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Improving Internet Security Through Social 
Information and Social Comparison:

A Field Quasi-Experiment

Abstract

Cybersecurity is a national priority in this big data era. Because of negative externalities and the resulting  

lack of economic incentives, companies often underinvest in security controls, despite government and 

industry recommendations. Although many existing studies on security have explored technical solutions, 

only a few have looked at the economic motivations. To fill the gap, we propose an approach to increase  

the incentives of organizations to address security problems. Specifically, we utilize and process existing 

security vulnerability data, derive explicit security performance information, and disclose the information 

as feedback to organizations and the public. We regularly release information on the organizations with  

the  worst  security  behaviors,  imposing  reputation  loss  on  them.  The  information  is  also  used  by  

organizations for self-evaluation in comparison to others. Therefore, additional incentives are solicited 

out of reputation concern and social comparison. To test the effectiveness of our approach, we conducted  

a  field  quasi-experiment  for  outgoing  spam  for  1,718  autonomous  systems  in  eight  countries  and 

published SpamRankings.net, the website we created to release information. We found that the treatment 

group subject to information disclosure reduced outgoing spam approximately by 16%. We also found 

that the more observed outgoing spam from the top spammer, the less likely an organization would be to 

reduce its own outgoing spam, consistent with the prediction by social comparison theory. Our results  

suggest that social information and social comparison can be effectively leveraged to encourage desirable 

behavior. Our study contributes to both information architecture design and public policy by suggesting 

how information can be used as intervention to impose economic incentives. The usual disclaimers apply 

for NSF grants 1228990 and 0831338.

Keywords:  Internet Security, externality, social comparison, information disclosure, quasi-experiment, 

reputation, economic incentive
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“A spammer may be based in Latvia, work for a merchant in Moscow, send spam to the  

United States from a botnet with zombie computers all over the world, and have the final  

goods shipped from India." 

—Rao and Reiley (2012)

1. Introduction

2011 was a busy year for cyber attacks on many organizations, with targeted attacks increasing by 400%. 

Industries  such  as  credit  card  companies,  gaming  platforms,  banks,  retailers,  TV  networks,  and  

government agencies all fell victim to cybercrime, which is not only increasing in frequency but also in 

the severity of damage. According to the Ponemon Institute, the median cost caused by cybercrime is $5.9 

million per year per company, with a range from $1.5 million to $36.5 million. The costs consist of both 

direct  expenses  (recovery,  detection,  etc.)  and  indirect  costs  (information  loss,  business  disruption, 

revenue loss, equipment damages, etc.). However, the study by Ponemon Institute also shows that nearly 

all of these attacks were avoidable. Most attacks were carried out using fairly simple methods and could  

have been stopped easily with basic or intermediate controls. Although most attacks were targeted, the 

target  selection  was  based  more  on  opportunity  than  on  choice.  Most  organizations  fell  victims  not 

because  they  were  pre-identified  but  because  they  were  found to  possess  exploitable  vulnerabilities. 

About  50-75%  of  security  incidents  originated  from  within  an  organization  (D’Arcy  et  al.  2009). 

Ninety-six percent  of  victim organizations  subject  to  the Payment  Card Industry Data Security 

Standard (PCI DSS) were not in compliance. 

Organizations generally underinvest in Internet security because of the following reasons.  First of 

all,  Internet  security is  often considered too expensive to achieve.  Security products and services are  

sometimes regarded as  useful  and  desirable,  yet  not  affordable.  High-level  security  practices  can be 

reinforced  to  prevent  security  disasters  and  control  the  damage.  The  deployment  of  such  practices, 

however, is a costly endeavor for organizations without assured significant benefit. With the proliferation 

of  mobile  devices,  the  increasing number  of  locations  and devices  where  information  can  be stored 
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further adds to the cost for prevention and protection. Second, although the costs for security are too high, 

the  rewards  are  unclear.  It  is  difficult  to  measure  the  risk  and  potential  costs  of  security  breaches  

beforehand. The frustrating fact about security is that although insecurity is easy to prove, security can 

never be conclusive.  Third,  the absence of legislative enforcement leads to the lack of transparency.  

Although recent progress in data breach notification laws requires companies to notify those customers 

whose information has been lost or stolen, companies generally can choose not to reveal publicly any 

attacks, in order to avoid reputation loss. Without transparency, organizations can claim to be secure even 

if  their  systems are,  in  fact,  vulnerable,  and  customers  cannot  accurately  estimate  the  risk  of  doing 

business  with  them.  Moreover,  Internet  security  is  a  public  good  in  that  an  organization’s  security 

(insecurity) can benefit (hurt) others. The security vulnerabilities of an organization are often used against 

other organizations.  For example,  botnets opportunistically scan the Internet  to find and compromise 

systems with exploitable  weaknesses.  These compromised computers are then utilized to  collectively 

attack other targeted systems as in a typical denial of service attack. 

Although they focus on technical solutions, existing studies often tend to ignore the motivational 

issue, which is a common problem in private provisions of public goods such as charitable giving (List  

and Lucking-Reiley 2002, Frey and Meier 2004, Shang and Croson 2009) and contribution to online 

communities  (Bulter  2001,  Beenen  et  al.  2004,  Ludford  et  al.  2004,  Chen  et  al.  2010).  Social  

psychologists  have  documented  the  existence  of  social  loafing—that  people  exert  less  effort  on  a 

collective task than they do on a comparable individual task (Beenen et al. 2004). According to social  

comparison theory,  which was initially proposed by Festinger (1954),  people have the desire to gain 

information on others  and evaluation on themselves  (Taylor  and Lobel  1989).  When information on 

others is available,  people tend to evaluate themselves in comparison with others. As a result  of  the  

self-evaluation, the existence of discrepancy in a social group would lead to action on the part of group 

members to reduce the discrepancy. People generally care about their social status, often measured by  

ordinal ranks within their social groups, especially when status is made public and can influence one’s  
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reputation  (Griskevicius  et  al.  2010).  As  a  result,  status  competition  is  often  utilized  to  encourage 

desirable  behaviors.  Because  of  the  concern  for  customer  switch,  organizations  have  even  stronger 

incentives than individuals to maintain their status among peers. Reputation in Internet security signals a  

company’s valuation for customer information and ability to take appropriate security controls. In the  

present article,, we propose to solve the underinvestment problem by making such information publicly 

available, in order to solicit social comparison and status competition. Equivalent to rewarding prosocial  

behavior with status and prestige, we can penalize proself behavior with shame and reputation loss by  

making these behaviors notorious.  

We incentivize organizations to increase security spending through our reputation system, an online 

website  that  regularly  aggregates  individual  organizations’  security  information  and  releases  explicit  

comparison results as relative performance ranking to the public. It is worth noting that often it is the  

information aggregation and feedback rather than the information itself that is missing. In the present  

study, we make use of the available information through third-party monitoring on outgoing spam as the 

focus security issue. However, the methodology also applies to other security problems, for which data 

can be collected through public policies on mandatory reporting, in the absence of available data. It has  

been recognized that a key factor required to improve Internet security is the gathering, analysis, and 

sharing of information related to security issues (Gal-Or and Ghose 2005). The Securities and Exchange  

Commission (SEC) formally asked public companies to disclose cyber attacks against them in October  

2011. However, no pre-attack information is currently available for businesses and individuals to take 

precautionary actions. To solicit social comparison, the social information provided needs to reveal what  

constitutes the right behavior and who behaves that way and who does not. 

To test the impact of the specific information released through our website, we conducted a field 

quasi-experiment  in  which  the  released  information  was  used  as  experimental  treatment.  To  draw 

attention to our system, we deliberately chose the United States, Canada, Belgium, and Turkey as four 

treatment countries and did extensive promotion for our website within these countries. The treatment 
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countries were then matched with four control countries according to population and the severity of the 

security  problem before  our  experiment.  Countries  were used as  clusters  of  organizations  so that  an 

organization was compared to  other  organizations  within the  same country.  For  organizations  in  the 

treatment group, the information on the organizations with the severest security problem in the country 

was released monthly on our website, whereas similar information was kept internally only for the control  

group. Although the treatment assignment is at the cluster level, the measurement is at the individual  

level.  The  field  setting  ensures  that  organizations  and  the  public  behave  in  a  natural  manner.  A  

difference-in-difference  model  is  used  to  test  the  treatment  effect.  The  results  show that  the  treated 

organizations improved their security situations more than the control organizations. We also find that the 

more security observed for other organizations, the more likely an organization will be to improve its own 

security situation.

 Our approach for improving Internet security is complementary to existing technical approaches.  

The vast technical literature, especially in the computer science area, has focused on the development of  

technologies  to  secure  computer  systems,  such  as  secure  networking  protocols,  intrusion  detection 

techniques, database security methods, and access control technologies (Ransbotham and Mitra 2009). By 

focusing on organizations’ incentives to invest in these technologies, we aim to extend prior work and 

provide a more comprehensive lens for studying Internet security. Our study sheds light on public policy 

issues concerning security information disclosure and provides a new perspective for dealing with other 

environmental issues such as pollution, energy conservation, and global warming, where externality leads 

to a lack of incentives for taking pro-social behavior. 

2. Literature Review

2.1  Internet Security

Existing  literature  on  information  security  focuses  on  organizational  strategies  that  can  be  used  for 

reducing system risk, including deterrence, prevention, detection, and recovery (Forcht 1994, Straub and 
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Welke 1998). For deterrence and prevention, most previous studies, from the organizational perspective, 

have examined the impact of security policy and practice on information systems abuse or misuse (Straub 

1990, Kankanhalli et al. 2003, D’Acy et al. 2009). For detection and recovery, research has been focused  

on  how  to  identify  attack  traffic  that  could  originate  from  both  internal  and  external  sources  in  a 

cost-effective way (Toth and Kruegel 2002, Carver et al. 2000, Yue and Cakanyildirim 2007, Mookerjee  

et al. 2011) Specifically for anti-spam, the filtering techniques consist of machine learning (Sahami et al.  

1998, Androutsopoulos et al. 2000, Goodman et al. 2007), crowdsourcing and IP blacklisting (Cook et al. 

2006, Ramachandran et al. 2011), screening humans from bots for botnets (Kotadia 2004, Motoyama et 

al.  2010, Isacenkova and Balzarotti  2011), and Domain Keys Identified Mail (DKIM) (Moyer 2011). 

However, the problem for any technical solutions is that miscreants can always respond strategically. The 

interplay is an endless cat-and-mouse game. 

There  is  a  growing  movement  among  Internet  security  professionals  towards  metric-driven  security  

(Jaquith 2007, Baker et al.  2007), yet much of it  remains focused on individual organizations. Some  

professional organizations survey Internet providers (Manzano 2009) about what they are doing to reduce 

spam. Some researchers have examined the economic role of ISPs in botnet mitigation (van Eeten et al. 

2008) and have used metrics (van Eeten et al. 2010) and country-specific studies (van Eeten et al. 2011)  

to explore that topic. Most such studies are based on one-time surveys, and do not have ongoing, regular,  

publication on the net, except at low frequencies such as annually. Internet traffic measurements have  

always  been  available,  and  applications  to  public  policy  continue  to  be  studied  (Bauer  2012),  but 

comprehensive, frequent, regular, ongoing Internet security measurements are still not common, and there 

are  still  fewer  examples  of  such  measurements  made  public  in  reputational  rankings.  There  is  also  

growing interest by ISPs in stanching outbound spam (Commtouch 2010), but such interest should be 

compounded by  regular  reputational  rankings.  Some researchers  have  called  for  cooperation  against 

miscreants and pointed out the consequences of non-cooperation (Moore and Clayton 2008). The various 

anti-spam blocklists (see Section 3.2) of course represent one form of such cooperation, and some of  
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them,  especially  Spamhaus,  also  focus  on  specific  large  spamming  organizations  and  cooperate  in 

takedowns of them. Unfortunately, such takedowns usually have only short-term effects (Quarterman et  

al.  2011,  Quarterman  et  al.  2012).  Some  organizations  such  as  Team  Cymru  do  try  to  deal  with  

organizational cooperation in a quiet way. The present research leverages blocklist and Team Cymru and 

other  data  to  supply  transparent  public  organizational  incentive  for  such  cooperation,  and  provides 

theoretical support for such methods and incentives.

Security vulnerability disclosure is an area of public policy that has been subject to considerable  

debate  (Arora  et  al.  2004b).  Studies  on  software  vulnerability  disclosure  have  shown  that  although 

disclosing vulnerability information provides an impetus to the vendor to release patches early, instant 

disclosure leaves users defenseless against attackers who can exploit the disclosed vulnerability (Elias  

2001 and Farrow 2000). Arora et al. (2004a) found that although vendors are quick to respond to instant  

disclosure, vulnerability disclosure also increases the frequency of attacks. Arora et al. (2004b) suggested 

that  the optimal vulnerability disclosure depends on underlying factors such as how quickly vendors  

respond to disclosure by releasing patches and how likely attackers are to find and exploit undisclosed or  

unpatched  vulnerabilities.  Although  there  has  been  no  public  disclosure  on  information  security 

vulnerability, industry-based Information Sharing and Analysis Centers (ISACs), where security breach 

information is revealed to information-sharing alliance, has been established to facilitate the sharing of  

security information to enhance and protect critical cyber infrastructure. Gal-Or and Ghose (2005) studied  

the economic incentives for security information sharing and found that information sharing yields greater 

benefits in more competitive industries. Gordon et al. (2003) examined how information sharing affects 

the overall  level of information security when firms face the trade-off between improved information 

security and the potential for free riding. 

2.2  Regulations on Information Disclosure

Security information disclosure laws have been focused on data breach notification. Although a national 

data-breach notification law is still under consideration, as of August 20, 2012, 46 U.S. states and the  
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District  of  Columbia,  Guam,  Puerto  Rico  and  the  Virgin  Islands  have  enacted  legislation  requiring 

notification of security breaches involving personal information (NCSL 2012). The specific requirements 

of notification laws vary across states. Some laws require notification when the personal information is  

reasonably assumed to have been acquired by an unauthorized party, whereas others require notification 

only if it is reasonable to believe the information will cause harm to consumers. The consequences of not  

complying differ from state to state as well. However, the rationales for these laws are consistent, which  

is also consistent with our rational for public disclosure of security vulnerabilities, that notification can 

provide public information and create an incentive for all firms (even those that have not been breached)  

(Ponemon Institude 2005, Schwartz and Janger 2007, Romanosky et al. 2011).

However, the impact of data breach disclosure is still in debate. The concerns include the following:  

(1) Firms must comply with multiple, disparate, and perhaps conflicting state laws (Romanosky et al  

2011); and (2) notifications simply shift the burden to consumers if breaches really cause harm (Lenard 

and Rubin 2005, Cate 2009). Otherwise, they are just unnecessary costs. Romanosky et al. (2011) found 

that data breach disclosure can reduce identity theft caused by data breaches. Campbell et  al.  (2003)  

found a highly significant negative impact of security breaches reported in newspapers on the stock price  

of the breached company only when the breach involved unauthorized access to confidential data. In 

contrast,  Kannan et al.  (2007) found that security breach announcements have no significant negative 

impact on market return in the long run. 

The impact of information disclosure has also been widely studied in areas other than security. Jin 

and  Leslie  (2003)  studied  health  information  disclosure  in  the  restaurant  industry  and  found  that  

disclosing hygiene quality information increases health inspection scores and lowers certain diseases.  

Cain et al. (2005) examined the effect of disclosing conflicts of interest and found that the disclosure can  

have perverse effects because advice receivers do not discount advice sufficiently, and that advice givers 

exaggerate advice even further.  Other information disclosure studies are related to auto safety, public  

education,  and  so  on  (Fung et  al.  2007).  These  studies  provide  some  evidence  of  how information 
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disclosure can affect firm behavior. On the basis of these studies, we further add the aggregation and 

presentation  of  information,  which can  leverage reputation and peer  influence  to  enhance  disclosure 

effect.

2.3  The Economics of Internet Security: Externalities and Incentives

It has long been recognized that Internet security is not a problem that technology alone can solve (Arora  

et al. 2004a). Many security questions are at least as much economic as technical. Fundamentally, Internet  

insecurity is the result of perverse incentives, which are distorted by network externalities, asymmetric  

information, moral hazard, adverse selection, liability dumping, and the so-called tragedy of the commons 

(Anderson 2001). Systems fail often because of misplaced economic incentives: The people who could 

protect a system are not the ones who suffer the costs of failure (Schneier 2002). Security failure is caused 

as  much by bad incentives  as  by bad design (Anderson and Moore 2006).  Meanwhile,  vulnerability  

exploits,  botnets,  spamming, and other miscreant activities have evolved over the past a few years to 

become a well-organized, sophisticated underground market.

The economic incentive problem is caused by negative externality of insecurity. Externality happens 

because social costs or benefits are not equal to private costs or benefits (Pigou 1920, Coase 1960, Davis 

and Whinston 1962, Dahlman 1979). Negative externality happens when social costs are greater than 

private costs, whereas positive externality happens when social benefits are greater than private benefits.  

Security  vulnerabilities  of  a  system  are  often  exploited  by  miscreants  to  attack  other  systems.  For 

example, spam has such an extreme negative externality that the social costs are about 100 times the 

private benefits (Stone-Gross et al. 2011, Kanich et al. 2008, Caballero et al. 2011, Rao and Reiley 2012).  

More and more studies have recognized the importance of security externalities and have come up with 

several economic and legal policy proposals. The standard economic treatment for negative externality is 

to impose a Pigouvian tax on the activity that generates negative externality (Pigou 1920, Coase 1960, 

Davis and Whinston 1962, Dahlman 1979). For spam, researchers in many studies have proposed to have 

the spam sender pay the receiver for attention or levy penalties on consumers who purchase goods from 
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spammers (Kraut et al. 2002, Loder et al. 2004). However, these proposals raise the concerns for privacy  

and account hijacking by miscreants. The legal treatment is to let government make law or regulation 

enforcements.  For  spam,  the legal  interventions  include requiring legal  advertisers  to  offer  opt-in  or  

opt-out  choices  for  email  receivers  and putting  legal  pressure  on banks that  process  payments  from 

foreign banks known to act on behalf of spam merchants (Sipior et al. 2004, Levchenko et al. 2011). 

However,  since most  security  problems such as  spam and phishing may involve  parties  in  different  

administrative areas, jurisdictional boundaries provide difficulties for such proposals. 

2.4  Social Comparison: Status, Shame, and Fame

In a social community, participants tend to compare themselves to others when social information on 

other participants’ behaviors is available, and such social comparisons in turn affect behaviors (Festinger 

1954). Perceptions of relative standing can influence many outcomes. A number of studies have found 

that  self-reported happiness may be more sensitive to relative than to absolute income (Hopkins and 

Kornienko 2004,  Luttmer  2005).  The interdependent  preferences  can be represented either  by utility  

functions that depend not only on the absolute value of consumption but also on the average level of 

consumption within a population (Duesenberry 1949, Pollack 1976), or by including concern for status,  

the ordinal rank in the distribution (Frank 1985, Robson 1992, Direr 2001). The reasons for status concern 

may be intrinsic,  a  fundamental  human characteristic,  or  instrumental:  Status  is  desirable  because it  

allows better consumption opportunities (Postlewaite 1998,  Cole et  al.  2001, Hopkins and Kornienko 

2004). 

The availability of social information is the prerequisite for social comparison. Recent theories on 

pro-social behavior have focused on “conditional cooperation”: People are more willing to contribute 

when information is provided that many others contribute (Frey and Meier 2004). Satio (2011) suggested 

that individuals feel ashamed about a choice that does not maximize the payoffs of others only when the 

choice is made in public. Dillenberger and Sadowski (2010) also proposed that a person’s behavior may  

depend on whether it is observed by someone who is directly affected by it and considered shame as a 
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moral  cost  for  a  person’s  utility.  These  concepts  can  be  extended  to  organizational  behavior  since 

organizations are concerned about their social image and reputation (Frei 2010), their relative standing in 

comparison to other businesses. These social factors such as reputation and social image are valuable  

assets for a business not only because organizations have the desire for prestige, esteem, popularity, or  

acceptance (Bernheim 1994), but also because they lead to better business opportunities. It's not all name 

and shame: it's just as much praise and fame for ranking low, for improving in the rankings, for rapidly 

ejecting botnets, etc. With the increasing concern for privacy and confidentiality, customers are likely to  

choose or switch to firms with a more secure information system. 

Social comparison and social information are often used to solve the problem of social loafing, the  

reduction in motivation and effort when individuals work collectively as compared with when they work 

individually (Beenen et al. 2004). The reasons include reduced individual motivation and coordination 

loss (Karau and Williams 1993). Both reasons exist in the context of Internet security. The former is due  

to the externalities, whereas the latter is due to the cost of security efforts. Reputation loss imposed by  

making relevant social information available can serve as a binding force against social loafing (Akerlof 

1980).  Social norm formed through social information provision has two effects on pro-social behavior:  

the focusing influence whereby norms impact behavior only when an individual’s attention is drawn to  

them, and the informational influence whereby norms exerts a stronger impact on an individual the more  

he observes others behaving consistently with that norm (Krupka and Weber 2009). In the present article, 

we aim to leverage both effects to motivate pro-social behavior.

2.5 Previous Publications about This Project

This paper adds significant new research and analysis beyond our previous publications. The RIPE 

Labs  papers  of  2010  (Quarterman  et  al.  2010c   and  2010d),  summarized  in  the  RIPE  conference 

presentation  (Quarterman  et  al.  2010d),  described  what  we  intended  to  do  with  systematic  public 

rankings,  elaborating  at  some  length  on  a  pithy  presentation  at  APWG  (Quarterman  2010a).  After  

deploying SpamRankings.net, we used it and related drilldown interfaces to illustrate the limited effects 
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of the Rustock Botnet takedown at the Telecommunications Policy Research Conference (TPRC), and to 

argue for the use of reputational rankings as a new and more encompassing approach to Internet security  

(Quarterman et al. 2011) motivated in part by commons theory (Ostrom 1990, Milinksi et al. 2002, Dietz  

et al. 2003).  The next year at TPRC, we illustrated the fall of Grum botnet and the rise of Festi botnet to  

motivate the need for another approach, using an initial successful case of medical organizations, which 

do seem to have all  changed their Internet security behavior due to the launch of SpamRankings.net 

(Quarterman et al. 2012), and we argued the case for using clustered randomized control trials (Duflo  

2010) with countries as the clusters (with supporting statistics on spam distribution per country and ASN) 

in full-scale worldwide Internet field studies, as well as providing further theoretical background on why 

reputational rankings should have beneficial effects. The TPRC 2011 (Quarterman et al. 2011) and TPRC 

2012 (Quarterman et al. 2012) papers taken together with the even earlier NANOG 48 presentation about  

FireEye's takedown of the Ozdok or Mega-D  botnet (Quarterman 2010a), comprise a side study of how 

major botnet takedowns did not have much effect on spamming or security beyond temporary short-term 

effects measured in weeks or a few months, thus mostly irrelevant to our longer-term studies. At ICIS 

2012  we  presented  an  overview  of  the  project  including  some  initial  analysis  of  a  small  set  of  

unrandomized pairs  of  treated  and control  countries.  The  present  paper  goes  much further  into  that 

analysis, with further theoretical support from all the areas discussed earlier in this section and also in the  

next. While the results from this small sample do seem valid, this country-pair approach is limited by the 

difficulty of finding appropriate pairs of control and treatment countries. Further work, beyond the scope 

of the present paper, is proceeding on full-scale non-clustered randomized control trials.

3. Field Quasi-Experiment

Field experimentation has  been used extensively to  provide solid  knowledge of  causation for  policy 

evaluation (Duflo et al. 2011). It has also been used to study information security and privacy (Hui et al.  

2007).  Experimental  studies  randomly  assign  participants  into  treatment  groups  or  control  groups. 

Randomization,  although  more  desirable  in  an  ideal  environment,  is  inappropriate  given  our 
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circumstance. In the present study, we aimed to evaluate whether public information disclosure can lead  

to security improvement; thus, the attention to the disclosed information is critical. Rather than randomly 

choosing some countries for treatment, it is more pragmatic to focus on on the countries where the new 

information is more likely to receive attention. As a result, we used a quasi-experiment with intentional  

treatment on North American and European countries,  to resemble the randomized field experiment,  

considering the authors’ PR connections and promotional activities for our website. Quasi-experiments 

typically occur in real-world settings that more closely resemble the actual contexts and constraints faced  

by policymakers  and practitioners  (Remler  and Van Ryzin 2011).  Although randomized experiments 

generally have better internal validity (evidence of causation), quasi-experiments often turn out to have 

better external validity (generalizability).

3.1  Outgoing Spam

Internet security is a very broad and general concept that has many dimensions. In the present article, we 

look into outgoing spam as one specific security issue. Referred to as unsolicited bulk emails, most spam 

messages are sent by botnets, a collection of compromised computers (bots), without the awareness of the  

legitimate computer owners. Anti-spam blocklists have spam traps scattered across the Internet and can  

recognize similar messages received at multiple locations. An estimated 88% of daily worldwide email  

traffic is spam (MAAWG 2011). Inbound spam refers to the spam received, and many organizations are 

well equipped to filter spam out of incoming emails before these emails reach their employees or users.  

However, they have very limited techniques to prevent outbound spam originated from computers within 

the  organizations.  Outgoing  spam  is  typically  generated  via  zombie  computers,  compromised  user 

accounts, or spammers who knowingly abuse their accounts (e.g., in snowshoe spam), and it is a common 

symptom of more damaging security problems (Quarterman et al. 2010e). The same vulnerabilities that 

enable spam are also openings for other exploits. For example, miscreants can steal existing accounts by  

tricking end-users (through phishing or by human engineering) into providing their email usernames and 

passwords. Such stolen accounts can then be used to install botnet spamming malware or other exploits  
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such as Distributed Denial of Service (DDoS) software or sniffers, causing theft of customer records and  

intellectual property, fraudulent use of corporate online banking, or even employee blackmail.

It is costly to deal with outbound spam, which often leads to major side effects such as IP blocking  

by RBL, DNSBL, and IP reputation systems. These side effects cause queue buildup on the affected mail  

server, delays in message delivery, and may result in lost messages and calls from unhappy end-users.  

They also lead to compromised user accounts and blocking of legitimate outbound email, which then 

cause  damage  to  reputation,  customer  relationship,  business  operation,  and  eventually  lower  profit. 

Unfortunately, conventional anti-spam measures may not work well for outbound traffic. Spam has an 

extreme negative externality in the sense that the ratio of external costs to private benefits is as high as  

100:1, as compared with about 0.1 for pollution and 7:30 for nonviolent property crime (Stone-Gross et  

al. 2011, Kanich et al. 2008, Caballero et al. 2011, Rao and Reiley 2012). 

Therefore, if ISPs are constantly sending out spam, they not only risk being attacked themselves, but 

also increase the risk faced by other Internet users. In other words, the efforts of reducing outgoing spam 

can produce a remarkably large positive externality on other users.  For instance, in 2011, Microsoft,  

Pfizer, FireEye network security, and security experts at the University of Washington collaborated to  

take down Rustock, the largest botnet on record (Quarterman et al. 2011). The takedown of this single 

botnet was followed by an immediate one-third reduction in global email spam (Thonnard and Dacier  

2011, Microsoft 2011, Rao and Reiley 2012). Hence, outgoing spam is a typical Internet security problem 

that lacks transparency, costs a lot to deal with, and generates negative externalities.  If our approach  

proves effective in reducing outgoing spam, it can also be used for improving other security dimensions.

3.2  SpamRankings.net

We  launched  a  website  named  SpamRankings.net  in  May  2011  and  have  since  used  it  to  release 

country-specific outbound spam information. This website serves as our main instrument to study public 

security information disclosure and presentation. It displays monthly outbound spam volume and rankings 
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for sample organizations  in  the  treated countries,  including the United States,  Canada,  Belgium, and  

Turkey. To generate such information as treatment, we gathered and processed a large amount of daily  

spam data from two blocklists, the Composite Blocking List (CBL), and the Passive Spam Block List  

(PSBL). The CBL gathers its source data from its own spam traps and very large mail server installations  

and lists IPs exhibiting characteristics that are specific to open proxies of various sorts and dedicated  

Spam BOTs that  have been abused to send spam, worms/viruses.  The PSBL is an easy-on,  easy-off  

blacklist that does not rely on testing and has a lower probability of false positives because any user can 

remove their ISP’s mail server from the list.

We also collect daily blocklist data from Spamhaus (all three lists: SBL, XBL, and PBL), UBL, UCE,  

URIBL, as well as custom volume data from the University of Texas at Austin Department of Computer 

Sciences and Quarterman Creations. We occasionally use those other sources of data as cross-checks via  

our internal drilldown interfaces, and we hold them all in reserve for future studies. Each blocklist has its  

biases in placement of spam traps, in heuristics used to determine which messages to label as spam, etc.  

We explicitly addressed this issue before we started publishing rankings (Quarterman et al. 2010f). We  

use  CBL for  most  of  our  published  rankings  and the  experiment  described  in  this  paper  because  it 

provides us a large amount of data each day, with features such as volume counts (number of spam 

messages)  and  botnet  labelling  that  are  not  available  from  most  blocklists.  Other  blocklists  are  

nonetheless useful for rankings, because while all blocklists are noisy and subject to bias, rankings based 

on a single blocklist have the same biases and noise. It is not some unattainable Platonic ideal of perfect  

knowledge about the Internet that matters for our purposes: it is the relative rankings that are important.

The raw data include observed spamming IP addresses, corresponding outbound spam volume, and 

botnet tags in the forms of text files from CBL and Network News Transfer Protocol (NNTP) messages 

from  PSBL.  One  important  step  in  data  processing  is  mapping  IP  addresses  to  netblocks  and,  

subsequently, Autonomous Systems (ASes), which are groups of IP addresses owned by an organization. 

Organizations  with  very  large  networks  may  use  multiple  ASes  as  a  way  to  divide  their  networks. 
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Therefore, ASes, even within the same organization, are relatively independent of each other. Therefore  

we  use ASes  as  the  measurement  level.  An AS can be identified  by a  unique Autonomous System 

Number (ASN).

 Lastly, we aggregate the daily outbound spam data into monthly data and derive rankings for each 

country. We receive more than eight million records per day from CBL and PSBL, which we summarize 

into about two million spam messages observed from worldwide IP addresses. On the ASN level, we 

have seen 27,500 ASNs with spam volume over the lifespan of this project. The ASNs are then grouped 

and ranked by country. The Top 10 organizations with the most spam are listed on SpamRankings.net  

(Figure 1). For each Top 10 ASN, we display the following information: rank, rank in the previous month  

if  it  was listed in the previous month (“-”  if  not),  name and website of  the  organization,  ASN,  and 

outgoing spam volume.

Figure 1.  Screenshot of SpamRankings.net

To map IP addresses to netblocks and to ASNs initially we used (version 1 or v1) a static copy of 

mappings  from Team  Cymru.  Recently  (published  on  SpamRankings.net  May  2013  for  April  2013 

rankings) we have revised (version 2 or v2) our methods to use daily mappings from CBL crosschecked  
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by  daily  mappings  from  Team  Cymru.  After  extensive  internal  consistency  checking  of  v2  and 

comparisons with v1, it appears clear that while rankings derived from v2 increasingly diverge from those  

for v1 starting about October 2012 (well after the period of the experiment of this paper), the direction of 

movement of rankings or spam volume is the same for the great majority of ASNs and months; v2 is  

mostly more precise, including some netblocks and addresses that v1 did not. Precision here means in 

assignment of IP addresses to netblocks and netblocks to ASNs. Any spam blocklist data will always be 

imprecise as to the volumes of spam messages seen and the number of IP addresses that send them. As  

previously noted, the most important feature of  the blocklist data for our purposes is relative rankings,  

and v2 makes  those somewhat more precise while demonstrating that v1 rankings were already useful.  

The data used in the present paper are all from v1.

3.3  Quasi-Experimental Design

To evaluate the impact of spam information released on SpamRankings.net, we used a between-subjects 

quasi-experimental  design  with  two  conditions:  the  treatment  with  information  released  on 

SpamRankings.net every month, and the control with information kept internally. To strengthen social  

comparison and reputation concern, information released in the treatment condition is relative ranking 

with respect to the outgoing spam, which also means that the intervention is at the cluster, the country 

level. Individual ASN level assignment would have resulted in less meaningful ranking information and  

weaker social comparison. Therefore, we nested ASNs within countries and assigned countries as clusters 

of ASNs to the two conditions. Considering the publicity of SpamRankings.net, we specifically chose the 

United States, Canada, Belgium, and Turkey as four treatment countries. We then matched the treatment 

countries with four control countries accordingly, based on population and total outgoing spam volume 

before our experiment, as shown in Table 1. Therefore, the control group consists of ASNs in Indonesia,  

Malaysia, Netherlands, and Iran.

For the treatment group, we made the monthly spam rankings available through SpamRankings.net  

from May 2011 to January 2012. We treated different countries with differing starting points in time, with 
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the  United States  in  May 2011,  Canada in  June 2011,  and Belgium and Turkey in  July 2011.  This  

sequential  release  was  designed to  accumulate  publicity  for  our  ranking  site  before  getting  into  the  

full-scale experiment. For the control group, we did not publish any information on outbound spam, but 

the  same data  were collected and kept  internally.  We also  collected  static  information  on  each AS,  

including number of IP addresses, number of unique IP addresses, number of prefixes, number of regions,  

network name, website, network type, traffic level, inbound versus outbound traffic ratio, and geographic 

scope. The primary outcome of interest is the outgoing spam volume. The sample ASes were included in 

either the treatment or control condition because they were observed to send out spam during May 2011  

to January 2012.  Therefore,  we have a selection bias toward ASes with more severe outgoing spam  

problems. In the specific context of the present study, this was not a problem since these ASes were the 

ones we intend to impact. All of the ASes remained through the entire experiment.

Table 1      Country Pairs

Pair Country Population Spam* Group

1 United States (US) 310,232,863 57,176,031 treated

Indonesia (ID) 242,968,342 94,435,116 control

2 Canada (CA) 33,679,000 4,387,388 treated

Malaysia (MY) 28,274,729 6,695,830 control

3 Belgium (BE) 10,403,000 3,781,796 treated

Netherlands (NL) 16,645,000 6,283,101 control

4 Turkey (TR) 77,804,122 14,759,146 treated

Iran (IR) 76,923,300 13,291,908 control

* All the data on spam in this paper refer to the data on outbound spam

   Spam data are taken from data for April 2011.

Since we wanted to engage both organizations and consumers and observe their natural reactions, it  

was  critical  for  the  success  of  the  experiment  to  accumulate  sufficient  visibility  and  attention  of 

SpamRankings.net. We promoted the website through different channels, including social media such as 

YouTube, Twitter, and blogs, conferences, and press releases, to increase its impact. We also received 

much feedback and collaboration requests from industries  and observed that  some organizations  had  

already  tried  to  take  their  names  off  the  list  on  SpamRankings.net.  For  example,  we  received  the 
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following comment from a Chief Security Officer of a medical center, which also confirms that some 

outgoing spam could be reduced using basic controls:

“The first time we were rated #1 on your list, we noticed that one of our users had generated  

thousands  of  spam messages  and asked  her  to  change  her  password—that  stopped  the  spam  

immediately. The next month, we found another user who had just given up her credentials and got  

her to change her password as well. I spoke with a colleague at one of the other medical centers  

ranked on your site and he mentioned they have the same problem…The listing on your site added  

additional impetus to make sure we ‘stay clean’ so in that regard, you are successful.”

4. Data

We collected outbound spam data on the top 250 most spamming ASNs each month from March 2011 to  

January 2012 for the eight selected countries. Table 2 shows the summary statistics of observed sample  

ASNs by country. Only the United States had over 250 spammers for some months, but the top 250 ASNs 

accounted for over 95% of the total outbound spam. The total unique sample size was 1,718 ASNs, with  

1,177 ASNs in the treated group and 541 ASNs in the control group. However, if we look at the average 

number of ASNs with observed outgoing spam per month, we have a more balanced treatment group and 

control group. The unbalance is the result of the observation that spamming ASNs for the treatment group  

varied significantly from month to month,  indicating that  ASNs in the treatment group reduced their  

outbound spam more quickly than those in the control group. Results for average maximum of spam 

percentage by ASN show that a few ASNs were responsible for the most  outbound spam volume in 

Indonesia, Turkey, Belgium, and Malaysia. Especially for Indonesia, the most spamming ASN sent out  

83.46% of total spam on average. However, for the United States, the most spamming ASN accounted for 

only 6.89% of total spam on average. 

Table 2      Observed Sample ASNs by Country

Number 
of ASNs

Average number of ASNs 
with positive spam volume 

Average max of 
spam volume by 

Average max of 
spam percentage by 
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per month ASN ASN
Treated

US 699 250 3,414,080 6.89%
CA 316 175 1,261,576 20.94%
BE 56 31 1,116,462 44.70%
TR 106 63 5,051,160 48.08%

Sum 1177 519
Control

ID 229 190 45,903,492 83.46%
MY 57 44 1,958,958 43.11%
NL 170 101 1,067,763 22.91%
IR 85 77 2,575,711 27.89%

Sum 541 413

Table 3 summarizes the outbound spam volume by country for both the periods before (Pretest  

Period) and during (Test Period) the experiment. This comparison presents the average outbound spam 

volume per month and the difference. On average, the outbound spam volume of the four countries in the 

treated group dropped by 54.93%, whereas the number for the four countries in the control group was  

45.84%.

 Table 3      Outgoing Spam Volume Observed Per Month Per Country

Pretest Period* Test Period* Difference Percentage
Treated group

US 105,347,424 33,007,389 72,340,035 68.67%
CA 7,786,736 3,949,362 3,837,374 49.28%
BE 3,812,537 1,663,925 2,148,612 56.36%
TR 14,758,174 8,052,961 6,705,213 45.43%

Average 32,926,218 11,668,409 21,257,809 54.93%
Control group

ID 93,416,115 46,320,078 47,096,037 50.42%
MY 6,361,998 3,684,334 2,677,663 42.09%
NL 7,261,624 2,086,952 5,174,672 71.26%
IR 10,590,092 8,515,070 2,075,021 19.59%

Average 29,407,457 15,151,609 14,255,848 45.84%
*For US, the pretest period is 03/2011-04/2011; the test period is 05/2011-01/2012.
  For CA, the pretest period is 03/2011-05/2011; the test period is 06/2011-01/2012.
  For other countries, the pretest period is 03/2011-06/2011; the test period is 07/2011-01/2012.
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5. Statistical Models

We estimate a linear model to test the effect of security information disclosure. First, we employ a simple  

difference specification to directly compare the treatment and control groups:

Yict= θ0 + θ1Dc + εict  , (1)

where the dependent variable Yict is the outcome of interest for AS i in country c at time t, and Dc is an 

treatment indicator variable for whether country c  received security information disclosure. Hence, the 

estimate of the coefficient θ1 indicates the difference between treatment and control countries. We utilize 

this model to compare baseline differences in pre-treatment conditions and to test the effect of spam 

information disclosure on firms’ outbound spam.

Since the assignment of countries to treatment and control groups is not random in the present study,  

the outbound spam is likely to be affected by pre-treatment conditions. It is thus necessary to include 

observable AS characteristics and baseline spam volumes as control variables in equation (1) to improve 

the precision of the estimated treatment effect. Therefore, we also run the following specification:

Yict= θ0 + θ1Dc + θ2Xic + ωp + εict ,  (2)

where Yict and Dc are defined as in equation (1), and X ic is a vector of pre-treatment AS characteristics 

including baseline spam volume and number of IP addresses.  Since the assignment to treatment and 

control groups was stratified within country pairs (Table 1), we also include country pair fixed effects, ω p, 

in equation (2).

We also examine whether the treatment effect interacts with baseline AS characteristics by running 

the following difference in differences model:

Yict= θ0 + θ1Dc + θ2Xic + θ3Dc * Xic + ωp + εict ,  (3)

where the interactive term Dc * Xic  is added based on equation (2). The estimate of θ3 captures the part of 

treatment effect moderated by baseline AS characteristics.

Outbound spam volumes from organizations within a country may be correlated because of common 
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policies and regulations for a country. These country-clustered missing variables would result in highly 

positively correlated error terms.  Failure to correct  for  the  correlation could result  in  underestimated 

standard  errors  and  thus  overestimated  treatment  effects  (Bertrand  et  al.  2004).  We  therefore  use 

cluster-robust standard errors at the country level (the level of treatment assignment) in estimation of all  

of the above models to allow for both error heteroskedasticity and flexible within-cluster error correlation. 

However, the asymptotic justification based on cluster-robust standard errors assumes that the number of 

clusters  goes  to  infinity.   With  few (five  to  30)  clusters,  cluster-robust  standard  errors  can  still  be  

understated (Cameron et al., 2008). Since we have only eight clusters (eight countries), this problem is 

likely to exist.  So we further use the wild cluster  bootstrap-t procedure suggested by Cameron et  al. 

(2008) to adjust the estimated standard errors for θ1 in our main models (equation (2)).

6. Baseline Comparison

Since assigning firms into treatment and control groups is not random, it is necessary to test the difference  

in  pre-treatment  conditions  that  may be  correlated  with  the  outbound spam.  If  the  difference  is  not 

statistically significant, then any differences in post-intervention outcomes between the two groups can be  

causally attributed to the intervention. Otherwise, the pre-treatment difference needs to be controlled in 

order to make a precise estimation on treatment effect. To check whether firm characteristics were similar  

or  not  between the two groups,  we run regressions of the number of IP addresses and pre-treatment 

baseline  spam volume  (average  spam volume  for  March  and  April  2012)  on  treatment  status  using 

equation (1).

We  present  the  comparison  of  firms  at  baseline  in  Table  4.  Column  1  contains  the  average 

characteristics for the control  group.  Columns 2 and 3 present  the estimated differences between the  

treatment and control  groups. The results  in column 2 do not include any controls,  whereas those in 

column 3 control for country pair fixed effects. The differences in average baseline spam and IP number 

are statistically significant and large in magnitude. Specifically, the organizations in the treatment group 

generated about 50% less spam than those in the control group before the treatment.  On average, the  
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organizations in the treatment group also have about four times more IP addresses than those in the  

control group. Both two variables are likely to be correlated with post-treatment outbound spam.

Table 4      Baseline Comparison

Control Mean

(1)

Treatment Difference

No Controls

(2)

Treatment Difference

Country Pair FE

(3)

     Baseline spam 218439 -106540
(111622)

-152449**
(57470)

     IP number 140495 647773*

(327720)

625859*

(277616)

Observations 540 1717 1717

Notes. Column 1 contains the average characteristic of the organizations in the control 
countries. Columns 2 and 3 contain estimates of the average difference in characteristics 
between the control and treatment organizations, without controls and with controls for  
country  pair  fixed  effects,  respectively.  Standard  errors  are  clustered  by  country  and 
shown in parentheses. * indicates statistical significance at the 10% level, ** at the 5% 
level, and *** at the 1% level.

7. Information Disclosure Effect

The estimation of the effect of information disclosure is based on comparing the outgoing spam volumes 

of the treatment group and the control group, according to equations (1) and (2). The results are presented 

in Table 5. Column (1) displays the results from the basic model in equation (1), where only treatment 

indicator  is  included.  It  shows that  although the treatment  organizations  sent  out  less  spam than the 

control organizations, the difference is statistically insignificant. However, once we control for country  

pair fixed effect, the difference becomes significant and also increases in magnitude (Column (2)). 

As  suggested  by  Table  1,  the  treatment  organizations  significantly  differ  from  the  control 

organizations in terms of baseline spam and number of IP addresses. Therefore, in addition to country 

pair  fixed effect,  Column 3 also controls for baseline spam volume and number of IP addresses and  

contains the main results.  It  is  not  surprising that  both baseline spam volume and the number of IP  

addresses  significantly  affect  post-treatment  outbound  spam.  Baseline  spam  volume  is  positively 

correlated with spam volume during the treatment period, indicating the persistence of certain security 
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vulnerabilities. Unless the subject organization takes efforts to deal with these vulnerabilities, it will be  

continuously exploited by malicious attackers. The number of IP addresses is found to be negatively  

correlated with outgoing spam volume, suggesting that large systems tend to have less vulnerability. On  

the one hand, large systems provide attackers with more opportunities. On the other hand, large systems  

are likely to invest  more in Internet  security. Our finding suggests that the later force dominates the  

former one. 

Table 5      Effect of Information Disclosure

(1)
Basic model

(2)
Basic model

+Country pair FE

(3)
Basic model 

+ Country pair FE
+Controls

(4)
Basic model

+ Country pair FE
+Controls

Spam Spam Spam Ln(Spam)

Constant 121248*
(52992)

163213***
(31879)

-1274
(4250)

6.4448***
(0.3441)

Treatment -81393
(53820)

-103197**
(30849)

-17757**
(4076)

-2.8197***
(0.3669)

Baseline spam 0.4922***
(0.0160)

0.0000003
(0.0000002)

IP number -0.0058***
(0.0005)

0.0000002***
(0.00000002)

Significance level using wild  bootstrap-t 0.002 0.002

Observations 14255 14255 14248 14248

Notes. Column 1 displays the estimate of treatment effect on outgoing spam using the basic model  
without controls (equation (1)). Column 2 reports the result controlling for country pair fixed effects.  
Column  3  controls  for  country  pair  fixed  effects,  baseline  spam  volume,  and  the  number  of  IP  
addresses.  Column  4  reports  the  estimate  of  treatment  effect  on  log  transformed  outgoing  spam 
controlling for country pair fixed effects, baseline spam volume, and the number of IP addresses. All  
standard  errors  are  clustered  by  country  and  shown in  parentheses.  Row significance  level  using 
bootstrap-t reports the significance level for the estimate of treatment effect in Column 3. * indicates 
statistical significance at the 10% level, ** at the 5% level, and *** at the 1% level.

Controlling for baseline spam and number of IP addresses drops the estimate of the treatment effect  

by approximately 80% from 103,197 to 17,757,  suggesting that  the baseline spam and number of IP 

addresses  explain  a  substantial  part  of  variation  in  post-treatment  outbound  spam.  Nevertheless,  the 

treatment effect remains significant and sizable even with controls for the two characteristics. Given that  

the average outgoing spam volume for the treatment group is 111,899, the size of this effect is estimated 

at approximately 15.9%. Romanosky et al. (2011) found that the adoption of data breach disclosure laws 
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can reduce identity theft caused by data breaches, on average, by 6.1%. Although the two findings are  

consistent, the comparison suggests that public information disclosure can generate more effective results  

than notifying only those who have been affected.  

Considering the small number of clusters, we use the wild cluster bootstrap-t procedure suggested by 

Cameron et al. (2008) to further test the treatment effect estimate. The bootstrap result shows that the 

estimate is robust to such asymptotic refinement. In addition, to test whether the estimate is subject to the 

functional  specification  of  the  statistical  model,  we  take  log  transformation  of  spam volume,  which 

smooths out the skewness in the distribution of spam, and run the same estimation again. According to the 

results  presented  in  column  (4),  the  treatment  effect  becomes  even  more  significant  statistically.  

Therefore,  we can safely arrive at  the conclusion that  public disclosure of outbound spam does help  

reduce outbound spam.

To examine how the treatment effect dynamically changes as the treatment proceeds, we run the  

estimation for each month of the treatment period separately, controlling for country pair fixed effects,  

baseline spam, and the number of IP addresses. The results for all seven months of the treatment period 

are presented in Table 6. Throughout the entire period, the estimates of treatment effect are consistent and 

increase in magnitude, which provides additional support for our conclusion.

Table 6      Effect of Information Disclosure by Time
(1)

1 month
(2)

2 months
(3)

3 months
(4)

4 months
(5)

5 months
(6)

6 months
(7)

7 months

Constant 7429
(6124)

-10282*
(4505)

-9821
(5828)

-7308
(5405)

-2276
(8665)

-6402
(7918)

9327*
(4323)

Treatment -15476*
(7296)

-10843*
(5229)

-14734**
(5925)

-26353***
(4257)

-36988**
(9620)

-18685
(12003)

-13304**
(4541)

Baseline 
spam

0.3049***
(0.0043)

0.5125***
(0.0140)

0.4725***
(0.0141)

0.5256***
(0.0160)

0.7260***
(0.0332)

0.7520***
(0.0342)

0.3799***
(0.0103)

IP number 0.0012
(0.0012)

-0.0036**
(0.0008)

-0.0035**
(0.0014)

-0.0045**
(0.0019)

-0.0131**
(0.0029)

-0.0149**
(0.0032)

-0.0051***
(0.0006)

Observations 1717 1717 1717 1717 1717 1717 1717

Notes. Columns 1 to 7 display the estimates for the first to seventh month after the treatment. Country pair  
fixed effects, baseline spam, and number of IP addresses are included in all estimations. Standard errors  
are clustered by country and shown in parentheses. * indicates statistical significance at the 10% level, ** 
at the 5% level, and *** at the 1% level.
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Table 7      Interaction Effect of Information Disclosure

(1)
No Interaction

(2)
Interact with

baseline spam

(3)
Interact with
IP number

(4)
Interact with
baseline rank

(5)
Interact with

baseline top10

Constant -1274
(4250)

-1478
(2363)

-1746
(2945)

-49205*
(23181)

-9727
(10995)

Dc -17757**
(4076)

10656
(9605)

-17091***
(2791)

-86068
(47539)

-4212
(13915)

Baseline spam 0.4922***
(0.0160)

0.5027***
(0.0006)

0.4919***
(0.0166)

0.4942***
(0.0133)

0.4944***
(0.0128)

IP number -0.0058***
(0.0005)

-0.0002
(0.0007)

-0.0002
(0.0193)

-0.0036**
(0.0014)

-0.0049***
(0.0007)

Dc* Baseline spam -0.2524**
(0.0776)

Dc* IP number -0.0057
(0.0191)

Baseline rank 244.2**
(89.05)

Dc* Baseline rank -336.6
(217.7)

Baseline top10 7820
(90440)

Dc* Baseline top10 -294164
(294193)

Observations 14248 14248 14248 14248 14248

Notes. Column 1 displays the main results without any interaction effect from column 3 of Table 5 for  
comparison. Columns 2 and 3 present the results allowing the treatment effect to interact with baseline 
spam volume and number of IP addresses respectively. Column 4 and 5 present the results allowing the 
treatment effect to interact with the baseline rank and baseline top10 respectively. Country pair fixed 
effects, baseline spam, and number of IP addresses are included in all estimations. Standard errors are  
clustered by country and shown in parentheses. * indicates statistical significance at the 10% level, ** at  
the 5% level, and *** at the 1% level.

Then, we allow the treatment effect to interact with pre-treatment characteristics to see whether the 

effect will differ on different organizations. Table 7 presents the results. Column (1) simply displays the 

main results from column 3 of Table 5 without any interaction as a benchmark for comparison. Columns 

(2) and (3) present the results allowing the treatment effect to interact with baseline spam volume and the 
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number of IP addresses, respectively. Column (4) presents the results allowing the treatment effect to 

interact with the baseline rank, which is the spam ranking among all organizations in the same country at 

the time one month before treatment. Column (5) presents the results allowing the treatment effect to  

interact  with baseline top10,  which is  a binary indicator for whether  the organization ranked top 10 

among all organizations in the same country at one month before treatment. Country pair fixed effects,  

baseline spam, and number of IP addresses are included in all columns. 

According to these results, the treatment effect does not interact with pre-treatment characteristics  

expect for baseline spam volume. The significant negative coefficient (-0.2524) for Dc* Baseline spam 

shows that information disclosure is more effective on organizations with more baseline spam. Although 

we  listed  only  the  top  20  spamming  organizations,  organizations  currently  off  the  list  were  also 

encouraged  to  take  effort  to  remain  that  way.  However,  when  public  disclosure  was  imposed, 

organizations with severe a outgoing spam problem had stronger incentives to deal with the problem to 

reduce reputation loss. This could have been partially because of the specific presentation we used in the  

present study, that we disclosed the worst behavior instead of advocating the best practice.

Since the data we used were collected repeatedly for the same sample for many months, the outcome 

may be  serially  correlated,  and the resulting  standard  errors  may be inconsistent.  Besides  bootstrap,  

Bertrand et al. (2004) proposed that the correction that collapses the time series information into a “pre”- 

and “post”-period can explicitly take into account the effective sample size. Using this method as an  

additional robustness check, we collapse our data into a pre-treatment and a post-treatment period by 

taking the average of spam volume for the months before the treatment and the months with treatment for  

each sample AS. Then we run the statistical model using the collapsed data. The results (in Table 8) are  

consistent with the results using original data. 
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Table  8  Information  Disclosure  Effect  Using  Average  Spam  Volume  for  Pre-  and 
Post-Treatment Periods

(1)
Basic model

(2)
Basic model

+Country pair FE

(3)
Basic model 

+ Country pair FE
+Controls

Post-spam Post-spam Post-spam

Constant 112267*
(53094)

157823***
(34448)

-1694
(4138)

Treatment -72612
(53993)

-96041**
(32421)

-17333***
(4261)

Pre-spam 0.4928***
(0.0158)

IP number -0.0058***
(0.0006)

Observations 1718 1718 1718

Notes. Standard errors are clustered by country and shown in parentheses. * indicates statistical 
significance at the 10% level, ** at the 5% level, and *** at the 1% level.

8. Social Comparison Effect

As we showed in the previous section, information disclosure does positively encourage organizations to 

reduce outgoing spam. Although we release information only on the top-most spamming organizations, 

the disclosure has a positive spillover effect on organizations that are currently off the list. The disclosure  

effect mainly comes from the concern for reputation loss; that is, the more spam an organization sends  

out, the more likely it will be listed on SpamRankings.net. Another force that would potentially affect  

organizations’ behavior is the social comparison effect caused by the information of other organizations’  

behavior. The important information on others’ behavior released on our website is the maximum spam 

volume observed from the most spamming AS (referred to as Max spam) and the minimum listed spam  

volume observed from the AS that  ranked 10th in  the  treatment  country (referred to  as  Min spam). 

According  to  social  comparison  theory  (Festinger  1954),  organizations  will  react  to  the  specific  

information disclosed as well as to the disclosure mechanism in that organizations have the tendency to  

behave in consistency with others. Therefore, in addition to the treatment variable, we add two variables,  

Treatment*Max spam and Treatment*Min spam, to test whether treatment organizations will react to the 
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specific information disclosed on other organizations.

Table 9 shows the results after including these two additional variables. The coefficients indicate  

how the specific information would modify the treatment effect. We find that organizations react only to 

the specific Max spam, not the Min spam, meaning that they pay attention only to the worst spam sending 

behavior but not to the mediocre behavior. The coefficient estimate of Treatment*Max spam is positive,  

suggesting that the more outgoing spam observed from the worst behavior, the less likely organizations 

will  be to take effort to improve their own behavior. In other words, it  shows that if even the worst  

behavior is  not  so bad,  organizations will  have more pressure or desire to improve themselves.  This 

finding is consistent with the prediction by social comparison process, during which individuals evaluate 

themselves against others and the existence of a discrepancy leads to actions toward reducing it. 

Table 9      Impact of Specific Information Disclosed

(1)
Basic model 

+ Country pair FE
+Controls 

(2)
Basic model 

+ Country pair FE
+Controls 

(3)
Basic model 

+ Country pair FE
+Controls

Spam Spam Spam 

Constant 353.3
(5172)

-44.00
(5041)

375.0
(5271)

Treatment -24601***
(6320)

-17514**
(7266)

-24922**
(7375)

Baseline spam 0.4899***
(0.0177)

0.4899***
(0.0177)

0.4899***
(0.0177)

IP number -0.0066***
(0.0014)

-0.0066***
(0.0014)

-0.0066***
(0.0014)

Treatment*Max spam 0.0002*
(0.0001)

0.0002**
(0.00008)

Treatment*Min spam -0.0051
(0.0114)

0.0007
(0.0096)

Observations 14248 14248 14248

Notes. Standard errors are clustered by country and shown in parentheses. * indicates 
statistical significance at the 10% level, ** at the 5% level, and *** at the 1% level.
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9. Conclusion

Governments, businesses, and consumers are constantly exposed to the risk of cybercrime. Our society 

has recognized the need for additional laws and co-operation to protect consumer privacy, enterprise 

assets, intellectual property, and critical national infrastructure. In the thriving and fast-moving discipline 

of Internet security, many are searching for technical solutions such as firewall and antivirus software.  

We propose that Internet security needs to be improved from the perspective of fundamental motivations.  

Systems are prone to failure when the person guarding them is not the person who suffers when they fail  

(Anderson  and  Moore  2006).  An  organization’s  security  vulnerabilities  are  also  shared  by  other  

organizations but are often kept private. The negative externality gives Internet security the feature of 

partial public good. The private provision of public goods often results in underinvestment because of the  

lack of incentives. In social psychology, the underinvestment problem is often addressed through making 

relevant social information available and soliciting social comparison process. 

Drawing upon social comparison theory, we propose a social information provision to encourage 

organizations to improve their Internet security. The information disclosure mechanism can incur concern 

for reputation loss, whereas the specific information disclosed can incur a social comparison. Through 

making  information  on  other  organizations’  behavior  publicly  available,  we  aimed  to  solicit  the  

comparison among them and impose reputation loss on those who do not behave pro-socially. To dose up 

the comparison, we disclosed the relative rankings for all of the organizations in a country in addition to 

absolute performance and listed the top 10 worst organizations by their standings. Such “shame” lists  

make bad behaviors notorious. Using a field quasi-experiment on outgoing spam for 1,718 ASes in eight 

countries,  we  show  that  providing  social  information  on  outgoing  spam  encouraged  the  treatment 

organizations to reduce it by approximately 15.9%. As compared with an existing study (Romanosky et 

al. 2011), which documented a 6.1% effect of adopting data breach disclosure laws on identity theft, this  

result  shows that  making social  information publicly available  is  more effective  than notifying only 

affected consumers in motivating desirable pro-social behavior. 
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We find a positive spillover effect in that even though only the top 10 worst organizations are listed, 

such  listing  incentivizes  both  listed  and  unlisted  organizations.  However,  the  impact  is  stronger  on  

organizations with more spam. The number of IP addresses is found to be negatively correlated with 

outgoing spam volume. The number of IP addresses measures the size of the AS. On the one hand, large  

ASes have more incentives to invest in Internet security because of economies of scale. On the other  

hand, large ASes have more exploitable opportunities for miscreants.  The result  indicates the former  

dominates the latter. A closer look at the social comparison process reveals that the more outgoing spam 

observed from the worst spammer, the less likely an organization will be to improve its own behavior.  

This finding again reflects that improving Internet security requires collective work of all organizations 

and that individual behavior can generate strong positive externalities on others. We can utilize the desire  

for  information  on  others’  behavior  and  use  of  the  information  for  self-evaluation  to  intervene  in  

individual organizations’ security decisions and solicit the desirable behavior.

Our present study has implications for information architecture design and public policy making.  

With the ubiquity of Internet, the things that people do online can be tracked, which provides us with an  

abundance of data. The question we currently face is not the lack of data but how to make use of the data  

available. Online users care about their popularity, reputation, and social status within the community. If 

we  can capture  users’  actions,  aggregate  and display the relevant  information,  and provide the right  

feedback as the right intervention at the right time, we can lead their behaviors in our intended direction.  

With respect to public policy, our present work is among the few empirical studies on Internet security 

using security vulnerabilities data. Policy makers have hesitated to use security information disclosure for  

a long time. Although a fierce argument has been observed surrounding disclosure, little attention has  

been paid to information display or presentation. We believe what is more important than disclosure is  

whether the information is easy for users to interpret and compare. In the present study, we used relative  

rankings to enhance the disclosure effect. For policy evaluation, more information presentation methods 

can  be  considered  and  compared  before  carrying  out  the  policy  extensively.  Field  experimentation 

32



provides an efficient and effective method to evaluate potential policies beforehand. The same approach 

applies to other security, social, or environmental problems such as energy conservation and pollution. In  

the case where data is not available, the legislation that requires mandatory reporting can be employed to 

collect data.

Our present article is only our first step in studying Internet security and relevant public policy issues 

from social psychology and economics perspectives. We are planning to further extend the present study  

in several dimensions. First, we experimented only with ranking information in our study to focus on 

relative  standing.  To  identify  the  exact  effect  of  using  ranking  information  versus  absolute  volume 

information, a new treatment group can be added by which organizations receive information only on 

absolute outbound spam volume with organizations listed alphabetically. With the established visibility of 

SpamRankings.net,  we  can  experiment  with  more  countries,  more  industries,  and  more  treatment  

conditions.  Second,  the  observation  of  reduction  in  outgoing  spam  may  or  may  not  reflect  the 

improvement in overall Internet security. If overall Internet security improves while spam decreases, it  

indicates that companies take the initiative to improve their overall infosec, affecting both vulnerability to 

spam and other threats such as phishing. This would mean that broad improvements in infosec can be 

achieved by presenting public information on certain security issues. It is also possible that in response to  

public information disclosure of outbound spam, organizations may take effort to address only outbound 

spam issue but will still ignore other security problems. If this happens, it means that companies instead 

need to be individually incentivized to make improvements on individual dimensions of security. As a  

result, we can encourage companies to make anti-spam improvements by releasing social information on 

spam.  However,  to  encourage  companies  to  prevent  phishing,  we  need  to  also  release  phishing  

information. With phishing data in addition to spam data, we can distinguish these two possibilities by 

exploring  their  correlations.  In  addition,  we  can  drill  down  outgoing  spam  to  botnets  or  snowshoe  

spammers to consider attackers’ reactions to information disclosure.  
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