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SUMMARY

Chapter 1 proposes multifractal analysis to measure inhomogeneity of regularity

of 1H-NMR spectrum using wavelet-based multifractal tools. The geometric sum-

maries of multifractal spectrum are informative summaries, and as such employed to

discriminate 1H-NMR spectra associated with different treatments. The novel sum-

maries are based on the descriptors, originally introduced by Shi et al. (2005). The

methodology is applied to evaluate the effect of sulfur amino acids. With only six

univariate summaries, two statistical models capture the effect of sulfur amino acids.

Chapter 2 provides essential materials for understanding engineering background

of a nano-particle fabrication process. In particular, certain physics of the engineering

process are described and process outcomes are quantified. Several noise factors

contributing to process uncertainties are identified. Preliminary analyses based on

data obtained from computer simulations of physical experiment show the potential

of further statistical modeling research opportunities.

Chapter 3 develops a two-part model for observations from nano-particle fabrica-

tion experiments. Since there are certain combinations of process variables resulting

to unproductive process outcomes, a logistic model is used to characterize such a

process behavior. For the cases with productive outcomes a normal regression serves

the second part of the model. Because the data are obtained from computer exper-

iments, random-effects are included in both logistics and normal regression models

to describe the potential spatial correlation among data. The likelihood function for

this two-part model is complicated and thus the maximum likelihood estimation is

intractable. This chapter researches approximation techniques based on Taylor series

x



extension to simplify the likelihood. An algorithm is developed to find estimates for

maximizing the approximated likelihood.

Chapter 4 presents a method to decide the sample size under multi-layer system.

The multi-layer is a series of layers, which become smaller and smaller. Our focus is

to decide the sample size in each layer. The sample size decision has several objec-

tives, and the most important purpose is the sample size should be enough to give a

right direction to the next layer. Specifically, the bottom layer, which is the smallest

neighborhood around the optimum, should meet the tolerance requirement. Other

objectives considered are budget limit and model improvement. Performing the hy-

pothesis test of whether the next layer includes the optimum gives the required sample

size. We demonstrate an illustrative example to evaluate the proposed methodology.

xi



CHAPTER I

MULTISCALE FRACTALITY WITH APPLICATION IN

SPECTRAL CLASSIFICATION

1.1 Introduction

Many areas, such as medicine and finance, use fractal and multifractal approaches

to analyze a variety of signals. The implicit occurrence of irregularities and certain

degree of self-similarity over a range of scales can characterize the signals. In our

research, we proposes multifractal analysis to measure inhomogeneity of regularity of

1H-NMR spectrum using wavelet-based multifractal tools.

In 1990, Goldberger et al. introduced the concept of fractal dynamics in biological

system [24]. Monofractal analysis has the same scaling properties throughout the

entire signal. Jung et al. [32] used the monofractal methodology to transform 1H-

NMR spectrum. However, the methodology cannot be applied in real life because

most signals generated in physiological condition are not monofractal.

We use the methodology in a health system to see the effect of sulfur amino acids.

Sulfur amino acids (SAA) are involved in important aspects of human health and

cellular function. Traditional methodology focuses only on specific biomakers, which

are chosen after a series of pre-processing procedure, while multifractal analysis does

not require the pre-processing procedure. Therefore, multifractal analysis is useful in

health system.

In Section 1.2, the basic background of wavelets and the Hurst exponent is ex-

plained. Section 1.3 describes six fractality measures which will characterize a spec-

trum and discriminate the SAA deficiency. Section 1.4 introduces the test to distin-

guish a mono-fractal and multi-fractal. Section 1.5 illustrates the data set that we

1



used in the research. The statistical analysis is summarized in Section 1.6. Section

1.7 contains concluding remarks and future research directions.

1.2 Background

1.2.1 Scaling process

British hydrologist Harold Edwin Hurst spent 62 years in Egypt and mostly worked

on design and construction of reservoirs along the Nile River. By inspecting historical

data on the Nile River flows, Hurst discovered phenomenon (now called Hurst effect).

Hurst was trying to find an optimal reservoir capacity R such that it can accept the

river flow in N units of time,X1, X2, . . . XN , and have a constant withdrawal of X̄ per

unit time. The optimal volume of the reservoir was given by the so called adjusted

range,

R = max
1≤k≤N

(X1 + · · ·+Xk − kX̄)− min
1≤k≤N

(X1 + · · ·+Xk − kX̄) (1)

Since the records for the waterflow rarely exceeded 100 years Hurst inspected

other geophysical data and in order to compare them, he standardized their adjusted

ranges R, with sample standard deviation

S =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̄)2 , (2)

and obtained dimensionless ratio R/S - rescaled and adjusted range.

On basis of more that 800 records, he found (Hurst, 1951) that quantity R/S

scales as NH , for ranging from 0.46 to 0.93, with mean 0.73 and standard deviation

of 0.09.

This result was is contrast with the fact that for independent normal random vari-

ables H is 1/2 in limit. Feller proved that the limit is 1/2 for independent identically

distributed random variables with finite second moment, this limit was 1/2. It was

2



believed that strong Markovian dependence was responsible for this deviation untill

Barnard (1956) proved that limit H = 1/2 holds for the Markovian dependence case.

It was the work of Mandelbrot (1975), Mandelbrot and Van Ness (1968), and

Mandelbrot and Wallis (1968) who associated the Hurst (or Joseph) phenomenon on

the presence of long-memory.
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Figure 1: (a) Nile yearly minimal level data; (b) its Wavelet log spectra

Figure 1 (a) gives n=512 consecutive yearly measurements from the famous Nile

River Data set for the years 62-1281 A.D. Panel (b) gives its wavelet spectra demon-

strating the scaling law.

1.2.2 Wavelet

Wavelet domains are appropriate for area of scaling. Thus, we give a brief introduction

to wavelet transformation. The discrete wavelet transform expresses a real signalX(t)

in terms of shifted and dilated versions of a wavelet (or mother) function ψ(t) and

shifted versions of a scaling (or father) function ϕ(t). For specific choices of the scaling

functions and wavelets, an orthonormal basis can be formed from the atoms

ψj,k(t) = 2j/2ψ(2jt− k)

ϕj,k(t) = 2j/2ϕ(2jt− k), j, k ∈ Z.

3



The signal X(t) can be thus represented by wavelets as

X(t) =
∑
k

cJ0,kϕJ0,k(t) +
∞∑

j=J0

∑
k

dj,kψj,k(t),

where dj,k =
∫
X(t)ψj,k(t)dt and cj,k =

∫
X(t)ϕj,k(t)dt. dj,k and cj,k are detail and

scaling coefficients, respect. Here, J0 indicates the coarsest scale or lowest resolu-

tion of analysis, and a larger j corresponds to higher resolutions (detailed wavelets

theories are explained in [68]). In practice, many signals are multi-dimensional. Ex-

amples include measurements in geophysics, medicine, astronomy, economics, and

so on. The wavelet transform is readily generalized to the multi-dimensional case,

and the generalization of wavelet to 2-D case are straightforward. The 2D wavelet

bases functions are constructed via translations and dilations of a tensor product of

univariate wavelets and scaling functions:

ϕ(t1, t2) = ϕ(t1)ϕ(t2)

ψh(t1, t2) = ϕ(t1)ψ(t2)

ψv(t1, t2) = ψ(t1)ϕ(t2) (3)

ψd(t1, t2) = ψ(t1)ψ(t2).

The symbols h, v, d in Equation (3) stand for horizontal, vertical and diagonal direc-

tions, respectively. Consider the wavelet atoms

ϕj,k(t) = 22jϕ(2jt1 − k1, 2
jt2 − k2)

ψi
j,k(t) = 22jψi(2jt1 − k1, 2

jt2 − k2),

for i = h, v, d and where t = (t1, t2) ∈ R2, and k = (k1, k2) ∈ Z2. Then, any function

X ∈ L2(R2) can be represented as

X(t) =
∑
k

cJ0kϕJ0,k(t) +
∑
j>J0

∑
k

∑
i

dij,kψ
i
j,k(t), (4)

where the wavelet coefficients are given by

dij,k = 22j
∫
X(t)ψi(2jt− k)dt. (5)

4



Figure 2: Irregularity defined by the Hurst exponent

1.2.3 Fractional Brownian motion (fBm)

We saw some examples of scaling in irregular and the importance of regular decay of

spectra in Fourier and wavelet domains.

The Hurst exponent is used as a measure of the irregularity of time series. The

value ranges from 0 to 1. The irregularity is separated by the mid point, H = 1/2.

When the value is between 0 and 1/2, the time series has a negative autocorrelation.

In this case, we say the series has “anti-persistent behavior”. This means that an

increase will tend to be followed by a decrease, or vice versa (irregular). When

the value is between 1/2 and 1, the time series has a positive correlation (regular).

Similarly, in this case, an increase is followed by an increase and a decrease is followed

by a decrease. When the Hurst exponent is close to 1/2, the time series is a random

walk (a Brownian time series). In a random walk, the future return values will go

either up or down with 50% probability, respectively. Therefore, it is hard to predict.

Figure 2 gives a good example to show that the irregularity differs by the Hurst

exponent.

5



Mandelbrot and Van Ness [41] proposed the fractional Brownian motion(fBm).

Now, it becomes one of the most important models in self-similar modeling. A random

process X(t), t > 0 is called self-similar if for any a > 0, there exists b > 0 such that

X(at)
d
= bX(t), where

d
= denotes the equality in distribution. Lamperti(1962) proved

that a random process X(t), t ≥ 0 which is nontrivial and stochastically continuous

at 0 has an unique hurst exponent H such that b = aH . Therefore, a fBm process

is indexed by the self-similarity parameter, H and a self-similar process. In the one-

dimensional case the fBm process, denoted by {BH(t), t ∈ R}, is characterized by the

following correlation function

RBH
(t, s) = E{BH(t)BH(s)} =

σ2
H

2

[
|t|2H + |s|2H − |t− s|2H

]
, (6)

where σ2
H = Γ(1 − 2H) · (cos(πH))/(πH) and 0 < H < 1. As can be seen from

Equation (6), the fBm is a non-stationary process (RBH
(t, s) is a function of |t− s|),

but it has stationary increments. Because of its non-stationarity, the spectrum does

not exist in the strict sense. From the correlation function Equation (6) and the

definition of a generalized power spectrum [51] we obtain the “power spectrum” of

BH(t) as

SBH
(ω) = |ω|−2H−1 . (7)

These definitions can be extended to any dimension. Unlike the 1-D case the

generalization of fBm to higher dimensions is not unique. A simple generalization

to a 2-D surface is the fractional Brownian field (fBf). The fBf is a Gaussian, zero

mean, random field BH(u), where u denotes the position in a selected domain, usually

[0, 1]× [0, 1]. Then, the autocorrelation function is

RBH
(u,v) = E [BH(u)BH(v)] =

σ2
H

2

(
∥u∥2H + ∥v∥2H + ∥u− v∥2H

)
, (8)

where 0 < H < 1, the variance σ2
H is

σ2
H =

2−(1+2H)Γ(1−H)

πHΓ(1 +H)
(9)
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and ∥·∥ is the usual Euclidean norm in R2. The increments of a fBf represent sta-

tionary, zero mean Gaussian random fields: the variance of such increments depends

only on the distance ∥h∥ so that E [BH(u+ h)−BH(u)]
2 = σ2

H∥h∥2H , where σ2
H

is given in Equation (9). As in the one-dimensional case, the power spectrum of a

fBf is obtained from the correlation function Equation (8) and the 2-D Generalized

Power Spectrum and can be defined as SBH
(ω) = ∥ω∥−2H−2. Hurst exponent is a

significance of monofractality and fBm are monofractal. Not all signals in nature are

monofractals. For example, turbulence signals are categorized as multifractals, even

though they have regular decay of spectra. Different tools are needed to assess the

multifractality. One of these tools is multifractral spectrum.

1.2.4 Wavelet-based Multifractal Spectrum

Definition of multifractal spectrum involves limiting processes and geometric dimen-

sions, and is calculationally involved. Wavelets provide an easy way to calculate an

approximate to multifractal spectrum. The wavelet-based calculation of multifractal

spectrum depends on the concepts of partition function and Legendre transform. The

partition function, T (q) is defined as

T (q) = lim
j→−∞

log2E|dj,k|q (10)

where dj,k is the wavelet coefficient at level j and location k, and q is the order of

moments. We emphasize that q is a real number within a certain range covering the

negative numbers as well. However, the interpretation of the negative moments is

still not clear.

Even though (10) is very informative, the singularity measure is not explicit. It

has been proposed in Gonçalvès et al (1998) that the local singularity strength could

be measured in terms wavelet coefficients as :

α(t) = lim
k2j→t

1

j
log2 |dj,k| (11)
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where dj,k is the normalized wavelet coefficient at scale j and location k. The local

singularity strength measure (11) converges to the local Hölder index the process

at time t. Small values of α(t) reflect the more irregular behavior at time t. Any

inhomogeneous process has a collection of local singularity strength measures and

their distribution f(α) forms the multifractal spectrum. A direct way to obtain this

spectrum is to use the counting technique,

f(α) = lim
ϵ→0

#{α(t) : α− ϵ < α(t) < α + ϵ, −∞ < t <∞}. (12)

Although it is feasible to estimate the multifractal spectrum using (11) and (12),

the method is not practicable due to the difficulty of approximating the limit as well

as the large computational complexity. A useful tool to make estimation efficient is

the Legendre transform. The Legendre transform of the partition function is defined

as

fL(α) = inf
q
{qα− T (q)}. (13)

It can be shown that fL(α) converges to the true multifractal spectrum using the

theory of large deviations (Ellis, 1984).

From the practical point of view, we need a good estimator of the partition func-

tion. If we rearrange (10), it becomes

E|dj,k|q ∼ 2jT (q) as j → −∞. (14)

On the other hand, it has been shown that the qth moment of the wavelet coefficients

of the power law process, Arneodo (1998), satisfies the following equation:

E|dj,k|q = Cq2
jqH (15)

where H is the so-called self-similarity exponent and Cq is a constant depending

only on q. Comparing (14) and (15), one can easily connect the partition estimation

with the self-similarity exponent estimation problem. It has been a standard practice

8



to use linear regression to identify the self-similarity exponent H since the values

E|dj,k|q could be easily obtained by moment-matching method making estimation of

the partition function T (q) easy. Formally speaking,

log2 Ŝj(q) = jT (q) + εj, (16)

where Ŝj(q) =
1
2j

∑N2−j

k=1 |dj,k|q is the empirical qth moment of the wavelet coefficients

(N is the length of the time series) and the error term εj is introduced from the

moment matching method when replacing the true moments with the empirical ones.

Simple ordinary least square (OLS) is the most convenient choice of estimating the

partition function.

Once the T (q) is estimated, the next step is to perform the Legendre transform.

Since ∂
∂q
(αq−T (q)) = α−T ′(q) and T ′′(q) < 0 (Gonçalvès et al 1998), the maximum

value of αq−T (q) is achieved at q = T ′(−1)(α). So performing the Legendre transform

is divided into two steps: First, the numerical derivative of T (q) is obtained using

the finite difference. Then, the value of Legendre spectrum at α = T̂ ′(q) is evaluated.

We point out that the Legendre transform is not able to estimate the multifractal

spectrum value at arbitrary singularity strength α. The set of the multifractal spec-

trum values is determined by set of q values. The more q values adopted, the finer

multifractal spectrum that obtained, i.e., the resolution of the spectrum is determined

by the “(order) sampling frequency” of the moments.

1.3 Geometric descriptors of multifractal spectra

Several geometric descriptors are introduced to summarize the multifractal spectra.

These descriptors have interpretation in terms of location of and definition from

monofractality. Traditionally, three geometric parts [25]: the vertical line, the maxi-

mum point and the right slope summarize the multifractal spectrum.

Theoretically, the multifractal spectrum of fBm (a representative of monofractal)

consists of three geometric parts: the vertical line, the maximum point and the right
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slope [25]. The maximum point corresponds to the Hurst exponent and the vertical

line and the right slope are thought to be inherent features, which distinguish fBm

from the multifractal process. However, it is rare to obtain such a perfect spectrum

in practice. Even for the well simulated fBm, due to error of estimation (most of

them are due to the partition function estimation and derivative calculation as shown

above), its spectrum may deviate from the theoretical form, as shown in Figure 3.

Even with the lack of precise estimation of the spectrum, the extent of deviation from

the vertical line could be still utilized in the discrimination between the monofractal

and multifractal processes. For example, two type processes are presented in the

multifractal spectra in Figure 3. One is the fBm and the other is the turbulence mea-

surement, which is widely believed to be a multifractal process. Comparing with the

turbulence measurement, the fBm is much closer to the vertical line and this close-

ness may be quantified by the left slope of the spectra. Another important difference

between these two spectra is the width spread of the spectra. It is obvious that the

width spread of the fBm is much smaller than that of the turbulence measurement

indicating the richness of singularity indices.

Despite the existence of the estimation error, the multifractal spectrum can be

approximately described by 3 canonical descriptors without loss of the discriminant

information, which are (1) Spectral Mode (Hurst exponent, H or SM), (2) left slope

(LS) or left tangent (LT ) and (3) width spread (Broadness, B) or right slope (LS) or

right tangent (RT ). A typical multifractal spectrum can be quantitatively described

as shown in Figure 4. Understanding the SM and LS (or LT ) is straightforward. SM

represents the apex of spectrum or most common Hölder regularity index α found

within the signal, and LS (or LT ) represents the slope of the distribution produced

by the collection of Hölder regularity index α with smaller values of the mode (SM).

However, broadness (B) is more intricate descriptor of the multifractal spectrum.

Broadness (B) is believed to be a more meaningful than right slope (RS) or right

10



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

α

f(
α)

Multifractal spectrum

Figure 3: Multifractal spectra for monofractal (dash line) and multifractal (solid
line) processes (The dotted line indicates the theoretical slope of the spectrum for the
monofractal process)

tangent (RT ) because it is a compound measure representing the overall nature of

the multifractal spectra, taking into account the overall variability among the Hölder

regularity index α. In addition, broadness (B) partially accounts for right slope (RS)

or right tangent (RT ) in calculation, as the resultant value of B is based on the

relative values of RS and LS. In this study, we choose the left slope (LS), Spectral

Mode (SM) and the broadness (B) as the spectral characteristics because we believe

that the width spread has more power to discriminate the multifractality.

The both slopes (or both tangents) can be obtained easily using the interpolation

technique, while it is not straightforward to define the broadness (B) automatically.

The difficulties are related to two aspects - (i) difficulty to locate the start and end

points of the width spread, and (ii) treatment of the discreteness of the spectrum. It is

easy to see that the former is conceptually difficult, while the latter is computationally

difficult. There are many ways to define the broadness (B). In this paper, we follows

the definition, defined by Shi et al. [62]. When α1 and α2 are two roots which satisfy

11



the equation f(α)+0.2 = 0 and α1 < α2, then broadness B is defined as B = α2−α1,

where f(α) is the spectrum function in terms of Hölder regularity indices α’s.

))(( qf

2.0

0

1 2 )(q

Figure 4: Illustration of geometric descriptors of multifractal spectra

This definition with two tangents and two slopes is also graphically presented in

Figure 4. In Figure 4, the horizontal axis represents the value of Hölder regularity

index α(q), and vertical axis represents values proportional to the relative frequency of

these indices, f(α(q)). The deviation from the monofractal could be fairly compared

according to this broadness measure since it posts a universal standard on the width

spread. It is worth to point out the threshold value 0.2 used in this definition could

be adjusted empirically in the practice analysis to insure that this measure is well

defined for all analyzed signals. The choice of threshold value is correlated back to

the choice of q and the inherent data characteristics because these are the factors that

affect the resolution of the spectrum.

As mentioned before, the discreteness may produce difficulties in the computation.

The problem is that it may be hard to find the exact roots of the equation f(α)+0.2 =

12



0 among the discrete values of α’s. To get around this, we first find two closest points

(αl
i, f(α

l
i)) and (αu

i , f(α
u
i )) for each i such that

f(αl
i) < −0.2 and f(αu

i ) > −0.2 i = 1, 2

and then the two solutions α1, α2 can be easily obtained by interpolation. Thus two

slopes LS, RS and two tangents LT, RT can be easily obtained by

LT = (f(αu
1)− f(αl

1))/(α
u
1 − αl

1) and RT = (f(αu
2)− f(αl

2))/(α
u
2 − αl

2)

LS = 0.2/(SM − α1) and RS = −0.2/(α2 − SM)

1.4 Test for distinguishing mono- and multi-fractal

In this section, we analyze the descriptors as potential statistics for distinguishing

monofractal and multifractal objects. We propose a test with the left tangent as an

informative index.

1.4.1 Parametric bootstrap test

Bootstrapping is a computer-based method for assigning measures of accuracy to sta-

tistical estimates with sampling from an approximating distribution. The advantage

of bootstrapping is that it is straightforward to simulate empirical null-distribution

of complex statistics such as percentile points, proportions, odds ratios, or correla-

tion coefficients. The bootstrap method may also be used for constructing hypothesis

tests as an alternative to inference based on parametric assumptions. In the case

in which exact distributions are unknown or analytic procedures are too complex to

obtain, even an approximation of the distribution, the bootstrap techniques could be

successful. In our case, the distribution of an index for monofractality of fixed size,

wavelet basis, and precision settings of a multifractal spectrum calculation over overly

complex.
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If a signal is monofractal, then the signal can be examined relatively easily com-

pared to a multifractal signal. Thus, multifractal analysis is unnecessary for a monofrac-

tal signal, and monofractal analysis is useless for a multifractal signal. Therefore, be-

fore the analysis, we need to decide whether the signal is monofractal or multifractal.

That is, the following hypothesis test is of interest.

Hypothesis Test

H0 : the signal is monofractal H1 : the signal is not monofractal

To illustrate the methodology, we compare a fractional brownian motion (fBm)

and a multifractional Brownian motion (mBm) with time varying Hurst exponent.

That is, the Hurst exponent formBm is a function H(t), where t is time. We consider

a mBmH(t) with H(t) given as, for T = 211,

H(t) =
0.6

T
t+ 0.2, t ∈ [0, T ].

Now we compare this mBmH(t) with a standard Brownian motion, fBm0.5. Figure 5

depicts both signals and their multifractal spectrums.
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Figure 5: (a) Simulated signals of fBm0.5 in red, mBm with straight line H(t) =
0.6t/T + 0.2 in blue; (b) MF spectrum for both signals

Figure 5(b) clearly shows that the multifractal spectrum for fBm0.5 is steeper than

that of mBm, especially the left side. This is obvious because the Hurst exponent
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is a constant number for fBm, while it is a changing variable for mBm. Therefore,

among six descriptors, left slope (LS), left tangent (LT), and broadness(B) is capable

of discriminating two spectrums.

Table 1: Characters of monofractal and multifractal
Monofractal Multifractal

Left Slope large small
Left Tangent large small
Broadness narrow wide

The left slope is correlated to the Hurst exponent. However, the Hurst exponent

could be unstable for a multifractal spectrum. Thus, left slope sometimes could be

un-estimable. Therefore, left tangent as a more stable descriptor is used for the test.

As seen in Table 1, multifractal spectrum have small left tangent, while multifractal

spectrum of the monofractal signal have large number. Thus, when a signal is given,

parametric bootstrap enables us to obtain the distribution of left tangent by simu-

lated bootstrap surrogates. With the distribution, a critical value decides whether a

signal is monofractal or not. The critical value can be 0.1 quantile, when we want

to have 0.1 level of significance. The generating fractional brownian motion with the

same H as given signals is performed by Wavelab, Matlab, developed by Buckheit

and Donoho [9]. The procedure for the test has steps as follows:

Step 1: Given a signal, Sobs, in interest.

Step 2: Calculate Ĥobs and L̂T obs for the signal.

Step 3: Generate B signals (fBm) which have hurst exponent H = Ĥobs (Parametric

bootstrapping with bootstrap number B).

Step 4: Estimate LT for B signals, i.e., L̂T 1, L̂T 2, · · · , L̂TB.

Step 5: Find the empirical distribution of LT from B simulations.

Step 6. Find the critical value with a pre-fixed level of significance, α.

Step 7. Reject H0 if L̂T obs is in the rejection region.
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1.5 Experimental data

This study was reviewed and approved by the Emory Investigational Review Board

and was performed in the Emory University Hospital General Clinical Research Center

(GCRC).

Group 1: 117 mg of SAA

A
A

p g

Group 2: 56 mg of SAA

S
A

Depletion Period Repletion Period

Day
0 1 2 3 4 5 6 7 8 9 10

Figure 6: Experiment design: data were collected through 2 phases; depletion and
repletion.

Motivated by the fact that a large number of biologic systems are functionally de-

pendent upon sulfur amino acids (SAA) nutrition, researchers at Clinical Biomarkers

Laboratory at Emory University started metabolomics research to identify metabolic

changes associated with SAA deficiency. This research is of great importance in nu-

tritional support because one of the SAA, cysteine, is routinely omitted due to its

instability in nutritional support formulas. The 1H-NMR spectroscopy was selected

because of the speed and simplicity in sample processing and the possibility to obtain

information on macronutrition that is quantitatively comparable over time.
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To determine whether the variation in the amount of SAA intake affects metabolic

processes, we conducted the study with two study groups (high and low dose of SAA

group) and with three phases as shown in Figure 6. The first phase is a three day

equilibrium period with meals prepared by the GCRC bionutrition unit. Following

the equilibration period, subjects were placed on the 0 mg.kg−1d−1 SAA diet for the

5-day depletion period and then the diet SAA for the 5-day repletion period while

remaining in the GCRC inpatient unit. The intake SAA amount is 56mg.kg−1d−1

SAA for high dose of SAA group (High group, 4 subjects) and 117 mg.kg−1d−1 SAA

for low dose of SAA group (Low group, 8 subjects.)

The scheme of SAA Insufficiency

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

08:3008:30

09:30

10:30

11:30

12:30

Depletion Repletion

12:30

14:30

16:30

Figure 7: Experimental data collection times and days

Metabolic changes were investigated due to SAA intake detectable via 1H-NMR

spectroscopy. Blood samples were drawn on each day after the 5 day equilibration

period at 08:30. On the first and last days of the depletion and repletion periods,

draws occurred 7 times after the morning meal at 08:30, 09:30, 10:30, 11:30, 12:30,

14:30, and 16:30. On these days, breakfast and lunch were combined into the morning

meal. On the other days, samples were drawn only one time a day after the morning
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meal at 8:30, and 3 meals and snack were given. Figure 7 depicts the data collection

time and day. Adequate hydration and vitamin, mineral and electrolyte requirements

were provided to all subjects to meet or exceed recommended allowances [49], and

body weights were determined daily and vital signs were obtained every 8 hours.

1.6 Statistical model analysis

1.6.1 Test for monofractality

After obtaining a data, we need to test for the monofractality. Data can generate

multiple spectrums. If at least one of them reject the hypothesis, then we can conclude

that the data have potential to be multifractal. For the test, I choose the signal of

patient 1 from Day 1 at 8:30 am.
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Figure 8: An example of showing (a) 1H-NMR spectra example; (b) MF spectrum.

Figure 8 shows an example of 1H-NMR spectra. The ppm varies from 0.1 to 7.5

ppm. The 1H-NMR spectra is transformed by the wavelet transformation with a

Daubechies wavelet function. The outcome of the transformation is a multifractal

spectra. Then, geometric summaries of the spectra are calculated in Figure 8 (b).The

hurst exponent for the signal is H = 0.6748. With bootstrap number B = 2, 000, we

can obtain the distribution of the left tangent. The distribution for the left slope is

depicted in Figure 9 (a). The level of significance is 0.05.
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Figure 9: The distribution of (a) the left tangent; (b) the broadness.

The critical value for the left tangent is 0.6868, and the estimated left tangent for

the given signal is L̂T obs = 0.6. Thus, the test rejects the null hypothesis and con-

cludes that the signal is not monofractal. In addition, Figure 9(b) is the distribution

of the broadness. The critical value (q0.95) is 0.7209 and the estimated broadness for

the signal is B̂obs = 1.0255. Therefore, the broadness confirms that the signal is not

monofractal. Therefore, multifractal analysis is necessary to analyze the given data.

1.6.2 Statistical models

Depending upon whether variation over day in the morning or hourly variation in each

day are of interest for time factor, two statistical models for each geometric feature in

form of an unbalanced 3-way ANOVA model are appropriate because blood samples

from each subject were drawn through depletion and either repletion of SAA intake.

The outputs y1lijk and y2lijk are the values of each geometric feature of multifractal

spectrum of 1H-NMR spectrum for each model,l = H,LS, · · · .

Model I. (Day Model) In this model, effect of day for each geometric feature is of

interest. Therefore, the statistical model for each feature l contains the day effect as

well as other effects.

y1lijkm = µ1l + α1l
i + β1l

j + γ1lk + ϵ1lm (17)
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where µ1l is the grand mean, α1l
i is the effect of depletion (i = 1) and repletion (i = 2),

β1l
j is the effect of jth day (j = 1, · · · , 5), γ1lk is the effect of group k (High group k = 1,

Low group k = 2), and ϵ1lm is assumed to be independent normal variable with mean

0 and unknown variance σ2
1l for eight geometric features

Model II. (Hour Model) Rather than effect of day as in Model I (Day Model),

the Model II (Hour Model) assesses the hourly variation as well as group effect and

depletion/repletion effect. Similarly to previous model, the corresponding statistical

model for each feature l can be expressed as

y2lijkm = µ2l + α2l
i + β2l

k + γ2lk + ϵ2lm (18)

where µ2l is grand mean, α2l
i is effect of depletion (i = 1) and repletion (i = 2), β2l

j

is the effect of jth hour slot (k = 1, · · · , 7),γ2lk is the effect of group k (High group

k = 1, Low group k = 2), and ϵ2lm are assumed to be independent normal variables

with mean 0 and unknown variance σ2
2l for each feature, k = 1, · · · , 8.

1.6.3 Model evaluation

Table 2: Descriptive statistics of geometric features of Model I (day model)

Repletion
Depletion Overall High Low

H mean 0.7516 0.7325 0.7014 0.7481
s.d 0.0057 0.0051 0.0078 0.0061

LS mean 0.3685 0.3667 0.3951 0.3524
s.d 0.0027 0.003 0.0052 0.0028

RS mean -0.4471 -0.4637 -0.4746 -0.4583
s.d 0.0133 0.0209 0.0526 0.0172

LT mean 0.6679 0.6595 0.7143 0.6321
s.d 0.0073 0.0071 0.0133 0.007

RT mean -0.7429 -0.7548 -0.7071 -0.7786
s.d 0.0124 0.0134 0.021 0.0167

B mean 1.0227 1.0221 0.9903 1.0381
s.d 0.0092 0.01 0.0176 0.0119
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Table 2 provides the descriptive statistics for each geometric feature obtained

from the multifractal analysis for each period and each group. 3-way ANOVA model

for each geometric features concludes the group effect is significant for all features

except B, because different amount of SAA was given to different group at repletion

period, while the time effect is not significant for all features. According to the SAA

intake effect, clearly the Group 1 (high dose) is discriminated with the depletion.

Compared to the Group 1, the results of Group 2 (low dose) are close to the results

in depletion. This is because the blood samples considered in this model were drawn

at 8:30 a.m. on each day and only snack was provided at 21:30, which means the

effect of SAA disappeared at every morning. And, there was no significant variation

over day in the morning for all features. Thus, Table 2 implies that the amount

of SAA significantly affect 1H-NMR spectra which were evaluated by multifractal

analysis, and that 1H-NMR spectra of Group 1 has significantly more irregular pattern

with larger variability when blood samples were drawn every in the morning over

depletion/repletion period.

Table 3: Descriptive statistics of geometric features of Model II (hour model)
Repletion

Depletion Overall High Low

H mean 0.7183 0.7228 0.6982 0.7351
s.d 0.0084 0.0093 0.0124 0.0122

LS mean 0.3621 0.371 0.3933 0.3598
s.d 0.0038 0.0054 0.0106 0.0055

RS mean -0.536 -0.4737 -0.4437 -0.4886
s.d 0.0936 0.0233 0.0215 0.0331

LT mean 0.63 0.66 0.72 0.63
s.d 0.0093 0.0119 0.0225 0.0114

RT mean -0.76 -0.76 -0.72 -0.78
s.d 0.0241 0.0206 0.0268 0.0275

B mean 1.0211 1.0053 0.9837 1.0162
s.d 0.0165 0.0192 0.0312 0.0243

Table 3 provides the descriptive statistics of three geometric features of Model II.

Similarly to Day Model, the mean values of H and B of Low group is larger than
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those of High group, while the mean values of others of Low group are smaller. Only

one different feature, which shows a different trend, is RS. Contrary to Day Model,

all three effects for H feature are significant (p−values are <0.0001 for Group, 0.0205

for Depletion/Repletion, and 0.0268 for Hourly variation, respectively). That is, 1H-

NMR spectra of Low group has significantly more regular pattern, the difference

between depletion and repletion for Hurst exponent is also significant, and hourly

variation for Hurst exponent is significant as well. And all group effects for other fea-

tures are also significant. Thus, group effect is important for all three features, while

the difference between depletion and repletion and hourly variation are significant for

Hurst exponent.

The aim of the research is to see the effect of SAA. We separate two phases,

depletion and repletion, to give the difference of SAA. The results given in Tables

2, 3 conclude that the difference between depletion and repletion is larger in the

High group than in Low group, which is the obvious result because the 117mg SAA

intake should affect more than the 56mg SAA intake. The difference between the

depletion and repletion in low group is so small that it can be considered as “no

difference”. Thus, we conclude that 56mg SAA intake does not affect the metabolic

process. Because the intake SAA amount is not enough to give the difference between

depletion and repletion, two groups of people, unhealthy ICU patients and healthy

normal individuals, were introduced to compare.

Figure 10 depicts the Hurst exponent of all four groups. x and y-axis represents

the Hurst exponent in (a) and (b), respectively. Figure 10 clearly show that the

Hurst exponent of ICU people is much higher than the one of normal people. Also,

no difference is detected between SAA-intakers and normal people. However, if you

compare the blue circle (depletion) and red x (repletion) in (a), you can see repletion

is more stable than depletion. Numerically, the variance of repletion is 0.0049 and

the variance of depletion is 0.0091, which is the twice bigger than repletion variance.
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Figure 10: (a) Histograms (b) Boxplots of the Hurst exponents for depletion, reple-
tion, ICU and normal people: blue circle is depletion; red x is repletion; green square
is ICU; pink * is normal people

(b) shows the comparison in Box plots, which enable easier comparison of Hurst

exponents. In (b), SAA+ represents the high group and SAA- represents the low

group. ICU has the longest length of the Box plot, while SAA+ has the longest

range.

1.7 Discussion

This research determines whether variation in sulfur amino acides (SAA) intake af-

fects metabolic process by using the multifractal analysis. The multifractal analysis

methodology uses functional data so that we can focus on the interplay of several

biomarkers, while the traditional approaches focus on particular biomarkers. More-

over, this research improves the previous monofractal methodology which was studied

by Jung et al [32]. The improvement lets the methodology applies to the real life ex-

ample because most signals found in natureare multifractal, not monofractal.

For this study, two groups intake the different amount of SAA during equilibra-

tion and repletion period. Based upon three geometric features, H, LS, and B, of

multifractal spectrum, two statistical models for each feature were employed to assess
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underlying effects such as the group, depletion/repletion, and time (day or hour) ef-

fects. In Model I, the group effect is very significant for each feature, while variation

over day and depletion/repletion effect are not significant for all three features at

all. However, in Model II the group effect is significant for all features as well, and

depletion/repletion effect and hourly variation in each day are significant only for H.

This implies that the amount of SAA is important, and that SAA intake significantly

affect hourly variation of metabolic process and the difference between depletion and

repletion in each day and SAA effect disappears in the morning. Moreover, 1H-NMR

spectra of the Low group have significantly more regular patterns with more variabil-

ity than those of High Group for both statistical models, which could be the evidence

that high dose is recommended because irregularity of spectra could be considered

as the sign of good health. But the relationship between the regularity of 1H-NMR

spectra and metabolic process would be important but left for the further research

topic.
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CHAPTER II

NANOPARTICLE SYNTHESIS IN A SUPERCRITICAL

CO2 PROCESS

2.1 Introduction

The cost-effective high-throughput generation of monodisperse nanoparticles of con-

trolled size remains a challenge in nanomaterials processing. Due to the stochastic

nature of nanoparticle nucleation, there will always be a distribution in nanoparticle

size. Moreover the process is highly sensitive to process conditions such as temper-

ature and pressure, which are useful for tailoring the size distribution but can also

create robustness problems if these conditions and others are not tightly controlled.

However, there is a significant need for nanoparticles of controlled size in a variety of

applications including catalysis [26], medicine [4], and photonics [10].

In our research, we focus on energy applications in which transition metals are used

as supported catalysts. However, the detailed chemical mechanisms in many catalysis

processes are unknown due to the difficulty of measurements. Part of the uncertainty

is due to the difficulty of synthesizing supported nanoparticle catalysts with well

controlled size and structure. In particular, the size distribution of a nanoparticle

is difficult to control, even though a monodisperse distribution is desirable for un-

derstanding the catalysis reactions. Extensive research (experimental and modeling)

has been performed to understand the relationship between catalyst structure and

the resulting catalytic reactions, with detailed studies on the colloidal synthesis of

nanoparticles [13], [64]. However, there is still a significant need to understand how

to produce controlled size distributions of supported nanoparticles in catalysts [59].

One of the reasons is that there are so many possible settings and choices for the
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process, and fundamental yet accurate models of these processes are still lacking. As

a result, the development of synthesis methods for these new catalysts is largely em-

pirical, leaving the vast process space largely unexplored. The design of the temper-

ature, pressure, concentrations of multiple species, choice of support, and its surface

treatment is needed in order to optimize the process for a desired nanoparticle-based

catalyst.

This chapter provides background about the supercritical CO2 deposition of plat-

inum nanoparticles. Computer experiments are substituted for real physical exper-

iments because the physical experimentation is time consuming and expensive. In

Section 2.2, chemical reactions in the nanoparticle synthesis are explained so that we

can understand what input factors are included in the computer simulator, and what

they are doing in the model, and why. In Section 2.3, we discuss the factors which

give uncertainty. After running an experiment, several measures decide the perfor-

mance of the experiment. In our research, four performance measure are considered

and explained in Section 2.4. Section 2.5 shows preliminary computer experiment

results. We finally conclude this chapter with some remarks in Section 2.6.

2.2 Mechanistic model

The nanoparticle synthesis consists of two sequential stages: The first stage is the

adsorption stage, and the second stage is the thermal reduction stage. The reac-

tions which happen in each stage are described later in this section. The synthesis

uses two chemicals: a platinum precursor and a carbon nanotube (CNT) support.

Experimenters can control the amounts of the chemicals. Moreover, experimental

temperature, pressure, adsorption time, and growth time are controllable as well. In

statistical terms, the process has six control factors. In addition, many uncontrollable

factors exist in real experiment. Among many, we consider four, which are the most
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intuitively important uncontrollable factors in our emulator: temperature error, pres-

sure error, the impurity of a precursor, and the functionalization of the CNT. Figure

11 depicts the overall chemical reaction steps and factors. Because experimenters
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Figure 11: Reactions in a nanoparticle synthesis in a supercritical CO2 process

control the amount of platinum, pressure, and temperature, some platinum is not

soluble in the CO2 under certain experimental conditions. In a computer experiment,

we artificially have to check whether the input amount of platinum is all soluble or

not. This checking step is called “Solubility Check” in Figure 11 and will be studied

more in Chapter 3.
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2.2.1 Adsorption reaction

Two chemical reactions in equations (19) and (20) formulate the adsorption reaction.

P + α
k1−→ Pα (19)

Pα
k2−→ P + α (20)

P represents a precursor molecule, which is the organometallic platinum precursor

dimethyl (1,5-cyclooctadiene) platinum (II) (Pt(COD)Me2) in this study. α repre-

sents the concentration of an active site on a CNT. k1 is the precursor adsorption rate

constant and k2 is the precursor desorption rate constant. Equation (19) represents

the adsorption of the precursor onto the CNT, and Equation (20) is the backward

reaction for the adsorption, that is, the desorption of a precursor. Reactions (19) and

(20) imply that Pα and P + α are interacting with the constant rates k1 and k2.

The adsorption time, the initial concentrations in the system, and the rate con-

stant k2 are pre-fixed (Initial concentrations of precursor, CNT, active sites on the

CNT are C0
P , C

0
CNT , C

0
α, respectively). Only the adsorption rate constant k1 depends

on temperature.

k1 ∝ exp{−Ea/RT}. (21)

T represents temperature, Ea is an active energy, and R is a gas constant. Equation

(21) represents the effect of temperature in the adsorption process of the precursor

in the CNT. In general, this dependency can be written in a form of a Arrhenius

expression. Therefore, k1 is changing by temperature, while k2 is a fixed number,

3× 10−4. Now, the following two equations allow us to calculate the concentration of

a precursor and an active site.

dCP

dt
= −k1CPCα + k2CPα (22)

dCα

dt
= −k1CPCα + k2CPα , (23)
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The concentration of precursor absorbed on the CNT is CPα and is the change from

C0
α to Cα, CPα = C0

α−Cα. As the time t changes, the concentration of a precursor CP

changes. Both equations (19) and (20) include precursor. In Equation (19), precursor

is consumed and is produced in Equation (20). Therefore, the concentration is reduced

by the rate constant k1 and increased by the rate constant k2. So, two terms −k1CPCα

and +k2CPα comprise the differential equation (22). Because the precursor and the

active site are consumed and produced in the same reactions with the same rate

constants, the amount change in P is the same as that for α, i.e., Equation (23)

equals to Equation (22).

2.2.2 Thermal reduction reaction

Once the precursor is absorbed on the active surface,the pressure is released, the

vessel is heated up, and the following thermal reduction reactions happen.

Pα
k3−→ L+ Pt1 (24)

Pt1 + Pt1
k4−→ Pt2 (25)

Pt1 + Ptn
k5−→ Ptn+1, (26)

where k3 is the reduction rate constant, k4 is the nucleation rate constant, k5 is the

growth rate constant. Pα is decomposed into two components; the organic ligand L

and the elemental platinum Pt1, which is an isolated platinum atom on the CNT

surface. The ligand L causes the precursor to be soluble in the CO2. However,

we need pure platinum nanoparticles. The precursor can be separated by heat; thus,

Equation (24) explains the separation of the precursor. After degrading the precursor,

nucleating Pt1 and Pt1 with rate k4 produces a platinum cluster with two atoms, Pt2.

This reaction is simplified in Equation (25). Reacting platinum with n atoms of Pt

increases number of atoms by one. The growth rate k5 is assumed to be constant
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same for all n. Ptn is a nanoparticle with n platinum atoms. The concentration of

Pti can be derived by the following equations.

dCPα

dt
= −k3CPα (27)

dCPti

dt
= k5CPt1(CPti−1

− CPti) i = 3, · · · , n− 1 (28)

dCPt2

dt
= k4C

2
Pt1

− k5CPt1CPt2 ,
dCPtn

dt
= k5CPt1CPtn−1

dCPt1

dt
= k3Cα − 2k4C

2
Pt1

− k5CPt1

n−1∑
i=2

CPti (29)

The initial concentration of the intermediate Pα is always consumed with the

rate constant k3, not generated. Thus, we can get Equation (27) which comes from

the reaction in Equation (24). The nucleation of a nanoparticle from two individual

platinum atoms occurs with the rate constant k4. The incorporation of additional

platinum atoms results in growth of the platinum nanoparticles. Equations (28) and

vv(29) are derived from equations (24), and (25),(26). The positive term means

the generation of the chemical, and the negative term means the consumption of

the chemical. The reactions are active until we obtain all nanoparticles having n

atoms. After finishing the reactions, the final result of an experiment is a transmission

electron microscopy (TEM) image. The following is one of our experimental results.

Figure 12 is a TEM image of platinum nanoparticles deposited on a CNT in

a sc-CO2 process. The dark circles in the figure are the final nanoparticles. The

experimenter should manually see the image and count and measure the amount and

the size. The typical nanoparticle size is between 5 to 10 nm with a visible distribution

of sizes.

2.3 Noise factors

The most difficult part of simulating the physical experiment is uncertainty. Many

unknown and uncontrollable factors cause uncertainty. Some factors are easier to
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Figure 12: Transmission electron microscopy image from a sc-CO2 process for Pt
nanoparticles on carbon nanotubes (performed by Dr. Galit Levitin at Georgia Tech)

estimate than others. Our research includes the most basic four noise factors: tem-

perature error, pressure error, impurity, functionalized CNT. Other possible noise

factors are explained in Appendix A.

1. Temperature error

During the thermal reduction reaction (24), the vessel is heated in an oven for de-

grading. We use a MDSi8 series thermometer for the oven and the manufacturer

states that the thermometer has an accuracy of ±0.5 K [1]. For example, even

though we set the oven temperature as 300 K, the actual oven temperature varies

from 299.5 to 300.5 K. To include temperature noise, “Temperature” is replaced by

“Temperature setting + Noise”. We assume that “Noise” follows a normal distri-

bution with mean zero and variance 1.22 to obtain 90% of errors are in π 2 K.

2. Pressure error

Similar to temperature, we cannot control pressure perfectly. Therefore, the pressure

value in an experiment is a combination of the pressure setting (the pressure we want

to set) and the pressure noise, i.e., “Pressure = Pressure Setting +Noise”, where
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“Noise” follows a normal distribution with mean zero and variance 0.12 to obtain

90% of errors are in π 0.172 MPa.

3. Impurity

Based on the molecular weight of the precursor, the amount of platinum should be

49.6%, but the specifications state 48% minimum [3]. The calculation based on the

molecular weight of platinum, which is explained in Appendix C, says the impurity is

at most 3.22% and is obviously nonnegative. Because we know a precursor includes

the impurity, we have to exclude the impurity weight in the model. For example,

x mg precursor is included in a certain simulation. Obviously, 0 – 3.22 % impurity

is included in x mg, but we do not know the exact percentile. Thus, we can choose

a uniform random number, y which is between 0 and 3.22 and consider the chosen

number as impurity percentile. Then, the actual precursor we can use during an

experiment is x × (1 − y/100). Therefore, from now on, the initial concentration of

precursor is x× (1− y/100) instead of x.

4. Functionalized Carbon Nanotube (FunCNT)

Performing a reflux in sulfuric/nitric acid to functionalize the surfaces of nanotubes

results a large concentration of carboxyl (-COOH) groups on the nanotube surface.

After functionalization, these carboxylated nanotubes have 2 – 7 wt% COOH by

titration. This changes the number of surface sites α on the carbon nanotubes.

Therefore, this value changes the initial concentration of α. When the initial concen-

tration of α is x, the actual active site concentration is x × FunCNT . “FunCNT”

follows a normal distribution with mean = 4.5, and 99% varying between 2 and 7 %.

Obviously FunCNT cannot have a negative value.
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2.4 Performance measure

The output of an experiment is a distribution of final nanoparticles. The distribution

gives two performance measure: the average size of the final nanoparticles, and the

standard deviation of the distribution of sizes. In addition, we can calculate the yield

of the precursor and the loading of the Pt on the CNT. Therefore, four performance

measures are used to evaluate an experiment.

1. Average final nanoparticle size

Reactions generate nanoparticles which have different sizes. Our goal is to obtain the

target size nanoparticle. The mean of the histogram will be compared to the target

size. The following equation calculates the mean of the histogram.

m = average size =

n∑
i=2

i · Ci

n∑
i=2

Ci

, (30)

where Ci is the concentration of precursor when the number of atoms is i, and n is

the maximum number of atoms in the simulation. The n is a pre-fixed number set

to enable practical computations. Equation (30) is based on the number of atoms,

but we can convert the atom number to a nanometer scale diameter. Appendix B

explains the conversion.

2. Within-batch Variance

Within-batch variance represents how the final nanoparticle is spread out from the

mean at the end of each experiment. Because we compare the target size to the mean

which is explained above, we need to consider the variance of the histogram. The

variance is calculated for each realization, and we use the equation proposed in [69].

V ariance =

n∑
i=2

(Ci · (i−m)2)

(n− 1) ·
n∑

i=2

Ci

,
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where m is the calculated average. To get more confidence of the mean, the smaller

variance is the better.

3. Yield

Yield represents how much of the pure precursor was deposited on the CNT surface.

It can be expresed as the ratio of absorbed Pt(COD)Me2 to initial Pt(COD)Me2.

Y ield =
final mass of final nanoparticle

initial mass of platinum
=

∑n
i=1 i · Ci

CP

.

Both Ci and CP are in mol/L. Because we do not want to waste the precursor, a

larger yield is better.

4. Load

Loading is how much the weight of the CNT increases due to the platinum on the

surface, relative to the initial amount of CNT in the system. The details of the

calculation is explained in Appendix D.

Load =
mwPT

∑n
i=1 i Ci

mwPT

∑n
i=1 i Ci + massCNT

.

Same reason with yield, the larger load is the better.

2.5 Preliminary computer experiments

After running a simulation, the final nanoparticles have the distribution which has the

form of a log-normal distribution. Figure 13 is one example of the distribution. As

you see in Figure 13, no nanoparticles are generated at sizes larger than 1200 atoms.

Thus, we need to set large enough number n not to miss possible nanoparticles of

large size.

The histogram gives two performance measures: the average size of final nanopar-

ticles and the standard deviation of final nanoparticles. The average size of final
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Figure 13: Final nanoparticle size distribution

nanoparticles is roughly in the middle of the histogram. Because the graph is right-

skewed, the average is slightly left value of the mode. In Figure 13, we can guess the

average size is around 450 atoms. The standard deviation is correlated to the width

of the histogram. If the histogram is broadly spread, then the variance is large. If

the histogram is narrowly spread, then the variance is small.
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Figure 14: Precursor concentration change for adsorption step

Figure 14 shows the change of precursor concentration as time goes. The x-axis

of the figure is adsorption time, and the y-axis is the precursor concentration. Thus,

the graph gives the information that the precursor is exponentially reduced as time

goes on. The figure gives the additional two performance measures: yield, and load.

From the above graph, we can calculate the absorbed precursor amount. The left-

most point in the graph is the initial amount of the precursor. The right-most point

is the final amount of the precursor. Thus, the difference is the amount of absorbed
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precursor. With the value, we can calculate the yield and the load.

Figures 13 and 14 are the results of a single experiment. The following results are

based on a two-level full factorial design. Each of the ten factors (six control factors

and four noise factors) has two levels, thus the total number of possible combinations

is 210 = 1024.

Table 4: Variable setting for the two level full factorial design
low high Unit

PreLoad 150 170 [mg]
CNTLoad 6.9 12.5 [mg]
Temperature 330 354 [K]
Pressure 18 30 [MPa]
Adsorp. Time 1.5 4.5 [Hr]
Growth Time 1.5 4.5 [Hr]
FunCNT 3.8 5.2 [%]
Temp. Noise -1.3 1.3 [K]
Press. Noise -0.11 0.11 [MPa]
Impurity 0.0064 0.024 [%]

Table 4 gives the settings of control and noise variables. Expert’s knowledge is

used to decide the low and high levels of each factors. After running 1024 simulations,

four outcomes are produced in each simulation. The simulation results are depicted in

Figure 15, which contains histograms of four measures. Clockwise from top left: final

nanoparticle size, standard deviation, yield, and load. All performance measure are

standardized. Even after standardizing, still histograms are left skewed. Therefore,

the results show that neither a regular design nor a model can explain the synthesis,

so further research should be required.

2.6 Discussion

This chapter presents the details of nanoparticle synthesis, including preliminary

experimental results. After running an experiment, we obtain one histogram of final

nanoparticles. We can also plot a precursor concentration change after finishing the

adsorption stage. From the two figures, we compare four performance measures: the
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Figure 15: Four performance measure histograms for the two-level full factorial design

average of final nanoparticles, the standard deviations of final nanoparticles, yield,

and load. The preliminary results, derived from two level full factorial design, show

that the regular design is not suitable for the nanoparticle synthesis.

Currently, we use TEM images to find the final nanoparticle size distribution.

From a statistical point of view, we need to consider the error, which comes from

manual counting and measuring. Therefore, the model and design should consider

the measurement error.
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CHAPTER III

THE CONSTRAINED RANDOM EFFECT MODELS FOR

NANOPARTICLE SYNTHESIS

3.1 Introduction

Real physical experiments have many constraints such as time and cost. Among the

many constraints, some constraints are estimable and some are not. Because the

solubility constraint has well-known equation and obviously affect the experimental

results, it is used in this study. The solubility constraint represents the constraint

of the precursor amount. Without the constraint, any amount of precursor can be

used under any temperature and pressure. However, the equation says that the

maximum soluble amount of the precursor depends on temperature and pressure. If

the precursor amount does not exceed the maximum soluble amount, then all of the

platinum precursor can be solubilized in the fluid phase; otherwise, the experimental

setting is not appropriate for running an experiment. The solubility of the precursor

in sc-CO2 has been measured and then modeled using the Chrastil model, proposed

in 1982 [14].

ln(S) = kln(ρ(T, P )) +
a

T + b
, (31)

where S is the maximum soluble amount of a precursor [g/L], T the temperature [K],

P the pressure [MPa], and ρ the density of the sc-CO2[g/L]. k, a, b are the adjust-

ment parameters. Equation (31) provides information about the dependency of the

solubility of a precursor on the temperature and the pressure. That is, a combination

of both the temperature and the pressure determines the solubility of a precursor.

Before starting an experiment, we want to check whether an input combination

of temperature and pressure meets the solubility constraint or not. We examine
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Figure 16: Nonlinear solubility constraint

over 5,000 combinations of temperature and pressure, the results of which are shown

in Figure 16. Clearly, the regions are separated by a nonlinear constraint. In the

figure, green dots (upper left part) represent the soluble region. That is, a precursor

can be soluble under the combination of temperature and pressure. In contrast, red

dots (lower right part) represent the insoluble region. If the input combinations of

temperature and pressure are in the insoluble region, the amount of precursor exceeds

the maximum soluble amount. Therefore, the experiment does not produce sensible

outcomes. This research develops a regression model to model data in the soluble

and insoluble regions.

Firstly, a logistic model is used to characterize the constraint. For the cases with

productive outcomes a normal regression serves the second part of the model. Be-

cause the data are obtained from computer experiments, random-effects are included

in both logistics and normal regression models to describe the potential spatial cor-

relation among data. The likelihood function for this two-part model is complicated
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and thus the maximum likelihood estimation is intractable. This research investigates

approximation techniques based on Taylor series extension to simplify the likelihood.

An algorithm is developed to find estimates for maximizing the approximated likeli-

hood.

The chapter is organized as follows. In Section 3.2, we propose two models to

explain the process. The likelihood functions of the models are approximated in

Section 3.3. Based on the likelihood functions which are found in the previous section,

we found the estimators of unknown parameters and its asymptotic distribution in

Sections 3.5 and 3.6, respectively. All estimates are in Section 3.7, and the chapter

concludes with a summary in Section 3.8.

3.1.1 Literature review

The generalization of computer experiments brought a lot of research pioneered by

Sack [57, 58]. In these literatures, statistical methods in computer experiments

are comprehensively reviewed for the first time. The statistical modeling with the

computer-simulated data requires the uncertainty analysis. Kennedy and O’Hagan

[34] introduced the Bayesian calibration technique which can handle the uncertainty.

In 2011, Kim [35] develop a new methodology under a two-part model , but he focused

on optimal designs to tackle the uncertainty, not the statistical modeling.

The Chrastil equation derived by Chrastil [14] motivates us to model a semi-

continuous data separately. Olsen and Schafer proposed a two-part model, treating

the outcome as continuous but adding a special modeling feature to take into account

the strong floor effect [47]. However, authors in the literature did not consider the

uncertainty coming from the computer simulation.

Our problem formulation incorporates the modeling of semi-comtinuous data and

the uncertainty from computer experiment. Especially, our proposed model includes

two different forms of uncertainty, within- and between-batch variation. In addition,

40



distributions of model parameters’ estimates are derived.

3.2 Notations and models

Let Y be the response of the process. Without considering the solubility constraint,

the process model is following:

Y(x) = f(X,β) + ε(x) (32)

where X represents the input variables, β represents the unknown coefficient param-

eters, and ε is a measurement error. When Y contains many unproductive outcomes,

the estimation of f based on Y is not accurate. Therefore, we will discriminate the

zero values from others.

Let Yij denote a semi-continuous response and Xi a combination of explanatory

variables for i = 1, · · · ,m. The subscript i is the index of a batch, the subscript j

is the index of a particle in a batch, and m is the number of batches. The latter

indicates that simulations are done by m different combinations of control factors.

The simulation result, Yij, can have 0 or not. “Yij = 0” implies that the ith experi-

ment is not successful, which suggest that the input values do not meet the solubility

constraint. If the experiment is successful, there is a continuous outcome value rep-

resenting process quality like the nano-particle sizes. From the value Yij, we will

propose two variables, Ui and Vij. Both Ui and Vij come from Yij. Ui is the indicator

of the soluble region. Therefore, Ui is zero when the input values do not meet the

solubility constraint, and Ui is one when the input values satisfy the constraint. Vij

is transformed Yij. The transformation is done by a function g, which is a monotone

increasing function that makes Vij approximately Gaussian. Therefore, the value Vij

exists only for the case Ui = 1.

Ui =


1, if Yij ̸= 0

0, if Yij = 0

Vij =


g(Yij), if Yij ̸= 0

irrelevant, if Yij = 0

.
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Ui follows a Bernoulli distribution and Vij a Normal distribution.

3.2.1 Logistic regression

A logistic regression predicts the probability of an occurrence of an event. Because

Ui follows a Bernoulli distribution, a logistic model can explain the trend of Ui. In

this model, the response is a function of πi which is πi = P (Ui = 1). Xi,η is the input

data used in the logistic model.

ηi = Xi,ηβ +Di, (33)

where ηi = log[πi/(1− πi)], β is a set of coefficients, and δi is the random effect in the

logistic model. A random effect Di is used in the logistic regression for capturing the

possible spatial dependency between ηi and ηj (i ̸= j) at various process runs. The

literature in computer experiments assumes that the data are spatially dependent

[57]. The model includes the following structure of covariance between Di and Dk at

two different design points, Xi,η,Xk,η.

Cov(Di, Dk) = σ2
DR(Xi,η −Xk,η).

Note that a common variance σ2
D is assumed for all Di’s, and R(·) is a distance

function. The D is a vector of Di, D = [D1, D2, · · · , Dm]
T , where the notation T

represents the vector (or matrix) transpose. Assume D follows a normal distribution

with mean zero and covariance matrix, ΣD.

fD(δ) ∝ |ΣD|−1/2exp{−δTΣ−1
D δ/2} (34)

Note that the distribution of Ui is Bernoulli given the condition of the random effect

Di. See Section 3.4 for the way to estimate ΣD.

3.2.2 Normal regression function

The transformed normal output Vij follows a normal regression function. Equation

(35) is valid only for the soluble region, Ui = 1. If the data come from the soluble
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region, we can fit the data with the response.

Vij = Xi,V γ + Ti + Eij. (35)

New subscript j represents an each particle size. From each batch of (i = 1, 2, · · · ,m)

reaction, n different particle sizes are generated. Thus, j = 1, 2, · · · , n represents that

there are n different particle sizes. Each nanoparticle have the within batch variation

Eij. Suppose the total number of nanoparticle sizes does not change by batches. Since

there are n nanoparticle sizes, similar to modeling repeated measurements taken from

the same subject in the statistical literature, a random effect Ti is used to model the

possible dependency between batches. The model has three assumptions regarding

the random effects. First, the within-batch variation is independent each other. That

is, Eij and Eil are independent when j ̸= l. Thus, the off-diagonal elements in ΣEi
are

zero, Cov(Eij, Eil) = 0 when j ̸= l. Second, between batch variation and within batch

variation are independent, i.e., Ti and Eij are independent. Lastly, the between batch

variation have spatial Kriging correlation. That is, Cov(Ti, Tj) = σ2
TR(Xi,V −Xi,V ),

where R(·) is a distance function and σ2
T is a common variance for all i, i = 1, 2, · · · ,m.

The distributions of between and within batch variations are estimated by Kriging

methodology as described in Section 3.4.

Let T be a vector of Ti, i.e., T = [T1, T2, · · · , Tm]T , and Ei be a vector of Eij,

i.e., Ei = [Ei1, Ei2, · · · , Eim]
T . Let covariance matrices of T and Ei be ΣT , ΣEi

.

That is, T and Ei follow multivariate normal distributions with both zero means and

covariance matrices ΣT , ΣEi
, respectively. The distribution functions of T and Ei are

fT (τ ) ∝ |ΣT |−1/2exp{−τ TΣ−1
T τ/2}, (36)

fEi
(εi) ∝ |ΣEi

|−1/2exp{−εTi Σ
−1
Ei
εi/2}. (37)

Equations (33) and (35) contain Xi,η and Xi,V . Both matrices X imply the input

data. However, Xi,η and Xi,V are different in two ways. First, their coverage regions

are different. Xi,η covers all regions while Xi,V covers only feasible regions (Ui = 1).
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For example, in Figure 16, Xi,η covers 280 to 420 K for temperature, but Xi,V covers

only 318 to 420 K. Second, their dimensions are different. Since η is based on the

constraint, Xi,η also is related to the constraint. If q out of p (p ≤ q) factors are

related to the constraint, the dimension of Xi,η = 1 × q. Obviously, the associated

coefficient β has the dimension of q×1. For example, if the solubility constraint model

contains temperature and pressure, Xi,η is a matrix with the dimension 1×2 when the

number of columns (2) comes from the number of related parameters (temperature

and pressure). However, Xi,V is related to overall process. The dimension of Xi,V

is 1 × p when p is the number of all control variables. Additionally, γ has the

dimension p × 1. For example, the process introduced in Chapter 2 includes six

control parameters (temperature, pressure, platinum, carbon nanotube, adsorptin

time, and growh time). Then the dimension of Xi,V is 1× 6.

3.3 Likelihood function

Withm batches and n particles in a batch, the outcome Yij becomesY = [Y1,Y2, · · · ,Ym]
T
mn×1,

where Yi = [Yi1, Yi2, · · · , Yin] for i = 1, 2, · · · ,m. Consequently U = [Ui]m×1 and

V = [V1,V2, · · · ,Vm]
T
mn×1, where Vi = [Vi1, Vi2, · · · , Vin] for i = 1, 2, · · · ,m. With

m× n data, Equations (33) and (35) turn into

ηm×1 = Xηβ +Dm×1

Vi,n×1 = X′
i,V γ +Ti + Ei,n×1, i = 1, 2, · · · ,m

with Xη = [XT
1,η,X

T
2,η, · · · ,XT

m,η]
T , η = [η1, η2, · · · , ηm]T , D = [D1, D2, · · · , Dm]

T ,

X′
i,V = 1n×1Xi,V , Ti = 1n×1Ti, and mathbfEi = [Ei1, Ei2, · · · , Ein]

T
n×1. Di and Ti are

between batch variations come from the batch-variation, and Eij is a within batch

variation for individuals with-in a batch. Ti and Eij exist only when Ui = 1. Thus,

we assumed that Ti and Eij are independent conditioning on Ui = 1. The input

data X represents the process input setting, which does not change within a batch i.
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Accordingly, the coefficient β and γ does not change within a batch. In addition, the

between-batch variation Ti has only i index, while the within batch variation Eij has

i and j indexes. Therefore, the one vector (1n×1) takes place to adjust the dimension

as repeating “Xi,V γ” and “Ti” n times. When p is the number of control variables,

then Xi,V has a dimension 1× p, and the dimension of γ is p× 1. Among p variables,

only q (q ≤ p) can determine the process condition(Ui = 1 or 0). Then, Xη has a

dimension m× q, and the dimension of β is q × 1.

Let the likelihood function of unknown parameters, β,γ, from two models be LY .

As the outcome Y is split into U and V, the distribution of Y is the joint distribution

of U and V. That is, LY = fβ,γ(U,V). Without loss of generality, fβ,γ(U,V) can be

fγ(V|U)fβ(U). Based on the definition, the normal random variable V exists only

when U is equal to 1. Thus, fγ(V|U) refers fγ(V|U = 1)

log LY = log fγ(V|U = 1) + log fβ(U)

= log LV,γ + log LU,β,

where LV,γ is a likelihood function of V with the condition of U = 1, and LU,β is a

likelihood function of U. The random variable which is a between batch variation, δ,

is in the logistic model, thus the distribution of U will be integrated over the variable

D.

fβ(U) =

∫
f(U|D = δ)fD(δ)dδ

From the conditional Bernoulli distribution,

f(U|D = δ) =
m∏
i=1

exp{Uiηi − log[1 + exp(ηi)]}, (38)

where m is the number of batches, and ηi = log[πi/(1− πi)]. The equation (38) can

be derived as explained in Appendix E. The distribution of D is a standard normal

distribution as in Equation (34).

Next, we discuss normal random variable Vi. Conditioning on Ui = 1, Vi follows

a normal distribution. Recall that the between batch variation T ∼ N(0,ΣT ) and the
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within batch variation Ei ∼ N(0,ΣEi
), where ΣEi

is the variance of outcomes within

a batch i. When two independent random variables follow normal distributions, their

summation also follows a normal distribution with the mean and the variance as the

summations of means and variances, respectively. For this reason, the mean and

the variance of V are obtained. The mean of V is E[V] = X′
V γ, where X′

V =

[X′
1,V ;X

′
2,V ; · · · ;X′

m,V ]mn×1. The variance of V is the combination of Στ and Σεi ,

i = 1, 2, · · · ,m. Let the covariance matrix be ΣV . The covariance matrix can be

expressed as m2 block matrices, such as

ΣV =



Σ11
V Σ12

V · · · Σ1m
V

Σ21
V Σ22

V · · · Σ2m
V

...
...

. . . · · ·

Σm1
V Σm2

V · · · Σmm
V


, (39)

where Σij
V = Cov(Vi,Vj) for i, j = 1, 2, · · · ,m. Because the dimension of Vi is

n× 1, each block in ΣV has the dimension of n× n. The diagonal matrix Σii
V is the

covariance of Vi. In Σii
V , (j, k)-th term is Cov(Vij, Vik) = Cov(Ti + Eij, Ti + Eik) =

V ar(Ti)+Cov(Eij, Eik) = σ2
T +Σjk

Ei
, where Σjk

Ei
is the (j, k)-th term in the covariance

matrix of Ei, ΣEi
. That is, Σii

V becomes 1n×nσ
2
T + ΣEi

. For the (l, s)-th off-diagonal

matrix, Σls
V , the (j, k)-th term in the matrix is Cov(Vlj, Vsk) = Cov(Tl+Elj, Ts+Esk) =

Cov(Tl, Ts). That is, V|U=1 ∼ N(X ′
V γ,ΣV ). Then, the likelihood function of V is

LV,γ = f(V|U = 1), and the distribution of V |U=1 is

f(V|U = 1) ∝ |ΣV |−1/2exp{−(V −X ′
V γ)

TΣ−1
V (V −X ′

V γ))/2}, (40)

where ΣV is the variance of V from Equation (39).

3.3.1 Approximation of logistics likelihood components

We will separately obtain the likelihood functions. First, we go over the likelihood

function LU,β of the logistics model. If we substitute the Equations (34) and (38) into
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LU,β, it yields the following result.

LU,β ∝
∫ m∏

i=1

exp{Uiηi − log[1 + exp(ηi)]}exp{−δTΣ−1
D δ/2}dδ (41)

∝
∫
exp{h(U, δ,β)}dδ, (42)

where h(U, δ,β) =
∑m

i=1{Uiηi − log[1 + exp(ηi)]} − δTΣ−1
D δ/2. If we set a vector U

as U = [U1, U2, · · · , Um]
T and a vector η as [η1, η2, · · · , ηm]T , then easily UTη can

replace
∑m

i=1(Uiηi). That is,

h(U, δ, β) = UTη − log[
m∏
i=1

(1 + exp(ηi))]− δTΣ−1
D δ/2. (43)

Our goal is to calculate the integral in Equation (42). However, h(U, δ,β) is

too complicated to conduct the numerical integral calculation; therefore, we will use

the Taylor series approximation. The Taylor series is a series expansion of a function

about a point. A one-dimensional Taylor series around the point δ = δ̃ is h(U, δ,β) =

h(U, δ̃,β) + hδ(U, δ̃,β)(δ − δ̃) + 1/2(δ − δ̃)Thδδ(δ̃,β)(δ − δ̃) + · · · , where

hδ(·) =
∂ h(·)
∂ δ

, hδδ(·) =
∂2 h(·)
∂ δ2

.

Let the center point δ̃ be the maximum likelihood estimator of h(U, δ,β). The

function h is positively proportional to the likelihood function LU,β; consequently, the

center point δ̃ maximizes the likelihood function as well.

A Taylor series is an infinite sum. If we take only a part of a series, then the sum

of the chosen terms is an approximation of the original function. For the simplicity,

we will take the first three terms.

h(U, δ,β) = h(U, δ̃,β) + hδ(U, δ̃,β)(δ − δ̃) +
1

2!
(δ − δ̃)Thδδ(U, δ̃,β)(δ − δ̃) + · · ·

≈ h(U, δ̃,β) + hδ(U, δ̃,β)(δ − δ̃) +
1

2!
(δ − δ̃)Thδδ(U, δ̃,β)(δ − δ̃). (44)
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Let’s substitute Equation (44) into Equation (42).∫
exp{h(U, δ,β)}dδ (45)

≈
∫
exp{h(U, δ̃,β) + hδ(U, δ̃,β)(δ − δ̃) +

1

2
(δ − δ̃)Thδδ(U, δ̃,β)(δ − δ̃)}dδ (46)

=

∫
exp{h(δ̃)} · exp{hδ(U, δ̃,β)(δ − δ̃)} · exp(1

2
(δ − δ̃)Thδδ(U, δ̃,β)(δ − δ̃))dδ (47)

= exp{h(U, δ̃,β)} ·
∫
exp{hδ(U, δ̃,β)(δ − δ̃)} · exp{1

2
(δ − δ̃)Thδδ(U, δ̃,β)(δ − δ̃)}dδ.

(48)

In Equation (48), exp{(δ− δ̃)Thδδ(U, δ̃,β)(δ− δ̃)/2} can be the density function of a

normal distribution with mean δ̃ and variance −hδδ(U, δ̃,β)−1. Thus,
∫
exp{(δ −

δ̃)Thδδ(U, δ̃,β)(δ − δ̃)/2}dδ =
∫
(2π)m/2| − hδδ(U, δ̃,β)|−1/m · f(δ)dδ when δ ∼

MN(δ̃,−hδδ(U, δ̃,β)−1) and f(δ) is the probability density function of δ. There-

fore, the integral is equal to (2π)m/2|−hδδ(U, δ̃,β)|−1/m ·E[exp{hδ(U, δ̃,β)(δ− δ̃)}].

hδ(U, δ̃,β) equals 0 due to the definition of δ̃ in Equation (44). Finally, Equation

(48) is approximated to∫
exp{h(U, δ,β)}dδ ≈ exp{hδδ(U, δ̃,β)

−2hδ(U, δ̃,β)
2

2
}(2π)m/2| − hδδ(U, δ̃,β)|−1/m

= (2π)m/2 · | − hδδ(U, δ̃,β)|−1/m. (49)

Now, we need to find δ̃ to get the solid form of LU,β. Recall that δ̃ is a value

such that ∂h(U, δ,β)/∂δ = 0. The following equations show how the hδ(U, δ,β) is

calculated.

∂h(U, δ,β)

∂δ
=

∂[UTη − log[
∏m

i=1(1 + exp(ηi))]− δTΣ−1
D δ/2]

∂δ
(50)

=
∂[UT (Xηβ + δ)− log[

∏m
i=1(1 + exp(Xi,ηβ + δi))]− δTΣ−1

D δ/2]

∂δ

= U− Σ−1
D δ − [· · · , exp(Xi,ηβ + δi)

1 + exp(Xi,ηβ + δi)
, · · · ]T (51)

= U− Σ−1
D δ − [· · · , B(β, δi), · · · ]T , (52)

where B(β, δi) = exp(Xi,ηβ + δi)/(1 + exp(Xi,ηβ + δi)). By satisfying Equation (53),
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we can find δ̃ iteratively, and do so using methods such as Newton-Raphson’s proce-

dute.

δ̃ = ΣD U− ΣD [· · · , B(β, δi), · · · ]T . (53)

The second derivative of h comes from Equation (52).

hδδ(U, δ̃,β) =
∂hδ(U, δ,β)

∂δ

∣∣∣
δ=δ̃

(54)

= −ΣD
−1 − diag[· · · , B(β, δ̃i), · · · ]. (55)

Once we find the δ̃, we can calculate | − hδδ(U, δ̃,β)|−1/m. As a result, the

likelihood function LU,β is derived in a function of β. Then, β̃ = arg maxβLU,β

is an estimator such that d log LU,β/dβ = 0. From Equation (49), log LU,β =

(m/2)log(2π)− (1/m)log| − hδδ(U, δ̃,β)|. Thus, β̂ satisfies

d log LU,β

dβ
= − 1

m
· d log| − hδδ(U, δ̃,β)|

dβ
= 0 (56)

From Equation (55), log| − hδδ(U, δ̃,β)| = log|ΣD
−1 + diag[· · · , B(β, δ̃i), · · · ]|.

For any matrix A, d ln|A|/dx = tr(A−1 · d A/dx). Thus, Equation (56) becomes

1

m
tr(A(β)−1 · d A(β)

dβi
) = 0, i = 1, 2, · · · , q (57)

where A(β) = Σδ
−1 + diag[· · · , B(β, δ̃i), · · · ], and β has a q× 1 dimensions, i.e., β =

[β1, β2, · · · , βq]T . Section 3.5 estimates the estimator or β, β̂, from the approximated

likelihood from Equation (57).

3.3.2 normal likelihood components

The log-likelihood function of V is log LV,γ = log f(V|U = 1). From Equation (40),

the likelihood function of V is

log f(V|U = 1) ∝ log |ΣV |−1/2 − (V −XV γ)
TΣ−1

V (V −XV γ)

2
,

where ΣV is a covariance matrix forV. The derived likelihood function LV,γ is utilized

to estimate the maximum likelihood function of γ.
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3.4 Distributions of with-in batch random effect

Note that Vij = XT
i,V γ+Ti+Eij. The within batch variation Ei follows a multivariate

normal distribution with zero mean and unknown covariance, that is, Ei ∼ N(0,ΣEi
).

The goal in this section is to estimate the variance of Ei with using the Kriging. The

basic form of the kriging estimator is

Êi =
n∑

j=1

λjEij,

where λj is the kriging weight. Variogram (rEi
(h)) and covariogram (CEi

(h)) functions

from the Kriging are used to estimate the variance of Ei. Even though the underlying

idea comes from the Kriging, the kriging weight λj does not need to be estimated. Let

CEi
(·) is the variance component from ΣEi

. Let h be the distance between any two

input points, i.e., h = Xij−Xik, ∀i, j, k. Then, the (j, k)-th element in ΣEi
is CEi

(Xij−

Xik). The covariance matrix ΣEi
is symmetric, thus CEi

(h) and CEi
(−h) are the

same. The covariance term CEi
(h) has a covariance parameter σ2

Ei
and the correlation

parameter θEi
. That is, CEi

(h) = ρ(σ2
Ei
, θEi

;h). Let rEi
(j − k) be V ar(Eij − Eik)/2.

Then,

rEi
(j − k) = V ar(Eij − Eik)/2

= V ar(Eij)/2 + V ar(Eik)/2− Cov(Eij, Eik)

= CEi
(0)− CEi

(j − k)

= σ2
Ei

− CEi
(j − k).

The method-of-moments (MoM) estimates the value of rEi
(h) by

r̂Ei
(h) =

1

2|Sh|
∑

(j,k)∈Sh

(Vij − Vik)
2,

where Sh = {(j, k) : Xij − Xik = h} and |Sh| is the number of distinct pairs in Sh.

Then, σ2
Ei

and θEi
are estimated by minimizing (r̂Ei

− rEi
(σ2

Ei
, θEi

; j − k))T (r̂Ei
−
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rEi
(σ2

Ei
, θEi

; j − k)), and r̂Ei
− rEi

(σ2
Ei
, θEi

; j − k) is.

r̂Ei
− rEi

(σ2
Ei
, θEi

; j− k) =
1

2|Sj−k|
∑

(j,k)∈Sj−k

(Vij −Vik)
2 − σ2

Ei
+ ρ(σ2

Ei
, θEi

; j− k) (58)

Once we estimate σ2
Ei

and θEi
, any correlation function can structure the covari-

ance matrix of Ei, that is, the (j, k)-th element in ΣEi
is ρ(σ2

Êi
, θ̂E; j − k). One

example for the correlation function ρ is an exponential function which is the com-

monly used: ρ(σ2, θ;h) = σ̂2exp(−|h/θ|), h > 0 or a gaussian function: ρ(σ2, θ;h) =

σ2exp(−(h/θ)2), h > 0. Similarly, we can estimate the variance of the between batch

random effect δ and τ . Equation (58) becomes

r̂δ − rδ(σ
2
δ , θδ; j − k) =

1

2|Sj−k|
∑

(j,k)∈Sj−k

(ηj − ηk)
2 − σ2

δ + ρ(σ2
δ , θδ; j − k) (59)

to estimate the covariance parameter σ2
δ and the correlation parameter θδ. The cor-

relation function ρ(·) can be different by random effects.

3.5 Estimation based on approximated likelihood function

In Section 3.3, we approximate the likelihood function for normal regression functions.

Then, our ultimate goal is to estimate the unknown parameters, β,γ, in each model

with approximated likelihood functions.

3.5.1 Estimator for logistic regression

We approximate the likelihood function LU,β for the logistic regression in Section

3.3.1. The estimator β̂ satisfies Equation (57). Since A(β) includes δ̃, without having

δ̃, LU,β does not have an explicit form and cannot get a closed form analytically.

Newton-Raphson method is one of the commonly used methods for finding the root

of a function in a numerical way. With the Newton-Raphson method, we can find the

likelihood of the logistic regression. Then β̂ is a value that satisfies d log LU,β/dβ = 0.
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3.5.2 Estimator for normal regression

Recall that the log-likelihood function of V is

log LV,γ = log |ΣV |−1/2 − (V −X′
V γ)

TΣ−1
V (V −X′

V γ)/2, (60)

where ΣV is the covariance matrix of V. Maximum likelihood estimator γ̂ is a value

that satisfies d log LV,γ/dγ = 0. In Equation (60), the first term log |ΣV |−1/2 is

independent of γ, so the term is canceled in the calculation of d log LV,γ/dγ = 0 for

the simplicity.

d log LV,γ

dγ
= − d

dγ
{(V −X′

V γ)
TΣ−1

V (V −X′
V γ)} (61)

= 0 (62)

Now (V − X′
V γ)

TΣ−1
V (V − X′

V γ) in Equation (61) will be fully expanded for the

purpose of finding γ̂. Without any trouble, we can easily switch the order of V and

X′
V γ. Thus, (V−X′

V γ)
TΣ−1

V (V−X′
V γ) = (X′

V γ−V)TΣ−1
V (X′

V γ−V). The mn×1

matrix (X′
V γ −V) is [X1,V γ − V11, · · · ,Xm,V γ − Vmn]

T . For the simple notation, let

the inverse matrix of ΣV be

Σ−1
V =



A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . . · · ·

Am1 Am2 · · · Amm


, (63)

where

Aij =



σij
11 σij

12 · · · σij
1n

σij
21 σij

22 · · · σij
21n

...
...

. . . · · ·

σij
n1 σij

n2 · · · σij
nn


. (64)

When p is the dimension of γ, (X′
V γ −V)TΣ−1

V (X′
V γV) becomes

(X′
V γ −V)TΣ−1

V (X′
V γV) =

m∑
j,l=1

n∑
i,k=1

[Xl,V γ − Vlk][Xj,V γ − Vji]σ
jl
ik
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The s-th element in γ̂, γ̂s, satisfies d log LV,γ/dγs = 0, s = 1, 2, · · · , p, and p is the

dimension of γ. That is,

d log LV,γ

dγs
=

d

dγs

m∑
j,l=1

n∑
i,k=1

[Xl,V γ − Vlk][Xj,V γ − Vji]σ
jl
ik (65)

=
m∑

j,l=1

n∑
i,k=1

d

dγs
[Xl,V γ − Vlk][Xj,V γ − Vji]σ

jl
ik (66)

=
m∑

j,l=1

n∑
i,k=1

d

dγs
[

p∑
b=1

Xlbγb − Vlk][

p∑
b=1

Xjbγb − Vji]σ
jl
ik (67)

=
m∑

j,l=1

n∑
i,k=1

(
2XlsXjsγs +

p∑
b=1,̸=s

XlbXjsγb +

p∑
b=1,̸=s

XjbXlsγb −XlsVji −XjsVlk

)
σjl
ik

=
m∑

j,l=1

n∑
i,k=1

(
Xs

jlγ −XlsVji −XjsVlk
)
σjl
ik (68)

= 0 (69)

In Equation (68),

Xs
jl = [Xj1Xls +Xl1Xjs, Xj2Xls +Xl2Xjs, · · · , 2XlsXjs, · · · , XjpXls +XlpXjs]

= XlsXj,V +XjsXl,V (70)

That is, s-th element is 2XlsXjs, and k-th element (k ̸= s) is XjkXls +XlkXjs. The

last two lines above become

m∑
j,l=1

n∑
i,k=1

Xs
jlγ̂σ

jl
ik =

m∑
j,l=1

n∑
i,k=1

(XlsVji +XjsVlk)σ
jl
ik. (71)

Because the right hand side only depends on s, let’s define cs =
∑m

j,l=1

∑n
i,k=1(XlsVji+

XjsVlk)σ
jl
ik. In the left hand side, Xs

jlγ̂ does not depend on i and k. Thus, it can

be written as
∑m

j,l=1X
s
jlγ̂djl, where djl =

∑n
i,k=1 σ

jl
ik. Then, Equation (71) becomes∑m

j,l=1X
s
jlγ̂djl = cs. Because the dimension of γ is p, γ̂ should satisfy all p equations:
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d log LV,γ/dγs = 0, s = 1, 2, · · · , p. Let’s sum all p equations:

m∑
j,l=1

X1
jlγ̂djl = c1

m∑
j,l=1

X2
jlγ̂djl = c2

...
...

m∑
j,l=1

Xp
jlγ̂djl = cp

Then,
∑p

s=1

∑m
j,l=1 X

s
jlγ̂djl = (

∑p
s=1

∑m
j,l=1X

s
jldjl)γ̂ = Xγ̂ =

∑p
s=1 cs, where cs =∑m

j,l=1

∑n
i,k=1(XlsVji +XjsVlk)σ

jl
ik, and the 1× p matrix X is

X =

p∑
s=1

m∑
j,l=1

Xs
jldjl (72)

=

p∑
s=1

m∑
j,l=1

(XlsXj,V +XjsXl,V )djl (73)

where djl is the sum of all elements in Ajl, which is the (j, l)-th element in Σ−1
V .

Finally, the estimator γ̂ of γ is derived by the linear least squares,

γ̂ = (XTX)−1XT (

p∑
s=1

cs)

= (XTX)−1XT (

p∑
s=1

m∑
j,l=1

n∑
i,k=1

(XlsVji +XjsVlk)σ
jl
ik),

with the matrix X from Equation (73).
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The mean of γ̂ is

E[γ̂] = E[(XTX)−1XT (

p∑
s=1

m∑
j,l=1

n∑
i,k=1

(XlsVji +XjsVlk)σ
jl
ik)]

= (XTX)−1XT (

p∑
s=1

m∑
j,l=1

n∑
i,k=1

(XlsE[Vji] +XjsE[Vlk])σ
jl
ik)

= (XTX)−1XT (

p∑
s=1

m∑
j,l=1

n∑
i,k=1

(XlsXj,V γ +XjsXl,V γ)σ
jl
ik)

= (XTX)−1XT (

p∑
s=1

m∑
j,l=1

(XlsXj,V γ +XjsXl,V γ)djl) (∵ the definition of di)

= (XTX)−1XT (

p∑
s=1

m∑
j,l=1

(XlsXj,V +XjsXl,V )djl)γ

= (XTX)−1XTXγ (From Equation (73))

= γ.

That is, γ̂ is an unbiased estimator.

3.6 Asymptotic distribution of the estimate β̂

Because β̂ is an estimator when the associated likelihood function is approximated.

Therefore, in this section, we will show that β̂ which satisfying 1/m·tr(A(β)−1d A(β)/dβi) =

0, i = 1, 2 · · · , q from Equation (57) converges to a true value, β0, and derive its

asymptotic distribution. Let’s define

Hi(β) =
1

m
tr(A(β)−1d A(β)

dβi
), i = 1, 2, · · · , q

The sample estimate β̂ can be obtained by solving Hi(β) = 0, i = 1, 2, · · · , q. To

derive the asymptotic properties of β̂, we shall discuss the asymptotic properties

of Hi(β) first. In the following discussion, the technique of matrix characteristic

decomposition will be used without trivial details. Let λ1(β) ≥ λ2(β) ≥ · · · ≥

λm(β) > 0 be the eigenvalues of A(β), and qj(β) satisfied ||qj(β)|| = 1 be the

standardized eigenvectors with respect to λj(β), j = 1, 2, · · · ,m, respectively. Then
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we have

A(β) = Q(β)△(β)QT (β) =
m∑
j=1

λj(β)qj(β)q
T
j (β),

where Q(β) = (q1(β), q2(β), · · · , qm(β)), an m×m orthogonal matrix, and △(β) =

diag(λ1(β), λ2(β), · · · , λm(β)). Let

Bi(β) = QT (β)A(β)−1dA(β)

dβi
A(β)−1Q(β),

and the eigenvalues of Bi(β) are λi1(β) ≥ λi2(β) ≥ · · · ≥ λim(β). Their corre-

sponding standardized eigenvectors are rij(β). Let η is a random variable which

converges to normal distribution with mean zero and variance A(β) as n → ∞, i.e.,

η → N(0, A(β)), then

E[ηTA(β)−1d A(β)

dβi
A(β)−1η] → tr(A(β)−1d A(β)

dβi
A(β)−1A(β)) (74)

= tr(A(β)−1d A(β)

dβi
) (75)

= m ·Hi(β) (76)

Because E[ϵTΛϵ] = tr(ΛΣ) when ϵ ∼ N(0,Σ). Therefore, for a large n, Hi(β) ≈
1
m
E[ηTA(β)−1 d A(β)

dβi
A(β)−1η].

ηTA(β)−1d A(β)

dβi
A(β)−1η = ηTQ(β)QT (β)A(β)−1d A(β)

dβi
A(β)−1Q(β)QT (β)η

(∵ QT (β)Q(β) = I) (77)

= ηTQ(β)Bi(β)Q
T (β)η (78)

=
m∑
j=1

λij(β)[η
TQ(β)rij(β)r

T
ij(β)Q

T (β)η] (79)

=
m∑
j=1

λij(β)ξ
2
ij (80)

where ξij = rTij(β)Q
T (β)η. λij(β) and rij(β) are eigenvalue and eigenvector of Bi(β),

and Bi(β) is a symmetric matrix with a full rank. Eigenvalue decomposition theo-

rem decomposes Bi(β) by Ri(β) and △i(β), i.e., Bi(β) = Ri(β)△i(β)R
T
i (β) where

Ri(β) = [ri1(β), ri2(β), · · · , rim(β)], an orthogonal matrix. The diagonal matrix
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△i(β) is diag(λi1(β), λi2(β), · · · , λim(β)). Then, Bi(β) =
∑m

j=1 λij(β)rij(β)r
T
ij(β)

derives Equation (78) to (79). Because η → N(0, A(β)), ξij is asymptotically normal

with mean zero and variance v2ij(β). In addition, the eigenvectors are orthogonal each

other. Thus, ξij, j = 1, 2, · · · ,m are independent each other. The variance ,v2ij(β), is

V ar(ξij) = V ar(rTij(β)Q
T (β)η) (81)

= rTij(β)Q
T (β)V ar(η)Q(β)rij(β) (82)

= rTij(β)Q
T (β)A(β)Q(β)rij(β) (83)

= rTij(β)△(β)rij(β) (84)

(∵ A(β) = Q(β)△(β)Q(β) & Q(β) is an orthogonal matrix)

= v2ij(β). (85)

To use Equation (80) in Equation (74), the expectation and the variance of Equation

(80) are

E[ηTA(β)−1d A(β)

dβi
A(β)−1η] = E[

m∑
j=1

λij(β)ξ
2
ij]

=
m∑
j=1

λij(β)E[ξ
2
ij]

=
m∑
j=1

λij(β)V ar[ξi,j]

=
m∑
j=1

λij(β)v
2
ij(β)

=
m∑
j=1

λij(β)r
T
ij(β)△(β)rij(β)

V ar[ηTA(β)−1d A(β)

dβi
A(β)−1η] = V ar[

m∑
j=1

λij(β)ξ
2
ij]

=
m∑
j=1

λ2ij(β)V ar[ξ
2
ij]
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Because ξij ∼ N(0, v2ij(β)), ξij/vij(β) follows a standard normal distribution. Then,

(ξij/vij(β))
2 follows a chi-square distribution with degree of freedom λ = 1. Then

V ar[(ξij/vij(β))
2] = V ar[ξ2ij]/vij(β))

4 = 2. Thus, V ar[ηTA(β)−1 d A(β)
dβi

A(β)−1η] =∑m
j=1 λ

2
ij(β) · 2 · v4ij(β). Now, for a large n, Hi(β) can be equivalently written as

Hi(β) =
1

m

m∑
j=1

λij(β)v
2
ij(β) =

1

m

m∑
j=1

λij(β)r
T
ij(β)△(β)rij(β)

where λij(β) is an eigenvalue of Bi(β) and rij(β) is a corresponding eigenvector.

△(β) is a diagonal matrix, △(β) = diag(λ1(β), λ2(β), · · · , λm(β)), where λi(β) is

an eigenvalue of A(β). Because neither λij(β)
2 nor v2ij(β) is a random variable,

V ar[Hi(β)] goes to zero as m → ∞. The estimate β̂ estimates a parameter which

makes Hi(β̂) = 0 by using m samples. Therefore, Hi(β0)
wp1−−→ 0 as m→ ∞.

Denoted by H(β) = (H1(β), H2(β), · · · , Hk(β))
T . Taylor expansion of H(β) around

β0 leads

H(β) = H(β0) +
d H

d β
(β − β0) +O((β − β0)

2).

The estimator β̂ makes H(β̂) = 0. Thus,

H(β̂) = H(β0) +
d H

d β
(β̂ − β0) +O((β̂ − β0)

2) = 0

H(β0) = −d H
d β

(β̂ − β0)−O((β̂ − β0)
2)

= (β̂ − β0)× (−d H
d β

+O(|β̂ − β0|))

We know that H(β0)
wp1−−→ 0 as m → ∞. Thus,β̂

wp1−−→ β0. That is, β̂ is a consistent

estimator of β0.
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The variance of Hi(β) is

V ar[Hi(β)] =
1

m2

m∑
j=1

λ2ij(β)V ar[v
2
ij(β)] (86)

=
1

m

m2∑
j=1

λ2ij(β)V ar[r
T
ij(β)△(β)rij(β)] (87)

=
1

m2

m∑
j=1

λ2ij(β)V ar[r
T
ij(β)Q

T (β)A(β)Q(β)rij(β)] (88)

=
1

m2

m∑
j=1

λ2ij(β)w
2
ij(β) (89)

(90)

Then the limit of V ar[
√
mHi(β)] exists as a function of β:

limn,m→∞V ar[
√
mHi(β)] = limm→∞mV ar[Hi(β)] (91)

= limm→∞m · 1

m2

m∑
j=1

λ2ij(β)w
2
ij(β) (92)

= limm→∞
1

m

m∑
j=1

λ2ij(β)w
2
ij(β) (93)

= U(β) (94)

In addition, V ar[Hi(β)] converges to zero as m goes to infinity. The Lindeberg-

Feller condition can be applied to prove the asymptotic normality of H(β), i.e.,

√
mH(β)

d−→ N(0,U(β)). From H(β̂) = 0,

√
m[H(β)−H(β̂)] =

√
m[H(β̂)−H(β)]

d−→ N(0,U(β)).

By delta theorem, the above equation goes to

√
m[β̂ − β0]

d−→ N(0,Σ(β0)),

where

Σ(β0) =

(
dH(β0)

dβ

)
U(β0)

(
dH(β0)

dβ

)T

.
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3.7 Summary of estimators

When the output Yij is semi-continuous and has with-in and between variations, we

propose the constrained random effect models. Conditioning on Ui = 1, the output

decomposed into two random variables, Ui and Vij having two models.

Logistic regression : ηi = Xi,ηβ +Di

Normal regression : Vij = Xi,V γ + Ti + Eij

where ηi = log[P (Ui = 1)/(1−P (Ui = 1))]. Both models have between variations, Ei

and Ti, and the normal regression function has within variation, Eij. All variations

are random variables. The distribution of between variations are derived by Kriging,

as described in Section 3.4. Then, both D and T follows a normal distribution, and

their distribution notates as N(0,ΣD) and N(0,ΣT ), respectively. In addition, the

noise is assumed as Ei ∼ N(0,ΣEi
).

The estimate of β , β̂, in logistic regression model is derived from the approxi-

mated likelihood function, while the estimate of γ, γ̂, in normal regression model is

directly derived from its likelihood function. From the exact likelihood function of the

normal regression model, the estimate of γ, γ̂ = (XTX)−1XT (
∑p

s=1

∑m
j,l=1

∑n
i,k=1(XlsVji+

XjsVlk)σ
jl
ik), where X =

∑p
s=1

∑m
j,l=1(XlsXj,V + XjsXl,V )

∑n
i,k=1 σ

jl
ik, and σjl

ik is an

(i, k)-th element in Ajl from ΣV , a covariance matrix of V.

The estimate β̂ which is explained in Section 3.5 satisfies the following q equations

when q is the dimension of β.

1

m
tr(A(β)−1 · dA(β)

dβi
) = 0, i = 1, 2, · · · , q

where A(β) = Σ−1
δ +diag[· · · , exp(Xi,ηβ + δ̃i)/((1 + exp(Xi,ηβ + δ̃i))

2), · · · ]. The δ̃ is

a value such that ∂h(U, δ,β)/dδ = 0 and h(U, δ,β) = UTη−log[
∏m

i=1(1+exp(ηi))]−

δTΣ1
δδ/2. Section 3.6 derives the asymptotic distribution of β̂:

√
m[β̂ − β0]

d−→ N(0,Σ(β0)),
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where

Σ(β0) =

(
dH(β0)

dβ

)
U(β0)

(
dH(β0)

dβ

)T

,

H(β) = [H1(β), H2(β), · · · , Hq(β)]
T

Hi(β) =
1

m

m∑
j=1

λij(β)v
2
ij(β) =

1

m

m∑
j=1

λij(β)r
T
ij(β)△(β)rij(β)

A(β) = Σδ
−1 + diag[· · · , exp(Xi,ηβ + δ̃i)

(1 + exp(Xi,ηβ + δ̃i))2
, · · · ]

△(β) = diag(λ1(β), λ2(β), · · · , λm(β))

Bi(β) = QT (β)A(β)−1dA(β)

dβi
A(β)−1Q(β),

λij(β) and rij(β) are the eigenvalue and the eigenvector of Bi(β), respectively.

λi(β) is the eigenvalue of A(β), and β0 is the true value of β. Therefore, the estimate

β̂ based on the approximated likelihood function converges to the true value β0.

3.8 Discussion

Semi-continuous data arise in many applications in which naturally-continuous data

become contaminated by the data-generating mechanism. This chapter proposed an

approach for modeling semi-continuous data with within- and between-batch varia-

tions. Similar to many papers dealing with semi-continuous data, this chapter has

two models: a logistic model and a normal model. Both models include the between-

batch variation, while only the normal model includes the within-batch variation.

Between-batch variation is correlated for the different batches (e.g., cov(Di, Dj) ̸= 0),

while the within-batch variation is not correlated for different particles in a batch

(e.g., cov(Ei,j, Ei,k) = 0). Under these circumstances, we estimated the coefficients in

two models.

A Taylor approximation estimates likelihood functions. Because true likelihood

functions are too complicated to obtain, we use an approximation of the likelihood

functions. Because the coefficient estimates are based on an approximation of the
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likelihood functions, we have to be careful whether the coefficient estimates based

on the approximated likelihood functions (β̂L̃) are close to those based on the real

likelihood functions (β̂L). Therefore, we derive the asymptotic distribution of β̂ which

converges to the true value, β0.

A Newton-Raphson method, which is used to find δ̃ in the logistic model, is the

best known method for finding a better approximation of the roots of a real-value

function. The method converges quickly when the iteration begins near the desired

root, which can be both a strength and a weakness of the method. When the iteration

begins far from the desired root, the method can fail to converge. Therefore, choosing

a starting point is the key to success. Currently, this chapter assumed that a Newton-

Raphson method can successfully find δ̃.

In addition, several works could be added in this chapter to validate and strengthen

the methodology. Future work includes illustrative examples to prove whether the

research result is correct or not. Thus, finding a good example and collecting a set of

data are necessary.
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CHAPTER IV

DETERMINING A SAMPLE SIZE TO ESTIMATE AN

OPTIMUM AND A PROCESS WITH A MULTI-LAYER

SYSTEM

4.1 Introduction

High quality modeling has been a priority goal for statisticians ever since statisticians

began modeling processes. Particularly, with complicated processes, such as nanofab-

rication, modeling is challenging but critical. Currently, there is enormous widespread

interest in the field of nanotechnology, and we can expect that nanotechnology will

impact every sector of our economy and daily lives in the near future. However,

processes in nanotechnology are extremely sensitive so that even minor changes to a

processes settings may lead to different results [39]. Therefore, extra attention and

effort is necessary for complicated processes. However, in most existing literature,

the synthesis of nanomaterials lack theoretical guidance for achieving high quality

and reproducible nanomaterials [16]. Consequently, enormous amounts of data are

required to model the unclear and complicated nanofabrication process.

For the purpose of delicate process modeling, we propose a multi-layer system

which focuses on the process optimum. In addition, model estimation around the

optimum should return better quality results than models that are not focused around

the optimum. The main idea is to zoom the explanatory domain around the process

optimum. The first, initial layer is the overall explanatory domain. The second layer

is the neighborhood of the optimum which is estimated from the model built from

the first layer, and is thus a sub-region of the first layer. Therefore, as the layers go

down, the domain size becomes smaller around the true optimum. See Section 4.2
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for a more detailed explanation regarding the multi-layer system. When resources

are limited, allocating the resources around the optimum is necessary in order to

attain the best estimation. Therefore, samples are collected sequentially from each

layer. However, sample collection for multi-layered systems have never been explored

before. In the multi-layer system, samples are used to develop a model for the next

layer until the bottom layer is reached. At the bottom layer, a model developed

by the collected sample should meet the tolerance requirement. Therefore, existing

sample size calculation methodologies cannot be applied in the multi-layer system,

and we need to develop a unique sample size calculation procedure for the multi-layer

system. The challenges in developing the new procedure are (1) to define different

goals for the sample collections by layers and (2) to aggregate the information from

previous layers into the current layer sample size calculation.

In the past, researchers have attempted to develop the sample size calculation for

multi-stage system. In 1945, Stein [66] investigated a two-stage procedure for the

first time. The paper provides a sample size for two stages in which the second result

depends on the first result. Based on the Stein’s method, many follow-up methods

were proposed. Lehmacher [38] updated the method for a group of sequential tri-

als that is based on the inverse normal method. Other than the number of stages,

the major difference between the existing methodologies and our proposed method

is the explanatory domain range. Mainly, the sizes of the stages are the same, but

our method assumes that the latter layer is included in the previous layer. In 2011,

Wang and Mei [72] suggested an asymptotically optimal scheme under a Bayesian

setting. The paper used “two-stage” tests to find the optimum from discrete candi-

dates. The restriction of discreteness prevents the application of this paper to the

nano-fabrication process. Recently, Kim [35] and Casciato et al. [11] proposed the

layers of experiments with adaptive combined design. The methodologies in these

papers are suitable for the delicate process modeling, however they focused on the
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location for the data collection with the assumption of a known sample size. In ad-

dition, Soltanian [63] shows how large of an effect the sample size has on nano-scale

data. Therefore, this chapter proposes a novel method that selects a sub-region for

the purpose of accurate model estimation around the optimum when the process is

too complicated to meet the tolerance requirement easily. Consequently, the sample

size calculation associated to the multi-layer system is suggested.

In the present chapter, we have three objectives. First, we introduce the multi-

layer system to to explain the nano-frabrication process more effectively. Second, we

set goals of the sample collection. To evaluate the goals, we define hypotheses to test

regarding the goals. Finally, we provide a procedure for determining the minimum

sample size necessary to achieve the goals.

The rest of the chapter is organized as follows. Section 4.2 explains why the

multi-layer system is important and how it works in detail. Section 4.3 introduces

the methodology of determining the sample size. Section 4.4 provides technical algo-

rithms to present the methodology explained in Section 4.3. Section 4.5 derives the

distribution of a test static, and an example is illustrated in Section 4.6. Section 4.7

presents the methodology properties, and Section 4.8 gives some concluding remarks.

4.2 The Multi-layer system

The ultimate goal of this research is to build a model with accuracy meeting the

tolerance requirement near the process optimum. However, because the true optimum

is unknown and the model requires collecting and analyzing a vast amount of data

due to the complexity of the nanofabrication process, we instead focus on collecting

the minimum number of samples needed to construct a precise model around the

optimum. This chapter introduces a multi-layer system that identifies the optimum

after samples are collected. Figure 17 illustrates the concept of the proposed multi-

layer system.
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Figure 17: The concept of the multi-layer. The left column figures show statistical
models for each layer, and the right column figures represent the underlying explana-
tory domains. For both columns, top figures represent the initial layer, the middle
layer represents the second layer, and the bottom layer is the third/last layer.

In the multi-layer system, the first layer, Layer 1, is the overall explanatory do-

main. Some samples are collected from the first layer. The statistical model con-

structed with the samples roughly shows the global trend of the underlying process.

Suppose we want to maximize the outcome; the vertex of the concave curve in Figure

17 is the optimum from Layer 1, and Layer 2 is in the neighborhood of the vertex.

In this chapter assume that the neighborhood is a sphere with a center point as the

estimated optimum and a pre-specified radius m, i.e. when x ∈ Layer 2, the dis-

tance between x and the estimated optimum from the Layer 1 is at most m. From

Layer 2, we collect additional samples to build another model over it. Each model

produces an estimation of the optimum, and the optimum decides the location of

the following layer. Therefore, each model should be confident, or reliable enough,

to determine an accurate estimation of the optimum, i.e. by providing the correct

direction to the subsequent layer (Objective 1: model assessment) until any model

in any layer meets the tolerance requirement (Objective 2: tolerance requirement).

The ”zoom-in” procedure stops when the statistical model from a layer meets the
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tolerance requirement.

Another factor, budgetary constraints, plays a key role in the sample size decision.

Clearly, the process budget has to cover a number of samples in the multi-layer

methodology. However, once the layers go into the wrong direction, the optimum

cannot be detected, and the budget is exceeded. Thus, the model assessment must

determine the minimum sample size and the budget constraint must determine the

maximum sample size. When the sample size is n, then n ≤ c, n ≥ m, where c is

the boundary of the budget constraint and m is the boundary of the first constraint.

Therefore, we need to find the sample size to satisfy both constraints.

Potential sample size

Minimum required

sample size for the

Maximum

affordable sample

Sample size (n)

sample size for the

model assessment (m)

affordable sample

size (c)

Figure 18: Constraints for Sample Size Decision. The model assessment gives a lower
bound and the budget gives an upper bound.

Figure 18 denotes the potential sample size that satisfies both constraints. The

two constraints should be strictly followed. If the maximum affordable sample size

is smaller than the minimum required sample size for the model assessment, increas-

ing the budget or changing the model structure allows us to determine the optimal

sample size. The range of the potential sample size (n) is m ≤ n ≤ c, where m is

the minimum required sample size for the model assessment objective, and c is the

maximum number of sample size within a budget constraint.
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4.3 Methodology

For the sample size calculation, we assume the following conditions:

1. Layer size structure

The formulation of the multi-layer system tells us that a lower layer size is

always smaller than the sizes of all upper layers. However, the number of

explored layers is unknown in advance. Thus, the layer size will be a relative

number rather than an absolute number. That is, the lower layer size depends

on the previous layer size. For example, Layer i+ 1 is half the size of Layer i.

2. Tolerance requirement

The tolerance requirement represents the maximum acceptable error for the

target value. The engineers who use the proposed multi-layer system will need

to determine the tolerance requirement for guiding the sample size decision

procedure.

Sequential sample collection requires a consistent space-filling design for every

layer. We examine six designs: optimal packing of sphere inside a cube, uniform,

Latin hyper cube with optimal spacing, minimum energy design in a spherical region,

maximum entropy design for a Gaussian process, and an integrated mean square error

(MSE) optimal design for a Gaussian process. We observe that the minimum energy

design in a spherical region spreads points around the center of a sphere. Therefore,

we select the minimum energy design due to the robustness. We use the design using

statistical software JMP in this research.

Consider n points on a k-dimensional sphere around the zero vector. Each point

can have values between [−1, 1] for k continuous factors. Let dij be the distance

between i-th and j-th points. Next, the optimization technique finds the n×k values
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(n points from k-dimensional) that minimize total energy E, where

E =
n−1∑
i=1

n∑
j=i+1

(
d2ij +

1

dij

)
.

Thus, the minimum energy design decides the n design points by minimizing the

energy.

Recall that the decision of a sample size has two objectives: the model assessment

and the tolerance requirement. Because the number of layers is undefined, every layer

requires the determination of the final layer. The evaluation metric under the toler-

ance requirement determines the final layer. Therefore, at every layer, the required

sample size based on the evaluation metric is calculated and compared to the budget

constraint. If the sample size for the tolerance requirement does not meet the budget

constraint, then the sample size for the model assessment is calculated. The follow-

ing two subsections explain the procedures to find the minimum sample size for each

objective.

4.3.1 Objective 1: Model assessment

At any layer, say Layer i (Li), ni samples collected from Li estimate the process within

the layer, and let f̂i be the estimated model. If f̂i meets a tolerance requirement,

then Layer i becomes the bottom layer. Otherwise, the purpose of the model f̂i is to

identify the next layer location. Then, the analysis of f̂i will estimate the optimum at

Li and locate the next layer, Li+1, around the optimum. Therefore, the fitted model

in Li, f̂i highly affects the location of Li+1. However, once the layers go into a wrong

direction, the multi-layer system cannot find a true optimum. That is, the quality of

f̂i is highly significant, and the sample size ni has to be large enough to give a correct

direction at any layer.

In summary, our strategy is to estimate a potential optimum point and then to

identify the layer which is the neighborhood around the point with a radius r. In this

chapter, we call the radius, layer size. Then, the window with center point x and
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layer size (radius) r notes B(x; r), i.e. the window is a sphere with a radius r. Let

the true optimum point be µ, and the estimated optimum (the center point of the

next layer) be X̃. When d(·, ·) is a distance function between the two points, such as

Euclidean norm, then d(µ, X̃) serves the distance between µ and X̃. The estimated

center point X̃ is the local maximum or minimum. Therefore, the first derivative of

the function f̂ derives X̃ such that (∇f̂)X̃ = 0. In addition, the second derivative, or

Hessian matrix, at x = X̃ should be considered to avoid the saddle point. In other

words, a hessian matrix of f̂ , H(f̂) should not be indefinite to be a local extreme.

The confidence interval of X̃ is a function of the sample size n. For example, when

X̃ follows a t-distribution, the confidence interval of X̃ is

X̃ ± tα/2,n−p−1

√
var(X̃), (95)

where n is the sample size, p is the number of variables, α is the level of significance,

and tα/2,n−p−1 is the t-distribution with 1 − α/2 percentile and n − p − 1 degree of

freedom.

After the X̃ estimation, the result can be categorized into three cases.

Case 1: The estimated window B(X̃; r) contains the true mean, i.e., d(µ, X̃) ≤ r.

Case 2: The estimated window B(X̃; r) does not contain the true mean, but B(X̃; r)

and B(µ; r) have a nonempty intersection, i.e., r < d(µ, X̃) ≤ 2r.

Case 3: both B(X̃; r) and B(µ; r) are disjoint, i.e., d(µ, X̃) > 2r.

Note that Case 1 is desirable, yet Case 2 is also acceptable, because there is a chance

to detect the true optimum in the next layer. For example, if the estimated optimum

in the layer, B(X̃; r), is located on the boundary of B(X̃; r) to the direction of µ, then

the following layer can contain the true optimum. However, Case 3 encounters an

undesirable situation. When X̃ and µ are distanced apart more than 2r, the estimated
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optimum even on the boundary of B(X̃; r) cannot capture the true optimum in the

following layer. That is, the direction of the important ”zoom-in” region is incorrect,

which is a situation we wish to avoid. Therefore, we develop and conduct a hypothesis

test to determine whether X̃ yields a correct or an incorrect direction to the true

optimum.

Hypothesis Test

H0 : d(µ, X̃) = 2r H1 : d(µ, X̃) ≤ 2r

The X̃ is derived from a process model estimation (f̂) by a set of sample data.

Let the size of the set be n, and the true coefficients and their estimate for the process

model, β and β̂, respectively. The estimated optimum X̃ depends on the sample size

n and the corresponding coefficient estimates β̂, i.e., X̃ = X̃n(β̂). The test statistic

is

Tµ,n =
D̂ − 2r

σD̂
(96)

where D̂ = d(µ, X̃n(β̂)) is an estimator of d(µ, X̃) and σD̂ is a standard deviation of

the estimator. The estimator D̂ estimates the distance between the true optimum and

the estimated optimum, i.e., D̂ = effect size. We perform the bootstrap resampling to

estimate the distribution of the estimate. When m is the bootstrapping number, the

m outcomes, X̃1, X̃2, · · · , X̃m, formulate the estimator of the effect size. Then, the

estimator is defined as D̂ = max|X̃i− X̃j|, i, j ∈ [1,m]. The standard deviation of D̂,

σD̂, is unknown. Thus its estimate, σ̂D̂, will substitute the denominator. σ̂D̂ will be

derived from the distribution of X̃. The detail regarding the derivation is explained

in Section 4.5. Both D̂ and σD̂ are random variables that depend on the sample size

n. Thus the test statistic is a function of n as well.

Because our methodology is based on the multi-layer system, the standard devi-

ation of D̂, which is the denominator of the test statistic, needs to be calibrated by

the standard deviations of D̂ from the previous layers. We include the calibration
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step in the bootstrap resampling (see Section 4.4.1 for the explanation). The decision

rule for the hypothesis test is that H0 is rejected when the test statistic is smaller

than a critical value, a function of a sample size n. If the test statistic follows a

t-distribution, the critical value is −tα,n−p−1, i.e., the decision rule is to reject H0

when TestStatistic < −tα,n−p−1. The rejection of the hypothesis test refers that the

distance between the true optimum and the estimated optimum X̃ is smaller than

the radius of the next layer, that is, there is a chance to estimate the optimum in

the next layer. When a sample size for a model estimation increases, the estimation

result becomes more accurate. Thus, the goal is to find the minimum required sample

size for the next layer estimation (See Section 4.5 for the explanation of how to derive

the distribution of the test statistic.) For the simplicity, we introduce the procedure

by assuming that the test statistic follows a t-distribution. However, at the end, the

t-distribution will be replaced by the actual distribution of the test statistic derived

in Section 4.5.

4.3.2 Objective 2: Tolerance requirement

The tolerance requirement depends upon the confidence of the estimator. If a model

estimation is less reliable, it is highly possible that the estimated optimum based on

the model will be incorrect. Therefore, the quality of the model estimation is critical.

Generally, the confidence interval of a function can be a measurement of the model

estimation accuracy in a region R. Clearly, a wider confidence interval indicates that

a model is less reliable than one with the a smaller confidence interval. In a certain

region R, we can calculate the confidence interval of parameter estimates (β̂), and it

derives the confidence interval of the output estimate (ŷ = Xβ̂) for any explanatory

input X in R (∀X ∈ R). Since the tolerance requirement specifies the upper bound,

we want to define the upper bound of the confidence interval to compare the quality

of various functions. The evaluation metric defines the maximum confidence interval
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among every X in R, i.e., the evaluation metric L(R) is

L(R) = max
Xp∈R

(2tα/2,n−p+1

√
MSE × (Xp(XT

DXD)−1XT
p )), (97)

where p is the order of the model, MSE represents the mean squared error, and

it estimates the model variance. XD is a design matrix that estimates the model

parameters, and Xp is a model structure at X, such as Xp = [1, X, X2] when p = 2.

When f(x) = Xβ+ ε, the variance of f̂(x) is V ar(f̂(x)) = V ar(Xβ̂) = XV ar(β̂)XT .

The variance of a parameter estimation is σ2
ε(X

T
DXD)

−1. MSE substitutes σ2
ε , because

MSE is an unbiased estimator of σ2
ε . Therefore, XD is a fixed matrix in the region

R, but Xp changes by X. For example, let p = 2, R = [0, 25], and four samples

(5, 10, 15, 20) are used for the model estimation. Then the design matrix XD is

XD =



1 5 52

1 10 102

1 15 152

1 20 202


.

The estimate of σ2, MSE, also depend on those four points. Now, the confidence

interval for anyX in R is 2tα/2,n−p+1

√
MSE × (Xp(XT

DXD)−1XT
p ), whereXp depends

on X. For X = 2, Xp is [1, 2, 22], and the confidence interval for X = 2 can be

calculated with Xp and XD. Note that the confidence interval for X = 2 is different

to the one for X ̸= 2, because Xp is different by X, while XD stays the same.

Evaluation metric L(R) represents the maximum confidence interval within R model.

As we collect more samples, the estimated model becomes more stable, which

means the model variance σ2
ϵ becomes smaller. Because the variance of parameter

estimate is V ar(β̂) = (XTX)−1σ2
ϵ , there is less variation of the parameter estimate

β̂, and the confidence interval of β̂ narrows. Thus, the sample size increases until the

evaluation metric L(R) is smaller than the tolerance requirement δ.
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4.3.3 Stopping criteria

Let ni
1 and n

i
2 be the sample size for the model assessment (Objective 1) and the toler-

ance requirement (Objective 2), respectively. Assume that a single experiment costs

a constant c amount. Let the overall experimental cost be Ck when the multi-layer

system has k layers. The objective of the sample collection in a layer is to perform

a model assessment until the layer becomes the final(bottom) layer. At the bottom

layer, the objective of the sample collection is to meet the tolerance requirement.

Therefore, from Layers 1, 2, · · · , k − 1, samples with the size of n1
1, n

2
1, · · · , nk−1

1 are

collected, and the bottom layer (Lk) has n
k
2 samples. The cumulative collected sample

size is n1
1+n2

1+ · · ·+nk−1
1 +nk

2. Thus, the overall experimental cost for the system is

Ck = c× (
k−1∑
j=1

nj
1 + nk

2).

If Ck is smaller than the budget, stop the investigation at Layer k; otherwise, explore

the next layer. If the remaining budget of the total sample size cannot cover the

needed sample size to meet the goal in this step, a warning to the user should be

provided. Then, the current estimate of the process recipe is given at this layer. No

subsequent layer will be studied unless more data budget is allocated.

4.4 Algorithm

In order to assist practitioners in applying the proposed methodology, we provide a

step-by-step guideline to determine the number of layers and the sample size in each

layer. Until the minimum required sample sizes for both objectives are decided, no

experiment in either computer simulation or physical experiment is performed. The

initial sample size n will be decided by the underlying model structure. Figure 19

provides the overall procedure for the sample size decision when entering a new layer.

Algorithm 1: Model assessment

Step 0. Given condition: layer size (r)
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Figure 19: Flowchart for experimental developers: Comprehensive algorithm com-
bined with Algorithms 1 and 2.
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Step 1. Assume a fitting model structure (e.g., 2-nd order or 3-rd order)

Step 2. Choose an initial sample size n.

Step 3. Collect n samples by the minimum energy design from the layer

Step 4. Estimate a statistical model f̂(x) = Xβ̂

Step 5. Estimate the distribution of X̃ through the bootstrap resampling

(Step 5-1). If X̃ distributes skewed, then a certain transformation makes it normal.

Find the distribution of X̃ as well as the mean and the variance.

Step 6. Calculate the estimator D̂ = max|Xi −Xj|

Step 7. Estimate the distribution of D̂

Step 8. Calculate a test statistic T = (D̂ − 2r)/σ̂D̂ to perform a hypothesis test

H0 : d(µ, X̃) = 2r.

Step 9. Compare the test statistic to t-value, tα,n−p−1

Step 10. Repeat Steps 2 to Step 10 by increasing one sample size (n = n + 1) until

the hypothesis test is rejected

Step 11. (Decision) : If the hypothesis test is rejected for n∗ samples, then n∗ is the

minimum sample size requirement in the layer.

Algorithm 2: Tolerance requirement

Step 0. Given condition: layer size (r)

Step 1. Assume a fitting model structure (e.g., 2-nd order, 3-rd order)

Step 2. Choose an initial sample size n

Step 3. Collect n samples by minimum energy design from the layer

Step 4. Estimate a statistical model f̂(x) = Xβ̂ by linear regression

Step 5. Calculate the evaluation metric L(R) in the layer

Step 6. Compare the metric to the tolerance requirement

Step 7. Repeat Steps 2 to Step 6 by increasing one sample size (n = n+ 1) until the

evaluation metric is smaller than the tolerance requirement
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Step 8. (Decision) : If the evaluation metric exceeds the tolerance requirement for n∗

samples, then n∗ is the minimum sample size requirement in the layer.

4.4.1 Bootstrap resampling

Bootstrapping is commonly used to simulate empirical null-distribution of complex

statistics such as percentile points, proportions, odds ratios, or correlation coefficients.

It can also be utilized in constructing hypothesis tests as an alternative to inference

based on parametric assumptions as well as to approximate distributions when the

exact distributions are unknown, or the analytic procedures are too complex to obtain.

In our case, the distribution of X̃ is difficult to estimate analytically. While we can

derive the distribution of X̃ analytically, the approximation is inevitable. Therefore,

we use bootstrap resampling to find the distribution of X̃. The distribution of X̃

from a second-order polynomial follows a normal distribution as shown in Appendix

F. However, when the model is not restricted to the 2nd-order polynomial model,

e.g., exponential model, the following bootstrap procedure will be used to find the

sampling distribution of X̃ and the distribution of the test statistics in Objective 1.

The model fitting with the given sample, ŷ = Xβ̂, yields the distribution of

the estimated parameters, i.e., β̂ ∼ N(β, (X ′X)−1σ̂2
ϵ ). The bootstrap resamples

β̂1, β̂2, · · · , β̂m from the distribution of β̂, N(β, (X ′X)−1σ2
ϵ ), when m is the bootstrap

number. Then, X̃1, X̃2, · · · , X̃m are the estimated optima from modelsXβ̂1, Xβ̂2, · · · ,

Xβ̂m. However, instead of σ̂2
ϵ , we will use the aggregated MSE from previous layers

including the current layer. The proposed aggregated MSE is ¯̂σ2
ϵ = 1/L×

∑L
i=1 σ̂

2
ϵ,i,

where σ̂2
ϵ,i is the MSE in Layer i, 1 ≤ i ≤ L and L is the index for the current layer.

Recall that the MSE estimates the variance of the model noise and measures the

accuracy of the model prediction. By averaging previous MSEs, ¯̂σ2
ϵ contains all the

information gathered from the previous models. For example, if any previous model

77



is inaccurate and is likely to lead to the wrong direction, then the variance of β̂ is

large, and X̃ varies greatly. However, if all previous models are accurate and guide to

the right direction, then σ2
β̂
are small, and consequently X̃ has less variability. The

following steps explain the bootstrap resampling method to estimate the distribution

of X̃.

Step 1. Fit the model, ŷ = Xβ̂

Step 2. Calculate ¯̂σ2
ϵ from previous layers and the current layer

Step 3. Estimate the distribution of β̂,i.e., β̂ ∼ N(β, (X ′X)−1 ¯̂σ2
ϵ )

Step 4. Collect B samples (β̂1, β̂2, · · · , β̂m) from the estimated distribution

Step 5. Find optima (X̃1, X̃2, · · · , X̃m) from each model, Xβ̂1, Xβ̂2, · · · , Xβ̂m

Step 6. Estimate the distribution of X̃

4.5 Finding the distribution of a test statistic

When we encounter a new layer, we need to find a test statistic and its distribution.

Let the estimated model in the layer be f̂n(X) = Xβ̂n when n is the sample size.

Assume that the noise variance, σ2
ϵ , is a constant. The coefficient estimate β̂n by

linear regression follows a normal distribution, i.e., β̂n ∼MN
(
µβ̂n

,Σβ̂n

)
.

The estimated optimum X̃n is the optimal point on model f̂n(X). Therefore, the

distribution of X̃n depends on the parameter estimate β̂n. Hinkley [28] proposed that

a vertex X̃n has a normal distribution when f̂n(X) is a second-order polynomial. If

f̂n(X) is not a second-order polynomial, however, the general form of the distribution

of X̃ is unknown. Thus, we use the parametric bootstrap to find the distribution of

X̃n as explained in Section 4.4.1. Even though X̃n comes from a general model other

than second-order polynomial, the model can be approximated to a second-order

polynomial near X̃n as depicted in Figure 20 as an example.

Two plots in Figure 20 are plotted by the same model but with different explana-

tory regions. Left figure shows the high level view, and right figure shows the lower
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Figure 20: An example of showing (a) the overall view and (b) the close-up view.

level view. The explanatory region for the left figure includes the one for the right

figure. Even though the overall model is complex, the close-up model becomes simple,

and it can be estimated by a second-order model. Because both are the same models,

the vertex in the left plot is equivalent to that in the right plot. As mentioned, the

vertex in a second-order polynomial has a normal distribution. Consequently, we

can approximate the vertex in any type of model to have a normal distribution (See

Appendix F for analytical proof of normality).

By increasing the number of bootstraps, the mean and the variance of X̃n con-

verge after exceeding a certain amount of bootstrap number (m). Completing the

bootstrapping, we obtain X̃n,1, X̃n,2, · · · , X̃n,m. The estimator of the effect size Dn =

|X̃n − µ| is D̂n = max|X̃n,i − X̃n,j|, i, j ∈ [1,m]. In one dimension, D̂n equals

D̂n = max(X̃n,i)−min(X̃n,i), 1 ≤ i ≤ m. Then D̂n represents the distance between

the two farthest apart X̃n,i’s. Because D̂n represents the range of order statistics, the

probability density function of D̂n is

fD̂n
(d) =

∫ −∞

∞
m(m− 1)fX̃n

(x+ d)fX̃n
(x)[FX̃n

(x+ d)− FX̃n
(x)]m−2dx, (98)

where fX̃n
(x) is the probability density function of X̃n, and FX̃n

(x) is the cumulative

density function of X̃n. Equation (98) enables us to obtain the distribution of D̂.

The procedure for estimating the variance of D̂, σ̂2
D̂
,is as follows. Let min(X̃) = U
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and max(X̃) = V . Then, the variance of D̂ is

σ2
D̂
= V ar(D̂) = V ar(V − U)

= V ar(V ) + V ar(U)− 2 · Cov(U, V ).

The marginal distributions of U and V are fU(u) = mfX̃(u)[1 − FX̃(u)]
m−2 and

fV (v) = mfX̃(v)[FX̃(v)]
m−2, respectively. The joint distribution of U and V is

fU,V (u, v) = m(m − 1)fX̃(u)fX̃(v)[FX̃(v) − FX̃(u)]
m−2. Knowing the distribution

of X̃ allows us to estimate σ̂2
D̂
. Distribution fX̃(x) depends on µβ̂ and Σβ̂. Therefore,

σ̂2
D̂
depends on µβ̂ and Σβ̂ as well. The variance of β̂, Σβ̂, is a function of σ̂2

ϵ (=MSE),

and MSE is a random variable. Consequently, σ̂2
D̂
is a random variable, and we can

estimate its distribution. In the same manner, the estimator of the variance of X̃,

σ̂2
X̃
, is also a random variable.

Proposition 1. The variance of D̂ has the same distribution as the variance of X̃.

Proof Let the mean and the variance of X̃ be µX̃ and σ2
X̃
, i.e., X̃ ∼ N(µX̃ , σ

2
X̃
).

From Equation (98), the dummy variable x is changed to k = (x − µX̃)/σX̃ . Then,

Equation (98) can be re-expressed as

fD̂n
(d) =

∫ −∞

∞
m(m− 1)fX̃n

(σX̃k + µX̃ + d)fX̃n
(σX̃k + µX̃)

×[FX̃n
(σX̃k + µX̃ + d)− FX̃n

(σX̃k + µX̃)]
m−2dk · σX̃ . (99)

For example, fX̃n
(σX̃k+µX̃+d) is 1/

√
2πσ2

X̃
·exp [−(σX̃k+µX̃+d−µX̃)

2/2σ2
X̃
] =

1/
√
2πσ2

X̃
· exp [−(k+ d/σX̃)

2/2] = 1/σX̃ · ϕ(k+ d/σX̃), where ϕ(·) is the probability

density function of a standard normal distribution. Similarly, fX̃n
(σX̃k+µX̃) becomes

1/σX̃ · ϕ(k). Then, Equation (99) is reexpressed as

fD̂n
(d) =

∫ ∞

−∞

m(m− 1)

σX̃
ϕ(k +

d

σX̃
) ϕ(k) [Φ(k +

d

σX̃
)− Φ(k)]m−2dk

=
1

σX̃
fS(

d

σX̃
),
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where fS(s) is the probability density function of S = Z(m) −Z(1), when Zi is a stan-

dard normal random variable, and Z(i) represents the i-th order statistic. Therefore,

we can easily obtain that E[D̂] = σX̃ ·E[S] and V ar[D̂] = σ2
X̃
·V ar[S]. Because S is a

‘µX̃ and σ′
X̃
- free random variable, V ar[D̂] has a linear relationship to V ar[X̃]. Thus,

we can conclude that the variance of D̂ has the same distribution as the variance of

X̃. 2

Using the algorithm of estimating the covariance matrix introduced by Davis [18], we

determine V ar[S], and σ̂2
D̂
is σ̂2

X̃
· V ar[S]. The variance estimate of X̃ is the sample

variance of X̃1, X̃2, · · · , X̃m. Because X̃i, 1 ≤ i ≤ m follows a normal distribution,

their sample variance has a chi-squared distribution. As a result, σ̂2
D̂
also has a chi-

squared distribution. From Equation (96), we estimate the test statistic with D̂ and

σ̂2
D̂
as well as their distributions.

4.6 Illustrative example

This section illustrates simulation investigations of the sample size calculation using

the proposed methodology, particularly of the model assessment. Denoted Steps of

the following match the steps in Algorithm 1 in Section 4.4. [Step 0] Let f be a true

model defined by

f(x) = −7 · 10−5x(x− 5)(x− 7)(x− 10)(x− 1)+ 2 · 10−2(x− 5)3 +10−8 · exp(x)) + ε,

where noise ε ∼ N(0, 52). The explanatory domain is x ∈ [−18, 26], and the tolerance

requirement is δ = 1. The true parametric model is a fifth-order polynomial with an

exponential term, thus simple parametric regression modeling can never capture the

true model. Figure 21 depicts the true function with different x domains.

The left plot shows the overall trend, and the right plot shows the closer view with

a smaller design space (x ∈ [−12, 8]). Figure 21 proves that the upper(wider) layer

needs a more complex model structure than the lower(narrower) layer does. [Step

1] Assume that the underlying model for the estimation is a fourth-order polynomial
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Figure 21: True function over (a) the overall range and (b) x ∈ [−12, 8]

at the global layer. [Step 2] Then, at least 6 samples are necessary to estimate a

fourth-order polynomial model and a mean squared error.

[Step 3, 4] When six samples are collected through the use of minimum en-

ergy design (space-filling design), the estimated model with fourth-order polynomial

regression is ŷ = −5.48 + 1.12x − 0.0002x2 − 0.0047x3 + 0.0003x4. Note that the

minimum energy design is used for the entire sample collection for consistency. The

distribution of the estimated coefficient β̂ is well known as a multivariate normal

distribution, that is,

β̂ ∼MN
(
µβ̂,Σβ̂

)
,

where

µβ̂ =



−5.48

1.12

−0.0002

−0.0047

0.0003


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Σβ̂ =



0.697 −0.0056 −6.59 · 10−3 9.12 · 10−5 7.18 · 10−6

−5.68 · 10−3 0.048 −1.45 · 10−3 −3.73 · 10−4 1.55 · 10−5

−6.59 · 10−3 −0.0015 1.58 · 10−4 1.14 · 10−5 −6.91 · 10−7

9.12 · 10−5 −0.00037 1.14 · 10−5 3.1 · 10−6 −1.31 · 10−7

7.18 · 10−6 1.5 · 10−5 −6.91 · 10−7 −1.31 · 10−7 5.95 · 10−9


.

[Step 5] In this example, the bootstrap number ism = 100. Bootstrap resampling

enables us to obtain the distribution of X̃ and the estimation of D. [Step 6] Based

on the bootstrap resampling result, the estimation of D is D̂ = max(X̃)−min(X̃) =

22.48. The histogram and Q-Q plot in Figure 22 show that the distribution of X̃
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Figure 22: (a) Comparison of the histogram of X̃ and a normal distribution,
N(µX̃ , σ

2
X̃
); (b) Q-Q plot for the normality check

is approximately a normal distribution. The mean and the standard deviation of X̃

are µ̂X̃ = −6.957 and σ̂X̃ = 2.027, respectively. Pearson Chi-Square normality test

proves that X̃ follows a normal distribution with the value of the Pearson chi-square

statistic = 273.55 and p-value = 2.2× 10−16.

[Step 7] Because D̂ is the range of order statistic, X1, · · · , Xm, the distribution

of the range, D̂, is known as Equation (100).

fD̂(d) =

∫ ∞

−∞
m(m− 1)fX̃(v + d)fX̃(v)[FX̃(v + d)− FX̃(v)]

m−2dv, (100)
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where m is the bootstrap number, fX̃(x) is the probability density function of X̃,

and FX̃(x) is the cumulative density function of X̃. Because the probability and the

cumulative density functions of X̃ are derived in Step 6, the mean and the standard

deviation of D̂ are calculated by Equation (100), i.e., µ̂D̂ = 10.16531 and σ̂D̂ =

1.226641, respectively.
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Figure 23: (a) Comparison of fD(d) and a normal distribution, N(µD, σ
2
D); (b) Q-Q

plot for the normality check

Figure 23(a) shows the original probability density function of D̂ and its approxima-

tion. The probability density function of D̂ is derived by Equation (100). Nor-

mal approximation is used for the distribution of D̂ with the mean µD̂ and the

variance σ2
D̂
. That is, the approximated function (solid line in Figure 23(a)) is

D̂ ∼ N(10.16, 1.2272). The right panel, Figure 23(b), shows the Q-Q plot for the

normality check. Additionally, Pearson Chi-Square normality test proves that D̃ fol-

lows a normal distribution with the value of a Pearson chi-square statistic = 351.04

and a p-value = 4.6 × 10−12. The red vertical line in Figure 23(a) is D̂, i.e., x = D̂.

By the definition of D̂, D̂ is D̂ = 9.15 − (−13.33) = 22.48 as seen in Figure 22(a).

Because the sample size (6) is not enough to generate the stable X̃s, D̂ is far from

µD̂.

[Step 8] Equation (96) defines the test statistic. The domain of the global layer
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is x ∈ [−18, 26]. Thus, the diameter (width in 1-dimension) of the global layer is

26−(−18) = 44. The width of the next layer halves by the assumption in Section 4.3,

i.e., the diameter of the following layer is 22. A radius of a layer defines the layer size.

Thus, the layer size for the following layer, r1, is 11 in our example. The test statistic

by Equation (96) is T6 = (D̂−2r)/σ̂D̂ = (22.48−2·11)/1.227 = 0.3913. Recall that σ̂D̂

is a random variable due to the randomness from the noise variance estimate, σ̂ε. We

know that the MSE estimates σ̂2
ε and follows a chi-squared distribution. Therefore,

it is assumed that σ̂2
X̃
, follows a chi-squared distribution with the degree of freedom

df = n − p − 1, where n is the sample size and p is the order of the polynomial.

Figure 24 shows the distribution of σ̂2
X̃
and compares it to a χ2

n−p−1 = χ2
1, n = 6 and

p = 4. Kolmogorov-Smirnov test proves that σ̂2
X̃
∼ χ2

n−p−1 with p-value= 0.0541 and
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Figure 24: Comparison of χ2
1 and the distribution of σ̂2

X̃

the test-statistic value=0.19. In conclusion, distribution of the test statistic is ratio

of a normal distribution over the square root of a chi-squared distribution. Figure 25

shows the distribution of the test statistic with the critical value for α = 0.1 and the
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test statistic.
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Figure 25: The distribution of a test statistic

[Step 9] The hypothesis test is rejected when T6 < Critical V alue. The critical

value can be derived from the distribution of the Test Statistic with a given α. Since

the observed value of the test statistic is not in the rejection region, the hypothesis

test cannot be rejected when n = 6 with α = 0.1. That is, the model estimated by

6 samples derives the optimum estimate which will lead into the incorrect direction.

Table 5 summarizes the results of the hypothesis test for the different layers and

sample sizes. Recall that the hypothesis test is rejected when the test statistic is

smaller than the critical value. Both the test statistic and the critical value depend

on the sample size. Decision in Table 5 is based on the hypothesis test introduced

in Section 4.3. [Step 10] From Layer 1, the observed test statistic Tn becomes

smaller than the critical value from n = 8 based on Table 5. Thus, we collect n = 8

samples and estimate a model for Layer 1. The mean of X̃, µX̃ , derived by the

model determines the location of Layer 2, i.e., Layer 2 = {x : x ∈ [µX̃ − r1, µX̃ +

r1] = [−19.3914, 2.6086]}. Because Layer 1 is [−18, 26], the range of Layer 2 exceeds

the global layer. Therefore, Layer 2 will be truncated to [−18, 2.6086] . The same
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procedure (Step 2 to 9) is performed for the sample size calculation in Layer 2. Figure
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Figure 26: True function over Layer 2 [-18, 2.6]

26 depicts the true function f in Layer 2: [-18, 2.6086]. With a 3rd order polynomial,

we can estimate the process optimum, X̃. The distribution of X̃ and Q-Q plot is in

Figure 27.
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Figure 27: (a) Comparison of the histogram of X̃; (b) Q-Q plot for the normality
check

Compared to the model in Layer 1, the model has more confidence, thus the variance of

X̃ is smaller in Layer 2. From the bootstrap resampling, the effect size estimate is D̂ =

1.54, and the mean and the variance of X̃ are µ̂D̂ = 1.045, σ̂D̂ = 0.126, respectively.
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In Figure fg:layer2-x, Q-Q plot shows that X̃ follows a normal distribution. The

distributions of D̂ and σ̂D̂ are depicted in Figure 28.
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Figure 28: (a) Comparison of fD(d) (dash line) and a normal distribution, N(µD, σ
2
D)

(solid line); (b) distribution of σ̂D̂

As we zoom the region, the model view becomes simpler as explained in Section

4.2. Thus, the underlying model structure for Layer 2 has smaller order than the

model for Layer 1. We used a fourth-order polynomial in Layer 1. Thus, a third-

order polynomial model is used for Layer 2. The evaluation metric decides the last

layer. The evaluation metric decision will be explained in Section 4.7.2. Based on the

Table 5, 5 samples are collected from Layer 2.

Table 5: The critical value and the test statistic for different sample sizes

Layer Sample size Critival Value Test Statistic Decision

Layer 1
6 -51.24156 0.3913 Do not Reject
7 -39.77246 -33.21269 Do not Reject
8 -35.95188 -70.57089 Reject

Layer 2
5 -48.43064 -153.38967 Reject
6 5.770265 4.251640 Reject
7 1.8722264 0.9471903 Reject
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4.7 Methodology properties

4.7.1 Type I and Type II errors

Type I errors (α) and Type II errors (β) describe the particular flaws in a testing

process where a true null hypothesis is incorrectly rejected (Type I error) or a false

null hypothesis test is not rejected (Type II error). In particular, the power (1 − β)

measures the ability to reject the null hypothesis when it is actually false, i.e., power

= P ( Reject H0 | H0 is false). That is, Type I and II errors can demonstrate the

effectiveness of the proposed methodology.

For the simplicity, let S = d(µ, X̃) − 2r = D − 2r, and the estimator of S, Ŝ

be Ŝ = D̂ − 2r. Then, the null and the alternative hypotheses become H0 : S = 0

versus H1 : S < 0. Since the variances of Ŝ and D̂ are the same, the test statistic

is T.S. = Ŝ/σ̂Ŝ. When the test statistic follows a t-distribution, the Type I error for

the hypothesis test is as follows:

Type I error = P ( Reject H0 | H0 true)

= P ( T.S. < −tα,n−p−1 | d(µ, X̃) = 2r)

= P (
Ŝ

σ̂Ŝ
< −tα,n−p−1 | S = 0)

= P (
Ŝ − 0

σ̂Ŝ
< −tα,n−p−1)

= P (Z < −tα,n−p−1)

= Φ(−tα,n−p−1).

If the degree of freedom, n− p− 1, is large enough, the Type I error equals α, a level

of significance. However, in our example, the test statistic does not follow a student t-

distribution. Thus, the critical value, −tα,n−p−1, will be replaced by the value found in

the empirical distribution. In addition, the empirical cumulative density distribution

function will substitute Φ(·) in the above formula.
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A similar procedure generates the Type II error as follows:

Type II error = P ( Do not reject H0 | H1true)

= P ( T.S. > −tα,n−p−1 | d(µ, X̃) ≤ 2r)

= P (
Ŝ

σ̂Ŝ
> −tα,n−p−1 | S ≤ 0)

Type II error(τ) = P (
Ŝ

σ̂Ŝ
> −tα,n−p−1 | S = τ)

= P (
Ŝ − τ + τ

σ̂Ŝ
> −tα,n−p−1 | S = τ)

= P (
Ŝ − τ

σ̂Ŝ
> −tα,n−p−1 −

τ

σ̂Ŝ
| S = τ)

≈ 1− Φ(−tα,n−p−1 − τ/σ̂Ŝ).

As the power is 1 − β, the power of the hypothesis test is Φ(−tα,n−p−1 − τ/σ̂Ŝ).

According to the formula, the power increases with the values of the parameter τ .

For a specific value of τ , we obtain a higher power by increasing the sample size

n, because −tα,n−p−1 increases as n increases. Because τ is negative, decreasing τ

increases the power. Thus, the maximum of the power with a specific sample size n is

not estimable, yet we can estimate the infimum value of the power when τ is nearly

zero. Table 6 summarizes the power of the hypothesis test in our example.

Table 6: Power for different layers and sample sizes

Sample Size 5 6 7 8
Layer 1 NA 0.131 0.359 0.949
Layer 2 0.970 1.000 1.000 1.000

Recall that eight and five samples are required for the first and second layers, respec-

tively. The corresponding power is 0.949 and 0.970.
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4.7.2 Evaluation metric comparison

The evaluation metric for a layer R is introduced in Equation (97). The metric L(R)

depends on the layer R and the sample size n. For different layers and different sample

sizes, L(R) is calculated and is depicted in Figure 29.
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Figure 29: Evaluation metric changes over different sample sizes from three layers

In the global layer, because of the model mismatch, it cannot meet the tolerance

requirement even though we increase the sample size. The possible minimum toler-

ance, L(R1), is 1.91 with ten samples in Layer 1. When the tolerance requirement is 1

(δ = 1), any models in Layer 1 can never meet the tolerance requirement. Therefore,

there is no option to stop at the Layer 1 to satisfy the tolerance requirement objective.

Based on the graph in Figure 29, the metric in Layer 2, L(R2), is smaller than

the requirement when the sample size exceeds n = 13. Similarly, the metric in Layer

3 drops below 1 from n = 4. Thus, we can stop the multi-layer procedure at the

second layer with eight samples from Layer 1 and thirteen samples from Layer 2.

Another possible option is that we can lower the multi-layer system until the Layer
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3. In that case, eight samples from Layer 1, five samples from Layer 2 (both are

based on the model assessment by Table 5), and four samples from Layer 3. The final

decision depends on the experimental budget. If the budget can cover 21 experiments

(=13+8), then the multi-layer system can stop at the Layer 2. Otherwise, the multi-

layer system is performed until the third layer, and 17 (=8+5+4) experiments can

estimate the model which can meet the tolerance requirement.

4.7.3 Mean squared error comparison

One of the several objectives in the proposed methodology is to estimate the process as

accurate as possible. After estimating the model, we need to evaluate the correctness

of the model. MSE is widely used to estimate model error and quantify the model

accuracy. Because we are proposing a multi-layer system, we need to compare the

model accuracy for each layer. We obtain the MSE by the formula, MSE =
∑

(yi −

ŷi)
2/(n− p− 1). However, for the MSE for each layer, we standardize the calculated

MSE by dividing the size of the region. That is, the MSE for Layer i is

MSEi =

∑m
i=1(yk − ŷk)

2/(m− p− 1)

size(Li)
, (101)

where m is an arbitrary number, and p is the model order in the layer. For this

example, we choose m = 30. Table 7, which summarizes the results, clearly shows

that MSE decreases as we go down the layers, which means that the model becomes

more reliable.

4.7.4 With or without multi-layer?

Employing the proposed multi-layer system raises a question, ‘what happens when

the multi-layer system is not used, so all samples are collected at the global layer?’.

Figure 30 shows the results.
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Table 7: Mean Squared Error for different layers

Layer (8,5,4)

After standardizing
Layer 1 472.2588
Layer 2 6.245107
Layer 3 3.147543

Before standardizing
Layer 1 20779.39
Layer 2 128.7029
Layer 3 34.62298

Figure 30 depicts three functions in each figure. The solid line is the true function.

The black wide-dotted line is the estimated function using the proposed methodology.

The sample size for each layer is (n1, n2, n3) = (8, 5, 4). The small-dotted function

is the estimated function using 17 samples at the global layer. The total sample

usages are the same, while the model estimation significantly improves by using the

proposed methodology. Especially, the Layer 3 which is the closest neighborhood

of the true optimum and the most important region shows the biggest difference.

The model without using the multi-layer system is far from the true model while

the model using the system is close to the true model. Therefore, we can conclude

that the multi-layer system works effectively for the purpose of the accurate model

estimation, especially around the optimum.

4.8 Discussion

This chapter has proposed a sample size calculation based on a multi-layer system.

Determining a sample size is an important issue because samples that are too large

consume computational time and resources, and samples that are too small can lead

to incorrect results. Our proposed method minimized the sample size for the esti-

mation of the process optimum associated to the multi-layer system, and our sample

size methodology satisfied the tolerance requirement. The simulation results demon-

strated that the proposed methodology successfully estimated the model details and
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the optimum satisfying the tolerance requirement.

Several methods determine the sample size. However, the proposed methodology

enables to satisfy several objectives at the same time. The first and the most impor-

tant objective is to estimate an input setting of having an optimum. By estimating

the optimum at every layer, we do not miss the optimum and keep including it. In

addition, the model estimation is precise with taking the multi-layer system, espe-

cially around the optimum region. When the original model has very delicate details,

it is easy to miss the optimum even though we are almost close. Therefore, the tight

tolerance around the optimum is necessary to get more robust results.

We used a space-filling design to collect samples with a fixed layer size. The

space-filling design is useful when model information is unknown. However, as the

layers go deeper, model information come from the previous layer as prior knowledge.

Therefore we suggest that the optimal design is more suitable than the space-filling

design after passing a certain number of layers.

The multi-layer system is an unexplored and very fruitful area of research. We

believe that there is a tremendous reservoir of applications where this methodology

can be utilized, particularly for sensitive and complex systems.
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APPENDIX A

ADDITIONAL NOISE FACTORS

1. Lack of Knowledge

To calculate the solubility constraint which is described in Chapter 3, we use

the equation of state [65] for supercritical CO2 and calculate the density of

CO2, ρCO2 . The program code has been developed by Weon Shik Han [43] and

modified by Andres Hernandez. We highly depend on the code and assume that

it is right, but obviously it is possible that some parts are missing.

2. Particle Size

Even though the CNT is ordered from same company, they have different par-

ticle size. Some are big and some are fine powder. So mortar and pestle are

needed to grind large particle to powder and this may affect the result.

Recall that α is the concentration of active sites in 19 and 20.

Figure 31: Impact of carbon nanotube particle Size

Figure 31 explains how CNT particle size affects the result. α′s are distributed

on the CNT. However, when a particle is large enough, only α on the surface is
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usable; red square in 31. Making smaller CNT particle increases CNT surface,

and it implies increasing of usable α. One more thing we have to consider is,

even though 31 shows α′s are uniformly distributed on the surface, but in reality,

they are not. Thus, number of α differs by choice of CNT surface.

3. Reactor

Figure 32: Experimental equipment: vessel in the oven

Figure 32 shows the real experimental image. The cylinder in the middle is the

vessel, and all chemicals are reacting in the vessel. During an experiment, the

vessel is heated up in the oven, since Erkey uses thermal reduction. As you see

in Figure 32, the vessel is putted in horizontal. It is known that vessel position

and shape can affect the result, e.g., vertical vessel, or square pillar.

4. Differential Equation

In the program (Matlab) code, ODE23s and ODE45 is used to solve differential

equations. If we change the program, not Matlab, or change the solving com-

mand - since there are several function for solving differential equation - results

can be changed. However, at this moment, we will follows Matlab built-in ODE

functions, and assume the functions gives a correct answer.

5. Pump fluctuation Hydrogen pressure controller (manually adjusted)

6. Hydrogen pressure measurement (± 10 psi)

7. Leaking of gas (affect the equilibrium)
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8. Fluid inside reactor is pushed back to pump during the reactors heating up

process (raise temperature to T2)

9. Hydrogen and CO2 mixture is pushed back to the pump during the mixing

10. Air inside reactor when running experiment (small amount relative to CO2)

11. Thermal reduction

12. Exposure of CNT to high temperature after reaction

13. Variation among substrates

14. Thermal degradation might lead to weight loss of CNT (at 200C, < 5%)

15. Inconsistent depressurization (done manually-too fast or too slow)
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APPENDIX B

ATOMS TO NM CONVERSION

- Density of Platinum : 21.45 g/cm3

- Platinum Molecular Weight : 195.08 g/mol

- Avo- gadro’s number : 6.02 ×1023 atoms/mol

21.45g

1cm3
· 1mol

195.08g
· 6.02× 1023atoms

1mol
· ( 100cm
109nm

)3

=
66.192 atoms

1 nm3

Therefore, 1 nm3 = 66.102 atoms, and use formula for volume of a sphere,
4

3
πr3,

4

3
π(
x nm

2
)3 =

y atoms

66.192

x nm = 2× (
y atoms

66.192 · 4/3 · π
)1/3
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APPENDIX C

HOW TO CALCULATE THE IMPURITY

The maximum of impurity is 3.22 %.

- Molecular weight of the Pt(acac)2 : 393.31 [g/mol]

- Platinum Molecular Weight: 195.08 [g/mol]

If precursor contains no impurity, the amount of platinum should be 49.6 % (=

195.08 / 393.31) theoretically. However, the specifications say 48 % minimum.

48% ≤ 195.08

393.31 + impurity
≤ 49.6%

0 ≤ impurity ≤ 13.1 [g/mol]

0% ≤ impurity

393.31 + impurity
≤ 3.22%
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APPENDIX D

HOW TO CALCULATE THE LOAD

- Density of Platinum : 21.45 g/cm3

- Platinum Molecular Weight : 195.08 g/mol

- Avo- gadro’s number : 6.02 ×1023 atoms/mol

- Volume : 54 cm3

mwPt ·
n∑

i=1

iCi

= 195.084 [
g

mol
] ·
∑

i Ci [
mol

cm3
]

= 195.084 [
g

mol
] ·
∑

i Ci [
mol

cm3
] · 54 [cm3] · 1000 [

mg

g
]

= 195.084× 5.4× 104
∑

iCi [mg]
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APPENDIX E

DERIVING THE PROBABILITY DENSITY FUNCTION

The distribution of U can be derived by the definition of U and η. The sample space

of U is {0, 1}. The πi is defined by πi = P (Ui = 1), and 1 − πi = P (Ui = 0. Thus,

f(Ui = 1|δ) = πi, and f(Ui = 0|δ) = 1 − πi. Recall that ηi = log(πi/(1 − πi)).

Then, exp{ηi} = πi/(1 − πi). If f(Ui|δ) = exp{Uiηi} · (1 − πi), then f(U = 1|δ) =

exp{ηi}·(1−πi) = πi/(1−πi)·(1−πi) = πi and f(U = 0|δ) = exp{0}·(1−πi) = 1−πi.

Therefore, f(U |δ) = exp{Uiηi} · (1 − πi). To make f(Ui|δ) in a function of ηi, the

second term, 1−πi, is transformed to (1+exp{η})−1. Therefore, f(Ui|δ) = exp{Uiηi}·

(1+exp{η})−1 = exp{Uiηi−log[1+exp(ηi)]}. As mentioned before, Ui is independent

for i = 1, 2, · · · ,m, so f(U |δ) is the product of f(Ui|δ) in Equation (38).
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APPENDIX F

DISTRIBUTION OF X TILDE

Proposition: When there is a second order model y = β0+β1x+β2x
2, model vertex

X̃ = −β1/2β2 follows a normal distribution.

Proof: For the simplicity, let β1 = X and β2 = Y . Then, X̃ becomes −X/2Y .

If a random variable W follows a normal distribution, then −2W follows a normal

distribution as well. Thus, the normalness of X/Y derives the normalness of −X/2Y .

Because a normal distribution is symmetric, without loss of generality, the proof is

based on assuming Y > 0.

We know that the estimated parameters in a linear polynomial model have a

normal distribution. Thus, X and Y follows a normal distribution. However, they

are correlated. Let the joint density of (X, Y ) is g(x, y). Then the c.d.f. ofW = X/Y ,

f(w) is

FW (w) = P (W ≤ w)

= P (X/Y ≤ w)

= P (X ≤ wY )

=

∫ ∞

0

∫ yw

−∞
g(x, y)dxdy.

Thus, the p.d.f. of W is the first derivation of FW (w) over w, that is, f(w) =
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dFW (w)/dw.

f(w) =
d

dw

∫ ∞

0

∫ yw

−∞
g(x, y)dxdy

=

∫ ∞

0

d

dw

∫ yw

−∞
g(x, y)dxdy

=

∫ ∞

0

y · g(yw, y)dy

=

∫ ∞

−∞
|y| g(wy, y)dy.

When X ∼ N(θ1, σ
2
1) and Y ∼ N(θ2, σ

2
2), the cumulative distribution function F (W )

of W is found by direct calculation to be

F (W ) = L{ θ1 − θ2w

σ1σ2a(w)
,− θ2

σ2
;
σ2w − ρσ2
σ1σ2a(w)

}+ L{ θ2w − θ1
σ1σ2a(w)

,
θ2
σ2

;
σ2w − ρσ2
σ1σ2a(w)

},

where L(h, k; γ) is the standard bivariate normal integral tabulated by the National

Bureau of Standards (1959) and a(w) = (w2/σ2
1−2ρw/σ1σ2+1/σ2

2)
1/2. When θ2/σ2 →

∞ [28],

F (w) → Φ

(
θ2w − θ1
σ1σ2a(w)

)
.

In the denominator, a(w) is approximately a(w) ≈ a(w0)+a
′(w0)(w−w0)+a

′′(w0)(w−

w0)
2/2 + · · · . When w0 = ρσ1/σ2, then a

(h)(w0) is zero when h ≥ 1. Then,

F (w) → Φ

(
θ2w − θ1

σ1(1− ρ2)/σ2

)
.

I.e.,

W ∼ N

(
θ1
θ2
,

(
σ1(1− ρ2)/σ2

θ2

)2
)
.

Condition: θ2/σ2 → ∞
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