
SAFEGUARDING HEALTH DATA WITH ENHANCED
ACCOUNTABILITY AND PATIENT AWARENESS

A Thesis
Presented to

The Academic Faculty

by

Daisuke Mashima

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2012

SAFEGUARDING HEALTH DATA WITH ENHANCED
ACCOUNTABILITY AND PATIENT AWARENESS

Approved by:

Professor Mustaque Ahamad, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Wenke Lee
School of Computer Science
Georgia Institute of Technology

Professor Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Ling Liu
School of Computer Science
Georgia Institute of Technology

Professor Mark Braunstein
Health Systems Institute
Georgia Institute of Technology

Date Approved: 13 August 2012

To my wife,

Yumi Mashima

for always being by my side, and

to our parents,

Tokiko and Toshiaki Miyamoto and

Mitsue and Kiyoshi Mashima

for encouraging us to accomplish our challenge.

iii

ACKNOWLEDGEMENTS

Without direct or indirect support from numerous people, completion of this disser-

tation would not have been possible. I would like to take this opportunity to express

my sincere gratitude to some of them.

First and foremost, I would like to thank my advisor, Professor Mustaque Ahamad,

who has been leading me towards the goal all the way from the very beginning of my

PhD study. I learned a lot from him, including the way to systematically conduct

academic research in the information security area. Also, he spared enormous amount

of time for me, whenever I needed his help, to discuss issues and directions of my

research. Without his insightful guidance, I could have got lost in the middle of this

long journey.

In addition, Professor Douglas Blough, Professor Mark Braunstein, Professor

Wenke Lee, and Professor Ling Liu generously joined my PhD dissertation com-

mittee and provided me with a number of valuable comments and feedback. I am

convinced that their guidance helped me effectively improve the quality of this dis-

sertation. Professor Sasha Boldyreva and Professor Jonathon Giffin also helped me

by sharing their expertise at different stages, which was of great help to address the

issues I encountered in my research work. I could never thank them enough.

I was very fortunate to collaborate and interact with great students at Georgia

Tech during my PhD study. I really enjoyed working with David Bauer, Apurva

Mohan, Bhuvan Bamba, David Cash, Italo Dacosta, Balaji Palanisamy, Musheer

Ahmed, Swagath Kannan, Ramkumer Krishnan, and Jeff King as part of MedVault

project. The work with them enabled me to establish the solid foundation of research

explored in this dissertation. It was also my great pleasure to have an opportunity to

iv

collaborate with Abhinav Srivastava, Virendra Kumar, and Jordan Brown. Besides, I

would like to thank all current and former GTISC students, whose innovative research

work inspired me.

Moreover, I am very thankful to GTISC staff members, especially Ms. Mary

Claire Thompson and Ms. Alfreda Barrow. Their kind support and timely assistance

eliminated a variety of distractions and complexities that could have slowed down the

progress of my research work.

I also greatly thank Dr. Nobuo Shinozaki, Dr. Akihiro Shimizu, Mr. Tomoyoshi

Hada, and Mr. Matt Flynn for their support when I applied for Georgia Tech. With-

out their generous and selfless assistance, I was not able to even start my work here.

Last but not least, I would like to give my special thanks to my family. My wife,

Yumi, entirely sacrificed her life to tirelessly assist my work. She has always been by

my side, which gave me strength to face and overcome difficulties. I would also like to

thank our parents for their understanding and encouragement. Whatever situation

they were in, they always offered me warm words and encouraged me to move forward.

Without their considerate backup, my PhD could never be attained.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Background . 1

1.2 Real-world Incidents . 3

1.2.1 Theft and Misuse of Patient’s Identity 3

1.2.2 Healthcare Fraud . 3

1.2.3 Accidental Loss and Disclosure 3

1.2.4 Privacy Breach by Snooping 4

1.3 Challenges . 4

1.3.1 Theft and Misuse of Patient Identity 5

1.3.2 Unauthorized Usage and Update of Electronic Health Records 6

1.3.3 Threats from Insiders in a Healthcare Organization 8

1.4 Thesis Statement and Overview . 10

II RELATED WORK . 12

2.1 Emerging Infrastructure and Standards for Health Information Sharing 12

2.2 User-centric Identity Management Systems 14

2.3 Misuse and Fraud Detection Systems 17

2.4 Mandatory Access Control and Information Flow Control 19

2.5 Provenance of Electronic Data . 21

2.6 Cryptography-based Approaches . 22

2.7 Summary . 24

vi

III PROTECTING ONLINE IDENTITY CREDENTIALS VIA USER-
CENTRIC MONITORING . 26

3.1 Introduction . 26

3.2 GUIDE-ME: Georgia tech User-centric IDEntity Management Envi-
ronment . 29

3.2.1 Motivation . 29

3.2.2 System Overview . 30

3.2.3 Remaining Threats . 32

3.3 Approach to Handle Identity Agent Compromise 33

3.4 User-centric Monitoring Agent in GUIDE-ME 36

3.4.1 System Architecture . 36

3.4.2 Implementation Details . 38

3.4.3 Revocation and Recovery . 41

3.5 Evaluation . 43

3.5.1 User Centricity . 43

3.5.2 Security Analysis . 44

3.6 Summary . 49

IV PATIENT-CENTRIC MONITORING FOR ELECTRONIC HEALTH
RECORD USAGE AND UPDATE 51

4.1 Introduction . 51

4.2 System Model and Approach . 53

4.2.1 Assumptions and Scope . 54

4.2.2 Approach for Accountable Access 57

4.3 Cryptographic Primitives . 59

4.4 Protocol Description . 61

4.4.1 Accountable Update of Health Record 63

4.4.2 Accountable Usage of Protected Data 68

4.5 Security Discussion . 71

4.5.1 Cryptographic Guarantee for Patient-centric Monitoring . . . 71

4.5.2 Compromised Issuer / Consumer Devices 72

vii

4.5.3 Malicious / Misbehaving Third-party Issuer 73

4.5.4 Compromised / Misbehaving Repository 74

4.5.5 Limitations . 75

4.6 Summary . 77

V INFORMATION ACCOUNTABILITY IN ELECTRONIC HEALTH
RECORD SHARING . 78

5.1 Introduction . 78

5.2 Scope, Assumptions, and Goals . 80

5.3 Protocol Design . 83

5.3.1 Accountability Tag . 83

5.3.2 List of Authorized Repositories 85

5.3.3 Protocol Details . 86

5.4 Correctness . 91

5.4.1 Application Scenarios . 93

5.5 Security Discussion . 95

5.6 Application to Other Domains . 98

5.7 Summary . 100

VI SECURE AND REMOTELY-AUDITABLE CLIENT DEVICES FOR
HEALTHCARE ORGANIZATIONS 101

6.1 Motivation . 101

6.2 High-level System Design . 102

6.3 Handling and Sharing of Electronic Health Records 106

6.3.1 Downloading Electronic Health Records from a Repository . 107

6.3.2 Consuming Electronic Health Records 108

6.3.3 Sharing Electronic Health Records 109

6.3.4 Uploading Electronic Health Records to a Repository 111

6.4 Correctness of Design and Security Discussion 112

6.5 Summary . 115

viii

VII IMPLEMENTATION OF A PATIENT-CENTRIC, SECURE, AC-
COUNTABLE ELECTRONIC HEALTH RECORD SYSTEM . 116

7.1 Integration Scenario . 116

7.1.1 Integration into NwHIN-like Architecture 116

7.1.2 Integration into MedVault System 120

7.2 System Performance . 121

7.2.1 User-centric Identity Management and Monitoring System . . 121

7.2.2 Patient-centric Monitoring System for Electronic Health Records123

7.2.3 Secure Client Device System for Healthcare Organizations . . 129

7.3 Summary . 134

VIII CONCLUSIONS AND FUTURE WORK 135

8.1 Summary of Contributions . 135

8.2 Future Work . 137

8.2.1 Anomaly Detection for Selective Alert 137

8.2.2 User-friendly Data Visualization 138

8.2.3 Protection and Management of Mobile Devices in Healthcare
Organizations . 138

8.2.4 Application to Other Domains 139

REFERENCES . 140

ix

LIST OF TABLES

1 Protocol Message Description . 37

2 Description of Entities . 54

3 Primitives of UDVS Scheme . 62

4 Notations Used in Protocol Description 64

5 Additional Notations Used in Protocol Description 86

6 Throughput of RP and Remote IdA in GUIDE-ME System 122

7 Response Time at Issuer and Consumer 126

8 Processing Time at Repository and Patient-centric Monitoring Agent 126

9 Components in Accountability Tag System 127

10 Overhead for Information Accountability 128

x

LIST OF FIGURES

1 The Nationwide Health Information Network ([10]) 13

2 Overview of GUIDE-ME Architecture 30

3 Basic Idea of Our Approach Using 2-3 Threshold Signature Scheme . 33

4 Overview of Prototype Implementation 37

5 Architecture and Message Flow of Accountable Update Protocol . . . 65

6 Accountable Update Protocol . 66

7 Architecture and Message Flow of Accountable Usage Protocol 69

8 Accountable Usage Protocol . 69

9 Overview of an Accountability Tag: A downloads a record with PreTag
from the repository, and shares the record and Tag with B after tag
activation. B, after tag confirmation, can either submit the record
to its own repository (dotted arrows) or present the record and tag
to a legitimate consumer (C). At the end of Accountable Update, the
monitoring agent adds Repo-B to its repository list. 84

10 Generation of Accountability Tag . 87

11 Accountable Update with Accountability Tag 88

12 Accountable Usage with Accountability Tag 89

13 High-level Idea of Client Device Design Using System Virtualization
and Threshold Cryptography . 104

14 Overview of the System Architecture 106

15 Downloading Electronic Health Records 107

16 Consuming Downloaded Electronic Health Records 108

17 Sharing Electronic Health Records . 110

18 Uploading Electronic Health Records 111

19 Integration into NwHIN-like Architecture 117

20 Integration into MedVault Architecture 120

21 Setting for Response Time Measurement of GUIDE-ME 121

22 Direct Augmented with Patient-centric Monitoring Agent 124

23 Average Response Time When Downloading EHR 130

xi

24 Average Response Time When Consuming EHR 131

25 Average Response Time When Sharing EHR 132

26 Average Response Time When Uploading EHR 133

xii

SUMMARY

Several factors are driving the transition from paper-based health records to

electronic health record systems. In the United States, the adoption rate of electronic

health record systems significantly increased after “Meaningful Use” incentive pro-

gram was started in 2009. While increased use of electronic health record systems

could improve the efficiency and quality of healthcare services, it can also lead to a

number of security and privacy issues, such as identity theft and healthcare fraud.

Such incidents could have negative impact on trustworthiness of electronic health

record technology itself and thereby could limit its benefits.

In this dissertation, we tackle three challenges that we believe are important to

improve the security and privacy in electronic health record systems. Our approach

is based on an analysis of real-world incidents, namely theft and misuse of patient

identity, unauthorized usage and update of electronic health records, and threats from

insiders in healthcare organizations. Our contributions include design and develop-

ment of a user-centric monitoring agent system that works on behalf of a patient

(i.e., an end user) and securely monitors usage of the patient’s identity credentials as

well as access to her electronic health records. Such a monitoring agent can enhance

patient’s awareness and control and improve accountability for health records even in

a distributed, multi-domain environment, which is typical in an e-healthcare setting.

This will reduce the risk and loss caused by misuse of stolen data. In addition to the

solution from a patient’s perspective, we also propose a secure system architecture

that can be used in healthcare organizations to enable robust auditing and manage-

ment over client devices. This helps us further enhance patients’ confidence in secure

use of their health data.

xiii

In sum, our contributions in this dissertation are:

• A user-centric monitoring agent system for identity credentials and electronic

health records that are stored, consumed, and shared in a distributed, multi-

domain e-healthcare system.

• A scheme and associated protocols to enable patient-centric, actionable infor-

mation accountability of electronic health records.

• A secure design of an e-healthcare system architecture and client-device en-

hancement to counter insider threats, malware attacks, and physical device

thefts.

The prototype implementation of these systems and the results of performance evalu-

ation are presented. We also discuss how our system can be incorporated in state-of-

the-art health information sharing mechanisms, including Nationwide Health Infor-

mation Network (NwHIN or NHIN), to safeguard health data throughout its lifetime.

By presenting a detailed design and a proof-of-concept prototype, in this disser-

tation, we demonstrate that it is possible to establish accountability and support pa-

tient awareness and control in large-scale, distributed, multi-domain environment to

safeguard sensitive health data. We believe that our contributions can complement

security mechanisms implemented in current provider-centric e-healthcare systems

and will allow patients to play a more active role in management and protection of

their own health data.

xiv

CHAPTER I

INTRODUCTION

1.1 Background

In the United States, the transition from traditional paper-based health records to

electronic health record (EHR) systems is being promoted aggressively. The biggest

effort by the government is Medicare and Medicaid EHR Incentive Programs for

“Meaningful Use” of certified EHR technologies [5, 15], which was authorized by

Health Information Technology for Economic and Clinical Health Act (HITECH) in

2009. As a result, the adoption rate of EHR systems has rapidly grown. According

to the Office of National Coordinator for Health Information Technology (ONC), a

total of approximately 90,000 professionals and 2,250 hospitals (42% of all eligible

hospitals) participated the incentive program, as of May, 2012 [38].

EHRs are usually generated and maintained by healthcare organizations, such as

hospitals and physician offices, and could contain, for example, history of a patient’s

medical treatment, prescriptions, doctors’ notes, referrals, records of immunizations,

past lab test results, X-ray pictures, billing and healthcare beneficiary information,

and a patient’s personal information including age, weight, blood type, mailing ad-

dress, and other demographic information.

According to U.S. Department of Health and Human Services (HHS) [15], EHR

systems are expected to improve the quality and efficiency of healthcare by offering:

• Complete and accurate information

• Better access to healthcare data

• Patient empowerment

1

By using EHR, healthcare providers can retrieve complete healthcare-related infor-

mation and history of each patient quickly. Moreover, health information exchange

(HIE) is also defined as one of the core components of “Meaningful Use,” so shar-

ing of such health records among doctors, other types of healthcare providers, and

insurers is dramatically facilitated even across organization boundaries via the Inter-

net. Thus, necessary health records can be readily accessed even in case the patient’s

health records are stored in distant locations, which implies that redundant examina-

tion or lab tests could be eliminated and thereby healthcare cost would be reduced.

In addition, EHR also enables patients to play a more active role in healthcare. For

instance, patients can keep copies of detailed medical records, including lab results

etc., created by healthcare organizations so that they can share and utilize the medical

data whenever necessary.

The concept of personal health record (PHR) has also become popular. PHR

allows a patient to manage the comprehensive healthcare history, including copies

of EHR provided by healthcare organizations, in a single location under her own

control. Such data can be further shared with other parties including healthcare

organizations or can be used to benefit from healthcare-related services provided by

third-party service providers, such as medical advices and weight / blood pressure

tracking, when the patient intends to do so. To facilitate such patients’ usage and

management of their healthcare data, recently PHR services are provided by a number

of online service providers including Microsoft [17].

While the broad adoption of PHR and EHR systems could benefit healthcare

professionals and patients, it would also lead to a variety of security and privacy

problems. We see some of the real-world incidents next and then identify challenges

and goals of this work.

2

1.2 Real-world Incidents

Here, we enumerate a few representative security and privacy incidents of various

types that actually happened in the past.

1.2.1 Theft and Misuse of Patient’s Identity

One of the examples where patient’s identity is misused for financial gain happened in

July, 2008 at Baptist Health Medical Center in Little Rock, AR [30]. An admission

clerk of the emergency department stole patients’ personal information to obtain

temporary Wal-Mart account authorization numbers to buy Wal-Mart gift cards.

It was reported that information of approximately 1,800 patients was potentially

compromised and misused.

1.2.2 Healthcare Fraud

In September, 2006, one front desk office coordinator at Cleveland Clinic in Weston,

FL was indicted for committing healthcare fraud [1]. She abused her access privilege

to download health records of more than 1,100 patients. She then sold them to her

cousin, who owned a medical claims company in Florida. He filed false claims to

Medicare to gain approximately $2.8 million.

Another representative incident is the massive Medicare fraud in 2010 [2]. The

criminals established bogus offices in 25 states and utilized stolen doctor identities as

well as a number of patients’ healthcare beneficiary records to bill Medicare for fake

procedures. As a result, the criminals illegally obtained over $160 million.

1.2.3 Accidental Loss and Disclosure

According to U.S. Department of Health & Human Services (HHS) [7], a large number

of information breaches reported in healthcare settings were accidental and often

resulted from loss or theft of computers belonging to healthcare organizations, for

example [28] and [33]. Moreover, inadvertent disclosure could be caused as a result

3

of careless usage of P2P file sharing by employees [77].

Besides, malware infections of computers where health records are accessed also

pose a risk. In 2010 at University of New Mexico Health Sciences Center, malware

attacked workstations in the center, and 1,898 individuals were affected [7]. Even

though only a small number of malware-related cases have been reported so far, it

would not be surprising that the number of malware attacks targeting healthcare

organizations will increase in the near future, considering the soaring value of health

records.

1.2.4 Privacy Breach by Snooping

One example of this category was the case of Farrah Fawcett [34]. An employee of

UCLA Medical Center snooped the medical records related to her cancer treatment

and leaked them to Enquirer, a tabloid. A similar incident also happened in Kaiser

Permanente [35], where, without any legitimate necessity, 23 employees accessed a

celebrity’s healthcare information, violating the California healthcare privacy law.

Data snooping could be done by people close to patients, such as family members,

relatives, and co-workers. One such example, which is also related to identity theft and

misuse, is mentioned in a recent report by Healthcare Information and Management

Systems Society (HIMSS) [37]. According to it, “In a recent investigative report CNN

reporter Elizabeth Cohen was able to retrieve 18 months worth of medical records

for colleague Gary Tuchman and his entire family in minutes - on live television -

using only his date of birth and social security number.” This example emphasizes

the importance of protection and management of patient’s identity information to

safeguard healthcare information.

1.3 Challenges

To mitigate the risks and threats of security and privacy incidents related to electronic

health record systems, in this section, we summarize the challenges we are going to

4

address in this work.

1.3.1 Theft and Misuse of Patient Identity

When considering the risk of identity theft and misuse in healthcare settings, in gen-

eral, we need to think about two situations, namely “offline” and “online” identities.

An offline identity misuse, for instance, is a case in which an adversary visits a hos-

pital in person and impersonates a victim to receive medical treatments. Since the

verification of identity is often casual and may not even require picture ID, such at-

tacks could succeed. Even though offline identity misuse is a problem that is actually

happening nowadays, our primary focus in this work is the protection of patients’

online (or digital) identity, envisioning that in the near future use of digital identities

will become common when patients access online healthcare services and also when,

in order to mitigate the risk of offline identity misuse mentioned above, they visit

healthcare organizations in person. Another reason is that stolen online identities

could be distributed and widely shared, for instance through a black market, and

thereby could damage legitimate identity owners more seriously.

In the electronic health record systems, patients’ health data is usually stored

in online repositories, for example ones provided by EHR / PHR providers. While

such services benefit patients in a variety of ways, it has also created new security and

privacy issues. Typically the access to an electronic health record system is controlled

with identity credentials such as passwords, just like other types of web-based services.

Thus, once the credentials for authentication or repository access are compromised, an

adversary can easily retrieve data from a PHR repository or compromise the integrity

of healthcare history managed there, as demonstrated in the second case mentioned

in Section 1.2.4. Besides PHR, recent survey [31] mentions that a number of hospitals

allow patients to access their medical records stored in hospitals’ internal electronic

health record (EHR) systems. Since recommendations proposed by the President’s

5

Council of Advisors on Science and Technology (PCAST) in December, 2010 include

the need of patients’ access and control of their own healthcare data [73], patient

access to EHR systems would become more prevalent in the near future.

A number of user-centric identity management schemes have been recently pro-

posed to enable end users to manage their identity credentials, for example OpenID

[110] and Windows CardSpace [59]. However, these schemes are not robust enough

against phishing and physical device theft, as will be discussed in Section 2.2. Once

credentials are compromised somehow, users would lose their control over the cre-

dentials. To minimize losses or damages caused by identity theft and resulting mis-

use, a number of mechanisms have been proposed, such as fraud detection systems

[52, 65, 111]. Though these schemes are successful to some extent, they have a num-

ber of limitations, including lack of user centricity [90]. Details will be discussed in

Section 2.3.

1.3.2 Unauthorized Usage and Update of Electronic Health Records

In electronic health record sharing, including PHR, EHR, and Nationwide Health

Information Network (NwHIN or NHIN) [18], records are usually stored and han-

dled outside of patient’s control while a patient is assumed to continue maintaining

ownership of health records. In this environment, monitoring of health record usage

is desirable to counter threats such as medical identity theft [16]. In other words,

by empowering patients to be informed of usage of their health records regardless of

where the records are stored, we can enable them to initiate appropriate actions in

a timely manner to address potential misuse and thereby to effectively mitigate the

risk of healthcare fraud discussed in Section 1.2.2.

While regulations like the Health Insurance Portability and Accountability Act

(HIPAA) [8] require healthcare organizations to obtain patients’ consent before shar-

ing health records in many contexts, there is no systematic way to enforce patient

6

involvement. For instance, Direct [4] (or NHIN Direct), one of the sub-projects of

NwHIN, leaves enforcement of patient consent outside of its scope and just assumes

that it is handled out of band. Therefore, in reality, it is very difficult for patients to

know how, when, and by whom their health records are accessed.

In addition to usage of health records, it is also important for patients to be aware

of changes to or creation of their health records especially when health records are

hosted by hospitals or other organizations. This is because, as a result of medical

identity theft, a patient’s health data integrity might be compromised by the insertion

of impersonator’s records without the patient’s awareness. If future treatments are

done with such wrong data, it might result in a life-threatening outcome.

User authentication and access control mechanisms on EHR / PHR systems are

not sufficient to counter the threats. For example, there is always a risk of hacking

against servers, physical theft of laptops or data storage hosting sensitive healthcare

data [7], and unauthorized access to the repository by using stolen identities. Fur-

thermore, even after records are legitimately shared with another party, records might

be leaked or shared by it without patient’s awareness or consent.

Use of encryption, as explored in [69] and [88], in order to enforce mediation by

an external auditing system that can log every access to health records on behalf of

patients, could be effective if we would not need to worry about threats like malware

attacks or malicious insiders. However, once decrypted data is compromised by or

intentionally leaked to adversaries, we can not guarantee any patient awareness or

control after that.

For patient awareness, we could introduce the concept of reference monitor [43]

that mediates all accesses to protected resources, health records in our context, and

enforces access control and information flow control policies. However, most of the

proposed schemes work at a host level, and only a few were proposed to support

distributed settings, for example [95]. Even such a scheme does not sufficiently address

7

environments where multiple management domains are involved, which is a common

situation in e-healthcare settings.

1.3.3 Threats from Insiders in a Healthcare Organization

As mentioned in Section 1.2.3, it is not a rare case that devices used in healthcare

organizations are stolen or accidentally lost. If the stolen devices are later misused

by an adversary to abuse the organization’s e-healthcare system, the situation could

be even worse because when the device is in an adversary’s hand, technically he can

mount any sort of attacks with it. In order to address this issue, devices used in

healthcare organizations need to have effective protection against misuse of lost or

physically stolen devices.

Malware threat in healthcare setting is also expected to grow (Section 1.2.3). If

malware can successfully be installed on an e-healthcare client device, it could abuse

identity credentials and steal health records stored there. Such attacks are possible

even in the presence of anti-virus software due to its inability to handle zero-day at-

tacks effectively. This implies that we need to protect important system components,

including e-healthcare client modules and a device user’s identity credentials used to

access electronic health record systems, against malware.

Because the activities or systems run in healthcare organizations are usually out-

side of patients’ control, implementing effective security mechanisms will improve

patients’ confidence and also protect honest users in healthcare organizations from

misuse of their devices by internal or external adversaries. However, rapid adoption

of EHR technologies and health information exchange, at the same time, introduces

non-professionally managed devices in the systems, such as ones used in small doctor

offices [44], which makes secure and reliable device management even more challeng-

ing.

8

Other threats that could be caused by insiders include intentional abuse of sys-

tems as discussed in Section 1.2.4. Furthermore, insiders could misuse the data for

monetary gain or leak the data to external parties, which could result in healthcare

fraud (Section 1.2.2). Even though such abuse of the system is violation of security

and patient privacy, it is very hard to prevent these incidents because insiders have

valid rights to access the records. This implies that user authentication and access

control mechanisms alone would be insufficient. Health record repositories and other

e-healthcare systems nowadays typically implement logging features, and logging and

auditing are part of PCAST recommendations [73]. But a recent study revealed that

they are often insufficient and not fully functional [79]. Without reliable and secure

logging, system abuse by insiders can not be discouraged.

Moreover, to deter inappropriate handling and malicious sharing or disclosure of

sensitive healthcare data, patient’s awareness and control discussed in Section 1.3.2

are not enough. For example, even if a patient can recognize the potential misuse

of her healthcare information, it is not possible for her to identify who is involved

in or responsible for the incident. Even if regulations related to healthcare systems,

such as HIPAA [8], define punishments for responsible or misbehaving insiders, lack

of actionable accountability would not make the culprit fully traceable.

Provenance of electronic data [41, 78, 99, 113] is closely related to accountability.

Data provenance is, at the high level, derivation history of each data, including the

origin and a series of all actions and modifications made on it. Data provenance allows

us to learn who touched and contributed to the data in the past [113], so it is use-

ful for establishing information accountability. However, electronic data provenance

typically requires a centralized repository to aggregate and store assertions issued by

processes or entities that touch the data, which is not often practical in a distributed,

multi-domain settings.

Information flow control schemes in enterprise settings can counter insider threats

9

by limiting the flow of sensitive data. Mandatory access control (MAC) is an option

to control the information flow [109]. However, many of the proposed MAC schemes

are host-based [87, 121], and we have not yet seen successful large-scale deployment

of distributed systems with MAC support. Therefore, complete information flow

control by means of MAC could not be achieved by health information technology

that is likely to be deployed in the foreseeable future.

1.4 Thesis Statement and Overview

In the electronic health record systems as well as traditional paper-based health record

systems, patients have limited awareness and control over their own health records

even though they are considered owners of such data. Considering the sensitive nature

of healthcare data, we believe that patient centricity needs to be enhanced to retain

awareness, control, and accountability over the entire lifespan of electronic health

records.

While a number of new security and privacy threats arose due to the transition to

the e-healthcare era as described earlier in this chapter, recent advancement of com-

puting technologies allows us to do what was not possible in the past. For example,

cloud computing enables ordinary patients to deploy their own “agents” in a cloud.

While it is impossible for human users to be vigilant about each individual transac-

tion happening online, such an agent can work on behalf of each user. Furthermore,

advancement of cryptographic schemes could protect data better than we can do with

paper-based documents in the cabinet.

In this work, we explore how health IT technologies can evolve to counter the

threats in emerging electronic health record infrastructure to address the challenges

discussed in Section 1.3. Our ultimate goal in this thesis is to provide an answer to

the question: “It is possible to establish accountability and support patient awareness

in large-scale, distributed, multi-domain electronic health record sharing to safeguard

10

sensitive data.”

Our contribution includes:

• A user-centric identity management system and identity credential usage mon-

itoring agent system (Chapter 3)

• A patient-centric monitoring agent system for usage and update of electronic

health records (Chapter 4)

• A patient-centric mechanism to establish robust, actionable accountability for

electronic health record sharing (Chapter 5)

• A system for healthcare organizations to securely audit sensitive operations and

manage client devices (Chapter 6)

Chapter 3 presents a solution to the challenge discussed in Section 1.3.1 and intro-

duces a user-controlled monitoring agent system for online identity credential usage.

In Chapter 4, aiming at addressing the second challenge (Section 1.3.2), we extend

the user-centric monitoring concept to monitor read / write operations on patients’

healthcare data accessed in distributed e-healthcare systems, which is then further

augmented in Chapter 5 to establish robust information accountability when health

records are shared among entities. In Chapter 6, we propose the scheme that is used

in healthcare organizations, which actually store and handle patients’ sensitive data,

to complement and reinforce the patient-centric monitoring scheme as well as to ad-

dress the third challenge mentioned in Section 1.3.3. The prototype implementation

is shown and evaluated in Chapter 7, and integration into state-of-the-art health in-

formation sharing infrastructure is also discussed there. Finally, Chapter 8 concludes

the dissertation and outlines future work.

11

CHAPTER II

RELATED WORK

2.1 Emerging Infrastructure and Standards for Health In-
formation Sharing

In this section, we review recent efforts that seek to enable health information shar-

ing to provide the background for this work. Nationwide Health Information Network

(NwHIN, or formerly NHIN) is the largest and the most visible effort in this area.

NwHIN is designed to enable health information to follow the consumer, be available

for clinical decision making, and to encourage better use of healthcare information

beyond direct patient care, in order to improve healthcare services. Participants

in NwHIN can be roughly categorized as follows [97]: care delivery organizations,

consumer organizations that operate personal health records, health information ex-

changes, and specialized organizations like research organizations or organizations

that provide secondary use of data.

Figure 1 provides an overview of NwHIN. It consists of a number of autonomous

“nodes” connected through the Internet, for example small doctor offices, hospitals,

labs, pharmacies, PHR systems, and so forth. Each node in NwHIN can run its

own (possibly proprietary) e-healthcare system, which is connected to NwHIN via a

gateway. Such a gateway ensures interoperability among entities [36]. One of the

implementation of the gateway is CONNECT [3]. As can be seen in the figure, for

instance, hospitals or doctors that belong to one health information exchange (HIE)

system can access electronic health records stored on a patient’s PHR repository under

the patient’s authorization. Likewise, health records can be shared between healthcare

organizations or among health information exchange systems. In addition, although

12

Figure 1: The Nationwide Health Information Network ([10])

it is not illustrated in the figure, patients have access to their own PHR repositories,

and in some cases, EHR systems in healthcare organizations are accessible to them.

Direct (or NHIN Direct) [4] is another core component of NwHIN, and the project

was supported by the United States Office of the National Coordinator for Healthcare

Information Technology (ONC). While NwHIN (and CONNECT) requires significant

resources to be fully implemented and operated and thereby can be deployed only in

relatively large organizations, Direct is a simpler standard that is mainly designed

for small doctor offices. At the high level, Direct aims at replacing, in order to

shorten time for sharing as well as to lower cost and privacy issues, FAX-based ex-

change of healthcare information and instead relies on secure emails (S/MIME with

SMTP) among participants. In other words, Direct defines the way for peer-to-peer

exchange of messages and healthcare information, which is included in the criteria of

the “Meaningful Use” incentive program. Direct makes a simple assumption that a

set of participants that exchange healthcare information know and trust each other.

In addition, Direct assumes that patient consent is obtained in advance of information

13

sharing by those participants. Direct does not specify the format of health records

exchanged, so a variety of data, text-based notes or referrals written by doctors, im-

age files, and formatted health records like HL7 Continuity of Care Document (CCD)

or ASTM Continuity of Care Record (CCR) can be transferred [61]. Moreover, use

of Direct is not limited only to healthcare providers. It can be made available for in-

dividual patients, which is realized by, for example, Direct integration into Microsoft

HealthVault [9].

Under Direct standards, each participant is issued a unique and dedicated email

address, and this address is used for health information exchange. In addition, each

participant is assigned a public / private key pair (and signed certificate) by a trust

anchor, which can be a regional health information organization (RHIO). Health

information exchange under Direct is done via an entity called Health Internet Service

Provider (HISP), which works just like a postal service in our world and also manages

keys and certificates of participants. Namely, a sender of healthcare information hands

it to her HISP, which signs and encrypts the content and then delivers it either directly

to the recipient address or to the recipient’s HISP. HISP is actually a logical entity

and thereby does not have to be deployed independently. HISP can be in practice

integrated in a PHR / EHR repository or email-client software on a participant’s

device. The settings and the way in which Direct is used will be revisited later in

Section 7.2.2

2.2 User-centric Identity Management Systems

Protection and management of digital identity has been long explored in various do-

mains, such as e-commerce, e-government, and other social interactions in cyberspace

[23]. Identity management has a history starting from a silo-style architecture where

each organization independently deployed its own identity management system. It

then evolved to federated identity management systems, like Liberty [13], that enable

14

coordination across organizational boundaries to provide, for example, Single Sign-

on. These schemes are enterprise-centric or identity-provider-centric, but recently

user-centric approaches that emphasize users’ control over their own digital identities

have been becoming popular. We, in this section, review some of such user-centric

identity management systems.

OpenID [110] is a lightweight identity management system originally designed to

deal with relatively simple use cases, such as blog services. It involves three types of

entities: users, service providers, and identity providers. When a user wants to use

some service provided by a service provider, the user contacts the service provider first.

Then, if the user is not authenticated by an identity provider trusted by the service

provider, the service provider redirects the user to an identity provider chosen by the

user. The user authenticates herself to the identity provider and is redirected back

to the service provider with an identity credential after the successful authentication

process. OpenID suffers from phishing attack by means of spoofed online identity

provider sites. Also, because a relatively weak authentication scheme relying on

passwords is still widely used between users and online identity providers, stolen

identities can be easily misused.

Windows CardSpace is a user-centric identity metasystem designed based on The

Laws of Identity [26]. It provides a consistent user interface that enables users to

select an appropriate identity provider for each context simply by selecting a “card”.

In terms of the architecture and protocol, it is similar to OpenID described above.

By virtue of the use of client-side software called Identity Selector, which can improve

users’ awareness, CardSpace has stronger protection against phishing attacks than

OpenID. However, there are still a number of security issues due to reliance on web

browsers [42, 66]. In addition, since metadata of user’s identity credentials and private

keys are stored on a user’s device, physical theft of a client device is more serious than

the case of OpenID.

15

PRIME [55, 85] is a comprehensive identity management framework that em-

phasizes user privacy and control over user data including identity credentials. It

introduces a middleware layer in all participating entities and achieves secure and

anonymous communication, a pseudonym mechanism, attribute-based authorization,

and a policy negotiation and enforcement mechanism regarding user data handling

even after the data is released. While risks due to physical theft of user devices

are not specifically addressed, device theft should be considered a serious threat in

PRIME because major software components and users’ master credentials are stored

on such devices. Another problem is that users’ awareness over usage of their identity

credentials relies solely on the logging feature implemented at the client side (PRIME

Console). Therefore, if the device is stolen or compromised, users’ awareness will be

entirely lost as well.

VeryIDX [105, 106] is another type of user-centric identity management architec-

ture that enables multi-factor identity verification. In this scheme, service providers,

when verifying a requester’s identity credential, can challenge a requester to demon-

strate possession of other identity credentials. By using a cryptographic commitment

and an aggregate zero-knowledge proof of knowledge scheme (AgZKPK), users can

prove such possession without disclosing actual values of the supporting identity cre-

dentials. One potential issue with this system is, again, physical theft of user devices,

because keys to open the cryptographic commitments of claims are usually stored on

user devices. VeryIDX additionally proposes to split such keys into multiple shares

and store one of the shares on a user-owned computer accessible via the network.

However, in this case, users could have trouble when using their own identity in case

the remote system is not available.

Canard [56] proposed a client-side identity federation mechanism using blind sig-

natures. It aims at mitigating privacy issues inherent in Liberty [13] and SAML [57]

approaches in which identity providers can potentially mass-correlate users’ identities

16

on multiple service providers. Canard’s system allows users to have their identity

providers authorize identity federation without disclosing their identities at service

providers. However, like the Liberty protocol, identity providers need to be involved

in each transaction, so system availability depends on the availability of such identity

providers.

2.3 Misuse and Fraud Detection Systems

In terms of prevention and detection of misuse of stolen digital identity or healthcare

information, we could rely on intrusion / fraud detection mechanisms. This section

briefly reviews some schemes in these areas and discusses the limitation of them.

Fraud detection schemes have been explored in various fields, including credit card

and telecommunication areas [52, 81, 108], but most of the schemes are highly context-

specific and rely on domain knowledge or domain-specific parameters. Therefore, they

can not be directly applied to identity management in general or electronic health

record sharing settings.

Using behavior graphs of attacks to detect intrusions into computer systems is also

proposed [80, 89]. Their schemes, like Warrender’s scheme [119], utilize the sequence

and transition among multiple events. However, in many cases in healthcare settings,

monitoring systems could only observe a single type of event, such as only login to

an online service (e.g., an EHR repository) using identity credentials. Thus, while

such schemes might be helpful when monitoring in enterprise settings that have well-

established process workflow, they are not always suitable for a general healthcare

context.

Wang’s scheme [117, 118] utilized the frequency distribution of byte values in the

payload of packets to detect anomalous accesses or worm activities. Even though this

technique can be applied to each single access attempt, the focus of their work is on

detecting deviation in byte-pattern level. In our context, adversaries are expected

17

to follow the correct protocol and thereby exhibit normal byte-value distribution so

that they can manipulate systems with compromised identity credentials. Thus, their

scheme does not work well in our context.

As explored in [83], utilizing various attributes of an observed event enables us to

design less context-specific detection systems without relying on event sequences. The

authors of [83] used the CGI parameters or length of requests to detect anomalous

HTTP accesses. In [91], common parameters in an identity usage log record, such as

timestamp or a requester’s IP address, are considered as attributes of an event. A

normal profile of each user can be built by keeping track of the occurrence frequency

of each attribute value, as also done in [82], and then the risk or suspiciousness of

each event can be quantified based on the relative frequency of each attribute value

that the observed event of interest has.

Common drawbacks of the schemes discussed above include lack of user centricity

[90]. Typically, fraud / intrusion detection systems are enterprise-centric and deployed

within each service provider’s network. Thus, they are not accessible to end users,

and thereby users do not have any control over the monitoring features and also can

not know what information is collected and retained, which could result in privacy

concerns. Moreover, in case of false negatives, even when a user’s identity or data

is actually misused, she has no way to be informed of the incident. Another issue is

that, since a detection system is usually deployed by each service provider separately

without coordination among other service providers, end users can only have partial,

fragmented awareness.

Anomaly or misuse detection schemes can naturally be deployed on a monitoring

agent system we propose. However, in this work, we aim at providing each end user

with all information about the accesses to her data, considering the user as the last

line of defense who can correctly identify suspicious events. Thus, although detection

schemes are effective to assist users’ decisions, implementation and evaluation of them

18

are not explored in this dissertation.

2.4 Mandatory Access Control and Information Flow Con-
trol

Information flow control is considered effective in enhancing patient awareness as well

as in preventing accidental or intentional information breach. In this section, we walk

through some of the approaches and concepts related to it.

A reference monitor [43] is proposed to protect resources on a system by determin-

ing, based on the identity of requester and policies defined for each resource, whether

a requested access (e.g., read or write access) to a certain resource can be granted.

In general, the following properties are required for a reference monitor: complete

mediation, tamper-resistance, and verifiability. Namely, a reference monitor can not

be bypassed by any entity when it accesses protected resources. Additionally, the

monitor itself must not be maliciously modified, and the correctness of the reference

monitor should be verifiable. If we can implement such a reference monitor that

works for end users or patients, it would be very effective to accomplish our goals. A

reference monitor is also a central and crucial component in access control schemes,

including mandatory access control (MAC) discussed next.

Mandatory access control schemes are designed to reliably enforce centrally-managed,

organization-wide security policies regarding access to resources, unlike discretionary

access control (DAC), for instance the access control mechanism implemented in tra-

ditional UNIX operating systems. DAC systems allow each user on a system to define

security policies for resources that belong to him or her. In other words, DAC can

not enforce information flow control because an authorized user could share a copy of

a sensitive resource with another user whom the system administrator does not allow

to access it. On the other hand, MAC does not enable each user to override or bypass

the policies defined by the organization as explained below. Thus, it is an effective

mechanism to control the information flow in the way an organization intends and

19

thereby to prevent leakage or breach of sensitive information.

In typical mandatory access control schemes, subjects (i.e., system users or pro-

cesses) and resources, such as files or network devices, are assigned “labels” repre-

senting authorization or clearance of subjects or sensitivity of resources [109]. Access

control decisions are made by a trusted component, such as a security module in the

OS kernel or a reference monitor, based on a subject’s label, a resource’s label, an

operation that the subject attempts to perform on the resource, and security policies

defined by the organization. Specific access control models are found in [47, 48, 51],

and implementations of the concept include SELinux [87], Solaris Trusted Extensions

[103], MIC in Windows Vista [58], HiStar [121], and so forth.

Many of the MAC schemes and implementations are designed for a single system

(or a single device). In other words, a reference monitor deployed on a system only

monitors and controls accesses to resources on the same machine. If the entire systems

and data were completely centralized, such a scheme would be sufficient. However,

unfortunately it is not the case in e-healthcare systems, including the one discussed in

Section 2.1. A reference monitor design that covers multiple machines is presented in

[95] by using remote attestation and system virtualization techniques. However, such

a system still requires a single entity (e.g., a system administrator) that manages the

entire system. Therefore, in a distributed setting that spans multiple organizations,

it is not necessarily a suitable solution.

Another type of approach for information flow control is data or traffic tainting,

such as [40] and [100]. Ahmed [40] designed a scheme to control information flow

on mobile devices used by healthcare professionals to access patients’ records. This

system relies on TaintDroid [63] to taint sensitive data and monitors flow of such data

across application boundaries, into removable storage, and into network interfaces.

However, its primary focus is on countering the risk of malicious applications installed

on mobile devices, and it controls the information flow only within a single device,

20

which implies that it shares the drawbacks of MAC schemes discussed above.

On the other hand, Pedigree [100] is designed for enterprise settings and enables

information flow control across networks. The system consists of two components

called labeler and enforcer. A labeler is deployed on each host and is in charge of

attaching labels to resources (e.g., files) and also updating the labels. On the other

hand, an enforcer determines whether each flow of the information should be allowed

or not based on the attached label and security policies. An enforcer can be deployed

either at boundaries of networks, e.g., between a corporate intranet and the Internet,

or on each host as part of the operating system. One of the problems is that, once

a labeler or enforcer installed on each host is compromised or intentionally disabled

by a malicious insider, data could be leaked, for instance by means of removable

storage, even if a network-level enforcer is in place. In this case, we do not have

any control or awareness over the compromised data after leakage. Moreover, the

source of the breach could not be exactly traced back, and thereby accountability

can not be established. The effective and practical deployment of such a scheme in

a multi-domain setting is also challenging because each organization’s network and

hosts need to be configured to enforce equivalent security policies.

2.5 Provenance of Electronic Data

In general, provenance of data can be defined as “the process that led to the data”

[78], and in addition to the origin of the data and chain of ownership, it covers what

operations were performed on the data. In other words, data provenance can be

considered as metadata conveying the derivation history of the corresponding data,

and its importance is increasing in both scientific and business domains, as the amount

of data in cyberspace increases [113].

Primary purposes and application of data provenance include data quality, audit

trail, and attribution [113]. For instance, provenance allows us to assess the quality

21

and reliability of data based on its derivation history. Moreover, data provenance

enables us to identify who was involved in the derivation, which is especially beneficial

when some errors or mistakes in the data are found. Attribution also enables data

owners to know who touched the data in the past. In this way, provenance of electronic

data [41, 99] is related to information accountability, which is one of the goals pursued

in this work.

Data provenance is derived based on a set of assertions made by services or pro-

cesses that touch the data. Assertions contain information about messages used for

interaction among services or processes, the way each service derives the output, and

internal state of each service and, as a whole, document the entire process and his-

tory [41, 99]. Typically, a provenance system requires a centralized repository, which

is called a provenance store, that stores all assertions. Later time, system users or

third-party auditors can retrieve the provenance of a certain data, which is often

represented in a form of directed acyclic graph (DAG), from the provenance store.

However, in a distributed setting involving multiple organizations, as commonly seen

in electronic health record systems, secure aggregation of assertions by an external

entity is often not possible or realistic, due to the difficulty of establishing an online

entity trusted by a number of heterogeneous organizations. Even if it could be imple-

mented, such an entity could become an attractive target for attackers. Furthermore,

aggregation of information could lead to privacy issues in the healthcare setting, as

discussed in [78].

2.6 Cryptography-based Approaches

In the e-healthcare domain, recent projects have explored secure storage of health

records in a cloud. Benaloh et al. proposed PCE (Patient Controlled Encryption) to

protect health records by means of encryption [49]. A similar goal is also pursued by

Narayan et al. [101]. The primary focus of these schemes is to ensure confidentiality

22

of health records against unauthorized parties, including cloud storage providers. We

agree that such encryption-based protection is necessary, but it alone is not sufficient

to ensure patient awareness and control, especially after health records are released.

Another approach using encryption is found in [86], in which a secure e-healthcare

client platform design using virtualization is explored. In this scheme, a client device

is split into a number of domains (i.e., virtual machines) used for different purposes

(Trusted Virtual Domains). For instance, while one domain is used for handling of

electronic health records and is allowed to access e-healthcare systems, another do-

main is used for more generic tasks, such as web browsing, and thereby is not allowed

to access any healthcare information. When a data crosses domain boundaries, it is

automatically encrypted by the security kernel with a key that belongs to the cor-

responding domain, and thereby can not be accessed by processes in other domains.

Although such a system is effective in reducing information leakage risk on client de-

vices, it does not emphasize patients’ awareness and control. Moreover, effectiveness

when deployed across multiple organizations is questionable.

On the other hand, the general problem of data protection and reducing the

likelihood of data misuse has been addressed in several different contexts. The Keypad

system [69] aims at detecting data misuse when mobile devices storing sensitive data

may be lost or stolen. Keypad implements a remote audit service running on an

external server. By encrypting files stored on the local device and keeping the keys

on the remote server, we can not only accomplish robust remote logging for all file

system accesses on the device but also block accesses to protected files when the

device owner realizes that the device has been compromised or stolen. Although such

a scheme allows a data owner or patient to be informed of data access when the data is

physically located in a remote location, Keypad does not address the situation where

threats, such as malware infections or malicious insiders, are present. Specifically, in

case decrypted copies of the data is leaked by malware or malicious users, accesses to

23

the compromised copies are no longer monitored.

By using MacKenzie’s architecture [88], in which functionality of private key op-

eration is split among a network-resident entity and a user device, remote monitoring

for sensitive operations could be implemented to discourage system abuse by insiders.

In addition, this architecture addresses the revocation of private keys stored on user

devices when they are stolen or compromised. A potential issue in this design is that

the networked entity must be always online when a user wants to use her private key,

which could affect the system availability and is problematic especially in healthcare

settings.

2.7 Summary

To address theft and misuse of patients’ online identities, we advocate a user-centric

approach for secure management of identity credentials and claim that continuous

monitoring over usage of identity credentials is crucial. However, none of the schemes

we have discussed in Section 2.2 are not robust enough. Even though fraud detection

systems help patients to some extent, they do not provide patients with awareness

and control over identity usage of sufficient level.

Regarding the protection against unauthorized or fraudulent usage of healthcare

data, patients’ awareness over their own data is imperative. The concept of reference

monitor [109], when implemented under patients’ control, could accomplish our goals,

but it is not practical to reliably deploy a monitor in the distributed environment that

involves multiple, distinct types of entities, including hospitals, PHR providers, phar-

macies, laboratories, insurance agencies, and governmental entities like the Center of

Medicare and Medicaid Services. Because of the same reason, deploying data prove-

nance system for the sake of information accountability is not often realistic, too.

Moreover, protecting health records by means of encryption is not a perfect solution

under attack models like malware and malicious insiders.

24

While it is very difficult to find a solution in a general setting, we can take advan-

tage of the framework and regulations that are already established in the e-healthcare

domain. In this dissertation, we define a reasonable scope aiming at safeguarding

healthcare information especially against medical identity theft and healthcare fraud

cases. Then, we design and implement a system that can accomplish all of the goals

defined in Section 1.4 under assumptions that naturally hold in recent and future

e-healthcare systems.

25

CHAPTER III

PROTECTING ONLINE IDENTITY CREDENTIALS VIA

USER-CENTRIC MONITORING

3.1 Introduction

Digital identity credentials, such as passwords, tokens, certificates, and keys, are

used to ensure that only authorized users are able to access online services. Because

of sensitive and valuable information managed by such services, they have become

targets of a variety of online attacks. For example, online financial services must

use stronger credentials for authentication to avoid fraud. Because of the serious

nature of threats and widespread theft and misuse of identity credentials, there is

considerable interest in the area of identity management, which addresses secure use

of such identity credentials. User-centric identity management, which allows users to

flexibly choose what identity information is released to other entities, offers better

control over the use of identity credentials. For instance, users can choose an identity

provider that they believe is the most appropriate for each transaction. However,

such user centricity requires that disclosure of identity information needs to be done

under user control, and it also expects users to assume more responsibility over their

identity usage due to the absence of a centralized authority [74]. This would be

possible only when users have a certain level of awareness and control of how and

when their identity credentials are utilized.

To satisfy the user-centricity requirement, as discussed in Section 2.2, several

currently proposed user-centric identity management systems (IdMSs) rely on agent

software, which we call an identity agent, that carries out a number of tasks related

to management of identity credentials on behalf of a user. Identity agents can be

26

deployed on users’ devices or on networked entities. These agents assist users and

help reduce the burden imposed on them for the sake of identity management. For

example, Windows CardSpace [59] utilizes client-side software to help users manage

metadata related to identity credentials as well as a certain type of authentication cre-

dentials used with online identity providers. Another example is GUIDE-ME (Georgia

tech User-centric IDEntity Management Environment) [93] that utilizes local iden-

tity agents installed on users’ devices to work with network-resident identity agents

that store and manage identity credentials originally issued by identity providers. An

overview of GUIDE-ME is discussed in Section 3.2. While an identity agent running

on a readily accessible device can potentially offer increased user awareness and flex-

ible control, the nature of a local identity agent on a mobile device will make it an

attractive target of theft. In addition, since such devices sometimes are managed by

non-expert users, attacks by means of malware are also a concern. The compromise

of such agents could allow adversaries to access stored identity credentials and result

in possible disclosure of sensitive information, including breach of authentication and

authorization in a system where access to services must only be provided to legitimate

users. Clearly, we must deal with the problem of misuse of such identity agents.

We explore an approach to address these issues by focusing on an IdMS where

relying parties (RPs), upon receiving an identity credential, require knowledge of the

user’s private key as a proof of credential ownership. In other words, this ownership

proof and identity credential issued by an identity provider together work as a cre-

dential, following the concept of joint authority discussed in [84]. The user’s private

key tied to her identity credential is generally stored on the user’s device hosting an

identity agent. In such an architecture, identity misuse by adversaries can succeed

only when a legitimate identity owner’s private key is compromised. We believe this

assumption is reasonable since RPs are motivated to reliably verify a requester’s iden-

tity to provide services only to legitimate users. In addition, the number of IdMSs that

27

satisfy this assumption is growing, including the proof key mechanism in Windows

CardSpace [6], Credentica’s U-Prove [25], and Georgia Tech’s GUIDE-ME.

Under this assumption, we propose a solution to empower users to have enhanced

awareness over their online identity usage by introducing the concept of a user-centric

identity-usage monitoring system [90]. It enables users to balance security, privacy,

and usability solely based on their own needs. Our approach includes the optional use

of an inexpensive storage token, such as a USB drive, to provide additional control

and higher system availability. The main insight is that either we have enhanced

security from the user provided storage token, or a transaction that is completed

on a user’s behalf will be monitored by a monitoring agent chosen and trusted by a

user. Furthermore, our proposed architecture does allow a user’s private key to be

stored in an offline safe place, and thereby the risk of compromise of the user’s private

key is reduced. Revocation of potentially compromised identity agents or credentials

and their recovery can be done more easily and in a timely fashion, compared to

the traditional way that involves certification authorities and identity providers. We

also evaluate user centricity and security against possible threats (e.g., how various

threats are addressed by our scheme). We believe that our approach leads to an

IdMS architecture that better achieves the goal of the “User Control and Consent”

law presented in [26].

This chapter is organized as follows. In Section 3.2, we present the overview

of the GUIDE-ME system and identify potential security threats to it. In Section

3.3, we describe the basic idea of our approach to mitigate the effects of identity

agent compromise in a simplified setting. The details of our design in the context of

the GUIDE-ME architecture are discussed in Section 3.4, which is then evaluated in

Section 3.5. Finally, the summary of this chapter is presented in Section 3.6.

28

3.2 GUIDE-ME: Georgia tech User-centric IDEntity Man-
agement Environment

3.2.1 Motivation

In Section 2.2, we discussed existing user-centric identity management systems and

their drawbacks. To prevent identity theft and misuse, an identity management

system must have robustness against security threats. In addition, other types of

attacks that could result in identity misuse even without compromise of identity

credentials, such as session hijacking and replay attacks, should be reliably detected.

However, even if sophisticated security mechanisms are deployed to prevent identity

theft attacks, it is almost impossible to counter all possibilities. For example, an

adversary could attack human users in an offline manner, such as social engineering

techniques, or zero-day malware could secretly steal identity credentials stored on

user devices. Once compromised, such credentials can be misused by adversaries,

which could harm legitimate users legally and financially. To mitigate the risks, users

should have enough awareness over how and when their identity credentials are used.

Another issue inherent in these existing identity management systems is heavy

reliance on online identity providers. Since context-scoped identity credentials need

to be issued by online identity providers, keeping them in the loop is inevitable.

Thus, the availability of a service largely depends on the availability of such iden-

tity providers, which are usually out of user’s control. In addition, this also leads to

privacy issues. Specifically, online identity providers are potentially capable of com-

promising user’s privacy by tracking and correlating user activities among multiple

service providers. For example, while disclosure of service provider’s identity to an

online identity provider is optional in CardSpace, it is revealed under the default

configuration of its proof-key mechanism [42].

Furthermore, it is desirable to meet a widely-accepted guideline for user-centric

identity management systems discussed in [26] to meet needs of current systems. For

29

example, users should be able to choose identity providers that they can trust, instead

of being forced to trust some specific provider. In each transaction, users should be

aware of and exercise control over which identity attributes are going to be released

and by whom such identity information is consumed.

To address the issues in existing schemes and satisfy the user-centricity require-

ments, we enhance a novel identity management system architecture based on the

concept of an identity agent that deals with identity credentials under user’s control.

We call it GUIDE-ME (Georgia tech User-centric IDEntity Management Environ-

ment) [93]. The overview of the scheme will be presented next. Detailed discussion

about how GUIDE-ME addresses the issues can be found in [93].

3.2.2 System Overview

In this section, we briefly describe the high-level architecture of the GUIDE-ME sys-

tem [93]. In this system, identity agents store and manage users’ identity credentials

and corresponding private keys and disclose the credentials based on policies defined

in advance by users. In the GUIDE-ME architecture, there are two types of identity

agents. Locally-installed agents (local IdA) run on devices that are with users (e.g.,

smart phones and laptop PCs), and remote agents (remote IdA) reside in the net-

work. The decision to partition the identity agent functionality between local and

remote entities offers a number of benefits that are explained in [93]. The architecture

also includes relying parties (RP), which are service providers. The architecture of

GUIDE-ME and communications among entities are illustrated in Figure 2.

Figure 2: Overview of GUIDE-ME Architecture

30

In GUIDE-ME, an identity credential is a claim about a set of attribute values

for a user and also includes some way to verify the claim. Credentials are defined in

a novel way so that users can only disclose the minimal information that is required

to complete a transaction. Such minimal-disclosure credentials are realized by using

a Merkle Hash Tree (MHT) based implementation [46]. As discussed in [93], an

identity provider, when issuing an identity credential, certifies the credential owner’s

public key. When verifying a credential, in addition to verifying the signature made

by the identity provider, a RP verifies a requester’s credential ownership through

the requester’s signature on a nonce chosen by the RP (RP Nonce). Note that this

signature must be verified with the certified public key mentioned above.

As introduced earlier, GUIDE-ME utilizes two types of identity agents (IdAs), a

local IdA and remote IdA. A local IdA on a user device stores a user’s private key

and metadata of identity credentials which allows itself to refer to identity credentials

stored on a remote IdA. A local IdA also manages and checks user’s identity-related

policies about the disclosure of identity attributes. A remote IdA is run by a party

that naturally holds certain identity credentials for a user, such as an employer or an-

other entity that is trusted by the user. It stores users’ long-term identity credentials

issued by identity providers. Its primary responsibility is to manage these identity

credentials and to create minimal-disclosure credentials [46] based on authorizations

from the user’s local IdA.

A transaction in GUIDE-ME starts with a request from a user to a RP. The

RP specifies which identity attributes it requires to provide a service (although trust

negotiation may be involved [104], we skip it as it is orthogonal to our work). A

nonce chosen by RP (RP Nonce) is also given to the user during the negotiation. At

the user device, the local IdA creates a signed authorization message (“Authorization

Token” or AT) that tells the remote IdA to disclose specified identity attributes to

the RP that is named by the user. More specifically, based on the metadata it holds,

31

the local IdA includes in the AT a list of identity attributes to be released and signs it

with the user’s private key so that the remote IdA and RP can verify the authenticity

of the token. The local IdA sends a message including the AT and the RP Nonce

to the RP. This message is signed with the user’s private key so that the RP can

verify the signature on the RP Nonce (i.e., the proof of credential ownership). The

RP then forwards the AT to the user’s remote IdA, requesting the user’s identity

credential. The remote IdA, only when the local IdA’s signature on the AT is valid,

creates a minimal-disclosure credential and sends it to the RP. The RP finally verifies

the provided credential and the user’s signature on the RP Nonce and processes the

request when this is successful.

3.2.3 Remaining Threats

In GUIDE-ME like architectures, one possible threat is the compromise of a local IdA.

For instance, if a user’s device hosting a local IdA is physically stolen, the adversary

can use it in arbitrary transactions in order to misuse the legitimate user’s identity.

Although authentication may be supported by a device that runs a local IdA, security

schemes based on PINs or passwords can be easily broken. Furthermore, an infected

device may allow adversaries to steal the user’s private key and other data, which

could lead to misuse of credentials.

Once a local IdA is compromised, the user does not have a simple and effective way

to revoke its capability to interact with remote IdAs and RPs to complete identity-

related transactions. Because a local IdA has access to the user’s private key, the

user must contact the issuing certification authority and the identity provider to ask

for revocation of the corresponding public key and identity credential. This process

usually takes time, so the window of vulnerability might be long enough to allow

an adversary to abuse the identity credential. Furthermore, in case the local IdA is

compromised and the user does not recognize the problem, the situation would be

32

even worse.

In the next section, we discuss how these problems can be addressed.

3.3 Approach to Handle Identity Agent Compromise

Figure 3: Basic Idea of Our Approach Using 2-3 Threshold Signature Scheme

As we saw, one major problem that user-centric identity management systems

based on identity agents suffer from is that compromise of an identity agent allows

an adversary to arbitrarily misuse identity credentials of the victim. The adversary

can provide valid user signatures to complete transactions that seem to come from

the legitimate user. To avoid this, it is possible to store the private key on a remote

IdA, which is often better managed than user devices, and have it provide a signature

for ownership verification. Instead, we could hold the key in an external storage.

However, the possibility of compromise of a remote IdA or theft of an external storage

cannot be completely ruled out. Thus, to effectively mitigate such threats, it is

necessary to eliminate the single point of attack that could give an adversary the

full control of stolen identity credentials. In other words, under our assumption,

keeping user’s private key in an offline safe place as long as possible is a better option.

Another issue is how to deal with possibly compromised identity agents. To disable

compromised agents, the victim’s private key must be revoked. However, propagation

of revocation information to relying parties could take a long time because such

33

a process depends on a certification authority (CA) and an identity provider. So,

it is desirable that a user can revoke the compromised key and credential without

involving such entities that are not under user control. Furthermore, an IdMS should

help legitimate users recognize problems when agents are compromised. To achieve

this goal, we need to introduce monitoring functionality which can log identity usage

and implement a scheme to detect potential identity misuse.

Based on these observations, we propose a scheme using threshold signatures

[60, 112], which enable us to split a user’s private key into several key shares. Each key

share is used to make a partial signature, also called a signature share. If the number

of signature shares equals at least a pre-defined threshold, they can be combined into

a signature that can be verified with the user’s public key. For example, under a

2-3 threshold signature scheme, any two signature shares out of three are enough to

generate a complete signature, but any single share is not sufficient to convince other

parties.

Figure 3 illustrates the basic idea of our approach in a simplified setting involving

only a local IdA under 2-3 threshold signature scheme. In this setting, for the sake of

simplicity, we also suppose that the user’s identity credential is stored on the device

where the local IdA runs. We deploy one key share on the user’s device and another in

a storage token, which can actually be an inexpensive USB drive or removable media.

The third key share is stored at the online entity called a monitoring agent. The

monitoring agent is run on a trusted third party chosen by a user or could be run on a

user’s private server in the cloud. Here, we use 2-3 threshold signature scheme, but the

number of total key shares and threshold value can vary depending on the underlying

system architecture and user needs. For instance, in an architecture utilizing both

a local IdA and remote IdA, 3-4 threshold signature scheme is reasonable when an

additional key share is assigned to the remote IdA. This case will be discussed later

in Section 3.4.

34

As shown in Figure 3, if the storage token is not provided by the user (CASE 1

in Figure 3), the local IdA can create only one signature share and can send it with

the identity credential. In this case, the relying party can not verify the validity of

the user signature, and is then required to contact the user’s monitoring agent. The

monitoring agent can make another signature share and combine them into a complete

signature so that the RP can verify it with the user’s public key. On the other hand, if

a user inserts the storage token, which contains another key share (CASE 2 in Figure

3), the local IdA can generate two partial signatures locally which are sufficient for

generating a complete signature. Then, the RP can verify the combined signature

without contacting the monitoring agent.

We briefly discuss the benefits of this approach. First, since a local IdA, storage

token, or monitoring agent has only one key share, none of them is a single point of

attack because a complete user signature can not be forged with just one share. More

importantly, revocation can be done without involving a CA or identity provider by

renewing key shares when compromise of one entity is suspected. Furthermore, since

the monitoring agent can be used in place of the storage token, the user can use a

service even when the storage token is not available at the time of request. This

property also offers another benefit which allows the user to balance usability and

privacy. Using a storage token allows users to legitimately bypass the monitoring

feature, but otherwise monitoring is enforced. In other words, the identity-usage

monitoring feature can be flexibly turned on or off by a user. We believe that such a

user-controllable monitoring mechanism minimizes user’s privacy concern, which is an

issue in traditional fraud detection mechanisms [90]. On the other hand, if usability

is more important, a user does not have to always carry and use the storage token.

We chose to deploy a monitoring agent on a trusted third party, but there are

other alternatives. It could be located with a local IdA. If a monitoring agent is

running on a user’s device, its functionality would be totally disabled once the device

35

is compromised or stolen just like the case of PRIME [55, 85] discussed in Section 2.2.

This is a serious security concern. It is also not a good idea to place a monitoring

agent with a remote IdA, even if it exists, because of the same reason. By deploying

a monitoring agent on a trusted third party, we are able to prevent misuse of iden-

tity credentials even when identity agents are compromised. It may be argued that

requiring RPs to contact a monitoring agent would require changes to the RPs and

may impose additional performance overhead. However, we think that our choice is

justified by the observation that it ensures accurate reporting of identity usage infor-

mation to a monitoring agent when the user so desires even in case identity agents are

compromised. If such usage information is provided by a local IdA instead, because

of potential compromise of it, a monitoring agent does not have an effective way to

verify the accuracy of the information. On the other hand, RPs are motivated to

provide correct information to avoid being manipulated by malicious users.

3.4 User-centric Monitoring Agent in GUIDE-ME

Based on the approach discussed in Section 3.3, we now present a concrete design of

a system that extends the GUIDE-ME architecture with a monitoring agent and a

storage token.

3.4.1 System Architecture

An overview of the augmented GUIDE-ME architecture is shown in Figure 4. A

user’s master private key is stored in some offline safe storage and does not appear

in the diagram. We now use the 3-4 threshold signature scheme. Four key shares

are generated and are distributed to the storage token, local IdA, remote IdA, and

monitoring agent.

Although we focus on a setting in which each user has one local IdA, remote IdA,

and monitoring agent, a user can have multiple agents of each type in our architecture,

which is desirable for higher system availability. When multiple agents are used, all

36

Figure 4: Overview of Prototype Implementation

Table 1: Protocol Message Description
Message Name From To Description

Identity Request
Message

RP User,
Local
IdA

Sent at the end of the initial negotiation
phase. Signed by a RP.
Contents: List of identity claims to be
released, RP’s public key certificate, and
RP Nonce

Authorization
Message

Local
IdA

Remote
IdA

Sent via a RP.
Signed with a local IdA’s key share.
Contents: AT and IT with one or two
partial signatures

Identity Credential
Message

Remote
IdA

RP Convey an identity credential.
Contents: Minimal-disclosure iden-
tity credential and IT with two partial
signatures or a complete signature

Monitoring Request
Message

RP MoA Sent only when a user allows a trans-
action to be monitored, i.e. a storage
token is not used.
Contents: IT with two partial signa-
tures

Monitoring Response
Message

MoA RP Only sent as a response to a Monitoring
Request Message.
Contents: IT with a complete signa-
ture

agents of the same type are assigned the same key share. For example, when a user

has multiple devices, all local IdAs have the same key share, and the total number

37

of distinct key shares is always four. By doing so, even if more than one local IdAs

belonging to a user are compromised, an adversary obtains only one effective key

share. Thus, the system will not allow him to generate a valid signature to establish

the ownership of an identity credential.

3.4.2 Implementation Details

We implement each entity (a local and remote IdA, monitoring agent, and RP) by

a process and describe the messages exchanged among these processes. In addition,

the white boxes in Figure 4 represent “Information Token ” (IT), which is described

next, and the numbers in the boxes represent the numbers of partial signatures made

on the corresponding tokens. “Complete” means a complete signature made from

three or more partial signatures. The numbers in parentheses represent the partial

signature counts when the storage token’s key share is used to bypass monitoring.

Although the GUIDE-ME architecture itself provides richer features, such as policy

enforcement, we focus on ones related to compromised identity agent handling.

We use two data structures that contain the necessary information which is carried

by messages exchanged between the various entities. We use the term “token” to refer

to them as well, but they should not be confused with the storage token that was

introduced earlier. The first one, an “Authorization Token” (AT), is very similar to

the one used in the basic GUIDE-ME system described in Section 3.2. An AT allows

a user to specify which identity attributes she is willing to disclose to a RP for a

certain transaction. The only difference is that an AT is signed with a local IdA’s key

share instead of a user’s private key. The purpose of this signature is to convince a

remote IdA that the AT is actually issued by the legitimate user’s local IdA. Since a

partial signature can be verified with the corresponding verification key just like the

relationship of a private key and public key in a general public-key encryption scheme

[112], the remote IdA can still verify the authenticity of the AT. We also introduce an

38

“Information Token.” The primary purpose of an IT is the verification of ownership

based on the user’s signature on RP Nonce. An IT may also include information

about a monitoring agent (e.g., its location) when the user intends a transaction to

be monitored.

Messages exchanged by the entities are summarized in Table 1. In the table, MoA

stands for a monitoring agent. We discuss the processing of these messages by each

entity next.

3.4.2.1 Local IdA

A local IdA, running on a user’s device, waits for an Identity Request Message, which

arrives when the user initiates a transaction with a RP. First, the local IdA verifies the

RP’s signature on the message to verify its integrity and authenticity. The identity

of the RP must be carefully verified by making sure that its certificate is valid and

issued by a trustworthy CA and by additionally using SSL / TLS server authentication

etc. It then parses the message to obtain RP Nonce and information about required

identity attributes. Based on requested identity attributes and policies defined by the

user, the local IdA allocates and initializes the AT and IT. After that, the local IdA

makes a partial signature on them. AT is partially signed by using local IdA’s key

share. For IT, when only one key share is available, the local IdA makes one partial

signature on it. If two key shares, including one from the storage token, are available,

the local IdA makes two partial signatures so that the RP has no reason to contact

the monitoring agent. Finally, the local IdA sends an Authorization Message to the

RP, which then forwards it to the user’s remote IdA.

3.4.2.2 Remote IdA

Upon receiving an Authorization Message forwarded by a RP, a remote IdA first

verifies partial signatures on both tokens to see if they are actually generated by the

legitimate user’s local IdA. After successful verification, it makes a partial signature

39

on the IT. If the received IT already has two partial signatures, the remote IdA then

combines three partial signatures, including its own, into one complete signature.

Otherwise, it just adds its own partial signature to the IT. The remote IdA’s primary

task is to create a minimal-disclosure identity credential [46] based on the metadata

about credentials specified in the AT. Finally, it sends an Identity Credential Message

to the RP.

3.4.2.3 Monitoring Agent

On receiving a Monitoring Request Message from a RP, a monitoring agent makes its

own partial signature on the IT in the message, which should already have two partial

signatures, and then combines three partial signatures into one complete signature.

Finally, it returns a Monitoring Response Message to the RP. A monitoring agent

could block a transaction or raise an alarm in a real-time manner when identity misuse

is suspected. Currently, a monitoring agent just logs the identity-usage information,

such as the timestamp and the RP’s identity. In addition, based on the user specified

configuration, it sends the summary of usage log to the user periodically via a different

and independent channel, such as SMS.

3.4.2.4 Relying Party (RP)

A RP first receives a request for a transaction from a user. On receiving this request, it

prepares a list of required identity attributes based on its policies, sends an Identity

Request Message to the user’s local IdA, and waits for an Authorization Message.

When this message is received, the RP forwards the message to the remote IdA

specified by the user, which will then respond with an Identity Credential Message.

Upon receiving it, the RP checks the signature on the IT, and if the IT is accompanied

by a complete signature, the RP verifies it by using the user’s public key. Then, the RP

verifies the identity provider’s signature on the credential. Only when both signatures

are valid, the RP accepts the identity credentials. If the IT in the Identity Credential

40

Message does not have a complete signature, the RP contacts the monitoring agent

specified by the user by sending a Monitoring Request Message. This makes the

monitoring agent aware of the transaction. The information about the monitoring

agent is not included when the user does not want the transaction to be monitored,

and in this case, the RP has no reason to contact the monitoring agent. In response,

a Monitoring Response Message is sent by the monitoring agent. If the IT in this

message has a complete signature, the RP verifies it by using the user’s public key to

see whether it should accept the user’s identity credential.

3.4.3 Revocation and Recovery

A user initiates a revocation process when she suspects that her device is lost or an

identity agent is compromised or when the monitoring agent informs her of suspicious

transactions. The user can use her private key with a key share generator tool im-

plemented by us to renew key shares. The tool distributes generated key shares to

each entity. Because key shares must be protected, they are transferred via a secure

and authenticated channel using the user’s private key and the receiver’s public key.

Verification keys also need to be regenerated at the same time and distributed to

the user’s remote IdA and monitoring agent. We assume that each user has at least

one trustworthy computer to execute the key share generator on it so that these re-

generation and re-distribution operations are securely performed. Once key shares are

updated, an identity agent under the control of an adversary can no longer create a

valid partial signature because its key share is outdated. This revocation process can

be completed without involving the certification authority, which helps in shortening

the window of vulnerability. Users can also run the key share generator periodically

in a proactive manner, which is highly recommended to further improve security. In

addition, recovery of compromised or disabled entities can be done by starting new

instances of the entities and re-distributing newly-generated key shares to them.

41

Our approach also offers a variety of options in the event that a service becomes

unavailable. In case a user loses her storage token, she is still able to continue using

services as described in Section 3.3. Because the monitoring agent must be involved,

such transactions will be always monitored, which is desirable when one of the key

shares has been lost. When a local IdA becomes unavailable for some reason, for

example because of a hardware problem, the user can quickly create a new instance

of a local IdA and continue using the service by using a key share available from her

storage token in place of the local IdA’s key share. This would be possible when the

local IdA code can be downloaded from a trusted server and run on a new device. In

this scenario, a user does not have to renew all key shares by using her private key,

which is stored offline and thereby may not be readily accessible. The local IdA effec-

tively uses the storage token key share until new shares are generated and distributed.

Again, all transactions initiated by the user in this situation will be monitored by the

monitoring agent. In this way, the monitoring agent in the architecture offers the user

flexibility to monitor transactions under her control and provides necessary redun-

dancy to complete operations when user’s local IdA is unoperational or her storage

token is lost.

In a more extreme scenario where the storage token and the user device are both

stolen and the remote IdA or the monitoring agent is compromised as well, the user

would have to revoke her private key itself by contacting the certification authority

and the corresponding identity credentials by contacting identity providers. However,

the likelihood of such a scenario is much smaller than a case in which only one entity

is compromised.

42

3.5 Evaluation

3.5.1 User Centricity

In this section, we analyze our approach in terms of properties of user centricity

for federated identity management systems proposed in [50]. Since some properties

are already met by the original GUIDE-ME system [93], we focus on the additional

properties that our approach can provide.

One major contribution of our work is the integration of an identity-usage mon-

itoring feature in a user-centric way [90]. A monitoring agent running on a trusted

third party can log identity-usage information on behalf of the user whenever it is

involved in the execution of a transaction. If a user decides that a transaction be mon-

itored, i.e., storage token’s key share is not used, the participating RP must contact

the user’s monitoring agent to successfully complete a transaction. In addition, the

monitoring feature can be flexibly controlled by users, so it is expected to minimize

users’ privacy concerns. For instance, it is possible that, for a transaction which could

leak sensitive information (e.g., a transaction with a certain hospital may indicate a

stigmatizing medical condition), the user may decide that the monitoring agent must

not be involved in the transaction. Notification feature is also implemented by a

monitoring agent as mentioned in Section 3.4.2.3.

Another property our scheme contributes to is revocability. The GUIDE-ME

architecture uses long-term identity credentials that are stored on user’s identity

agents. In our modified architecture, as long as the number of compromised key

shares is less than the threshold, the user can revoke the compromised key shares by

updating the entities with new key shares without involving the identity providers or

the certification authority. Each of the key shares can be viewed as a partial privilege

to use the identity credentials, and identity misuse happens only when multiple key

shares are compromised under our assumptions. In our architecture, such privileges

of compromised entities can be revoked in a timely manner by the user alone.

43

Finally, we discuss usability, which is also one of the components of user centricity.

Our proposed solution relies on a storage token, and similar tokens are used in multi-

factor authentication schemes, such as [20]. It is argued that such tokens negatively

affect usability because a user may not have a token with her when she needs to

access services. Thus, mandatory use of such tokens could have undesirable impact

on usability. We believe that our approach offers a reasonable middle ground. If the

user does not mind the monitoring agent to be aware of all the transactions initiated

by her, the storage token is not required at all and the monitoring agent can serve

as a network-resident software token. In this case, the user experience is exactly the

same as when the storage token is not required to use a service. The important point

is that there is a trade-off between usability and privacy, and users themselves can

flexibly balance these based on their own preferences.

3.5.2 Security Analysis

We present a systematic analysis of the threats against the various entities in our

architecture and how they are mitigated by the solutions we discussed. Although we

primarily considered the compromise of user devices and local IdAs, we also explore

the security impact when the other entities are compromised. Threats against the

original GUIDE-ME system are discussed in [93], so we do not discuss them here.

3.5.2.1 Compromise of User Device and Local IdA

A user device hosting a local IdA could be compromised or physically stolen by an

adversary. In such a case, the adversary can have access to the key share stored on

the device. By exploiting the information on the device, the adversary can try to

mount various attacks. The most serious threat is that the adversary can imperson-

ate users and misuse their identity credentials. However, without the possession of

the storage token’s key share, the adversary can not complete the transaction without

44

being monitored by the monitoring agent. Even if an adversary succeeds in mount-

ing such attacks, the monitoring agent includes functionality to report identity usage

information to the user periodically, which helps the legitimate user become aware

of the attack. Once the user recognizes the impersonation attack, she can immedi-

ately initiate the revocation process to disable the compromised local IdA. Thus, a

compromise of a key share stored with a local IdA alone is not a serious risk.

A user device could be compromised without being detected by the user. An

adversary could compromise the local IdA code or the underlying OS by means of

malware. The most critical consequence of such attacks is the compromise of the

storage token’s key share, which could be secretly copied upon its usage, along with

the local IdA’s key share. Once the adversary obtains both key shares, no protection

would work effectively. Although users could rely on security tools, such as anti-virus

or personal firewall software, we can not completely eliminate the risk of the device

being compromised. Hardware support to detect tampering [75] should be helpful,

but TPM is not always available. However, even in this case, our system offers the

user to make a choice based on the degree of her trust on her own device. Specifically,

if the user wants to completely avoid this risk, she should never use the storage token

with this device. Then, compromise of a user’s device will not allow the adversary

to obtain two key shares even when the OS is compromised. Furthermore, in this

case, all transactions will be monitored, which allows the user to counter this threat

by giving up some privacy. If the user can partially trust her device, she can choose

to use her storage token when necessary and to update all key shares periodically

in a proactive fashion to minimize the risk. In this way, our scheme offers trade-off

between security, usability, and privacy, and a user is able to balance these based on

her own risk threshold.

45

3.5.2.2 Theft of Storage Token

A storage token used in our system holds one key share. Because a storage token

can be lost or stolen, it is important to make sure it is not a weak point in terms of

security of the system. An adversary could download the local IdA code, assuming

it is easily available online for the sake of convenience of legitimate users, and use

it with a stolen storage token. However, in this case, the monitoring agent needs

to be involved in the transaction. This will allow the user to detect the misuse. If

storage token key share is tampered with or corrupted instead of being stolen, a user

should be able to recognize the problem from error messages saying that construction

of a complete signature failed. As a fall back, even in this case, the user can use

services by involving the monitoring agent, as discussed in Section 3.3 and 3.4. As

can be seen, a storage token used in our approach requires minimal resources and

security features. Although additional security functionality, such as password-based

protection and device-level authentication, could be used, it is not mandatory. In this

sense, a storage token can be just a USB drive or removable media.

3.5.2.3 Attacks Against Monitoring Agent

The other component added by us to the architecture is a monitoring agent, and it

holds a key share as well as a database that stores a log of identity-usage information.

If a monitoring agent is simply disabled by an adversary, the user can notice the

problem because a transaction involving the monitoring agent should return an error.

In addition, if the user does not receive usage summary reports, which are supposed

to be sent periodically, she can realize that something is wrong with the monitoring

agent. In such cases, she can contact the party running the monitoring agent to

address the problem. A more sophisticated attack would replace the monitoring agent

code by one that does not record the information about transactions that are initiated

by a malicious party impersonating the legitimate user. In this case, a user has no

46

way to become aware of the attack. Therefore, trusted parties running monitoring

agents must be responsible for detecting such compromise by checking integrity of the

monitoring agent code periodically, and a user should carefully choose a trustworthy

party to run her monitoring agent. Instead of entrusting the monitoring agent to a

third party, a user may have an option to deploy and manage it herself on her own

server for the sake of better access and control. The compromise of a key share stored

at a monitoring agent is less serious because of the 3-4 threshold signature scheme.

The compromise of the database that stores accumulated identity-usage information

would cause privacy concerns. This could be addressed by storing data in a privacy-

preserving manner. Encryption of the database is also an effective countermeasure

against this threat.

In addition to data stored at a monitoring agent, an attacker has access to the

contents of an “Information Token.” Thus, a compromised monitoring agent would

allow an adversary to access this token’s contents. The token only contains a partial

ownership proof that is valid only for a specific transaction, and non-confidential data,

including RP Nonce and location information of the monitoring agent. Thus, disclo-

sure of the contents of it does not affect the security of the system. The other concern

related to an “Information Token” is that an adversary could replay a fully-signed

token in another transaction. However, this will not work as long as a RP checks its

nonce in the token which is unique for each session. If an adversary controlling the

monitoring agent tries to modify the nonce, a combined signature is no longer valid

because the monitoring agent’s partial signature is made on data different from what

is partially signed by the local IdA and remote IdA.

3.5.2.4 Compromise of Remote IdA

An adversary could target a remote IdA’s key share. Although he could gain access to

a user’s identity credentials, this alone will not allow him to misuse the credentials, by

47

virtue of 3-4 threshold signature scheme and joint authority [84]. Thus, a remote IdA

is not a single point of attack either. Although it does not directly result in identity

misuse, protection of the information included in credentials stored at a remote IdA

should be ensured, especially when confidentiality of such information matters.

A compromised remote IdA could allow an adversary to capture information that

is sent to it by other entities. For example, an “Information Token” is included in an

Authorization Message in Figure 4. The adversary can obtain information included

in the token. However, because it contains non-sensitive information as discussed

earlier, it does not jeopardize the system’s security. Regarding an “Authorization

Token,” our extensions do not add any new vulnerabilities beyond what is addressed

by the underlying GUIDE-ME architecture [93].

3.5.2.5 Compromise of Multiple Identity Agents

As shown earlier, the compromise of any single entity is handled by our system.

Although it is less likely to happen, we do consider a case in which a user’s local IdA

and remote IdA are compromised at the same time. Our system can provide some

mitigation of the risk even in this situation. Because we are using the 3-4 threshold

signature scheme, two partial signatures are not enough to convince a RP. Thus, the

monitoring agent will be contacted, which will help users learn of the compromise.

This is actually our primary motivation for placing a monitoring agent at a separate

and trusted site.

In case a user owns multiple user devices to run local IdAs, even if the adversary

succeeds in taking control of more than one local IdAs, his attempt to misuse identity

credentials will not be successful. As noted in Section 3.4.1, the same type of identity

agents are assigned the same key share. Thus, in this example, the adversary can

only obtain a single effective key share, which is not sufficient to create a complete

signature. The same holds when multiple instances of a remote IdA and a monitoring

48

agent are deployed.

3.5.2.6 Malicious Relying Party

We assume that a non-malicious RP is naturally motivated to follow the protocol

described in Section 3.4. Although the security of RPs is outside the control of users,

we discuss the impact that a compromised or malicious RP could have on the system.

Adversaries could mount phishing attacks by spoofing a RP site. In this case,

anomaly should be detected when a user initially negotiates with the RP. A user

or her agent, such as a web browser or local IdA, can do it by verifying the RP’s

certificate and signature made by the RP. Furthermore, even if the detection at this

point failed for some reason, for example when a malicious RP somehow owns a valid

certificate that establishes plausible credibility, a monitoring agent still can detect

anomaly based on the identity, such as IP address, of a RP sending a Monitoring

Request Message in case the user intends her transactions to be monitored.

A malicious RP might replay tokens or credentials to another (non-malicious) RP.

In this case, as long as the non-malicious RP and remote IdA check the nonce and the

user’s (partial) signature on the message token, the malicious RP cannot impersonate

legitimate users. This is because, in the protocol, a RP chooses a unique nonce for

each transaction and requires a user to include it in tokens. Finally, it is possible

that a malicious RP omits contacting a monitoring agent though it is required to

do so. In this case, the log kept by the monitoring agent, which is sent to a user

periodically, will not include certain transactions even though the user intended them

to be monitored. In this case, the user will find out that the RP is not faithfully

following the protocol because of the missing transaction records.

3.6 Summary

In this chapter, by focusing on a user-centric identity management architecture in-

volving identity agents, we presented a way to enable users to exercise more robust

49

and flexible control and awareness over online identity usage by utilizing a low-cost

storage token and an online monitoring agent. In our approach, a user can revoke po-

tentially compromised identity agents and credentials without involving certification

authorities or identity providers. In addition, our scheme ensures that user’s identity

usage is monitored by her monitoring agent unless the user explicitly acts to bypass

it. Users are also able to determine when the storage token is used, and thereby they

can balance usability, security, and privacy based on their own needs and preferences.

We also developed a concrete prototype of the proposed approach and evaluated it in

terms of user centricity and mitigation of threats. Our threat analysis showed how

the theft or compromise of each entity in the system can be reasonably handled.

By introducing the identity management system and user-centric monitoring agent

presented in this chapter, we can ensure that a patient’s (or a healthcare profes-

sional’s) identity credentials are stored on her remote IdA and thereby are secure

against physical theft of devices. In addition, every credential usage is monitored by

her monitoring agent, so, in case credentials are misused by an adversary to access

her PHR / EHR repositories or in other ways, the user can be aware of the incident

and can initiate actions to minimize the loss. Therefore, the risk of online (digital)

identity misuse discussed in Section 1.3.1 can be addressed.

50

CHAPTER IV

PATIENT-CENTRIC MONITORING FOR ELECTRONIC

HEALTH RECORD USAGE AND UPDATE

4.1 Introduction

One of the most serious consequences of theft and misuse of electronic health records

is medical identity theft, which results in damaging patients medically as well as

financially [16]. For example, insurance fraud cases using compromised health in-

formation have already been reported (Section 1.2). Furthermore, misuse can lead

to corruption of a patient’s medical history, which could result in life-threatening

consequences. Other privacy risks are enumerated in [21].

It has been suggested that an effective way to prevent and detect medical identity

theft and misuse of medical information is to proactively and continuously query

healthcare and insurance records as well as credit reports. These need to be carefully

examined to find suspicious activities. The Federal Trade Commission (FTC) also

recommends requesting a copy of the accounting of disclosures of health records,

which includes statements regarding when, to whom, and which record is disclosed

[16]. However, apart from significant delays, this is not an easy task for most patients,

especially in case of health record sharing without a trusted central source of such

information. Under Direct [4], the peer-to-peer nature of EHR sharing limits patient

awareness and control over usage and update of her own health records. Direct could

also increase the risk of information disclosure as a result of malware infection or

physical theft of storage and devices because computers in small doctor offices, which

are the primary target of Direct, are often not managed and protected sufficiently

[44, 86]. As discussed in Section 2.1, Direct leaves systematic enforcement of patient’s

51

consent and access control policies out of its scope and assumes they are handled out

of band. Therefore, it is even more challenging for patients to detect the misuse of

their health information. Since it is expected that the participation of major players

such as Microsoft will rapidly increase the popularity of Direct [9], systematic support

for patients to counter medical data theft and misuse is imperative.

In this chapter, we introduce the notion of accountable usage and update of health

records, which can enable robust patient-centric monitoring by an entity trusted by

each patient. Accountable usage and update can be integrated with data sharing via

the Direct standard as well as in typical EHR and PHR systems that rely on cen-

tralized repositories. Specifically, we introduce a patient-controlled online monitoring

system trusted by a patient. By using cryptographic primitives, under patient control,

the monitoring system can ensure that it is aware of all requests adding or updating

health records stored in a PHR / EHR repository or when such records are presented

to legitimate consumers of health data. The purpose of the monitoring agent is not

to duplicate access control enforcement but to enable a patient to be aware when her

health information is used or updated even in case a malicious entity tries to evade

the monitoring agent. This feature is exactly one of the goals aimed by the changes

to HIPAA proposed in May, 2011 [19]. We can provide such a guarantee when reason-

able assumptions can be made about the behavior of legitimate consumers of health

data. A novel aspect of our approach is that we can achieve this without requiring a

solution for the more general information flow control problems. Besides empowering

patients, our system also protects other honest entities, such as entities that create

health records (e.g., healthcare professionals) and entities that provide services using

healthcare records (e.g., healthcare professionals and insurance companies) who faith-

fully follow the specified protocols. In particular, these entities can obtain evidence

that can safeguard themselves against false accusations of wrongdoing.

52

This chapter is organized as follows. We discuss the system model, key assump-

tions, and high-level overview of our approach in Section 4.2, and then discuss cryp-

tographic primitives for the protocols in Section 4.3. We present details of the system

architecture and associated protocols in Section 4.4. Security analysis of the protocol

is done in Section 4.5. Finally, we conclude the chapter in Section 4.6.

4.2 System Model and Approach

In this section, we consider a typical PHR / EHR system architecture where users,

including patients and medical professionals, store health records in a repository

provided by a healthcare facility or a trusted third party chosen by a patient to

facilitate controlled sharing. At the high level, when a repository is provided by a

third party, the architecture is similar to popular PHR systems, such as Microsoft

HealthVault [17]. If a repository is provided and managed by a hospital, it can be

viewed as an EHR system. A small physician practice can also deploy a repository

in its local office which is the setting that is targeted by Direct [4]. The key entities

that define the overall system architecture are listed in Table 2.

A monitoring agent, in practice, can be operated by a trusted third party, like

Equifax’s monitoring and credit card fraud prevention service (http://www.equifax.

com), or run by a healthcare provider that a patient can trust. While the former may

be suitable for multi-organization setting, in the latter case a patient could expect

extra assurance under regulations like HIPAA or HITECH. Instead, a monitoring

agent could be deployed on a patient’s own server on a commercial computing cloud.

Although this option may be better in terms of patient control, more skills and

management burdens on patients would be imposed. The motivation for deploying

a monitoring agent in this way comes from the observation that it must be easily

and continuously reachable when access to health information is requested as well as

accessible to patients for flexible control [92]. Since a health record belongs to an

53

Table 2: Description of Entities
Entity Description

Patient (Owner) A subject of health records and owner of the
records. She can choose a party to run her
monitoring agent as well as a repository service
provider, which can be the same as her doctor that
she trusts.

Patient’s Monitoring Agent A network-resident entity that monitors update
and usage of health records. Such a monitoring
agent must implement reliable mediation for all
accesses to health records and also implement log-
ging and reporting features.

Health Record Repository A service that provides storage for health records.
This can be a hospital or a trusted third party like
Microsoft. Similar to typical service providers, a
repository performs user authentication based on
identity credentials and also enforces access control
policies defined by patients or healthcare organiza-
tions.

Health Record Issuer An entity that generates health data for a patient.
In addition to patients themselves, issuers can be
hospitals, labs, medical professionals, and other
third parties. Such issuers create health data and
add it to records stored in a health record reposi-
tory.

Health Record Consumer An entity that accesses patient’s health records
to provide patients with medical, financial, and
other sorts of services, for example hospitals, labs,
EMTs, insurance companies, and Medicare. Con-
sumers may be same as issuers.

individual patient, the monitoring system must run on a party chosen or operated

(and thereby trusted) by a patient. Another benefit for patients is that even when

health records are distributed among multiple repositories, the patient can monitor

them through a single or a small number of monitoring agents.

4.2.1 Assumptions and Scope

In the general case, the goal of maintaining control and awareness over each access to

data in distributed settings is not feasible in currently deployed systems. For example,

54

if the information is shared with a healthcare provider who makes its copy, this

provider may share it with other parties without the knowledge of the corresponding

patient. This issue is analogous to the limitation of discretionary access control

schemes discussed in Section 2.4. As we discussed in Section 2.4, although mandatory

access control systems [95, 109] attempt to address such information flow control

problems, it is very challenging to design and deploy them in highly distributed and

federated electronic health record sharing systems.

We develop an alternative formulation of the problem and devise a solution that

is meaningful in the health record sharing environment. By “meaningful usage” of

health records, we mean access to health records by legitimate medical providers, in-

cluding hospitals, labs, EMTs, and pharmacies, or insurance companies that provide

financial services. Our definition is inspired by “Meaningful Use Objectives” outlined

by the Department of Health and Human Services (HHS) [15], but is not limited to

them. In this context, we can naturally assume that meaningful usage by a legit-

imate consumer is accompanied by verification of authenticity and integrity of the

data via the record issuer’s signature. For example, before starting a medical treat-

ment, doctors or EMTs must, for the sake of correct treatments, make sure that the

record is issued by a trustworthy entity and is not tampered with after it was issued.

Similarly, entities like insurance companies and Center for Medicare and Medicaid

Services (CMS) are also motivated to confirm the authenticity and correctness of the

data accompanying insurance claims to avoid fraudulent cases. We also make another

assumption about how stolen health data is used. In particular, we assume that crim-

inals who steal such data would like to benefit from it by presenting it to legitimate

consumers. This assumption is reasonable because cyber criminals are often moti-

vated by financial gain, which requires that stolen data must be presented to entities

such as hospitals, pharmacies, or insurance companies (e.g., a medical identity thief

needs to submit the information to a doctor’s office to obtain healthcare services or

55

an insurance company to file fake claims). Some real-world examples are discussed in

Section 1.2.2. In these cases, the thieves presented the records to Medicare, which is a

legitimate consumer and naturally verifies the authenticity and integrity of provided

information. Our accountable access scheme aims at ensuring that patients can know

when their health records are used at such legitimate consumers. In other words, it

is ensured that if usage is not observed by a patient or her monitoring agent, her

records are not presented to consumers that meaningfully utilize them.

We do not aim at addressing the problem of public disclosure for embarrassment,

which is not accompanied by authenticity verification. Similarly, we do not fully

implement information flow control for the contents of health records when the re-

ceiver of the information is not a legitimate consumer. In this sense, our monitoring

is analogous to a situation where a physically-tagged luggage is traced as it comes

in the proximity of scanners at check points. We believe that our narrower goal of

patient awareness and control over meaningful usage of her health data provides a

practical and useful solution without relying on assumptions to address the general

information flow control problem.

We next summarize our trust assumptions about various entities in the system.

Since a patient can choose her monitoring agent, we assume that it is trusted. How-

ever, since it can be attacked and possibly compromised by adversaries, we minimize

the risk resulting from a compromise by following the least-privilege principle. For

example, a monitoring agent only needs to know when and how data is used or health

records are updated but does not need to know or store the contents of health records.

Also, as discussed in other research work about cloud-based electronic health record

systems [49, 101], besides the possibility of attack from outside adversaries, repository

providers themselves could access stored records and potentially misuse them without

patients’ consent. Thus, records should not be stored in plain format and access to

records should be reliably reported to patients. We also assume that a repository

56

provider, upon insertion and update of health records, accepts only records that are

authorized by patients in a cryptographic manner. To enforce repository providers to

do so, it is necessary to allow patients to challenge the repository provider to see if it

meets this requirement. We do not assume anything about consumers other than that

they follow specified protocols when not compromised. However, in case misbehavior

is suspected, patients should be able to challenge and verify if consumers executed

the protocols faithfully.

Under these assumptions and the system model, we develop techniques to meet

the following goals:

(a) Accountable Update: Patients can be informed of updates to their health

records stored on health record repositories, including submission of new health

records or update of them by third parties such as medical professionals, as well

as patients themselves.

(b) Accountable Usage: Patients can be aware of all occurrences of “meaningful

usage” of their health records at legitimate consumers, which are accompanied by

verification of data issuer’s signature by the consumers.

(c) Protection of Honest Entities: Our scheme protects honest system partici-

pants that faithfully follow specified protocols while allowing patients to successfully

challenge compromised or dishonest entities.

4.2.2 Approach for Accountable Access

4.2.2.1 Accountable Update of Health Record

To ensure patient awareness, our goal is to develop a protocol that reliably involves a

patient’s monitoring agent whenever a health record is either created and stored in a

repository or it is updated. Mediation by the monitoring agent must be guaranteed

under the assumption that patient’s authorization on submitted records is obtained

by a repository before acceptance. This goal is consistent with the requirements of

Health Information Technology for Economic and Clinical Health Act (HITECH).

57

Section 164.524 mentions that a patient has a right to request a copy of a health

record that is maintained by covered entities. Our approach allows patients to know

about changes to their health records, which enables them to request a copy in a

timely manner when they become aware of suspicious changes.

Patient’s authorization and verification can typically be implemented by using a

digital signature scheme. In other words, a repository is required to obtain and ver-

ify a patient’s or her agent’s signature on submitted data. In the latter case, there

should be a verifiable chain of trust to the patient herself. Intuitively, we can enforce

monitoring by requiring repository providers to communicate with a patient’s moni-

toring agent to obtain the authorization proof from it. A compromised or malicious

repository provider can omit this process, and if this happens, such transactions will

not be monitored. To provide additional incentives for repository providers to follow

the protocol, we introduce a transaction proof issued by a monitoring agent. Such

a proof can protect honest repository providers from false accusation by dishonest

patients. On the other hand, after acceptance of health records, a repository should

issue a verifiable receipt to a patient or her agent. Such receipts provide patients

with a comprehensive picture about their health records and also can be used to

challenge potentially misbehaving repositories. Thus, by proper execution of the pro-

tocols for accountable updates, all entities involved are able to protect themselves

from misbehavior of the others.

4.2.2.2 Accountable Health Record Usage

For health record usage monitoring, we rely on the assumption that an issuer’s signa-

ture on a health record must be verified by consumers before it is meaningfully used.

Then, we aim at enabling patients to be aware of by whom and when their records

are verified.

To satisfy this goal, we must develop a protocol so that verification of an issuer’s

58

signature on a health record requires interaction with a patient’s monitoring agent.

Another requirement for robust auditing is that every entity that uses a health record

is required to contact a monitoring agent. For example, just encrypting a health record

and an issuer’s signature on it is not sufficient because any entity can meaningfully use

the record without the assistance of a monitoring agent in case the decrypted data

and signature are shared or leaked. Therefore, we must address the problem that

arises from such unauthorized sharing. We utilize the concept of a non-transitive

proof to accomplish this goal, which will be discussed in Section 4.3.

Health Insurance Portability and Accountability Act (HIPAA) Section 164.520

“Notice of privacy practices” says that an individual has right to receive adequate

notice of the usage and disclosures of protected health information. Thus, omitting the

interaction with the monitoring agent can be viewed as a violation of this rule. Taking

advantage of this, we again introduce a transaction proof showing that a certain

consumer of a health record actually interacted with a monitoring agent. Such a proof

provides evidence of patient’s awareness and consent. Consumers who meaningfully

use patient data but fail to have this proof can be penalized for unauthorized use.

Thus, there are incentives for consumers to interact with the monitoring agent and

obtain this proof to protect themselves in the future.

4.3 Cryptographic Primitives

In this section, we discuss cryptographic primitives that help us achieve mediation by

a patient’s monitoring agent when her health data is accessed. Other cryptographic

primitives, such as ones to meet confidentiality requirement, will be discussed in

Section 4.4. In addition, since a regular digital signature primitive is sufficient for

accountable update, here we focus on the scheme used for accountable usage.

For accountable usage, we need to enforce that meaningful usage of a patient’s

health record by a consumer must involve the patient’s monitoring agent. As discussed

59

earlier, we believe that legitimate consumers of health information would want to

verify the issuer’s signature on a health record before using it. Additionally, we need

to make sure that verification of the issuer signature is possible only for the requesting

consumer. Otherwise, if a compromised machine of a consumer who first accesses the

data leaks it to an unauthorized party, the data could be presented to and verified

by another consumer without communicating with the patient’s monitoring agent.

Due to this reason, we can not use a publicly-verifiable digital signature scheme to

implement a issuer signature on a health record.

We could enforce the mediation by a monitoring agent by using Threshold Signa-

tures [112]. An issuer of a health record can partially sign the record and give the

corresponding verification key to the patient so that she can store it on her monitoring

agent. By doing so, consumers, who obtain the partially-signed record, can not verify

the authenticity without contacting the monitoring agent. The monitoring agent, in

return, can provide the verification result to the consumer. This scheme could enforce

the involvement of a monitoring agent in the record verification process. However,

the signed proof returned by the monitoring agent is transitive, which implies that

the receiver can transfer it to another party. Such a party can obtain this proof and

the health record and thereby could bypass the monitoring agent, which defeats our

scheme.

Use of zero-knowledge proof based schemes is one common approach for creating

non-transitive proofs [71, 76]. In our setting, however, health record issuers often

do not know who would use the records in the future. Moreover, they might not

have direct interaction with a health record consumer (i.e., a verifier of the issuer’s

signature). Thus, a non-transitive issuer signature on a health record needs to be

created in an on-the-fly manner. To meet this requirement, we propose the following

approach. In order to enforce the involvement of a monitoring agent in the verification

process, we encrypt an issuer’s (publicly-verifiable) signature on a health record in

60

such a way that only a patient and her monitoring agent can decrypt it. By doing so,

we force a consumer to contact the monitoring agent before using the data. Then,

instead of giving the decrypted issuer signature to the consumer, the monitoring agent

returns the signature in non-transitive form. To implement such non-transitivity, we

employ Universal Designated Verifier Signatures (UDVS) [115].

UDVS is a special form of designated verifier signature scheme [76]. Under this

scheme, we can generate a designated verifier signature that can convince only a

designated entity. In other words, even if a designated verifier signature is leaked

or illegally shared, it can not convince any other entity. Thereby, we can prevent

the dissemination of a proof and can enforce that all entities consuming the record

communicate with the monitoring agent to verify it. Although a standard designated

verifier signature [76] can be created only by an original signer (i.e., an issuer), UDVS

can be created by any entity with access to the original signer’s and designated

verifier’s public keys. This scheme fits our architecture because health records issued

(and signed) by an issuer can be designated to a specific consumer by the patient or

her agent. In addition, we think that such designation naturally fits the concept of

patient’s consent since it is usually given to a specific entity at a time. The primitives

of UDVS scheme are summarized in Table 3.

4.4 Protocol Description

We start by describing the initial setup at each entity. We assume that a patient has

already chosen a party to run her monitoring agent. Similarly, a repository provider,

which can be a healthcare organization, is also chosen. Hereafter, MoA is used as an

abbreviated notation for a patient’s monitoring agent.

We assume that some trust anchors (e.g., certification authorities or regional

health information organizations) issue, under a regular public key encryption sys-

tem like RSA, a public / private key pair and a public key certificate to participating

61

Table 3: Primitives of UDVS Scheme
Notation Description

UDVS-KG() Generates a private / public key pair (sk, pk).
For the sake of clarity, a signer’s pair is de-
noted as (sks, pks) while a verifier’s is written
as (skv, pkv) in this table.

UDVS-S(sks, m) Given sks and a message m, outputs a publicly
verifiable signature sig.

UDVS-PV(pks, m, sig) Given pks, m, and the corresponding sig, out-
puts the verification result.

UDVS-DS(pks, pkv, m, sig) Given pks, pkv, and the pair of m and sig, gen-
erates a designated verifier signature DV S.

UDVS-DV(skv, pks, m, DV S) Given pks, skv, and the pair of m and DV S,
returns the verification result.

entities, namely patients (owners), health record issuers and consumers, and reposi-

tory providers, and that the trust anchors’ certificates are shared by all participants.

We call them main key pairs and denote them {SKo, PKo, CERTo}, {SKi, PKi,

CERTi}, {SKc, PKc, CERTc}, and {SKr, PKr, CERTr} respectively. MoA’s main

key pair, {SKm, PKm, CERTm}, could be issued by a trust anchor, but more nat-

urally, an owner can generate a key pair and certify them with SKo to establish a

chain of trust between CERTo and CERTm. MoA’s public key is signed along with

its location (e.g., IP address). The same entity can play multiple roles, for instance

an issuer and a consumer. In such a situation, only one set of keys is required for the

entity with multiple roles, but for clarity, we use the different notation for each role.

Each entity creates a pair of public key and private key, which we call UDVS key

pair, under Universal Designated Verifier Signature (UDVS) scheme, namely {pubi,

privi} for an issuer and {pubc, privc} for a consumer. This is done as follows.

(pubj, privj) ← UDV S −KG()

for j ∈ {i, c}. Each of these public keys is signed with the corresponding entity’s

main private key, which is certified by a trust anchor as explained earlier. We call the

62

resulting certificates certi, and certc respectively. Again, only one UDVS key pair is

required for each entity.

4.4.1 Accountable Update of Health Record

In this section, we will discuss a protocol to insert a new health record into a

PHR / EHR repository, which we call Accountable Update protocol hereafter. This

protocol is used, for example, when a doctor generates new health data for a patient

and adds it to a health record repository. The same protocol can be used when up-

dating health records assuming an append-only repository. Depending on the setting,

the repository can be a local application running on an issuer’s PC, a server deployed

in the issuer’s office, or a remote service hosted by a third party. The insertion or

update of health data can be initiated by parties such as doctors, labs, and other

medical professionals in EHR settings and patients themselves in case of PHR. Our

system can handle both use cases.

A health record added to a repository must be signed by its issuer for integrity

protection and source verifiability, and it also needs to be encrypted to meet con-

fidentiality requirement against the repository provider as well as cryptographically

authorized by the patient’s MoA. In addition, upon completion of the protocol, each

of the patient’s MoA and the repository obtains a transaction proof.

Notations used in the protocol description are summarized in Table 4. Additional

notations shown in Table 3 are also used. The details of the protocol are explained

below as well as in Figures 5 and 6.

• (P1) The plain record (D) is encrypted with the hash value of itself, HD, with a

symmetric-key encryption algorithm. We call the cipher text CD. The publicly-

verifiable signature on HD, denoted S, is created under UDVS scheme. HD and

S are encrypted with MoA’s public key, resulting in CHD
and CS, and are only

known to the issuer and MoA. M is the metadata of the corresponding record

63

Table 4: Notations Used in Protocol Description
Notation Description

PKEk(p) Encrypts a plain text p using a public key k
under an asymmetric-key encryption scheme.

PKE−1k (c) Decrypts a cipher text c using a private key k
under an asymmetric-key encryption scheme.

SKEk(p) Encrypts a plain text p using a secret key k
under a symmetric-key encryption scheme.

SKE−1k (c) Decrypts a cipher text c using a secret key k
under a symmetric-key encryption scheme.

Hash(d) Computes a message digest of d under a secure
cryptographic hash function.

Signk(d) Computes a message digest of d, Hash(d), and
then signs it using a private key k.

V erifyk(s) Computes a message digest of data signed
(omitted in the notation) and then verifies a
signature s using a public key k.

SignEncsk,pk(d) Sends d via a secure and authenticated channel
established by using a sender’s private key sk
and a receiver’s public key pk.

and contains data used when creating transaction proofs and also when the

record is later verified by a consumer. Specifically, M contains a hash value

of CD (i.e., HCD
), CHD

, and certificates of entities. MACi is a session-specific

message authentication code, considering Timestampi as a nonce, to assure

MoA that the contents of M are not tampered en route or by a repository

provider.

• (P2) The repository verifies the matching between HCD
and CD by computing

the hash of CD. MACi and CERTm are also verified. Verification of CERTm

is necessary to ensure the chain of trust. The repository can know the location

of MoA from CERTm included in M . Then, it forwards some of the data to

MoA.

• (P3) MoA does its verification and authorization task. It first verifies the

64

Figure 5: Architecture and Message Flow of Accountable Update Protocol

integrity of M by MACi. The consistency between CERTi and certi is also

checked. Then, CHD
and CS are decrypted to verify the issuer’s signature S. If

it succeeds, MoA signs M to create the authorization for the record acceptance.

Issuance of the authorization is also logged on MoA.

• (P4) The repository verifies the signature on Auth, and then stores {CD, M ,

Auth} on its storage. After that, it issues a signed receipt to MoA as well as to

the record issuer.

• (P5) Finally, MoA verifies the repository’s signature on the record receipt

(Rcptr) sent by the repository.

In (P1), CERTm is usually obtained from a patient. Regarding CERTr, it could

be provided by the patient, or the issuer obtains it for his own health record repository.

To encrypt the health data, we use a key derived from the data itself. In particular,

we use HD, the hash of data D, as the key. Although the encryption key depends on

its plain text, under a secure hash function, it is highly difficult for any entity to guess

it without knowing the health record in plain form. Security proof against entities

without knowledge of the plain text is made in [62]. The encrypted record can be

decrypted by the issuer himself or an entity that knows HD. Since HD is encrypted

65

Protocol 4.4.1: AccountableUpdate

(P1)Issuer :

Load CERTo, CERTm, CERTr, certi, and CERTi
Generate data (D)
HD ← Hash(D)
S ← UDV S − S(privi, HD)
CS ← PKEPKm (S)
CD ← SKEHD

(D)

HCD
← Hash(CD)

CHD
← PKEPKm (HD)

M ← {CS , CHD
, HCD

, certi, CERTi,

CERTo, CERTm, CERTR}
MACi ← SignSKi

(M, Timestampi)

(M1)Issuer→ Repository :
SignEncSKi,PKr (CD, M, MACi, T imestampi)

(P2)Repository :

if V erifyPKi
(MACi) = false

then Abort
if (Hash(CD) = HCD

) = false

then Abort
if V erifyPKo (CERTm) = false
then Abort

(M2)Repository →MoA :
SignEncSKr,PKm (M, MACi, T imestampi)

(P3)MoA :

if V erifyPKi
(MACi) = false

then Abort
if V erifyPKi

(certi) = false

then Abort

HD ← PKE−1
SKm

(CHD
)

S ← PKE−1
SKm

(CS)

if UDV S − PV (pubi, HD, S) = false
then Abort

Auth← SignSKm (M)
Log Timestampi and MACi with M

(M3)MoA→ Repository :
SignEncSKm,PKr (Auth)

(P4)Repository :

if V erifyPKm (Auth) = false
then Abort

Save CD, M, and Auth
Rcptr ← SignSKr (M,Timestampr)

(M4)Repository →MoA :
SignEncSKr,PKm (Rcptr, T imestampr)

(M5)Repository → Issuer :
SignEncSKr,PKi

(Rcptr, T imestampr)

(P5)MoA :

if V erifyPKr (Rcptr) = false
then Abort.

Log Rcptr and Timestampr with M

Figure 6: Accountable Update Protocol

with the public key of the patient’s MoA (CHD
), only MoA can access it. The reason

why we include HCD
is to secure the mapping of cipher text CD and M so that a

mismatch between them can be detected during the protocol execution. We could use

a random number as a nonce instead of timestamp, but we chose to use a timestamp

since it is practically secure enough [102] and facilitates freshness checking against

replay attacks. Given the wide-scale availability of NTP-like services, loose clock

synchronization is not difficult nowadays. Although we do not explicitly mention

66

timestamp verification, a receiver of the message checks the freshness of it based on

the timestamp.

In (P3), even though MoA does not know the record in plain text, as the issuer

signature is made on the hash value (HD) following the convention of digital signa-

tures, MoA can verify the validity of S by using HD. Regarding the authorization

issued by MoA (Auth), since M contains the repository’s identity and the metadata

of the record, the authorization is scoped to a specific transaction.

In (P4), it is important for the repository to store Auth since it proves that the

patient (or its monitoring agent) is aware of an update that the repository accepts.

Since the absence of such a proof could be problematic for the repository, it is moti-

vated to store it securely.

After receiving a receipt from the repository in (P5), MoA adds the receipt to the

log record created in (P3). MoA logs a pair of Rcptr and MACi for each submission,

which are linked by the common M . MoA (and the patient) can believe that the

repository is updated after receiving Rcptr since its possession would allow the patient

to challenge the repository in case it denies future transaction for the corresponding

record. If MoA does not receive Rcptr after it sends Auth, the transaction may not be

completed due to some failures, or the repository could be misbehaving. Therefore,

the existence of incomplete pairs should lead to patient attention.

Patient may have mobile health devices with them, generating health data that can

be stored in their PHR repositories. Or, patients could add to their own repositories

copies of electronic medical records issued by healthcare organizations. In these case,

a patient herself is the issuer of a health record. We can use the same protocol by

simply replacing “Issuer” in Figure 6 with “Patient” and also corresponding keys

used. However, a patient, by creating Auth by herself and sending it with (M1),

can have an option to bypass her MoA. In other words, a repository can complete

steps (P2) and (P4) at the same time. The same option is also available when a

67

third party, say a doctor, is issuing a record, as long as a patient is physically present

at a point of care and can create Auth for him. Since the repository can obtain

and verify authorization without communicating with the patient’s MoA, it can be

bypassed. This option offers higher system availability because health data can be

stored in the repository even when the MoA is unreachable. Because the patient

directly participates in the transactions, the patient awareness goal can still be met.

4.4.2 Accountable Usage of Protected Data

We next discuss Accountable Usage protocol, which defines how health records are

verified by consumers. As discussed in Section 4.2.1, we assume that all legitimate

consumers of health records do such verification to ensure that they are receiving

valid data and with patient’s consent.

There are a number of ways in which consumers can obtain health records. For

example, under typical PHR / EHR systems, medical professionals and patients can

download such records directly from the repository. We assume that the repository

maintains sufficient metadata that is not privacy-sensitive [39] or relies on techniques

such as searchable encryption schemes [53, 64] to identify what data should be re-

turned in response to a request. Such mechanisms are orthogonal to our protocol and

are outside of the scope of this work.

In Direct [4], records can be downloaded from a repository by a doctor, which

may or may not be a consumer, and then can be sent via e-mail to another party

that meaningfully consumes the record. Since our system does not rely on the way

in which records are transferred, our protocol description starts when a consumer

obtains a protected record and associated metadata via some means.

The protocol is summarized below (see also Figures 7 and 8).

• (P1) First, a consumer verifies the MoA’s signature on M (Auth) for integrity

verification. Then, it checks the mapping between M and CD by comparing the

68

Figure 7: Architecture and Message Flow of Accountable Usage Protocol

Protocol 4.4.2: AccountableUsage

(P1)Consumer :

Receive CD, M, and Auth
Load CERTc and certc
if V erifyPKm (Auth) = false
then Abort

if V erifyPKo (CERTm) = false
then Abort

if (Hash(CD) = HCD
) = false

then Abort

(M1)Consumer→MoA :SignEncSKc,PKm (M, certc, CERTc)

(P2)MoA :

if V erifyPKc (certc) = false
then Abort

HD ← PKE−1
SKm

(CHD
)

S ← PKE−1
SKm

(CS)

DV S ← UDV S −DS(pubi, pubc, HD, S)
POI ← SignSKm (M, CERTc, T imestampm)

(M2)MoA→ Consumer :
SignEnc(HD, DV S, POI, T imestampm)

(P3)Consumer :

if V erifyPKm (POI) = false
then Abort

D′ ← SKE−1
HD

(CD)

H′D ← Hash(D′)
if UDV S −DV (privc, pubi, H

′
D, DV S) = false

then Abort
Log POI, M, and Timestampm

Figure 8: Accountable Usage Protocol

hash values. CERTm is also verified with PKo to confirm the chain of trust.

• (P2) MoA checks the signature on certc to make sure that a signature is going

to be designated to a consumer with a claimed identity. Then, MoA decrypts

HD and S, and designates S to the consumer. It also generates a proof of

interaction (POI), which proves that an owner of CERTi interacted with MoA

69

regarding a record described by M at Timestampm.

• (P3) The consumer starts with verifying the MoA’s signature on POI. Af-

ter that, the consumer decrypts CD by using HD, and then verifies the desig-

nated signature, which convinces the consumer that the record is created by the

claimed issuer and not tampered with. Finally, it saves POI and other relevant

information.

In (P3), if the signature on POI is not valid, the consumer should ask for a valid

proof again. Otherwise, the consumer would be in trouble due to the lack of the

transaction proof. Optionally, POI can also contain a patient’s policy statement,

such as duration of the authorization, purpose of usage, and so on. Such policies are

not enforced by our protocol, but it, along with POI, can be used to prove that the

health record usage is done within the patient’s authorization scope. On the other

hand, when unauthorized usage is observed or suspected, the patient can require the

consumer to present such a proof.

Finally, we need to consider the availability aspect of health records. Specifi-

cally, when MoA is disabled, the patient’s health records become unverifiable, which

could be critical especially in an emergency situation. Availability problems can be

mitigated by running multiple MoAs. Note that, only one MoA is involved in each

transaction and no interaction or coordination among them is required. Instead, if

a patient provides consumers with HD and a publicly-verifiable signature S for the

corresponding record, the consumer does not need to contact MoA. Thus, HD and

S can be stored in a secure portable storage that is available to the patient. They

can be further protected by secret sharing as discussed in [67]. However, disclosing S

implies that the corresponding record could later be verified without being mediated

by MoA.

70

4.5 Security Discussion

We will discuss how our security goals are met even when the system comes under

certain attacks. The limitations of our scheme will also be briefly discussed. Since our

primary goal is to ensure patient awareness for usage and update of health records,

our discussion mainly focuses on how this is accomplished.

4.5.1 Cryptographic Guarantee for Patient-centric Monitoring

First, we discuss the two basic properties related to the security and correctness of

the protocols for EHR usage / update monitoring. The discussion in this section

assumes that all keys or other system components are not compromised and that all

system users are honest. The situations where these do not hold will be discussed in

the following sections. Moreover, our discussion here focuses on the protocol imple-

mentation using UDVS scheme [115]. Thus, employing another cryptographic system

could require different assumptions.

Property 1: Monitoring in Accountable Update can be reliably enforced when the

digital signature scheme used for generating patient authorization is secure.

Justification for Property 1: Under our assumptions made in Section 4.2.1, a

health record repository needs to obtain a patient’s authorization from her monitor-

ing agent to later justify its record acceptance. Based on our definition of patient

authorization, the authorization proof is a record-specific metadata signed by using

the monitoring agent’s private key. Thus, as long as the monitoring agent’s signature

for a certain health record can not be forged, the claimed property holds. Under our

design, an adversary (i.e., a malicious repository) could use the monitoring agent as

a “signing oracle” to obtain arbitrary number of pairs of messages and correspond-

ing signatures, so the digital signature scheme used in the implementation should be

UF-CMA secure [72].

71

Property 2: Monitoring in Accountable Usage is enforced when public-key encryp-

tion scheme used for encrypting issuer signatures is secure and Bilinear Diffie-Hellman

(BDH) assumption holds.

Justification for Property 2: The enforcement of EHR usage monitoring relies on

two factors. Namely, EHR consumers’ inability to verify an encrypted issuer signature

and non-transitivity (or non-transferability) of a designated verifier signature. To

satisfy the former, a consumer should not be able to decrypt the issuer signature

without the knowledge of the monitoring agent’s private key. In other words, the

public-key encryption system used in the implementation must be secure, at least in

IND-CPA sense [70]. In addition, secure encryption also guarantees that only the

patient’s monitoring agent can decrypt the issuer signature, so the valid designation

can be done only by it, which implies that involvement of the monitoring agent

is enforced. Here we should also note that unforgeability of designated signatures

(“DV-Unforgeability” in [115]), when the original signer’s and verifier’s public keys

are known to an adversary, is also proven in the random oracle model. Regarding the

non-transitivity, it relies on the security of UDVS scheme, whose non-transferability

is proven under BDH assumption [115].

4.5.2 Compromised Issuer / Consumer Devices

Since devices used by issuers and consumers are often not managed by security pro-

fessionals [44], they could be the vulnerable parts of the system. Client devices need

to store the following: a main key pair and UDVS key pair. Health data can also be

downloaded to consumer devices. In case of issuer devices, CERTr is also involved.

Even if decrypted records are leaked or stolen from consumer devices, a copy

of such data cannot be meaningfully used at another legitimate consumer. This

is because, as discussed in Section 4.3, the UDVS scheme creates a non-transitive

signature which will not convince any party except for the designated consumer. The

72

case where plain records and signatures are leaked from an issuer is discussed in

Section 4.5.5.

Regarding a main key pair, if a private key is compromised, the integrity protec-

tion of messages is not guaranteed. Since these private keys are only used to protect

integrity of messages, the compromise of the main private key of issuers and con-

sumers does not lead to disabling of the monitoring system. On the other hand, the

compromise of an issuer’s UDVS key pair could imply that an adversary controlling

the UDVS private key can create a signed record and submit it to a repository, by

impersonating a legitimate key owner. In this case, the submission of the record is

monitored by MoA, which helps patients become aware of the problem. Moreover,

the confidentiality of records stored in the repository is ensured even when these keys

are compromised because they are encrypted with a record-specific key, HD, which is

encrypted by MoA’s public key. The compromise or theft of CERTr is not a serious

concern since it is public data. Confidentiality of the record is not compromised even

when an adversary could replace or tamper with CERTr to mislead an issuer because

a record is encrypted by an issuer before submission. This threat can be mitigated

by verifying the certificate on each execution of the protocol.

4.5.3 Malicious / Misbehaving Third-party Issuer

We here consider the case where an issuer submits bogus or corrupted data. In our

system, a record’s plain text is not available to a repository or MoA. The consistency

between CD and HCD
and one between S and HD can be verified by these entities

without access to the plain text of the record. But entities other than an issuer

can not check the mapping between D and CD (and also HD and HCD
) during the

Accountable Update process. So, it is possible for malicious issuers to submit CD and

HCD
with another record’s HD and S. However, such misbehavior can be detected

by a consumer because he can not decrypt CD correctly in such a case. Even if a

73

malicious issuer somehow succeeds in inserting bogus or malicious records into the

repository, patients are not harmed because such data cannot be meaningfully used

since it cannot be successfully verified. Furthermore, since the identity of the issuer

of each record is logged, the malicious issuer can be traced back. To further reduce

the risk of such bogus records, a patient, as a consumer, can proactively download

and verify the records stored on the repository.

4.5.4 Compromised / Misbehaving Repository

Since patients’ health records are stored on it, a repository is one of the most im-

portant entities in an e-healthcare system architecture. In addition to attacks from

external adversaries, attacks initiated by insiders are a concern.

In our architecture, repository providers are not assumed to be fully trusted.

They simply provide storage space for encrypted health records and should enforce

reasonable access control. However, we can detect and deal with a compromised or

misbehaving repository that does not perform these functions properly. Since all

records are encrypted with keys that are not known to a repository provider, confi-

dentiality is maintained. If stored records are leaked or shared by a repository with

unauthorized parties, they can not be read or meaningfully used without involving

MoA. If a misbehaving repository refuses to provide data that was previously stored

at it, the patient can challenge the repository because she has a signed receipt that

shows the data was accepted. Thus, this kind of misbehavior can be detected, and it

can be proven that the repository is at fault.

Repository providers could corrupt the consistency between a record and corre-

sponding metadata. This problem can be detected by consumers because they first

verify the consistency between CD and HCD
, which is included in M signed by MoA.

One potential risk here is that a repository, intentionally or accidentally, provides a

consumer with a record of another patient. In this case, the process at the consumer

74

side interacts with MoA that belongs to the wrong patient. The patient to whom

this MoA belongs will detect the repository malfunction. Also, this problem can

be prevented if a consumer verifies whether CERTo in M actually matches the re-

quested patient. By doing so, the consumer can ensure that CERTm belongs to MoA

of the right patient. Thus, some type of patient ID or personally identifiable data

items, including ones used in Master Patient Index (MPI) [14], should be included in

CERTo.

4.5.5 Limitations

Health data is first created by record issuers who know the contents of records and

also the corresponding hash values and signatures. If these are leaked or shared

directly without going through the protocol, the monitoring system would not be

effective since such records can be verified and used without the assistance of MoA.

Our scheme does not mitigate this risk. The same applies when an issuer himself

misuses health records created by him. We believe this is not a serious problem

because issuers typically fall in the category of covered entities that have regulatory

reasons to behave correctly. Also, lack of POI is still problematic for consumers, so

they are motivated to reject such records.

A repository has access to certain metadata fields (e.g., contents of M), which

contain identities of an issuer and a patient. The issuer identity alone could be

sensitive in e-healthcare setting (e.g., a cancer hospital) and may lead to privacy

violation for the patient because of inference attack. This is a problem in e-healthcare

systems but is not addressed in this dissertation.

In our system, the protection of a patient’s main private key SKo and MoA’s

main private key SKm is particularly important. Specifically, these keys can be

used to forge transaction proofs. Compromise of SKm could also result in losing

confidentiality of records as well as patients’ awareness over health record usage since

75

an adversary can decrypt CD and CS. If MoA colludes with other malicious entities,

SKm could be misused, which results in similar consequences. Since MoA is trusted

in our architecture, the most important thing is to choose a trustworthy party where

it is run. To minimize the risk of compromised SKo, we recommend storing it in a

physically-separated storage so that device theft or compromise does not immediately

result in the compromise of SKo. Such a storage should have a security mechanism

to counter the threat of theft.

Also related to MoA keys are the revocation and update of them. If MoA’s keys are

updated, record metadata stored on the repository need to be updated accordingly.

However, it is less expensive compared to re-encrypting all Ds. Transaction proofs

issued by MoA, namely Auth and POI, are still valid even after the update of MoA’s

keys because the corresponding M contains both CERTm when the transaction was

made and CERTo issued by the trust anchor, which can be used to verify CERTm.

Thus, a party that wants to verify the proof can still establish a chain of trust to the

trust anchor.

In addition, to counter attackers who could inject code into MoA to disable (or

compromise) its features, periodical checking of module integrity should be effective.

While such protection is largely dependent on a party running MoA, if a patient

herself can conduct the integrity check remotely, for example by means of remote

attestation [68, 75], patients’ confidence can be enhanced.

Lastly, our scheme relies on PKI and assumes that private keys reliably authen-

ticate their owners. In other words, if those keys are stolen and misused, patients’

awareness would be misled. Specifically, an adversary who compromised a legiti-

mate user’s private key could conduct update or usage under the actual key owner’s

identity. Systematic ways to reduce such risk will be discussed in Chapter 6.

76

4.6 Summary

In this chapter, we presented a patient-centric monitoring system for health record

update and usage to empower patients in a health record sharing environment. Our

scheme fits typical EHR / PHR systems as well as Direct, an emerging health record

sharing standard, and enhances patients’ awareness over their health records stored

in a distributed, multi-domain electronic health record systems.

Such enhanced patient awareness can mitigate the risks of misuse of healthcare

information as well as medical identity theft. Namely, in cases of healthcare fraud

discussed in Section 1.2.2, patients can be informed of when and by whom their

health records are consumed. Then, if the observed usage is suspicious, the patient

can contact the consumer or law enforcement to address the problem. Moreover, if

the patient’s health records are updated as a result of office visit by an impersonator

or fake medical treatments for fraudulent purposes, she can contact the corresponding

healthcare provider to address the issue.

77

CHAPTER V

INFORMATION ACCOUNTABILITY IN ELECTRONIC

HEALTH RECORD SHARING

5.1 Introduction

As mentioned in Section 1.2.3, a large number of healthcare information breach inci-

dents are caused by carelessness or inappropriate handling of patient data by insid-

ers of healthcare organizations. Other insider threats include intentional breach of

healthcare data when dishonest employees motivated by monetary gain leak the data

to external parties, such as the case of Cleveland Clinic in 2006 [1] discussed in Section

1.2.2. As a result of an incident like this, patients whose records are misused could

suffer from financial loss. Also, such incidents would erode patients’ and medical

professionals’ confidence in e-healthcare systems, which could limit the effectiveness

of electronic health records.

Accidental or intentional data breach due to insiders can be discouraged by robust

accountability of actions that access, share, or transfer data in e-healthcare systems.

In this work, we define information accountability in health record sharing (or simply

accountability) as providing patients with assurance about how their health records

get to consumers who utilize health information to provide care or to support op-

erations such as billing. By ensuring such accountability, when misuse is detected,

we can enable patients and healthcare organizations to identify and punish insid-

ers who were engaged in illegal sharing (or inadvertent leakage) of electronic health

records. For example, in the Cleveland Clinic example mentioned earlier, account-

ability would make the involvement of the malicious insider and her cousin visible

to patients, who can alert Medicare investigators and provide the evidence necessary

78

to punish the dishonest employee. If we can establish information accountability,

disallowed actions are effectively discouraged under rules and punishments against

healthcare professionals defined in HIPAA [77], as discussed in [120].

There are already a variety of schemes designed to detect and prevent insider at-

tacks, but we believe that information accountability can effectively complement such

schemes both in deterring attacks and for providing information that can facilitate

investigation once incidents are reported. In addition to the mitigation of insider

threats, patients can further benefit from information accountability since they can

become aware of how their health records are shared and propagated as well as who

may have their copies.

Unfortunately, most of current e-healthcare systems do not necessarily provide

sufficient level of accountability and do not support patient’s awareness of how and

when patient data is shared and used. While many healthcare organizations imple-

ment logging and access control mechanisms for health record repositories, often such

schemes are not comprehensive and thereby could allow unauthorized actions [79].

Also, identifying compromised or malicious insiders may not be possible even when

such security mechanisms are properly configured and enforced. For instance, in case

a number of employees in a healthcare organization accessed the same record and one

of them leaked or illegally shared a copy of the data with an external, and possibly

malicious, entity that eventually misuses the health data, it is not possible to cor-

rectly identify which employee is responsible for it. Similar situations can also arise

in the case of accidental disclosure. In the previous chapter, we introduced a patient-

centric monitoring agent to enhance patient’s awareness regarding usage and update

of their electronic health records. However, it alone does not suffice to establish ac-

countability. Even though it helps patients notice suspicious events, again they could

not exactly identify culprits. Moreover, if copies of health records are shared with

other healthcare organizations, which is common in e-healthcare systems, correctly

79

identifying the source of a breach would be even more complicated.

In this chapter, we explore a way to establish robust information accountabil-

ity in health record sharing by expanding the capability of a patient-centric mon-

itoring agent. Specifically, we design a scheme to securely attach metadata called

an accountability tag to each copy of an electronic health record. Such tags carry

cryptographically-verifiable evidence of entities that are involved in the sharing of

health information that carries the tags. Accountability tags are verified and logged

by a patient-centric online agent that allows a patient to determine how the informa-

tion was shared.

This chapter is organized as follows. In Section 5.2, we discuss key assumptions

and the scope of this work. The design of the system using accountability tags and

the associated protocols are presented in Section 5.3. Then, Section 5.4 evaluates the

correctness, and how various security threats are handled is discussed in Section 5.5.

Application of the proposed scheme in other domains is briefly discussed in Section

5.6. Finally, Section 5.7 concludes the chapter.

5.2 Scope, Assumptions, and Goals

To design a health information accountability scheme, we make the following as-

sumptions. While all of them may not seem to be readily met today, we believe

that, to safeguard electronic health records against emerging threats, the health IT

infrastructure must evolve in the future, which will make these assumptions more

realistic.

(1) There exists a trusted service on an online entity chosen or controlled

by a patient. It can be used to deploy an “accountability agent” to process and

log accountability tags on behalf of a patient. The monitoring agent discussed in

the earlier chapters can be enhanced with this functionality. Such an agent must be

available when patient data is consumed by some entity and can be run at a trusted

80

third party or the patient’s own server hosted in a cloud. Techniques used to protect

traditional security services (e.g., authentication servers and web applications) can

be used to protect such an agent and are not discussed in this dissertation.

(2) Public key infrastructure (PKI) with trust anchors is available. We

believe this will be reasonable in future health record sharing systems. For instance,

Direct standards [4] involve PKI established with regional healthcare information

organizations (RHIOs) or other trusted entities as trust anchors. We assume that

every participant in the health information sharing is assigned a public / private key

pair, which is authorized by one of the trust anchors so that other parties can trust

it.

(3) Private keys reliably authenticate the legitimate owners. This assumes

that patients and others employ reasonable safeguards to protect private keys. (We

will further discuss a way to protect private keys in Chapter 6.) Also, it is not easy to

distinguish a case where an insider intentionally uses his private key from a case where

the private key is misused by an unauthorized party, including malware installed on

an insider’s device. In this work, we treat them similarly since there is no difference

from the patient’s perspective, and thereby the healthcare organization and the owner

of the key should be held responsible in both cases anyway

(4) Adversaries can benefit meaningfully (e.g., financially or medically)

only by presenting health records to legitimate consumers. Meaningful ben-

efit typically includes, in healthcare settings, financial gain and medical services,

which are usually primary goals of cyber criminals. Financial or medical services are

provided by legitimate entities, such as hospitals, insurance companies, and Medicare,

so we believe this assumption holds. In addition, we assume that such legitimate con-

sumers are motivated to verify the integrity and authenticity of data before taking

actions based on it. This is also reasonable because such verification is beneficial

for them to avoid fraud cases. Note that this scope corresponds to the concept of

81

“meaningful usage” of healthcare data introduced in Chapter 4. Although data dis-

closure just for embarrassment or snooping celebrities’ healthcare information out of

curiosity is not covered by our scope, our system is still effective against the serious

risk of medical identity theft [16, 77].

Our approach introduces an accountability tag that is attached by a health record

repository to each copy of a health record. Such a tag is checked and verified, when the

record is shared among system users and used by legitimate consumers, by an agent

trusted by the patient who owns the data. To achieve information accountability,

tags and associated protocols must satisfy the following properties.

(a) Verifiability: An accountability tag needs to contain the identity of a health

record repository where the record is stored. Also, when the data is shared, identities

of the source and destination of the health record sharing must be included in the

tag. All of these identities must be publicly verifiable.

(b) Unforgeability: An accountability tag needs to be integrity protected to avoid

tampering en route. In addition, a tag must be securely bound with a specific health

record. A malicious entity should not be able to forge or modify the tag to defeat our

accountability goal without being detected.

(c) Revocability: A patient or a healthcare provider should be able to revoke

an accountability tag. This property is required to minimize the risk posed by a

stolen / compromised tag as well as misbehaving insiders.

(d) Non-repudiation: After an accountability tag is issued, the issuing repository

and other entities involved in the health record sharing chain should not be able to

repudiate their involvement in transfer or usage of healthcare data.

(e) Assurance of Accountability: Last but not least, it must be guaranteed that

health records can not be successfully consumed by legitimate consumers without

ensuring information accountability.

82

5.3 Protocol Design

We first explain the high-level idea of the primary components of our system and then

present the detailed protocol definition. Although we also rely on a patient-centric

monitoring agent designed in Chapter 4, we do not repeat the discussion about it

here. How our goals are accomplished is discussed in Section 5.4.

5.3.1 Accountability Tag

In this section, we discuss the construction of accountability tags and associated

protocols. A denotes an insider who is an employee of a healthcare organization that

stores a patient P ’s health record. A intends to share the record with an external

entity B. RepoA denotes the repository of A’s organization. Since B is external

to the organization, it does not have direct access to RepoA. By [data]entity, we

mean that data is signed with entity’s private key. At the high level, construction of

accountability tags and sharing of health records are done as follows. The scheme is

also illustrated in Figure 9.

1. A authenticates itself to RepoA to request P ’s record. The credential for this

authentication can be different from A’s private key.

2. RepoA creates PreTag= [CERTA,M]RepoA , where CERTA is A’s public key

certificate and M represents the metadata of the corresponding record, including

the record’s hash value. M is stored on the repository with the record when

Accountable Update was executed in the past.

3. A, before sharing the record with an external entity B, signs PreTag with its

own private key along with B’s identity as destination, namely Tag= [CERTB,

PreTag]A. We call this step “tag activation.”

4. A sends the record, including the metadata M , and Tag to a recipient B via

encrypted and authenticated channel established with A and B’s keys. Upon

83

Figure 9: Overview of an Accountability Tag: A downloads a record with PreTag
from the repository, and shares the record and Tag with B after tag activation. B,
after tag confirmation, can either submit the record to its own repository (dotted
arrows) or present the record and tag to a legitimate consumer (C). At the end of
Accountable Update, the monitoring agent adds Repo-B to its repository list.

its receipt, B can check if the entity that activated the tag, A in this case, is

actually the party sending the record and tag.

5. B signs Tag before using it. We call this step “tag confirmation” and denote

the resulting tag as CTag. When B uses the health record at some consumer or

submits the shared record to its repository, it needs to present CTag with the

record.

Each accountability tag carries verifiable identities of the repository that released

the copy of the health record, the source of the sharing that downloaded the record

from its repository, and the destination of the sharing (e.g., requesting entity in

another organization). Three stages of a tag denoted as PreTag, Tag, and CTag

correspond to these three identities that are to be verified. Accountability tags are

verified and logged when Accountable Update and Accountable Usage protocols are

performed, and the set of collected tags allows the agent and the patient to construct

the entire sharing path, as will be discussed in Sections 5.3.3 and 5.4 in detail.

84

Intuitively, the way in which accountability tags are generated and handled are

analogous to a personal check we are familiar with. Usually, personal checks are

issued by a bank, whose name is printed on a check along with an account holder’s

identity (the name and mailing address). When the account holder wants to make

payment using a check, he specifies the recipient of the check and makes his signature

on it. After that, the check is passed to a recipient. Before cashing the check at a

bank, the recipient needs to endorse the check by signing on the other side of the

check. When the check is eventually presented at the bank, the bank can verify the

chain of identities from the issuing bank to the recipient.

5.3.2 List of Authorized Repositories

We also introduce a repository list maintained by a patient’s monitoring agent. It

keeps track of the repositories authorized by a patient to store a copy of her health

records (i.e., repositories that successfully executed Accountable Update protocol with

her monitoring agent in the past); see Figure 9. The repository list contains a list

of CERTr, which is a repository’s public key certificate issued by a trust anchor, for

each record. Here, cryptographic hash values are used to uniquely identify health

records. It may be argued that the possibility of hash collision exists. However, in

our scheme, a monitoring agent works for a single patient, which implies that the

number of records are not so large. Therefore, we believe the possibility of collision is

not significant. The repository list can be efficiently constructed by using a standard

hash table so that both addition and deletion of entries are supported.

We can use the repository list to check if a repository that issues PreTag is a

legitimate place for storing the corresponding record. If this is not the case, PreTag

is not accepted by a monitoring agent. Specifically, in Accountable Update, when

a monitoring agent receives an authorization request from a repository, it checks

whether the specified record is already stored in any other repository. If this is the

85

case, assuming that the submitted record is shared from another entity, the monitoring

agent additionally verifies that the request is accompanied by CTag that contains

PreTag signed by one of the repositories on the list. On the other hand, a brand-new

health record does not require an accountability tag when being submitted because

the primary purpose of accountability tags is to establish accountability in health

record sharing. Note that the submission of new records is anyway brought to the

patient’s attention via the monitoring agent.

In the Accountable Usage protocol, when the monitoring agent receives a veri-

fication request from a consumer, it confirms the presence of CTag and validity of

signatures on the tag. In addition, it checks if the pair of the repository’s identity,

which is in PreTag, and the hash value of the record exists in its repository list. This

verification against the repository list ensures that the record can be successfully

consumed only when PreTag is issued by an authorized repository that completed

Accountable Update in the past (and not yet revoked). If any of these conditions are

violated, the monitoring agent rejects the request and thereby the record can not be

meaningfully consumed by legitimate consumers. The information conveyed in CTag

is logged by the patient’s monitoring agent for later reference.

5.3.3 Protocol Details

Table 5: Additional Notations Used in Protocol Description
Notation Description

RL− ADD(cert,H) Adds the given certificate (cert) to the reposi-
tory list of the record corresponding to the spec-
ified hash value (H).

RL− LOOKUP (cert,H) Returns whether the given certificate (cert) is
included in the repository list of the record cor-
responding to the hash value (H).

Matching(M,Tag) Returns whether the given pair of the health
record metadata (M) and accountability tag
(Tag) is valid. Verification is done by compar-
ing a hash value included in M and one in Tag.

86

Protocol 5.3.1: TagGeneration

(M1)Src→ Repository :IDsrc, Credentialsrc, RecordID

(P1)Repository :
if {IDsrc, Credentialsrc} is not valid
then Abort

Load CERTsrc based on IDsrc
Load {CD, M, Auth} based on RecordID
PreTag ← SignSKr (M, CERTsrc)

(M2)Repository → Src :
SignEncSKr,PKsrc ({CD, M, Auth}, PreTag)

(P2)Src :
if V erifyPKr (PreTag) = false
then Abort

Load CERTdst based on IDdst
Tag ← SignSKsrc (CERTdst, PreTag)

(M3)Src→ Dst :
SignEncSKsrc,PKdst

({CD, M, Auth}, Tag)

(P3)Dst :
if V erifyPKsrc (Tag) = false
then Abort

if V erifyPKr (PreTag) = false
then Abort

CTag ← SignSKdst
(Tag)

Figure 10: Generation of Accountability Tag

In addition to the notations defined in Table 4 in Chapter 4, we introduce three

additional notations (Table 5) to describe the protocols. As done in Chapter 4, we

utilize UDVS scheme [115], whose primitives and notations are summarized in Table

3. The procedure to issue an accountability tag is shown in Figure 10. Accountable

Update protocol and Accountable Usage protocol with information accountability as-

surance are presented in Figures 11 and 12. The message flow and the architecture

correspond to ones found in Figures 5 and 7 respectively.

In Figure 10, let Src denote an insider who has access to the health record repos-

itory and Dst be an external entity with whom Src intends to share a health record.

Also, we assume that the repository implements a user authentication mechanism

that reliably authenticates the requester and has access to the requesting insider’s

public key certificate. The last line of (P2) corresponds to “tag activation.” It is

not unlikely that Src wants to share the same records with multiple entities, instead

of just one. In such a case, Src can prepare a different tag for each recipient. The

recipient (Dst), after receiving the tag and health record, makes its signature on the

87

Protocol 5.3.2: AccountableUpdateWithAccountabilityTag

(P1)Issuer′ :

Receive CD, M, Auth, and CTag
Load CERTr′ , and CERTi′
if V erifyPKm (Auth) = false
then Abort

M′ ← {M, CERTr′ , CERTi′}
MACi′ ← SignSK

i′
(M′, T imestampi′)

(M1)Issuer′ → Repository′ :
SignEncSK

i′ ,PK
r′

(CD, M′, MACi′ , T imestampi′ , CTag)

(P2)Repository′ :

if V erifyPK
i′

(MACi′) = false

then Abort
if (Hash(CD) = HCD

) = false

then Abort
if V erifyPKo (CERTm) = false
then Abort

(M2)Repository′ →MoA :
SignEncSK

r′ ,PKm (M′, MACi′ , CTag, T imestampi′)

(P3)MoA :

if V erifyPK
i′

(MACi′) = false

then Abort
if V erifyPKi

(certi) = false

then Abort

HD ← PKE−1
SKm

(CHD
)

S ← PKE−1
SKm

(CS)

if UDV S − PV (pubi, HD, S) = false
then Abort

if V erifyPK
i′

(CTag) = false

then Abort
if V erifyPKsrc (Tag) = false
then Abort

if V erifyPKr (PreTag) = false
then Abort

if RL− LOOKUP (CERTr, HD) = false
then Abort

if Matching(M, CTag) = false
then Abort

Log Timestampi′ , MACi′ , and CTag with M′

M′′ ← {CS , CHD
, HCD

, certi, CERTi,

CERTo, CERTm, CERTr′}
Auth← SignSKm (M′′)

(M3)MoA→ Repository′ :
SignEncSKm,PK

r′
(Auth, M′′)

(P4)Repository′ :

if V erifyPKm (Auth) = false
then Abort

M ← M′′

Save CD, M, and Auth
Rcptr′ ← SignSK

r′
(M,Timestampr′)

(M4)Repository′ →MoA :
SignEncSK

r′ ,PKm (Rcptr′ , T imestampr′)

(M5)Repository′ → Issuer′ :
SignEncSK

r′ ,PK
i′

(Rcptr′ , T imestampr′)

(P5)MoA :

if V erifyPK

r′
(Rcptr′) = false

then Abort.
RL− ADD(CERTr′ , HD)
Log Rcptr′ and Timestampr′ with M′

Figure 11: Accountable Update with Accountability Tag

tag in (P3), which corresponds to “tag confirmation.” This is required before Dst

executes Accountable Update or Usage explained next.

We need to consider two cases for Accountable Update. One case is when an issuer

creates and submits a new record, and the other case is when a copy of a health record

88

Protocol 5.3.3: AccountableUsageWithAccountabilityTag

(P1)Consumer :

Receive CD, M, Auth, and CTag
Load CERTc and certc
if V erifyPKm (Auth) = false
then Abort

if V erifyPKo (CERTm) = false
then Abort

if (Hash(CD) = HCD
) = false

then Abort

(M1)Consumer→MoA :
SignEncSKc,PKm (M, certc, CERTc, CTag)

(P2)MoA :

if V erifyPKc (certc) = false
then Abort

if V erifyPKdst
(CTag) = false

then Abort
if V erifyPKsrc (Tag) = false
then Abort

if V erifyPKr (PreTag) = false
then Abort

if RL− LOOKUP (CERTr, HD) = false
then Abort

if Matching(M, cTag) = false
then Abort

HD ← PKE−1
SKm

(CHD
)

S ← PKE−1
SKm

(CS)

DV S ← UDV S −DS(pubi, pubc, HD, S)
POI ← SignSKm (M,CERTc, T imestampm)
Log CERTc, CTag, and Timestampm

(M2)MoA→ Consumer :
SignEnc(HD, DV S, POI, T imestampm)

(P3)Consumer :

if V erifyPKm (POI) = false
then Abort

D′ ← SKE−1
HD

(CD)

H′D ← Hash(D′)
if UDV S −DV (privc, pubi, H

′
D, DV S) = false

then Abort
Log POI, M, and Timestampm

Figure 12: Accountable Usage with Accountability Tag

shared by another entity is submitted. Because the former is almost identical to the

Accountable Update protocol defined in Figure 6 and only difference is just updating

the repository list, we omit the detailed definition. Since the submitted record is not

stored on any other repositories, no tag is required to complete the protocol in this

case.

Figure 11 defines the way in which a recipient of a shared health record and CTag

submits the health record to its own repository. In this figure, i and r denote the

original record issuer and the repository. On the other hand, Issuer′ (and i′) denotes

a second-hand issuer who is submitting a received copy of the record to his or his

organization’s repository, Repository′ (and r′). The major differences from the one in

89

Figure 6 include the way to prepare the data to be submitted in (P1), verification of

a tag by the patient’s monitoring agent (MoA) in (P3), and update of the repository

list in (P5). The repository list is updated after receiving a valid receipt from the

repository, which means that a repository that does not issue a valid receipt is not

considered as an authorized repository for the corresponding record. In (P3), CTag

is verified with PKi′ because Issuer′ must be equal to Dst of the tag. In addition,

note that, at the end of (P3), the record metadata is re-defined as M ′′ by using the

certificate of Repository′. This step is necessary to replace the repository information

while preserving the original issuer information. This modification does not conflict

with the definition of a repository list since it is defined based on hash values of health

records, instead of the metadata M .

Regarding Figure 12, which is the protocol that a legitimate consumer of health

records, such as Medicare, needs to follow when it verifies the authenticity and in-

tegrity of health records. The verification of an accountability tag by the patient’s

monitoring agent is done at (P2). As discussed earlier, the repository list is checked

in this step so that the record can be processed only when the pair of the identity

of the repository, which signs PreTag, and the record hash value is found on the list.

Note that, PKdst and PKsrc are extracted from CTag while PKr comes from the

record’s metadata M .

In case Dst needs to further share the data with another party, it must first

insert the record to its repository (by using the protocol shown in Figure 11). This

step is required for it to obtain a valid PreTag issued with its identity. Because the

identity of previous repository is deleted at (P4) in Figure 11, a tag issued by the new

repository does not leak any information about the previous repository, which will

minimize the patient’s privacy concern. Once the record is stored in its repository,

Dst needs to execute the protocol in Figure 10 as Src to generate Tag. If Src itself,

who downloaded a record from a repository, intends to use the record, it can do so

90

by specifying itself as the destination of Tag and confirming it with its own key.

5.4 Correctness

We show that the protocols presented in the previous section guarantee the properties

that were identified for accountability tags in Section 5.2. Since the identities of the

repository and the source and the destination of the sharing can be verified via digital

signatures on PreTag, Tag, and CTag respectively, the property (a) Verifiability is

satisfied. Likewise, digital signatures protect the integrity of the tag and do not allow

repudiation by participating entities. Thus, under a secure digital signature scheme,

for instance one that satisfies UF-CMA security [72], (b) Unforgeability and (d)

Non-repudiation properties are also met. In addition, since a tag includes the

metadata of the record (M), it is bound to a specific record and thereby can not be

replayed with any other health record.

(c) Revocability can be achieved by adding functionality to a patient’s mon-

itoring agent that acts on tags received by it. Specifically, a patient can create a

revocation list of tags on her monitoring agent so that an Accountable Usage or Ac-

countable Update request with certain tags can be denied at (P3) of Figure 11 and

(P2) of Figure 12. Our design supports denial rules for identities of source, destina-

tion, and/or repository. It is also possible to revoke an individual tag by specifying

the hash value of it. By using this feature, if misbehavior or private key compromise

is reported, a patient can reject tags issued by the corresponding entity. Also, in case

some repository is removed (e.g., an organization running it is shut down), a patient

can delete the repository from the repository list on her monitoring agent.

To understand how (e) Assurance of Accountability is satisfied, let us consider

the setting discussed in Figure 9. In order for B to successfully present a record to

C (a legitimate consumer of health records), B needs to have a valid CTag whose

destination is B. In addition, PreTag in it must be signed by a repository on the

91

repository list, which endorses A as the source of sharing. Thus, the monitoring agent

can know, when Accountable Usage is executed by the consumer, that the record

originated from Repo-A is shared by A with B, which satisfies our accountability

goal. In case any of these signatures is invalid or absent, the request is not processed.

Another way for B to use a record is to submit the record to his repository once and

then prepare a tag whose destination is set to itself. In this case, since the monitoring

agent’s repository list indicates that the same record is already stored in Repo-A, B

needs to present a valid CTag when submitting it to its repository. In this case,

CTag will allow the monitoring agent to learn that the record is shared from Repo-A

to Repo-B via A and B. If B omits executing Accountable Update, Repo-B is never

added to the repository list, and can not issue a valid PreTag for the corresponding

record afterwards. Thus, we can again establish accountability and identify who is

involved. It would be possible that B forges a record. However, B needs to submit

the record to a repository to later use it. When such update is performed, the event

is brought to the patient’s attention through her monitoring agent. If, for instance,

B is not a doctor, the update event could appear suspicious to the patient.

We now discuss accountability in a scenario where data is shared by multiple

entities along a path. In the context of Figure 9, if B wants to share a record further

with another entity, say D (not in the figure), who eventually presents the record

to C, B needs to execute Accountable Update (Figure 11) with Repo-B and then it

must prepare a tag to share the record with D. At this point, Repo-B is added to the

repository list. As discussed above, the monitoring agent can learn how the record

reached Repo-B. Then, with Tag and the record given by B, D can successfully use

the record at C after generating CTag. When C executes Accountable Usage using

CTag provided by D, the monitoring agent can additionally learn the sharing from

B to D. By combining the information obtained, the monitoring agent can know the

path from Repo-A to C via A, B, Repo-B, and D. Thus, accountability for the full

92

sharing path can be attained. The same holds when additional hops are involved in

the record sharing path. In this way, accumulated tags at a monitoring agent allow

a patient to re-construct the entire sharing path.

5.4.1 Application Scenarios

In this section, we present several applications of information accountability in our

scheme. Fist, recall the Cleveland Clinic case mentioned in Section 1.2.2. In this

incident, one front desk office coordinator of the hospital stole a set of health records

and sold it to her cousin, who eventually misused the data to file fake Medicare

claims. Here, Medicare is regarded as a legitimate consumer of health records. Thus,

Medicare, when processing health records, should (and also is motivated to) verify

the authenticity of the records by executing Accountable Usage protocol. Patients

can know the usage of their records by Medicare via their monitoring agents. We can

map the actors in this example to Figure 9 as follows: an insider who leaked the data

as A, her collaborator (the cousin) as B, and Medicare as C. As discussed in the

previous section, we can guarantee that the identity of the insider and the cousin are

known to the patients, i.e., victims of the fraud, when Medicare consumes the records

presented by the malicious insider’s cousin.

Next, let us consider the setting discussed in “Harmonized Use Case for Electronic

Health Records (Laboratory Result Reporting)” by Office of the National Coordina-

tor for Health Information Technology [27]. This use case focuses on the sharing of

lab test results among doctors. Lab results are stored in an online repository, which

is run by the lab itself or by a regional healthcare information organization (RHIO)

and is accessible via a network. Under our scheme, when a doctor downloads the test

result from the repository, PreTag, including his identity (or the identity of someone

who performs this action on the doctor’s behalf) is attached to the data. If the doctor

93

wants to share it with another doctor, who eventually consumes the data for treat-

ing the patient, the sending doctor activates the tag with the destination’s identity.

The patient’s monitoring agent is involved, when Accountable Usage is done by the

latter doctor, and is informed of both doctors’ identities through the accountability

tag. Such visibility allows patients to determine whether the sharing is reasonable.

Furthermore, when the doctor who receives the record adds it to his own repository,

he must execute Accountable Update with the confirmed tag so that the record can

be later shared or used. After the completion of the protocol, the patient can know

that the copy of the lab result is also stored at the new location.

We can also deal with a scenario with integrated health records from multiple

sources, which is often the case with continuity of care documents (CCD), for example

[54]. For instance, in Figure 9, B obtains a record (Ra) from A and submits it to the

repository. B could obtain another record (Rd) from another entity, say D, in the same

way. Later, B might want to share, with another entity E, a CCD consisting of Ra,

Rd and Rb created by B himself. In this situation, we can still ensure accountability

for both Ra and Rd by attaching a separate tag for each of them in addition to one

for Rb. Then, each verification of the issuer signature is done separately by using

the corresponding accountability tag, and thereby the patient can know that Ra is

released from Repo-A, shared by A with B, submitted to Repo-B, and finally shared

with E by B. The same holds for Rd. B could choose to issue the combined record

as a brand-new record by making his own signature on the combined CCD, but it is

unlikely because, in that case, B is considered as the issuer of the entire document

and must be responsible for all of its contents.

In addition to use cases emphasizing patients’ awareness discussed above, the same

accountability schemes can be used for enhancing health data governance by health-

care organizations. For instance, when a monitoring agent is run by a healthcare

94

organization itself, the healthcare organization can reliably keep track of propaga-

tion and meaningful usage of electronic health records that are managed in its own

repository. The organization’s awareness and accountability can be assured even after

the records are released to other healthcare organizations. Moreover, the repository

list maintained on the monitoring agent allows the organization to know where the

copies of health records released by it are stored, which allows the healthcare orga-

nization to provide the accurate information when queried by patients. Deployment

of our accountability scheme in this way could help fill the gap between the current

provider-centric e-healthcare systems and the patient-centric architecture explored in

this dissertation.

5.5 Security Discussion

This work is motivated by the need to discourage misuse of health records by providing

patients with actionable accountability information. Such information can be used to

alert patients and identify insiders who disclose health data to unauthorized parties

that try to profit from it. In our security analysis, we start with a trust model that

assumes verification of tags solely relies on the trusted patient-centric monitoring

agent.

Repositories and consumers are required to forward tags to each patient’s moni-

toring agents when running Accountable Update and Usage protocols. If they become

compromised and do not forward the tags, they will not be successful in completing

the protocols and the data cannot be utilized (directly or after sharing it) by pre-

senting it to legitimate consumers. In case they accept requests without following

the correct protocols, they would be penalized for lack of transaction proofs, as dis-

cussed in Chapter 4. Repositories are also responsible for issuing PreTag, including

the requesting insider’s identity. If it does not sign PreTag, the corresponding health

record can not be verified at legitimate consumers. Even if a misbehaving repository

95

specifies another insider’s identity as a requester, our scheme would not allow misuse

of healthcare data as long as the compromised repository (or an adversary controlling

it) does not have access to the claimed entity’s private key.

To counter CTag misuse, repositories and consumers should verify the identity of

the requester against the one claimed in the tag, for example through authenticated

communication. By doing so, as long as the private key used to confirm the tag is not

compromised, misuse can be detected at repositories and consumers. We believe legit-

imate parties are motivated to do so to avoid being involved in fraudulent activities.

By setting a lifetime for a tag upon signing, which is enforced by a patient’s agent,

we can provide added protection against CTag misuse. Another countermeasure our

scheme can offer is revocation of tags. Once informed of a breach, patients can imme-

diately update revocation lists on their monitoring agents to reject tags activated or

issued by a certain healthcare organizations (or a specific insider in the organization).

Also note that, even in case of CTag misuse, the usage of health records is brought

to patient’s attention so that involved entities can be investigated.

Next, we discuss typical threats in e-healthcare systems, namely malicious insiders

and lost or stolen devices.

Malicious Insiders: As discussed in Section 5.4, cases where a malicious insider

intentionally shares health records with an external entity can be addressed by our

scheme. For malicious parties to successfully use the leaked records at legitimate

consumers, the records must have associated tags that reveal the identity of the insider

to a patient’s monitoring agent. In case a malicious insider (or an external adversary)

somehow compromises another insider’s private key and his identity credential to

access the repository, health records could be leaked and misused under the identity

of the owner of the compromised private key. Regardless of whether private keys

are compromised or not, our scheme allows a patient to learn whose private keys are

involved on the sharing path and thereby should be investigated. Thus, protection of

96

private keys is crucial for users in our system. This type of threat can be mitigated by

using an identity credential other than the master private key, such as a password or

a hardware security token that adversaries need to make extra effort to compromise,

to access the organization’s repository. In this direction, we recommend that each

organization prepares a separate authentication mechanism to control accesses to

internal resources, besides credentials issued by trust anchors for health information

sharing.

Lost/Stolen Devices: Even in case devices or storage used in the healthcare orga-

nization are stolen, the stolen records can not be consumed by legitimate consumers

as long as they are not accompanied by valid CTags. If valid tags are also stored

on the stolen device, the records could be misused by adversaries as discussed above.

Thus, CTag should not remain on the devices after its usage. Again, resulting misuse

of the stolen data will be attributed to the entity that contributed to CTag, so we

can expect that each participant follows such guidelines. Another possible way for

the device thief to misuse stored healthcare data is to submit it to some repository,

which has to be authorized by a trust anchor. However, if an adversary does so, the

update is reported to the patient, who can alert the repository.

In addition to the ones discussed above, malware infection could be a serious

threat. To prevent misuse by malware, again securing private keys and CTags is the

key. Systematic support to mitigate the risk of tag misuse and private key misuse by

means of secure design of e-healthcare client devices will be discussed in Chapter 6.

Lastly, it may be argued that malicious sharing and usage of healthcare data that

do not follow the protocols defined in this chapter would not be captured. However,

legitimate consumers, such as insurance companies, Medicare, and hospitals, are,

for their own protection, naturally motivated to run Accountable Usage protocol.

Moreover, in case unformatted data, e.g., data that is copied or extracted from a

health record, is presented, the consumer has no way to verify it, so accepting such

97

a request would be risky. Our goal is not to implement a complete information flow

control but to ensure accountability when the data reaches such legitimate consumers.

5.6 Application to Other Domains

We believe that the applicability of our accountability scheme is not limited to the

e-healthcare context we are focusing on in this dissertation. To examine such possi-

bilities, this section briefly discusses some application scenarios in other domains.

The accountability tags could be used in the identity management domain, where

identity credentials can be delegated to another user. While the user-centric monitor-

ing agent system proposed in Chapter 3 could handle single-hop delegation cases, it

would not be sufficient to make the multi-hop delegation path of a certain credential

visible to its owner. The accountability tag scheme can be used to ensure awareness

of delegated identity credentials even in such a situation. Note that, because identity

credentials are to be verified by service providers (i.e., consumers of identity creden-

tials), a monitoring agent that is responsible for verifying accountability tags can be

involved in the credential verification process at service providers. In other words,

our assumption that service providers execute Accountable Usage protocol before ac-

cepting the presented credentials is reasonable.

When delegation of an identity credential is done, a credential owner or her iden-

tity agent can issue an accountability tag containing the identity of the delegation

target (delegatee). The delegatee itself could use the identity credential by present-

ing the credential to a service provider with the accountability tag confirmed by it.

If it wants to further delegate the credential to another entity, under our scheme,

a repository, which is responsible for issuing an accountability tag for the next-hop

delegation, needs to be involved. In the user-centric identity management archi-

tecture discussed in Chapter 3, the delegatee’s identity agent could implement this

functionality. Namely, the delegatee executes Accountable Update with the confirmed

98

accountability tag, which is presented to and verified by the credential owner’s mon-

itoring agent, and then, just as discussed in Section 5.3.3, the second-hop delegation

can be accomplished. The credential owner can still keep track of the execution of

Accountable Update and Accountable Usage and also can exercise control, through the

repository list and black list on the monitoring agent, so that unintended delegation

will not be allowed.

Another possible application could be found in cloud-based file hosting / shar-

ing services like Dropbox (https://www.dropbox.com/), Amazon S3 (http://aws.

amazon.com/s3/), and Google Drive (https://drive.google.com). Using these ser-

vices, files stored on cloud storage can be shared with or updated by other users. Our

accountability scheme could be integrated to enable file owners to retain their aware-

ness and enable information accountability over their files in such a setting. Just as

discussed in e-healthcare settings, in the cloud-storage context, a file owner can have

his or her own monitoring agent on an online, trusted entity. Also, it is reasonable to

assume that storage service providers accept file submissions or updates only under

the owner’s authorization. Additionally, if some user would like to use a file, which is

shared or sent from another entity, we can naturally assume that the user is motivated

to make sure that the file is not tampered with through the signature made on the

file. Thus, our assumptions and solutions will be applicable.

In this setting, a cloud-storage provider, as a repository in our design, attaches an

accountability tag upon releasing a copy of a stored file, and tags are to be presented

to the file owner’s monitoring agent when the file is updated, submitted to another

cloud storage, or verified by another user. When Accountable Update and Accountable

Usage are executed, accountability tags can tell the owner when and by whom such

actions are made as well as who is involved in the file sharing path. Detailed design

of such scheme will be part of our future work. In particular, performance needs to

be carefully examined, and optimization to this specific domain may be required.

99

5.7 Summary

In this chapter, we proposed a way to enhance information accountability in electronic

health record sharing by means of accountability tags, which are metadata attached

to electronic health records. These tags carry verifiable evidence about how data is

shared, and the tags are logged and verified when the health records are presented

to legitimate consumers of health data, such as healthcare providers and insurance

companies. We discussed how accountability tags can be implemented and how they

can help establish actionable information accountability for patients. We believe such

accountability is effective in discouraging insider threats, by providing solid evidence

for investigation of misbehavior and inadvertent disclosure of sensitive healthcare

data, and thereby can improve the patient’s confidence in e-healthcare systems.

100

CHAPTER VI

SECURE AND REMOTELY-AUDITABLE CLIENT

DEVICES FOR HEALTHCARE ORGANIZATIONS

6.1 Motivation

As discussed in Chapters 4 and 5, to establish robust accountability, protection of

private keys that belong to users of e-healthcare systems, e.g., insiders of healthcare

organizations, and the management of accountability tags signed by using those pri-

vate keys are crucial. Specifically, the accountability scheme discussed in Chapter 5

assumes that private keys reliably authenticate the owners, and it tells patients whose

private keys are involved in health record sharing. If private keys are misused, the

information that is known to patients would be inaccurate. The same holds for signed

accountability tags. To reinforce patients’ awareness and information accountability,

such risks need to be minimized.

Besides, to counter system abuse by insiders, auditing all sensitive operations on

electronic health records is a must. However, recent study revealed that many of

widely-used EHR systems do not provide sufficient level of accountability [79]. More-

over, patient-centric monitoring agents that are externally deployed can not catch all

the accesses or usages of EHR happening within healthcare organizations since some

of them may not necessarily be accompanied by formal integrity / authenticity veri-

fication. Thus, in addition to patient-centric auditing discussed so far, an enhanced

auditing scheme for healthcare organizations that can not be bypassed when sensitive

operations on health records are undertaken by insiders is desired.

In this chapter, to address the issues discussed above, we propose the ways to

reinforce auditing and governance in healthcare organizations. In sum, the security

101

goals of the design are:

(a) Audit of Accountability Tag Handling: Activation and confirmation of

accountability tags by insiders are audited by an organization that they belong to.

(b) Protection of Private Keys: Private keys stored on client devices are protected

against malware and physical device theft.

(c) Protection of Accountability Tags: Accountability tags signed by a device

user (Tag or CTag introduced in Chapter 5) must be protected against malware and

physical device theft.

Based on the protocols designed in Chapter 5, an accountability tag attached to

a health record must be activated before a health record is shared with an external

entity. In addition, in order for a user of a device to read the contents of the record, it

needs to be decrypted through Accountable Usage, which requires an accountability

tag that is appropriately activated and confirmed, at least for the first time. Therefore,

the goal (a) above can effectively cover typical operations on health records of our

interest. Note that we focus here on approaches to reinforce security in healthcare

organizations, which is complimentary to the patient-centric approach explored in

earlier chapters.

6.2 High-level System Design

If malware can successfully be installed on a client device, it could allow attackers

to steal identity credentials, including a private key, misuse such credentials to abuse

systems, and disclose sensitive data to unauthorized parties. These attacks are pos-

sible even in the presence of anti-virus software. For example, zero-day attacks are,

by definition, can not be prevented in a proactive manner. Moreover, other security

software, such as host-level firewall, could be totally disabled when the devices are

physically compromised.

To counter malware attacks, we design client devices using system virtualization

102

to establish a trusted domain, which is isolated from an untrusted user domain that

could be compromised by malware, within a device. Then, we can store identity

credentials and important client-side modules, including ones used to access sensitive

data or ones to manage accountability tags, within the trusted domain, while leaving

only the minimal functionality in the user domain.

Regarding physical theft of devices, one of the major threats is the misuse of

stolen devices to access enterprise systems. When the device is in an adversary’s

hand, technically he can mount any type of attack. Thus, even if the private key

and accountability tags are handled in the established trusted domain, it is no longer

safe against misuse. The same holds in case of a malicious insider that intentionally

misuses the device.

To mitigate this threat, we again use the idea developed in the scheme discussed

in Chapter 3, where only a partial private key is stored on a client device and an

online entity run by a healthcare organization to which the client device belongs, the

organization’s monitoring agent, needs to be involved to complete digital signatures.

In this way, we can not only eliminate a single point of attack but also quickly revoke

compromised or stolen devices so they can no longer be used in accessing protected

health data. In particular, tag activation and confirmation can be mediated by an

entity managed by the healthcare organization and thereby can be reliably monitored

by it, which discourages system abuse by insiders.

Next, we present the high-level idea of our device design and implementation using

Xen [45]. The overview of the architecture is shown in Figure 13. As can be seen, the

device has two domains, which are securely isolated by the virtual machine monitor

(VMM) from each other. Outside of the device, the organization’s monitoring agent

is run on a server in the organization that is accessible via network.

In the trusted domain, we deploy a module, Tag Manager shown in the figure, to

activate or confirm accountability tags by using the device user’s private key. Also, the

103

Figure 13: High-level Idea of Client Device Design Using System Virtualization and
Threshold Cryptography

device user’s credentials, including his private key, are stored in the trusted domain.

The private key is actually split into three pieces (i.e., key shares) under 2-3 threshold

signature scheme [112], and only one of them is stored in the trusted domain. Another

share is stored at the organization’s monitoring agent, and the last piece, which is not

shown in the figure, is held in an offline, safe place by a privileged person or a group,

which we call authority, in the organization to realize “break-the-glass” access in case

the organization’s monitoring agent is not accessible for some reason. Under the 2-

3 threshold signature scheme, either the authority’s key share or the organization’s

monitoring agent, in addition to the one stored on the trusted domain of the device,

must be involved to make a valid signature on an accountability tag.

In our implementation, we introduce an additional key pair dedicated for signing

accountability tags, which we call an accountability key pair. This key pair is issued

for each participant of the system by the healthcare organization he / she belongs to.

A public key of an accountability key pair is certified by each participant’s master

key pair, which is issued by a trust anchor, for public verifiability. In the protocols

discussed in Chapter 5, a master key pair was also used to sign and verify account-

ability tags, but instead, we will use an accountability key pair, whose private key is

split under threshold signature scheme. Even though this decision would increase the

complexity of the system, it offers us the capability for flexible revocation and more

104

choices of cryptographic algorithms.

The user domain is a virtual machine that is regularly used by a device user for web

browsing, writing / reading emails, using productivity software, accessing calendars,

and so forth. We use dom0 (a privileged domain) of Xen as a trusted domain and

additionally create one user domain. Because of the isolation provided by VMM,

the user domain and the trusted domain, even though they are on the same physical

device, are treated as two different machines. Thereby, the processes in the user

domain do not have direct access to the resources in the trusted domain. This implies

that malware in the user domain can not compromise the modules and credentials

in the trusted domain. On the other hand, the two domains can communicate via

network, just as two physical devices connected to the same local area network can do

so. Xen allows us to provide either NATed or bridged network connection for the user

domain. In our implementation, NATed connection is used, and the user domain is

assigned a private IP address that is different from the network to which the physical

device is connected.

To provide an interface for the user domain to invoke the functionality provided by

the trusted domain, such as Tag Manager, we implement the features in the trusted

domain as web application so the device user can access the features via a regular web

browser running in the user domain. Namely, a device user can upload PreTag or Tag

via the web browser or NFS to have it activated or confirmed. After receiving the

request, Tag Manager is loaded in the trusted domain, which makes a partial signature

on the provided tag. Then, Tag Manager sends the partially activated / confirmed

tag to the organization’s monitoring agent to obtain a complete signature on the tag.

In this way, we can protect the client-side modules and credentials (e.g., a private

key share) from malware that could potentially be installed in the user domain. We

can also mitigate the risk of physical device theft and abuse by a malicious insider, by

enforcing the mediation by the trusted monitoring system run by the organization.

105

We then design the modules in the trusted domain so that the tags signed by the

device user will be deleted just after usage and also must not be handed to the user

domain, in order to fully satisfy the goal (c) Protection of Accountability Tags.

In the next section, we present the entire system architecture including the client-

device design and the system components discussed in Chapters 4 and 5. We also

explain how they work and interact when processing typical operations on electronic

health records, namely download, upload, sharing, and verification. The detailed

implementation of the system will be discussed in Section 7.2.3.

6.3 Handling and Sharing of Electronic Health Records

Figure 14: Overview of the System Architecture

The overview of the complete system architecture is shown in Figure 14. In the

figure, dotted line indicates the boundary of a management domain (e.g., a health-

care organization). Note that a patient-centric monitoring agent is typically located

outside of an healthcare organization for the sake of accessibility to a patient. In

addition to Tag Manager, which is briefly discussed in the previous section, there are

106

a number of modules for electronic health record handling in the trusted domain. We

will explain how these components interact next.

6.3.1 Downloading Electronic Health Records from a Repository

Figure 15: Downloading Electronic Health Records

We first discuss how electronic health records are downloaded from an organiza-

tion’s EHR repository, which is illustrated in Figure 15. A device user controls a web

browser installed in the user domain to send a HTTP request including an identi-

fier of a health record to be downloaded (1). When the request is received by EHR

Downloader module in the trusted domain, it loads an identity credential required to

access the repository (2 and 3). Various kinds of credentials can be used depending

on the configuration of each organization, but in our current prototype, a password is

used. Intuitively, Credential Storage here is working as a malware-resistant password

manager. After loading the identity credential, EHR Downloader sends a download

request to the repository (4 and 5), which gives a requested health record back to

EHR Downloader. The downloaded record is encrypted and organized in the way dis-

cussed in Chapters 4 and 5 and is also accompanied by an accountability tag (more

specifically, PreTag). The downloaded record is then stored in the dedicated storage

space, EHR Storage, in the trusted domain (6), which implies that the downloaded

107

records are not directly accessible to the user domain.

6.3.2 Consuming Electronic Health Records

Figure 16: Consuming Downloaded Electronic Health Records

When a device user wants to verify and use an electronic health record down-

loaded in the way discussed in Section 6.3.1, EHR Verifier is used. The process is

outlined in Figure 16. A device user sends a HTTP request to EHR Verifier in the

trusted domain by using a browser in the user domain (1). In the request, the user

indicates which record he wants to use. Based on the request, EHR Verifier loads

the record stored in EHR Storage (2 and 3). Then, EHR Verifier extracts an ac-

countability tag of the record and passes it to Tag Manager to have it activated and

confirmed (4). Tag Manager, after making a partial signature on the tag by using the

private key share stored in Credential Storage (5 and 6), sends the tag to the organi-

zation’s monitoring agent to complete the device user’s signature (7 and 8). In case

the authority’ key share is provided and accessible to Tag Manager, the interaction

with the organization’s monitoring agent can be legitimately bypassed. The same

applies to the schemes discussed in Sections 6.3.3 and 6.3.4. Note that, by design,

108

the downloaded record is only accompanied by PreTag signed by the repository, so

before running Accountable Usage, the tag must be activated by specifying the device

user’s own identity as the destination of the tag and then must be confirmed with

the device user’s own private key. Thus, the interaction with the monitoring agent

must be done twice (once for each of activation and confirmation). After the tag

confirmation, EHR Verifier executes Accountable Usage protocol defined in Chapter

5 by using the confirmed accountability tag (10 and 11). After successful completion

of the protocol, EHR Verifier can be convinced about the authenticity and integrity

of the health record through the record issuer’s signature and also obtains the de-

crypted health record, which is eventually returned to the user domain (12). Here,

only the decrypted record is given to the user domain, but the accountability tag is

not. Deletion of the accountability tag that is activated and confirmed during the

process above is ensured by EHR Verifier.

It is often the case where a record shared from another entity needs to be used on

the device. This case can also be handled with a similar procedure, but in advance,

the shared record must be uploaded to the trusted domain. Another difference is

that, since the shared record is accompanied by Tag that is activated by the record

sender, the device user in this case only needs to confirm the tag. So, at most one

interaction with the organization’s monitoring agent is required. The mechanisms for

sharing will be discussed next.

6.3.3 Sharing Electronic Health Records

Regarding the health record sharing, we only consider the case in which a device user

shares a health record that is downloaded onto the device in advance. This is because,

as discussed in Chapter 5, legitimate sharing requires an appropriate accountability

tag (PreTag) issued by the organization’s repository upon downloading the health

record. In addition, we here consider sharing under Direct standards [4] since it

109

Figure 17: Sharing Electronic Health Records

will be the widely-adopted standard that is expected to be used not only by large

healthcare organizations but also by small doctor offices.

The flow is shown in Figure 17. Before sharing a health record, an accountability

tag must be activated by indicating the destination’s identity. This task is accom-

plished by using EHR Sharer. The device user sends a request, which specifies the

destination’s identity and the record to be shared, to EHR Sharer in the trusted

domain (1). From EHR Storage, EHR Sharer loads the requested record and the

accountability tag (PreTag) accompanying it (2 and 3). Then it passes the tag and

destination’s identity to Tag Manager to have it activated (4). Just like the cases

discussed earlier, Tag Manager does its task by involving the organization’s monitor-

ing agent in the loop (5, 6, 7, and 8). After the activated tag (Tag) is returned (9),

EHR Sharer sends the record and activated tag to the designated recipient via SMTP

with S/MIME, following Direct standards (10). Again, the activated tag is deleted

by EHR Sharer just after it is sent out with the health record.

110

Figure 18: Uploading Electronic Health Records

6.3.4 Uploading Electronic Health Records to a Repository

Lastly, we discuss the procedure when a device user submits an electronic health

record to his organization’s repository. Here, we need to consider two possibilities.

One is the case where the device user creates a brand-new record and adds it to the

repository, and the other is the case where the device user submits a health record

that is shared from another entity. These two cases are handled in a similar way,

but one big difference is that the latter case involves an accountability tag while the

former does not. The flow is illustrated in Figure 18.

In both cases, the process starts with uploading a health record to EHR Uploader

in the trusted domain (1). If an uploaded record is a health record shared from an-

other entity and is accompanied by an accountability tag, EHR Uploader then passes

the tag to Tag Manager (2). Since the tag is assumed to be activated already by

the record sender, Tag Manager only does tag confirmation, by using the private key

share stored in Credential Storage as well as one held by the organization’s monitoring

agent (3, 4, 5, and 6). After the confirmed tag is returned (7), EHR Uploader initiates

111

Accountable Update protocol defined in Chapter 5 (8). Following the defined protocol,

the organization’s EHR repository contacts the patient-centric monitoring agent to

obtain the authorization before accepting the record (9 and 10). The accountability

tag used in the process is deleted by EHR Uploader after the completion of Account-

able Update. In case a new record is submitted, EHR Uploader does not have to

handle an accountability tag (and thereby does not have to involve Tag Manager), so

it just executes Accountable Update defined in Chapter 4.

6.4 Correctness of Design and Security Discussion

In this section we briefly summarize how our design satisfies the three goals mentioned

in Section 6.1. Other security aspects will be also discussed.

The complete private key (of an accountability key pair) is not stored on the device,

and key shares are distributed on the device and the organization’s monitoring agent.

Thus, even in case the device is physically under the control of an adversary, it alone

will not allow him to misuse the private key of the accountability key pair. Once the

theft is reported by the legitimate device user, the key share stored on the device

can be easily revoked simply by disabling the corresponding key share stored on the

organization’s monitoring agent. Moreover, since each private key usage is visible to

the organization’s monitoring agent, misbehavior by an insider is deterred. Regarding

malware threats, due to the domain isolation and the system design discussed in

Section 6.3, malware in a user domain has no way to touch the private key share in the

trusted domain. Therefore, the goal (a) Audit of Accountability Tag Handling

and (b) Protection of Private Keys outlined in Section 6.1 are satisfied.

Concerning accountability tags, tags that are signed with the device user’s key

never flow into the user domain, and they are reliably deleted from the device by

trusted modules in the trusted domain immediately after the usage, which implies

112

that even if the device is stolen afterwards, the adversary will not obtain the tags acti-

vated or confirmed by the device user. Thus, such tags are protected from malware in

the user domain and physical device theft. Health records shared from another entity

can be in the user domain, but tags attached to those records are not signed by the

device user (i.e., the designated destination of the accountability tag). As long as ac-

countability tags are not confirmed, they can not be misused at legitimate consumers

under our assumption. Therefore, the goal (c) Protection of Accountability Tags

is also satisfied.

Related to the tags, in the case discussed in Section 6.3.2, the decrypted record

is given to the user domain. If the device user leaves the decrypted data on the user

domain, a device thief could read the contents. However, it is not accompanied with

any accountability tag, which implies that the data can not be shared in a meaningful

way or used at consumers for any gain. Note that, though it is important, protection

of data confidentiality under these threats is not our goal.

Malware could attempt to compromise identity credentials used to authenticate a

device user against the healthcare organization’s system, including its EHR repository.

However, as we discussed in Section 6.3.1, the credentials are stored in the trusted

domain and is accessible only to the modules deployed in the trusted domain. Thus,

they are secure against malware.

More sophisticated malware could emulate a device user’s action and send HTTP

requests to manipulate the modules in the trusted domain. Though it is not addressed

by our system alone, there are a number of ways to counter such threats. For instance,

we can use CAPTCHA [116] to differentiate malware from human users. As we

mentioned earlier, modules in a trusted domain are implemented as web applications,

so integration of security mechanisms that aim at protecting web applications, such

as CAPTCHA, are effective and straightforward. Another countermeasure against

such malware is to take advantage of the system virtualization and virtual machine

113

introspection (VMI), which allows a trusted virtual machine (e.g., dom0 in case of

Xen [45]) to know the internal state of other virtual machines. For instance, we can

deploy a tamper-resistant firewall system in the trusted domain. VMWall system

[114] can fit our device architecture and can be used to block network connections

from the user domain whose origin is an unauthorized process under the control of

malware. Gyrus system [107] takes advantage of hardware events, such as mouse

or keyboard events, and VMI to “interpret” the device user’s intention, which can

then be used for security-related authorization by the trusted domain, e.g., whether

network connection initiated by a user domain should be allowed. Since malware

can not generate hardware events, malicious network connection by malware can be

blocked. These schemes are orthogonal to our work and thereby are not included in

this dissertation.

Next, let us discuss emergency access to health records. Since such a case in which

a patient-centric monitoring agent is unavailable was already discussed in Chapter 4,

we do not discuss that scenario here. Just like the scheme discussed in Chapter

3, our scheme allows a device user to bypass the organization’s monitoring agent

when an extra key share is provided. Such a key share is managed by an authority

in the healthcare organization, for instance the organization’s information system

administrator, and is assumed to be issued after careful verification of the requester’s

identity and only in an emergency situation, such as a case where the organization’s

system is disabled for some reason. By using the authority’s key share, Tag Manager

in the system can locally create two signature shares and then combine them into

a complete signature without contacting the organization’s monitoring agent. Thus,

even in case the monitoring agent is not available, the device user can generate a valid

tag for sharing, using, and uploading health records.

Regarding the security of the authority’s key share, Xen, by default, does not allow

a user domain to access USB device. Therefore, we can use a USB drive to deliver

114

the authority’s key share securely to the trusted domain, and the trusted domain can

ensure deletion of the key share from the device after its use. However, our scheme

might allow an malicious insider to secretly keep the authority’s key share and reuse

it later to conceal unauthorized sharing. This threat can be countered by revoking

the accountability key pair assigned to the device user and then issuing new one to

him after the emergency situation is resolved. Although such revocation may cause

extra burden on system administrators, such a situation is expected to be very rare,

so we think it is acceptable. Moreover, replacing an accountability key pair does not

affect the device user’s main key pair or UDVS key pair.

6.5 Summary

In this chapter, we discussed the design of secure e-healthcare systems for healthcare

organizations, which provides robust management and auditing for client devices.

Under the system proposed, credentials and accountability tags on client devices

are protected against malware attacks as well as physical device thefts, and we can

reinforce the security guarantee offered by the system discussed in earlier chapters.

Moreover, since sensitive operations done on client devices are centrally monitored

by the healthcare organization, system abuse by insiders, including ones discussed in

Section 1.2.4, are effectively discouraged.

115

CHAPTER VII

IMPLEMENTATION OF A PATIENT-CENTRIC,

SECURE, ACCOUNTABLE ELECTRONIC HEALTH

RECORD SYSTEM

This chapter presents and evaluates an implementation of electronic health record

system relying on the concepts discussed in Chapters 3, 4, 5, and 6. We start with a

high-level overview of our system and also discuss how our schemes fit in the current

electronic health record sharing systems in Section 7.1, and then, in Section 7.2,

we discuss the performance aspect of our system as well as the details of prototype

implementation. Finally, Section 7.3 concludes the chapter.

7.1 Integration Scenario

7.1.1 Integration into NwHIN-like Architecture

The various subsystems discussed so far can be combined as shown in Figure 19. The

dotted thick boundary represents each organization’s boundary (i.e., an autonomous

node discussed in Section 2.1). As can be seen in the figure, for each organization

(Hospital B or Doctor A’s Office), its own monitoring agent is deployed to monitor

accountability tag handling on client devices. An organization’s monitoring agents

audits the activities of devices used by insiders (dotted, black arrows). On the other

hand, a patient-centric monitoring agent is deployed on an online party chosen by

each patient. It can monitor a variety of events, which are shown as gray, thick,

dotted arrows in the same figure. Although the figure shows only one monitoring

agent, a patient could have multiple agents, for instance one for identity credential

monitoring and another for health record monitoring, based on her own preference

116

Figure 19: Integration into NwHIN-like Architecture

and trust decision. In addition, a PHR repository is provided by a third party trusted

by the patient.

When the patient accesses her PHR repository, the usage of the presented identity

credential is monitored by the patient’s monitoring agent. Also, when the PHR

repository accepts the new record from the patient, the patient’s monitoring agent

is involved in Accountable Update process. When Doctor B1 in Hospital B requests

some healthcare information from the PHR repository, it can send the data to Doctor

B1, for instance by following Direct standards [4]. Before sending the data, the PHR

repository needs to issue PreTag and then to activate it with B1’s identity. If Doctor

B1 wants to submit the data to Hospital B’s repository, he needs to confirm the

tag, which is monitored by Hospital B’s monitoring agent. Also, the EHR repository

117

of Hospital B needs to contact the patient’s monitoring agent, following Accountable

Update protocol. The presented accountability tag tells the patient’s monitoring agent

that the corresponding record reached Hospital B’s repository via the patient’s PHR

repository and Doctor B1.

At some time later, Doctor B2 in Hospital B might want to share the data with

Doctor A who runs her own office. Doctor B2 downloads the record from the reposi-

tory. At this point, PreTag is issued with Doctor B2’s identity. Doctor B2, then, acti-

vates the tag with A’s identity, which is monitored by Hospital B’s monitoring agent.

When Doctor A consumes the shared health record and adds it to her own reposi-

tory, through Accountable Usage and Accountable Update respectively, such events are

monitored by the patient’s monitoring agent. In both cases, through the accountabil-

ity tag, the patient’s monitoring agent is additionally informed of the sharing path

starting from Hospital B’s repository. Furthermore, the patient can also know that

now a copy of her record is also stored at Doctor A’s Office. At the same time, tag

confirmation is monitored by the monitoring system in Doctor A’s Office. Events

observed by the patient’s monitoring agent are periodically reported to or can be

browsed by the patient.

Let us next discuss how our schemes can reinforce security, patient centricity, and

accountability in a typical health information sharing architecture like NwHIN [36].

The user-centric identity management scheme and identity usage monitoring agent

system discussed in Chapter 3 can work for patients when they access their own

PHR repositories to browse, edit, and share health records stored there. A patient

can store her identity credentials on a trusted identity agent to mitigate the risk

of lost / stolen devices. In addition, a user-centric monitoring agent can help her

know when and where her identity is used. Such awareness is expected to reduce

the risk of compromise or abuse of PHR systems by misusing the stolen patients’

identities. The same holds when a patient accesses an EHR system provided by

118

a healthcare organization. Even though different credentials might be required by

each provider, our scheme can efficiently handle such a situation, by means of the

minimal disclosure identity credential system proposed in [46]. The implementation

of our identity management and monitoring scheme is presented in Section 7.2.1.

Although we emphasized patient centricity, the same scheme could also be used within

a healthcare organization to manage and protect insiders’ identity credentials that are

used to access the organization’s e-healthcare systems. In this case, the corresponding

healthcare organization would be a reasonable entity to host an identity agent and

identity usage monitoring agent for each insider.

The patient-centric monitoring agent system discussed in Chapters 4 and 5 em-

powers patients to keep track of the usage, update, and sharing of their electronic

health records. For instance, when a doctor creates a new health record and submits

it to the EHR repository in his organization, it is logged by the patient’s monitoring

agent. When the record is shared, the entire sharing path of such healthcare data can

be made visible to patients through accountability tags. Lab test results created by

lab technicians can also be monitored in a similar way as briefly discussed in Chapter

5. Our mechanism is also effective in case of health record misuse. For instance, when

a claim including a patient’s healthcare data is consumed by CMS (Center for Medi-

care & Medicaid Services), which is located under Fed HIE in Figure 1, the usage

is brought to the patient’s attention. In case misuse is suspected, the patient could

initiate appropriate steps. Since the patient can know how the record reached CMS,

she can contact involved entities for investigation. We discuss the implementation of

the patient-centric monitoring agent system in Section 7.2.2.

Within each autonomous node in Figure 1, as discussed in Chapter 6, we can

deploy organization’s monitoring agent to enable robust auditing for sensitive opera-

tions on health records to discourage malicious or curious insiders who could try to

119

abuse or misuse their privilege. Once any misbehavior is detected, the system admin-

istrator of each organization can quickly revoke the capability of the corresponding

device (or the user of it). The same protection also works in case client devices are

compromised by malware or physical theft. The implementation and performance

aspects of the proposed system will be discussed in Section 7.2.3.

7.1.2 Integration into MedVault System

Figure 20: Integration into MedVault Architecture

Here, we briefly discuss the integration of our subsystems into Georgia Tech’s

MedVault system [98], which is a comprehensive health information sharing infras-

tructure that emphasizes patient centricity and control. At the high level, as can

be seen in Figure 20, patient’s healthcare data is stored in a repository protected

by Patient Agent that enforces the patient’s access control policies. When a user

(e.g., EMT) wants to access the patient’s data, he can do so through his own online

agent (User Agent), which aggregates verifiable attribute credentials required by the

patient’s access control policies on behalf of the user. The patient herself and other

healthcare service providers, such as hospitals and labs, can submit health records to

120

the repository. The detailed discussion can be found in [98].

In this context, our patient-centric monitoring agent can be deployed to keep track

of healthcare data updates (in the red rectangle in the figure) when variety of issuers

execute Accountable Update. In addition, identity credential usage monitoring can

monitor the patient’s credential usage when she accesses the repository or Patient

Agent. On the other hand, when a user downloads a health record and meaningfully

consumes it, Accountable Usage with an accountability tag allows the patient to know

the usage as well as the sharing path. Furthermore, by introducing the scheme dis-

cussed in Chapter 6, the user’s device can be remotely monitored by an organization

(e.g., one dispatching EMTs) and can be revoked when it is lost or stolen (a red oval

in the figure).

7.2 System Performance

In this section, using the prototype implementation, we measure and evaluate the

performance of each subsystem proposed so far. Relevant details of the prototype

implementation will also be presented.

7.2.1 User-centric Identity Management and Monitoring System

In this section, we first show the performance of the GUIDE-ME identity management

system discussed in Chapter 3. Then, we discuss the system extended with a user-

centric monitoring agent.

Figure 21: Setting for Response Time Measurement of GUIDE-ME

121

Before going into the results, we describe the experimental setup. We used a sep-

arate PC for a local identity agent (local IdA), a remote identity agent (remote IdA),

and a relying party (RP). Each of a local IdA, remote IdA, and RP is implemented as

a Java application (J2SE), and messages used among the entities are implemented as

serialized Java objects sent via HTTP POST. We used Bouncy Castle crypto library

[22] to utilize AES and RSA. The hardware configurations and deployment are shown

in Figure 21. The client PC hosting a local IdA is located outside of the campus

network, 13 hops away from the RP, to make the setting more realistic.

Among performance metrics, we first focus on the response time because it directly

impacts user experience. We measured the response time 50 times and calculated the

average of the recorded values. In this experiment, we configured a local IdA so

that it did not require any user operations. The measured response time includes

the initial negotiation to agree on the required identity claims between a RP and a

user as well as token handling involving a remote IdA. Thus, time taken to complete

two interactions (i.e., HTTP request / response) between a client device and a RP

are included. The result we obtained is 1.3 second on average. In addition, our

measurement also revealed that more than 0.7 second was actually consumed in a

local IdA. Thus, optimizing the implementation of a local IdA will further improve

the response time. Recent research [29] shows that response time less than 4 seconds

is acceptable for users in a retail website scenario. Therefore, we can consider that

users will not be discouraged and can take advantage of the additional benefits with an

acceptable latency. We also believe this overhead is acceptable in healthcare settings,

too.

Table 6: Throughput of RP and Remote IdA in GUIDE-ME System
RP Remote IdA

Average Time / Request 0.06 sec 0.02 sec
Average # of Request / sec 17 46
Standard Deviation 0.004 sec 0.0005 sec

122

Regarding the performance of a remote IdA and a RP, we measured the processing

time on each entity. Note that the processing time on a RP measures the duration

from receiving the request message including an “Authorization Token” to returning

the result of the credential verification to the user. The processing time on a remote

IdA is the duration from receiving an “Authorization token” to returning a message

including an identity credential to the RP. The data in Table 6 are the average and

standard deviation based on 30 measurements. As can be seen, the processing time

and throughput are acceptable for online services.

Following the design discussed in Chapter 3, we additionally implemented a user-

centric identity usage monitoring agent as a Java Servlet and deployed it on the same

machine as the RP in Figure 21. We then measured the response time on a client

device to see the overhead caused by it. In this implementation, we used Shoup’s

threshold signature scheme [12, 112]. Under this setting, extra overhead compared

to the original GUIDE-ME system discussed earlier is, on average, approximately 0.5

second in case a storage token is used and 0.8 second when a monitoring agent is

involved. Again, we believe the total response time remains acceptable for users.

7.2.2 Patient-centric Monitoring System for Electronic Health Records

In this section, we start with evaluating the performance of Accountable Update and

Usage defined in Chapter 4 in a setting that emulates electronic health record sharing

under Direct [4]. Note that the integration to Direct is just one of the examples, and

applicability of our scheme is not limited to it.

Figure 22 shows the various entities that make up this system. In Figure 22, solid

arrows indicate interactions when a health record is shared between Doctor A (Alice)

and Doctor B (Bob) using Direct standards. Assume that Alice is a patient’s primary

care physician who stores the patient’s health record in her repository. The patient

needs to see Bob in another location when she is traveling. Here, we also assume

123

Figure 22: Direct Augmented with Patient-centric Monitoring Agent

that Alice and Bob share a trust anchor, which issued main public / private key pairs

and special Direct email addresses to them [4]. Alice’s repository can be deployed

at her office or can be hosted at a remote location. At the time Bob needs to read

the patient’s past health records, he requests Alice’s office to email the records to

his Direct email address. Alice’s office, in response, sends the records using S/MIME

with SMTP. While one of the issues in Direct is that patient consent is left outside of

its scope, we can systematically enforce the involvement of the patient’s monitoring

agent, as shown with dotted arrows in the figure, so that patients can retain awareness

regarding the update and usage of their health records.

Following the architecture presented in Figure 22, we implemented a prototype

system, including an issuer tool (an Accountable Update client), a consumer tool (an

Accountable Usage client), a repository, and a patient-centric monitoring agent. The

issuer and consumer tools are implemented as Java applications while the repository

and monitoring agent are implemented as Java Servlets. We utilized Bouncy Castle

cryptography library [22] for AES and RSA encryption and decryption, and Java

pairing-based crypto library [11] is used to implement the UDVS scheme [115]. Each

124

message is implemented as a serialized Java object and sent by HTTP POST method.

Since our protocols do not depend on how the records are transferred and shared

among entities, our implementation focuses on the end points, namely issuers and

consumers. However, a protected record in our implementation is actually a file

and can be easily incorporated into S/MIME or other repository-based EHR / PHR

systems.

Since the architecture of Direct is de-centralized and a patient’s monitoring agent

introduced by us is selected per patient, the performance issue is less significant

compared to a case of a centralized server that could become a bottleneck. However,

since we utilize computationally intensive cryptographic primitives and our system

introduces extra communication with a monitoring agent, response time when running

an issuer tool and consumer tool may be a concern. In the context of typical usage

of Direct, the time required to run these tools can be viewed as overhead introduced

by our scheme. Therefore, we conducted experiments to evaluate it.

The experimental results for files of two different sizes (a 100KB file, a PDF

document, and a 2MB file, a 1,500x2,000 JPEG image file) are summarized in Table

7. Each value reported in the table is the average of 10 executions. Although there

are a number of possible ways to deploy a repository, in this experiment we set it

up on a remote server since it will take longer time than the case where it is on the

same machine or in the same local area network. We use a laptop PC (Pentium M

750 and 2GB RAM) as a client on which the issuer tool or the consumer tool is run.

The server machine has an Intel Xeon 5150 2.66GHz processor and 8GB RAM and

is connected to the Georgia Tech campus network. We run a patient’s monitoring

agent and a repository on the server. For network connectivity of the client machine,

we used a residential cable TV Internet service and 3G cellular network.

As expected, response time for issuers increases as a file becomes bigger. This

is largely explained by the file transmission time. Based on our measurements, the

125

Table 7: Response Time at Issuer and Consumer

File size
Tool 100KB(Cable) 100KB(3G) 2MB(Cable)

Issuer 0.82 sec 2.88 sec 5.06 sec
Consumer 0.72 sec 1.20 sec 0.86 sec

time to transfer the same 2MB file from the client PC to the repository server via

WinSCP (http://winscp.net/eng/index.php) was 6 seconds on average, so the

response time of our system is comparable. The increase in consumer response time

is much smaller, because, as shown in Figure 8, only hash values, signatures, and

other metadata are sent. As presented in Table 7, consumer response time is small

and within acceptable range even when 3G network is used. Therefore, our protocol

can support mobile consumers like EMTs.

Patient-centric monitoring agents (MoAs) and repositories can be run by commer-

cial service providers. In this case, metrics such as processing time and throughput

become important. By using our prototype implementation, we measured the pro-

cessing time of key functions executed at a monitoring agent and a repository. The

results are presented in Table 8. Each number is an average of 10 measurements.

We see that the impact of file sizes on the processing time of a monitoring agent is

Table 8: Processing Time at Repository and Patient-centric Monitoring Agent

File size
Protocol/Task Entity 100KB 2MB
Figure 6/(P3) MoA 0.11 sec 0.11 sec
Figure 6/(P2) to (P4) Repo 0.13 sec 0.15 sec
Figure 8/(P2) MoA 0.035 sec 0.034 sec

almost negligible. By using multi-threaded issuer / consumer tools, we also measured

the number of transactions that can be processed per second. Our results show that

a repository can handle 17.75 Accountable Update requests per second on average.

126

These transactions included a repository’s interaction with a patient’s monitoring

agent. On the other hand, for Accountable Usage, on average, a monitoring agent

can handle 60.75 requests a second. According to 2008 National Ambulatory Medical

Care Survey (NAMCS) [32], the number of ambulatory visits that are electronically

processed is approximately 1,200,000 per day. Our prototype repository and mon-

itoring agent can handle this number of requests within a day even with a single

server. Thus, we believe the throughput of protocols is acceptable when they are

implemented with a modest amount of hardware.

Table 9: Components in Accountability Tag System
Name Description

Issuer Tool This tool is used by either an entity that is creat-
ing a new health record or submitting a copy of a
health record shared from another entity. When
submitting a shared record, it also handles ac-
countability tags. It is implemented as a Java ap-
plication.

Consumer Tool When a health record consumer verifies the sig-
nature on a health record (i.e., meaningfully con-
sumes a health record), this tool is used. It also
handles an accountability tag attached to a record.
This tool is implemented as a Java application.

Repository This stores and manages electronic health records
submitted by issuers. It also handles user authen-
tication and PreTag generation. A repository is
implemented as a Java Servlet.

Patient-centric
Monitoring Agent

A patient-centric monitoring agent is responsible
for logging the information obtained in Account-
able Update and Accountable Usage protocols as
well as verifying accountability tags. This is im-
plemented as a Java Servlet.

Next, we discuss the case where we additionally provide robust information ac-

countability in a way discussed in Chapter 5. To demonstrate feasibility and study

performance when accountability tags are processed, we added this feature to our

127

prototype system. Functionality of each component in the system is modified accord-

ingly as summarized in Table 9. All of them are implemented in Java, and messages

in the protocols are implemented as serialized Java objects. We again deployed an

issuer tool and a consumer tool on a laptop PC (Pentium M 750 processor and 2GB

RAM) connected to a cable TV Internet service while a repository and a patient-

centric monitoring agent are set up on a machine (Intel Xeon 5150 processor and

8GB RAM) connected to a campus network.

We summarize the overheads introduced by information accountability in Table

10, comparing with the system in Chapter 4 that did not incorporate accountability

tags. Each number is the average or standard deviation over 20 measurements. In

addition, we used two files of different sizes (3MB and 6MB). Regarding Accountable

Update, the measurements with accountability are made based on the protocol defined

in Figure 11. On the other hand, the protocol without accountability (Figure 6)

requires additional operations at an issuer, such as preparation of UDVS signatures.

Thus, we can not compare the results directly. However, we can see that the time

to complete Accountable Update requests is comparable. For other operations, we

can see that overheads introduced to establish information accountability are far less

than 1 second. We believe that the benefit from reliable information accountability

outweighs this small overhead.

Table 10: Overhead for Information Accountability

Task Mean (Std. Dev.)
w/ Accountability
[ms]

Mean (Std. Dev.)
w/o Accountability
[ms]

Mean Overhead
[ms]

Tag Activation 15.47 (4.08) 0 15.47
Tag Confirmation 15.18 (4.29) 0 15.18
Acct. Update (3M) 4530.44 (82.35) 4957.17 (227.27) -
Acct. Update (6M) 9117.53 (123.28) 9834.60 (62.62) -
Acct. Usage (3M) 1345.83 (106.3) 1151.33 (113.99) 194.50
Acct. Usage (6M) 1792.65 (41.58) 1560.31 (149.28) 232.34

128

7.2.3 Secure Client Device System for Healthcare Organizations

This section presents the experimental results related to the performance of the system

designed in Chapter 6. We implemented a secure client device on a laptop PC with

Intel Core i5 2520M processor and 4GB RAM. On the machine, we set up two virtual

machines (dom0 and one user domain) using Xen 4.1. The user domain is allocated

1GB RAM and 1 CPU core, and both domains run Debian Linux. The client device

is connected to the cable TV Internet service via a commodity WiFi router. We

implemented an organization’s monitoring agent, EHR repository, and patient-centric

monitoring agent on a server machine with Intel Xeon 5150 processor and 8GB RAM,

which is connected to the Georgia Tech campus network.

In our implementation, messages sent and received between EHR Downloader and

an organization’s EHR repository (4 and 5 in Figure 15) are implemented simply as

HTTP request and response. It can be easily changed to HTTPS for confidentiality

and integrity when necessary. Messages between Tag Manager and an organization’s

monitoring agent (for example 7 and 8 in Figure 16), messages to and from a patient-

centric monitoring agent (for example 10 and 11 in Figure 16), and messages between

an organization’s EHR repository and a patient-centric monitoring agent (9 and 10

in Figure 18) are implemented as serialized Java objects, which are encrypted and

signed as discussed in Chapter 4 and Chapter 5.

Below, we present response time measurements at a user domain on the client

device. We measured the average response time of each process discussed in Section

6.3.1 through 6.3.4 using files of different sizes, namely 500KB, 1MB, 5MB, and

10MB. We measured the response time of each process with each file size 20 times

and plotted the average of them. The results are summarized in Figures 23, 24, 25,

and 26.

In Figure 23, we plotted average response time for each file size when a device

user downloads an electronic health record from the organization’s repository by

129

500 1000 2000 5000 10000

0
2

4
6

8

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
2

4
6

8

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]
EHR Downloader
SCP

Figure 23: Average Response Time When Downloading EHR

using EHR Downloader. In addition, for the sake of comparison, we plotted average

response time when the same file is downloaded via scp (secure copy) run in the

trusted domain. We can see that, up to 5MB, downloading health records using our

scheme does not have noticeable overhead, and major portion of the response time

is attributed to the file transfer time. Thus, for regularly-used file sizes, we expect

that device users will not notice any difference. Even in the case of the 10MB file,

the delay is below 2.5 seconds.

Figure 24 shows average response time when a device user, by using EHR Verifier,

consumes electronic health records downloaded from the repository or shared by an-

other entity. Each case can be handled in two different ways: with an authority’s key

share or without it. As can be seen, verification of downloaded records takes longer

130

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]
EHR Verifier w/o Authority Key Share (Downloaded Record)
EHR Verifier w/ Authority Key Share (Downloaded Record)
EHR Verifier w/o Authority Key Share (Shared Record)
EHR Verifier w/ Authority Key Share (Shared Record)

Figure 24: Average Response Time When Consuming EHR

time. The main reason for this is that an accountability tag must be activated and

confirmed before executing Accountable Usage protocol in this case. On the other

hand, when using shared records, activation is not necessary. In addition, when an

authority key share is provided via a USB drive, interaction with the organization’s

monitoring agent can be omitted, which results in shorter response time. Overall,

the response time is not significantly affected by the file size. Even when the file

size is 10MB, the average response time is at most 1.2 seconds, which we believe is

acceptable.

For the response time when sharing electronic health records, we measured the

time to prepare data to be emailed. So, email transfer time is not included. The

results are shown in Figure 25. The solid line corresponds to the results when an

131

500 1000 2000 5000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]
EHR Sharer w/o Authority Key Share
EHR Sharer w/ Authority Key Share

Figure 25: Average Response Time When Sharing EHR

authority key share is provided to EHR Sharer while the dotted one is based on

the results when the key share is not provided. The difference between two lines is

primarily attributed to the extra interaction with the organization’s monitoring agent

upon tag activation.

Average response time when uploading electronic health records to a repository

can be found in Figure 26. As discussed in Section 6.3.4, we evaluated two scenarios:

submission of a brand-new record and submission of a shared record. The latter can

further be split into two cases: with and without an authority key share. In addition,

we also plotted, in the same figure, the response time in case scp is used to upload

the same files.

As expected, for all cases, the response time goes up as the file size increases,

132

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]

500 1000 2000 5000 10000

0
5

10
15

File Size [KBytes]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[s
ec

]
EHR Uploader (New Record)
EHR Uploader w/o Authority Key Share (Shared Record)
EHR Uploader w/ Authority Key Share (Shared Record)
SCP

Figure 26: Average Response Time When Uploading EHR

just like the case of EHR download. Then, we focus on the overhead of our system

over scp. The overhead in response time is approximately 0.3 second, 0.5 second,

and 0.7 second in case of the 500KB, 1MB, and 5MB file respectively, which are not

significant. When a 10MB file is uploaded, the overhead is approximately 1.7 seconds.

However, we believe it is still within the acceptable range, considering that we can

attain security assurance for patients as well as healthcare organizations involved.

Regarding the difference between the two plots with EHR Uploader for shared

records, we can find that, especially for small files, the response time is slightly smaller

on average when the authority key share is provided to the device. Also, submission of

new records takes shorter time than submission of shared records. These observations

can be explained by the overhead incurred by accountability tag handling, including

133

threshold cryptography operations. However, when the file size increases (e.g., 5MB

and 10MB), the difference becomes almost negligible. One possible reason for this is

that, for large files, the overhead of additional tasks required to prepare a protected

record to be submitted in case of the new-record submission, such as making a UDVS

signature and encrypting a health record, outweighs the overhead of accountability

tag preparation.

7.3 Summary

As we saw in this Chapter, subsystems designed throughout this dissertation can

be incorporated into state-of-the-art health information sharing frameworks, such as

NwHIN [18], Direct[4], and MedVault [98], to empower patients as well as to make

e-healthcare systems in healthcare organizations more trustworthy.

We also presented a prototype implementation of each subsystem discussed in the

previous chapters and measured their performance. The overhead for the user-centric

identity credential usage monitoring was less than 1 second in our experimental set-

ting. When considering the use of web-based PHR services, decent criterion would

be the 4-second threshold defined for online retail web sites [29]. Based on it, the

measured overhead and the total response time are acceptable. Regarding the health

record handling by healthcare professionals (and by patients), through the experi-

ments, we saw that the overhead caused was at most a few seconds. If we consider

the exchange of health records using Direct [4], which relies on emails, the exchange

would take more than a few minutes. Therefore, we believe that the overhead incurred

by our system is again acceptable.

134

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Summary of Contributions

In recent years, adoption rate of electronic health record systems in the United States

has significantly increased in response to the aggressive promotion by the government.

While electronic health record systems and personal health record systems contribute

to improve the quality and efficiency of healthcare services, we are facing a num-

ber of privacy and security incidents that could harm patients as well as healthcare

organizations.

In this dissertation, we analyzed security and privacy incidents related to health

data misuse that actually happened in the past and identified three challenges that

need to be addressed to improve the situation, namely: theft and misuse of patients’

identities, unauthorized usage and update of electronic health data, and data breach

and misuse caused by insiders of healthcare organizations. The system proposed in

this dissertation address these issues by enhancing user’s awareness, accountability,

and control over his / her own data when it is accessed and shared in cyberspace.

More specifically, we designed a user-centric monitoring agent system, which is

deployed on an online entity chosen, trusted, or managed by each end user (i.e.,

a patient in the healthcare context) and works as a reference monitor [109] for the

user’s data that may be stored in a distributed manner. The monitoring agent can, on

behalf of the user, keep track of usage and update of identity credentials and electronic

health records to enhance the user’s awareness of these activities. By shortening the

window from the time when some incident occurs to the time at which the user

notices the problem, we can help users minimize the loss. Thereby, we can mitigate

135

the risk of general identity theft and fraudulent use of healthcare information. In

addition, suspicious creation or update of healthcare information is also brought to

users’ attention, which also helps them counter medical identity theft.

However, awareness alone is not often sufficient. For instance, even if a user could

identify the misuse of her health records, the user (and in some cases even a healthcare

organization) can not identify exactly who was responsible for or involved in the

breach. Insufficient accountability might encourage misbehavior or inappropriate

handling of health records by insiders in a healthcare organization. To address this,

in addition to a user-centric monitoring agent system, we introduced accountability

tags to establish the sharing path of each copy of a user’s health record, which makes

involved entities visible to the user. Our scheme also allows the users to provide

a cryptographically-verifiable evidence to a third-party investigator when misuse is

suspected. We believe such actionable accountability is effective to deter insider

threats under established regulations like HIPAA and HITECH. Moreover, under

our system, each end user can specify a “black list” of accountability tags on her

own monitoring agent so that the specified tags are automatically rejected when the

monitoring agent is contacted by health record repositories and consumers. In this

way, even when health records are managed outside of her direct control, the patient

can restrict the usage and update of her health records.

In addition to the solutions from end-user’s perspective, we need to reinforce se-

curity of healthcare organizations’ e-healthcare systems because such organizations

share responsibility for protecting such records. Also, activities in healthcare orga-

nizations can not be fully visible to a patient anyway, so organizational safeguards

are necessary. Moreover, the monitoring and accountability schemes discussed ear-

lier assume that each insider’s private key reliably authenticates its owner. In other

words, when the key is misused by an adversary (or another malicious insider), the

information that the patient can have could be inaccurate. To address these issues,

136

we designed a remote auditing and revocation system for client devices in a healthcare

organization. In addition, in our design, by means of domain isolation provided by

system virtualization, sensitive modules and identity credentials on client devices are

protected against physical device theft and malware attacks. By implementing such

system architecture within healthcare organizations, we can further improve patients’

confidence in electronic health record systems.

By combining the various subsystems designed and implemented, in this disser-

tation, we showed that it is possible to establish accountability and support patient

awareness in a large-scale, distributed, multi-domain electronic health record sharing

environment to safeguard sensitive data under reasonable assumptions. Even though

our design may require modifications in existing e-healthcare systems and thereby

would present deployability challenges, we believe that our work shows a viable ap-

proach for a patient-centered design of secure, privacy-aware electronic health record

systems that should appear in the near future.

8.2 Future Work

8.2.1 Anomaly Detection for Selective Alert

A user-centric monitoring agent discussed in Chapters 3, 4, and 5 and an organi-

zation’s monitoring agent discussed in Chapter 6 log a number of events regarding

usage, update, and sharing of a user’s sensitive data or handling of accountability

tags. In the current design of the monitoring agents, they simply report all observed

events to the corresponding user or the system administrator for the sake of their

awareness.

However, if we could additionally build an anomaly detection system to provide a

selective-alert feature, which reports only suspicious events that require close and im-

mediate attention, the user’s burden will be reduced. Detailed design and evaluation

of such schemes with real-world data set are part of our future work.

137

8.2.2 User-friendly Data Visualization

As mentioned earlier, a user-centric monitoring agent can accumulate a large amount

of data. Examining enormous amount of data to identify suspicious events or behav-

iors is not an easy task even for system administrators in large companies. Needless

to say, it is very challenging for end users.

To reduce such burden, it is desirable to visualize the data in such a way that

readers can easily spot events that require additional attention. In this direction,

we could rely on a scheme that visualizes graph data as a map-like representation,

which many people are familiar with [94]. We can rely on tools like afterglow (http:

//afterglow.sourceforge.net/), which converts text-based log data into graph,

to generate the input data for the visualization scheme. Moreover, accountability of

data can be naturally expressed by using graph whose edges are sharing paths and

nodes are entities involved, just as data provenance is often represented in the form

of graph [99]. We will explore such visualization-based solution in the future.

8.2.3 Protection and Management of Mobile Devices in Healthcare Or-
ganizations

Recently, use of mobile devices, such as smart phones and tablets, that are privately

owned by employees in enterprises, including healthcare organizations, is often en-

couraged to reduce cost. However, such BYOD (bring-your-own-device) devices are

end-user managed and more susceptible to physical theft or malware infections.

Thus, one possible future direction is exploring the implementation of the client-

device design discussed in Chapter 6 on mobile platforms. Because the effort to port

Xen onto ARM platform [24] is underway, we expect that our scheme can also be

deployed on mobile devices. We believe such a system can effectively reinforce MDM

(mobile device management) in healthcare settings.

138

8.2.4 Application to Other Domains

We do believe that the applicability of techniques proposed in this dissertation is not

limited to healthcare settings. Specifically, the identity management system archi-

tecture with an identity usage monitoring system can be broadly used where digital

identity is involved. We can also envision that our user-centric monitoring and ac-

countability tag based techniques can be used in more general enterprise settings to

mitigate the risk of insider threats and in cloud-storage settings to enhance the own-

ers’ control and governance over the data. Another possibility would be found in

Smart Grid settings. As discussed in [96], fine-grained electricity consumption data

is very sensitive, and customer’s control over such data is becoming important. By

introducing our user-centric monitoring idea, we can allow electricity customers to be

aware of by whom the data is utilized and how the data is shared. Exploring other

domains where our idea can contribute is an interesting future work.

139

REFERENCES

[1] “3rd HIPAA criminal case hints at federal tactics.” http://www.ama-assn.

org/amednews/2006/10/16/gvsb1016.htm.

[2] “52 arrested in sweeping Medicare fraud case.” http://articles.latimes.

com/2010/oct/14/local/la-me-healthcare-fraud-raid-20101014.

[3] “CONNECT Community Portal.” http://www.connectopensource.org/.

[4] “Direct Project.” http://wiki.directproject.org/.

[5] “EHR Incentive Programs.” http://www.cms.gov/

Regulations-and-Guidance/Legislation/EHRIncentivePrograms/index.

html.

[6] “A guide to integrating with infocard v1.0.” http://download.microsoft.

com/download/6/c/3/6c3c2ba2-e5f0-4fe3-be7f-c5dcb86af6de/

infocard-guide-beta2-published.pdf.

[7] “Health Information Privacy.” http://www.hhs.gov/ocr/privacy/hipaa/

administrative/breachnotificationrule/breachtool.html.

[8] “Health Information Privacy.” http://www.hhs.gov/ocr/privacy/.

[9] “HealthVault Message Center.” http://www.healthvault.com/

messagecenter.

[10] “It’s Transformation Time.” http://www.psclipper.com/

TransformationTime.asp.

[11] “Java pairing-based crypto library.” http://gas.dia.unisa.it/projects/

jpbc/.

[12] “Java Threshold Signature Package.” http://sourceforge.net/projects/

threshsig/.

[13] “Liberty alliance.” http://www.projectliberty.org.

[14] “Master Patient Index (MPI).” http://healthinformatics.wikispaces.

com/Master+Patient+Index.

[15] “Meaningful Use Announcement.” http://healthit.hhs.gov/

portal/server.pt/community/healthit_hhs_gov__meaningful_use_

announcement/2996.

140

[16] “Medical Identity Theft.” http://www.ftc.gov/bcp/edu/pubs/consumer/

idtheft/idt10.shtm.

[17] “Microsoft HealthVault.” http://healthvault.com/.

[18] “Nationwide Health Information Network (NHIN).” http://www.hhs.gov/

healthit/healthnetwork/background/.

[19] “Notice of Proposed Rulemaking to Implement HITECH Act Modi-
fications.” http://www.hhs.gov/ocr/privacy/hipaa/understanding/

coveredentities/hitechnprm.html.

[20] “RSA SecureID.” http://www.emc.com/security/rsa-securid.htm.

[21] “The Architecture for Privacy in a Networked Health Information En-
vironment.” http://www.markle.org/sites/default/files/P1_CFH_

Architecture.pdf.

[22] “The Legion of the Bouncy Castle.” http://www.bouncycastle.org/java.

html.

[23] “THE ROLE OF DIGITAL IDENTITY MANAGEMENT IN THE INTER-
NET ECONOMY: A PRIMER FOR POLICY MAKERS.” http://www.oecd.

org/dataoecd/55/48/43091476.pdf.

[24] “The Xen ARM Project.” http://www.xen.org/products/xen_arm.html.

[25] “U-prove technology.” http://www.credentica.com/u-prove_sdk.html.

[26] “The Laws of Identity.” http://www.identityblog.com/stories/2004/12/

09/thelaws.html, 2004.

[27] “Harmonized Use Case for Electronic Health Records (Laboratory Result Re-
porting).” http://healthit.hhs.gov/portal/server.pt/gateway/PTARGS_

0_10731_848103_0_0_18/EHRLabUseCase.pdf, 2006.

[28] “Kaiser Permanente Laptop Stolen.” http://www.consumeraffairs.com/

news04/2006/11/kaiser_laptop.html, 2006.

[29] “Retail Web Site Performance.” http://www.akamai.com/4seconds, 2006.

[30] “Baptist Health alerts patients to ID theft.” http://www.phiprivacy.net/

documentation/2008/BaptistHealth_01.html, 2008.

[31] “HIMSS Security Survey.” http://www.himss.org/content/files/2011_

HIMSS_SecuritySurvey.pdf, 2008.

[32] “National Ambulatory Medical Care Survey: 2008 Summary Tables.” http:

//www.cdc.gov/nchs/data/ahcd/namcs_summary/namcssum2008.pdf, 2008.

141

[33] “Patients’ Data on Stolen Laptop.” http://www.washingtonpost.com/

wp-dyn/content/article/2008/03/23/AR2008032301753.html, 2008.

[34] “Farrah Fawcett: ’Under a microscope’ and holding onto hope.” http://www.

latimes.com/la-et-fawcett-interview11-2009may11,0,3538939.story,
2009.

[35] “Kaiser Permanente employees fired for ‘Octomom’ data breach.”
http://www.id-theft-security.com/lifelock-blog/2009/04/

kaiser-permanente-employees-fired-for-octomom-data-breach/, 2009.

[36] “NHIN Architecture Overview Draft.” healthit.hhs.gov/portal/

server.pt/gateway/PTARGS_0_11113_911643_0_0_18/NHIN_Architecture_

Overview_Draft_20100421.pdf, 2010.

[37] “Security and Privacy of Electronic Medical Records.” http://www.himss.

org/asp/ContentRedirector.asp?ContentID=75798, 2011.

[38] “Accelerating Progress on EHR Adoption Rates and Achieving Mean-
ingful Use.” http://www.healthit.gov/buzz-blog/meaningful-use/

ehr-adoption-rates-and-achieving-meaningful-use/, 2012.

[39] Adams, E., Intwala, M., and Kapadia, A., “MeD-Lights: a usable
metaphor for patient controlled access to electronic health records,” in Pro-
ceedings of ACM IHI 2010, pp. 800–808, ACM, 2010.

[40] Ahmed, M. and Ahamad, M., “Protecting health information on mobile de-
vices,” in CODASPY, pp. 229–240, 2012.

[41] Aldeco-Pérez, R. and Moreau, L., “Provenance-based auditing of private
data use,” in BCS Int. Acad. Conf., pp. 141–152, 2008.

[42] Alrodhan, W. A. and Mitchell, C. J., “Improving the security of
cardspace,” EURASIP J. Information Security, vol. 2009, 2009.

[43] Anderson, J. P., “Computer Security technology planning study.” http:

//csrc.nist.gov/publications/history/ande72.pdf, 1972.

[44] Baker, A., Vega, L., DeHart, T., and Harrison, S., “Healthcare &
Security: Understanding & Evaluating the Risks,” in Proceedings of HCI Inter-
national 2011, 2011.

[45] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T. L., Ho,
A., Neugebauer, R., Pratt, I., and Warfield, A., “Xen and the art of
virtualization,” in SOSP, pp. 164–177, 2003.

[46] Bauer, D., Blough, D. M., and Cash, D., “Minimal information disclosure
with efficiently verifiable credentials,” in Digital Identity Management, pp. 15–
24, 2008.

142

[47] Bell, D., “Secure computer system: Unified exposition and multics interpre-
tation,” tech. rep., MITRE CORP BEDFORD MA, 1976.

[48] Bell, D. and LaPadula, L., “Secure computer systems: Mathematical foun-
dations and model,” MITRE CORP BEDFORD MA, vol. 1, no. M74-244, 1973.

[49] Benaloh, J., Chase, M., Horvitz, E., and Lauter, K., “Patient con-
trolled encryption: ensuring privacy of electronic medical records,” in Proceed-
ings of CCSW 2009, pp. 103–114, ACM, 2009.

[50] Bhargav-Spantzel, A., Camenisch, J., Gross, T., and Sommer, D.,
“User centricity: a taxonomy and open issues,” Journal of Computer Security,
vol. 15, no. 5, pp. 493–527, 2007.

[51] Biba, K., “Integrity considerations for secure computer systems,” tech. rep.,
MITRE CORP BEDFORD MA, 1977.

[52] Bolton, R. J. and H, D. J., “Statistical fraud detection: A review,” Statis-
tical Science, vol. 17, p. 2002, 2002.

[53] Boneh, D., Di Crescenzo, G., Ostrovsky, R., and Persiano, G., “Pub-
lic key encryption with keyword search,” in Advances in Cryptology-Eurocrypt
2004, pp. 506–522, Springer, 2004.

[54] Brown, J. and Blough, D., “Verifiable and redactable medical documents,”
in AMIA Annual Symposium Proceedings, American Medical Informatics Asso-
ciation, 2012.

[55] Camenisch, J., Shelat, A., Sommer, D., Fischer-Hübner, S., Hansen,
M., Krasemann, H., Lacoste, G., Leenes, R., and Tseng, J. C., “Pri-
vacy and identity management for everyone,” in Digital Identity Management,
pp. 20–27, 2005.

[56] Canard, S., Malville, E., and Traoré, J., “Identity federation and pri-
vacy: one step beyond,” in Digital Identity Management, pp. 25–32, 2008.

[57] Cantor, S., Kemp, J., Philpott, R., and Maler, E., “Assertions and
protocols for the oasis security assertion markup language (saml) v2.0.” http://
docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf, 2005.

[58] Conover, M., “Analysis of the windows vista security model.”
http://www.symantec.com/avcenter/reference/Windows_Vista_

Security_Model_Analysis.pdf, 2008.

[59] David Chappell, “Introducing Windows CardSpace.” http://msdn.

microsoft.com/en-us/library/aa480189.aspx.

[60] Desmedt, Y. and Frankel, Y., “Threshold cryptosystems,” in CRYPTO,
pp. 307–315, 1989.

143

[61] Dolin, R. H., Giannone, G., and Schadow, G., “Enabling joint commis-
sion medication reconciliation objectives with the HL7 / ASTM continuity of
care document standard,” AMIA Annual Symposium, pp. 186–190, 2007.

[62] Douceur, J., Adya, A., Bolosky, W., Simon, D., and Theimer, M.,
“Reclaiming space from duplicate files in a serverless distributed file system,”
2002.

[63] Enck, W., Gilbert, P., gon Chun, B., Cox, L. P., Jung, J., McDaniel,
P., and Sheth, A., “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in OSDI, pp. 393–407, 2010.

[64] Fang, L., Susilo, W., Ge, C., and Wang, J., “A secure channel free public
key encryption with keyword search scheme without random oracle,” Cryptology
and Network Security, pp. 248–258, 2009.

[65] Fawcett, T. and Provost, F. J., “Adaptive fraud detection,” Data Min.
Knowl. Discov., vol. 1, no. 3, pp. 291–316, 1997.

[66] Gajek, S., Schwenk, J., Steiner, M., and Xuan, C., “Risks of the
cardspace protocol,” in ISC, pp. 278–293, 2009.

[67] Gardner, R., Garera, S., Pagano, M., Green, M., and Rubin, A.,
“Securing medical records on smart phones,” in Proceedings of SPIMACS 2009,
pp. 31–40, ACM, 2009.

[68] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh,
D., “Terra: A virtual machine-based platform for trusted computing,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 193–206, 2003.

[69] Geambasu, R., John, J., Gribble, S., Kohno, T., and Levy, H., “Key-
pad: An Auditing File System for Theft-Prone Devices,” in Proceedings of
EuroSys 2011, 2011.

[70] Goldwasser, S. and Micali, S., “Probabilistic encryption,” J. Comput. Syst.
Sci., vol. 28, no. 2, pp. 270–299, 1984.

[71] Goldwasser, S., Micali, S., and Rackoff, C., “The knowledge complexity
of interactive proof systems,” SIAM J. Comput., vol. 18, no. 1, pp. 186–208,
1989.

[72] Goldwasser, S., Micali, S., and Rivest, R. L., “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM J. Comput., vol. 17,
no. 2, pp. 281–308, 1988.

[73] Green, M. D. and Rubin, A. D., “A research roadmap for healthcare it secu-
rity inspired by the pcast health information technology report,” in Proceedings
of the 2nd USENIX conference on Health security and privacy, HealthSec’11,
(Berkeley, CA, USA), USENIX Association, 2011.

144

[74] Hansen, M., Berlich, P., Camenisch, J., Claus, S., Pfitzmann, A.,
and Waidner, M., “Privacy-enhancing identity management,” Information
Security Technical Report, vol. 9, no. 1, pp. 35 – 44, 2004.

[75] Jaeger, T., Sailer, R., and Shankar, U., “PRIMA: policy-reduced in-
tegrity measurement architecture,” in SACMAT, vol. 6, pp. 19–28, Citeseer,
2006.

[76] Jakobsson, M., Sako, K., and Impagliazzo, R., “Designated verifier proofs
and their applications,” in Proceedings of EUROCRYPT 1996, pp. 143–154,
Springer-Verlag, 1996.

[77] Johnson, M. E., “Data hemorrhages in the health-care sector,” in Financial
Cryptography, pp. 71–89, 2009.

[78] Kifor, T., Varga, L., Álvarez, S., Vázquez-Salceda, J., and Will-
mott, S., “Privacy issues of provenance in electronic healthcare record sys-
tems,” Journal of Autonomic and Trusted Computing (JoATC), 2008.

[79] King, J., Smith, B., and Williams, L., “Modifying without a trace: General
audit guidelines are inadequate for electronic health record audit mechanisms,”
in Proceedings of ACM IHI 2012, 2012.

[80] Kolbitsch, C., Comparetti, P. M., Kruegel, C., Kirda, E., yong
Zhou, X., and Wang, X., “Effective and efficient malware detection at the
end host,” in USENIX Security Symposium, pp. 351–366, 2009.

[81] Kou, Y., Lu, C.-T., Sirwongwattana, S., and Huang, Y.-P., “Survey of
fraud detection techniques,” in Networking, Sensing and Control, 2004 IEEE
International Conference on, vol. 2, pp. 749–754, 2004.

[82] Krügel, C., Toth, T., and Kirda, E., “Service specific anomaly detection
for network intrusion detection,” in SAC, pp. 201–208, 2002.

[83] Krügel, C., Vigna, G., and Robertson, W. K., “A multi-model approach
to the detection of web-based attacks,” Computer Networks, vol. 48, no. 5,
pp. 717–738, 2005.

[84] Lampson, B. W., Abadi, M., Burrows, M., and Wobber, E., “Authen-
tication in distributed systems: Theory and practice,” ACM Trans. Comput.
Syst., vol. 10, no. 4, pp. 265–310, 1992.

[85] Leenes, R., Schallabock, J., and Hansen, M., “Prime white paper - third
and final version.” http://www.oracle.com/us/products/servers-storage/

solaris/solaris-trusted-ext-ds-075583.pdf.

[86] Löhr, H., Sadeghi, A., and Winandy, M., “Securing the e-health cloud,”
in Proceedings of ACM IHI 2010, pp. 220–229, ACM, 2010.

145

[87] Loscocco, P. and Smalley, S., “Integrating flexible support for security
policies into the Linux operating system,” in Proc. 2001 USENIX Annual Tech-
nical Conference-FREENIX Track, pp. 29–40, 2001.

[88] MacKenzie, P. and Reiter, M., “Networked cryptographic devices resilient
to capture,” in Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on, pp. 12–25, IEEE, 2001.

[89] Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., and Mitchell,
J. C., “A layered architecture for detecting malicious behaviors,” in RAID,
pp. 78–97, 2008.

[90] Mashima, D. and Ahamad, M., “Towards a user-centric identity-usage mon-
itoring system,” Internet Monitoring and Protection, International Conference
on, pp. 47–52, 2008.

[91] Mashima, D. and Ahamad, M., “Using identity credential usage logs to
detect anomalous service accesses,” in Proceedings of ACM DIM 2009, 2009.

[92] Mashima, D., Ahamad, M., and Kannan, S., “User-centric handling of
identity agent compromise,” in Proceedings of ESORICS 2009, pp. 19–36, 2009.

[93] Mashima, D., Bauer, D., Ahamad, M., and Blough, D., “User-centric
Identity Management Architecture Using Credential-holding Identity Agents,”
Digital Identity and Access Management: Technologies and Frameworks, 2011.

[94] Mashima, D., Kobourov, S. G., and Hu, Y., “Visualizing dynamic data
with maps,” IEEE Transactions on Visualization and Computer Graphics, 2012.

[95] McCune, J., Jaeger, T., Berger, S., Caceres, R., and Sailer, R.,
“Shamon: A system for distributed mandatory access control,” 2006.

[96] McDaniel, P. and McLaughlin, S., “Security and privacy challenges in the
smart grid,” Security & Privacy, IEEE, vol. 7, pp. 75 –77, may-june 2009.

[97] Mohan, A., Design and implementation of an attribute-based authorization
management system. PhD thesis, Georgia Institute of Technology, 2011.

[98] Mohan, A., Bauer, D., Blough, D. M., Ahamad, M., Bamba, B., Kr-
ishnan, R., Liu, L., Mashima, D., and Palanisamy, B., “A patient-centric,
attribute-based, source-verifiable framework for health record sharing,” CERCS
Technical Report, no. GIT-CERCS-09-11, 2009.

[99] Moreau, L., Groth, P. T., Miles, S., Vázquez-Salceda, J., Ibbotson,
J., Jiang, S., Munroe, S., Rana, O. F., Schreiber, A., Tan, V., and
Varga, L. Z., “The provenance of electronic data,” Commun. ACM, vol. 51,
no. 4, pp. 52–58, 2008.

146

[100] Mundada, Y., Ramachandran, A., Tariq, M. B., and Feamster, N.,
“Practical Data-Leak Prevention for Legacy Applications in Enterprise Net-
works.” http://smartech.gatech.edu/handle/1853/36612.

[101] Narayan, S., Gagné, M., and Safavi-Naini, R., “Privacy preserving EHR
system using attribute-based infrastructure,” in Proceedings of CCSW 2010,
pp. 47–52, ACM, 2010.

[102] Neuman, B. and Stubblebine, S., “A note on the use of timestamps as
nonces,” ACM SIGOPS Operating Systems Review, vol. 27, no. 2, pp. 10–14,
1993.

[103] Oracle, “Oracle solaris trusted extensions.” http://www.oracle.com/us/

products/servers-storage/solaris/solaris-trusted-ext-ds-075583.

pdf.

[104] Paci, F., Bauer, D., Bertino, E., Blough, D. M., and Squicciarini,
A. C., “Minimal credential disclosure in trust negotiations,” in Digital Identity
Management, pp. 89–96, 2008.

[105] Paci, F., Ferrini, R., Musci, A., Jr., K. S., and Bertino, E., “An
interoperable approach to multifactor identity verification,” IEEE Computer,
vol. 42, no. 5, pp. 50–57, 2009.

[106] Paci, F., Shang, N., Jr., K. S., Fernando, R., and Bertino, E., “Veryidx
- a privacy preserving digital identity management system for mobile devices,”
in Mobile Data Management, pp. 367–368, 2009.

[107] Payne, B. D., Improving Host-Based Computer Security Using Secure Active
Monitoring and Memory Analysis. PhD thesis, Georgia Institute of Technology,
2010.

[108] Phua, C., Lee, V. C. S., Smith-Miles, K., and Gayler, R. W., “A
comprehensive survey of data mining-based fraud detection research,” CoRR,
vol. abs/1009.6119, 2010.

[109] Qiu, L., Zhang, Y., Wang, F., Kyung, M., and Mahajan, H. R.,
“Trusted computer system evaluation criteria,” in National Computer Security
Center, 1985.

[110] Recordon, D. and Reed, D., “Openid 2.0: a platform for user-centric iden-
tity management,” in Digital Identity Management, pp. 11–16, 2006.

[111] Rosset, S., Murad, U., Neumann, E., Idan, Y., and Pinkas, G., “Discov-
ery of fraud rules for telecommunications - challenges and solutions,” in KDD,
pp. 409–413, 1999.

[112] Shoup, V., “Practical threshold signatures,” in Advances in Cryptology-
EUROCRYPT 2000, pp. 207–220, Springer, 2000.

147

[113] Simmhan, Y. L., Plale, B., and Gannon, D., “A survey of data provenance
techniques,” Indiana University Technical Report, no. IUB-CS-TR618, 2005.

[114] Srivastava, A. and Giffin, J. T., “Tamper-resistant, application-aware
blocking of malicious network connections,” in RAID, pp. 39–58, 2008.

[115] Steinfeld, R., Bull, L., Wang, H., and Pieprzyk, J., “Univer-
sal designated-verifier signatures,” Advances in Cryptology-Asiacrypt 2003,
pp. 523–542, 2003.

[116] von Ahn, L., Blum, M., Hopper, N. J., and Langford, J., “Captcha:
Using hard ai problems for security,” in EUROCRYPT, pp. 294–311, 2003.

[117] Wang, K., Cretu, G. F., and Stolfo, S. J., “Anomalous payload-based
worm detection and signature generation,” in RAID, pp. 227–246, 2005.

[118] Wang, K. and Stolfo, S. J., “Anomalous payload-based network intrusion
detection,” in RAID, pp. 203–222, 2004.

[119] Warrender, C., Forrest, S., and Pearlmutter, B. A., “Detecting in-
trusions using system calls: Alternative data models,” in IEEE Symposium on
Security and Privacy, pp. 133–145, 1999.

[120] Weitzner, D. J., Abelson, H., Berners-Lee, T., Feigenbaum, J.,
Hendler, J. A., and Sussman, G. J., “Information accountability,” Com-
mun. ACM, vol. 51, no. 6, pp. 82–87, 2008.

[121] Zeldovich, N., Boyd-Wickizer, S., Kohler, E., and Mazières, D.,
“Making information flow explicit in HiStar,” in Proceedings of OSDI 2006,
pp. 263–278, USENIX Association, 2006.

148

