Consumption

Figure 77, 78 show the normalized giga instructions per second (GIPS) versus nor-

malized power consumption, and the correction between those two values. The power

consumption is very highly correlated with performance, as high performance means

less idle cycles, which mean architectural units are utilized almost every cycle. How-

ever, simply knowing a high correlation with performance is not sufficient. Because

the peak power value can not be predicted with the performance value only. For

example, two applications might have similar performances, but very different power

values as different architectural units might have been utilized.
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Figure 77: Normalized GIPS vs. power consumption.
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Figure 78: Correlation of GIPS vs. power consumption.
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3.13 Summary

In this chapter, we proposed an integrated power and performance (IPP) modeling

system for the GPU architecture and the GPGPU benchmarks. IPP extends the

previous empirical CPU power work to model the GPU power consumption. IPP also

considers the increases in leakage power consumption that results from the increases

in temperature. Using the proposed power model and the newly-developed timing

model, IPP predicts performance per watt and also the optimal number of cores to

achieve energy savings.

IPP predicts the power consumption and the execution time with an average of

8.94% error for the evaluated GPGPU benchmarks. IPP predicts the performance

per watt and the optimal number of cores for the five bandwidth-limited GPGPU

benchmarks. Based on IPP, the system can save on average 10.99% of run-time

energy consumption for the bandwidth-limited applications by using fewer cores. We

demonstrated the power savings in the real machine. We also calculated the power

savings if a per-core power-gating mechanism is employed, and the result shows an

average of 25.85% in energy reduction.

Furthermore, we extended the power model to Fermi GPU architecture (GTX580).

The prediction error for the microbenchmarks is 2.12% and for the GPGPU bench-

marks is 4.64%. We found that the idle power for GTX580 is about 27 watts, which

is considerably lower compared to the previous versions. But when a CUDA program

is invoked, there is a increase of about 66 watts. We project that this is due to

aggressive power optimization to minimize the idle running power.

The proposed IPP system can be used by a thread scheduler and the power man-

agement system. It can also be used by compilers or programmers to optimize pro-

gram configurations.
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CHAPTER IV

THERMAL ANALYSIS

4.1 Introduction

The number of cores inside a chip is increasing dramatically in today’s processors.

For example, NVIDIA’s GTX280 has 30 streaming multiprocessors with 240 CUDA

cores, and NVIDIA Fermi GPUs have 512 CUDA cores. On the multi-core front, the

latest AMD processors have 12 cores. This high number of cores puts a lot of pressure

on designing effective power and temperature-controlled architectures. Moreover, the

work by Mesa-Martinez et al.[70] showed that temperature is becoming a dominant

factor for determining performance, reliability, and leakage power consumption of

modern processors.

In this dissertation, we use GPUs as a form of many-core processor. With GPUs,

it is possible to validate that a temperature-aware thread scheduling can actually

reduce power consumption. Unfortunately, unlike the state-of-the-art multicores, the

current GPUs do not provide temperature sensors for each individual core. Usually,

a board-level temperature sensor is provided. However, it cannot account for the

rampant temperature variations across the chip due to hotspots. Hence, we propose

a new temperature-measurement system that allows us to measure the temperature

map, while also measuring the total power consumption.

Some efforts in academia have focused on measuring temperature using infrared

(IR) cameras [71] (Although industries have better ways of measuring temperature,

typically that information is not disclosed to the public). IR cameras provide an

entire temperature distribution, but setting up cost is very high, and they require
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special oil cooling. In other words, a heatsink must be removed, which could inter-

fere with natural heat distribution from a heatsink. Also, measurements performed

through such a setup typically require some adjustments to the measured data, so as

to accurately represent ideal measurements under actual working conditions of the

processor (i.e., with a heatsink cooling solution). Thus, there is an opportunity for

inaccuracies to creep in due to the nature of the modeling.

Hence, we propose a new cost-effective temperature-measurement system that

uses thermocouples for the first time for GPU architectures. We devised a method to

install thermocouples between a chip and a heatsink. With this system, we successfully

measured the on-chip temperature distribution of a GPU processor. Thermocouples

provide two benefits over IR cameras. First, they are very low cost and relatively

easy to install, even in academia, without special expensive equipments. Second, a

heatsink can still be placed, so we can measure power and temperature simultaneously.

Then, we demonstrate the need for thermal-aware scheduling algorithms based on the

correlation between the on-chip heatmap and power consumption.

4.2 Background

In this section, we discuss previous chip temperature measurement systems and pro-

vide a brief background of the evaluated GPU system.

Chip temperature characterization methods can be classified into two main branches:

1) modeling methods, and 2) measurement methods.

4.2.1 Modeling Methods

Temperature modeling methods are mainly relevant to design-time thermal charac-

terization. They provide designers with the freedom to try out new designs and

perform simulations to test its efficacy. Also, such thermal models can be plugged

into microarchitecture simulators to see the effect of changing micro-architectural pa-

rameters on temperature or the effect of running different benchmarks. One of the
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most popular thermal models is HotSpot [55]. Based on the duality of heat transfer

and electricity, the authors have modeled various microarchitecture components into

equivalent thermal resistances and capacitances. HotSpot can be also used to model

a particular thermal package for the chip and to observe its thermal characteristics.

By plugging in the HotSpot thermal model into a simulator, one can track the ther-

mal properties of individual components under load, understand a program’s thermal

behavior, evaluate thermal management techniques, and etc. The thermal model

is portable, flexible and it can be built upon to cater to particular requirements.

However, verification of the model is still a challenge.

4.2.2 Measurement Methods

Temperature measurement methods are mainly relevant to run-time thermal man-

agement techniques, which require a temperature measurement to occur in real time.

Also, though thermal simulation models aim to faithfully mirror the behavior of the

system, they are based on the designer’s understanding of what factors affect the ther-

mal characteristics of the system. So modeling methods need to be validated against

actual measurements of some sort to ensure the accuracy of the model and thus re-

quire the existence of robust thermal measurement methods. In the realm of perfor-

mance, modern processors provide measurement instruments in the form of hardware

performance counters. However, for temperature, processors, especially many-core

processors, do not yet have a concrete built-in measurement system. Though the

exact methods used in the industry to measure temperature are not known, there are

mainly two contemporary methods proposed in academia.

On-Chip Sensors

CMOS based on-chip sensors are mainly used to measure temperature at various

points. This type of temperature sensing has been well-implemented in multi-core

processors, with each core having its own thermal sensor. The IBM Power6 processor
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has 24 digital thermal sensors and three thermistors for monitoring temperature char-

acteristics [23]. But in the case of many-core architectures like GPUs, so far there

is just a board-level sensor [3] and one on-chip sensor whose location is unknown;

the temperature of individual cores is not tracked. The advantage of using on-chip

sensors is the accurate and real-time measurement of temperature across the chip,

without the need for alternate cooling solutions as in the case of IR. Thus, tempera-

ture monitoring can be performed in the actual working conditions of the chip running

real workloads. This translates to more accurate handling of DTS techniques. On

the downside, some problems exist due to the sensors being integrated into the chip.

Due to variations in the lithographic process, a complicated sensor circuit is required

to achieve accurate results. This establishes a trade-off between accuracy and the

amount of die area taken up by the sensor circuitry. Also, since sensor locations are

discrete in nature, sensing all the hotspots on the chip is not possible, which leads to

a spatial gradient of error if a sensor is not at the exact location of the hotspot.

IR-based Measurement

Infrared-based thermal imaging has gained popularity as a robust method of char-

acterizing thermal behavior [71]. It provides good resolution and accuracy both in

time and space. As such, it has been used in studying dynamic thermal manage-

ment techniques. Its external nature also helps in making decisions regarding the

placement location of thermal sensors on the chip at temperature-critical portions.

However, there are a few limitations of using IR imaging, some of which have already

been pointed out by Huang et al. [37]; IR rays cannot pass through metal. Generally,

processors are encompassed with a metallic heat dissipation solution like a heatsink.

So, for IR imaging to work, the heatsink needs to be removed and an alternate cooling

solution needs to be provided. One of the prevalent methods in this case is removing

the heatsink and providing laminar oil-cooling over a bare silicon die [71]. However,

this results in different transient and steady-state thermal responses compared to a
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conventional cooling solution like a heatsink [37]. The other limitation is that the

cooling capacity of oil is roughly proportional to the size of the oil tank and the ve-

locity of the oil flow. In order to cool 100W-300W cores, the speed of oil flow has to

be fast, thereby easily producing more distorted images. Although this method has

high merits when done correctly, it comes with high setting up cost and time.

Thermocouples

The most notable advantage of using thermocouples is the cost and the ease

of use for the measurement. Not only it is suitable for measurements up to 750

degrees Celsius, but it has a very thin diameter and being a wire, it can be placed

anywhere easily. However, placing this wire in a specific location is a challenge as

the pressure applied on it could affect the temperature readings. Furthermore, the

resolution of the readings are very limited to IR measurement. However, with a

very well designed thermo-spacer and some knowledge of the GPU processor layout,

using thermocouples provides the best cost-effective solution. Also, reconstructing

heatmap from thermocouple readings is much simpler than IR case since IR method

involves high-velocity oil flow. To the best of our knowledge, actual temperature

measurement on a GPU chip has not been done before, and unlike CPU architecture,

GPU has very high number of cores and has more opportunities for temperature and

power reduction from this study.

4.3 Experimental Setup

Figure 79 shows the block diagram of the entire temperature and power measurement

system. The AC power is intercepted by the EXTECH power analyzer, which then is

connected to the test computer. The computer has 8800GT GPU with thermocouples

and the spacer installed. Thermocouple readings are measured by another computer

using Labview software.
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Figure 79: Temperature and power measurement system.

4.3.1 Temperature Measurement System

We propose a thermal-measurement method where thermocouples are used as tem-

perature sensors. We have designed a thermal spacer with grooves cut in, to hold

the thermocouples at desired locations. The thermocouples are embedded in these

grooves. The spacer has raised edges and a shape such that it fits perfectly over the

GPU chip, consequently establishing a contact between the thermocouples and the

chip surface.

Thermocouple

J-type thermocouples are used in our measurement system. It is suitable for

measurements ranging from 0 to 750 degrees Celsius, which is more than enough

to cover the spectrum of temperatures encountered in a working GPU chip. It has

a high sensitivity of around 55 uV/degrees Celsius. The J-type is one of the most

popular thermocouple types because of its wide measurement range and superior

voltage output, which translates to greater temperature resolution.

Thermal Spacer

Figure 80 shows the customized thermal spacer, which is made of copper, the same

material as the heatsink on the GPU. Consequently, it transfers heat from the GPU

to the heatsink very well. The thermal resistance of the spacer is so low that it can be

ignored for all practical purposes. Thus, our temperature-measurement methodology

does not affect the working of the GPU in any detrimental way.
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Figure 80: Customized thermospacer for 8800GT GPU.

Data Logger The thermocouples are connected to a data-logger unit NI FP-TC

120, three 8-channel thermocouple modules for FieldPoint [2]. We use a 10/100 MBps

Ethernet interface for FieldPoint to communicate the sensor data to the data-logging

machine.

4.3.2 Power Measurement System

We use the Extech 380801 AC/DC Power Analyzer [1] to measure the overall system

power consumption. The raw power data is sent to a data-log machine every 0.5

seconds through an RS232 interface. Note that multiple computers are involved in

recording power and thermocouple readings, so timing is synchronized.

4.3.3 Reconstructing Images

To reconstruct temperature images, an interpolation using Matlab is used. To inter-

polate between each thermocouple readings, contourf function is used to reconstruct

an overall thermal image. This function groups a subset of temperature values from a

two-dimensional processor die (x and y axis), and plots colors that represent different

temperature readings (z axis).

4.3.4 Installation-Methods Previously Attempted

Taping using heat transfer tapes, soldering, and gluing using thermo-epoxy are other

possible installation options, but we learned that they are not feasible. Soldering does

not work because the surface of a chip cannot be soldered. Both taping and gluing
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allow installation of thermocouples but they have two serious problems. First, both

tape and glue material themselves prevent heat transfer from the chip to heatsink.

Even with material specifically designed for high temperature, it is still not good

enough to transfer all the heat from the chip. The second problem is that placing

thermocouples exactly at the desired locations is not a trivial task.

Therefore, we used grooves in the thermal spacer to hold the thermocouples in

place. The sensor placement pattern is uniform in nature so as to take temperature

measurements on the GPU chip over a uniform pattern grid. A layer of thermal paste

is applied on the GPU chip as well as on the thermal spacer to ensure smooth thermal

contact throughout.

Figure 81 shows the thermal spacer and the locations of the thermocouples. The

figure also shows an an estimated floor plan of SMs. This floor plan is estimated

based on GTX280[4], which has the same microarchitecture but different number

of SMs. The floor plan shows the location of cores and texture processing clusters

(TPC), which is a large architectural unit that contains two SMs, instruction cache,

and work scheduler. We estimate the core locations based on our one-core active

experiments in Section 4.5.2.

Figure 81: Temperature measurement system design (a) estimated floor plan of the
GPU, (b) thermal spacer design.

Figures 82 shows a picture after the thermocouples are placed on the thermospacer,
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and Figure 83 shows a side view of installed thermocouples and the spacer between

the heatsink and the chip.

Figure 82: Picture after the thermocouples are placed on the spacer.

Figure 83: A side view of the installed thermocouple and spacer.

4.4 Many-Core Architecture

Figure 84 shows the high-level view of a heavily multithreaded and many-core GPU

architecture (NVidia’s 8800GT is used). Series of streaming multiprocessors (SM)

are connected by an interconnection network and to a DRAM system.

On the top of the figure shows a series of workloads that gets scheduled by work

scheduler unit. Unlike CPU architecture, scheduling is done purely by hardware. As

a result, the number of activated SMs and which workload gets assigned to which

specific SM is not determined at static time. Hence, the next section discusses how

we designed the benchmarks to overcome this problem.
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Figure 84: High-level GPU architecture and workload execution.

4.4.1 How to control which core for execution

Currently, GPU vendors do not disclose information on how to control the schedul-

ing and other essential information. Hence, to overcome this problem, we devise a

new technique in software to make sure that only a single workload gets assigned

to each SM. 1 Each workload is intentionally modified to use just a right amount of

SM resources (i.e., increasing shared memory and register usage), so that only one

workload gets assigned to SM. Then, we intentionally invoke a number of workloads

that is identical to the number of SMs in the GPU. Another modification is that we

made each workload run for sufficiently long time as we do not want frequent con-

text switching between workloads. For verification, when we increased just one more

workload, the execution time is doubled, which shows that all SMs were activated

just before the workload addition. Figure 85 shows that by controlling act value,

we can control which active core is used for execution. Note that not all real GPU

benchmarks are constructed in this manner, and currently controlling specific core

from this technique using those benchmarks is not possible.

The high-level view of this specialized benchmark has a number of floating point

multiply-adds and coalesced memory loads inside a loop. We supply as parameters

to the kernel all the SM numbers that should be active for the run. Figure 85 shows

1Multiple workloads (i.e., CUDA blocks) can be assigned to SM depending on the resource usage.
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__global__ void kernel(

int Num_Iterations, int blocksize, float *dm_src,

int act1, int act2, int act3, int act4)

{

int bix = blockIdx.x;

if ((bix==act1)||(bix==act2)||(bix==act3)||(bix==act4))

{

// A loop of computations and memory accesses

} //end block Id

}

// Kernel Invocation

// dimGrid == #SM, dimBlock == 256 or 512

kernel<<<dimGrid, dimBlock>>>(dm_input1, dm_output);

Figure 85: Simplified view of code example.

an example of activating four blocks. The benchmark is run for a fixed amount of

time (120 seconds in the above case2) during which, the host code calls the kernel

in a loop till the specified time is elapsed. We use the nvclock utility to record the

GPU board temperature. Based on the benchmark output and the nvclock utility

output, we calculate a running average of GPU board temperature and also note the

maximum temperature for each configuration run.

4.5 Verification Results

4.5.1 Calibration Experiments

We design a calibration experiment system as shown in Figure 86. Two plates have

been designed and manufactured, as shown in Figure 86. Plate 1 mimics the thermal

behavior of a processor (heat source), and Plate 2 mimics the thermal behavior of a

heatsink. One side of Plate 1 has the exact same shape of the chip, so we can place

the spacer on which the thermocouples are already installed between two plates. We

uniformly increase the temperature of Plate 1. After that, we place Plate 1 in the

2We choose 120 seconds for execution time to reach a steady state.
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Figure 86: Thermocouple calibration system (top) and the results (bottom).

ambient temperature and install the spacer and Plate 2 in order. Then, Plates 1,

2, and spacer reach the steady state, which is at the room temperature. Figure 86

shows the calibration result, which shows that during the transient period, temper-

ature differences occur, especially in the initial stage. We believe that these initial

differences are primarily due to different physical pressures applied to some thermo-

couples during putting Plate 2 on top of Plate 1 physically. Once the weight of Plate

2 is stabilized on Plate 1, only minor temperature differences exist, especially in the

calibration range (operation range). Hence, this shows that we can use thermocouples

to measure the heat distribution on the surface of a processor.

4.5.2 One-core Activation

One of the important questions is whether there will be enough of a temperature

difference between active cores and idle cores. To answer this question, we activate

only one core at a time and vary the active core locations. We adjust the time of

execution such that the temperatures reflected by the thermocouples reach a saturated
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Figure 87: Difference in heatmaps for idle and active cores (left: no active core,
middle: Core 1 active, right: Core 4 active).

value. We take an average of 30 readings after saturation for each thermocouple

location and plot the heatmap at the saturation point taking this value. Figure 87

shows the heatmap of two different active cores (Core 1 and Core 4) and the idle

state. The results show that when a core is active, the temperature is higher than in

other areas by around 5 degrees. Please note that, even though the rest of the cores

are idle, because there is no power gating or clock gating, those cores are still on,

consuming some power.

On performing the one-core activation experiment, we observed that the heatmaps

for 0 and 7 were very similar. This was also true for SM combinations of (1,8), (2,9),

(3,10), (4,11), (5,12) and (6,13). So it is apparent that 0 and 7 belong to the same

TPC, and the same can be said about the other combinations. Figure 88 shows the

similarity in thermal maps for combinations (0,7) and (3,10). Note that neither a

default GPU scheduling algorithm nor exact core locations are disclosed by GPU

vendors.

4.5.3 Repeatability and Rotation Test

To test the stability of the thermocouple measurements, we performed a rotation

test (the chip is isotropic). In this experiment, we insert the spacer after rotating 90

degrees from the original position. If the temperature deltas that we have observed in

the original position were caused by the thermocouples themselves instead of actual
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Figure 88: SMs belonging to the same TPC (top left: Core 0 active, top right: Core
7 active, bottom left: Core 3 active, bottom right: Core 10 active).

hotspot of the GPU, if we rotate the spacer, the hotspots would have rotated together.

Please note that the thermocouples are already glued in the spacer, so when we rotate

the spacer, the thermocouples are also rotated together. The default configuration is

called 0 degree, and we plotted the heatmap with the spacer at 90 degrees. Figure 89

shows the results of the 0- and 90-degree experiments (the 90-degree data is also

drawn based on the core locations in the 0-degree data). The results show that the

heatmap at 90 degrees looks similar, so the hotspot is still found correctly by other

thermocouples. Hence, we can say that the thermocouples are laid out properly to

detect hotspots irrespective of the orientation. Although we do not present the results

in this chapter, we also did the repeatability test. We rotate the spacer back to the

original position and compare the results with the initial the 0-degree experiment

data. The repeatability test shows very similar results. These experiments point

to the robustness of the temperature-measuring method using thermocouples with a
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Figure 89: The 0- and 90-degree heatmaps of thermal spacer with Core 2 active.

custom-designed thermal-spacer.

4.6 Temperature Aware Scheduling

To save energy, many temperature-aware thread-scheduling algorithms have been

proposed. The advantage of certain core combinations being thermally optimal or

generating lower power can be explained by thinking about the layout from a thermal

perspective. As explained in detail [38], interleaving high power density elements

with lower power ones leads to virtual lateral heatsinks. Thus, when scheduling

work on cores that are distant from high power density elements, scheduling such

that active cores are separated by low power/cooler running components would give

such a combination of active cores an edge from the thermal and power point of

view. Thus, having an idea about the layout, one can intelligently schedule work to

minimize thermal stress and power consumption. Also, a more uniform power and

thermal distribution leads to lower hotspot formation.

4.6.1 Temperature and Power Measurement

Using our power-measurement system and results of the on-chip sensor, we can find

the delta in power as well as temperature for different combinations of active cores.

We measure temperature and power together by activating one, two, four, and

seven cores. For one-core and two-core tests, power consumption is almost the same
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regardless of which core(s) is(are) active. This is because one or two cores do not

generate enough power to create severe hot spots. The seven-core test also shows

similar power consumption behavior. This is because more than half of the chip is

activated so the entire chip becomes hot (i.e., no temperature distributions.) We

observe that activating four cores provides a significant delta, depending on core

positions. Hence, we report the results of the four-core test.

4.6.2 Multiple-Core Tests on 8800GT

We tried different combinations of four-active cores in 8800GT and measured the

power and temperature for each of the cases. Table 12 summarizes the results.

Table 12: Four active cores - measured power vs on-chip sensor.
Active Cores Avg. Power Avg. Temp #Active TPCs

(Watts) (Celsius) (Estimated)

0-7-1-8 253.68 76.99 2

4-11-6-13 253.77 76.59 2

2-9-5-12 254.44 77.42 2

4-11-0-1 256.36 77.44 3

3-10-5-6 257.23 78.01 3

6-7-8-9 261.04 79.47 4

10-11-12-13 261.66 78.88 4

2-3-4-5 261.77 79.60 4

0-1-2-3 262.53 80.41 4

The results show a strong correlation between temperature and power. Higher

temperature consumes more power. From the table we can see that the core com-

bination of 0-7-1-8 consumes the least amount of power and temperature, while the

combination 0-1-2-3 induces maximum thermal stress and power. This is a very in-

teresting phenomenon, because we are executing the same code on the same number

of SMs (processors). This fact can be corroborated by looking at the heatmaps for

the two cases shown in Figure 90.

For the 0-7-1-8 case, we project that two TPC units are activated, while four TPC

units are activated for the 0-1-2-3 case. Because activating a TPC unit activates

several architectural units such as instruction cache and work scheduler to SMs, we
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Figure 90: Difference in heatmaps between high and low thermal stress (left: 0-7-1-8
right: 0-1-2-3).

believe that the higher peak power for the 0-1-2-3 case comes from activating those

other units.

Based on this results, we can conclude that, temperature aware thread/core

scheduling can actually change the power consumptions. The first observation is

that minimizing the number of big architectural units such as TPC reduces peak

temperature considerably, and furthermore, maximizing the distance of active TPCs

is recommended as heat can be spread to idle units nearby.

4.6.3 Projection of Thermal Effect with Higher Number of Cores

Section 4.6.2 showed that depending on the active core location, temperature and

power consumption can be severely affected, even though the same number of cores

is used for execution. We project that this will become more apparent in the archi-

tecture with many more number of cores. For example, NVidia GTX280 has 30 SMs,

compared to 12 SMs of 8800GT. This GPU will give us more rooms of choosing the

number of active cores and their locations. However, we do not have the thermo-

spacer and leave this for the future work. Nevertheless, we have successfully done a

similar experiment using the on-chip temperature sensor and power meter.

Figure 91 shows that peak power is proportional to temperature. Hence, temperature-

aware thread/core scheduling can actually reduce the peak power.
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Figure 91: Effect of high temperature on the peak power achieved.

4.7 Implications and Future Work

The results in Section 4.6.2 presented that the number of TPCs activated should be

minimized to reduce power and temperature. To avoid confusion, minimizing the

number of active TPCs is not the same as minimizing the number of active cores;

this is transparent to a programmer.3 Another implication is that those active TPCs

should be as far apart as possible. This fact was actually considered in this study [38]

that if hot and cold area are interchangeably placed, they create a virtual heatsink

effect. The difference is that they used a simulator, and the granularity of control

was different (i.e., controlling CPU units vs. GPU cores). We actually controlled

scheduling at core and TPC granularity and confirmed this effect in a real experiment.

To maximize the virtual heatsink effect, separating the active TPCs as far apart

as possible is clearly the one step. However, there is a complicated trade off between

(1) maximizing all SMs in a single TPC vs. (2) minimizing the number of active

3Number of active cores (SMs) is the same for all configurations in Table 12.
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SMs in a TPC, which results in more number of active TPCs. It would seem that

activating all SMs within the same TPC is better since SMs share some texture

and shared cache. Furthermore, activating another TPC unnecessarily could result in

more energy use. But there could be another trade off. For some types of applications

with heavy memory use, SMs in the same TPC could compete each other for memory

load/store units, which could degrade performance. For this case, invoking multiple

TPCs would result in better performance. This deep level of investigation is future

work. Nevertheless, we have managed to measure temperature of a GPU processor

and perform explicit work scheduling despite no disclosed information from vendors.

To the best of our knowledge, this is the first study to analyze the thermal be-

havior of a GPU processor using thermocouples and extends [34] by adding one more

dimension of energy optimization, which is changing active core location, not just

limiting the number of cores.

4.8 Summary

In this chapter, we present a robust and reliable temperature measurement system

using thermocouples. Furthermore, we overcome the GPU scheduling problem despite

lack of documentations on scheduling.

We discuss the importance and an application of such a system by describing

its relevance to a thermal-aware scheduling scheme for many-core systems. With

power and temperature having become primary level design parameters and with the

advent of many-cores, we believe that this field of research has many opportunities

to be explored and needs robust tools to achieve that exploration. To this effect we

feel that the system described in this chapter would prove to be very beneficial.
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CHAPTER V

THROUGHPUT MODEL

5.1 Introduction

Heterogeneous architectures have been popular, and more future processors will be

heterogeneous architectures. For example, AMD introduced the Fusion architecture,

and Intel’s Sandy Bridge and NVidia’s Denver have been introduced. China’s Tianhe

incorporated CPU and GPU cores at a system level and has built one of the fastest

supercomputers in the world.

OpenCL [79] is introduced to increase the programmability and portability in

heterogeneous computing. OpenCL, an open standard for parallel programming, has

emerged from the Khronos group. OpenCL is becoming increasingly popular with

many vendors. Currently, many companies are actively releasing OpenCL implemen-

tation and compilers for their architectures such as Intel, NVIDIA, AMD, and IBM.

The main benefit of OpenCL is that the same source code can run on multiple de-

vices, including mobile, personal desktop computers, and even in super-computing

centers. However, to achieve the best performance, the programmer still needs to

spend significant amount of tuning and changing the code manually. Moreover, the

optimum distribution ratios of a workload among multiple devices can not be known

before actual execution or profiling.

Hence, to alleviate those issues, we propose a generic analytical model that pre-

dicts the performance of OpenCL programs for CPU and GPU. All overhead such as

off-line efforts and runtime profiling overhead are eliminated. To make the analytical

prediction as general and portable as possible, we use an intermediate representation

(IR) rather than an actual binary information. Despite using only the IR information
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and a work group size, potential performance can be predicted. For devices that re-

quire a data transfer time such as GPUs, we also consider this effect in the equation.

Our approach enables a programmer to know what the potential performance is before

running the application. Applications are characterized based on a model. This is

clearly different from repeating experiments without understanding the performance.

Furthermore, as our approach is applicable as the static-time approach, it provides

insights that enable further optimizations that provide energy and performance ben-

efits. Compiler optimizations such as changing instruction mixture ratio (i.e., more

memory versus more computations) and invoking fewer cores could be available to

eliminate the performance bottleneck.

5.2 OpenCL Usage on Different Architectures

The same OpenCL kernel can be executed on both CPU and GPU architectures, as

illustrated in Figure 92. Hence, if there is a generic performance and power model

that works using LLVM IR, then the inputs related to an application do not need to be

produced separately for CPUs, GPUs, and other devices. The model can simply use

the same input and produce different outputs for different devices and architectures.

OpenCL

Frontend

Intel

Backend

Nvidia

Backend

Figure 92: OpenCL compilation and execution framework.

However, predicting the performance is not as straightforward, as CPU and GPU

execution styles are inherently different due to their different architectural design.

CPU focuses on maximizing ILP using a few threads, while GPU utilizes thread-level

parallelism by executing hundreds of lightweight threads using many execution units
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as single-instruction multiple-thread (SIMT). Nevertheless, multiple performance-

related concepts are interchangeable from a performance and power perspective: ef-

fective useful instructions ratio, memory-level parallelism, back-to-back instructions

dependency, ILP, and etc. First, to examine how hardware is different in more detail,

Figures 93 and 94 show the Nehalem CPU and the NVidia GPU GTX580 (Fermi)

architectures [74], respectively.

Figure 93: High-level view of CPU execution units.

Figure 93 shows a four-wide issue to the execution engine [98]. Four independent

instructions from the same thread can be issued in the same cycle, provided that

corresponding execution units and ports are available for scheduling and pipelining.

Note that not all types of computation execution units exist in every port; ports two

to four are used mainly for memory accesses, whereas scalar and vector-type floating-

point (FP) units and integer ALU units exist in ports zero, one, four, and five.

The CPU architecture attempts to maximize throughput by using vector instructions

(SSE, AVX) when applicable; in Intel OpenCL, four or eight logical OpenCL threads

are combined to generate one vector instruction [5].

While the CPU architecture is very effective in maximizing instruction-level par-

allelism (ILP) of a single thread or two threads as hyperthreading, the architecture

is not very efficient for context-switching. Moreover, the number of FP execution

units is far less than a GPU architecture that has hundreds of FP units. Hence,

because of these architectural differences, there are pros and cons of the performance
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perspectives between CPUs and GPUs.

Figure 94 shows that inside each streaming multiprocessor (SM), a series of stream-

ing processors (SP) exist that execute hundreds of GPU threads in parallel.

Figure 94: High-level view of GPU execution units.

Whenever GPU execution encounters a long-latency instruction and/or a mem-

ory instruction, the architecture efficiently switches to a different group of threads

(warp). Hence, even most of the computation instruction latencies (not just memory

cycles) are hidden by other warps. As a result, the throughput for each computa-

tion instruction is almost close to one cycle, given a sufficient number of warps per

core (SM).1 Contrary to the CPU architecture, the OpenCL programming model

naturally maps to a GPU architecture; each OpenCL logical thread maps to each

physical GPU thread, whereas in CPU, many OpenCL logical threads are combined

to generate vector instructions (e.g., SSE, AVX).

5.3 Completing the Model

This chapter discusses much improvements to the first performance model proposed

in Chapter II. First, rather than predicting mere execution time as the output, this

new work shifts to predicting performance as a throughput, similar to the roofline

work [103]. The roofline work uses DRAM intensity as an input. But, in addition to

1Back-to-back instruction dependency (DEP) is not very critical due to the high number of HW
threads assigned.
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using that input, our new model uses other values such as number of cores, number of

warps per SM, threads (warps) per core (N), etc. Furthermore, the focus is different.

We attempt to predict the actual specific performance considering architectural and

application inputs: N, the effect of memory-level parallelism, bandwidth saturation,

active cores, and other relevant inputs, rather producing upperbound and lowerbound

values.

5.3.1 Effective Ratio

The most notable benefit of using OpenCL is that the same kernel can be used for

execution on CPU, GPU, and other architectures. From a throughput perspective,

remarkably, many of the same concepts can be shared regardless of which architecture

is used for execution.

First, what constitutes useful instructions needs to be defined. In this work, we

choose the FP instruction as a useful instruction. Regardless of the architecture,

the higher the ratio of FP instructions to the total number of instructions, the higher

performance should be achieved. If the memory effect is not considered, then this phe-

nomenon can be clearly predicted and even measured. Hence, we define performance

in Equation (64), which is intuitively very simple to understand.

Perf = PeakAchi×EffRatio (64)

The term PeakAchi, which represents peak achievable performance, depends only on

the useful instructions (i.e., FP instruction); whether it is an SSE, fused-multiply-add,

or a scalar FP instruction. For example, if only an FP instruction is executed and

produces an output every cycle, then the peak performance depends on the number of

physical FP units in the hardware. By using the number of those useful instructions,

PeakAchi is calculated. This term represents a meaningful performance number, sim-

ilar to the roofline, that an application performance cannot pass beyond this limit. 2

2Knowing this limit is very useful for programmer, compiler, and runtime system.
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Unlike the PeakAchi term, finding the EffRatio is more complicated because actual

FP_INST

FP_INST

FP_INST

FP_INST
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EffRatio B EffRatio C EffRatio D
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(SSE, ILP)

Realistic

(DEP)

Realistic

(DEP, Long Latency)

Time

Figure 95: Effective useful instructions ratio within only computations.

execution cycles need to be considered. The numerator of the EffRatio represents

the minimum number of cycles to execute useful instructions (i.e., FP insts); ILP and

SSE effects will affect this term. On the other hand, the denominator represents the

number of cycles to execute all instructions. Unlike the numerator, the denominator

also depends on instruction dependency (DEP), long-latency computation instruc-

tions, and memory-waiting idle cycles. For example, if five FP instructions exist out

of 10 total instructions, then the ratio is at most 0.5. If there are back-to-back depen-

dent instructions, then this ratio will go down further . In a subsequent section where

we consider idle memory cycles, this ratio will go down even further. The best case

is when the EffRatio approaches one, however if the PeakAchi term is not good

enough to start with, then even if the EffRatio is one, the maximum achievable

performance is not very good.

To quantify the EffRatio in more detail, we take the following approach, as

illustrated in Figure 95. The box shows FP, MEM, and other instructions. The

fraction below the box shows that the numerator contains FP instructions, while the

denominator contains total instructions including FP instructions. The Perfect case

is when every instruction, including FP-instruction, produces an output every cycle

(i.e., EffRatio is one). However, for most of the cases, the effective ratio cannot be

one because of other non-useful instructions that always exist, such as branch and
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integer-computation instructions.

The next case shows when SSE and ILP effects are applied. Note that these

effects are applied to both the numerator and denominator, as the numerator is a

subset of the denominator. The figure shows that in terms of a ratio, the value is

still similar. The third case illustrates when dependency effect (DEP) is applied. It

is important to see that this is only applied to the denominator, as the numerator

specifies the minimum number of cycles when everything is perfect (i.e., no back-

to-back instruction delay and output is produced every cycle). The back-to-back

dependency is especially observed in the CPU architecture because of inefficient hiding

by other threads. From the experiment, we observed that there was no instruction-

latency hiding by other CPU threads, as the context-switching penalty from runtime

or OS could be much higher. Hence, the number of cycles in the denominator was

much larger due to the instruction latency and the distance between the producing

instruction and the consumer. This part is described in more detail in Chapter 5.3.4

using the DEP term.

5.3.2 Moving the Model to Higher Level

Finding PeakAchi and the EffRatio from computations only is not sufficient, as

there are other factors that play a crucial role in performance [33], which is the

memory effect. This is not straightforward since some memory cycles are hidden by

computations, and some are not. Furthermore, the bandwidth effect and the speed

at which a memory instruction is requested between computations make this analysis

very challenging.

First, we have multiple threads or warps per core, not just one. Second, when there

is a memory instruction from one warp, the next warp will be executed. Possibly, there

could be multiple independent memory instructions from the same warp even before

changing to the next warp. So how is throughput calculated correctly considering all
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these factors? The challenge is that, depending on the number of warps, how much

memory cycles can be hidden will be different, which directly affects throughput (i.e.,

more idle cycles means lower throughput). Since there are parameters (N, memory-

waiting cycles, how much can be hidden, etc), quantifying the correct throughput is

a challenge. Hence, we develop and propose a new systematic series of steps that

are simple, but detailed enough for modeling performance effectively, even in heavily

multithreaded architectures.

Figure 96 shows the methodology. Each box represents either C (computation)

or M (memory access), followed by a number, which represents a thread or a warp

number.

High Level!Illustration

C1 M1!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Computations Idle!Memory!Cycles

One!Computations!Box

(Note!the!previous!graph)

MWP!=!3

C2 M2!!!!!!!!!!!!!!!!!!!!!!!!!!!!

C3 M3!!!!!!!!!!!!!!!!!!!!!!!!!!!!

C4

M4!!!!!!!!!!!!!!!!!!!!!!!!!!!!

M5!!!!!!!!!!!!!!!!!!!!!!!!!!!!

M6!!!!!!!!!!!!!!!!!!!!!!!!!!!!

C5

C6

About!half!is!computations,!with!unique!performance!itself

Figure 96: High-level view that illustrates the series (N) of computations with over-
lapping memory accesses (MWP).

Inside each computation box, the magnified box shows the PeakAchi effect, as

discussed in the prior section. What is interesting is that from a throughput perspec-

tive, these series of computation boxes are effectively executed next to each other,

preserving the throughput. However, because of memory-waiting cycles, the overall

throughput will further drop below the previously calculated value based on only

computation instructions. Because only three warps’ memory-cycles are overlapped
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(assuming memory-level parallelism, MWP, is three), a significant number of ”idle

memory cycles” with respect to ”computations” exist, as shown in the figure. These

idle memory-waiting cycles further degrade the performance. Figure 96 represents the

total execution showing computations, memory-waiting cycles, and how much they

are overlapped. Using these characteristics, the final throughput value can be quan-

tified and calculated. In the analytical model, the following parameters are proposed

and used: effective computation cycles for one thread (denoted by computation box

C), effective memory cycles for one thread (M), and memory-level parallelism (MWP).

5.3.3 Transforming an OpenCL Kernel

The left side of Figure 97 shows an OpenCL kernel without the effects of multithread-

ing (i.e., one thread). The goal of the transformation is to find effective computa-

tions, memory-access cycles, and the strength of memory requests (i.e., strength is

more than one if multiple independent memory requests exist from the base memory

instruction).

C M                            

C M                            

M                                            C

C

M                                             

C

An Application 

(One Thread or Warp)
Effective Computations 

Effective Memory Cycles

Conversion

Figure 97: Transforming an OpenCL kernel into effective computation and memory
cycles.

For the transformation, we simply count the number of total computations and

memory instructions. The outputs of the transformation process are the following:

effective computations per memory access, number of memory requests, memory cy-

cles, DEP, ILP, and memory-level strength (MSTR). As mentioned in Chapter 5.3.6,

the MSTR term represents the number of overlapping memory accesses from a single

thread, primarily due to the next independent memory instruction in the stream.

The term plays a crucial role, especially in determining bandwidth saturation of an
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application, and is integrated into the new analytical model as an improvement from

the previous model.

5.3.4 Summarizing the Model using Computation Instructions

Equation (64) requires two terms: PeakAchi and EffRatio. Figure 95 shows

that SSE and ILP directly affect both the numerator (PeakAchi) and denomina-

tor (EffRatio), while DEP affects only the denominator. Since an application could

contain a mixture of scalar and vectorized FP instructions, we take an average as the

overall peak-achievable performance, as shown in Equation (67).

For the GPU architecture, PeakFusedFP replaces PeakV ecFP , where each in-

struction counts as two floating-point operations. The term simply finds an upper

performance limit correctly for the GPU architecture, as a fused multiply-add in-

struction is not supported in Nehalem CPUs. The EffRatio term is also affected

as two CPU instructions (multiply, add) become one instruction; hence these factors

are considered correctly for modeling DEP, ILP, and thread-level and memory-level

parallelism.

PeakFP = DevPeakFP ×
#FP

#FP +#V ecFP
(65)

PeakV ecFP = DevPeakV ecFP ×
#V ecFP

#FP +#V ecFP
(66)

PeakAchi = PeakFP + PeakV ecFP (67)

Finding the EffRatio is illustrated in Equation (68). The numerator, PerfCycles,

represents the minimum number of cycles needed to execute useful instructions, where
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each instruction produces an output every cycle.3

EffRatio =
PerfCycles

TotalCycles
(68)

PerfCycles =
∑

Useful Insts / ILP (69)

TotalCycles =
∑

Total Insts ×
DEP Effect

ILP
(70)

If two FP units are available in the hardware, and useful (i.e., FP) instructions are

independent, then those two works can be done in one cycle; hence that is where

the ILP term is applied to both PerfCycles and TotalCycles. This is also illus-

trated in Figure 95. On the other hand, the dependency factor (DEP) only affects

the denominator, TotalCycles. If back-to-back instructions are independent, then

the instruction can be issued (pipelined) every cycle. However, if the subsequent

instruction is dependent on the previous instruction, then instead of pipelining an

instruction every cycle, the next instruction cannot be issued for the duration of

previous instruction latency (i.e., about four cycles for CPU, about 20 cycles for

GPU), which lowers the throughput significantly. Hence, to model this behavior,

DEP Effect = MAX(Inst Latency/DEP, 1) is needed. When the next instruc-

tion is dependent on the previous instruction, then DEP is 1. This will increase

totalcycles by the factor of instruction latency. If the dependency distance is greater

than the instruction latency, then DEP Effect becomes one, which is not harmful

to the performance.

5.3.5 Memory-Level Parallelism

The memory-level parallelism metric is a very important metric that defines the

memory behavior of an application, introduced in Chapter II. The contribution is that

the metric considers both software and hardware parameters, including the number of

hardware threads, memory bandwidth, application characteristics, etc. Chapter III

3Architecture is heavily multithreaded, and execution units are pipelined.
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extends this term for GPU architectures for energy efficiency. Finally, this chapter

further makes more advancements and clarifications, and improves the work to one

step further. This enables visualization of the performance-affecting parameters and

bottlenecks.

MWP is defined as in Equation (71). The metric can be easily thought of as

how many parallel memory requests can be serviced in one core (or SM). Although

multiple parameters exist that affect MWP, the minimum value always determines

the final value as a limiting factor. The subsequent section discusses each term in

detail.

MWP = MIN(MWP App,MWP BW,MWP Proc,N) (71)

5.3.6 Memory-Level Parallelism: MWP App

A new metric is proposed, MWP App. This metric is related to the previous CWP

metric [33], but with major modifications applied both in concept and equations.

This metric removes the classifications between the scenarios (MWP > CWP, CWP

< MWP, etc.), and the metric is more intuitively easier to understand as well as

making the model more generic. The definition of this metric is how many parallel

memory requests need to be overlapped for an application. This metric also takes

into account of the number of independent memory accesses from one warp by using

a new term called MSTR (i.e., strength of overlapping independent memory accesses)

and the number of warps per SM (N). When the MWP App metric is compared to

MWP BW, which is the machine’s peak bandwidth per SM, whether an application

is likely to saturate bandwidth or not can be determined.

Therefore, this new approach not only enables easier conceptual understanding

on the metric itself, but also enables significantly improved bandwidth saturation

analysis at a finer detail. For example, whereas the previous model always predicted

the same number of cores that saturate bandwidth, this new model not only predicts
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the better optimal number of cores, but also predicts a different number of cores

depending on the application.

First, we propose the MWP App InfiN metric, which assumes we have infinite

”N” available. This metric simply tells us how many memory requests can overlap

given an application, an infinite bandwidth, and N. Figure 98 illustrates that although

we have infinite N, because of large computations, the maximum possible parallelism

is different and limited. The first application requires three overlapping memory

C M                            

C M                            

C M                            

Three overlapping 

memory accesses

C M                            

C M                            

Two overlapping 

memory accesses

MWP_App = 3

MWP_App = 2

Figure 98: Depending on the number of computations, parallel memory-access de-
mand is different (MWP App).

accesses. Hence, if hardware (i.e., MWP BW) is capable of overlapping those three

overlapping memory accesses, and if there are at least three warps, then idle memory

cycles will be hidden by computations. The second application, because computations

are so large, only requires two overlapping memory accesses even though hardware

may be capable of providing more bandwidth. This metric is shown in Equation (72).

MWP App InfiN = MAX(EffMem/EffComp, 1) (72)

The metric, MWP App InfiN, is very useful in knowing how many warps or

threads per core are necessary to completely hide the memory-waiting cycles. While

this metric is useful as a suggestion, it can be further modified and be made more

practical. We propose another metric called MWP App. This metric considers actual

number of N and memory strength.

The metric is very useful for determining bandwidth saturation if the MWP App
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metric is compared to MWP BW, which tells how many requests the hardware can

handle. If MWP App is greater than MWP BW, then there will be a bandwidth sat-

uration problem. On the other hand, if MWP App is much smaller than MWP BW,

then no bandwidth problem will exist. An improvement to the previous work is that

we can now quantify howmuch MWP App is greater than MWP BW rather than just

knowing whether a bandwidth problem exists or not. We also have done experiments

to verify that when MWP App is much higher than MWP BW, the performance even

degrades significantly.

However, MWP App is not obtained easily, as there could be multiple independent

memory requests from the same thread. To address this issue, the subsequent section

discusses more on the bandwidth demand of an application, especially the MSTR

term.

5.3.7 Independent Memory Accesses: MSTR

While MWP App InfiN is useful from the perspective of knowing how many memory

requests (equivalently the number of warps) need to be overlapped given an appli-

cation to hide idle memory cycles, the metric can be further modified to make it

more useful. If we constrain N to be the actual number of warps allocated, then the

upperbound of MWP App metric is either N and/or the number of warps that hide

the memory latency. When this metric is compared to the MWP BW metric, which

represents how many parallel memory requests can be possibly overlapped per core,

then whether or not this application is bandwidth limited can be easily determined.

Furthermore, the previous mechanism predicts the same number of cores; how-

ever, this is improved. In this work, we propose a simple heuristic to determine

memory strength per thread or warp, and apply that to MWP App metric. In other

words, MWP App is the true metric that shows how many memory accesses need to

be overlapped for this application, considering computations, memory instructions,
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independent memory accesses, N, etc. For applications that have a high number of

computations, MWP App is small. On the other hand, applications with few com-

putations will have high MWP App, but can be greater if memory strength is more

than one.

Figure 99 shows one example for obtaining memory-level strength (MSTR). The

example on the left shows one memory access, and the next is the consumer instruc-

tion. As there is no independent memory instruction in between, the strength is one.

On the other hand, the example on the right shows two independent memory accesses

before the consumer instruction. Hence, the strength is two. This simple but effective

heuristic is used for finding the MSTR value.

fma.rn.f32      %f9, %f8, %f7, %f8;

fma.rn.f32      %f10, %f9, %f8, %f9;

ld.global.f32   %f11, [%rl6+4];

add.f32           %f12, %f9, %f11;

fma.rn.f32      %f13, %f10, %f12, %f10;

fma.rn.f32      %f14, %f13, %f10, %f13;

add.f32           %f3, %f2, %f1;

add.f32           %f4, %f3, 0f41200000;

ld.global.f32   %f5, [%rl9+4];

ld.global.f32   %f6, [%rl8+4];

add.f32           %f7, %f6, %f5;

add.f32           %f8, %f4, %f7;

Example 1 (Cmem) Example 2 (Dmadd)

One memory request only Two memory requests  can be issued

Figure 99: Different memory-level strengths (MSTR) depending on the application.

Figure 100 illustrates the effect of independent memory accesses. Two warps exist

(N = 2), and each warp can issue two memory requests together because MSTR is

equal to two. From the bandwidth perspective, this application’s demand for memory

bandwidth is higher than two, which is the number of warps in an application.

Four (Not two ) 

overlapping memory accesses
C M                            

C M                            

MWP_App = 4

M                            

M                            
MSTR = 2 (E.g., Dmadd)

Figure 100: Increased MWP App metric from increased MSTR.
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Equation (73) and Equation (74) show the MWP App OneMemWarp and MWP App

metrics. First, the MWP App InfiN metric is compared to the actual number of

warps (N), as the number of parallel memory requests cannot be greater than N.

Then, MWP App is multiplied by the MSTR term from an application. Both the

MWP App InfiN and MWP App terms have practical uses.

MWP App OneMemWarp = MIN(MWP App InfiN,N) (73)

MWP App = MWP App OneMemWarp×MSTR (74)

5.3.8 Memory-level Parallelism: MWP BW and MWP Proc

Chapter 2.3.3 introduces the MWP BW and MWP Proc terms. They represent how

many concurrent outstanding memory accesses the hardware can sustain. MWP BW

considers the memory bandwidth budget, while MWP Proc considers internal mem-

ory cycles that prevent effective overlapping.4 The MWP BWmetric has been defined

as follows, where Load bytes per warp and Mem L represent amount of bytes loaded,

and memory latency.

MWP BW =
Mem Bandwidth

BW per warp×#ActiveSM
(75)

BW per warp =
Freq × Load bytes per warp

Mem L
(76)

The potential issue of this equation is that when Mem L is increased, the intuition

tells us that performance should be decreased because of the higher memory latency.

However, this is not always so with the previous model. Increasing the Mem L term

lowers the BW per warp term, which increases the MWP peak BW term significantly.

Also, this increases BW Proc as well, thereby increasing the overall performance

4For uncoalesced memory accesses that generate many memory transactions, high internal mem-
ory cycles exist between each transaction, which prevent amount a high amount of overlapping
between warps.

121



(decreasing the execution time) from a very high MWP value, which is not very likely

to happen.

This issue can be addressed by fixing and associating Load bytes per warp and

Mem L as a pair. If there are more than one transaction per warp (i.e., uncoalesced

access), effective memory latency per warp will be a sum of those multiple accesses

from the uncoalesced access. The important concept to preserve is the amount of

bytes loaded and associated load latency. The overall ratio is the same in either case.

What is an important concept for bandwidth is the vertical direction (i.e., how many

different warps’s memory accesses can be overlapped) should be considered.

5.3.9 Final MWP Metric

Figure 101 illustrates one example that shows calculating the overall MWP. The

output of the MWP App metric is four, which implies that at least four warps are

necessary to hide all idle memory cycles. However, because hardware is capable

of supporting only three concurrent memory accesses, the MWP metric cannot be

greater than three. Unfortunately, this application ends up using large resources,

so only two warps (N) are allocated per core (SM). Hence, the final MWP value is

only two. One further insight other than the final MWP value of two is that those

MWP App and MWP BW values can still be meaningful.

Application requires four overlapping memory accesses

MWP_App = 4

C M                            

C M                            

C M                            

C M                            

C M                            

HW allows three overlapping accesses

MIN(MWP_BW, MWP_Proc) = 3

What if N is only 2 ?

Figure 101: Final MWP metric depends on MWP BW, MWP App, N, and
MWP Proc. The overall MWP is two (N).

Even if there are only two warps, the memory can still be saturated; the application
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requires three concurrent memory accesses, but the hardware can only support two

concurrent memory accesses. Later in the chapter, both the experiment and the model

confirm that higher the MWP App value than the MWP BW value, the higher degree

of performance degradation that occurs.

5.3.10 Bringing the Model to Higher Dimension using MWP

Simply calculating the MWP value is not sufficient to know what goes on in an

application execution. Figure 96 showed that even in a perfect-cache case, depending

on the useful instruction mixture ratio (i.e., useful instructions ratio to the total

instructions), the roofline of peak performance can vary significantly. Furthermore,

even knowing that is not sufficient. In an application execution, we could have a

different number of warps or threads per core (N), a different number of MWP, and so

on. Hence, all these factors have to be taken into account, and the challenge is how to

calculate and quantify each parameter’s effect on overall performance. Furthermore,

not only is the final performance number important, but the parameters that were

used to find the final performance provide deep insights regarding bottlenecks such

as bandwidth saturation and peak potential performance.

Figure 102 illustrates one comprehensive example, assuming that the final MWP

value is three. The first observation is that we have six warps per SM (N = 6),

and inside each computation box, due to the back-to-back dependency latency, the

throughput even without memory accesses is not very high. Given all this information,

the remaining question is how to put all this information together and quantify a

meaningful performance-related output such as throughput.

Note that each application has gone through a transformation process, as de-

scribed in Chapter 5.3.3, in which an application has average computation cycles and

average memory latency with the memory strength, MSTR. Hence, there is one com-

putation period and one memory period for each thread (The number followed after
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EffRatio Illustration

C1 M1                            

ComputationsCycles IdleMemCycles

One Computations Box

(Note the previous graph)

MWP = 3

C2 M2                            

C3 M3                            

C4

M4                            

M5                            

M6                            

C5

C6

EffRatio = (EffPerf x N) / ((EffComp x N) + IdleMemCycles)

EffComp Cycles

EffPerf Cycles N = 1

N = 6

Figure 102: Final throughput is further reduced by idle memory cycles. However,
how many idle cycles exist depends on multiple interrelated parameters, making the
analysis complicated. The figure illustrates how to quantify computation cycles and
idle memory cycles using computations, effective memory latency, N, MWP, and
throughput for computations.

either M or C is a thread or a warp number). The first observation is that because

there are multiple warps or threads, memory accesses are overlapped, while compu-

tations are executed next to each other. Note that inside each computation box, the

throughput associated with only computations is being preserved at some value. But

as soon as an execution enters the ”IdleMemCycles” period, no more computations

are done, just idle cycles. Hence, the key to finding overall throughput is to identify

the computations-only throughput and predict the idle memory cycles that depend

on N and MWP.

The solution to finding the EffRatio, assuming we know IdleMemCycles, is

to use the following proposed Equation (77). The value of N is multiplied to both

EffPerf and EffComp terms since the EffPerf term is a subset of EffComp.

If a value of zero is used for IdleMemCycles, then these N values get canceled out.

It makes sense that if only computations are executed, then it does not matter how

many warps or threads that get executed. The throughput value is preserved at some

124



rate.

EffRatio = (EffPerf ×N)/((EffComp×N) + IdleMemCycles) (77)

However, a complex case occurs when memory accesses are considered. The larger

the computations, the more memory-latency hiding that takes place. But this also

depends on N, average memory latency, and MWP. Hence, the challenge is how to

utilize these factors to find IdleMemCycles. Figure 103 shows the proposed approach.

Figure 103: Idle memory cycles using MWP value of three and computation boxes.

First, Equation (78) shows the serialized memory cycles by multiplying with N.

Then, by using the memory parallelism metric (MWP), perfectly divided memory

cycles are obtained in Equation (79). Depending on the number of computations,

the overall memory latency when the first warp requests an access to where the last

warp’s memory access ends could vary; hence the overall memory cycles are obtained

in Equation (80).
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Mem SerialN = EffMem×N (78)

Mem DividedN = Mem SerialN/MWP (79)

Mem N = Mem Divided+ EffComp× (MWP − 1) (80)

CompcyclesN = EffComp×N (81)

IdleMemCycles = max(0, (Mem N − CompcyclesN)) (82)

But because computations can hide some of the memory latency, that memory latency

should be subtracted by the computations, which results in overall IdleMemCycles.

The benefit of deriving the model in this fashion is that categories are not necessary,

and IdleMemCycles is calculated accordingly to a different ratio of computation

cycles, memory cycles, N, and MWP.
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5.4 Results

The execution configuration uses the full occupancy (i.e., N = 48 for Fermi archi-

tecture) and large input size. Figure 104 shows the MWP-affecting parameters that

determine the final MWP. Note that the MWP value is limited by MWP BW, but

not by that much difference. For this type of case where MWP App is slightly greater

than or equal to MWP BW, we categorize this type of applications differently from an

application whose MWP App is much greater than MWP BW. This fact is demon-

strated both by the experiment and the model in Figure 119.
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Figure 104: MWP determining factors, where the final value is limited by MWP BW.

Figure 105 shows the performance when memory access is not considered. In other

words, this is the peak achievable performance. This is especially useful in knowing

and verifying the expected performance of computations only. Depending on whether

the benchmark uses a scalar FP instruction (e.g., multiply instruction) or an FMA

instruction (e.g., fused multiply-add instruction), the peak performance is doubled

for MB E0 to MB H0.5

On the other hand when memory effect is considered, the performance drops

significantly, as shown in Figure 106, because of hundreds of memory-access latency

cycles. But as discussed in the analytical model section, quantifying how many idle

memory cycles exist for an application is not trivial. Unlike the previous model, this

new model enables quantifying how much is the peak achievable performance and

5For CPUs, this FMA instruction is translated to a separate multiply instruction and add in-
struction, and the peak performance is not changed.
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Figure 105: Baseline performance comparison by disabling memory effect.

what contributed to idle memory cycles (from N, MWP App, MWP BW, MWP Proc,

instruction mixture ratio).
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Figure 106: Performance comparison considering memory access effects.

The amount of performance degradation can be visualized by graphing the EffRatio

metric as in Figure 107. Furthermore, these values can be put together like Figure 108.

The graph shows the predicted performance when all memory accesses are not con-

sidered in the model (i.e., also used as an approximation of perfect cache hit in L1).
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Figure 107: Visualizing the effect of memory accesses on the effective performance
ratio.

Another benefit of the model is to use the model parameters to find out how much

of the memory access latency has been hidden, whether by computations only, or by

memory-level parallelism (i.e., if two memory accesses are overlapped, then effectively
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Figure 108: Illustrating the different levels of performances: computations only,
memory effect, no ILP, and peak achievable performance.

one memory access is hidden by MWP).

5.4.1 Computation Mixture Difference

Chapter 5.4 discussed the results that have useful FP computations and memory ac-

cesses inside a kernel. However, that is not always the case in many benchmarks,

as they contain many types of instructions such as integer instructions, index cal-

culations, and branch instructions. Hence, we modify the benchmark to put those

additional instructions in between the memory and FP instructions. This effectively

changes the peak achievable performance even if memory is not considered.

Figure 109 shows that the model is able to distinguish between two cases: the left

side that ends with ”0” has only FP and memory instructions, while the right side

additionally contains other types of instructions. This effectively lowers the instruc-

tion mixture ratio such that the FP ratio is lower, and hence the overall performance

is lower. The model successfully distinguishes and predicts the actual performance

correctly. Figure 110 shows that the instruction mixture change has not changed

the MWP information, because the number of additional instructions was not signifi-

cantly high. If that were the case, the MWP App metric would be lower, which would

bring down the overall MWP further (i.e., more computation instructions lower the

MWP App term). Since the MWP values are similar to each other, we can know that

only performance differences are from the mixture ratio of useful instructions to the

total instructions.
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Figure 109: Computations result with different instruction mixtures. Left: only FP
instructions, Right: other computation instructions.
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Figure 110: MWP determining factors, where the final value is limited by MWP BW.

Figures 111, 112, and 113 show the ratio for the computations, the peak achievable

performances, and the quantitative value for the memory hiding, respectively. Note

that computations ratio for the left side is higher than the values on the right due

to different instruction mixture. But when memory effect is considered, because of

memory-access latencies, on average, the effective ratio values become similar, as the

memory is the dominant performance-affecting factor.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at

io
 

GTX580_RatioPerfComp
GTX580_RatioPerfCompMem

MB_A0 MB_B0 MB_C0 MB_D0 MB_E0 MB_F0 MB_G0 MB_H0 MB_A2 MB_B2 MB_C2 MB_D2 MB_E2 MB_F2 MB_G2 MB_H2

Figure 111: Effective performance ratio. Note the changing ratio between 0 group
and 2 group due to different mixture ratios.

Figure 112 shows various performance predictions. The first bar shows the over-

all performance considering memory effect, where the second bar predicts the peak
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achievable performance considering only computations. The third bar is the per-

formance when ILP is not considered, and the fourth bar is the peak achievable

performance. Since N is sufficiently large, the ILP effect is not relevant for this re-

sult. Figure 113 shows a very small value for hidden memory ratio. A very low ratio

of ”idle memory cycles” to ”serialized memory cycles” simply means that most of the

memory cycles are hidden by overlapping memory effects.
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Figure 112: Illustrating the different levels of performances for FP-only and mixture
benchmarks.
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Figure 113: Illustrates the effect of the overlapping memory accesses as a ratio from
the serial version.

5.4.2 Categories

The benefits of deriving the model from bottom-up and decomposing terms is that

this enables visualization and categorization of an application. By using N and MWP-

affecting parameters, two big categories can be proposed: one in which enough threads

(warps) per core (N) exists, and the other one that does not have sufficient threads to

completely hide the memory-waiting cycles (i.e., N >= MWP App InfiN). Note that

even if not enough warps exist per core to completely hide the idle memory cycles,

131



memory bandwidth saturation as well as other performance-affecting problems can

still occur.

Cases 4 and 9 show the case that even though MWP App is greater than MWP BW,

it is not too far off, and hardware is almost capable of sustaining that demand. Hence,

this is put into a separate category.
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SUB-CATEGORY I

# Case that N < MWP_App_InfiN

# Having insufficient number of warps to hide memory-latency completely

Case 1

((N < MWP_App_InfiN) and (MWP_Process < MWP_App) and (MWP_BW < MWP_App))

(Bad) Number of warps per SM is not enough for an application

(Bad) Memory problem from MWP_BW and MWP_Process

(Note) Not much you can do unless compiler optimization

(Note) Increase N does not help much as memory problem will occur

but at least some computations can execute in between

(Note) Reduce core frequency

Case 2

((N < MWP_App_InfiN) and (MWP_Process < MWP_App) and (MWP_BW >= MWP_App))

(Bad) Number of warps per SM is not enough for an application

(Bad) MWP_Process problem with N. Improve memory type

Reducing cores does not help really because single mem. latency issue from one sm

(Note) Increase N does not help much as memory problem will occur

but at least some computations can execute in between

(Note) Reduce core frequency

Case 3

((N < MWP_App_InfiN) and (MWP_Process >= MWP_App) and (MWP_BW < (0.85 * MWP_App)))

(Bad) Number of warps per SM is not enough for an application, but not too much

(Bad) MWP_BW problem

(Note) Use other device with larger BW, reduce active cores & data usage per thread

(Note) Increase N does not help much as memory problem will occur

but at least some computations can execute in between

Case 4

((N < MWP_App_InfiN) and

(MWP_Process >= MWP_App) and (MWP_BW >= (0.85 * MWP_App)) and (MWP_BW < MWP_App))

(Bad) Number of warps per SM is not enough for an application

(OK) MWP_BW may be just enough

(Note) Use other device with larger BW, reduce active cores & data usage per thread

(Note) Increase N does not help much as memory problem will occur

but at least some computations can execute in between

(Note) Fourth Best Case !

Case 5

((N < MWP_App_InfiN) and (MWP_Process >= MWP_App) and (MWP_BW >= MWP_App))

(Bad) Number of warps per SM is not enough for an application

(Good) No HW saturation problem in Memory BW and Memory Process from N perspective

(Note) Increase N helps definitely

(Note) Reduce core frequency

(Note) Third Best Case !

Figure 114: Categorization of an application using model insights: N < MWP App.
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SUB-CATEGORY II

# Case that N >= MWP_App_InfiN

# Having sufficient number of warps

Case 6

((N >= MWP_App_InfiN) and (MWP_Process < MWP_App) and (MWP_BW < MWP_App))

(Good) Enough number of warps (N) to hide memory latency

(Bad) Memory problem from MWP_BW and MWP_Process.

Memory saturation overlapping problem, could result in extra cycles

(Note) Computations to fit idle cycles are enough

But memory problems could result in more idle cycles

(Note) Possibly reduce N to reduce stressing register/fetch/decode/scheduler

Case 7

((N >= MWP_App_InfiN) and (MWP_Process < MWP_App) and (MWP_BW >= MWP_App))

(Good) Enough number of warps (N) to hide memory latency

(Bad) Memory problem from MWP_BW and MWP_Process.

Memory saturation overlapping problem, could result in extra cycles

(Note) Computations to fit idle cycles are enough

But memory problems could result in more idle cycles

Case 8

((N >= MWP_App_InfiN) and (MWP_Process >= MWP_App) and (MWP_BW < (0.85 * MWP_App)))

(Good) Enough number of warps (N) to hide memory latency

(Bad) MWP_BW problem. Bandwidth problem

(Note) Use other device with larger BW, reduce active cores & memory data usage per thread

Case 9

((N >= MWP_App_InfiN) and

(MWP_Process >= MWP_App) and (MWP_BW >= (0.85 * MWP_App)) and (MWP_BW < MWP_App))

(Good) Enough number of warps (N) to hide memory latency

(OK) MWP_BW may be just enough

(Best) Second best case !

Further improvement comes from compiler optimization

Case 10

The Best Case !

((N >= MWP_App_InfiN) and (MWP_Process >= MWP_App) and (MWP_BW >= MWP_App))

(Good) Enough number of warps (N) to hide memory latency

(Good) No HW saturation problem in Memory BW and Memory Process from N perspective

(Best) The best case.

Further improvement comes from compiler optimization

Figure 115: Categorization of an application using model insights: N >=MWP App.
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5.4.3 Power Measurements on GTX580

Figure 116 shows the measured power data for the memory-intensive benchmarks.

The raw power data has been processed to produce 16 points, where each point

represents a different number of active cores. The first point refers to using only

one active core, whereas the last point refers to using all 16 cores. The benchmark,

CMEM, is computationally intensive, so this does not saturate bandwidth, while the

benchmarks DMADD and DOTP highly saturate memory bandwidth. The bench-

marks MADD and MMUL fall in between. Note that regardless of whether or not a

benchmark saturates in memory behavior, the consumed power is always increased

with an increasing number of cores. Contrary to computations-only benchmarks,

these memory-intensive benchmarks vary more widely in their power numbers with a

delta of 170 W (computations-only delta is about 60 W). This power data is used to

produce energy-efficiency results in the subsequent sections.
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Figure 116: Processed power measurement data on GTX580 GPU.

5.4.4 More Benchmark Analysis on Bandwidth

First, the bandwidth evaluating benchmarks from the previous power work are used

for testing memory bandwidth. However, because of the cache in GTX580, the bench-

marks are modified while keeping the original structure as much possible. Figure 117
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shows a portion of code that shows the kernel. The memory access depends on the

previous loaded value. Regardless of whether it is a multiplication or an addition,

note that the stride is always 16384. By confirming with the profiler, this stride makes

sure that the memory access always misses both in L1 and L2 caches. The reason for

this high stride is that from a core’s perspective, stride that is bigger than a cacheline

size (i.e., 128-bytes) is sufficient. However, because L2 is shared and the other cores

already used that index earlier, simply increasing the stride does not work.
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// Dmadd Kernel. Each memory data is pre-allocated with the value of 8192, overall stride is 16384

for (int i=0; i<LOOPITER; i++)

{

loadedvalue = dm_input1[index] + dm_input2[index];

index += loadedvalue;

loadedvalue = dm_input1[index] + dm_input2[index];

index += loadedvalue;

loadedvalue = dm_input1[index] + dm_input2[index];

index += loadedvalue;

}

// Dotp Kernel. Each memory data is pre-allocated with the value of 128, overall stride is 16384

// 128 * 128 = 16384

for (int i=0; i<LOOPITER; i++)

{

loadedvalue = dm_input1[index] * dm_input2[index];

index += loadedvalue;

loadedvalue = dm_input1[index] * dm_input2[index];

index += loadedvalue;

loadedvalue = dm_input1[index] * dm_input2[index];

index += loadedvalue;

}

// Cmem Kernel. Each memory data is pre-allocated with the value of 16384

// Overall stride is 16384

for (int i=0; i<LOOPITER; i++)

{

loadedvalue = dm_input1[index];

index += loadedvalue;

FMAD4(sum, multipler)

FMAD4(sum, multipler)

loadedvalue = dm_input1[index];

index += loadedvalue;

FMAD4(sum, multipler)

FMAD4(sum, multipler)

FMAD4(sum, multipler)

FMAD4(sum, multipler)

}

// Mmul Kernel. Each memory data is pre-allocated with the value of 8192 with multipler of 2

// Overall stride is 16384

for (int i=0; i<LOOPITER; i++)

{

sum = multipler * dm_input1[index];

index += sum;

sum = multipler * dm_input1[index];

index += sum;

sum = multipler * dm_input1[index];

index += sum;

}

// Madd Kernel. Each memory data is pre-allocated with the value of 11384 with adder of 5000

// Overall stride is 16384

for (int i=0; i<LOOPITER; i++)

{

sum = adder + dm_input1[index];

index += sum;

sum = adder + dm_input1[index];

index += sum;

sum = adder + dm_input1[index];

index += sum;

}

Figure 117: The set of code designs to control cache accesses in GPU Fermi archi-
tecture with L1 and L2 caches.
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Figure 118 shows the version that has the L1 and L2 cache hit, so that the per-

formance scales linearly with more cores even if an N of 32 and all 16 cores are used.

On the other hand, Figure 119 shows the case when DRAM is stressed 100% of the

time for each memory instruction.
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Figure 118: Benchmarks with L1 hit. Note that even with many cores, the perfor-
mance scales linearly.

Figure 119 shows multiple performance versions varying N from 8 to 32. A different

N means a different number of allocated hardware threads per core (SM), and the

benefit is that when there is a long-latency instruction such as memory access, a

processor switches to the other warps and continues execution. What we expected is

that as N is increased, more parallel memory requests are put in the system.

According to the expectation, when N is small (N = 8), the performance scales

linearly even if the memory system is intensively used (i.e., each memory access is

accessing DRAM and verified in the CUDA profiler). However, as N is increased,

DMadd and Dotp start to show some degradations, because of their higher memory

strength per thread (i.e., MSTR). The degradation becomes clearly visible at N =

24. Interestingly, at N = 32, Cmem still scales linearly, while Dmadd and Dotp show

significant performance degradations. The performances of Madd and Mmul fall in

between.

One significant improvement from the previous model used for performance and
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power is that the previous model always predicted the same number of cores that

saturates bandwidth. This is because the model assumes that at any given moment

of time, each warp is requesting one memory transaction. However, this is not always

so, because there can be multiple independent memory requests as in the Dmadd

case, illustrated in Figure 99. Furthermore, even knowing this issue would not be

sufficient since integrating into the model would not be very straightforward.

Another contribution of this new model is the following example. Even if those

independent memory requests are handled, however, if an application has so much

computation that not many warps can be overlapped anyway, then the application’s

demand for MWP should be lower than expected. Hence, the MWP App metric

is proposed to solve the above two cases: independent memory requests and actual

memory demand considering the amount of computation (i.e., a very computation-

intensive benchmark does not demand high bandwidth). In other words, MWP App

indicates how many overlapping memory requests are at demand, and when hardware

supports the sufficient bandwidth (i.e., MWP BW is sufficient), then there is no

bandwidth problem. Furthermore, we can even quantify the degree of bandwidth

saturation (i.e., how much MWP App is greater than MWP BW) with the new model.

Because of these contributions, Figure 121 shows the case where MWP App is

different depending on the application. Dmadd and Dotp show much higher band-

width demand than the rest. For the first figure, MWP BW is much higher than

MWP App; hence this shows the case in Figure 119. However, as N is increased,

MWP App approaches MWP BW, which in turn puts pressure on the memory sys-

tem and performance degradation starts to occur.
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Figure 119: Performance data for memory-intensive benchmarks. Each benchmark is
normalized to the best expected performance if no BW saturation has occurred. The
Cmem performance does not degrade with increasing N, while Dmadd’s performance
degrades significantly. The Madd’s performance degradation is in between Cmem and
Dmadd.
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Figure 120: Effects of different N on MWP App vs. MWP BW, where N values are
8, 16, and 32. Dmadd and Dotp significantly overpass MWP BW, while the rest do
not. This effect can be correlated to Figure 119.
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Figure 121 shows the raw normalized performance data for these benchmarks.

As these show actual performance data, three categories can be clearly seen. For

Cmem, there is no saturation effect at all, while Dmadd shows severe performance

degradation as N is increased. For Madd, the model predicts that there is no memory

saturation effect; however, we can see a slight performance degradation for N = 32.

For this reason, we make a change in the category that when MWP App is very

similar to MWP BW within 15%, we project that saturation is not severe, but can

be slightly observed.

Figures 122 and 123 show a different perspective of analyzing the memory effect.

The x-axis is the number of active cores, while the y-axis shows the corresponding

MWP values. For Cmem, both the new model and old model predicts that memory

bandwidth is enough. However, for Dmadd, the previous model predicts otherwise,

while the new model predicts a bandwidth problem. The reason is that the previous

model compares MWP BW to N, while the new model has a new metric, MWP App,

that considers both computation amount and memory strength (MSTR). The new

model can even detect two cases when N = 16 and N = 32. When N = 16, MWP BW

nearby approaches MWP App, so a little bit of bandwidth saturation can occur.

However, when N = 32, much degradation will occur because MWP BW is much

smaller than MWP App.

Figure 124 shows another perspective. This time N is changed. As N is changed,

we can see that MWP App for Dmadd and Cmem are increased at a different rate. If

the MWP App term hits the MWP BW line (the MWP BW line is drawn at differ-

ent active cores), this is the maximum N that avoids further bandwidth saturation.

The benefit of using the model this way is that given an application, the optimum

number of N can be found, not just finding the optimal number of active cores for an

application. Hence, rather than only predicting active cores, the benefit of the new

model is that all the terms can be rearranged to predict and suit the purpose.
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5.4.5 MWP Metrics Usability and Insights

Figure 125 shows that the model predicts different categories with different N, even

for the same benchmarks. As N is increased, much pressure is put on the memory

system. Hence, the categories are shifted. The benefit of using categorization is

that any benchmark can be categorized from a modeling perspective, which is unique

compared to other categorization mechanisms. On the other hand, Figure 126 shows

the changing the active number of cores for a fixed N value. For the benchmarks that

demand a high bandwidth such as Dmadd and Dotp, the category number is smaller

than other benchmarks’ values (i.e., the higher the better). When N is 48, then

because of even more bandwidth demand, the categories become even more smaller

than when N is 24.
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Figure 121: Normalized performance data for memory benchmarks. Each benchmark
is normalized to its best performance point. The Cmem performance does not degrade
with increasing N, while Dmadd’s performance is degraded significantly (i.e., not
linear) with increasing N. The Madd’s performance degrades at a rate that is between
Cmem and Dmadd.
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5.5 How to Derive Quantitative Model Suggestions?

The model that is restructured and improved has high benefits and extendability as

feedback to a programmer, compiler, and even to a runtime system. This work is

not based on on machine-learning or profiling mechanisms. Furthermore, this work

is generic enough that it can be applicable to other architectures such as CPUs.

This section discusses how this model derives for giving further suggestions that can

improve not only performance, but also less peak power and even optimum energy

efficiency.

5.5.1 Finding the Optimum Number of Active Cores

The basis for this suggestion is that if too many cores are active, since each core

consumes some portion of available memory bandwidth, the overall bandwidth might

not be enough for all threads or warps inside a core. Even if this happens, the model

(especially the improved version) can quantify a different bandwidth demand for an

application (i.e., independent memory accesses, amount of computations between

memory accesses, etc.). Because the model identifies the demand bandwidth (i.e.,

MWP App) of an application, and how much bandwidth a device can provide (i.e.,

MWP BW), calculating the overall effect is possible. Hence, given the following situ-

ation (MWP App > MWP BW), the solution is either to (1) increase MWP BW, or

(2) decrease MWP App. First, since (MWP > MWP BW), how much to MWP BW

should be increased is derived as follows.

MWP BW new = α×MWP BW (83)

MWP BW new ≥ MWP App (84)

Therefore, α ≥ (MWP App/MWP BW ) where α ≥ 1 (85)

The α term tells how much MWP BW should be increased. Since the MWP BW

term is represented by the following equations, either the numerator is increased by
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α, or the denominator should be decreased by 1/α.

MWP BW new = α×MWP BW (86)

=
α×Mem Bandwidth

BW per warp×#ActiveSM
(87)

=
Mem Bandwidth

(1/α)×BW per warp×#ActiveSM
(88)

This representation shows that either the device with larger memory bandwidth

should be used instead if available, or BW per warp or #ActiveSM should be re-

duced (i.e., divided by α). The first method requires code changes, while the latter

option of reducing number of active cores requires either code techniques or using

special internal API calls, which are not publicly available.

The model’s improved prediction mechanism has the clearest advantage when the

performance-per-watt metric is plotted. Figure 127 shows four cases. The y-axis

shows the normalized performance-per-watt value (higher is the better), and the x-

axis shows the number of active cores. When N is eight, both the previous model and

the new model predict using the maximum number of cores to maximize performance

per watt, as well as for N equals 16. However, when N is 24, the new model predicts

13 cores for Dmadd and Dotp (the rest is still the maximum number of cores), while

the previous model still predicts 16 cores. Finally, when N is 32, the new model shifts

its previous prediction further to the left and predicts ten cores, while the previous

model predicts 16. The only time that the previous model predicts fewer than the

maximum number of cores is when N is equal to 48. However, even in this case, the

previous model predicts the same number of cores like the previous work. The new

model not only predicts a different number of cores, but even distinguishes between

different benchmarks.

Figure 128 compares the energy efficiency as a bar graph. The figure shows that

Dmadd and Dotp show the worst prediction from the previous model, while Cmem’s
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prediction is correct. Madd and Mmul fall in the mid-range. This shows that im-

provement in the MWP BW and MWP App metrics lead to better predictions and

thus better energy efficiency.
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Figure 127: Energy-efficiency graph vs. N between the previous and the new model.
Each line is normalized to the benchmark’s best performance point. The previous
model predicts all cores, while the new model predicts a different number of cores for
the application, and even the accuracy is better.
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Figure 128: Energy-efficiency predictions between the previous and the new model.
The efficiency value of one is the best. On average, the new model achieves 94.76%
toward optimum efficiency, while the previous model achieves 90.09%. For the worst
case, the new model achieves 89.91%, and the previous model achieves 79.5% for N
= 32.

152



5.5.2 Better Number of Threads per Core (N)

The new model suggests the number of active cores to maximize energy efficiency, and

the model terms can also be arranged to suggest a different N (i.e., related to occu-

pancy). Similar to the reasoning in Section 5.5.1, the derivation is as follows, with the

only difference being decreasing MWP App (such that MWP App ≤ MWP BW )

rather than increasing MWP BW.

MWP App new = α×MWP App (89)

MWP App new ≤ MWP BW (90)

Therefore, α ≤ (MWP BW/MWP App) where α ≤ 1 (91)

Since MWP App is calculated as follows, the easiest method to control MWP App is

by decreasing the N value by (1 - α)%.

MWP App = MIN(MWP App InfiN,N)×MSTR (92)

When this suggestion is applied to the benchmarks, the result in Figure 129 shows

that the energy efficiency is preserved quite well except for a little degradation for

Dmadd and Dotp. Nevertheless, this is much better than about a 30% degradation

as shown in the fourth case of Figure 127. Note that energy efficiency is preserved

even if all the active SMs of 16 are used.

5.5.3 Core Frequency Reduction

This new model can provide further insights to better energy efficiency. When

memory-waiting idle cycles are significant, the core performance such as frequency

can be reduced. The question is how to derive this term from the analytical model.

The assumption is that memory clock is not reduced, but only the core frequency is

changed.

Figure 130 shows that only two warps exist, so the MWP App InfiN metric (not
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Figure 129: Activating all 16 SMs but just using N = 18 as the model suggested.
Note that performance degradation for Dmadd and Dotp is not severe, about 10%,
compared to using N = 32, which degrades performance by more than 30%.

MWP App that considers N) is higher than N, which means there will be idle mem-

ory cycles because not enough computations and N exist to hide all idle memory

cycles. Quantitatively, the figure shows that only one (C2) computation is hiding

M1’s memory access, while three threads are needed. Since the ratio is three to one,

the computation core frequency can be reduced by a factor of three. Equation (93)

shows the derivation that specifies how much a core frequency can be reduced that

minimizes performance degradation.

Figure 130: Quantifying the core reduction frequency.

CoreReductionPercent ≈ (MWP InfiN − 1)/(N − 1) (93)

154



5.6 Case Study: Matrix Multiplication

Figure 131 illustrates two benchmarks: naive and tiled matrix multiplications in a

performance-space graph. A performance can be anywhere from 0 to 1600 GFlops

for a GTX580 GPU. Despite this large range of possible performances, two major

contributions from the model can be stated. First, the model successfully predicts

the actual measured performances in the correct range. Second, one interesting fact

can be derived from the prediction: the model is able to adjust the width from L1

and DRAM as block size is increased.

Figure 131: High-level illustration showing two different matrix multiplication im-
plementations. The model not only predicts a correct performance range for different
block sizes, but also spots the thinning gap effect between L1 and DRAM predictions
lines.

For example, for the naive matrix multiplication, the distance between the L1-hit

prediction line and the DRAM-prediction line is preserved. However, for the tiled

matrix multiplication, the gap is thinning. The primary reason is that as block size

is increased, for the tiled matrix multiplication, there are more computations with
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fewer global memory accesses per warp.6 Since only a finite number of warps can

be allocated per SM, effectively more computations can hide memory-waiting cycles

as block size is increased, whereas for the naive matrix multiplication, the block size

does not have any impact on the number of instructions per warp.

The model also predicts the L1-hit prediction and DRAM-only prediction lines.

These performance prediction lines provide useful information to the compiler or a

programmer, as this gives them a lower-bound and an upper-bound of performance.

Furthermore, the model can even give future performance predictions, unique to an

application, when one parameter, such as bandwidth and number of cores, is changed.

Figure 132 shows the naive matrix multiplication result. The line, MatNaive Measured,

is the measured data. The line, Model High L1, is the model prediction when all

global memory accesses are L1-cache hits, while Model High DRAM and Model DRAM

lines represent if most global memory accesses are DRAM access, or all accesses are

DRAM accesses.

0

20

40

60

80

100

120

1 4 16 64 256 1024

G
F

lo
p

s

Blocksize

MatNaive_Measured

Model_High_L1

Model_High_DRAM

Model_DRAM

Figure 132: Naive matrix multiplication result. The model predicts high L1-cache
hit, high DRAM-accesses, and all-DRAM accesses cases.

The first observation is that the gap between L1 and DRAM is much wider than

the tiled matrix multiplication case. For this type of application, having a high cache

6With larger block size, more number of global memory accesses are changed to shared memory
accesses, which we consider as computation accesses.
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hit is very important. However, the upperbound (Model High L1) is not very high

in the first place. Hence, for this type of application, making an algorithm change is

suggested.

Figure 133 shows the profiler result for memory accesses. The graph shows the

distribution ratio among L1, L2, and DRAM. The measured result closely follows the

mostly-L1-hit line, which the model predicted. However, because the algorithm itself

generated very low useful instructions to the total instructions ratio, even with a very

high-cache hit in L1, the overall performance is not very good.
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Figure 133: Profiler result for tiled matrix multiplication on GTX580, showing the
memory distribution ratio among L1, L2, and DRAM.

Figure 134 shows MWP values. The figure shows that MWP App is much higher

than MWP BW for block sizes of 16 and 32 (256, 1024 in other figures). As a result,

this is going to saturate memory bandwidth. However, because of a large ratio of

L1-cache hit, this saturation effect is not observed in the Fermi architecture.
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Figure 134: MWP values for naive matrix multiplication for GTX580. If cache
did not exist, this benchmark would have generated a very high degree of memory
saturation.
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On the other hand, Figure 135 shows the result for the tiled matrix multiplication.

The analysis is more complicated than the naive case for several reasons: the number

of instructions is changed as block size is changed. Nevertheless, the model does

predict a correct performance range since the measured data is inside the upper and

lower bound lines.
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Figure 135: Blocked matrix multiplication result. The interesting case is that as the
block size becomes larger, the number of global memory accesses is decreased, while
the computations are increased per warp. Note the decreasing gap between L1 and
DRAM as the block size is increased. The new model is able to spot this effect since
the gap between the L1 and DRAM lines is getting smaller.

A few important things can be derived from the model prediction lines. First,

the circle ”A” shows the distance between Model High L1 and Model DRAM, which

is disproportionately wider compared to the circle ”B” and even when compared to

the naive matrix multiplication case. The reason is that as previously mentioned, as

block size is increased, more computations with fewer global memory accesses exist

per warp. Since N is limited per SM, for tiled matrix multiplication, effectively more

DRAM-waiting cycles are hidden by computations. Hence, the insight from the model

predictions only is that for this type of application where the gap is not significantly

large, optimizing for better cache hits is not a good strategy.

Figure 136 shows the profiler result. The result shows that for small block size,
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which mimicks a naive matrix multiplication, the cache hit ratio is high. But as the

block size is increased, memory accesses are mostly hit in L2 and DRAM. One possible

analysis for why the measured data increases at the same rate as Model DRAM (i.e.,

the measured data is not increased at a high rate) is that MWP App is higher than

MWP BW at those points. These MWP values assume DRAM-only accesses, but we

can assume this since the profiler result shows a high DRAM-accesses ratio.
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Figure 136: Profiler result for blocked matrix multiplication on GTX580, showing
the memory distribution ratio among L1, L2, and DRAM.

Because of the high DRAM accesses for a block size of 256 and 1024, and MWP App

is higher than MWP BW, as shown in Figure 137. We project that the memory sys-

tem is much stressed. Hence, the increasing rate of the measured data is low when

compared to the DRAM-only predictions from the model.
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Figure 137: MWP values for the tiled matrix multiplication for GTX580. Note that
assuming all DRAM accesses, the MWP App is larger than MWP BW for larger
block sizes, generating memory bottleneck.
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5.6.1 Category with Suggestions

The category information is related to the memory saturation effect. When most

memory requests are L1-hit, the category output is the best case. As mentioned

previously, the categories from one to five are one big category when not enough N

exists (i.e., N < MWP App Infi), with number 5 being the best case (no memory

saturation problem). The categories from six to ten are another big category that

specifies that N is sufficient (i.e., N >= MWP App Infi). The number six is the worst

case with the memory saturation problem, while the number ten is the best case.

Figure 138 shows the category information for the naive matrix multiplication.

The top graph assumes most memory accesses were L1-cache-hit accesses, while the

bottom graph assumes DRAM-intensive accesses. Because the model takes into ac-

count the idle DRAM cycles, the categories are different depending on memory access

patterns.
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Figure 138: Category for naive matrix multiplication. Top: L1 intensive, Bottom:
DRAM intensive. As the block size is increased, good categories are preserved for the
L1-intensive case, while the categories become worse for the DRAM-intensive case.
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The top figure starts with the category value of five, then ten. Both the values

of five and ten are the best cases, with only the difference being in N. Since not

enough N exists for Mat 1 and Mat 2 but memory accesses are good (i.e., L1 hit),

the category of five is used. Later, when N is increased, the category value is changed

to ten. However, for the DRAM-intensive case, the categories initially start with 5,

but as much stress on the memory system emerges, the categories get reduced. The

reason NMat 32 is higher than NMat 16 is that N for NMat 16 is higher since only

one 1024 threads per block are assigned per SM, whereas multiple 256 threads per

block can be assigned for the prior case.

Figure 139 shows the category information for the tiled matrix multiplication.

Interestingly, the categories are improved with a larger block size. As previously

mentioned, the number of global memory accesses and total computations per warp

are reduced with increased block size. Hence, this is better for the memory system.

Furthermore, as large computations are able to hide idle DRAM cycles effectively, the

category is very much improved with larger block size. This case illustrates a very

good case when an algorithm is well designed.

Table 13 shows the core predictions between the previous and the new model for

L1-intensive and DRAM-intensive cases. The parentheses for the new model specifies

the case where all memory accesses are DRAM accesses, whereas the numbers outside

the parenthesis specify the case where most memory accesses are DRAM accesses.

Note that for all DRAM access cases, the new model does adjust the number of cores

to be even smaller than what it predicted earlier.

Figure 140 shows the expected energy efficiency. By using the same methodology

from Figure 127 in which the new model predicts a better point for core prediction,

the energy efficiency estimation is produced. The values are normalized to the default

value that uses all number of cores. For example, each value of DRAM Intensive and

DRAM only are normalized to their default configuration that uses all available cores
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Figure 139: Categories for different block sizes in the tiled matrix multiplication.
Top: L1 intensive, Bottom: DRAM intensive. Unlike naive matrix multiplication, the
categories are improved for larger block sizes because the number of computations is
larger, leading to hiding more idle memory cycles.

(16 cores for GTX580). The result shows that even for benchmarks that can hide idle

memory cycles well like the tiled matrix multiplication, there is a room for improve-

ment by reducing the number of cores, only one core for the DRAM intensive case,

and four cores for the pure DRAM accesses case. For naive matrix multiplication,

the energy efficiency improvement will be more significant.
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Table 13: Core predictions out of 16 total cores. P Model means the previous model
in Chapter II, N Model means the new model. L1 specifies highly L1-intensive ac-
cesses, while DRAM specifies highly DRAM-intensive accesses. The number inside
the parentheses predicts for all DRAM accesses.

Core Suggestion P Model L1 N Model L1 P Model DRAM N Model DRAM
NMat 4 16 16 16 16
NMat 32 16 16 11 4
NMat 4 16 16 16 16
NMat 16 16 16 11 13 (10)
NMat 32 16 16 11 15 (12)
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Figure 140: Expected projection of energy efficiency improvement for tiled matrix
multiplication.

5.7 Model Parameters and Inputs

Table 14 shows the model parameters for a device. As illustrated, the model only

considers essential high-level information of a device such as number of cores, DRAM

latency, number of FP units per core, and bandwidth.

Table 14: Model parameters for GTX580 and Nehalem E5645.
Frequency DRAM Latency NumCores FP Units Per Core Bandwidth

GTX580 2.4 GHz 450 1 32 (SIMT) 150
E5645 (x2) 1.544 GHz 250 12 2 (Non-SSE), 2 (4-wide SSE) 50

Table 15 shows the model input for the benchmark. Similar to the device input, the

input for the benchmark is very compact. Since the model considers FP performance,

the input shows many versions of FP instructions. The primary difference among

these versions is whether a FP instruction is a vectorizable version or not. If it is

vectorized, then number of floating-point operations will be calculated accordingly

for CPU case, but for GPU case, this instruction is considered just like normal FP

163



instruction. It is important to distinguish a fused-multiply (FMA) instruction as well

since two floating-point operations are done per cycle for GPU, but there is no FMA

instruction supported in CPU. Hence, for CPU, an FMA instruction is decomposed

into two scalar FP instructions.

Table 15: Model parameters for benchmark input.
Description

fp insts Number of scalar FP instructions per warp (thread)
fp fused insts Number of fused multiply-add instructions per warp (thread)
fp vec insts Number of vectorizable scalar FP instructions per warp (thread)
fp vec fused insts Number of vectorizable fused multiply-add instructions per warp (thread)
int insts Number of integer instructions per warp (thread)
br misc insts Number of other instructions excluding FP, INT, Memory instructions per warp (thread)
mem insts Number of memory instructions per warp (thread)
mem indep strength Number of independent memory strength (MSTR) per warp (thread)
ILP Effective ILP number per warp (thread)
SSE ILP Effective ILP number for SSE instructions per warp (thread)
DEP Dependence strength between consecutive instructions per warp (thread)
Bytes per thread An average number of bytes each thread requests per thread
DistanceMemBytes An average distance in bytes between each thread (affects different number of transactions)
N Number of warps or threads per core or streaming processor (SM)

5.8 Applicability to CPU Architectures

The model is generic enough to be applicable for a CPU architecture. The primary is-

sues to consider for CPU are modeling the ILP effect, and to correctly use the number

of FP instructions as CPU has both scalar FP and vectorized FP instructions. For ex-

ample, a vectorized FP instruction utilizes four SIMD lanes, whereas a non-vectorized

FP instruction only uses a scalar FP execution unit. In terms of throughput, this is

four factor of difference, hence it is very important to consider these factors correctly.

Furthermore, unlike GPU execution, OpenCL implementation for CPUs does not sup-

port efficient multithreading between computation instructions. Hence, depending on

the back-to-back instruction dependency, the performance degradation is affected sig-

nificantly. For example, the FP instruction latency is about four cycles [30], so if there

is no independent FP instruction within those four cycles, performance is degraded.

For example, if the instruction is back-to-back dependent, performance degradation
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is by a factor of four from the ideal case.7 If instructions are dependent every two

instructions, then the degradation factor is by a factor of two. And, when the distance

is greater than four, no performance degradation exists, as the pipeline is hidden by

other same-type instructions. Finally, we have not observed a context-switching of

threads when there is a memory access like the GPU does. For this reason, we model

this behavior simply by setting the number of warps (threads) per core (i.e., N term)

to the value of one, and the model automatically takes care of this phenomenon.

Figure 141 shows that the performance from MB A to MB D, and from MB E to

MB H is linearly increased. The reason is that the back-to-back instruction depen-

dency distance is one for MB A, and it is four for MB D. MB D and MB H produce

the expected performance, because the FP latency for the CPU architecture is about

four cycles. Hence, all the subsequent instructions are pipelined without delay, and

thus the expected performance is obtained.
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Figure 141: Baseline performance comparison by disabling the memory effect. Note
that the dependency effect (DEP) is visible from A to D and E to H. Because there
is no fused-multiply-add instruction, the performance does not double for E to H
compared to A to D.

Figure 142 shows that because we have not observed an efficient multithreading

effect during memory accesses, the MWP value is fixed at one for CPUs in the model.

Figure 143 shows the ratio for computations only and then the ratio considering

memory accesses. Similar to GPUs, the effect of memory access is significant. In

other words, when the CPU does not have a cache hit, an efficient multithreading

7Ideal case is when an output is produced every cycle.
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Figure 142: MWP determining factors for CPU.
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Figure 143: Ratio values for CPU, demonstrating the effect of the memory access
on the overall performance.

5.9 Heterogeneous System and Execution

The ability of the new throughput model to generate multiple performance values has

many benefits, including its applicability to a heterogeneous systems. By predicting

the upperbound and lowerbound of the potential performance on both CPUs and

GPUs, even before profiling on actual hardware, a better starting point of heteroge-

neous execution can be provided to the runtime scheduler. For example, rather than

starting 50 to 50 percent between the CPU and GPU, the model could suggest only

running on one architecture (not running at all), or the model can provide a better

starting point for execution.

Figures 144 and 145 show the performance values predicted by the model for CPU

and GPU, respectively. The model predicts different cases such as the high-L1 hit

and the DRAM-intensive. Because the performance gap between L1 and DRAM is

different (as shown for matrix multiplication case), this information is also important
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for runtime scheduling.
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Figure 144: Multiple model performance predictions for CPU.

0

50

100

150

200

250

300

350

400

G
F
lo

p
s

GPU_Kernel

GPU_Model

GPU_Model_High_L1

GPU_Model_High_DRAM

Figure 145: Multiple model performance predictions for GPU.

Figure 146 shows the final predictions with the measured data for a CPU and GPU.

Despite having cache hierarchy for both the CPU and GPU, this demonstrates that

the model successfully predicts the kernel performance. The model uses a heuristic to

project cache hit/miss information by using a small input and using a GPU profiler

for both the CPU and GPU. This mechanism can be further improved by using

Ocelot, which can dynamically analyze a subset of memory addresses and predict

cache hit/miss information, even before the actual scheduling.
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Figure 146: Comparison between the model and measured performances for CPU
and GPU.

Figure 147 shows the scheduling decisions projected by the model and the manually-

found best mapping ratios. The scheduling ratio from the model is within 17% of

the manually found method. Finally, Figure 148 shows the final result graph for

heterogeneous execution.

This section demonstrated the potential applicability to both CPU and GPU ar-

chitectures and heterogeneous system. Surprisingly, the model successfully predicted

multiple performance values for different cache hierarchy levels, and despite using a

simple heuristic for finding cache and DRAM memory access ratios, the final predic-

tions matched the final measured data within 17% for the GPU and 28% for the CPU.

These errors can be further reduced if a better memory distribution ratio is found by

either using a small input on a profiler or advancing the heuristic and using Ocelot

at the same time. Furthermore, by considering the data transfer time to GPU, the

scheduling decision will be more practical. This concludes the section on the advanced

model and its multiple practical uses, which are not limited to scheduling.
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Figure 148: Heterogeneous performance using the model output.
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CHAPTER VI

RELATED WORK

6.1 Recent GPU Performance Work

Recent relevant work on the GPU performance model is GROPHECY by Meng et

al. [68]. Their work uses our analytical performance work [33] for performance predic-

tion, but extends the performance work by projecting performance on CPU code. The

idea is that since converting the CPU code to GPU code takes time and effort the code

conversion should be done only when the model predicts that sufficient benefits exist.

Hence, this work primarily focuses on the issues of transforming CPU code. Contrary

to this work, our work extends the analysis further to bandwidth saturation and using

OpenCL. Furthermore, the model is revised extensively so that performance-affecting

hardware and software parameters can be easily simulated, producing an upperbound

and lowerbound of expected performances.

Sim et al. [89] has done a practical extension of our work [33]. Rather than predict-

ing the performance itself, the work focuses on quantifying the benefit of an optimiza-

tion as many optimization techniques are available. Furthermore, the work visualizes

such optimization action in compute-and-memory-bound space. The primary differ-

ence from our improved work in Chapter V is that the focus is different. Because

our improved model is restructured and mathematically built using a top-down ap-

proach, given an application, our model can immediately calculate the upper-bound

and lower-bound of performance while still preserving ideas such as the MWP and

CWP concepts. Furthermore, we improved the MWP-CWP relationship to remove

corner cases and further extend the work to target energy-efficient execution by find-

ing optimum N and number of cores, and producing detailed category information
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with optimization suggestions.

The work by Jia et al. proposed GPURoofline [46], which is an extension of the

previous work [103]. While conceptually the topic is practical and useful, using just

the compute intensity to find the upperbound is too simplified for a GPU architecture.

Unlike CPU execution, there is an inter-complicated relationship between multiple

factors such as N, memory-level parallelism, bandwidth saturation, etc. Hence, given

instruction information and N, it is not very clear how to use the model, whereas our

work clearly shows how to use the model and produces more performance values, not

limited to the values of the roofline.

Zhang and Owens proposed a quantitative performance analysis model [105]. The

major difference is that while our work is analytically built-up using architectural in-

formation, their work is built from the opposite direction, which is using microbench-

mark outputs. Their work focuses on instruction pipeline throughput and shared

memory. The work is more on analyzing CUDA performance on a few real bench-

marks with qualitative discussions rather than using the model inputs and outputs.

Contrary to this work, our work uses explicit model outputs to discuss the output

results.

Baghsorkhi et al. [7] proposed a GPU performance model using a work-flow graph

as an abstract interpretation of a GPU kernel. The program dependence graph

(PDG), which contains control and data dependence information, is used to pre-

dict performance. This work primarily focuses on a compiler-based approach that

determines the path and weight of each path to find the dynamic instruction counts.

While this work would provide very good analysis on obtaining more accurate in-

puts, the output is mere execution cycles with limited further insights, unlike our

work. Nevertheless, there is a high potential to improve the model significantly by

leveraging this work for the input portion of our model.

Kothapalli et al. [54] proposed a performance prediction model similar to our work.
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However, the model is a simplified version, which is limited in handling bandwidth

and multiple N that affects memory performance.

The community for general-purpose GPU (GPGPU) computing provides insights

into how to optimize GPU code to increase memory-level parallelism and thread-level

parallelism [29]. However, all the heuristics are qualitatively discussed without us-

ing any analytical models. The most relevant metric is an occupancy metric that

provides only general guidelines. Ryoo et al. [83] proposed two metrics to reduce an

optimization space for programmers by calculating the utilization and efficiency of ap-

plications, but their work only focused on non-memory-intensive workloads. In com-

parison, we thoroughly analyzed both memory-intensive and computation-intensive

workloads to estimate the performance of applications. Furthermore, their work just

provided optimization spaces to reduce program-tuning time. In contrast, we predict

the actual execution time.

Predicting multiple GPU performances using a single performance model is pro-

posed by Schaa et al. [86]. Recent work by Zhang and Owens [105] proposed a

performance model from a quantitative perspective, where the model is based on the

throughput of the instruction pipeline, shared-memory access, and global-memory

access.

Luk et al. [66] empirically modeled the performance of GPGPU applications as a

linear model using run-time information for a dynamic-compilation system. Williams

et al. proposed the model, called Roofline, to visualize the performance of multi-core

architectures [103]. The model sets an upper bound on the performance of a kernel

that depends on memory-intensity and computation-intensity metrics.

Several application programmers have developed a performance model for specific

applications. Choi et al. [15] proposed a GPU-kernel performance model of a sparse

matrix vector multiply (SpMV) kernel for auto tuning. The proposed model guides

the auto-tuning process, which is input-matrix dependent. Meng et al. [69] presented
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a model for optimizing iterative-stencil loops used for image processing, data min-

ing, and physical simulations. Govindaraju et al. [28] presented a memory model to

improve the performance of applications by improving the texture-cache usage. The

work by Liu et al. [65] modeled the performance of bio-sequence applications written

in OpenGL shading language (GLSL) [50].

6.2 Performance Models for CPU Architecture

Karkhanis and Smith [48] proposed a first-order superscalar processor model to an-

alyze the performance of processors. They modeled long-latency cache misses and

other major performance-bottleneck events. The model is analytical based and is one

of the first works in the CPU domain. Currently, the most relevant works using ana-

lytical models in CPU domains are from the group led by Eeckhout in Belgium. For

example, Eyerman and Eeckhout [21] extended the work by Karkhanis thoroughly

using the mechanistic performance model using simulation. Then another work by

Eyerman used the identical research on real hardware [22].

Hence, later Heirman et al. proposed using cycle stacks [32] to understand perfor-

mance bottlenecks for multi-core environments as there could be other factors that

were not seen in a single core environment. The insight is that overall CPI is made up

of different CPI stacks, which are contributed from different execution units. How-

ever, the benchmark is still single threaded. Hence, to further improve this work using

multithreaded workloads, Eyerman et al. [20] extended the work. The primary differ-

ence from our work is that their work scope focuses on CPU architectures. For GPUs,

there is one more level of parameters that needs to be considered. For example, it is

not only the ILP, but as the GPU very efficiently switches between different warps

to hide long-latency instructions or idle DRAM cycles, TLP should be considered as

well. As we have seen, considering this part is non-trivial. The relationship between

ILP, TLP, etc. with actual performance is very complicated, considering N, finite
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bandwidth, and memory types.

More analytical models have been proposed for superscalar processors [72, 73, 75].

However, most work did not consider memory-level parallelism or even cache misses.

Chen and Aamodit [14] improved the first-order superscalar processor model by con-

sidering the cost of pending hits, data prefetching, and miss status holding register

(MSHR). They showed that not modeling prefetching and MSHR can increase errors

significantly in the first-order processor model. However, only the cycle per instruc-

tion (CPI) of memory instructions was compared with the cycle-accurate simulator.

A rich body of work exists that predicts parallel-program performance prediction

using stochastic modeling or task-graph analysis. Saavedra-Barrera and Culler [84]

proposed a simple analytical model for multi-threaded machines using stochastic mod-

eling. Their model uses memory latency, switching overhead, the number of threads

that can be interleaved, and the interval between thread switches. Their work pro-

vided insights into the performance estimation on multi-threaded architectures. How-

ever, they have not considered synchronization effects. Furthermore, the application

characteristics are represented with statistical modeling, which cannot provide a de-

tailed performance estimation for an application.

Sorin et al. [91] developed an analytical model to calculate the throughput of

processors in the shared memory system. They developed a model to estimate the

stall times of a processor due to cache misses or resource constraints. They also

discussed coalesced-memory effects inside the MSHR. The majority of the model is

also based on statistical modeling.

6.3 Power Models for CPU Architecture

Isci and Martonosi proposed a power model using an empirical method [44]. There

have been follow-up studies that use similar techniques for other architectures [16].

Wattch [10] has been widely used to model dynamic-power consumption using event

174



counters from architectural simulations. HotLeakage [104] models a leakage cur-

rent based on a circuit model and dynamic events. Skadron et al. proposed the

temperature-aware micro-architecture model [90] and released a software called HotSpot.

The software requires architectural simulators to model the dynamic power consump-

tion. However, all these studies were done only for CPUs. Sheaffer et al. studied a

thermal management for GPUs [88]. In their work, the GPU was a fixed graphics

hardware. Fu et al. presented the experimental data of a GPU system and evaluated

the efficiency of energy and power [24].

Huang et al. evaluated the energy efficiency of GPUs for scientific computing [35].

Their work demonstrated the efficiency for only one benchmark, and concluded that

using all the cores provides the best efficiency. They did not consider any bandwidth-

limitation effects. Li and Martinez studied power and performance considerations

for a chip multi-processor (CMP) [61]. They also analytically evaluated the optimal

number of processors for the best energy savings. However, their work focused on

CMP and presented heuristics to reduce a design-space search using power and perfor-

mance models. Suleman et al. proposed a feedback-driven threading mechanism [93].

By monitoring the bandwidth consumption using a hardware performance counter,

the feedback system decides how many threads can be run without degrading perfor-

mance. Unlike our work, it requires run-time profiling to know the minimum number

of threads that reaches the peak bandwidth. Furthermore, they demonstrate power

savings through simulation only.

Recently, large-scale architectural design space was simulated [6, 43, 56] by sta-

tistical sampling and regression techniques. Rai et al. proposed the temperature

prediction mechanism that is simpler and even faster than Hotspot [81]. The authors

claim that not all the details such as processor floor plan and thermal structure are

necessary. Lewis et al. proposed a runtime model for server energy consumption [60].
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Esmaeilzadeh et al. analyzed and quantified the power and performance per-

spectives for commercial processors for the past 10 years. This work provides a good

overview of the power and performance perspectives and predicts the future trend [19].

Taylor discusses the trend of dark silicon and how specialized architectures can be

leveraged to obtain high energy efficiency [96]. The author also published the work

[18] that combines technology scaling models, performance models, and empirical re-

sults to answer how much more performance can be extracted from the multicore

path in the future.

Kong et al. present recent thermal management techniques for microproces-

sors [53]. The authors categorize the techniques six main parts: temperature moni-

toring, floor planning, OS/compiler techniques, cooling solutions, etc.

6.3.1 OpenCL

OpenCL [79] is an open standard for parallel programming of heterogeneous systems.

The kernel code design is flexible and generic to be applicable for many different

types of architectures and devices. However, there are no official schedulers for het-

erogeneous computing and no official release for device-specific runtime optimizations.

Hence, this has been a hot research domain previously as well as for the future.

For the framework, Kim et al. proposed the OpenCL framework for CPU and

GPU clusters in [52], and another work by Kim achieves a single compute device

image in OpenCL for multiple GPUs [51]. Since CPU and GPU memory spaces

are disjoint [85], Jablin et al. proposed CPU-GPU communication management and

optimization [45]. OpenCL is also popular in industry as well, as Intel and NVidia

released their own runtimes [41, 78].

OpenCL naturally maps to a GPU architecture. However, for CPUs, the task

is not very straightforward. A CPU needs to utilize vectorized instructions (SSE,
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AVX) [67]. However, because CPU hardware does not have a high number of exe-

cution units (i.e., thread-level parallelism is limited in CPUs), optimizing OpenCL

performance is difficult. For this reason, Intel provides a list of guidelines for opti-

mizing OpenCL on CPUs [42].

6.3.2 Energy-Efficient Execution

CPU and GPU co-executes from performance, energy, and temperature perspec-

tives [47]. Benchmark suite is developed to target heterogeneous computing [13].

A similar approach is taken in modeling for performance and energy efficiency for the

FT benchmark, but this is specifically for one benchmark [26]. As a general article

regarding energy-efficient computing, Brown and Reams discuss this topic, including

GPUs [11]. Because power and temperature are now one design constraint, another

article that discusses design parameters for predicting the future of big chips is dis-

cussed in [36]. Lee et al. claimed that throughput computing is an important topic

for the future and did an architectural-trade-off study between CPUs and GPUs [59],

where the conclusion is that the CPU is not an order-of-magnitude behind GPU

performances.

Hamano et al. proposed the metrics that calculate EDP, and a power-aware

scheduling algorithm [31]. Similarly, SPRAT [94] compilation framework is proposed

that translates code to run efficiently on CPU and GPU. Another work that schedules

task in heterogeneous scheduling is done [58, 100]. They not only schedule the work-

loads, but further they apply DVFCS technique (dynamic-voltage-frequency-core scal-

ing) to reduce power consumption, and the method is based on the machine-learning

mechanism. Liu et al. proposed power-efficient, time-sensitive mapping technique [64]

for heterogeneous systems consisting of CPUs and GPUs. The mechanism is based on

mathematical modeling and power-related concepts along with DVFS are explained.
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Wang and Ren also have done a similar work that efficiently schedules tasks in het-

erogeneous system [99].

Benchmark suites are also proposed. Che et al. proposed the Rodinia benchmark

suite for heterogeneous computing [13]. Each benchmark has CPU and GPU versions

available for analysis. Later, Seo et al. proposed the NAS parallel benchmark suite

in OpenCL in the same conference (IIWSC) [87]. Another GPGPU benchmark suite,

Parboil, is provided [97].
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CHAPTER VII

CONCLUSION AND FUTURE RESEARCH

First, the analytical model-based approach provides valuable insights into proces-

sors [48]. Second, the model enables a fast trade-off analysis between architectural

parameters such as number of cores, number of hardware threads per core, bandwidth,

etc. Rather than using a simulator, the model-based approach has the advantage that

this trade-off analysis can be done fast and also provides insights to a computer ar-

chitect. Furthermore, this information is vital and can be used just-in-time for a

programmer, compiler, or even a runtime system. All of these insights are directly

applicable to this thesis work.

As for the accomplishments on the path, the following provides a summary.

� Chapter II proposed and evaluated a memory parallelism-aware analytical model

to estimate the execution cycles for the GPU architecture. The key idea is

to find the maximum number of memory warps that can execute in parallel,

a metric called MWP, to estimate the effective memory instruction cost. The

evaluation shows that the geometric mean of absolute error of the analytical

model on micro-benchmarks is 5.4% and on GPU computing applications is

13.3%. The work provides model-based insights and has established a starting

step for heavily-multithreaded architectures including GPUs.

� Chapter III proposed an integrated power and performance (IPP) modeling sys-

tem for the GPU architecture and the GPGPU benchmarks. This work extends

the previous empirical CPU power work [44] for modeling GPU power. Further-

more, we considered the increased leakage power effect from the temperature

increase. IPP predicts the power consumption and the execution time with an
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average of 8.94% error for the evaluated GPGPU benchmarks. IPP predicts the

performance per watt and the optimal number of cores for the five bandwidth-

limited GPGPU benchmarks. Based on IPP, the system can save on average

10.99% of run-time energy consumption for the bandwidth-limited applications

by using fewer cores. This has been demonstrated in a real machine; the model

also projected the energy savings if power gating is employed.

� Chapter IV proposes a new cost-effective temperature-measurement system that

uses thermocouples for the first time for GPU architectures. We devised a

method to install thermocouples between a chip and a heatsink. With this

system, we successfully measured the on-chip temperature distribution of a

GPU processor. The conclusion is that even if the same number of cores that

are activated, depending on what cores are activated, the peak achieved power

can be reduced. Unlike previous works that used simulators, we used a real

measuring system using thermocouples and thermospacers. When this location

information is used in conjunction with the thesis, the peak power can be further

reduced.

� Chapter V significantly improves the analytical framework for performance. The

main concept of memory-level parallelism is still preserved in this work. Rather

than just calculating final execution cycles, the model is more sophisticated

on how much this application requires bandwidth by proposing a term called

MWP App given a finite N. We also propose MWP App Infi metric, which

provides how many N are necessary to completely hide the idle DRAM waiting

cycles.

The model is also built in a different way, while preserving the previous concepts

as much as possible. The biggest modification is that the model now provides

different levels of performance predictions: (1) peak achievable performance
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assuming cache-hit, (2) lower-bound assuming DRAM-only memory accesses,

and (3) performances that fall in the middle. In other words, the model now

produces a throughput prediction. This requires only the number of instructions

per basic block for producing performance and power information.

In high level, the thesis work aims to achieve energy-efficient execution on many-

core architectures, not limited to GPUs. Achieving energy-efficient execution, which

is unique to an application, is not only the final outcome. The paths that lead to the

result produces many other insights that visualize bottlenecks for performance and

peak power. For example, depending on the application, the profiler result may return

good cache hit information; however the performance might not be good enough for a

programmer such as naive matrix multiplication. The new model not only provides an

upperbound (perfect L1-cache hit) and lowerbound (only DRAM accesses), but it also

provides additional information that the issue with the application lies in the effective

mixture ratio (i.e., useful instructions to the total instructions). Furthermore, this

analytical model can provide further interesting insights and answer questions of a

programmer such as (1) what will happen with just one more core?, (2) is buying a

GPU with more BW or more cores beneficial for this application?

This work has much potential to be applicable to different domains. First, know-

ing the upperbound and lowerbound information is crucial for a programmer since a

decision such as whether or not it is beneficial to keep optimizing can be determined

earlier. Furthermore, the model facilitates a trade-off analysis among changing archi-

tectural parameters such as bandwidth, number of cores, number of hardware threads

per core, and etc. In addition, this work is extended to using OpenCL language and

also demonstrates its effective usefulness to CPU architecture as well.

7.1 Future Research Directions

The thesis concludes with potential future research discussions.
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7.1.1 IR-based Instruction Analyzer

A natural next step to this research is writing an IR-based instruction analyzer.

This would enable applying the model to a greater variety of benchmarks as well as

automating the process of passing the instruction information to the analytical model.

First, how to count instructions given many basic blocks needs to be decided. The

immediate step is to count different types of instructions per basic block granularity.

Then, different heuristics can be proposed for how to determine the execution path.

Another possible implementation is to make this analyzer a feedback driven mech-

anism. By using Ocelot implementation and a small input set, the execution path

can be approximated before actually running on real hardware. This would raise

the accuracy of the instruction count mechanism. Furthermore, this whole process

of obtaining model input and model implementation can be integrated with Ocelot

along with the power model.

7.1.2 Providing Feedback

Programmer: A programmer can leverage the model insights to check the expected

performance, a peak achievable performance, and lower bound of performance along

with expected power numbers. The effect of changing architectural parameters such

as bandwidth, number of cores, number of hardware threads, etc can be efficiently

simulated uniquely to an application. Most of all, by knowing the peak achievable

performance, either he can keep optimizing a program or change the hardware or an

algorithm itself.

Compiler: A compiler can leverage the model insights significantly, controlling the

register usage that directly affects N and/or the number of cores. Figure 149 shows

further insight and opportunity for compiler optimization.

If the model predicts that there is enough bandwidth available on a given hard-

ware, then the compiler could try to generate more memory instructions, if that
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Figure 149: Using the analytical model at static time enables visualization of possi-
ble, further optimizations that still do not degrade performance.

results in fewer overall instructions. On the other hand, if the model expects memory

saturation, the compiler could instead attempt to (1) reduce the number of memory

instructions and/or (2) try to increase the amount of computations between memory

instructions (i.e., reduce MWP App), and/or (3) either reduce the number of active

cores by the compiler itself or pass this information to the runtime system. The

applicability of the model is that it has benefits even at static compilation time.

Another potential optimization is that if the compiler could change the reference

pattern to reduce the cache miss ratio, it effectively reduces effective memory latency,

which then reduces MWP App. As this has less pressure on the memory bandwidth,

the compiler could focus on other optimizations.

Another benefit of leveraging the model at static time is that if multiple types of

devices are available, the compiler can also make a smart decision about where to

offload a work. This is not only the runtime’s task. To make this more accurate, the

data transfer cost for GPUs has to be taken into account.

Runtime: The immediate use for the runtime is to determine where to offload a

work, for example, between a CPU and a GPU. This decision can be determined by

finding the expected performances on a CPU and a GPU, where on a GPU, the data
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transfer time has to be taken into account.

A more interesting challenge lies in the heterogeneous execution. This topic is a

big topic that is extendable by using this thesis work. Many previous works have

had used the profiling method, such as the previous work I have co-authored in [66].

However, most previous works have used either runtime profiling or very simplified

mathematical fitting. Contrary to those works, if my work is extended, not only is

simple curve fitting possible, but by leveraging the insight of an application, energy-

efficient execution is possible. However, this can even give just-in-time opportunities

for the compiler and even provide feedback to a programmer or an algorithm designer.

Heterogeneous Execution: Finally, an additional extension of the model to het-

erogeneous execution is to determine if an overall target is speed-up or an energy

efficiency. These two terms are highly correlated but with some exceptions. This

information is very useful and practical to the runtime system, especially the system

that uses OpenCL since the model is applicable.

When an application runs very efficiency on a CPU, but not so much on a GPU,

then it is better not to schedule any work to the GPU in the first place. Because of

the GPU data transfer time as well as power increase, the scheduling is not worth it

for both performance and power. On the other hand, if an application runs very non-

efficiently on a CPU, but the GPU is very efficient, then it is necessary to schedule as

much work as possible to the GPU regardless of whether the CPU or GPU is power

efficient. The model suggests that power does have an impact; however, performance

is the main contributing factor.

The future potential research is to further develop this heterogeneous energy-

efficiency and speed-up analytical model along with the new throughput model. As

this whole infrastructure is integrated, this thesis work will be a major contribution

to assisting energy-efficient execution on heterogeneous platforms.
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APPENDIX A

ENERGY EFFICIENCY

This chapter introduces a high-level work using mathematical modeling, for the pur-

pose of deriving the relationship between speed-up and and energy-efficiency. It has

long been said that maximizing speed-up results in the best energy efficiency. Hence,

the purpose of this chapter, as a preliminary study, is to investigate further this

phenomenon deriving the relationship mathematically for understanding and gaining

insights. I project that when this work is further integrated with the performance

throughput model in Chapter V, the work will give further insights into energy-

efficient execution using the analytical approach.

A.0.3 High-level Modeling

First, we analytically show the relationship between performance and energy-efficiency

using mathematical derivations. Then, by leveraging the derived model, we explain

the previous results, which mostly showed a linear relationship. Finally, we explore

the trade-off between heterogeneous execution versus homogeneous execution (i.e.,

trade-off between reduced execution time versus higher power).

A.0.4 Introduction of the Parameters

Definitions

To : Baseline Execution time

Po : Baseline Average Power

Eo : Baseline Energy Consumption (Eo = Po × To) (94)
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S = Speedup =
To

TN
where To is the baseline, TN is the new time (95)

E = EnergyEfficiency =
Eo

EN
where Eo is the baseline, EN is the new value (96)

A.0.5 The Relationship Between Energy-Efficiency and Performance

We define performance as the speed-up over the baseline, as shown in Equation (95).

And energy efficiency, shown in Equation (96), represents how much energy is saved

with the new execution over the baseline. Then, how is energy-efficiency related to

performance?

First, define the new power and execution time as follows, where new execution

time and power are multiplied by α terms.

TN = αT × To (97)

PN = αP × Po (98)

How about energy efficiency metrics?

Eo = Po × To (99)

EN = PN × TN (100)

This can be further decomposed into the following.

EN = PN × TN (101)

= αP × Po × αT × To

= αP × αT
︸ ︷︷ ︸

αov

× Po × To
︸ ︷︷ ︸

Eo

EN = αov ×Eo
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Then, energy-efficiency is related to performance

E =
Eo

EN
=

Eo

αov × Eo
=

1

αov
=

1

αP × αT
=

Po

PN
×

To

TN
(102)

Since To/TN is equal to speed-up S, Equation (102) further simplifies to the fol-

lowing.

E =
Po

PN
× S (103)

Therefore, energy efficiency E is related to the change in power and speed-up of

an application, as represented by Equation (103). This equation shows that if an

increase in power is not significantly different from the baseline power (i.e., Po is

similar to PN), then E is a linear relationship to S.

A.1 Projections

In this section, we project the different scenarios of executions and what it means

in terms of energy and performance. Figure 150 shows different cases of energy-

efficiencies and speed-ups. The x-axis and y-axis are plotted in log-scale in powers of

two to match the experimental results obtained earlier. The assumption of the figure

is that a power increase as speed-up increases is a linear relationship.
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Figure 150: Model projections on energy-efficiency vs. speed-up on an application.

A.2 Effects of multiple cores and heterogeneous executions

Essentially, the noticeable effects of multiple core executions are reflected as changes

in S and PN terms. For example, if performance increases linearly with an increasing

number of cores, then the S term will linearly increase as well. We also expect the

power term, PN , to increase in a similar fashion if we assume higher performance

comes with more cores. The challenge here is that if we know how the S and P terms

change with respect to multiple core or heterogeneous executions, then finding energy

efficiency, E, is straightforward.

A.2.1 Performance

To model S from the high level, the following architectural parameters are used: F :

frequency, C: number of cores, ζ : throughput per core, D data. T , execution time,
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is proportional to the terms as follows.

T ∝
D × φ

C × ζ × F
C cores, ζ throughput per core, F frequency, φ benchmark

(104)

Since we focus on a relative speed-up (not an absolute performance itself), we can

approximate the speed-up as follows.

S =
To

TN
=

Doφo

CoζoFo
×

CNζNFN

DNφN
=

CNζNFN

CoζoFo
×

Doφo

DNφN
(105)

D represents an amount of data to be processed. φ models the performance-degrading

effect that a benchmark has on the architecture such as memory saturation. If the

same machine configuration is used, then Equation (105) can be further decomposed

into the following since the other terms cancel out.

S =
CN

Co
×

Do

DN
(106)

A.2.2 Power

To model with an emphasis on determining the change in power, we primarily consider

the factors that have direct impact. These include C : #active cores, F : frequency,

λ : benchmark characteristics on the architecture, B : baseline idle power. We

assume that static power is mostly reflected in the B term, and the αV 2 term in the

traditional dynamic power equation is not changed. Instead, we only consider F and

the number of cores C that can be controlled in the experiment.

P ∝ CF 3λ+B (107)

Po

PN
=

CoFo
3λo +Bo

CnFn
3λn +Bn

(108)

The baseline idle power, B, might not seem relevant since we are modeling the

change in power. However, this is not true. For example, even if there is an increase
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in the CF 3λ term, if the baseline B is very large, then the overall change (Po/PN)

will be very small. For a heterogeneous system that has a CPU and a GPU, Bo and

Bn are the same, and only one term needs to be added instead of two , as the idle

system contains both CPU and GPU idle powers.

A.2.3 Usage and Insights of the Model

The overall equation for energy efficiency can be expressed as follows.

E =
Po

PN
× S =

Po

PN
×

To

TN
=

(
CoFo

3λo +Bo

CnFn
3λn +Bn

)(
CNζNFNDoφo

CoζoFoDNφN

)

(109)

We can see that the trend in Figure 151 tends to be linear regardless of whether we

change the frequency and power (different configurations 1,2,3,4,5) in the efficiency-

speedup plotspace. But, depending on the rate of power change, we can see sub-linear

and super-linear lines.
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Figure 151: Different configurations of just CPU tends to be linear in energy-
efficiency vs. speed-up space, as the increase tends to be canceled out by the increase
in the denominator unless the rate is different.
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A.3 Effects of multiple cores and heterogeneous executions

To model heterogeneous execution, only two terms need to be modified: P and T .

The power is increased as two architectures are activated, but the execution time is

reduced.

T = Max(TCPU , TGPU) (110)

P = PCPU + PGPU (111)

Equation (109) can be further modified as follows. Note that the base Po and

PN parameters are still the CPU-only configuration to match the previously-obtained

measured graphs. Hence, we apply the heterogeneity to TN and PN configurations.

E =
Po

PN

×
To

TN

=
Po

PN CPU + PN GPU

×
To

Max(TN CPU , TN GPU)
(112)

where the CPU and GPU terms are as follows ( C means CPU and G means GPU)

TN = Max

(
DN CφN C

CN CζN CFN C

,
DN GφN G

CN GζN GFN G

)

(113)

PN =
(
CN CFN C

3λN C +BN C

)
+
(
CN GFN G

3λN G +BN G

)
(114)

=
(
CN CFN C

3λN C

)
+
(
CN GFN G

3λN G

)
+ Bo

The data distribution terms, DN C and DN G, simply mean the distributed data size

to the CPU and GPU. And the Bo term comprehensively refers to the idle system

power that has CPU and GPU cards installed.

A.4 Projections of multiple heterogeneous cores executions

based on analytical approach

Since the main goal is to look at the high-level trend of energy-efficiency and speed-

up changes with respect to the number of cores, frequency, and other factors, the
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model can not model each benchmark’s effect in detail. Nevertheless, by categorizing

performance and power into high and low values, we can see the effects they have on

a heterogeneous execution.

To simulate the effects of heterogeneous execution, each series has 11 points that

represent the partitioning ratio (i.e., 0 means 100% CPU, 100 means 100% GPU). Not

only that, we model different performance and power characteristics for each series.

In other words, the CPU could run efficiently for Series A but not GPUs, and vice

versa. Performance efficiency is controlled by φ value and can be obtained either by

machine learning or by the detailed performance model. Power efficiency is controlled

by coreweight terms.

Table 16: Each series represents an unique benchmark type. The goal is to analytically
find out the effect on the heterogeneous execution.

Terms Performance: CPU Performance: GPU Power: CPU Power: GPU
Series 1 Slow Slow Low Low
Series 2 Slow Slow Low High
Series 3 Slow Slow High Low
Series 4 Slow Slow High High
Series 5 Slow Fast Low Low
Series 6 Slow Fast Low High
Series 7 Slow Fast High Low
Series 8 Slow Fast High High
Series 9 Slow Slow Low Low
Series 10 Slow Slow Low High
Series 11 Slow Slow High Low
Series 12 Slow Slow High High
Series 13 Slow Fast Low Low
Series 14 Slow Fast Low High
Series 15 Slow Fast High Low
Series 16 Slow Fast High High

Figure 152 shows the results for various series. The overall trend looks very

similar to the measured data. However, the graph looks a bit shifted leftward, which

means that more power is used in the script for heterogeneous execution than for the

measured case. In a real execution, it shows that even though it is a heterogeneous

execution, the power consumption does not linearly add up (CPU + GPU); instead,

the power settles at a lower value, which is not too far off from using a CPU or GPU

alone. However, for this analytical model, since we add the powers together for a

heterogeneous execution, the predicted power tends to be higher than the measured
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case, hence the graph shifts leftwards. If we consider this issue to the analytical

model, the graph will shift rightwards. Nevertheless, this graph still provides the

valuable information that the dots in the left-bottom quadrant are the ones that we

should avoid.

Further configurations are displayed in Figures 153, 154, and 155. Depending on

different CPU and GPU performances, along with different performance and power

values, the whole graphs shift accordingly.
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Figure 152: Showing simulations for data partitioning between CPU and GPU. First
Configuration Version: Default.
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Figure 153: Showing simulations for data partitioning between CPU and GPU.
Second Configuration Version: Less CPU performance and power consumption.
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Figure 154: Showing simulations for data partitioning between CPU and GPU. Third
Configuration Version: Less GPU performance and power consumption.
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Figure 155: Showing simulations for data partitioning between CPU and GPU.
Fourth Configuration Version : Less CPU and GPU performance and power con-
sumptions.
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A.5 Discussions

First, the analytical model predictions project that the relationship between energy

efficiency and speed-up is linear. Second, we can observe that some sets of series are

clustered in the middle portion of the graph, while some are in the upper-right and

lower-left quadrants. This information is summarized as follows in Figure 156. Some

The series in the bottom-left quadrant

phi_cpu Fast || phi_gpu SLOW || P_coreweight_cpu_iter LOWPower || P_coreweight_gpu_iter LOWPower 9

phi_cpu Fast || phi_gpu SLOW || P_coreweight_cpu_iter LOWPower || P_coreweight_gpu_iter HighPower 10

phi_cpu Fast || phi_gpu SLOW || P_coreweight_cpu_iter HighPower || P_coreweight_gpu_iter LOWPower 11

phi_cpu Fast || phi_gpu SLOW || P_coreweight_cpu_iter HighPower || P_coreweight_gpu_iter HighPower 12

The series in the top-right quadrant

phi_cpu SLOW || phi_gpu Fast || P_coreweight_cpu_iter LOWPower || P_coreweight_gpu_iter LOWPower 5

phi_cpu SLOW || phi_gpu Fast || P_coreweight_cpu_iter LOWPower || P_coreweight_gpu_iter HighPower 6

phi_cpu SLOW || phi_gpu Fast || P_coreweight_cpu_iter HighPower || P_coreweight_gpu_iter LOWPower 7

phi_cpu SLOW || phi_gpu Fast || P_coreweight_cpu_iter HighPower || P_coreweight_gpu_iter HighPower 8

Figure 156: The series in the left-bottom and top-right quadrants.

immediate conclusion that can be drawn from the result is that when an application

runs very efficiently on a CPU, but not so much on a GPU, it is better not to schedule

any work to a GPU in the first place. Because of the GPU data transfer time as well

as the power increase, the scheduling is not worth the performance and power. The

contribution of this work is to show this fact analytically.

On the other hand, if an application runs very non-efficiently on a CPU, but

the GPU is very efficient, then it is necessary to schedule as much work as possible

to the GPU regardless of whether the CPU or GPU is power efficient or not, as

shown in Figure 156. The model suggests that power does have an impact; however,

performance is the main contributing factor.

A.6 Projections of Different Frequencies

Figure 157 shows the effects of changing frequencies in the speedup and efficiency

space for different data partitioning points. As the frequency has a cubic relationship
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on power, the graph tends to shift to the left as well (i.e., overall direction is moving

top left). Figures 158 and 159 show the effects of changing frequency in more detail.
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Figure 157: Space exploration for changing frequencies.
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Figure 158: Showing the effects of increasing CPU frequency.
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Figure 159: Showing the effects of increasing GPU frequency.
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A.7 Discussion: Factors that Determine the Rate of Change

in Energy Efficiency

For most cases, we observe a linear relationship. But what are the baseline factors

and the underlying reasons ? To investigate this effect, we revisit Equation (103).

To see if it is a linear relationship, we need to check the following condition.

E(S) =
Po

PN
× S (115)

∂2

∂S2
E(S) = 0 For a linear increase (116)

∂n

∂Sn
E(S) 6= 0 For a non-linear increase, n ≥ 2 (117)

The challenging part is to know whether or not Po is a function of S. And this

will affect the shape of an energy-efficiency function.

A.8 Summary

The contributions of this work are to clearly derive the relationship between the

energy-efficiency and speed-up among heterogeneous architectures. First, the model

shows why the relationship is mostly linear. The underlying reason is that the rate

of power change with respect to cores, frequency, etc. is not fast enough. Second,

the model has been implemented in the script for simulation purposes, and it showed

the effects of different configurations of heterogeneous executions including different

high/low power and fast/slow performances. Another implication is that performance

has a much higher impact on energy efficiency if the GPU is very fast in execution,

as discussed in Section A.5.

Finally, the model provides insight into the linear relationship between energy-

efficiency and speed-up. The equation claims that unless the rate of change for power

increase is in a square or more, it will be most likely a linear relationship. The future

work is to improve the power and performance models and provide further insights on
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how to optimize energy efficiency given many parameters during runtime, analytically

or statically, using a machine-learning mechanism.
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