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SUMMARY

A variety of energy models and tools have been used for an comprehensive

analysis of the complex energy systems and the design of pathway to sustainable

energy world. This thesis analyzes three interesting problems in the electricity sector

by developing and using suitable energy models.

Chapter 2 investigates how to incorporate demand responsiveness for policy anal-

ysis in the electricity sector using a least-cost model. This study develops its own

least-cost model which includes some characteristics for two important policies in the

electricity sector, and suggests an iterative approach for incorporating the demand

response to price change under new policy. Based on a case study, the state of Geor-

gia, this chapter shows the effects of including demand response on the evaluation of

policy.

Chapter 3 is about new technology adoption pathways in the electric power system.

In this chapter, by investigating the related status of policies and specifications of

electric vehicles and wind power technologies in the U.S., several adoption pathways of

the technologies in the U.S. eastern interconnection have been developed. This study

develops four-serial models for the estimation of future economic and environmental

impacts of the technologies’ penetration. The results show that the total greenhouse

gas emissions of the entire energy system do not substantially decrease even with a

high level of electric vehicle adoption. The combination of two technologies, even more

with appropriate policies, can notably decrease the total greenhouse gas emissions.

Chapter 4 is a study about demand response programs, particularly optional time-

based rates, for residential customers. This chapter analyzes the main reason that

the participation of the current programs is low even though the programs have

xii



benefits. This study investigates two policy tools, a subsidy for flexible residential

demand and a shared-savings mechanism based on consumption pattern changes, and

examines the implementation of the tools and their potential to overcome the current

inefficient operation.
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CHAPTER I

INTRODUCTION

The world is trying to transform from fossil fuel based energy systems to clean

and smart energy systems. A number of new technologies and policies have been

introduced for the transformation, so the energy systems are altered in complex and

interdependent ways that are difficult to envision. How to design the transforma-

tion efficiently under limited resources, such as time and money, has been of interest

recently. Design of the pathway to a sustainable energy world requires systematic

approaches based on a comprehensive understanding of multidisciplinary issues, such

as the scientific, technical, environmental, economic, and societal issues. During the

pathway design, three imperatives are frequently identified [74]: 1) promote national

and economic security by increasing energy independence, 2) enhance environmental

stewardship and reduce energy and carbon intensity, and 3) generate continued eco-

nomic growth through innovation in energy technologies and expansion of sustainable

energy relevant jobs.

Energy and policy modeling have been used for an comprehensive analysis of the

complex energy systems and the pathway design. The analysis is for energy economics,

energy system planning, risk and uncertainty modeling, and energy infrastructure

planning. The benefits of using modeling are [96] 1) The model can represent a very

complex reality into a simpler form that is more suitable to comprehend and analyze.

Thus, it can reveal more insights. 2) The model may act as an efficient filter in order

to evaluate consequences of certain policies. In reality, such consequences may be

difficult to relate to specific measures or policies due to noise. 3) The model can by

used for forecasting with higher precision than the statistical methods, such as future

1



prices of electricity in electricity market. 4) Using models enables the participants in

a certain projects to gather around a common platform and communicate easily.

Some large-scale models cover the analysis of entire energy systems as well as

macro-economy features at the global, national or regional level, e.g. the MARKet

ALlocation (MARKAL) [61], PRIMES [79], and the U.S. National Energy Modeling

System (NEMS) [69]. Furthermore, a variety of smaller size models and tools have

been developed from research laboratories and universities, such as the Energy system

modeling center at U.S. Argonne National Laboratory 1 and the Energy Analysis De-

partment at U.S. National Renewable Energy Laboratory 2, and they have been used

for their own special purposes respectively at global, regional, local, or project ba-

sis. In some cases, several models representing different methodologies are combined,

such as The Integrated MARKAL-EFOM System (TIMES) [94] and the MARKAL-

MACRO model [54]. The models must be coordinated and one of the main challenges

is harmonization of all assumptions and input data [96].

The overarching goal of this thesis is analysis of some decisions on the sustainable

pathway by developing suitable energy models based on the methodologies and the

ability of systematic approaches, which I have learned from the industrial and systems

engineering program. This thesis focuses on analysis of the electricity sector. The

electricity generation sector is the largest source of greenhouse gas (GHG) emissions

worldwide [32]. The complexity arising from numerous energy sources, technologies,

and highly regulated market characteristics makes the electricity generation sector

attractive to analyze based on models.

The rest of thesis consists of the following four chapters: Chapter 2: an electricity

generation planning model incorporating demand response with new green policies;

Chapter 3: integration of electric vehicles and wind into the grid; Chapter 4: demand

1http : //www.anl.gov/energy/energy − systems−modeling
2http : //www.nrel.gov/analysis/modelstools.html
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response programs for residential customers; and Chapter 5: conclusions and future

work.

More specifically, each chapter contains following contents: Chapter 2 represents

the importance of incorporating demand response in the evaluation of electricity

generation planning. Energy policies that aim to reduce carbon emissions and change

the mix of electricity generation sources, such as carbon cap-and-trade systems and

renewable electricity standards, can affect not only the source of electricity generation,

but also the price of electricity and, consequently, demand. I develop an optimization

model to determine the lowest cost investment and operation plan for the generating

capacity of an electric power system. The model incorporates demand response to

price change. This chapter shows that both the demand moderating effects and the

generation mix changing effects of the policies can be the sources of carbon emissions

reductions. In Chapter 3, my colleagues and I develop serial models to analyze

future impacts of electric vehicles (EVs) and wind power on the electric power system

and light-duty vehicle market. Metrics include greenhouse gas emissions, petroleum

consumption, cost of electricity, and total consumer expenditure. We show that the

total greenhouse gas emissions of the energy systems do not substantially decrease

even with high levels of EV adoption. We explore a range of approaches to reducing

the greenhouse gas, by controlling the time of charging and by matching vehicle

charging to wind energy. Chapter 4 is a study about demand response programs,

particularly optional time-based rates, for residential customers. I try to understand

why current existing voluntary time-based rates do not operate well, and explore two

approaches to increasing participation in the programs.

3



CHAPTER II

ELECTRICITY GENERATION PLANNING MODEL

INCORPORATING DEMAND RESPONSE WITH NEW

POLICIES

2.1 Background

Economic optimization models are used within the electric power sector to plan

investment in new capacity; somewhat similar optimization models are used for energy

policy planning and evaluation at the national and international level. Some of these

analyses use existing energy policy models which have the advantage of widespread

use and availability, yet may have the drawback of not being completely transparent or

easily modifiable for the quantitative evaluation of policy options, or for evaluating the

implications of changes in demand, prices, and technology over time. The objective

here is to develop a transparent and flexible optimization model for analysis of the

potential effects of energy policies, including changes in price, demand, and generation

technologies, and to use this model to evaluate the effects of incorporation of demand

response on the results.

Carbon cap-and-trade policies and renewable electricity standards are designed to

affect the mix of sources used to generate electricity; either reducing the proportion

of high-carbon generation, or increasing the proportion of renewable generation. The

effects of these policies on electricity generation have been analyzed with models that

assume the projected demand is not affected by the policy choice. However, since

electricity demand is affected by price, policies that may affect the price of electricity

This chapter is based on a study published in Energy Policy 42: 429-441, 2012.
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may affect electricity demand as well. Depending on how future demand is projected,

results and analysis from optimization models may vary substantially.

Here we develop an optimization model for a electricity sector, such as a reliability

region or a state in U.S. and a small single country, incorporating price elasticity

of demand. The model is applied in a case study of a U.S. state, examining the

generation, price, and demand implications of a carbon cap-and-trade policy with

and without free permits, and a renewable electricity standard (RES).

2.2 Literature Review

In the early 1970s, mathematical programming models of various types were pro-

posed for the capacity expansion planning problem of a power generation system

[3, 8, 78]. Since the 1970s, this problem has been studied and developed into different

linear, mixed-integer, and non-linear, or deterministic and stochastic models. The

objective of these models is to determine not only the type, size, and commission

dates for cost-effective new generation, but also the operation of the system. These

models usually treat electricity demand, fuel prices, and technology as externally de-

termined.

In the context of deregulation and restructuring of electricity sectors in many

countries and U.S. states, a market equilibrium model approach for oligopolistic and

competitive restructured electricity markets has been studied with generation capac-

ity expansion planning models [15, 67]. These studies modeled electricity price and

demand endogenously.

With advances in modeling methodologies, recent studies have used these models

for policy planning and evaluation for the electricity market. Some power generation

expansion planning studies developed their own models, which explicitly include a

CO2 emission target constraint and related policy and technologies [27, 64, 89]. Some

other studies focused on the potential impacts of new policies on a target electric
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sector by using existing models developed by the other research groups in the energy

analysis research community. Dagoumas et al. [17] and Kalampalikas et al. [52] ana-

lyzed impacts of climate polices and an RES, respectively, on the Greek electric sector

with the software package WASP-IV (Wien Automatic System Planning) created by

the International Atomic Energy Agency (IAEA). Brand and Zingerle [11] analyzed

impacts of an RES on the electricity market of the North African Maghreb region

based on the DIME model developed by researchers at the Technical University of

Delft. Bird et al. [9] examined the impact of RES and cap-and-trade policy options

on the U.S. electricity sector using the Regional Energy Deployment System (ReEDS)

model, a dispatch and capacity expansion linear programming model developed by

the National Renewable Energy Laboratory (NREL). Levin et al. [58] developed a

state-level version of the MARKAL (MARKet ALlocation) model, supported under

the Energy Technology Systems Analysis Program (ETSAP) of the International En-

ergy Agency (IEA), in order to analyze the impact of an RES or a carbon tax on

the costs and technology mix of future electricity generation in a case study of the

U.S. state of Georgia. All of these studies compared electricity generation portfolios

and economic impacts under a business-as-usual case and new policy cases with the

assumption that all input parameters, including demand, are the same under other

scenarios.

Some studies incorporated demand endogenously under different scenarios. Linares

et al. [59] used the equilibrium model approach for an oligopolistic market to model

capacity expansion under the EU ETS (European Emissions Trading System) for the

Spanish electricity system, and calculated electricity price and allowance price en-

dogenously. Ko et al. [54] analyzed a series of CO2 emissions abatement scenarios of

the power sector in Taiwan using the MARKAL-MACRO model, which is a extended

version of MARKAL incorporating energy demand endogenously and responsive to

price.
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2.3 Methodology

In this study, we develop a least-cost capacity expansion model designed for a

small electricity sector, whose decision change will not affect to large enough fuel

markets and environmental markets. The objective function is to minimize the to-

tal discounted present value of the cost over a specified planning horizon, including

investment costs, operating costs, and carbon policy related costs. Moreover, the

objective function contains all related constraints characterizing the policies to be

analyzed. A range of modeling issues are addressed in section 2.4, and details of this

model are given in section 2.5.

Wietschel et al. [101] developed an iterative algorithm to integrate price-dependent

reactions in an optimizing energy emission model for the development of CO2-mitigation

strategies. This algorithm can be categorized as a COBWEB algorithm [66]. In this

study, we have developed a COBWEB-type iterative approach to evaluate demand

response to price change with above optimization model. Figure 1 shows the brief

structure of the approach. Starting with a reference demand projection and other

input parameters (technology characteristics, fuel cost, CO2 price etc.), the capacity

expansion model projects future electricity prices. With price elasticities and the ref-

erence demand projection, a new demand projection is calculated. This new demand

projection is used for the model again, iteratively until price and demand converge.

This approach produces an equilibrium demand under each scenario with correspond-

ing expansion plan, electricity generation portfolio, cost and price of electricity. The

details of the approach are given in A.1.

Figure 2 illustrates the demand projection approach. C1(L) is the electricity gener-

ation cost curve for the business-as-usual scenario (k is the generation margin), D(L)

is the consumer’s demand curve, and P1 and L1 are the market price and quantity

demanded respectively. If a new policy is implemented in which the cost curve shifts

up to C2(L), there is a new market equilibrium price and quantity demanded, P2
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Figure 1: Brief structure of the iterative approach for projection of demand corre-
sponding to electricity generation portfolio.

Figure 2: Illustration of the iterative approach to electricity demand, generation mix
and price.

and L2. This approach is iterated to reach equilibrium. Vertical arrows correspond

to calculation of a new price of electricity from the model, and horizontal arrows

correspond to calculation of a new demand projection.

2.4 Model formulation issues

This section addresses a number of issues central to formulation of the least-cost

expansion model.
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Retirement of existing power plants Many previous capacity expansion planning stud-

ies have not taken into account retirement of existing plants. However, some of current

coal power plants have become old, and decisions regarding the power system can be

affected by retirement of these plants. In this study, existing power plants can be

retired and are never operated after their predetermined lifetime limit. We assume

this lifetime limit is 60 years.

Chronological load curve Many previous studies use a load duration curve (LDC)

to calculate optimum operating schedules and cost under variable power demand

[3, 57, 89, 105]. The models that integrate the LDC directly are particularly suitable

for power systems having thermal plants only, or mixed fossil-hydro systems [3]. Elec-

tricity generation amounts from all technologies in such a system are fully controlled

by system operators, so the only information needed to determine capacity invest-

ment and annual operating requirements is the magnitude of the load and not the

time at which the load occurs. However, in order to incorporate intermittent wind

and solar sources, the intermittency of energy production should be included. One

proposed approach to address intermittency is an hour-by-hour simulation, although

this has been computationally prohibitive in the past [84]. Progress in computational

technologies and algorithms make this approach more feasible; this study takes an

hour-by-hour simulation approach with a problem size reducing treatment. Previous

studies approximated the LDC stepwise to reduce problem size; in this study, one

year is segmented into three seasons (summer, winter, intermediate), and each season

is assumed to have a representative hourly load curve.

Initial allowances Under a cap-and-trade system, the initial allowance allocation is

a controversial issue: who gets allowances, how many allowances they receive, and

whether allowances are given away for free or auctioned, since allowances represent a

valuable financial asset and the free initial distribution of a portion of the allowances
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can be a significant potential source of compensation to emitters. One previous study

argued that generators in regulated regions should be indifferent in the long-run be-

tween free allocation to generators and an auction [13]. Other studies conclude that a

power producer who receives free allowances has exactly the same incentive to reduce

emissions as a power producer that receives no free allowances [16, 35, 68]. In our

model, as in previous studies, the quantity of initial allowances will not have a direct

effect on the utility’s investment decision.

However, free allowances can affect the price of electricity, and thus also the de-

mand for electricity. At the initiation of the U.S. SO2 trading systems, when the

U.S. generation system was fully regulated by utility commissions, utility customers

were not charged for the sulfur dioxide allowances that utilities received for free, but

only for the costs of purchased allowances. Electricity prices were increased for the

cost of purchased allowances, or, similarly, many utility commissions granted a credit

to price for revenue from selling excess allowances. On the other hand, in the Eu-

ropean carbon trading system, some utilities could pass through the market price of

carbon dioxide allowances to customers immediately, under the deregulated markets

in Europe. The utilities incorporated the “opportunity cost” of the carbon dioxide

allowances, and so the benefit of free allowances was not passed down to consumers

[91, 103, 104].

Here, we consider a fully regulated power producer that will only pass through

costs for purchased allowances. We will compare the results with and without a free

initial fixed endowment of annual allowances.

Price of CO2 Understanding the interaction between the price of CO2 and the CO2

emission cap is critical. Cap-and-trade systems generally reduce the emission cap

over time. A declining emission cap will increase the CO2 price. A CO2 price model

quantifying this relationship is needed to model future costs. In this study, we assume

that the social marginal cost of Greenhouse Gas (GHG) abatement is equal to the
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allowance price in a general equilibrium context.

A change in the price of CO2 can affect power producers’ investment decisions

and generation planning. First, a high enough CO2 price can support the installation

of low-carbon power plants including natural gas and renewable sources, or power

plants with carbon capture and sequestration (CCS) systems. Previous studies have

evaluated the economic feasibility of investing in these new technologies. Some ana-

lyzed expected cost and efficiency using a simple net present value (NPV) approach

[80, 82]. Others included price uncertainty and assessed the option to install the sys-

tem by expected NPV with a real option approach [55, 1]. In this study, we develop

a deterministic model using a simple NPV approach.

Second, for power producers with multiple generation technologies having fixed

capacities and differing marginal costs, the supply function is represented by the

marginal cost of power generation of each technology. Low marginal cost is one rea-

son that power producers often operate at almost full capacity at nuclear and coal

plants but not at natural gas plants, though the levelized cost of electricity from

natural gas power plants is lower than that from nuclear and similar to that from

coal plants [10]. Increases in the price of CO2 may change the order of the marginal

cost of electricity production technologies. In most situations with unpriced carbon,

the marginal cost of coal-derived electricity is less than the marginal cost of natural

gas electricity, but coal-based electricity produces about twice the CO2 emissions of

natural-gas-based electricity. In eq.(1), Vi is the marginal cost of a unit electricity

production for technology i, PCO2,t is the price of CO2 at time t, and ei is the CO2

emission per unit production of technology i. A high enough CO2 price, which sat-

isfies eq.(1), can shift the merit order from technology i to technology j, in this case

coal to natural gas, and so the electricity portfolio can be substantially altered.

VCoal,t + PCO2,t × eCoal > VNG,t + PCO2,t × eNG (1)
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Renewable Electricity Standard A given percentage of electricity supply maybe re-

quired to be generated from a selected set of technologies, such as renewable or low

carbon technologies. These may include geothermal, solar, wind, biomass, and new

or existing hydro power, as well as nuclear and natural gas. The base level may be

defined as a subset of existing generation. For example, for some renewable electric-

ity generation portfolio policies, the base level is defined as the total generation less

generation from nuclear, fossil sources with CCS and unqualified hydro.

2.5 Least-Cost Expansion of Electricity Generation Capac-
ity Model

In this section, a deterministic mixed-integer linear programming (MILP) model

incorporating the features discussed above is described. The indices, variables, and

parameters used in the model are described in Table 16.

The objective function can be written as

min
∑
t

1

(1 + r)t

{∑
i

(Ciwi,t + Fixi,t) +
∑

i\biomass

Vi,t
∑
s

θs
∑
h

zi,h,s,t

+
∑
j

Vj,t
∑
s

θs
∑
h

zbiomass,j,h,s,t

+ PCO2,t[
∑
i

ei
∑
s

θs
∑
h

zi,h,s,t − (At − αt)]
}

(2)

The first term includes capital investment, fixed, and operation costs. Operating

costs include fuel costs as well as operation and maintenance costs. Fuels are assumed

to be supplied from the global market, and so we assume that fuel prices are exogenous

and this model’s expansion decisions do not affect fuel prices. The last term shows

the cost (benefit) from an excess (saving) of carbon emissions.

Demand Constraint The total power output generated by all technologies must not

be less than the total power demand, and peak demand must be met.

12



Table 1: Indices, parameters, and variables in the model.

Set and Indices
I = Generation technologies, i ∈ I
CCS = Generation technologies with CCS system
J = Biomass feedstocks, j ∈ J
h = Time period of hours, h = 1, 2, ..., 24
s = Time period of seasons, s = 1(summer), 2(winter),

3(intermediate)
t = Time period of years, t = 1, 2, ..., T

Parameters
-Demand-
r = Risk-adjusted real discount factor (7%)
dh,s,t = Electricity demand at hour h in season sin year t (MWh)
θs = Number of days in season s (days)
R = Reserve margin
-Capacity-
ρi = Maximum capacity factor of technology i (%)
ρsolar,h,s = Solar electricity potential at hour h in season s (%)
ρwind,h,s = Wind electricity potential at hour h in season s (%)
mi = Minimum economic capacity for new generating technology

i (MW)
ui = Upper bound for generating capacity of technology i (MW)
uCCS = Upper bound for CO2 storage capacity (tCO2)
ubiomass,j = Upper bound for power output from j biomass feedstock

(MWh)
-Cost-
Ci = Annualized capital investment cost of technology i ($/MW)
Fi = Fixed cost of technology i ($/MW)
Vi,t = Variable cost (O&M + fuel cost) of technology i in year t

($/MWh)
δs = Peak demand multiplicative factor ($/MW)
-New Policy-
ei = CO2e (Equivalent CO2) emissions from technology i

(tCO2e/MWh)
PCO2,t = price of CO2 in year t ($/tCO2e)
At = initial allowances of CO2e in year t (tCO2e)
Rest = Renewable electricity standard in year t (%)
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Decision Variables
yi,t = Capacity expansion (investment) of technology i in year

t, integer
wi,t = Total new capacity of technology i until year t (MW)
qi,t = Retirement capacity of technology i in year t (MW)
xi,t = Capacity of technology i in year t (MW)
zi,h,s,t = Electricity generation from technology i at hour h, sea-

son s, and year t (MWh)
zbiomass,j,h,s,t = Electricity generation from biomass fired plants by using

feedstock j at hour h, season s, and year t (MWh)
Gt = Amount of CO2 stored until year t (tCO2)
bt = Amount of allowances deposited until year t (tCO2e)
αt = Amount of allowances banked in year t (tCO2e)

∑
i

zi,h,s,t ≥ dh,s,t ∀h,∀s,∀t (3a)

∑
i

ρixi,t ≥ (1 +R)× δs ×max
h

(dh,s,t) ∀s,∀t (3b)

Capacity Change Constraint Based on the existing power plant capacities, the total

capacities of each technology will vary with retirement of existing plants and new

construction over time. Since the annual capital investment cost should be charged

to the new power plants, wi,t represents the accumulated capacity of new investment

for technology i until year t.

xi,t = xi,t−1 − qi,t−1 +miyi,t ∀i, ∀t (4a)

wi,t = wi,t−1 +miyi,t ∀i, ∀t (4b)

wi,0 = 0 ∀i (4c)

Retrofitting current existing coal power plants with a CCS system requires more

detailed constraints. The retrofitting of the CCS equipment in current viable coal

fired power plants is assumed to result in a capacity derating of 30% and reduced
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efficiency of 43% at the existing coal plant [24].

xcoal rv,t = xcoal rv,t−1 − qcoal rv,t−1 ∀t (5a)

ycoal ar,t = qcoal rv,t−1 ∀t (5b)

xcoal ar,t = xcoal ar,t−1 + 0.7ycoal ar,t−1 ∀t (5c)

wcoal ar,t = wcoal ar,t−1 + 0.7ycoal ar,t−1 ∀t (5d)

wcoal ar,0 = 0 (5e)

where “coal rv” means retrofitting viable coal power plants, and “coal ar” means

already retrofitted coal power plants.

Some technology options, including biomass, wind and hydro, are limited physi-

cally and/or economically, so these technologies will have, effectively, maximum ca-

pacity limitations. In addition, the total capacity of power plants with CCS systems

maybe limited due to limits on sequestration site availability.

xi,t ≤ ui,t ∀i ∈ I\CCS, ∀t (6a)∑
i∈CCS

ei
∑
s

θs
∑
h

zi,h,s,t +Gt−1 = Gt ∀t (6b)

Gt ≤ uCCS ∀t (6c)

Generation Constraint The power output generated by each technology must not

exceed its maximum available capacity. The power output of solar or wind technology

at each hour is determined by solar radiation or wind speed as well as capacity. The
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power output generated by each biomass feedstock also can not exceed its availability.

zi,h,s,t ≤ ρtxi,t ∀i ∈ I,∀h,∀s,∀t (7a)

zsolar,h,s,t ≤ ρsolar,h,sxsolar,t ∀h,∀s,∀t (7b)

zwind,h,s,t ≤ ρwind,h,sxwind,t ∀h,∀s,∀t (7c)

zbiomass,h,s,t =
∑
j

zbiomass,j,h,s,t ∀h,∀s,∀t (7d)

∑
s

θs
∑
h

zbiomass,h,s,t ≤ ubiomass,j ∀j,∀t (7e)

Renewable Electricity Constraint

∑
s

θs
∑
h

( zbiomass,h,s,t + zsolar,h,s,t + zwind,h,s,t + zother ren,h,s,t )

≥ rest
∑

i∈I\nuclear,hydro,CCS

θs
∑
h

zi,h,s,t ∀t (8)

CO2 Market Constraint In this study, banking of allowances is allowed, but not bor-

rowing [28].

bt = bt−1 + αt ∀t (9a)

b0 = 0 (9b)

0 ≤ αt ≤ At ∀t (9c)

2.6 Case Study

To demonstrate the use of the model, we develop a case study for the state of

Georgia in the U.S. As of 2011, electricity generation in Georgia is the 9th largest

among U.S. states, and the electricity market is a regulated monopoly: about 96% of

electric utility and 86% of total capacity is under control of a single company, Georgia

Power, a subsidiary of Southern Company. In this case study, the above model and

iterative approach will be used for generation expansion planning and to identify the

optimal future electricity generation portfolio for Georgia in response to six scenarios;
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(1) a base case scenario in which no new energy policy is imposed, (2) an RES sce-

nario in which the utility will be required to meet a RES, (3) a CO2 market scenario

with initial free allowances in which the utility will be required to participate in a

federal level CO2 cap-and-trade program, (4) a CO2 market scenario without free ini-

tial allowances, (5) a both policies scenario with initial free allowances in which both

RES and CO2 market policies are imposed, and (6) a both policies scenario without

initial free allowances.

Electricity Demand The Annual Energy Outlook (AEO) 2011 released from the U.S.

Department of Energys Energy Information Administration (EIA) projects a 31% in-

crease in U.S. electricity consumption between 2010 and 2035 [24], under the assump-

tion that there is no carbon restriction and no federal renewable portfolio standard.

Based on projections of electricity demand and population for the South Atlantic

region in AEO 2011 [24] and projections of population for Georgia [97, 43], we de-

veloped a reference future electricity demand projection (see Appendix A.2). Even

though Georgia was a net importer of approximately 9700 GWh of electricity in 2005,

accounting for 7.3% of total consumption in the state [29], for simplicity we assume

that Georgia does not import electricity, so that electricity generation will be equal to

demand. Figure 3 shows the reference electricity demand projection under the base

case. Based on 2006 hourly load data from Georgia Power [39], projected electricity

demands are profiled into three seasonal time slices (winter, summer and intermedi-

ate), which each have 24-hourly load data.

Two previous meta-analyses of price elasticity of demand for electricity reported

a range of price elasticity estimates. Espey and Espey [34] reported short-run price

elasticity estimates ranging from -2.01 to -0.004 with a mean of -0.35, and long-run

price elasticity estimates ranging from -2.25 to -0.04 with a mean of -0.85. Dahl [18]

reported short-run estimates ranging from -0.14 to -.44 and long-run estimates ranging

from -0.32 to -1.89. A recent study concluded that short-run elasticities for residential
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Figure 3: Reference electricity demand for the state of Georgia. The values for 2008
and 2009 are data reported by the EIA; the values for all other years are projections,
for which the derivation is provided in A.2.

and commercial sectors in the U.S. are both about -0.2, and long-run elasticities are

-0.32 and -0.97 respectively [7]. In this study, we use a short-run elasticity of -0.2

and a long-run elasticity of -1.0. In addition, for sensitivity analysis, we compare

demands with zero elasticities and higher elasticities (short-run : -0.4 and long-run

: -2.0) under the both policies scenario with initial free allowances. We follow the

AEO assumption that the short-run price elasticity is distributed over the first 3-year

interval and that the long-run price response occurs through the rest of the period.

Generation technologies Figure 4 represents the 2008 Georgia electricity profile. Geor-

gia relies mostly on coal to generate electricity. There is considerable natural gas

generation capacity, although these are primarily used to meet peak demand and

overall natural gas generation is relatively low. New large natural gas power plants

have been built recently, but the electricity generated from these power plants is

mainly used for peak-load demand and their current capacity factors are low. Two
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Figure 4: Georgia electricity capacity and generation portfolio (Total: 39 GW and
136 TWh [22])

large nuclear power plants serve base-load demand, and each plant has two reactors.

Although Georgia has fairly substantial hydroelectric resources and is also one of the

nations top producers of electricity from wood waste, these each contribute 2% of

total generation [25, 29].

Future demand for electricity can be met from both existing and new plants. Table

2 shows the technology options for new investment considered in this case study, and

the key technology data are summarized in Appendix A.3. The characteristics of

generating technologies are mainly based on a report on the assumptions to AEO

2010 [23]. Power plants based on oil and on renewables are assumed to be maintained

at the current level without retirement or new investment. With respect to CCS

technologies, not all existing power plants are candidates for retrofitting. Only plants

greater than 500 megawatts, with heat rates below 12,000 Btu per kWh are considered

for CCS retrofits. Georgia has five relatively newly-built coal plants which have 13

boiler units that could be candidates for CCS retrofits [23]. The CCS systems are

assumed to remove 90% of the carbon input. The addition of the CCS equipment
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Table 2: Technology options for new electricity generation investment in this study.

Technology options for new investment in this study

Fossil Fuel

Retrofitting current pulverized coal w/ CCS
New advanced pulverized coal (PC) w/ or w/o CCS
New integrated gasification combined cycle (IGCC) plant
w/ or w/o CCS
New natural gas combustion turbine (NGCT)
New natural gas combined cycle (NGCC) w/ or w/o CCS

Nuclear New nuclear

Hydro
New Hydro large (> 2.5 MW)
New Hydro medium (1 MW – 2.5 MW)
New Hydro small (< 1MW)

Renewable
New dedicated biomass
New wind offshore
New solar photovoltaic (PV)

lowers net capacity and net efficiency of the power plant because some portion of input

energy is used to operate the system. Georgia has about 4.9 billion metric tons of

CO2 storage capacity in total, equivalent to 55 years storage of all CO2 emissions from

the electricity sector given the current annual emissions [70], and there is significant

additional storage capacity in other southeastern states.

Fuel Costs Future costs for coal and natural gas to the power sector are obtained

from the Assumptions to the AEO Reference Case Regional Data Tables for the

South Atlantic region [24]. The prices of coal and natural gas (NG) are projected

to decline in 2011 and 2012 and keep increasing after then. There is considerable

uncertainty in future NG prices due to both the potential new supplies of NG in the

U.S., as well potential substantial changes in demand. Paltsev et al. [76] analyzed

the price of U.S. natural gas under uncertainties of the scale and cost of resources

and pattern of GHG emissions mitigation. The study projected that the high and

low NG resource estimates yield NG prices 2% below and 7% above that for the

mean estimate in 2030, as well as slight price reductions from a mitigation policy.

We developed a sensitivity analysis with 2% lower and 7% higher NG prices; this
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Table 3: Fuel Cost Projection [22, 102]

2009$/mmBtu 2010 2015 2020 2025 2030
Coal 2.25 2.14 2.16 2.24 2.31

Natural Gas 5.31 4.90 5.24 5.96 6.45
Nuclear 0.71 0.79 0.81 0.83 0.85

had minimal effect on the results. Cost estimates for nuclear fuel are from the World

Nuclear Association [102] with real cost escalation of 0.5% per year. Biomass fuel

cost are treated in the following section.

Availability of Renewable Sources Biomass is the primary renewable resource identi-

fied for electricity generation in Georgia. Sources of low-cost biomass in Georgia in-

clude forestry residues, unmerchantable timber, pulpwood, mill residues, urban wood

waste residues and paper mill sludge. [86] concluded that there may be in excess of

18 million tons of biomass in Georgia that could be used for energy each year. The

energy density of all dry woody biomass is fairly consistent between different forms;

we assume 12.8 MJ/kg, which translates into an annual biomass fuel energy of ap-

proximately 240 PJ in Georgia. We use biomass supply curves for Georgia based on

delivered cost and availability estimates, shown in Table 4 [58].

Data on maximum wind generation capacity were obtained from the National

Renewable Energy Laboratory’s Wind Deployment System Model base case scenario,

which shows Georgia to have relatively low potential, 130 MW [72]. Similar data for

hydroelectric potential are presented by Hall et al. [48]1. Based on solar radiation data

for Georgia [71] and solar PV panel specification [90], solar PV electricity generation

profiles for Georgia were developed [92].

RES and carbon market assumptions As a state-scale model, we assume that utility

actions do not affect carbon prices. We examine policies based on the American

1Small hydro - 230 MW, Medium hydro - 73 MW, Large hydro - 230 MW
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Table 4: Biomass delivered cost and availability in Georgia. [58]

Biomass Type Availability(TBtu) $/MMBtu
Pecan hulls 0.1 1.09
Gin trash 3 1.52
Bark, pine 3 1.75

Poultry litter 24 2.75
Peanut hulls 5 2.78
Wood residue 37 2.99
Wood chips 0.1 3

Unmerchantable timber 161 3.3
Corn stalks 2 4.05

Cotton stalks 34 4.12
Pulpwood (hard) 32 4.12

Hay 32 4.38
Pulpwood (soft) 93 4.53

Kenaf 1 5.16
Switchgrass 0.1 6.51
Wheat straw 5 11.29

Rye straw 2 12.96

Clean Energy and Security Act of 2009 (ACES) [28]. The act establishes emission

caps that would reduce aggregate GHG emissions for all covered entities to 3% below

their 2005 levels in 2012, 17% below 2005 levels in 2020, 42% below 2005 levels in

2030, and 83% below 2005 levels, in 2050. We assume the utility will be given free

initial allowances every year as (1 - reduction level) times its 2005 CO2e emissions

level, 90,132 thousand metric tons [22].

As described above, reducing this emission cap is expected to increase the CO2

price. The U.S. Environmental Protection Agency (EPA) has projected future U.S.

CO2e allowance prices under ACES 2009 from 2012 to 2050 based on two EPA mod-

els, ADAGE and IGEM [28]. We have used the average of two projections, shown

in Figure 5. ACES also includes a requirement for a renewable electricity generation

standard, shown in Table 5.

Other assumptions Even though this case study focuses on the 20 year period from
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Figure 5: U.S. CO2e allowance price projection under the CO2 emission cap-and-
trade policy scenarios. This projection is the average of two EPA model projections
for the American Clean Energy and Security Act of 2009. [28]

Table 5: ACES Act RES requirement [28]

Renewable Electricity Standard
6% by 2013

9.5% by 2015
13% by 2017

16.5% by 2019
20% by 2030
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2010 to 2030, the model is run over the 70-year period from 2010 to 2080 in order

to eliminate distortion of results. All parameters after 2035 are set to be the same

as in 2035. All inputs and results are reported in constant 2009 dollars. The U.S.

DOE [24] expected that the annual yield on the 10-year U.S. Treasury bond would

average 5.4% and annual consumer price inflation would average 2.1% from 2009 to

2035. From here, we obtain a risk-free discount factor rate of 3.2%. With about 4%

risk-premium, we use 7% real risk-adjusted discount rate to account for the time value

of money. This study includes completion of plants that are under construction but

are not yet operating. Georgia Power is moving ahead with plans to replace the 1960s

vintage coal-fired plant McDonough with a bigger natural gas power plant, consisting

of three combined cycles units with 840 MW of generating capacity each; these units

are expected to come on-line in 2012 and 2013. Finally, preliminary construction is

underway for two additional nuclear reactors on the current Vogtle site near Augusta;

the 1200 MW reactors are projected to come on-line in 2016 and 2017 respectively.

2.7 Results of the case study

The model was programmed and implemented in the AMPL optimization pack-

age, and was solved using the ILOG CPLEX 11.1 solver. Using the iterative approach

described, we developed endogenous demand projections for each scenario. The out-

comes of the model provide electricity generation portfolios by fuel, corresponding

electricity prices, and CO2 emissions under each scenario.

Endogenous Demands and Prices

Figures 6 and 7 show demand projections and prices under the different scenar-

ios respectively. The stricter the policies, the higher the price charged and the less

demand projected. The scenario with both a carbon cap-and-trade policy and a

renewable electricity standard without initial free allowances has the largest price in-

crease, from 9 cents per kWh to 12.2 cents per kWh by 2030, and correspondingly has
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the lowest demand projection, with 2030 demand projected to be about the same as

2010 demand, despite population growth. With only the RES, the price of electricity

increases from 9 cents to 10 cents per kWh by 2020, and the resulting demand stays

at the 2010 level until 2020, after which demand increases at a rate similar to the

base case projection. From 2020 to 2030, the demand under the scenario with only

an RES is about 3 - 6% less than the base case scenario. Either with or without

free initial allowances, the demand projection and electricity price under the carbon

cap-and-trade policy are very close to those under the scenarios that include both

a carbon cap-and-trade policy and a renewable electricity standard. Prices of elec-

tricity under the both policies scenarios are similar to those under only CO2 market

scenarios. It implies that the generating cost of biomass electricity is slightly higher

than that from coal and natural gas under the carbon emission market. For carbon

market policy scenarios with and without free allowances, 2030 demand is lower than

the base case by 9% and 23%, respectively.

Generation Capacity and Electricity Output by Fuel

Figures 8 compares electricity generation output portfolios by fuel. Under the

base case scenario, increasing future demand is met largely by plants that are already

planned. The projected increasing price of natural gas, based on the EIA projections

shown in Table 3, increases the gap of marginal costs between coal and natural gas

electricity, and results in a relatively constant consumption of coal in the base case.

However, the increasing heat rate of NGCC technology makes up for this increasing

gap. As a result, current existing old coal power plants are projected to be operated

up to their lifetime limit and are replaced by a combination of new coal power (PC)

plants and additional new natural gas power (NGCC) plants.

Under the only RES policy scenario, the renewables requirement is primarily met

through biomass generation in Georgia. New biomass power plants would replace

older coal power plants, and no new, except for planned, coal and natural gas power
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Figure 6: Electricity demand projections under different policy scenarios for the case
study. The two dashed lines are for carbon cap-and-trade policies without free initial
allowances; these show substantial demand moderation. The other policy scenarios
show demand similar to the base case.
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Figure 7: Electricity price projects under different policy scenarios. From the cal-
culated baseline average retail price of 9 cents/kWh in 2009, by 2030 prices would
rise gradually in the baseline, no policy scenario, to about 10 cents/kWh, would
rise to about 10.3 cents/kWh for renewable energy policies and 10.7 cents/kWh for
CO2 cap-and-trade policies with initial free allowances, and would rise to about 12.2
cents/kWh for policies with CO2 caps without free allowances..
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plants are required. Biomass capacity is about 2,700 MW in 2030, and only a small

amount of wind generation capacity, 4MW, is realized. Coal remains the primary fuel

and electricity generation from natural gas even decreases.

Under only CO2 market scenarios, some old coal power plants are retired earlier

than their lifetime limit. Moreover, some old natural gas power plants (NGCT) also

are retired when the absence of free initial allowances increases prices and reduces the

demand for electricity. Either with or without free initial allowances, no additional

power plants, except for planned power plants, need to be built in near future, and

some new IGCC plants with CCS start operations after 2025. About 1800 MW of

new natural gas power (NGCC) replaces old coal power plants under the scenario

with free initial allowances. The projected CO2 price and fuel costs change the merit

order between existing pulverized coal (PC) and new natural gas (NGCC) plants from

2015, when the CO2 price reaches about $20/ton CO2. These new NGCC plants are

used for base load, and existing NGCT power plants are still used for peak load.

The projected CO2 price will make carbon capture and sequestration systems cost-

competitive when the CO2 price reaches about $37-$40/ton CO2. As a result, both

retrofitting and new coal plants with capture systems are built and operated for base

load between 2025 and 2030. Without a renewable electricity standard, building of

new renewable power plants does not occur. We can conclude that CO2 market might

not strongly induce renewable electricity and renewable electricity generation will be

driven only by an RES policy in Georgia.

With both a carbon market and a renewable electricity standard, some old coal

power plants are retired earlier, as above, and new biomass, natural gas, and coal

with CCS power plants would replace these retiring old coal power plants. Under all

scenarios, the estimated cost of solar power technology is too high to be installed.

GHG emissions

The GHG emissions from the entire generation system under different scenarios in
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Figure 8: Electricity output by generation technology for the case study. Under the
carbon cap-and-trade policies (Scenarios 3 through 6), some CCS systems for coal
generation come in by 2030. Under the renewable electricity policies (Scenarios 2,
5, and 6) there is an increase use of biomass for electricity production. Electricity
from oil, solar and wind are negligible in all scenarios for this case study and are not
shown. (See A.4).
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Figure 9: GHG emissions in 2020 and 2030 under different policy scenarios.

2020 and 2030 are presented in Figure 9. Even though planned new natural gas and

nuclear power plants reduce 2020 GHG emissions in the base case, the base case GHG

emissions in 2030 are about 7% higher than the 2005 level. The RES-only scenario has

lower GHG emissions in 2020 than the CO2 market with free initial allowances, but by

2030 the CO2 market scenario has lower emissions than the RES scenario. The lower

demand under scenario 4, the CO2 market without free allowances, results in lower

GHG emissions. On the other hand, by 2030 GHG emissions under all CO2 market

scenarios are lower than under the RES scenario. The proposed RES maintains a

constant 20% renewables after 2020, resulting in higher GHG emissions in 2030 than

in 2020 under the RES scenario. The combination of both a CO2 market and a RES

policy produces the lowest GHG emissions.

Overall, Georgia can reduce GHG emissions from the electricity sector under all

scenarios. However, the source of the reduction is a little different under each scenario.

Even though no new renewable power plants will be built without a RES, large GHG

emissions reductions could be achieved from moderated demand. The GHG emissions

30



Table 6: Case study results showing the two sources of GHG emissions reduction -
demand moderation and changes in the generation mix – under a RES, a CO2 price
with and without initial allowances, and under both a RES and a CO2 price policies.

GHG emissions Only CO2 Only CO2 Both Both
reduction Only Price w/ Price w/o Policies w/ Policies w/o
with respect to RES Initial Initial Initial Initial
base case Allowances Allowances Allowances Allowances

2020

Demand -6% -1% -16% -3% -18%
Moderation
Generation Mix -14% -10% -18% -25% -30%
Change
Total -20% -11% -34% -29% -48%

2030

Demand -4% -8% -22% -9% -23%
Moderation
Generation Mix -18% -29% -22% -37% -37%
Change
Total -22% -37% -44% -46% -60%

reduction under energy policies can be attributed two effects: generation mix changes

and demand moderation. Table 6 shows the portion of two effects. Generally, the

generation mix changing effects are larger than demand moderating effects under

most scenarios, but about half of GHG emissions reduction comes from moderated

demand under the CO2 market without free allowances scenario.

Although free CO2 allowances compensate the utility and reduce electricity price

increases, free allowances may have unexpected results. Figure 10 shows the annual

GHG emissions under scenario 3 (CO2 market with free allowances) and scenario 5

(both RES and CO2 market with free allowances), and compares them with the quan-

tity of free allowances. In both scenarios, no allowances are banked and the actual

GHG emissions are sometimes or always less than the allowances. A credit to price for

revenue from selling excess allowances sometimes allows a utility to provide cheaper

electricity, and resulting demand could be higher than the base case demand, as we

have seen in Figure 6 and 7.

Different price elasticities
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Figure 10: Annual GHG emissions under scenario 3 (CO2 market with free al-
lowances) and 5 (both RES and CO2 market with free allowances), as well as the
actual quantity of free initial allowances, showing that projected emissions are some-
times or always less than the free allowances.

Price elasticity is a measure of how much demand decreases when price increases.

Figures 11 to 14 compare demand projections, prices, generation output, and GHG

emissions with different price-elasticity assumptions2 under the “both policies” sce-

nario with initial free allowances. The demand projection with the zero price elastici-

ties assumption is, as expected, the same as the reference demand, regardless of policy

and generation mix, and less demand is naturally projected with higher price elas-

ticities under the policies resulting in higher-cost electricity. Interestingly, doubling

the elasticities results in less than doubling of the demand reduction effect. That

is, with both an RES and a carbon cap-and-trade policy with free initial allowances,

2030 demand is lower than the reference no-policy scenario by about 9% under the

baseline assumption of elasticities, and by about 15% if the elasticities are doubled.

Moreover, the price of electricity with high elasticity is less than that with low or

2zero elasticities, base elasticities (short-run : -0.2 and long-run : -1.0), and higher elasticities
(short-run : -0.4 and long-run : -2.0)
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zero elasticity assumption. The zero-elasticity results compare well with the results

of Levin et. al. [58], which included a similar case study using the MARKAL model.

The detail comparison is shown in Appendix A.5.

Whereas Figures 12 and 14 show that different assumptions about elasticity have

only a small effect on projected electricity prices and only a moderate effect on pro-

jected total greenhouse gas emissions, Figure 13 shows that different assumptions

about elasticity have substantial implications for the projected future generation mix.

Specifically, Figure 13 shows that changing the assumption from zero price elasticity

to high price elasticity reduces the 2030 carbon capture and storage utilization by

about a factor of two, and reduces coal and natural gas generation by about 10%

and 25% respectively, while nuclear and renewables remain largely unchanged. This

case study illustrates the importance of including price elasticity in electricity gen-

eration planning models. As discussed previously, the current and future elasticity

of demand for electricity is not precisely known; efforts to improve understanding

of demand elasticity and its determinants could contribute to the formulation and

analysis of electricity generation policy. Moreover, policies or technologies that can

increase demand elasticity could complement generation-focused electricity policies.

Different NG prices

With 2% lower and 7% higher NG prices, the changes in the demand projections

and prices under all scenarios are less than 1%. All other results change slightly.

2.8 Conclusion

We have described and evaluated a deterministic least-cost optimization model

for the power generation planning of electric systems. The model can address poten-

tial carbon reduction and renewables policies and determine optimal investments and

operations of an electricity sector, which has various generation options. Demand

responsive to price is modeled endogenously, and this study shows the importance of
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Figure 11: Electricity demand projections with different price-elasticity assumptions
under both a renewable electricity standard and cap-and-trade policy with initial free
allowances.

Figure 12: Electricity price projections with different price-elasticity assumptions
under both a renewable electricity standard and cap-and-trade policy with initial free
allowances.
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Figure 13: Electricity output by generation technology with different price-elasticity
assumptions under both a renewable electricity standard and cap-and-trade policy
with initial free allowances.

Figure 14: GHG emissions in 2020 and 2030 with different price-elasticity assump-
tions under both a renewable electricity standard and cap-and-trade policy with initial
free allowances.
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incorporating potential demand responses to evaluation of policy.

Reduction of GHG emissions can be achieved from less carbon intensive fossil fuel

based technologies, including natural gas and installation of CCS, and from renew-

able technologies, including biomass, wind and solar. In the case study, the projected

market price of CO2 is high enough that the utility will gradually switch to less

carbon intensive technologies rather than just buying allowances from the market.

However, renewable electricity generation will be driven only by an RES policy until

2030. These result simply that the mix of technologies used to achieve emissions

reductions depend on how the policy is designed. Moreover, the design of GHG emis-

sion reduction policy for the electricity market can affect the price and consumption

of electricity. For example, the case study shows that the policy on initial allocation

of carbon allowances can considerably affect prices, demand, and the utility genera-

tion mix in the long term. The resulting moderated electricity consumption can also

contribute to achieving emission reductions.

There are some limitations to use of the model suggested in this study. First, this

kind of model takes the input parameters as given and fixed. This requires that the

electricity systems under study is small enough and the other markets, such as fuel

markets, are large enough. If the target electricity system is large enough that the

model’s decision will affect the other markets, other variables would need to be incor-

porated endogenously. Second, the least-cost model does not include the dynamics of

electricity market. Particularly, this model leaves out the competition. Even for the

vertically integrated markets, several players exist in actual electricity sector, so the

sector might not follow the least-cost pathway.

Nevertheless, we can use the model in this study to approximate future long-term

changes in the electricity sector under new policies with less complexity. Expanding

this model in order to include the dynamics of actual systems more realistically may

be the next challenge of this research field.
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CHAPTER III

GRID INTEGRATION OF EV AND WIND

3.1 Background

Numerous renewable electricity technologies are being deployed onto the electric

grid, with wind energy currently among the most cost-effective. Wind and solar

generation are intermittent and grid integration is challenging. Simultaneously, plans

for introduction of electric vehicles (EVs) onto the grid are ramping up, as an approach

to reducing petroleum dependence. A number of studies show that EVs can have lower

total fuel costs and net emissions than conventional gasoline-powered vehicles (CVs)

[19, 33, 47, 77, 87]. Some studies find that integration of substantial numbers of

EVs onto the grid could increase electricity demand and potentially result in higher

greenhouse gas emissions than CVs under some electric power systems [63, 88]. A

potential additional benefit of electric vehicles could be to manage wind and solar

electricity by charging during periods of high renewable output. Short and Denholm

[85] assess the potential benefits of synergies between plug-in hybrid electric vehicles

(PHEVs) and wind energy for reduction of petroleum use and greenhouse gas (GHG)

emissions. Wang et al. [100] use a unit commitment model to show that control of

PHEV charging and wind energy can reduce the total operating cost of the Illinois

electric power system. Gransson et al. (2010) [45] also use a unit commitment model

and conclude that integration of PHEVs into a Swedish wind-thermal power system

can reduce not only system operating costs but also total GHG emissions from the

system.

In this study, we develop four linked models to analyze future impacts of EVs

and wind power on the electric power system and light-duty vehicle (LDV) market.
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Metrics include cost of electricity, total consumer expenditure, GHG emissions, and

petroleum consumption. The models are run for the entire eastern interconnection of

the United States. EVs include both plug-in hybrid vehicles and fully battery-electric

vehicles ; we limit consideration of EV adoption to the light-duty vehicle fleet. Three

market share scenarios for 2025 are considered: (a) S10, in which EVs reach 10%

market share, (b) S20, in which EVs reach 20% market share, and (c) S100, in which

EVs reach 100% market share. The fuel economy of the CVs is solved endogenously

based on the EV market share and the applicable fuel efficiency standard.

Four charging schemes are considered: (1) uncontrolled charging, in which EV

owners plug in their vehicles immediately after the last trip of the day and EVs are

charged as soon as possible; (2) controlled charging, in which EV owners plug in

their vehicles but a grid operator controls charging to minimize cost; (3) controlled

charging with annual wind energy balancing, similar to (2) and the electric power

systems ensure that annual wind generation meets or exceeds annual EV charging

demands; and (4) controlled charging with real-time wind energy matching, similar to

(3) but with hourly wind generation meeting or exceeding hourly EV demand.. All of

the charging schemes assume charging occurs at home although some public charging

infrastructure is built to reduce range anxiety. In order to examine the potential

to reduce the cost of wind integration by linking wind energy and electric vehicle

charging, we evaluate two cases with a higher renewable electricity standard (RES)

than currently in effect in the eastern interconnection: a high RES and uncontrolled

EV charging, and a high RES and conventional vehicles. These high RES cases have

roughly the same renewable capacity as the controlled charging with real-time wind

energy matching case.
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3.2 Methodology

The analysis uses four models: (i) For each EV market share scenario, a light-duty-

vehicle fleet model determines the vehicle characteristics for conventional and electric

vehicles for each year over the study period; (ii) a least-cost capacity planning model

determines the optimum electric generation capacity for each year over the study

period; (iii) a unit commitment model optimizes the day-ahead unit commitment

choices based on information available the day before the delivery of power; and (iv)

an economic dispatch model optimizes the dispatch of generation and flexible loads

during the operational hour.

The capacity planning model of previous chapter 2 has been expanded to integrate

the EV charging schemes and more detailed characteristics of wind generation. The

capacity planning model was programmed and implemented in the AMPL optimiza-

tion package, and was solved using the ILOG CPLEX 11.1 solver. Further details of

the capacity planning model are given in Appendix B.1.

Together, the unit commitment and economic dispatch models1 serve to a) val-

idate that the capacity determined by the capacity planning model is sufficient to

provide secure system operation, b) determine the unit startup and shutdown costs,

and c) determine the amount of wind curtailment due to wind forecast inaccuracy

and limitations in demand and supply flexibility. Here, we take secure operation

to mean that the system is able to serve demand despite generator limits and wind

forecast uncertainty. Generator limits include the time required to startup an offline

unit, the minimum and maximum power a unit can deliver and still remain online,

and the maximum energy a unit can deliver over a specific time period. Transmis-

sion constraints, transmission reliability and generator reliability are typically also

1My colleague, Frank Kreikebaum, developed these models.
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Figure 15: Flow diagram of models, indicating use of a light duty fleet (LDV) model
of vehicle fleet characteristics for each year for both electric and non-electric vehicles,
a capacity planning model (CP) for the multi-year planning of electricity generation,
a unit commitment (UC) model for day-ahead scheduling of electricity production,
and an economic dispatch (ED) model that simulates electricity production

included in a security analysis but we do not include them here. The unit commit-

ment and economic dispatch models were programmed in MATLAB and solved in

MOSEK. Further details of these models are given in Appendix B.2 and Appendix

B.3 respectively.

The models are run in series as shown in Figure 15. First, we run the light-duty-

vehicle fleet model for the entire study period, 2010-2030. The output serves as input

for the capacity planning (CP) model, which is also run for the entire study period.

The output of the capacity planning model is fed into the unit commitment (UC)
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model which is run for the first day of the sub-period of interest. The results from

the first-day of the UC model are fed into the economic dispatch model (ED), which

is run for every hour of the first day of the sub-period. The UC and ED models are

then rerun for every day in the sub-period of interest. As our focus is on the metrics

once EV adoption rates have stabilized, we only run the UC and ED models in 2030.

In addition, to reduce the computational burden, the UC and ED models are only

run during time periods of demand or supply stress on the system. The chosen sub-

periods of interest are the weeks with the highest and the lowest projected annual

hourly loads, the week with the highest daily wind potential production, and the week

with the lowest wind potential production. The discrepancy between simulating the

UC and ED models over a four-week sub-period and over a ten week sub-period

was measured. The results indicate that simulating over a four-week sub-period is

a reasonable approximation for simulating over a longer sub-period. The eastern

interconnection spans 38 states, covering most of the eastern North America, has six

reliability councils , and represents 74% of total US electric consumption [24]. In

order to get more realistic results and understand regional characteristics, we applied

our model to these six councils2 separately. We aggregate the six regions’ results to

provide an overall assessment for entire eastern interconnection.

3.3 Data and Assumptions

3.3.1 EV adoption and characteristics

To model the future fuel efficiency of the entire U.S. light-duty vehicle (LDV) fleet,

we use the proposed fleet-wide fuel economy standard of 49.6 mpg for model year

(MY) 2025, as measured using the National Highway Traffic Safety Administration

(NHTSA) method [93]. The NHTSA 49.6 mpg standard determines the Corporate

2Florida Reliability Coordinating Council (FRCC), Midwest Reliability Organization (MRO),
Northeast Power Coordinating Council (NPCC), Reliability First Corporation (RFC), SERC Reli-
ability Corporation (SERC), Southwest Power Pool, Inc. (SPP)
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Average Fuel Economy (CAFE) standard and does not include many of the incentive

multipliers included in the EPA standard [37]. Therefore, the NHTSA standard is

closer to actual vehicle fuel economy and is used for this study. The standard projects

a distribution of sales of vehicle footprints and types (i.e. truck vs. car). Since the

standards apply to individual vehicle footprints and type, rather than the fleet as

a whole, should actual sales not match the projected distribution, fleet-wide fuel

economy may not match the 49.6 mpg overall standard.

We use the proposed model year (MY) 2017-2025 standard and assume vehicle

sales are distributed as projected to develop the reference case. For the market share

of new light-duty vehicle technology for 2025 we use projections from the US EPA

and the NHTSA [30]3, which is that EVs reach 10% market share by 2025, as our

base EV adoption scenario. In addition, we consider two more 2025 market share

scenarios: 20% and 100%.

We estimate the number of LDVs in the eastern interconnection based on the

National Household Transit Survey (NHTS) [42] and the Annual Energy Outlook

(AEO) 2011 [24]. The NHTS surveyed households across the entire U.S., recorded

the number of vehicles per household and estimated the number of households in each

state. Based on this, we estimated the share of vehicles for each state. With AEO

2011 projections for future LDV sales volumes and vehicle stock size, we project the

number of LDVs in the eastern interconnection for each year of the study period.

Details on the projection are given Appendix B.4. Starting from 2008 sales figures

[24], of which 53% and 47% of LDV sales are cars and light-duty trucks respectively,

the market share of cars gradually increases to about 64% by 2030. SUVs and vans

3Based on the current rule for 2012-16, the report developed four fuel economy scenarios: 47, 51,
56 and 62 mpg as measured by the EPA until 2025, and projected that the market share of fully
electric vehicles among new vehicles in 2025 will reach 10% with an emphasis on EVs under the 56
mpg scenario which is equivalent to 49.6 mpg as measured by the NHTSA. These standards will
require the fleet to meet an estimated combined average emissions level of 250 g of CO2 per mile in
2016, equivalent to 35.5 mpg
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are projected to comprise 64% and 11% respectively of light-duty truck sales. The

EV stocks will reach 8.5%, 17%, and 80% in 2030 under the 10%, 20%, and 100%

scenarios,respectively. With the projections of the future LDV sales and stocks, we

project the number of vehicles scrapped4 each year.

All-electric range and fuel efficiency are important characteristics when modeling

the impact of EVs on the power system. Most previous studies evaluate plug-in

hybrid electric vehicles with an all-electric range between 20 and 60 miles [19, 77, 87].

However, recently introduced fully electric vehicles, such as the Nissan Leaf, have a

roughly 100-mile range, and these ranges are expected to increase gradually. In this

study, we assume that battery-electric vehicles sold between 2010 and 2030 have a

100-mile range and plug-in hybrid vehicles have a 40 mile all electric range.

EV energy intensities are usually represented in kWh/mile when they are driven

in charging-depleting (CD) mode, during which electrical energy is used to drive the

vehicle. Plug-in hybrid vehicles are characterized by fuel economy when operating

in charge-sustaining (CS) mode, during which the combustion engine is powering the

vehicle. The assumptions for EV energy intensities in the CD mode are based on the

projection of Argonne National Laboratory [5] and discussed in Appendix B.5. We

assume PHEVs operating in CS mode have the same fuel economy as conventional

vehicles (CVs). CVs, which we take to be vehicles that do not source energy from

the electrical grid, are represented as having a single fuel economy.

The U.S. Department of Energy Annual Energy Outlook (AEO) 2011 projects

the fuel economies of new vehicles, vehicle stocks, and the distribution of vehicle type

(car and truck). Using fuel economy data from AEO 2011 for MY 2010 through MY

2016 as well as distribution data for 2010-2030, we project fuel economies of new

vehicles for each MY through 2030 under the MY 2017-2025 NHTSA standard. We

4Vehicles scrapped is calculated as the difference between the vehicle stock changes between
current and next years, and the number of new vehicle sales.
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assume the average fuel economy of the scrapped vehicles equals the average of the

vehicle stocks in the previous year. For each year of each EV scenario, we calculate

the required CV fuel economy to meet the NHTSA standard. We also calculate the

average fuel economy of the vehicle stock. Given the high fuel economy assigned to

EVs by the NHTSA, scenarios with higher EV market share result in a lower required

CV fuel economy. Taken to the extreme, this leads to falling CV fuel economy as EV

adoption increases. However, we impose the requirement that within a given scenario,

CV fuel economies do not decrease as a function of time. In some cases, this leads to

fleet-wide fuel economies in excess of the standard. The details on EV fuel economy

calculations and CV fuel economy projections are given in Appendix B.6.

3.3.2 Load profile of vehicle charging

The load profile of vehicle charging depends on the charging scheme, the charging

rate and the driving pattern. Higher charging rates can provide consumers with the

convenience of quick charging but can decrease the lifetime of power system assets

[65] and require additional generation capacity [47, 77]. Common charging rates are

level 1, rated up to 1.92 kW AC, level 2, rated up to 19.2 kW AC, and DC fast

charging. With level 1 charging, only EVs with an all-electric range under 30 miles

are viable with overnight charging [100]. Given our assumed EV ranges, we assume

EV owners employ level 2 charging, at a rate of 6.6 kW. The EPA/NHTSA report

assumes this rate, and the 2012 Ford Focus EV and 2013 Nissan Leaf are equipped

with this charger.

The NHTS conducted by the US Department of Transportation surveyed house-

holds across the US, tracking the travel of all members of each household for one

day. For each trip, the NHTS recorded the start time, travel distance, end time,

and vehicle type [41]. In addition, the Metropolitan Statistical Area (MSA) of the
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Figure 16: Average charging profiles per vehicle under uncontrolled charging schemes,
for weekdays and weekend days, respectively

household was recorded. Based on the NHTS and assumed charging rate, we devel-

oped weekday and weekend representative charging profiles for each type of vehicle

for use with the uncontrolled charging scheme. Figure 16 shows the uncontrolled

charging profile. Based on the NHTS data and assumed energy intensities, we also

develop the required daily energy that must be delivered to the EV vehicle fleet to

meet daily driving needs. Appendix B.7 contains more details on the uncontrolled

charging profiles, the capacity profiles, and the required daily energy.

3.3.3 Integration of Renewable Energy with EV Charging

Both wind and solar power are intermittent sources of electricity that can require

additional reserves, additional frequency regulation, and more maintenance of ther-

mal units at high levels of penetration [50, 6, 46, 56, 2]. These requirements lead

to integration costs in addition to the busbar cost of wind and solar generation. We

consider the potential for EV charging to be a flexible load that can be matched with

the availability of intermittent renewable generation in order to reduce integration

costs as proposed in [49]. For the controlled charging schemes, we assume that rate

incentives ensure that vehicles are plugged in at the end of every journey that ter-

minates at home. To estimate the flexibility of the EV fleet, we use the NHTS data
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and 6.6 kW charger rating to determine the total amount of grid-connected charging

capacity, for each vehicle class for weekdays and weekends, on a per vehicle basis.

The integration of the area under each charging capacity curve is larger than the

integration of the corresponding uncontrolled charging profile. This indicates that

vehicle charging could be scheduled while simultaneously ensuring that sufficient en-

ergy is available to meet diurnal driving demands. We assume the grid operator

schedules EV charging demands to minimize cost and meet constraints appropriate

to the charging scheme. Charging control could be realized via Internet or advanced

metering infrastructure (AMI) communication. While the scheduling process could

be distributed among third parties or converted to a decentralized process using pric-

ing signals, for this effort we assume the grid operator schedules the charging. With

wind power currently available at significantly lower costs than solar power within

the eastern interconnection, we assume all intermittent renewable energy is provided

by wind generation.

We obtain time-series potential outputs, forecasted outputs, capacity, and lev-

elized cost for thousands of hypothetical onshore wind generation sites in the eastern

and central US from the National Renewable Energy Laboratory (NREL) EWITS

database [73]. The EWITS database also provides these data, except for levelized

costs, for thousands of offshore sites along the eastern seaboard, Gulf coast and Great

Lakes. We develop supply curves of onshore wind power for each of the six reliability

councils within the eastern interconnection using the EWITS data. We also develop

onshore and offshore wind power profiles for high windy, medium windy, and low

windy days for six reliability councils. The details on wind power profiles are given

in Appendix B.8.

Even though both the Southwest Power Pool (SPP) and the Midwest Reliability

Organization (MRO) consume only 15% of eastern interconnection electricity, the

wind power potential in these two councils accounts for 73% of eastern and central
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US potential. While the other four councils (FRCC, NPCC, RFC and SERC) will

likely require a large amount of wind generation to meet existing renewable electricity

standards (RES), the supply curves indicate that wind energy generated in MRO or

SPP and shipped to the four regions will likely be cheaper than wind energy generated

in the four regions. For example, SERC has 1,238 MW of resources under $80/MWh

while SPP has 80,377 MW. At least one utility in SERC imports wind from SPP and

new transmission has been proposed to transport wind energy from the SPP and MRO

regions to eastern regions5. We assume that SPP and MRO regions will export their

surplus wind power to other eastern regions in proportion to their regional demands.

The wind export supply curves include both generation cost and transmission cost,

with transmission calculated as shown in Appendix B.8.

3.3.4 Electric Power Systems

The Annual Energy Outlook (AEO) provides basic electricity generation infor-

mation, including nameplate capacities by generation technology, electricity demand

projections, and fuel price projections [24]. The characteristics of the generating

technologies are mainly based on the assumptions to AEO 2010 [22].

Based on the 2010 hourly load data of representative utilities in the eastern inter-

connect [40], we develop 24-hourly load profiles of average weekdays and weekends in

three seasons (winter, intermediate, and summer) for each of the six regions for use

with the CP model. We assume that the hourly loads for each year in each region

scale by a region-specific, year-specific constant to meet the projected annual demand

of the region. We also develop hourly load profiles for each region spanning the entire

study period for use in the UC and ED models. Profiles are shown in Appendix I.

Some states have enacted state-level renewable electricity standards (RESs), re-

quiring electricity providers to supply a minimum percentage of annual demand using

5Clean Line Energy Partners, 2012, http://www.cleanlineenergy.com/projects

47



renewable energy resources. We require the capacity planning model to satisfy the

existing RESs over the study period and assume that no additional RES mandates

are passed. We calculate the effective RES mandates for six councils based on the

load-weighted average RES mandates of each state. The load-weighted average RES

mandate of the entire eastern interconnection is about 9.6%, and the details on the

effective RES mandate are shown in Appendix B.10. In addition, to examine the high

RES cases, we consider a federal level RES mandate of 33% by 2030, which is the

California RES level [21]. Given the lack of carbon emissions restrictions, we assume

a carbon price of $0 throughout the study period.

3.4 Results

We present results for 13 cases: the reference case, and four charging schemes

combined with three EV adoption scenarios. The reference case assumes all vehicles

are CVs and no requirements are imposed upon the electric power sector except meet-

ing load growth and existing RESs. Our CP model indicates the most aggressive case

- EV 100% market share and controlled charging with wind real-time matching - is

not feasible given the amount of wind resources in the eastern interconnection, so we

exclude further analysis of that case. In addition, we originally considered charging in

which EV owners plug in their vehicles after every trip rather than only at home; how-

ever our CP model produces the same results with the ubiquitous controlled charging

schemes as the home controlled charging. Since ubiquitous controlled charging re-

quires more infrastructure without changing the results, we eliminated that charging

approach. For all twelve EV cases, we run our models for the six reliability councils

separately. All results for the eastern interconnection are the aggregated results for

the six reliability regions. The levelized cost of electricity is calculated based on the

generation-weighted average of the costs in the six regions.
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3.4.1 Energy Consumption

Figures 17 and 18 show electricity and light-duty-vehicle (LDV) gasoline demand

projections under the different EV adoption scenarios. Electricity demand in the

reference case is expected to increase by 11% over 20 years from 2010 to 2030, and the

electricity demands under the three EV scenarios are 1.7%, 3.3% and 15.8% higher

than reference demand respectively in 2030. LDV gasoline consumption declines

under every scenario due to increasing fuel economy. Even without EV adoption, US

gasoline demand decreases by about 20% by 2030. With low EV adoption levels, the

CVs are required to be more efficient in order to meet the fuel economy standards.

As a result, gasoline consumption under the S10 and S20 EV adoption scenarios is

lower by only 2.9% and 4.4% relative to reference case in 2030. Gasoline consumption

declines by about 44% in the limit case of 100% market share.

Figure 19 represents the sources of extra electricity in 2030 under the S10 scenario.

The positive/negative values mean that the amount of electricity from corresponding

sources will increase/decrease with respect to the reference case. The net increased

electricity consumption levels in all four charging schemes are the same. For uncon-

trolled charging, the capacity planning model projects that the extra electricity will

be mainly generated from natural gas. The gap between on-peak and off-peak loads

increases, and the electric power systems generate more electricity with natural gas, a

traditional mid-range and peaking resource. Under cost-minimizing controlled charg-

ing and controlled charging with wind energy annual balancing, some portion of the

additional electricity comes from low-cost coal power at times when demand is low,

and the extra electricity is mainly generated from natural gas. With annual wind

energy balancing constraints, wind energy provides more of the energy required to

meet the mandated RPSs than in the reference case and some biomass power plants

built in the reference case are not built.
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Figure 17: Annual electricity demand projection for the US eastern interconnection
in the reference case and for three scenarios of EV adoption. The effect on electricity
demand in the S10 (10% EV sales by 2030) and S20 (20% EV sales by 2030) EV
adoption scenarios is small; only in the limit case, in which EVs capture the entire
market for light duty vehicle sales by 2030, is there a substantial increase in overall
electricity demand.
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Figure 18: Annual light-duty-vehicle gasoline consumption projection in the US
eastern interconnection. The S10 (10% EV sales by 2030) and S20 (20% EV sales
by 2030) EV adoption scenarios provide only a small decrease in overall gasoline
consumption; only in the limit case of a 100% EV light-duty vehicle market by 2030
does gasoline consumption decline substantially.

51



Figure 19: Change in electricity sources due to EV charging demand for four charging
schemes with 10% EV market share (S10) in 2030.

Under the controlled with wind real-time matching charging scheme, a large quan-

tity of additional wind power plants - enough to produce about 160 TWh in 2030 -

will be required to fulfill EV charging demand on the day with the least wind poten-

tial production. The surplus electricity from wind power plants during the other days

will be used for non-EV demand, and it replaces both coal and natural gas power

plants. Relative to the reference case, a large amount of electricity from biomass will

be substituted by wind electricity. Overall analysis for the sources of extra electricity

under S20 and S100 scenarios is similar. More detailed analysis on wind energy is

given in section 3.4.5.

3.4.2 System Operations and Hourly Load

The unit commitment and economic dispatch models were solved for each of the

EV scenarios and charging schemes over the four sampled weeks, for each of the six
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reliability councils, to verify that the system is secure during these periods and to

describe how the system operates with non-EV load and EV charging load. Figure 20

shows an example of system operation over the week containing the annual peak load

for the S20 scenario6 under each of the charging schemes. This example is from the

SERC reliability council since results for SERC is the most similar to overall results.

In each graph, the red line indicates the amount of non-EV load. Any generation

above the red line is used to serve EV charging load. Under the uncontrolled charging

scheme, EVs require most of charging load during the early evening, increasing the

daily peak load for a summer peaking system like SERC. However, direct control by

the grid operator allows the loads to be shifted to the middle of the night, flattening

the daily load curve. For wind annual balancing and wind real-time matching schemes,

a large amount of wind power serves the EV charging demand during the night.

3.4.3 Vehicle GHG emissions

The GHG emissions per mile of EV travel in the charge depleting (CD) mode

can be calculated on an average basis or incremental basis. Average GHG emissions

are the total GHG emissions in the electricity sector divided by the amount of total

electricity. Incremental GHG emissions are the additional GHG emissions in the

electricity sector relative to the reference case divided by the amount of additional

electricity from EV charging. For example, the incremental GHG emissions factor for

electricity in the S10 scenario with controlled charging is about 390 g CO2e/kWh,

which is similar to that of natural gas electricity, as we can see in Figure 19. Figure

21 shows the GHG emissions per mile of EVs and CVs under the twelve cases. The

GHG emissions factor from EVs are much less than that from CVs in every case and

the GHG emissions under the S10 and S20 scenarios are lower than those under S100

scenario cases.

6Due to its small EV charging demand, the S10 scenario is not shown.

53



Figure 20: System Operation in 2030 for the week with the peak daily load for un-
controlled charging (top), controlled charging (upper middle), wind annual balancing
(lower middle) charging, and real-time wind energy matching (bottom) schemes. The
red line shows the non-EV load and generation is categorized by fuel type as nuclear
(red), coal (dark gray), biomass (green), natural gas (light brown), hydro (dark blue),
and wind (light blue).
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Figure 21: GHG emissions per mile in 2030 under different charging schemes. Zero
values mean the electricity sector has less GHG emissions with the given EV charging
scheme compared to the reference case.
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3.4.4 System GHG emissions

Existing RESs are projected to result in 7.5% reduction of electricity sector GHG

emissions by 2030 with respect to the 2010 level, even though total electricity gener-

ation is expected to increase 11%. With EV adoption, the electricity sector produces

more GHG emissions relative to the reference case for all cases except those using

wind real-time matching, due to increased electricity generation. Since the controlled

charging scheme increases the utilization of coal power plants, which have the highest

GHG emissions per kWh, it has the largest increase in electric power sector GHG

emissions. For all except one day per year, wind real-time matching results in more

wind electricity than required to charge the EVs. This can be used to supply conven-

tional (non-EV) demand, reducing the GHG emissions of the entire electricity sector.

Interestingly, the electric sector produces more GHG emissions under annual wind

balancing than under uncontrolled charging with 10% and 20% EV adoption levels:

under wind annual balancing, even though the charging demand from EVs equals the

of electricity generated from wind, the flattened extra demand results in the power

system using more coal relative to the reference case; on the other hand, some coal

generation will be replaced with natural gas generation in the uncontrolled charg-

ing scheme as shown in Figure 19. Figure 22 represents the sum of GHG emissions

from electricity generation and LDV gasoline combustion. Overall, the total GHG

emissions reduction level will be 12% in 2030 with respect to 2010 under the refer-

ence case. However, for the controlled and the controlled with annual wind balancing

charging schemes under the S20 (20% market share) scenario, the sum of GHG emis-

sions surpasses that without EV adoption by about 0.2%. That is, for some EV cases

the GHG emission reduction from decreasing gasoline consumption is less than the

increased GHG emissions from electricity generation. Only wind real-time matching

and wind annual balancing with high EV adoption provide a notable reduction in

GHG emissions.
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Figure 22: Total GHG emissions from electricity generation and gasoline combustion
in vehicles in 2030

Figure 22 contrasts with the results from Figure 21. Although Figure 21 shows

that greenhouse gas emissions per mile are lower for EVs than for CVs, overall green-

house gas emissions with EVs are about the same, or a bit lower, than greenhouse gas

emissions with only CVs. There are two reasons for this. First, except under wind

real-time matching, the average GHG emission factor per kWh of electricity increases

with EV adoption compared to the reference case. As a result, all other non-EV

electricity, which is much larger than EV charging demand, has a higher GHG emis-

sions factor. Second, due to the structure of the fuel efficiency standards, the GHG

emissions per CV mile is higher with higher EV adoption. These results demonstrate

the importance of comparing not only the GHG emissions factor per mile of vehicle

travel, but also from a total emissions perspective.

3.4.5 Economic Impacts

Figure 23 presents the levelized generation costs of wholesale electricity under

different cases. Even though annual electricity demands under the S10 and S20 EV

scenarios are higher than in the reference case, the levelized costs of electricity in

the S10 and S20 scenarios under controlled charging are slightly lower than in the
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Figure 23: Levelized electricity generation cost in the eastern interconnection in 2030

reference case. Even though the capacity planning model builds lots of new wind

power to enable wind real-time matching, the levelized cost of electricity increases

1.7% and 7.3% under the S10 and S20 scenarios respectively. Moreover, while total

electricity demand in the S100 EV scenario is 15.8% higher than in the reference case,

the levelized cost of electricity in the S100 controlled charging case increases by only

4.5% in 2030. Load control enables the grid operator to shift the charging demand to

increase the utilization of lower cost baseload coal and nuclear power plants. Under

the S100 wind annual balancing case, the cost of energy increases roughly 10%.

Next, we estimate the total consumer expenditure (TCE) of an EV and CV owners,

who buy the vehicle in 2030. We assume the retail energy price is $0.04/kWh higher

than the wholesale cost, to account for transmission and distribution. We assume

a gasoline price of $4 per gallon. Even though battery recharging is less expensive

than gasoline refueling, EV upfront costs are greater due to higher vehicle cost and

the cost of charging infrastructure. Based on ANL’s analysis (ANL 2011) and our

projection of fuel economies, we estimate the incremental purchasing cost of each

vehicle type. The detailed calculation for incremental purchasing costs in Appendix
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Table 7: The net present value of lifetime (13 years) total expenditure compared to
conventional vehicle (CV) in each scenario. The numbers show the differences of the
costs for EV and CV in the same EV adoption scenario. The negative numbers mean
the lifetime cost of EV is lower than that of CV.

Uncontrolled Controlled Controlled Controlled
Wind Annual Balancing Wind Real-Time

S10
Compact -1110 -1116 -1115 -1099
Midsize -1779 -1787 -1785 -1767

S20
Compact -1844 -1853 -1843 -1734
Midsize -2661 -2671 -2660 -2541

S100
Compact -3979 -3990 -3908 -
Midsize -4294 -4306 -4216 -

B.11. We assume each owner pays for one home charger per vehicle as well as a

portion of the public charging infrastructure network, as described in Appendix B.12.

The infrastructure cost in all cases is $932 per vehicle. TCE includes the incremental

cost of non-EV electricity pro rated on a per vehicle basis. With total expenditures

for operation of vehicles and incremental upfront costs, we compare the net present

value (NPV) of lifetime total costs for compact and midsize passenger cars under each

scenario when the vehicles are purchased in 2030. Tables 7 and 8 compare the total

costs for electric vehicle (EV) and conventional vehicle (CV). The numbers in Table

8 are the difference of the total costs between EV and CV in the same EV adoption

scenario. In contrast, Table 8 shows the difference between the average vehicle TCE

in an EV case relative to the TCE of CV ownership in the reference case. This table

may be used to compare the cost impacts of setting EV adoption as a goal within the

eastern interconnection. The details of specific calculations are shown in Appendix

B.13.

The results can be sensitive to the discount rate assumption. The upfront cost of

an EV is higher than that of a CV for all cases. In addition, the annual operating cost

of an EV is lower than a CV for all cases. Thus, lower discount rates give advantage

to EVs and higher rates give advantage to CVs. In this study, we use a discount rate

of 4.8%, the average rate for new car loans from 2001 to 2010. With this interest
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Table 8: The net present value of lifetime (13 years) total expenditure compared
to reference case conventional vehicle (CV) in each scenario. The numbers show the
differences between the weighted average total costs for both CV and EV in the EV
adoption scenario and that for CV in the reference case. The positive number means
the average lifetime cost of vehicle ownership under EV adoption case is higher than
that under the reference case.

Uncontrolled Controlled Controlled Controlled
Wind Annual Balancing Wind Real-Time

S10
Compact 721 685 694 777
Midsize 808 773 781 864

S20
Compact 1516 1469 1522 2110
Midsize 1696 1648 1701 2291

S100
Compact 1655 1580 2142 -
Midsize 1336 1261 1830 -

rate, the total costs for CV owners surpass those of EV owners in all cases as shown

in Table 7 and the differences of the total costs increase with EV adoption levels. For

cases with high EV market share, the required CV fuel economy is lower than cases

with low EV market share; thus, the operating fuel costs of CVs in high market share

cases are higher than the lower market share cases and in most cases the increased

fuel costs surpass the higher operating costs of EVs. This result implies that EVs

will be more cost-effective than CVs. However, this does not imply that higher EV

adoption scenario is better than the reference case of lower EV adoption cases in

terms of TCE. In Table 8, the weighted averages of TCE for both CV and EV owners

under EV adoption cases are higher than the total expenditure for CV owners under

the reference case. This result implies that the average vehicle owner spends more

money under the EV adoption cases than the reference case. This increased TCE can

be considered the per vehicle portion of the social cost for reducing greenhouse gas

emissions and oil consumption via EV adoption.

3.4.6 Wind Power and High RES

Based on the EWITS database, the eastern interconnection has about 530 GW

onshore and 140 GW offshore wind power potential (NREL 2010). With the existing

60



Table 9: The wind power on the entire eastern interconnection in 2030 under the
controlled with annual wind balancing and the controlled with real-time matching
schemes. *When we relax the constraints for wind potential capacity, our models
require higher capacities than the potential.

Onshore Capacity Offshore Capacity Total Generation
(GW) (GW) (TWh)

S10

Controlled 53 6 230
Wind Annual Balancing

Controlled 85 9 350
Wind Real-Time

S20

Controlled 58 6 250
Wind Annual Balancing

Controlled 137 29 520
Wind Real-Time

S100

Controlled 116 13 460
Wind Annual Balancing

Controlled 972 140 3275
Wind Real-Time

RPS, 44GW onshore and 4GW offshore wind power potential will be used to generate

190 TWh in 2030 without EV adoption. Table 5 represents the wind power on the

system under the annual wind balancing and real-time matching schemes. In order to

implement wind real-time matching, the power systems required considerably more

wind power than wind annual matching. In the limit of 100% market share, the

winder energy required for real-time matching is more than the wind potential of the

eastern interconnect.

The control of EV charging can provide system reliability and economic benefits by

reducing generator cycling costs and wind curtailment. Lower cycling costs and lower

wind curtailment may increase system reliability, decrease the amount of required

generation and transmission, and lower operating costs.

The 33% RES cases show the benefit of controllability more visible. About 280GW

onshore and 13GW offshore wind potential are required to meet the high RPS. The

cycling costs of the uncontrolled case, 0.07 cents/kWh, are more than twice those

of the controlled case, 0.03 cents/kWh. Wind curtailment is about 7% under the

uncontrolled case and 1% under the controlled case. If the system is subject to an
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RPS, wind curtailment leads to more capacity expansion than is identified in the CP

model. The TCEs in Table 8, which do not include cycling costs and curtailment

effects, show that controllability makes it easier to integrate more wind power into

the systems. The cases with controllability are expected to be even more attractive

if curtailment effects and cycling costs are included

3.5 Conclusion

We analyze future impacts of electric vehicles (EVs) and wind power on the elec-

tric power system and light-duty vehicle (LDV) market based on three perspectives:

petroleum consumption, GHG emissions, and total consumer expenditure. Introduc-

tion of electric vehicles can reduce US petroleum demand. Due to the structure of

the proposed US fuel efficiency standard, which allows fleet efficiency to be met with

a combination of EVs and highly efficient conventional vehicles (CVs), gasoline use

is projected to fall in all cases, with or without EVs. However, since the CVs would

be required to have correspondingly higher fuel efficiency without EVs, our LDV

model analysis shows the additional reduction from EV adoption could be marginal

in the low EV adoption level. In addition, even though electric vehicles have lower

greenhouse gas emissions per mile than gasoline-powered vehicles, electric vehicles

may not provide a net reduction in greenhouse gas emissions. The control of elec-

tric vehicle (EV) charging can substantially affect both EV emissions and the future

of the electricity generation system. In smart-grid controlled system, their charg-

ing can be managed by the electricity system operators to reduce costs and manage

loads, and could also be used to support integration of wind or solar power onto

the grid. Matching electric vehicle charging to wind energy has the appeal of being

able to, in concept, charge electric vehicles entirely with wind energy, resulting in

what might be interpreted as essentially zero greenhouse gas emissions from electric

vehicles. However, when considering the resulting development and operation of the
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entire electricity system, the result looks different. If the system operator simply

matches the amount of wind energy to the amount of vehicle charging, on an annual

basis, the higher emissions from off-peak charging will in effect cancel out the benefits

of wind charging of the electric vehicles.

It is possible to provide wind energy for real-time charging of electric vehicles.

For the eastern interconnection region of the US, consisting of 36 states, we show

that real-time wind charging of electric vehicles is feasible for an EV market share

of 20% in 2030. With this charging scheme, system greenhouse gas emissions are

lower with EVs than in the reference case. However, if the system operator achieves

real-time matching of wind energy to electric vehicle charging, then the extra wind

capacity needed to achieve real-time wind matching results in an overall reduction

in energy system greenhouse gas emissions. Our analysis shows that EVs will be

more cost-effective than CVs in EV adoption scenarios, and the benefit of EV owners

relative to CV owners will increase with EV adoption levels. However, the average

total consumer expenditure of vehicle owners will be higher with EV adoption rather

than the reference case, no EV adoption.
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CHAPTER IV

DEMAND RESPONSE PROGRAMS FOR RESIDENTIAL

CUSTOMERS

4.1 Description of Problem

4.1.1 Benefits of Demand Response Programs

The definition of “demand response” used by U.S. Department of Energy [98],

is “Changes in electric usage by end-use customers from their normal consumption

patterns in response to changes in the price of electricity over time, or to incentive

payments designed to induce lower electricity use at times of high wholesale market

prices or when system reliability is jeopardized.” Demand response programs can be

categorized into two groups: incentive-based demand response and time-based rates.

The important benefits of demand response can fall into three perspectives [98]:

1) participants benefit: not only the participants can save money on their bills, but

also others can have incentive payments from adjusted loads, 2) Market benefits: the

electric power market can lower the wholesale market prices (lower marginal gen-

eration costs) from lowering peak demand. Over the long term, sustained demand

response lowers aggregate system capacity requirements, allowing utilities to build

less new capacity. 3) Reliability benefits: the grid operator can increase operational

reliability. How about the environmental perspective? First of all, increasing reli-

ability can reduce the “spinning reserve” level, and corresponding emissions can be

reduced. Moreover, even though shifting the electricity demand from on-peak to off-

peak can produce more emissions from coal-intensive electric power systems, it can

help some renewable technologies to be economically viable and, therefore, reduce
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emissions. As we saw in the previous chapter, wind energy produces most of its elec-

tricity during the off-peak hours and we can coordinate the shifted demand and wind

energy. Time-based rates can boost the viability of distributed solar panels [36].

Also, industry organizations and regulatory agencies have favored greater imple-

mentation of time-based rates because these rates can reduce the disconnect between

retail rates and wholesale prices.

4.1.2 Inefficient operation of optional time-based rates for residential cus-
tomers

The most common demand response program offered in the U.S. are direct load

control, which an incentive-based demand response approach, and time-of-use (TOU)

rates [38]. Many utilities now require their larger commercial and industrial cus-

tomers to be on time-based rates. TOU rates are the most prevalent time-based rate

for residential customers, and most experience has been as an optional service, under

which the customers have a choice between TOU and standard flat rates. However,

only a few residential customers are participating in the programs. About 50% of

U.S. residential customers were offered TOU rates by utilities and 1.4% of customers

signed up [38]. According to Con Edison, a New York utility providing electricity to

roughly 3.2 million customers, as of June 30, 2009, only 2,337 customers were enrolled

in its voluntary TOU rate program [81]. Goldman et al.[44] said that modest partic-

ipation rates have limited the significance of demand response impacts for the vast

majority of programs. They concluded that most utilities do not plan to promote

their TOU rates aggressively in the future since the programs have not performed

as well as originally expected and no longer have the support of utility and state

regulators.

A primary objective of optional TOU rates is to improve the welfare of all con-

sumers and the utilities together. In other words, offering an optional TOU rate to

customers should reduce the consumers’ bills without any loss for the utilities’ profits.
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So, social welfare should rise. However, Mackie-Mason[60] showed that optional TOU

rate can be Pareto superior or Pareto inferior, depending on customers’ consumption

patterns and other factors. Consider how the offering of optional TOU rates can be

Pareto inferior. When optional TOU rates are offered, customers who choose TOU

will tend to be those with relatively low peak consumption and relatively high off-peak

consumption. Even without any changes in their consumption patterns, their energy

bills can decrease. However, the utility must generate the same amount of electricity

in each period as before; the generation cost are the same. As a result, either utilities’

profits decline or utilities can not offer low enough for TOU rates which are attractive

enough residential consumers to choose TOU rates instead of the standard flat rate.

Even worse, sometimes the standard flat rate must cover the loss. This makes the

utilities or some customers, who are on the standard flat rates and do not change

their consumption or choose TOU rates, worse off. An econometric analysis study

found these programs to be ineffective at modest participation level, based on several

experimental optional TOU rates from a utility in northern California [95].

In summary, utilities’ disincentives associated with offering the optional TOU

rates is the main reason for inefficient operation of current optional TOU programs.

The disincentives encourage utilities not to promote the new rates and not to offer

attractively low TOU rates. In this situation, residential customers do not consider

participating in the new rates. Or, even if they do consider, customers hesitate to

participate because of little bill savings and the risk of higher bills. The operation of

the current programs are stuck in a systematically problematic condition.

4.1.3 Time-based rates with increasing flexible residential demand

Residential customers tend to be more price responsive as a group than commercial

and industrial customers [38]. The flexibility of residential electricity consumption
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is expected to increase even more with deployment of smart appliances1 and electric

vehicles (EVs). When these technologies are adopted, residential customers can have

more flexibility with less effort. As a result, residential customers could become more

likely to volunteer for demand response programs, which could improve the efficiency

of existing optional TOU rates. However, appropriate business models and customer

incentive structures are required to achieve fair benefits among stakeholders. The

benefits can be different based on how the incentives are designed.

EVs are beginning to be adopted. The charging demand will increase household

daily electricity usage by about 37% [51], and the electric power system will have to

serve the additional demand from EVs. As we saw in the previous chapter, uncon-

trolled EV charging demand is expected to increase the gap between on-peak and

off-peak demand, so it would require most electric power systems to build additional

generation capacity and diminish the systems’ operational efficiencies. Many utilities

have already offered optional TOU rates for EV owners: 1) when a utility offers two

options for EV owners – a non-separable TOU rate that adds the electricity used

for charging vehicle onto the existing household usage and another which meters the

vehicle separately, 2) when the utility offers only a non-separable TOU rate.

4.1.4 Two policy tools for overcoming the inefficient operation

Figure 24 shows the conceptual relationship between monetary benefits (avoided

costs) and monetary loss (transaction costs and lost revenue) of a utility as function

of the participation level of residential customers on the optional time-based rates.

When the participation level x is less than the critical participation level x∗ (when

1Products that use electricity for its main power source, which have the capability to receive,
interpret and act on a signal received from a utility, third party energy service provider or home
energy management device, and automatically adjust its operation depending on both the signals
contents and settings from the consumer. e.g. clothes washers, clothes dryers, room air conditioners,
and dishwashers. [75]
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Figure 24: The conceptual relationship between monetary benefits (avoided costs
A(x)) and monetary loss (transaction costs T (x) and lost revenue Sc(x)) of a utility
at the participation level of residential customers on optional time-based rates.

a few residential customers who mainly have already relatively low peak consump-

tion and high off-peak consumption will participate in the optional time-based rates),

the above inefficient operation happens. However, if we induce more customers to

participate in the optional time-based rates and the customers can actually react to

the time-varying prices, then the above inefficient operation can be overcome, which

means that the utility’s monetary benefits are greater than the loss from the time-

based rates, so the utility can make higher profits and the residential customers can

have more savings at the same time. In this study, we explore two policy tools to

induce more customers to participate in the time-based rates: 1) subsidy for flexible

residential demand and 2) shared-savings mechanism based on the consumption pat-

tern changes.

First, the subsidy for flexible residential demand is a subsidy for the public to

purchase smart appliances and electric vehicles. If more residential customers can

purchase smart appliances or electric vehicles, more residential customers may be
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more willing to participate in optional time-based rates. Second, under the shared-

savings mechanism based on consumption pattern changes, some percentage of cus-

tomers’ bill savings will be transferred to utilities in order to compensate the revenue

loss of the utilities. For this compensation, the portion of transferred savings can

be differentiated among customers based on the actual changes of customers’ con-

sumption patterns. Even though utilities offer the same prices for all customers, the

utilities can take the higher portion of bill savings from some residential customers

who don’t change their consumption patterns rather the other residential customers

who change their consumption patterns. Then, utilities can offer low enough prices

for electricity in the time-based rates and it attracts more customers to participate

in the time-based rate.

4.2 The Economic Model and its Implications

In order to explore how two proposed policy tools could work to overcome current

inefficient operation of the optional time-based rates for residential customers, we

need to understand the relationships between the policy tools and the participation

level of residential customers in the optional time-based rates. In order words, we

need to see how the participation level changes with and without the tools. For un-

derstanding the relationships, we develop an economic model for a sequential game

among a regulator, a utility, and residential customers. For simplicity, we use the

structure of a simple time-of-use (TOU) rate for the time-based rates in our model,

which has two time periods: on-peak and off-peak. We assume that the less peak

consumption customers participate in a given TOU rate earlier and the current par-

ticipation level is x(0) (Note : 0 ≤ x(0) ≤ 1). In this non-repeated game, each player

makes decision at once as following sequences of events, and we assume that this is a

perfect information game.

Stage 1 : The regulator will set up differentiated fee rates, ri ∈ [0.1], for each
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customers under the shared-saving mechanism based on the consumption pattern

changes. We define r ∈ [0, 1] as the weighted average of ri among customers, and

r is the market incentive rate for the shared-savings mechanism. The regulator also

chooses the funding size of the subsidy for flexible demand (e.g. smart appliance and

EVs), K. The regulator wants to maximize social benefits. In this study, we will

define the social benefits as the customers’ net savings under the condition at which

utility will not lose its profits. (We will discuss more about the social benefits in

following “Regulator’s problem” part)

Stage 2 : A utility has already offered a standard fixed flat rate ps to the residential

customers, and never change the price. However, for the optional TOU rate, the util-

ity decides an optimal price (pon, poff ). The utility wants to maximize net earnings

(changes in profits).

Stage 3 : Customers decide whether to participate in the TOU rate or not, based

on their savings potential. If the customers participate in the TOU rate, they will

change their consumption patterns. We assume that customers can not know other

customers’ fee rates, ri.

Basically, we will analyze the equilibrium of the above game at different condi-

tions. Based on the backward induction analysis, we will see the relationships among

K, r, {pon, poff}, and the participation level of the residential customers in the op-

tional TOU rate, x. Based on the relationships, we can show the current inefficient

operation of the optional TOU rate and we can explore the extent to which tools can

help to solve the current problem.

Customers’ problem Customers who choose to participate in given TOU rate are

forecast to decrease their consumption in the peak and increase their consumption in

the off-peak in response to prices in the TOU rate. Suppose that pon and poff are

prices under the given TOU rate and ps is the price of electricity under an initially
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Figure 25: Price elasticity with subsidy K

given standard flat rate. In addition, ρon(K) and ρoff (K) are price elasticities of

on-peak and off-peak electricity, respectively. As show in Figure 25, we assume that

the elasticities increase with K and are concave curves (ρon(0) > 0 and ρoff (0) > 0,

ρ′on(K) > 0 and ρ′off (K) > 0, ρ′′on(K) < 0 and ρ′′off (K) < 0, ρon(K) < 1 and

ρoff (K) < 1).

Let Con and Coff be the aggregate consumption levels of total residential customers

at on-peak and off-peak when there exists only a standard flat rate. Figure 26 shows

the characteristics of the aggregate consumption levels given prices of time-based rates

and funding size, K, of subsidy for flexible demand. If all customers participate in

the TOU rate, then the on-peak and off-peak consumption change Con

(
pon
ps

)−ρon(K)

and Coff

(
ps
poff

)ρoff (K)

, where pon ≥ ps and poff ≤ ps , respectively. As a result, the

aggregate potential savings are Sp for the entire customers base will be

Sp = ps (Con + Coff )− ponCon
(
pon
ps

)−ρon(K)

− poffCoff
(
ps
poff

)ρoff (K)

(10)
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Figure 26: The aggregate electricity consumption levels of entire residential cus-
tomers at on-peak and off-peak. (a) On-peak consumption Con at given price pon and
subsidy K and (b) Off-peak consumption Coff at given price poff and subsidy K.

Property 4.1 Higher prices in a TOU rate result in less customers’ potential savings

from participation in the TOU rate.

Proof :

∂Sp
∂pon

= − (1− ρon(K))Con

(
pon
ps

)−ρon(K)

< 0

∂Sp
∂poff

= − (1− ρoff (K))Coff

(
ps
poff

)ρoff (K)

< 0

�

Property 4.2 Higher subsidy funding size for flexible demand induces more cus-

tomers’ potential savings from participation in the TOU rate.

Proof :

∂Sp
∂K

= ponConρ
′
on(K)

(
pon
ps

)−ρon(K)

ln

(
pon
ps

)
− poffCoffρ′off (K)

(
ps
poff

)ρoff (K)

ln

(
ps
poff

)
Now, the first term and the second term of ∂Sp

∂K
are positive and negative, respectively.

Therefore, ∂Sp

∂K
can be either positive or negative. With more subsidy for flexibility,
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the customers can shift more electricity consumption from on-peak to off-peak. Con-

sequently, the first term represents how much customers can save more money from

reducing on-peak consumption. On the other hand, the second term represents how

much customers need to pay more money from increasing off-peak consumption. Of

course, pon > poff . In addition, generally, not all reducing on-peak consumption will

be shifted to off-peak. Therefore, we can assume that

Conρ
′
on(K)

(
pon
ps

)−ρon(K)

ln

(
pon
ps

)
> Coffρ

′
off (K)

(
ps
poff

)ρoff (K)

ln

(
ps
poff

)
without loss of generality. Therefore, ∂Sp

∂K
is positive. �

Now, we will define the actual savings as Sc = x(0)Sp. Since the funding of

the subsidy for flexible demand, K, is collected from ratepayers and most of the

ratepayers are defined to be the residential customers of electricity, the net savings

of the customers is Sc − K. With the shared-saving mechanism, the customers can

have (1− r) (Sc −K) for their net savings. The new participation level, x, will be

proportional to actual savings in current game, Sc, and the x is greater than or equal

to x(0), (e.g. x = x(0) + β). We need to note that the new participation level will not

depend on r. Based the assumption that less peak consumption customers participate

in a given TOU earlier, little fees, ri, will be charged to new participants. However,

we assume that the regulator can set up the differentiated ri with which the net

bill savings of earlier participants will be higher than the net bill savings of later

participants.

Corollary 4.3 Based on Properties 4.1 and 4.2, the lower prices in the TOU rate and

higher funding size for flexible demand will encourage more customers to participate

in the TOU rate.

Utility’s problem In pursuit of the TOU rate, the utility can reduce the generation

and system operation costs from deferring the need for infrastructure and relieving an
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overloaded transmission system. Let’s define the cost reduction as avoided costs, A.

From the TOU rate, the utility can lose some revenue from customers’ bill savings, so

customers’ bill savings, Sc, is defined as utility’s lost revenue in utility’s problem. In

addition, the utility needs to spend some amount of money to install the time-based

rate enabling technologies (e.g. smart meters); we will define this as transaction costs,

T . Both the avoided costs and transaction costs are proportional to the participation

level of the TOU rate. As we discussed previously, the modest participation level

results in limited benefits from the TOU rate, but the utility’s monetary benefits are

greater than the loss from the TOU rate at a high enough participation level. In order

to express this relationship, we use the simplest models between the costs and the

participation level: Avoided costs are a quadratic function of x and the transaction

costs are a linear function of x. The relationships are represented as follows:

A(x) = A0x
2 (13a)

T (x) = T0x (13b)

where 0 ≤ x ≤ 1, A0 and T0 are the maximum avoided and transaction costs at x = 1.

The utility wants to balance the savings from the avoided costs with the lost

revenue and transaction costs. In addition, under the shared-savings mechanism, the

utility can receive some share of customers’ net savings. The incentives from the

shared-saving mechanism partially compensate the lost revenue. To be precise, with

the TOU rate, the utility doesn’t want to lose its profit, but rather wants to increase

its profit if possible (from reducing the costs). The utility can set up the prices of

the TOU rate in order to maximize its net earnings. The utility’s problem can be

represented as follows:

max
pon,poff

U = A(x)− Sc − T (x) + r(Sc −K) (14)

Let U be utility’s net earnings from offering the TOU rate. The net earnings can

be defined as ‘(the avoided costs) - (the lost revenue and transaction costs) + (the
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compensation from the shared-saving mechanism)’.

Proposition 4.4 In order to achieve a certain level of participation, x, the utility

can offer the lower prices of the TOU rate, pon and poff , when the utility can take

some percentage of customers’ bill savings from the shared-saving mechanism.

Proof : The utility will decide to design pon and poff at which the marginal avoided

cost with respect to the prices in the time-based rates is equal to sum of lost revenue

and transaction costs with respect to those. From given utility’s problem (14), the

utility’s optimality condition for the equilibrium is

∂U

∂pon
= 2A0x

∂x

∂pon
− ∂Sc
∂pon

− T0
∂x

∂pon
+ r

∂Sc
∂pon

= (2A0x− T0)
∂x

∂pon
− (1− r) ∂Sc

∂pon
= 0 (15a)

∂U

∂poff
= 2A0x

∂x

∂poff
− ∂Sc
∂poff

− T0
∂x

∂poff
+ r

∂Sc
∂poff

= (2A0x− T0)
∂x

∂poff
− (1− r) ∂Sc

∂poff
= 0 (15b)

(15a) and (15b) can be rearranged as follows:

∂Sc
∂pon

=
1

(1− r)
(2A0x− T0)

∂x

∂pon
(16a)

∂Sc
∂poff

=
1

(1− r)
(2A0x− T0)

∂x

∂poff
(16b)

The utility will decide the optimal prices of a TOU rate, which satisfy equa-

tions (16a) and (16b). For a given participation level, x, (2A0x − T0) ∂x
∂pon

and

(2A0x−T0) ∂x
∂poff

are constant and negative (Corollary 4.3). The right-hand-sides of

(16a) and (16b) increase as r increases. As a result, the left-hand-sides of (16a) and

(16b), the marginal lost revenue with respect to prices, will increase with r at the

equilibrium. As we can see in Figure 27, the lost revenue is a decreasing and convex

function in terms of prices in the TOU rate based on Property 4.1 and Sc = x(0)Sp
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Figure 27: Utility’s lost revenue (Customers’ bill savings) in terms of price in the
TOU rate

(
∂Sc

∂pon
< 0, ∂Sc

∂poff
< 0, ∂

2Sc

∂p2on
> 0, ∂

2Sc

∂p2off
> 0
)

. The prices which the utility offers at equi-

librium will decrease as r increases. Under the lower prices, the more customers will

participate in the TOU rate. At the equilibrium, the lost revenue from customers’ bill

savings increases, but this increasing loss can be compensated from the shared-saving

mechanism. �

Proposition 4.5 As the participation level, x, increases, even though the regulator

lowers the overall incentive rate, r, for the shared-saving mechanism and the utility

raises its prices of the TOU rates, the customers’ bill savings increase.

Proof : From the equations, (16a) and (16b), the right-hand-side increases if x

increases for given a incentive rate, r. Let’s consider two participation levels, x′ and

x′′ (x′ < x′′). At the equilibrium, the left-hand-side of (16a) and (16b), the marginal

lost revenue with respect to prices, will higher with x′′ than those with x′ initially

given r′. Now, as shown in Figure 28, let’s consider when utility takes less incentive
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Figure 28: Utility’s lost revenue (Customers’ bill savings) in terms of price in the
TOU rate at different participation levels

r′′, which holds following equalities (17a), (17b), and r′ > r′′,

if utility takes less incentive r′′, which holds following equalities (17a), (17b), and

r′ > r′′, then even though the utility increases prices of TOU rates, the customers’

bill savings increase at the equilibrium.

1

(1− r′)
(2A0x′ − T0)

∂x

∂pon
=

1

(1− r′′)
(2A0x′′ − T0)

∂x

∂pon
(17a)

1

(1− r′)
(2A0x′ − T0)

∂x

∂poff
=

1

(1− r′′)
(2A0x′′ − T0)

∂x

∂poff
(17b)

�

Proposition 4.6 In order to achieve a certain level of participation, x, the utility

can offer lower TOU rates, pon and poff , when the customers receive some subsidy

for flexible demand K.

Proof : We assumed that the price elasticities of on-peak and off-peak electricity

increase with K. Figure 29 shows the two different Sc curves with two different levels
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Figure 29: Utility’s lost revenue (Customers’ bill savings) in terms of price in the
TOU rate with different funding size of subsidy, K.

of subsidy, K1 and K2, where K1 < K2. Based on Property 4.2, the Sc with K2

is higher than Sc with K1 at a given price in the TOU rate. In other words, the Sc

curve with K2 has more curvature than the Sc curve with K1.

The optimality conditions for the equilibrium, (16a) and (16b), are maintained at

a certain level of participation. However, the prices, which the utility offers at the

equilibrium, vary with subsidy level, K. Since the Sc curve with higher K has more

curvature, the prices at the equilibrium with higher K are lower. As we showed in

Property 4.2, since the higher subsidy level induces more customers’ savings, the

lost revenue of the utility increases with K. �

Regulator’s problem The objective of the regulator from time-based rates, such as

a TOU rate, is maximization of the net social benefits. Some previous studies about

demand response programs have focused on net social welfare change [4, 99]. We

would like to discriminate between the social welfare in previous studies and the social
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benefits in this study. The social welfare includes the value of customers’ electricity

consumption and the net social welfare change under the demand response programs

is defined the benefits of both utilities and customers. The net social welfare change

can not specify the transfer from utilities to customers, and this fails to consider the

case in which the benefits of utilities do not exist and even the utilities have loss [99].

The new policy may not be Pareto efficient, so the policy does not work well.

We could find a similar case from energy conservation policies. In order to make

the policy Pareto superior, decoupling policy have been suggested in the electricity

sector. A previous study used a new definition of social welfare in its economic model

to analyze the decoupling policy [12]. Under the policy, the social welfare is defined as

consumer surplus, and the regulator wants to maximize this social welfare under the

condition utility’s net profit change should be greater than or equal to zero. Under

this definition, we can find the way both utilities and customers are better off.

In this study, we define the net social benefits as the customers’ net savings under

the condition at which utility will not lose its profits. The regulator will decide the

subsidy for flexible residential demand, K, and the incentive rate of r for the shared-

saving mechanism in order to maximize the net social benefit. Now, the regulator’s

problem can be given as

max
K,r

(1− r) (Sc −K)

s.t. A(x)− Sc − T (x) + r(Sc −K) ≥ 0 (18a)

(1− r)(Sc −K) ≥ 0 (18b)

K ≥ 0, 0 ≤ r ≤ 1

The two constraints (18a) and (18b) show that both utility’s net earnings and cus-

tomers’ net savings should be greater than or equal to zero under the regulator’s

decision. From the first constraint, (18a), the utility is guaranteed not to lose profits

under the time-based rate and new policy tools.
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Proposition 4.7 If the utility has higher monetary loss than benefits from the time-

based rate (the participation level is less than the critical participation level, x∗, in

Figure 24), the regulator needs to have some positive rate, r, for the shared-saving

mechanism. Otherwise, the regulator does not have to have the shared-saving mecha-

nism.

Proof : The regulator decides the incentive rate, r, for the shared-saving mechanism

and the funding size of subsidy for flexible demand. In order to decide r and K at

the equilibrium, we can solve the above regulator’s problem. Since the problem is a

constrained non-linear optimization problem, we can use the lagrangian method to

solve the problem as follows.

max
K,r

L (K, r, λ) = (1− r) (Sc −K) + λ1 [A(x)− Sc − T (x) + r(Sc −K)]

+ λ2 [(1− r)(Sc −K)] + λ3K + λ4r + λ5(1− r) (19a)

The necessary conditions for optimality are

∂L

∂r
=− (Sc −K) + λ1(Sc −K)− λ2(Sc −K) + λ4 − λ5

= (λ1 − λ2 − 1) (Sc −K) + λ4 − λ5 = 0 (20a)

∂L

∂K
= (1− r)

(
∂Sc
∂K
− 1

)
+ λ1

[
∂A(x)

∂K
− ∂Sc
∂K
− ∂T (x)

∂K
+ r

(
∂Sc
∂K
− 1

)]
+ λ2

[
(1− r)

(
∂Sc
∂K
− 1

)]
+ λ3 = 0 (20b)

λ1 [A(x)− Sc − T (x) + r(Sc −K)] = 0 (20c)

λ2 [(1− r)(Sc −K)] = 0 (20d)

λ3K = 0 (20e)

λ4r = 0 (20f)

λ5(1− r) = 0 (20g)

Let’s assume that the regulator decides the funding size of subsidy is less than

the customers’ bill savings, which is Sc > K. From the condition (20c), r must be
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positive to make the term A(x)− Sc − T (x) + r(Sc −K) zero, or λ1 should be equal

to zero.

Case 1: First, let’s consider the case in which A(x)−Sc−T (x) + r(Sc−K) = 0, the

customers’ bill savings are zero. In order to hold this equality, the utility have higher

monetary loss than benefits from the time-based rate (A(x)− Sc − T (x) ≤ 0). Now,

the optimal incentive rate, r∗, for the shared-savings mechanism is

r∗ =
Sc + T (x)− A(x)

Sc −K
> 0 (21)

Then, we have an interior optimal solution of r, and λ2, λ4, and λ5 must be equal

to zero. Then, λ1 = 1 in order to satisfy the condition (20a). Also, as the participa-

tion level, x, increases, the gap between the monetary benefits and loss decreases but

the customers’ bill savings increase (the numerator decreases and the denominator

increases). As a result, r∗ is a decreasing function of x. When A(x)− Sc− T (x) = 0,

r∗ = 0.

Case 2: Second, if λ1 is equal to zero, then, from the condition (20a) and λi ≥ 0 for

all i, λ4 must be positive. Then, from the condition (20f), the incentive rate must

be zero, r∗ = 0. In addition, since r∗ = 0, λ2 = 0 and λ5 = 0. Here, we note that

this is only possible when the utility has higher monetary benefits than loss from the

time-based rate (A(x)− Sc − T (x) ≥ 0), and it is a boundary solution.

As a result, the relationship between the optimal incentive rate, which the reg-

ulator provides in the shared-savings mechanism, and the participation level of the

time-based rate is shown in Figure 30. �

Corollary 4.8 The value of r will decrease with x until x∗. For the higher x than

x∗, r will be equal to zero.

In summary, the aggregate portion transferred for entire customers’ total sav-

ings will decrease as more customers participate in the time-based rate. If enough
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Figure 30: The optimal incentive rate, r, and the participation level of the time-based
rate, x

customers participate in the time-based rate and the monetary benefits surpass the

monetary loss, customers’ bill savings do not have to be shared.

Proposition 4.9 To increase participation in the time-based rate, x, the regulator

can increase the subsidy for flexible demand, K. However, the marginal impact will

decrease as x increases.

Proof : Let’s continue to use the proof of Proposition 4.7. We need to focus on

condition (20b).

Case 1: In the first case in which A(x)−Sc−T (x) + r(Sc−K) = 0, we showed that

λ1 = 1, λ2 = 0, λ4 = 0, and λ5 = 0. The condition (20b) can be simplified as follows:

∂A(x)

∂K
− ∂T (x)

∂K
− 1 + λ3 = 0 (22)

If K is positive, then λ3 must be zero. So, the above equality can be represented as

follows:

(2A0x− T0)
∂x

∂K
= 1 (23)
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which is,

∂x

∂K
=

1

(2A0x− T0)
(24)

We can see that when x increases, the partial derivative of x with respect to K

decreases. Based on Corollary 4.3 and Property 4.2, x is a increasing concave function

of K. As a result, the K at the equilibrium will increase as x increases.

Case 2: In the second case in which λ1 is equal to zero, we showed λ2 = 0, r∗ = 0,

and λ5 = 0. The condition (20b) can be simplified as follows:

∂Sc
∂K
− 1 + λ3 = 0 (25)

Again, ifK is positive, then λ3 must be zero. So, the above equality can be represented

as following based on Corollary 4.3.

∂Sp
∂K

=
1

x
(26)

Similar to Case 1, we can see that when x increases, the partial derivative of Sp

with respect to K decreases. Again, we already knew that Sp is a increasing concave

function in terms of K. Consequently, the higher x the regulator wants to achieve,

the more K the regulator is required to set up. �

4.3 Importance of the Regulator’s Problem

We will show that if the regulator’s definition of net social benefits is the sum of

the utility’s net earnings and customers’ net savings, the regulator’s optimal decisions

for the incentive rate, r, for the shared-saving mechanism will be different. As we

discussed, this definition can not specify the transfer from utilities to customers, and

this fails to consider the case in which the benefits of utilities do not exist and even

the utilities have loss. Let U and V be the utility’s net earnings and the customers’

net savings. Then, the net social benefits, W , can be defined as U +V = A(x)−Sc−

T (x) + r(Sc−K) + (1− r)(Sc−K) = A(x)−T (x)−K. The social benefits from the

time-based rates can be considered as the utility’s avoided costs. On the other hand,
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the social costs can be considered as the utility’s transaction costs and the funding

of subsidy (the money collected from ratepayers). The customers’ savings from the

time-based rates can’t be included as the social benefits since the utility will have the

same amount of monetary loss. Now, let’s consider the regulator’s problem.

max
K,r

A(x)− T (x)−K

s.t. A(x)− Sc − T (x) + r(Sc −K) ≥ 0 (27a)

(1− r)(Sc −K) ≥ 0 (27b)

K ≥ 0, 0 ≤ r ≤ 1

The constraints of above problem are exactly same as original regulators’ problem

which we saw in previous section.

Proposition 4.10 Under the new definition of social benefits, the regulator sets the

incentive rate for the shared-saving mechanism in order to transfer all customers’

savings to the utility when the utility has a higher monetary loss than benefits from

the time-based rate. Even when the utility has higher monetary benefits than the

monetary loss from the time-based rate, the regulator sets a positive rate.

Proof : We can proceed the similar to the proof of Proposition 4.7. The largrangian

form of the problem is the following:

max
K,r

L (K, r, λ) =A(x)− T (x)−K + λ1 [A(x)− Sc − T (x) + r(Sc −K)]

+ λ2 [(1− r)(Sc −K)] + λ3K + λ4r + λ5(1− r) (28a)
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The necessary conditions for optimality are

∂L

∂r
=λ1(Sc −K)− λ2(Sc −K) + λ4 − λ5

= (λ1 − λ2) (Sc −K) + λ4 − λ5 = 0 (29a)

∂L

∂K
=
∂A(x)

∂K
− ∂T (x)

∂K
− 1 + λ1

[
∂A(x)

∂K
− ∂Sc
∂K
− ∂T (x)

∂K
+ r

(
∂Sc
∂K
− 1

)]
+ λ2

[
(1− r)

(
∂Sc
∂K
− 1

)]
+ λ3 = 0 (29b)

λ1 [A(x)− Sc − T (x) + r(Sc −K)] = 0 (29c)

λ2 [(1− r)(Sc −K)] = 0 (29d)

λ3K = 0 (29e)

λ4r = 0 (29f)

λ5(1− r) = 0 (29g)

Again, let’s assume that the regulator decides the funding size of the subsidy is

less than the customers’ bill savings, which is Sc > K. From the condition (29c), r

must be positive to make the term A(x)− Sc − T (x) + r(Sc −K) zero, or λ1 should

be equal to zero.

Case 1: First, let’s consider the case in which A(x) − Sc − T (x) + r(Sc − K) = 0,

again, the customers’ net savings are zero. In order to hold this equality, the utility has

higher monetary loss than benefits from the time-based rate (A(x)− Sc− T (x) ≤ 0).

The optimal incentive rate, r∗, for the shared-savings mechanism is

r∗ =
Sc + T (x)− A(x)

Sc −K
> 0 (30)

Now, r∗ must be equal to one. In order for r to be an interior optimal solution, λ2,

λ4, and λ5 must be equal to zero. However, then the condition (29a) can’t be satisfied

(λ1(Sc − K) > 0). When r∗ = 1, λ2 and λ5 can be some positive numbers and the

condition (29a) can be satisfied. We note that if r∗ = 1, the utility’s net earning is

equal to the social benefits, and the value of social benefits at the equilibrium is zero.
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Case 2: Second, if λ1 is equal to zero, then, from the condition (29a) and λi ≥ 0 for

all i, both λ2 and λ4 must be zero or some positive numbers at the same time. If λ2

is a positive number, then r must be one. Consequently, from the condition (29f), λ4

must be zero. It contradicts the condition (29a). Therefore, λ2 must be zero. Then,

both λ4 and λ5 must be zero and r∗ should be between zero and one (0 < r∗ < 1)

since both λ4 and λ5 can’t be positive numbers. �

Corollary 4.11 The value of r will be equal to 1 for 0 ≥ x ≥ x∗. Even for x > x∗,

r will be a positive number between zero and one.

If the regulator wants to maximize the sum of the utility’s net earnings and the

customers’ bill savings, both the utility’s net earnings and the customers’ net savings

are zero at the equilibrium when the utility has higher monetary loss than monetary

benefits. This implies that staying at zero participation level (x = 0) is the optimal

equilibrium point. Even if the participation level goes beyond the critical participation

level, x∗, in which the utility’s avoided costs are greater than the sum of transaction

costs and lost revenue, the utility can still obtain some compensation for lost revenue

from the shared-saving mechanism. Then the customers’ bill savings will be reduced.

We need to consider that these results reflect how the social benefits are defined.

4.4 Conclusion

Even though time-based rates have benefits for both utilities and customers if the

program operates efficiently, we identified the systematic problems in some current

existing programs. The main problem is utilities’ disincentives associated with offering

optional time-based rates. As a result, most voluntary time-based rates have remained

at low participation. In this study, based on a game theoretic model, we have explored

how two suggested tools could work to mitigate the problem: 1) Under the shared-

saving mechanism, the utility can offer lower prices in optional time-based rates while

maintaining its profit, 2) the subsidy for flexible residential demand will encourage
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more residential customers to participate in the time-based rates because of increasing

flexibility of their demand with less effort. Consequently, these tools can help to

increase the participation level of time-based rates. When the participation level

is high enough and the utility’s monetary benefits are greater than its loss, then

programs can operate efficiently. We proved that the suggested tools can be phased

out at that time. However, if the regulator is not seeking to maximize customers’ bill

savings, the one of suggested tools, the shared-saving mechanism, is still not able to

help to solve the current problems.

The model in this study is a single stage sequential game, and we describe the

relationships among several decision variables of each stakeholders (regulator, utility,

and customers). Based on the relationships, we explained how the tools work in

a given situation. However, in order to analyze and understand the dynamics of

decisions of the stakeholders, in future work we are planning to expand our model

into a dynamic (repeated) game. This would provide a basis for understanding the

serial changes of decision variables, and provide further insight into how the tools

work.

This study can be used to consider how to apply the two suggested tools into

current programs. However, this study has not addressed any applications as a case

study. In future research, with appropriate data for both utility-side and customers-

side, we can test existing time-based rates and apply our model to design the two

tools.
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CHAPTER V

CONCLUSION

Chapter 5 summarizes the results of this thesis and describes contributions.

First, I investigated how to incorporate demand responsiveness for policy analy-

sis in the electricity sector. Some previous studies used a large general equilibrium

model, such as such as the US National Energy Modeling System (NEMS) [69], for

entire energy systems, including the coal and natural gas markets, transportation fuel

sector, electricity sector and so on. On the other hand, other studies used a least-cost

model, such as the Market Allocation (MARKAL) model [61], in order to focus on

the electricity sector in a specific region. The model developed in my first chapter

is intermediate between these two approaches, providing transparency in modeling

while incorporating a key relationship demand response endogenously. The first

chapter uses a least-cost model which includes some characteristics for two important

policies in the electricity sector. In addition, it suggests an iterative approach for in-

corporating the demand response to price change under new policy. By applying the

approach into the state of Georgia, as a case study, this study shows the importance

of incorporating demand responsiveness to evaluate the effects of energy policies.

Second, I have focused on new technology adoption pathways in the electric power

system. Based on four-serial models, my colleague and I provide analysis of future

impacts of electric vehicles and wind power on the electric power system and light-

duty vehicle market. In addition, by studying the related status of policies and

specifications of technologies in the U.S., we developed several adoption pathways of

technologies in the U.S. eastern interconnection, and we use our models to simulate

the future impacts of the pathways. This study provides a systematic analysis to

88



help decision makers in the adoption of policies and technologies related to electric

vehicles and wind power. The results show that the total greenhouse gas emissions of

the entire energy system do not substantially decrease even with high level of electric

vehicle adoption. The combination of two technologies, even more with appropriate

policies, can notably decrease the total greenhouse gas emissions.

Lastly, I have developed more theoretical study. This study analyzed the main

reason for the inefficient operation of current demand response programs, particularly

optional time-based rates, for residential customers. Participation in these programs

is low, even though the programs have benefits and can be Pareto superior. A game-

theoretic model was developed in order to describe how the current programs operate

and the reason for the inefficiency. The study investigated two policy tools, a sub-

sidy for flexible residential demand and a shared-savings mechanism based on the

consumption pattern changes. I examined the implementation of the tools and their

potential in order to overcome the current inefficient operation. This study can help

policy makers to understand how the given policies work. In addition, this study

shows policy coordination between the regulators and utilities to enhance their per-

formances.

Overall, this thesis shows three studies which use some decision science models

and tools to analyze several technological and political transformation pathways in

the electricity sector. Moreover, the first study provides a methodology to improve

the energy model for policy evaluation. However, these studies are somewhat limited

by the lack of appropriate data and real-world’s applications. For my future research,

I will seek access to more appropriate data and more realistic problems to analyze in

the electricity sector as well as even several other energy and sustainability sectors.

Meanwhile, I will keep studying to develop more useful models and tools.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Endogenous Electricity Demand Projection : Iterative
Approach

Figure 31 illustrates the the approach, with the elements of the figure explained below.

Insert ref. demand : Set the reference demand projection as current demand projec-

tion, and set no policy scenario.

Run model : Under given scenario and the current demand projection, run the model.

Calculate levelized cost : Based on results of the model, calculate a time-series levelized

cost of electricity.

Levelized Costt = Annualized Costt / Annual Generationt

Calculate electricity price: Based on the levelized cost, calculate new future price of

electricity. (We assume a mark up of 4 cents/kWh to account for transmission and

distribution and project the retail price of electricity using the levelized electricity

wholesale cost projections above.)

First Iteration? : Is this the first iteration?

Set new policy : Set the new price as reference future price, and insert new scenario

assumptions into the developed model.

Calculate new demand : Compare the new future price with reference future price,
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Figure 31: Flow diagram for iterative approach to demand forecasting
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and calculate new demand projection by using a price elasticity of ε.

new demand = reference demand × (1 + ε new price− reference price
reference price

)

Difference < 0.1%? : Is the percentage change from previous step demand projection

to new demand projection less than 0.1%?

Replace demand : Replace previous-step the current demand projection with current

demand projection, and replace the current demand projection with new demand

projection.
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A.2 Reference Demand Projection for Georgia

AEO 2011 projects the future electricity demand and population in the South Atlantic

region under business as usual [24]. Based on the average of the projections of the

Georgia population made by the US Census Bureau and the Georgia Office of Planning

and Budget [97, 43], we interpolated and extrapolated the future electricity demand

for Georgia as shown in Table 10.
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Delivered Net Gen-
Electricity eration Population Electricity
for South for South for South Population Generation
Atlantic Atlantic Atlantic for Georgia for Georgia
(TWh) (TWh) (million) (million) (TWh)

(1) (2) (3) (4) (5)
2008* 803 855 58.8 9.5 138
2009* 779 829 59.4 9.6 135
2010 826 880 60.1 9.8 144
2011 785 836 60.8 10.0 137
2012 796 847 61.5 10.2 140
2013 802 855 62.3 10.3 142
2014 806 858 63.2 10.5 142
2015 814 867 64.1 10.7 144
2016 823 876 65.0 10.8 146
2017 830 884 65.9 11.0 147
2018 838 892 66.9 11.2 149
2019 846 900 67.8 11.3 151
2020 854 909 68.7 11.5 152
2021 862 918 69.7 11.7 154
2022 871 928 70.6 11.9 156
2023 880 938 71.6 12.1 158
2024 891 949 72.5 12.2 160
2025 900 959 73.5 12.4 162
2026 909 968 74.4 12.6 164
2027 919 979 75.4 12.8 166
2028 929 990 76.3 13.0 168
2029 938 999 77.3 13.2 170
2030 949 1,011 78.2 13.4 173
2031 959 1,022 79.2 13.5 175
2032 970 1,033 80.2 13.7 177
2033 978 1,042 81.1 13.9 179
2034 988 1,052 82.1 14.1 181
2035 997 1,062 83.1 14.3 182

Table 10: Calculation of Electricity Generation for Georgia. * historical data, Source
for (1)&(3) [22], (2) = (1)*1.065 corresponding to estimates 6.5% US transmission
and distribution losses as of 2007 [24], Source for (4) [97, 43], (5) = (2)*(4)/(3).
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A.3 Specification of Technology Options

Annual- Vari- CO2e
Life Max- Heat Over- Inve- ized Fixed able Emission
time imum Rate night stment Capital Cost Cost Rate*

(2009$) (yr) Capa- (Btu Cost Factor Cost ($/kW (mills (lb
city /KWh) ($/kW) ($/kW /yr) /kWh) /kWh)

Factor /yr)
Retrofit 20 0.85 17,800 1,300 1.29 158 52 4.7 0.36
PC
Adv. PC 50 0.85 9,200 2,220 1.29 208 28 4.7 1.9
Adv. PC 50 0.85 11,000 3,500 1.29 327 55 6 0.2
w/ CCS
IGCC 50 0.85 8,700 2,570 1.22 227 40 3 1.7
IGCC 50 0.85 10,700 3,780 1.22 334 47 4.5 0.18
w/ CCS
NGTC 50 0.85 9,000 690 1.12 61 12 3.7 0.97
NGCC 50 0.85 6,800 980 1.16 82 13 2.1 0.93
NGCC 50 0.85 8,000 1,930 1.16 162 20 3 0.1
w/ CCS
Nuclear 60 0.89 10,400 3,820 1.47 400 92 0.5 0
Hydro 50 0.44 - 1,830 1.25 166 7 2.5 0
Large
Hydro 50 0.44 - 2,480 1.25 225 11 2.5 0
Medium
Hydro 50 0.44 - 3,240 1.25 293 15 2.5 0
Small
Biomass 50 0.85 10,000 3,850 1.22 340 66 6.9 0
Wind 20 0.3 - 1,970 1.25 232 87 0 0
Solar 25 0.2 - 6,170 1.14 604 12 0 0

Table 11: Specification of generation technology options [23]. *CO2 emissions are
average for Georgia, based on eGrid data [29]
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A.4 Electricity Output by Generation Technology

Yr Scn. Coal Coal NG NG Nu- Oil Hyd- Bio- Wind Solar Oth.
CCS CCS clear ro mass Ren.

2010

(1) 96.11 0.00 9.84 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(2) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(3) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(4) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(5) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(6) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63

2015

(1) 94.49 0.00 11.67 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(2) 87.32 0.00 7.44 0.00 31.51 0.00 3.90 7.31 0.000 0.00 2.63
(3) 80.56 0.00 26.02 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(4) 62.08 0.00 23.42 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(5) 72.81 0.00 23.69 0.00 31.51 0.00 3.90 7.52 0.011 0.00 2.63
(6) 54.75 0.00 22.83 0.00 31.51 0.00 3.90 5.51 0.005 0.00 2.63

2020

(1) 87.57 0.00 8.82 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(2) 72.15 0.00 3.12 0.00 49.44 0.00 3.90 12.23 0.011 0.00 2.63
(3) 71.18 0.00 23.94 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(4) 50.38 0.00 21.97 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(5) 54.93 0.00 22.76 0.00 49.44 0.00 3.90 13.18 0.011 0.00 2.63
(6) 38.04 0.00 21.36 0.00 49.44 0.00 3.90 9.16 0.005 0.00 2.63

2025

(1) 92.71 0.00 13.57 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(2) 77.87 0.00 5.87 0.00 49.44 0.00 3.90 13.90 0.011 0.00 2.63
(3) 75.70 0.00 26.06 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(4) 49.92 0.00 21.86 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(5) 60.09 0.00 24.52 0.00 49.44 0.00 3.90 14.15 0.011 0.00 2.63
(6) 38.55 0.00 21.47 0.00 49.44 0.00 3.90 9.23 0.005 0.00 2.63

2030

(1) 94.30 0.00 22.24 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(2) 72.97 0.00 16.73 0.00 49.44 0.00 3.90 19.78 0.011 0.00 2.63
(3) 46.08 18.70 37.19 0.00 49.44 0.00 3.90 0.60 0.000 0.00 2.63
(4) 46.65 8.77 22.61 0.00 49.44 0.00 3.92 0.60 0.000 0.00 2.63
(5) 42.12 21.31 24.76 0.00 49.44 0.00 3.93 14.15 0.011 0.00 2.63
(6) 29.20 15.94 21.41 0.00 49.44 0.00 3.90 10.05 0.005 0.00 2.63

Table 12: Data in TWh for Figure 8. (1) a base case scenario in which no new energy
policy is imposed, (2) an RES scenario in which the utility will be required to meet a
RES, (3) a CO2 market scenario with initial free allowances in which the utility will
be required to participate in a federal level CO2 cap-and-trade program, (4) a CO2

market scenario without free initial allowances, (5) a “both policies” scenario with
initial free allowances in which both RES and CO2 market policies are imposed, and
(6) a both policies scenario without initial free allowances.
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A.5 Comparison with the MARKAL model

Levin et al.[58] applied the MARKAL model to the state of Georgia in order to

address state-scale impacts of a renewable electricity standard (RES) and a carbon

tax. Even though the details of policies in Levin et al. are a little different from the

policies in this study, by comparing the results of both case studies, we can partially

validate the model in this study.

Figure 32 shows the projection of electricity output by generation technology un-

der policy scenarios from the MARKAL model in Levin et al.[58]. In order to validate

the model in this study, we project the electricity output by generation technology

without demand response to price change under the different policy scenarios in the

model in this study. As a result, Figure 33 shows the electricity generation mix results

extracting the demand responsiveness from Figure 8. In addition, Tables 13 and 14

show the data for Figures 32 and 33 respectively.

Based on the figures and tables, we can note that the projections of electricity

output by generation technology under the base and the RES policy scenarios from

both models are similar. Specifically, the base cases (scenario 1) differ by 2% for coal

and less than 1% for nuclear by 2030. The smaller amount of coal in the MARKAL

model results in a higher natural gas generation amount. In the RES scenario (sce-

nario 2), there is also close agreement with both studies showing 21 TWh of biomass

generation in 2030.

Since two studies did not use the exactly same input parameters and assumptions,

we can see the small differences between two models’ results. Under the CO2 market

scenarios (the cap-and-trade system or carbon tax), we can see more notable differ-

ences between two models’ results. The model in this study prefers to build CCS

systems, but the MARKAL model in Levin et al. decides to build biomass power

plants. This difference is mainly due to the assumptions of which technologies each

study includes. Levin et al. include the biomass co-firing conversion technology and
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Figure 32: Electricity output by generation technology for the state of Georgia from
the MARKAL model [58].

it can be the most cost effective technology under the CO2 market scenarios. On

the other hand, this study focuses on the retrofitting of current existing coal power

plants with CCS systems and does not include the biomass co-firing conversion tech-

nology. The most cost-effective technology under the CO2 market scenarios in this

study is the retrofitting with CCS systems. We expect that if this study included the

biomass co-firing conversion technology instead of the retrofitting with CCS systems,

the results under the CO2 market scenarios in both studies would be more similar.
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Figure 33: Electricity output by generation technology for this case study without
incorporating demand responses.

Yr Scn. Coal Coal NG NG Nu- Oil Hyd- Bio- Oth.
CCS CCS clear ro mass Ren.

2010

(1) 95.52 0 11.39 0 31.50 0 3.52 3.92 0.03
(2) 95.52 0 11.39 0 31.50 0 3.52 3.92 0.03
(3) 95.52 0 11.39 0 31.50 0 3.52 3.92 0.03
(4) 95.52 0 11.39 0 31.50 0 3.52 3.92 0.03

2015

(1) 92.01 0 20.11 0 31.50 0 3.52 4.01 0.72
(2) 89.60 0 16.13 0 31.50 0 4.97 6.60 3.06
(3) 88.96 0 23.16 0 31.50 0 3.52 4.02 0.72
(4) 75.53 0 35.31 0 31.50 0 4.49 4.02 0.96

2020

(1) 92.01 0 15.85 0 48.84 0 3.52 3.60 0.72
(2) 75.29 0 14.12 0 48.84 0 4.97 18.24 3.08
(3) 81.44 0 15.73 0 48.84 0 3.52 14.44 0.72
(4) 64.53 0 32.38 0 48.84 0 3.52 14.44 0.81

2025

(1) 92.01 0 22.77 0 48.84 0 3.52 4.01 0.72
(2) 77.66 0 17.50 0 48.84 0 4.97 19.83 3.08
(3) 81.58 0 22.89 0 48.84 0 3.52 14.43 0.72
(4) 62.34 0 38.68 0 48.84 0 4.49 14.44 3.08

2030

(1) 92.01 0 29.01 0 48.84 0 4.88 4.01 2.42
(2) 79.55 0 23.28 0 48.84 0 4.97 21.44 3.08
(3) 81.58 0 29.05 0 48.84 0 4.49 14.44 2.76
(4) 77.22 0 32.83 0 48.84 0 4.76 14.44 3.08

Table 13: Data in TWh for Figure 32 from the MARKAL model [58]. (1) a base
case scenario in which no new energy policy is imposed, (2) an RES scenario in which
the utility will be required to meet a RES, (3) a $20 carbon tax scenario, (4) a $50
carbon tax scenario.
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Yr Scn. Coal Coal NG NG Nu- Oil Hyd- Bio- Wind Solar Oth.
CCS CCS clear ro mass Ren.

2010

(1) 96.11 0.00 9.84 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(2) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(3) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(4) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(5) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(6) 96.28 0.00 9.97 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63

2015

(1) 94.49 0.00 11.67 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(2) 89.60 0.00 8.86 0.00 31.51 0.00 3.90 7.70 0.000 0.00 2.63
(3) 80.26 0.00 25.89 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(4) 80.26 0.00 25.89 0.00 31.51 0.00 3.90 0.00 0.000 0.00 2.63
(5) 74.24 0.00 24.17 0.00 31.51 0.00 3.90 7.74 0.000 0.00 2.63
(6) 74.24 0.00 24.17 0.00 31.51 0.00 3.90 7.74 0.000 0.00 2.63

2020

(1) 87.57 0.00 8.82 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(2) 77.42 0.00 5.27 0.00 49.44 0.00 3.90 13.70 0.011 0.00 2.63
(3) 72.13 0.00 24.25 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(4) 72.13 0.00 24.25 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(5) 59.52 0.00 23.16 0.00 49.44 0.00 3.90 13.70 0.011 0.00 2.63
(6) 59.45 0.00 23.16 0.00 49.44 0.00 3.90 13.78 0.000 0.00 2.63

2025

(1) 92.71 0.00 13.57 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(2) 82.68 0.00 8.26 0.00 49.44 0.00 3.90 15.33 0.011 0.00 2.63
(3) 78.90 0.00 27.38 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(4) 78.90 0.00 27.38 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(5) 65.50 0.00 25.43 0.00 49.44 0.00 3.90 15.34 0.011 0.00 2.63
(6) 65.49 0.00 25.45 0.00 49.44 0.00 3.90 15.34 0.000 0.00 2.63

2030

(1) 94.30 0.00 22.24 0.00 49.44 0.00 3.90 0.00 0.000 0.00 2.63
(2) 74.97 0.71 19.79 0.00 49.44 0.00 3.90 20.85 0.021 0.00 2.63
(3) 50.20 23.91 41.31 0.00 49.44 0.00 4.34 0.67 0.000 0.00 2.63
(4) 50.29 23.91 41.34 0.00 49.44 0.00 4.30 0.60 0.000 0.00 2.63
(5) 41.74 29.18 30.17 0.00 49.44 0.00 4.01 15.34 0.011 0.00 2.63
(6) 42.22 29.28 29.66 0.00 49.44 0.00 3.94 15.34 0.000 0.00 2.63

Table 14: Data in TWh for Figure 33 from the model in this study. (1) a base case
scenario in which no new energy policy is imposed, (2) an RES scenario in which the
utility will be required to meet a RES, (3) a CO2 market scenario with initial free
allowances in which the utility will be required to participate in a federal level CO2

cap-and-trade program, (4) a CO2 market scenario without free initial allowances,
(5) a “both policies” scenario with initial free allowances in which both RES and
CO2 market policies are imposed, and (6) a both policies scenario without initial free
allowances.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Capacity Planning Model

The Capacity Planning (CP) model minimizes the NPV of capacity changes and

electricity production over a multi-decade period.

The objective function can be written as

min
∑
t

1

(1 + r)t

{∑
i

(Ciyi,t + Fixi,t) +
∑
i

Vi,t
∑
s

θs
3

∑
w

∑
h

(zi,h,s,t + zevi,h,s,t)

+
∑
j

LCwind,j
∑
s

θs
3

∑
w

∑
h

zwindj,h,s,t

}
Capacity Change Constraint Based on the existing power plant capacities, the total

capacities of each technology will vary with retirement of existing plants and new

construction over time. Some technology options, including biomass, wind and hydro,

are physically and/or economically limited, so these technologies will have, effectively,

maximum capacity limitations.

xi,t = xi,t−1 − qi,t−1 + yi,t ∀i,∀t (31a)

xi,t ≤ ui ∀i,∀i (31b)

Generation Constraint The power output generated by each technology must not

exceed its maximum available capacity. The power output of solar or wind technology
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Table 15: Indices, parameters, and variables in the model.

Set and Indices
I = Generation technologies, i ∈ I
J = Wind Supply Curve, j ∈ J
h = Time period of hours, h = 1, 2, ..., 24
w = Wind level (1 = High wind, 2 = mid wind, 3 = low wind)
s = Time period of seasons (1 = winter weekday, 2 = winter

weekend, 3 = intermediate weekday, 4 = intermediate week-
end, 5 = summer weekday, 6 = summer weekend)

t = Time period of years, t = 1, 2, ..., T
Parameters

-Demand-
r = Risk-adjusted real discount factor (7%)
dh,s,t = Electricity demand at hour h in season sin year t (MWh)
devh,s,t = EV charging demand at hour h in season s in year t (MWh)

(independent of wind level)
cevh,s,t = EV charging capacity at hour h in season s in year t (MWh)

(independent on wind level)
θs = Number of days in season s (days)
-Capacity-
ρi = Maximum capacity factor of technology i (%)
ρsolar,h,s = Solar electricity potential at hour h in season s (%)
ρwind,h,s = Wind electricity potential at hour h in season s (%)
ui = Upper bound for generating capacity of technology i (MW)
-Cost-
Ci = Capital investment cost of technology i ($/MW)
Fi = Annual fixed cost of technology i ($/MW-yr)
Vi,t = Variable cost (O&M + fuel cost) of technology i in year t

($/MWh)
LCwind,j = Levelized cost of potential wind power at the jth step of

the supply curve ($/MWh)
δs = Peak demand multiplicative factor
-New Policy-
ei = CO2e (Equivalent CO2) emissions from technology i

(tCO2e/MWh)
Rest = Renewable electricity standard in year t (%)
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Decision Variables
yi,t = Capacity expansion (investment) of technology i in year

t
qi,t = Retirement capacity of technology i in year t (MW)
xi,t = Capacity of technology i in year t (MW)
xwindj,t = Capacity of technology i in year t (MW)
zi,s,w,h,t = Electricity generation for non-EV use from technology i

at hour h, wind level w, season s, and year t (MWh)
zevi,s,w,h,t = Electricity generation for EV charging from technology

i at hour h, wind level w, season s, and year t (MWh)
zwindj,s,w,h,t = Electricity generation from new wind capacity in j sup-

ply curve level at hour h, wind level w, season s, and year
t (MWh)

at each hour is determined by solar radiation or wind speed as well as capacity.

zi,s,w,h,t + zevi,s,w,h,t ≤ xi,t ∀i, ∀s,∀w,∀h,∀t

(32a)∑
s

θs
3

∑
w

∑
h

(zi,s,w,h,t + zevi,s,w,h,t) ≤ ρixi,t × 8760 ∀i, ∀t

(32b)

zwind,s,w,h,t + zevwind,s,w,h,t ≤ ρwind,s,w,hxwind,t +
∑
j

zwindj,s,w,h,t ∀s,∀w,∀h,∀t

(32c)

zwindj,s,w,h,t ≤ ρwind,s,w,hxwindj,t ∀j,∀s,∀w,∀h,∀t

(32d)

xwindj,t−1 ≤ xwindj,t ∀j,∀t

(32e)

zsolar,s,w,h,t + zevsolar,s,w,h,t ≤ ρsolar,s,hxsolar,t ∀s,∀w,∀h,∀t

(32f)

Demand Constraint The total power output generated by all technologies must

not be less than the total power demand, and peak demand must be met.
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∑
i

zi,s,w,h,t ≥ ds,h,t ∀s,∀w,∀h,∀t (33a)

Case 1: Uncontrolled Charging (33b)∑
i

zevi,s,w,h,t ≥ devs,h,t ∀s,∀w,∀h,∀t (33c)

∑
i∈I\hydro,wind,solar

xi,t ≥ δs ×max
h

(ds,h,t + devs,h,t) ∀s,∀t (33d)

Case 2: All controlled Charging (33e)∑
h

∑
i

zevi,s,w,h,t ≥
∑
h

devs,h,t ∀s,∀w,∀t (33f)

∑
i

zevi,s,w,h,t ≥ cevs,h,t ∀s,∀w,∀h,∀t (33g)

∑
i∈I\hydro,wind,solar

xi,t ≥ δs ×max
h

(ds,h,t + devs,h,t) ∀s,∀t (33h)

Wind Balancing Constraint

Case 1: Controlled chargingwith annual wind energy balancing (34a)∑
s

θs
3

∑
w

∑
h

zevwind,s,w,h,t ≥
∑
s

θs
∑
h

devs,h,t ∀t (34b)

Case 2: Controlled chargingwith real-time wind energy matching (34c)

zevi,s,w,h,t = 0 ∀i ∈ I \ wind,∀s,∀w,∀h,∀t (34d)

Renewable Electricity Constraint

∑
i∈biomass,solar,wind,other ren

∑
s

θs
3

∑
w

∑
h

( zi,s,w,h,t + zevi,s,w,h,t (35)

≥ rest
∑
i

∑
s

θs
3

(zi,s,w,h,t + zevi,s,w,h,t) ∀t (36)
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B.2 Unit Commitment Model

In actual power system operation, a Unit Commitment is run before the operating

hour to determine which units will be online during the operating hour and determine

an initial schedule for how much power each unit will produce. In many systems, the

Unit Commitment run spans a 24 hour period, called an operating day, and is run 12

hours before the start of the operating day, resulting in decisions made up to 36 hours

before the operating hour. The uncertainty in generator availability, maximum poten-

tial production of intermittent generators, and transmission capacity for periods 12-36

hours in advance requires conservative UC. We adopt the convention of 24 hour UC

runs performed the day before the operating day. Since UC is normally performed

over the course of one operating day, optimization of dispatchable, capacity-factor

limited resources like hydro is not optimized over the course of the year. To resolve

this, most power systems employ a coarser hydro UC a period on the order of months

to years to optimize hydro usage. We do not employ a long-term hydro optimizer. To

provide the system maximum flexibility to maintain security, our UC does not limit

the amount of renewable curtailment which can occur. This is consistent with actual

operating practice which strives to minimize cost. For systems with limited load con-

trollability, high levels of intermittent renewables, and/or inflexible generation, this

can result in curtailment of renewable resources. Should the curtailment be severe

enough, RPS requirements satisfied in the CP may not be fulfilled in the ED, which

would lead to penalties and incentives for utilities to build more capacity. Our UC

uses a perfect load forecast and a 24 hour-ahead wind potential production forecast.

Assuming UC is run 12 hours before the start of the operating day and forecasts are

generated two hours before the UC is performed, forecasts used in the UC extend

38 hours into the future. However, we only have access to 4, 6, and 24 hour-ahead

This model is originally developed by colleague of this study, Frank Kreikebaum, from Electrical
and Computer Engineering.
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wind production forecasts. Therefore, the 24 hour-ahead was used to represent the

forecast input to the UC. Compared to the forecasts used in actual UC, this likely

leads to artificially poor forecasts for operating hours 1-10 and artificially accurate

forecasts for operating hours 11. While most actual UC processes include reserve and

ancillary service requirements, we did not consider them in our UC. In addition, while

calculates the carbon emissions by unit and by hour that will result if the UC solution

is followed, it does not include emissions associated with startup and shutdown.

The objective function minimizes the variable costs and startup costs of the entire

generator fleet over the period of the Unit Commitment

min
{∑

i

∑
g

∑
h

Vi,gzi,g,h +
∑
i

∑
g

∑
h

Si,gstarti,g,h

}
Demand Constraints For uncontrolled charging, the total generation during any hour

must equal the total demand. In this case, total demand includes conventional load

as well as EV charging load. For controlled charging and controlled wind annual,

the conventional demand (dh) must be met during each operating hour. In addition,

the energy required by the EV fleet over the UC period must be provided over the

course of the UC period. Finally, the amount of power which can be directed to the

EV fleet in any given hour cannot exceed the fleet charging capacity of that hour. In

addition to the demand constraints applicable to controlled charging and controlled

wind annual balancing, real-time wind matching requires that the power directed to

the EV fleet in any given hour cannot exceed the amount of wind power generated.

Case 1: Uncontrolled Charging

∑
i

∑
g

zi,g,h ≥ dh ∀h (37a)

(37b)

Case 2: Controlled charging for cost minimizing and controlled charging with annual
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Table 16: Indices, parameters, and variables in the Unit Commitment model.

Set and Indices
i = Generation technologies, i ∈ I
g = Generator unit identifier, g ∈ G
h = Index of operating hours solved in a single Unit Commit-

ment run, h = 1, 2, ..., 24
T = Total number of hours in a single Unit Commitment solu-

tion, T = 24
Parameters

-Demand-
dh = Non-flexible Electricity demand at hour h (MWh)
dev = Energy required over the unit commitment period to meet

flexible EV demand (MWh). Only applicable to the controlled
charging schemes

cevh = EV charging capacity at hour h, only applicable to the
controlled charging schemes(MW)

-Capacity-
ρmax,i = Maximum capacity factor of technology i during UC period

(per-unit of nameplate capacity)
ρmin,i = Minimum capacity factor of technology i at which the unit

can remain online (per-unit of nameplate capacity)
ρforecastedwind,h = Forecasted wind energy maximum potential during hour h

for a forecast produced before the UC model is run (per-unit
of nameplate capacity)

ρactualwind,h = Wind energy maximum potential during hour h (per-unit
of nameplate capacity)

ui,g = Upper bound for generating capacity of unit g of technology
i (MW)

-Cost-
Vi,g = Variable cost (O&M + fuel cost) of unit g of technology i

($/MWh)
Si,g = = startup cost of unit g of technology i $/start)
-Emissions-
ei = CO2e (Equivalent CO2) emissions from technology i

(tCO2e/MWh)
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Decision Variables
zi,g,h = Electricity generation from unit g of technology i at hour

h (MWh)
starti,g,h = Startup of unit g of technology i at hour h (1 = startup

occurs, 0 = no startup occurs)
statei,g,h = State of unit g of technology i at hour h (1 = online, 0

= offline)

wind energy balancing∑
i

∑
g

zi,g,h ≥ dh ∀h (38a)

∑
i

∑
g

∑
h

zi,g,h ≥
∑
h

dh + dev (38b)

∑
i

∑
g

zi,g,h − dh ≤ cevh ∀h (38c)

Case 3: Controlled charging with real-time wind energy matching∑
i

∑
g

zi,g,h ≥ dh ∀h (39a)

∑
i

∑
g

∑
h

zi,g,h ≥
∑
h

dh + dev (39b)

∑
i

∑
g

zi,g,h − dh ≤ cevh ∀h (39c)

∑
i∈I\wind

∑
g

zi,g,h ≤ dh ∀h (39d)

Minimum Output Constraint The power output generated by each unit must not be

less than its minimum power output if the unit is online.

−zi,g,h + ρmin,iui,gstatei,g,h ≥ 0 ∀i∀g∀h (40a)

Maximum Output Constraint The capacity factor of the unit over the operating day

must not be larger than the units maximum capacity factor.

∑
h

zi,g,h ≥ Tρmax,iui,g ∀i∀g (41a)

108



Unit Startup Constraints A unit offline in the prior hour but online in the current

hour must be started in the current hour. An offline unit must not supply energy

and an online unit must not be supply more energy than its nameplate capacity (for

non-wind units) or its forecasted maximum capacity (for wind units).

statei,g,h − statei,g,h−1 − starti,g,h−1 ≥ 0 ∀i∀g∀h (42a)

zi,g,h − ρmax,iui,gstatei,g,h ≥ 0 ∀iinI \ wind,∀g,∀h (42b)

zi,g,h − ρforecastwind,huwind,gstatei,g,h ≥ 0 ∀g,∀h (42c)
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B.3 Economic Dispatch Model

The economic dispatch (ED) model determines how much power will be dispatched

from each generating unit for the current hour and future hours of the operating

day. For every UC solution, the ED model is run once for each hour of the operating

day. So, at 12am the ED finalizes the dispatch for 12am-1am but also updates the

estimated dispatch for the remaining hours of the day. When run again at 1am,

the ED takes the outcomes from 12am-1am as fixed, finalizes the outcomes for 1am-

2am and re-estimates the dispatch for 2am-11:59pm. When finalizing the dispatch

for the current hour, the maximum potential production of wind generation is set to

the observed potential production rather than the day-ahead forecasted value. This is

based on with the assumption that intra-hour wind forecasts of aggregate, multi-state

potential wind production are perfectly accurate. We make this assumption given the

geographic diversity of a multi-state wind generation portfolio and the accuracy of

near-term forecasts. However, maximum production of wind generators in subsequent

hours is still based on the day-ahead forecast used in the UC. Like the UC, the ED

does not limit the amount of renewable curtailment so the ED may curtail wind to

minimize the cost of securely operating the system. Should the curtailment be severe

enough, RPS requirements satisfied in the CP may not be met in the ED. Reserve

and ancillary service requirements are not considered in the ED. In addition, while

the ED calculates carbon emissions by unit by hour, it does not include emissions

associated with startup and shutdown. The ED model is the same as the UC model,

except state variables related to unit state and startup are constrained to the solutions

determined in the UC. In addition, variables for prior hours are constrained to the

values solved in prior ED runs.
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Table 17: Share of vehicles for each region in Eastern Interconnection

Eastern Interconnection Regions Share of National Vehicles
FRCC 6%
MRO 6%
NPCC 11%
RFC 20%

SERC 25%
SPP 2%

Eastern Interconnection Total 71%

B.4 Estimation of the number of LDVs

The NHTS surveyed the number of vehicles for some households over the entire U.S.

and estimated the number of households in each state [42]. We calculate the share

of households for each state. Based on the assumption that each household has the

same number of vehicles in average, the share of households is the same as that of

vehicles for each state. Table 17 shows the share of vehicles in eastern US, and eastern

interconnection has 71% of US vehicles.

AEO 2011 projects for future LDV sales and the size of the vehicle stock for

entire US [24]. Based on these projections and assumptions for electric vehicle’s

market share, we calculate the number of electric vehicle sales and size of the vehicle

stock, as shown in Figure 34 and 35.
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Figure 34: Projections of light-duty vehicles in the eastern interconnect

Figure 35: Projected number of total light duty vehicles (except pickup trucks) and
EVs
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Table 18: Vehicle types in different studies

NHTS AEO ANL
Automobile/car/station wagon Car Compact

Van Truck Midsize
Sports Utility Vehicle Small SUV

Pickup Truck Midsize SUV
Pickup

Figure 36: Map of AEO vehicle types to NHTS vehicle types

B.5 Energy intensity of new electric vehicles

The assumptions for EV energy intensities in the CD mode are based on the projection

of Argonne National Laboratory [5]. The NHTS, AEO and ANL use different vehicle

type categories, as shown in Table 18. In this study, since we are using data from all

three studies, we need to be able to convert the energy intensities of electric vehicles

from a category to another category. Based on the qualitative description provided

for these vehicle types, we map from one categorization system to the other as shown

in Table 36 – Table 38. Based on the mapping in Table 38, we can convert the energy

intensities (Table 39) in ANL categories to those in the NHTS categories (Table 40).
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Figure 37: Map of ANL vehicle types to AEO vehicle types

Figure 38: Map of ANL vehicle types to NHTS vehicle types

Figure 39: Fuel Economy of EVs in charge depleting mode for vehicle types in ANL
[5]
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Figure 40: Fuel Economy of EVs in charge depleting mode for vehicle types in NHTS

B.6 Fuel economies of New Conventional Vehicles

The National Highway Traffic Safety Administration (NHTSA) regulates Corporate

Average Fuel Economy (CAFE) standards and the average fuel economy for new

model year vehicles are required to meet this standard. The average fuel economy for

new model year vehicles is calculated as Eq. 43a

∑
i ni∑
ni

fi

(43a)

where ni is number of vehicles in type i and fi is fuel economy of vehicles in type i.

The NHTSA uses the petroleum equivalency factor to calculate the MPGe of EVs for

MY 2011-2016, as shown in equation Eq. 44a [37]. In the formula, E is the Wh/mi of

electricity consumed by the vehicle when tested using the 2-cyle method. We found

no evidence to indicate that this method would not be used for the MY 2017-2025

standard. Therefore, we used it to calculate the MPGe of EVs.

1

E
× 33705× 0.303

0.830
× 6.66667 (44a)

The NHTSA uses the utility factor (UF) to calculate the MPGe of PHEVs. The

utility-factor assumes vehicle does not charge during the day but begins day fully
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charged. The UF is roughly 0.35 for 20 mile range and 0.6 for 40 mile range. The

formula for PHEV fuel economy is shown in equation Eq. 45a [37], where UF is utility

factor, FECD is fuel efficiency of charge depleting mode and FECS is fuel efficiency of

charge sustaining mode. It is not clear if FECD is calculated in the same manner as

an EV. Although the UF method is currently used for the M 2011-MY2016 standard

and we found no evidence that it would not be used going forward, we used this

formula to calculate the MPGe of PHEVs.

FEUFweight =
1

UF
FECD

+ 1−UF
FECS

(45a)

Since the CAFE standard is calculated using a harmonic mean, given the high

fuel economy assigned to EVs by the NHTSA, scenarios with higher EV market share

result in a lower required CV fuel economy. Taken to the extreme, this leads to falling

CV fuel economy as EV adoption increases. However, we impose the requirement that

within a given scenario, CV fuel economies do not decrease as a function of time.

Figure 41 shows projections of required fuel economy of new conventional vehicles

and their stock.

B.7 Generation of EV Daily Energy Requirement, EV Hourly
Demand Profile, and EV Hourly Capacity Profiles

The National Household Transit Survey surveyed the trips made by all members of

selected households for one day. Travel via the light-duty fleet is a subset of the

reported transit modes. For each of the samples, we generate the following for a

representative EV:

Daily energy demand The average daily energy demand for a single vehicle. Calcu-

lated using the vehicle type specific energy intensities and the average daily driving

distance for the sample.

Hourly demand profile The charging demand of the average vehicle of the sample
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Figure 41: Projection of the fuel economy of new conventional vehicles and their
stock, (a) Reference scenario, (b) EV S10, (c) EV S20, and (d) EV S100. Blue is for
light-duty car and red is for light-duty truck.
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Figure 42: Fraction of EV fleet that is plugged in, times 6.6 kW.

based on an uncontrolled charging scheme whereby the vehicle begins charging upon

completion of the last journey of the day and charges at a given uniform rate until

all energy used during the day has been restored.

Hourly capacity profile The charging power the average vehicle of the sample can

accommodate for every hour of the day if the vehicle is connected to an charging

infrastructure as soon as a journey is completed. The use of a fleet-wide capacity

profile ignores car-level dynamics where the battery of a given vehicle may not be

able to accommodate additional energy until later in the day.

For the controlled charging schemes, we generate charging capacity profiles with

the assumption that home charging infrastructure and rate incentives ensure that

drivers plug in vehicles throughout the day whenever they are at home. A charging

capacity profile is the fraction of the EV vehicle fleet that is connected to charging

infrastructure, times the charging power of 6.6 kW. Figure 42 shows the charging

capacity profile and how flexibility charging demand has.

B.8 Wind Power Supply Curves and Production Profiles,
Inter-Regional Transmission Cost

The EWITS provides the potential capacities and levelized costs for thousands of

hypothetical onshore wind generation sites in the eastern and central US. We develop
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wind power supply curves for 6 reliability councils. For each region, we aggregate

the time-series onshore wind power production of the 30 percent of the sites with the

lowest cost of energy. Because cost of energy data is not provided for the offshore sites,

we include all sites in the aggregate profile for each region. Based on this time series

data, we develop onshore and offshore wind power profiles for high wind, medium

wind, and low wind days for three seasons (Winter, Intermediate, and Summer) for

each region. In order to capture the intermittency of the wind power, we take the

high wind day to be the day with the highest total potential wind production when

aggregating production across all candidate sites. For example, since we consider

SERC onshore sites, SERC offshore sites, MRO onshore sites, and SPP onshore sites

to be candidate sites to supply SERC, we pick the day which has the least aggregate

production assuming 25% of SERC wind demand is supplied from each of the four

candidate regions. Correspondingly, we chose the day with the lowest total potential

wind production across all candidate regions as the low wind day. In total, we develop

9 one-day wind profiles for each region.

B.9 Hourly Non-EV Load Profiles

The Federal Energy Regulatory Commission (FERC) provides the annual electric

balancing authority area and planning area report, Form No. 714 [40]. This report

provides hourly load data of most utilities in US. By aggregating the 2010 hourly

load data of some representative utilities in each region, we develop a representative

hourly non-EV load profile spanning an entire year.

For the CP, we segment this representative data into weekdays and weekends in

three seasons (winter - Jan. Feb. Dec., intermediate - Mar. to May and Sept. to

Nov., summer - June to Aug.). By averaging the data, we develop the representative

24-hourly load profiles of conventional load for each segment. By multiplying the

ratio between the projection of annual demand and total annual generation in given
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aggregate load data, we can develop the 24-hourly load profiles of non-EV load for

every year.

The UC and ED models sample specific periods from the representative hourly

non-EV load profile. Each period contains a contiguous period of hours.

B.10 Effective Region-wide RES

We calculate the effective region-wide RES mandate based on the load-weighted av-

erage RES mandates of each state. The Department of Energy (DOE) provides the

information about states with renewable portfolio standards. Currently there are 24

states plus the District of Columbia that have RES policies in place. The Database

of State Incentives for Renewables & Efficiency (DSIRE) from DOE provides more

details on each state’s RES, which include the specific schedule for the minimum

percentage of renewable electricity every year [21]. Based on the RES schedule of

each states and the share of electricity generation amounts of 2008 [24], we generate

the region-wide PES as the weighted average of state level standards. As a example,

among twelve states in SERC, only four states has the state level standards, Missouri,

Illinois, North Carolina and Virginia.load profile. Each period contains a contiguous

period of hours.

B.11 Incremental Vehicle Cost

Incremental vehicle cost is taken to be the additional cost of a vehicle, relative to a

2010 vehicle of the same class, to meet a certain fuel economy standard. Incremental

cost as a function of technology, vehicle class, year and fuel economy are required

for our method. While [31, 5, 14, 26] each contain a subset of this information,

no study provides enough information to develop the requested function. The Ar-

gonne National Lab study [5] appears to be the closest source. Annexes 2 and 3 of

This part is originally developed by colleague of this study, Frank Kreikebaum, from Electrical
and Computer Engineering.
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the ANL study present average incremental manufacturing cost and average energy

consumption data respectively for five vehicles classes (compact, midsize car, small

SUV, midsize SUV, and pickup) at three future time points (2015, 2030, 2045) and

for a number of power train types. In addition, Figure 133 of ANL report is a scatter

plot of incremental cost as a function of year and fuel economy for compact vehicles.

The plot shows that spark-ignition vehicles have the lowest cost and vehicles. Using

Figure 133, two linear relationships are derived for 2010, 2015 and 2030, as shown

in equations 46a and 46b The first equation relates average incremental cost to the

incremental cost of the vehicle with the best-in-class fuel economy. The other relates

average fuel economy to best-in-class fuel economy. These relationships are applies to

the average values available for the other vehicle classes to estimate the best-in-class

fuel consumption and incremental costs as seen in equations 46c and 46d. Given that

the vehicle with the best fuel economy has an incremental cost lower or equal to the

average fuel economy, we assume this technology will dominate the market.

γfuelconsumption,t =
δaverage,compact,t − δbest,compact,t

δaverage,compact,t
× 100% (46a)

γcost,t =
Caverage,compact,t − Cbest,compact,t

Caverage,compact,t
× 100% (46b)

δbest,i,t = δaverage,i,t × (1 + γfuelconsumption,t) (46c)

Cbest,i,t = Caverage,i,t × (1 + γfuelcost,t) (46d)

where δj,i,t = fuel consumption of type j (average or best-in-class) for vehicle type i

in year t, γfuelconsumption,t = fuel consumption adjustment factor for year t, Cj,i,t =

estimated incremental cost for of type j (average or best-in-class ) for vehicle type i

in year t, γcost,t = incremental cost adjustment factor for year t.

Applying these linear factors to the other vehicle classes, we arrive upon the results

below for CVs.

The ANL report presents EV data for PHEV 10-40 as well as EV 150. The
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Table 19: Estimated Best-in-Class Incremental Costs of Spark Ignition vehicles

vehicle type Fuel Cost ($)
2010 2015 2030

Compact -38 750 1100
Midsize -40 802 1130

Small SUV 99 896 494
Midsize SUV -108 681 1170

Pickup -63 697 1047

Table 20: Estimated Fuel Economy of Best-in-Class Spark Ignition vehicles

vehicle type Fuel Economy (mpg)
2010 2015 2030

Compact 40.0 47.6 57.1
Midsize 37.6 41.3 50.4

Small SUV 33.6 39.1 48.8
Midsize SUV 28.9 33.8 40.6

Pickup 24.0 28.3 35.0

projected energy intensities for 2030 PHEVs and EVs are as much as 20% below the

2010 values. To provide conservative results, we assume the 2010 energy intensities

apply to all years. Also, this analysis uses EVs with a 100 mile range and PHEVs

with a 40 mile range. We adjusted the average ANL results to account for the lower

battery size and higher energy intensities using the method seen in equation O.5. The

resulting incremental costs are shown in Table 21 and 22.

CR,i,t = Cr,i,t −Bact,i,tPbat,i,t +Riε2010,i
Bact,i,t

Busable,i,t

Pbat,i,t (47a)

where CR,i,t = Estimated cost of EV with R mile range of type i in year t based on

2010 energy intensities ($), Cr,i,t = Cost of EV with r mile range of type i in year t

per ANL study ($), Bact,i,t = Actual battery capacity of EV of type i in year t (kWh),

Pbat,i,t = Price of actual battery capacity in year t ($/kWh), Ri = Range of vehicle

of type i (miles), ε2010,i = 2010 EV energy intensity (kWh/miles), Busable,i.t = Usable

battery capacity of EV of type i in year t (kWh).
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Table 21: Adjusted Incremental Costs of EV 100 vehicles using 2010 Energy Inten-
sities

vehicle type Incremental Cost ($)
2010 2015 2030

Compact 24608 13162 6728
Midsize 26877 14276 7205

Small SUV 30883 16123 7839
Midsize SUV 37317 19402 9530

Pickup 45434 23582 11533

Table 22: Adjusted Incremental Costs of PHEV 40 vehicles using 2010 Energy In-
tensities

vehicle type Incremental Cost ($)
2010 2015 2030

Compact 16137 9984 6943
Midsize 17673 10802 7369

Small SUV 19106 11301 7414
Midsize SUV 22515 13089 8507

Pickup 26529 15227 9722

We assume the EVs have the same lifetime as the CV vehicles. In addition, we

assume there is no incremental difference in end-of-life value between the EVs and

CVs. This simplifies potential tradeoffs between the potential resale value of EV

batteries and the potential reduced lifetime of the EVs compared to CVs.

As described in Appendix B.6, the fuel economy standard applicable to the CV

vehicles sold in a given year is determined based on the EV market share and EV

energy intensities. However, the ANL incremental cost data is for a fixed fuel economy

at each of the 3 data points (2010, 2015, 2030). The results from other studies, such

as [14] suggest a linear relationship between incremental cost and fuel economy. We

assume this linear relationship applies and calculate the incremental cost of a vehicle

of a given fuel economy and model year by linear interpolation between the ANL

values.
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Pi,t = Pi,t + (δi,t − δi,t)(
Pi,t − Pi,t
δi,t − δi,t

) (48a)

where Pi,t = Incremental price of vehicle in year t of type i ($), Pi,t = Incremental

price of ANL vehicle of type i in the ANL time period greater than or equal to time

t ($), Pi,t = Incremental price of ANL vehicle of type i in the ANL time period less

than or equal to time t ($), δi,t = Specified fuel economy of vehicle of type i in year

t (mpg), δi,t = Fuel economy of ANL vehicle of type i in the ANL time period less

than or equal to time t (mpg), δi,t = Fuel economy of ANL vehicle of type i in the

ANL time period greater than or equal to time t (mpg).

B.12 Charging Infrastructure Cost

The charging station connects the EVs onboard charger with the electrical grid. We

assume Level 2, 6.6 kW charging. As with EV batteries, charging station costs are

projected to decrease with volume. Electrification Coalition [26] assumes a public

charging station cost of $1875 and a private charging station cost of $300 in 2030.

For 2030, Electrification Coalition assumes a minimum of 0.5 public charging stations

per vehicle and a maximum of 1.5 public charging stations per vehicle. For the un-

controlled charging scheme, we assume the minimum projection of 0.5 public charging

stations per vehicle. For the controlled charging schemes, we originally assumed the

maximum projection of 1.5 charging station per vehicle. However, we found that the

load flexibility provided with controlled charging was equal if the vehicle was only

plugged in when home or plugged in whenever stopped. Due to the additional cost

of public charging stations, we therefore assumed 1 private charging station and 0.5

public charging stations per vehicle. No charging was modeled at the public chargers,

as it is expected to be a small amount of total charging. However, the cost of public

chargers was included to reduce range anxiety.
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Electrification Coalition assumes a charging station lifetime of 10 years. We as-

sume a lifetime of 13 years for the private charging station, to match the assumed

lifetime of the average vehicle. Based on conversations with an auto manufacturer,

we assumed 75% of the cost of a public charging station lasts 40 years. This cost rep-

resents costs such as conduit installation and wiring. The remaining 25% of the cost

is assumed to last 13 years. We model charging station cost as an upfront purchase

of a home charging station at the time of vehicle purchase and ongoing payments

towards the financed cost of 0.5 public charging stations per vehicle.

B.13 Total Consumer Expenditure

Before we calculate the total consumer expenditure (TCE) of vehicle owners,

we have three important assumptions: Vehicles will be purchased in 2030, No tax

advantage of purchasing a EV vs. a CV vehicle (i.e. the current EV tax credits have

expired), No gas tax applied to electricity used to charge EVs

The TCE consists of upfront costs and operating costs. The upfront costs are

vehicle purchasing costs and installation costs of charging infrastructure for EVs. The

operating costs are mainly fuel costs, costs for gasoline refueling or electricity charging.

Based on the calculated incremental vehicle costs in Appendix B.11, estimates of

charging infrastructure costs in Appendix B.12, projections of electricity price from

our models, and the assumed gasoline price, we basically develop cash flows of each

vehicle type during its lifetime, which we assume 13 years in this study, and calculate

the net present value (NPV) of the cash flows. The numbers in Table 1 and 2 are

calculated as equation 49a and 49b respectively.

(X + ICEV + CC + FCEV,i)− (X + ICCV,i + FCCV,i) (49a)

sEV,i(X + ICEV + CC + FCEV,i) + sCV,i(X + ICCV,i + FCCV,i) + Ai

− (X + ICCV,R + FCCV,R) (49b)
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where, X = Purchasing cost of Model Year (MY) 2010 vehicle, ICEV = Incremental

cost of MY 2030 electric vehicle, relative to MY 2010 vehicle, ICCV,i = Incremental

cost of MY 2030 conventional vehicle, relative to MY 2010 vehicle in case i, ICCV,R

= Incremental cost of MY 2030 conventional vehicle, relative to MY 2010 vehicle in

reference case, no EV adoption case, CC = Charging infrastructure costs per EV,

FCEV,i = NPV of electricity charging costs for the EV in case i (and partially gasoline

refueling costs for PHEV), FCCV,i = NPV of gasoline refueling costs for the CV in

case i, FCCV,i = NPV of gasoline refueling costs for the CV in reference case, no EV

adoption case, sEV,i = 2030 market share of EVs in case i, sCV,i = 2030 market share

of CVs in case i, Ai = Additional cost per vehicle due to change in electricity price

on consumer’s non-vehicle electricity costs in case i relative to reference case.

The numbers from equation 49a are the difference of the total costs between EV

and CV in the same EV adoption scenario. In contrast, the numbers from equation

49b shows the difference between the TCE of average vehicle owners in an EV case

relative to the TCE of CV ownership in the reference case.
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