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Abstract: We demonstrate planar structures that can provide simultaneous 

two-dimensional phononic and photonic band gaps in opto-mechanical (or 

phoxonic) crystal slabs. Different phoxonic crystal (PxC) structures, 

composed of square, hexagonal (honeycomb), or triangular arrays of void 

cylindrical holes embedded in silicon (Si) slabs with a finite thickness, are 

investigated. Photonic band gap (PtBG) maps and the complete phononic 

band gap (PnBG) maps of PxC slabs with different radii of the holes and 

thicknesses of the slabs are calculated using a three-dimensional plane wave 

expansion code. Simultaneous phononic and photonic band gaps with band 

gap to midgap ratios of more than 10% are shown to be readily obtainable 

with practical geometries in both square and hexagonal lattices, but not for 

the triangular lattice. 
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1. Introduction 

Waves propagating in structures with periodicities of the order of their wavelength can 

undergo dispersive effects that are not obtainable in conventional bulk materials. Exemplarily, 

photonic crystals, which are structures with periodic changes in their photonic properties (e.g., 

dielectric permittivity, can potentially have photonic band gaps (PtBGs) [ 1]. PtBGs are 

frequency ranges in which the propagation of photons is prohibited. PtBGs in PtCs can be 

used to efficiently guide, trap, and confine optical energy in small volumes. This has enabled 

realizing compact and efficient devices such as PtC waveguides [ 2], resonators [ 3], and 

wavelength multiplexers/de-multiplexers [ 4]. 

Similarly, phononic band gaps (PnBGs) [ 5] are ranges of frequencies in which elastic 

waves (or phonons) are not allowed to propagate. PnBGs can be obtained in phononic crystals 

(PnCs), which are carefully designed structures with periodic variation in their mechanical (or 

acoustic) properties (such as elastic constant or mass density). Analog to PtCs, PnCs can be 

used to effectively confine elastic (or acoustic) energy and therefore, enable realization of 

phononic devices with improved performances compared to their conventional counterparts. 

Because of the high levels of energy confinement that they can provide, obtaining PnBG 

and PtBGs simultaneously in optically and acoustically-periodic structures, dubbed opto-

mechanical or phoxonic crystals (PxCs) is of great interest. PxCs with simultaneous PnBGs 

and PtBGs can be used to enhance opto-mechanical [ 6] and acousto-optic interactions. Such 

enhancements have already been observed for one-dimensionally-periodic PxC slabs [ 7] 

three-dimensional (3D) PxCs [ 8], and PxC fibers [ 9]. Therefore, the ability to obtain such 

high levels of confinement in two dimensions through the use of PnBGs and PtBGs in 

practical structures compatible with planar fabrication technology should be of great benefit 

for obtaining such functionalities in a more compact and efficient platform. 

Maldovan and Thomas have recently shown theoretically, that simultaneous two-

dimensional (2D) PnBGs and PtBGs exist for waves propagating in the plane of periodicity 

(or in-plane waves) in PxCs of infinitely long void cylindrical inclusions in silicon (Si) [ 10]. 

Both square and triangular arrangements of the inclusions were considered. They also have 

theoretically shown that the photonic and phononic energies can be simultaneously localized 

in such PxC structures with defects [ 11]. In addition, maps of simultaneous PnBGs and PtBGs 

for a similar structure in LiNbO3 with optimization of the size of the gap have been recently 

reported [ 12]. However, all of the considered structures in these studies have been assumed to 

#123986 - $15.00 USD Received 9 Feb 2010; revised 5 Apr 2010; accepted 7 Apr 2010; published 16 Apr 2010
(C) 2010 OSA 26 April 2010 / Vol. 18,  No. 9 / OPTICS EXPRESS  9165



be infinite (or very large compared to the wavelength) and the fields are assumed invariant in 

the third dimension 

Among practical planar PnC structures with potential PnBGs, PnC slabs (structures with 

periodicity within a plane and with a finite thickness of the order of wavelength in the third 

dimension) [ 13,  14,  15] have unique advantages for realization of fundamental building 

blocks of micro/nano-mechanical signal processing components such as waveguides [ 16,  17] 

and resonators [ 18]. Interest in PnC slab structures is mainly due to their low loss as the 

energy can be well confined within the thickness of the slab. Moreover, PtC slabs with PtBGs 

have been used to effectively control the propagation of photonic waves and form efficient 

photonic waveguides [ 2] and resonators [ 3]. Among possible slab architectures, PnC and PtC 

slab structures with void holes in a solid background [ 2,  3,  14- 16,  18] are advantageous over 

the ones with composite lattices [ 13,  17] due to the lower cost of fabrication and the 

possibility of full realization using single-crystalline solids (that will eventually translate to 

lower mechanical and photonic losses). Therefore, obtaining simultaneous band gaps for 

phonons and photons in these PxC slabs can be of great interest. It should also be noted that in 

many cases, the photonic and phononic properties of such practically realizable structures can 

be completely different from those of the structures with infinite thickness as in Refs. [ 10- 12]. 

In this paper, we show that simultaneous 2D PtBGs and complete 2D PnBGs can be 

simultaneously obtained in PxC slabs made of void (vacuum or air) cylindrical holes 

embedded in a free-standing solid slab. We show that the band structure and in-plane PnBGs 

and PtBGs of such PxCs slabs can be drastically different compared to PxCs of the same 

structure but with infinite thickness. We also show the possibility of engineering and 

optimizing these simultaneous band gaps by using the geometrical parameters (e.g., radius of 

the inclusions and thickness of the slab) of the PxC slab structures. While the results of this 

study can be applicable to many solid materials, we limit our study to Si due to its 

technological advantages and for definiteness. We expect that by using the results presented 

in this paper, opto-mechanical devices with better control over the phononic and photonic 

energies, better performance characteristics, and smaller form factors can be obtained. 

2. Method of simulation and simulation assumptions 

To calculate the photonic and phononic band structures of the PxCs, we have developed and 

used a plane wave expansion (PWE) tool [ 19,  20]. In order to find the photonic band structure 

using PWE, we can simplify the Maxwell’s equations to 

 
2

2

1
,H H

c

ω
ε
 ∇× ∇× =  

 (1) 

where ε is the position-dependent dielectric permittivity and H is the magnetic field intensity 

vector. Equation (1) is then converted to an eigenvalue problem by expanding the magnetic 

field intensity using a plane wave basis and the dielectric permittivity using Fourier transform 

[ 19]. 

For simulating structures with infinite thickness in the third dimension, it is assumed that 

the field values are independent of the changes in the third dimension and therefore, the 

computations are significantly simplified. The number of plane waves used is of the order of 

100, which ensures the accuracy of the results. 

For the PxC slab structures, we have assumed 2D periodicity in the slab plane and a 

periodic sequence of slabs separated by a sufficiently long distance in the third dimension to 

ensure minimum interaction of the guided slab modes [ 21]. The non-guided (radiation) 

modes, which fall within the light cone, are ignored in this procedure, however, these modes 

are of limited interest as they cannot be confined within the slab and are radiated away. 

Enough number of plane waves (of the order of 800) is used to ensure the convergence 

accuracy of the results. 

#123986 - $15.00 USD Received 9 Feb 2010; revised 5 Apr 2010; accepted 7 Apr 2010; published 16 Apr 2010
(C) 2010 OSA 26 April 2010 / Vol. 18,  No. 9 / OPTICS EXPRESS  9166



In order to calculate the phononic bands using PWE, we implemented a similar procedure 

[ 20] by simplifying Newton’s law and the elastic constitutive relation to the form 

 2( ) ,
s

ρω∇⋅ ⋅∇ = −c u u   (2) 

in which c and ρ are the position-dependent stiffness tensor and mass density, respectively 

and u is the displacement vector. As can be seen by comparing Eqs. (1) and (2), these 

equations share many similarities. However, in the phononic case, the distance between the 

periodically placed slabs in the slab thickness direction is not as critical as for the photonic 

case since the modes are strictly confined within the freestanding slab structure. Nevertheless, 

the number of plane waves we used for the phononic case is also of the same order (i.e., 800) 

to ensure the accuracy. The results are also in excellent agreement with our calculations using 

the finite element method [ 22] in all test cases. 

Using the photonic and phononic PWE tools, we performed both 3D and 2D simulations 

for structures with finite and infinite thicknesses, respectively. Throughout this paper, Si is 

assumed to be crystalline with its main symmetry axes aligned to x, y, and z directions of the 

coordinate system. The anisotropy of the mechanical parameters of the Si is fully considered 

in our simulations. The material parameters of Si are assumed to be εr = 12.25, c11 = 16.7 × 

10
10

 N/m
2
, c12 = 6.39 × 10

10
 N/m

2
, c44 = 7.956 × 10

10
 N/m

2
, and ρ = 2332 kg/m

3
, where εr is 

the relative permittivity, c11, c12, c44 are the independent components of the stiffness tensor, 

and ρ is the mass density of Si. 

3. Comparison of the band structures of 2D PxCs and PxC slabs 

Figure 1(a) shows the band structure of elastic waves propagating in the plane of periodicity 

(or in-plane waves) in a 2D square-lattice array of infinitely long void holes in a Si 

background calculated using the 2D PWE. A schematic of the cross section of such PxC is 

shown in the inset of Fig. 1(a). In this figure, a is the spacing between the centers of the 

nearest holes (or the lattice constant) and r is the radius of the holes. The normalized radius of 

the holes is r/a = 0.45. As can be seen in Fig. 1(a), a PnBG exists in this PxC and covers a 

frequency range of 2430 m/s < f × a < 3619 m/s. Figure 1(b) shows the band structure of 

elastic waves in a square-lattice Si PxC slab calculated using 3D PWE. A schematic of the 

structure is shown in the inset of Fig. 1(b), where a is the lattice constant, r is the radius of the 

holes, and d is the thickness of the slab. The normalized radius of the holes in the structure is 

the same as that of the structure in Fig. 1(a) (i.e., r/a = 0.45), and the normalized thickness of 

the structure is d/a = 0.5 rather than infinite. The PnBG for this structure extends in the 

frequency range of 3000 m/s < f × a < 3260 m/s. As can be seen, the band structure and the 

PnBG of the structure with a finite thickness [shown in Fig. 1(b)] are considerably different 

from those of the structure with infinite thickness [shown in Fig. 1(a)]. 

We performed the same analysis for photonic waves in the same square-lattice PxCs of 

Fig. 1(a) and Fig. 1(b) by calculating their photonic band structure. The 2D photonic band 

structure of the in-plane transverse electric (TE) modes (electric field in the plane of 

propagation) and the transverse magnetic (TM) modes (magnetic field in the plane of 

propagation) for the structure of Fig. 1(a) are shown in Fig. 1(c). The normalized radius of the 

holes is r/a = 0.45 as in the case of Fig. 1(a). As can be seen in Fig. 1(c), there are both TE 

and TM PtBGs in the photonic band structure. 

For the case of the PxC slab it is possible to decompose the guided photonic modes of the 

PxC slabs into two non-interacting categories, namely, even and odd modes with respect to 

the horizontal symmetry plane of the slab [ 21]. The photonic band structure for the PxC slab 

structure of Fig. 1(b) for even and odd modes is shown in Fig. 1(d). The normalized radius of 

the holes and the slab thickness are r/a = 0.45, and d/a = 0.5, respectively [as in the case of 

Fig. 1(b)]. Since the photonic modes of the structure are lossy above the light line, only the 

guided modes that reside below the light line are considered [ 21]. By comparing Fig. 1(c) and 
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Fig. 1(d), it can be seen that similar to the phononic case, the photonic bands and therefore, 

the location and width of the PtBGs, are different for the 2D and 3D cases. By considering 

Figs. 1(b) and 1(d) it can be seen that a PnBG or even and odd PtBGs simultaneously exist for 

the square-lattice PxC slab shown in the inset of Fig. 1(b) with geometrical parameters of r/a 

= 0.45 and d/a = 0.5. 

 

Fig. 1. (a) Band structure of in-plane elastic waves propagating in a 2D square-lattice PnC of 

infinitely long void holes in Si. A schematic of the cross section of the structures is shown in 

the inset. In this figure, a is the lattice constant (or distance between the centers of the nearest 

holes) and r is the radius of the holes. The band structure associates with a structure with r/a = 

0.45. (b) Band structure of elastic waves for square lattice of void holes in a Si slab with a 

finite thickness. A schematic of the structures is shown in the inset, where a is the lattice 

constant, r is the radius of the holes, and d is the slab thickness. The band structure is 

calculated for r/a = 0.45 and d/a = 0.5 [ 14]. (c), (d) Band structure of in-plane-propagating 

optical modes in the 2D PxC explained in (a) and (b), respectively. The radiation optical modes 

above the light line are not depicted in (d). 

4. Phononic and photonic band gap maps for the square-lattice PxC slab 

The demonstration of the simultaneous phononic and photonic band gaps in Fig. 1(b) and Fig. 

1(d) necessitates a more detailed analysis to assess the possibility of the existence and the 

quality of the simultaneous PnBGs/PtBGs in PxC slabs. Phononic and photonic band gap 

maps for the square-lattice PxC slabs with varying normalized hole radii (r/a) and a fixed 

normalized thickness of d/a = 0.5 [Fig. 2(a), Fig. 2(c)], and for varying normalized thickness 

(d/a) and constant normalized hole radii of r/a = 0.45 [Fig. 2(b), Fig. 2(d)] are shown in Fig. 

2. Such band gap maps are beneficial for designing PxC slabs with simultaneous 

PnBG/PtBGs for different applications and conditions. 

As shown in Fig. 2(a) for a constant thickness of d/a = 0.5, the PnBG of the square-lattice 

PxC slab opens up at approximately r/a = 0.43 at frequency of f × a = 3150 m/s; it widens up 

as the normalized radius increases. At normalized radius of r/a = 0.49, the PnBG extends to 

the frequency range of 2170 m/s < f × a < 3380 m/s. The PnBG map of the same PxC for 

constant normalized radius of r/a = 0.45 and as a function of the slab thickness is shown in 

Fig. 2(b). As is visualized in this figure, the PnBGs, opens up at d/a ~0.4 at frequency of 3750 
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m/s; by increasing the thickness, the PnBG widens up to 2970 m/s < f × a < 3400 m/s at d/a = 

0.55 and closes at d/a = 0.7 at f × a ~2800 m/s. 

 

Fig. 2. PnBG maps of the square-lattice PxC slab structure with (a) a constant normalized 

thickness of d/a = 0.5 as a function of the normalized radius (r/a), and (b) a constant 

normalized radius of r/a = 0.45 and as a function of normalized thickness (d/a) [ 14]. (c), (d) 

PtBG maps of the PxC structure for even and odd optical modes for the same structures as in 

(a) and (b), respectively. The numbers near each PtBG region show the band numbers between 

which the PtBGs appear. The schematic of the associated PxC structure is shown in the inset of 

(a) for reference. 

The PtBG map of this PxC for even and odd modes as functions of normalized radius and 

a constant normalized thickness of d/a = 0.5 is shown in Fig. 2(c). The PtBG maps are 

calculated considering the band structure of the PtC under the light line of the slab. PtBG 

regions of narrower than 5% of the center frequency and higher than the sixth band are not 

considered since such gaps have limitations for realizing practical devices. The band numbers 

between which each PtBG occurs are shown close to each region. As can be seen in Fig. 2(c), 

three even PtBGs are present in this PtBG map. The first even PtBG is between 1st and 2nd 

bands and starts expanding at r/a = 0.33 at f × a / c = 0.295, where c is the phase velocity of 

light in vacuum. This even PtBG expands to a PtBG to mid gap ratio (or PtBG ratio) of more 

than 10% and closes at r/a = 0.47. The second even PtBG occurs between the 2nd and 3rd 

even bands and opens up at r/a = 0.22 and closes at r/a ~0.36 with a relatively small 

bandwidth (less than 7% PtBG ratio). Finally, the third even PtBG occurs between the 4th and 

the 5th bands. It starts at r/a ~0.33 at f × a / c = 0.465 and expands up to 0.57 < f × a / c < 

0.66 at r/a = 0.49 with a maximum PtBG ratio of approximately 15% at this point. The only 

present odd PtBG region starts at r/a = 0.3 between the 3rd and 4th odd bands at f × a / c = 

0.42 and expands as the normalized radius increases to r/a = 0.49 at which, 0.51 < f × a / c < 

0.67 with a PtBG ratio of 27%. It is instructive to note that if there are no imperfections in the 

slab structure, even and odd modes are decoupled from each other and can be separately 

excited and detected; therefore, several large simultaneous (even or odd) PtBGs and PnBGs 

can be obtained in this type of PxC for several geometrical parameters. 

It is also interesting to note that a PtBG for both even and odd modes also exists in the 

band structure in Fig. 2(c), which starts at r/a = 0.44 at f × a / c = 0.52 and expands to 0.57 < f 
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× a / c < 0.66 at r/a = 0.49. Interestingly, this common PtBG for even and odd modes 

overlaps with the PnBG of the PxC at the same range of geometrical parameters. This makes a 

structure with simultaneous band gaps for all guided optical modes and all elastic waves 

possible. As an example, for d/a = 0.5 and r/a > 0.45, a PnBG, and PtBGs for both even and 

odd modes exist. For a PtBG ratio of more than 8% for both even and odd PtBGs, an r/a of 

0.47 or larger is required. For r/a = 0.47, to have the center of the PtBG at λ = 1.55µm (i.e., 

the most desired optical communication wavelength), a and r are calculated to be 890 nm and 

418.3 nm, respectively. The spacing between the perimeters of the holes, which is a major 

parameter dictating the fabrication limitations, is 53.4 nm. This feature size is readily 

achievable using the advanced fabrication techniques. These geometrical parameters 

correspond to a PnBG in the frequency range of 2700 m/s < f × a < 3300 m/s or 3 GHz < f < 

3.7 GHz (a PnBG ratio of 21%), and PtBG ratios of 19% and 13% for the individual even and 

odd PtBGs, respectively. 

The PtBG maps of this structure for a constant normalized radius of r/a = 0.45 and 

variable d/a are also shown in Fig. 2(d) confirming the existence of the simultaneous PtBGs 

and PnBGs in the square-lattice PxC slabs. 

5. Phononic and photonic band gap maps for the triangular-lattice PxC slab 

According to the large PtBGs that can be obtained in moderate void to solid ratios in 

triangular-lattice PxC slabs, these structures are of great interest in realizing photonic crystal 

devices [ 2,  3,  21]; therefore, it is important to evaluate their phononic characteristics for 

obtaining simultaneous PnBGs and PtBGs. To attain PnBGs in the triangular PxC slabs of 

cylindrical holes in a slab, we simulated the structure for a variety of geometrical parameters; 

however, through our extensive search, we were unable to obtain a sizable PnBG in this 

lattice. We analyzed the structures for radius of holes in the range 0.1 < r/a < 0.49 with a step 

size of 0.02 and for each normalized radius we calculated the PnBG in the normalized 

thickness range of 0.1 < d/a < 2, with a 0.1 step size. However, no sizable PnBG was obtained 

for this structure despite our extensive simulations. The PtBG maps of the triangular-lattice 

PxC slab have already been extensively studied before [ 23], and will not be repeated here 

since no PnBG could not be obtained. 

6. Phononic and photonic band gap maps for the hexagonal-lattice PxC slab 

Compared with the square-lattice PxC slab structures, hexagonal-lattice structures are more 

desirable for phononic applications as they can provide larger PnBGs with more relaxed 

fabrication limitations [ 14]. As will be shown below, simultaneous PnBGs and PtBGs for 

both even and odd modes can also be obtained in the hexagonal lattice. 

The PnBG and PtBG maps for the hexagonal-lattice PxC slab structure are shown in Fig. 

3(a)-(d). The calculations have been performed using the developed PWE tool. The schematic 

of the analyzed hexagonal-lattice PxC slab structure is shown in the inset of Fig. 3(a) where 

geometrical parameters of the structure are indicated. In this schematic, a is the distance 

between the centers of the two nearest holes, d is the thickness of the slab, and r is the radius 

of the holes. The PnBG map for varying radius of the holes with a constant thickness of d/a = 

1 is shown in Fig. 3(a). The PnBG map is also derived for a varying slab thickness and a 

constant normalized radius of r/a = 0.45 in Fig. 3(b). These values for the normalized radius 

and thickness are chosen as they can attain large PnBGs. The PnBG for this PxC slab 

structure of d/a = 1 opens up at r/a = 0.36 and expands as the normalized radius increases. As 

shown in Fig. 3(b), four different regions of PnBGs exist in the PnBG map. The range of 

geometrical parameters of the hexagonal-lattice PxC required for achieving PnBGs 

corresponds to values that are more practical from the structure stability and fabrication points 

of view compared to the square-lattice PxCs. 
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Fig. 3. PnBG maps of the hexagonal-lattice PxC slab structure with (a) a constant normalized 

thickness of d/a = 1 as a function of the normalized radius (r/a) and (b) a constant normalized 

radius of r/a = 0.45 and as a function of the normalized slab thickness (d/a) [ 14]. (c), (d) PtBG 

maps of the PxC structure for even and odd optical modes for the same geometrical parameters 

as in (a) and (b), respectively. The numbers near each PtBG region show the band numbers 

between which the PtBGs appear. The schematic of the hexagonal PxC structure is shown in 

the inset of (a) for reference. 

We also analyzed the photonic band structure of the hexagonal-lattice PxC slab shown in 

Fig. 3(a) using 3D PWE. In our calculations, PtBGs that occur at frequencies higher than the 

7th band in the band structures are not considered due to practical considerations. Figures 3(c) 

and 3(d) show the PtBG of the hexagonal lattice for the same range of geometrical parameters 

associated with Figs. 3(a) and 3(b), respectively. Similar to the case for the square-lattice 

PxC, the band numbers between which each PtBG occurs are shown next to each PtBG. As 

can be seen from Fig. 3(c), both even and an odd PtBGs are supported for a wide range of 

geometrical parameters of this structure. The even and odd PtBG regions overlap over the 

normalized radius range of 0.29 < r/a < 0.42. However, the PtBG ratio of this overlapping 

PtBG region is limited to about 5%, which may not be sufficient for wide-band applications; 

rather, the PtBG of the odd modes can be made large enough by increasing the normalized 

radius and can be used for many of the envisioned applications. 

As a practical example, an odd PtBG ratio of 12% (0.226 < f × a/c < 0.254) can be 

obtained for r/a = 0.42 and d/a = 1, at which the PnBG is obtained in frequency range of 1780 

m/s < f × a < 2249 m/s (~23%), which is appropriate for wide bandwidth applications of PxC 

structures. For λ = 1.55 µm, the required value of a would be 371.2 nm, which corresponds to 

a center phonon frequency of 5.4 GHz. Other parameters of this structure are r = 155.9 nm, d 

= 371.2 nm, and spacing between hole perimeters of 59.4 nm, which falls into practical 

fabrication conditions. Such geometrical parameters impose similar fabrication limitations 

compared to the square-lattice PxCs; however, due to a smaller volume ration of void 

compared to the square lattice, the hexagonal lattice can have a better mechanical stability. 

Figure 3(d) shows the PtBG maps of the PxC as a function of the thickness of the slab for 

a constant normalized radius of r/a = 0.45. There are four regions (two odd and two even) of 

PtBG in Fig. 3(d). The band numbers between which the PtBGs are formed are also indicated 

in this figure. As can be seen by comparing Fig. 3(b) and Fig. 3(d), simultaneous PnBGs and 

either even or odd PtBGs exist for several values of d/a; Therefore, based on the intended 
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applications, any of such simultaneous band gaps can be utilized. As can be seen in Fig. 3(d), 

there are two common even and odd PtBG regions. Both of these regions have PtBG ratios of 

less than 5%, which may be too small for some of the envisioned applications. 

7. Comparison of the structures 

The results presented show that both square and hexagonal-lattice PxC structures of void 

cylindrical holes embedded in a solid slab are appropriate for achieving simultaneous band 

gaps for phonons and photons. As can be inferred from the two given examples, for a certain 

optical wavelength, both lattice types impose similar fabrication limitations while the 

hexagonal lattice may benefit from a better mechanical stability. If the PtBG is required to 

exist for both even and odd symmetries simultaneously with PnBGs, then square-lattice PxCs 

are favorable. Despite our extensive search for PnBGs, no PnBGs could be obtained in the 

triangular-lattice PxC slab. It should also be noted that in this paper only the complete PnBGs 

were considered due to the full control they can provide over elastic vibrations. If PnBGs of 

certain symmetry (e.g. even or odd) in PxC slabs are also of interest, the range of geometrical 

parameters with simultaneous PtBGs and PnBGs can be expanded compared to what reported 

here. 

8. Concluding remarks 

In this paper, we theoretically demonstrate phoxonic crystal (PxC) slab structures that can 

provide simultaneous photonic and phononic band gaps at optical communication 

wavelengths and acoustic frequencies of a few GHz. We analyzed PxCs made of the most 

highly used (square, hexagonal, and triangular) 2D arrays of void cylindrical holes in a Si slab 

and showed that large simultaneous PnBGs/PtBGs can be obtained for both square and 

hexagonal-lattice arrangement of holes but not for the triangular-lattice arrangement. We 

showed that the PtBGs and PnBGs in PxC slabs (calculated using 3D simulations) are 

different compared to the PnBG and PtBGs of the previously reported 2D PxCs with infinite 

thickness (calculated using 2D simulations). For a certain optical wavelength and similar band 

gap ratios, we showed that both square and hexagonal-lattice PxC slab structures impose 

similar fabrication limitations while the hexagonal lattice can provide better mechanical 

stability. We further have shown that simultaneous PnBGs and PtBGs for both odd and even 

modes can be obtained in both hexagonal and square-lattice PxC slab structures while the 

square-lattice PxC is advantageous. We believe the results presented in this paper can lead to 

structures that can greatly enhance opto-mechanical and acousto-optic interactions that 

require simultaneous localization of photonic and elastic waves. 
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