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The diffraction characteristics of a volume grating (VG) illuminated by a three-dimensional (3-D) converging—
diverging Gaussian beam at conical incidence are investigated by applying 3-D finite-beam (FB) rigorous
coupled-wave analysis (RCWA) based on the conventional 3-D RCWA in conjunction with two-dimensional
plane-wave decomposition. The Gaussian beam is assumed to have an arbitrary incidence angle, an arbitrary
azimuthal angle, and any linear polarization. The two cases with linear polarizations of the central beam of the
Gaussian (E LK and H | K) are investigated. The diffraction efficiencies and the diffracted beam profiles for
both unslanted VGs and slanted VGs (designed for substrate-mode optical interconnects) are presented. In
general, the diffraction efficiencies of a converging—diverging spherical Gaussian beam diffracted by both un-
slanted VGs and slanted VGs increase and approach the central-beam results as the refractive-index modula-

tion increases. © 2005 Optical Society of America
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1. INTRODUCTION

In recent years optical interconnects have been consid-
ered a promising technology capable of supporting the in-
terconnection requirements of future gigascale integra-
tion systems. For the implementation of optical
interconnects, diffractive optics is a particularly promis-
ing technology. For example, diffractive optical elements,
such as volume gratings (VGs) and surface-relief gratings
(SRGs), can be used to couple an optical signal into (or out
of) a substrate as a substrate-mode optical interconnect’?
and into (or out of) a waveguide as a guided-wave optical
interconnect.>™” However, for practical applications the
incident beam emitted by a single-mode optical fiber or a
single-mode laser closely approximates a three-
dimensional (3-D) converging—diverging spherical Gauss-
ian beam. In addition, the incident wave vector may not
lie in the plane perpendicular to the grating surface that
contains the grating vector, and therefore it gives rise to
3-D conical diffraction.

To analyze 3-D conical diffraction, Chuang and Kong®
first applied the integral method by using a Green’s func-
tion approach to analyze a SRG with a small groove depth
of 0.3 of the grating period. Moharam and co-workers®1°
proposed a 3-D rigorous coupled-wave analysis (RCWA) to
study the diffraction efficiencies of a planar VG with re-
spect to the grating thickness and the incident angle and
the diffraction efficiencies of a binary grating with respect
to the normalized groove depth. Popov and Mashev'! ap-
plied a rigorous differential method to investigate the
conical diffraction of both a nonperfectly conducting SRG
and a dielectric SRG. Gupta'? utilized the Rayleigh
method to study the characteristics of surface-plasmon
excitation on an Ag SRG in conical diffraction with re-
spect to the grating thickness and the azimuthal angle.
Depine’® and Gigli and Depine'* applied both the confor-
mal mapping method and the Rayleigh method to inves-

1084-7529/05/071293-11/$15.00

tigate the diffraction characteristics for a finitely conduct-
ing SRG and for a corrugated interface between an
isotropic medium and a uniaxial crystal in a conical ge-
ometry, respectively. Furthermore, Abe and Koshiba'® ap-
plied a differential method to investigate the effects of
normalized groove depth, free-space wavelength, incident
angle, and azimuthal angle on the diffraction efficiencies
of 3-D conical diffraction by a SRG. Cornet et al. 16 applied
a similar differential method to analyze 3-D conical dif-
fraction of a plane wave by an inclined parallel-plate grat-
ing for a variety of incident angles and azimuthal angles.
More recently, Ohki et al. 1 applied the transition-matrix
method to analyze electromagnetic wave diffraction from
a sinusoidal SRG for arbitrary angles of incidence and po-
larization. However, in all of these analyses, the incident
beam was assumed to be a plane wave.

On the other hand, for the incidence of a Gaussian
beam, depending on the two-dimensional (2-D) (cylindri-
cal) or 3-D (spherical) profile and the phase curvature of
an incident beam, the Gaussian beam can be classified
into four categories: the 2-D Gaussian-profile plane wave
(neglecting the phase curvature of the beam), the
converging—diverging cylindrical Gaussian beam, the 3-D
Gaussian-profile plane wave, and the converging—
diverging spherical Gaussian beam. For the diffraction
analysis of a grating illuminated by a 2-D Gaussian-
profile plane wave, Moharam et al. 18 applied a 2-D
coupled-wave analysis (CWA) to analyze the diffraction of
finite beams by planar VGs in the Bragg-diffraction re-
gime (i.e., only the transmitted beam and diffracted beam
were considered). The diffraction efficiencies and the pro-
files of the transmitted beam and the diffracted beam as
functions of the grating strength and the geometry pa-
rameter were presented. Notni and Kowarschik!® used
the same CWA to study the diffraction characteristics of
an absorption VG. Also, Boffi et al.? investigated the dis-
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tortions of the transmitted beam and the diffracted beam
both theoretically by use of the CWA and the beam propa-
gation method and experimentally by use of a LiNbO3 VG
read out by a 1550-nm Gaussian beam.

For the converging—diverging cylindrical Gaussian
beam incident on a grating, Chu and Tamir?"?? utilized
guided-wave analysis in conjunction with plane-wave de-
composition (PWD) to study the diffraction of Gaussian
beams by periodically modulated media for both on-Bragg
and off-Bragg incidences in the Bragg-diffraction regime.
The beam-splitting phenomenon inside the modulated re-
gion was presented. Benlarbi et al.?®** used both Raman—
Nath analysis and the 2-D CWA in conjunction with PWD
to investigate the case of Bragg diffraction of a Gaussian
beam by an unslanted VG. In addition, Kriezis et al.?® ap-
plied the method of moments with PWD to analyze the
diffraction of a converging—diverging cylindrical Gaussian
beam from a periodic planar screen of perfectly conduct-
ing strips. McNeill and Poon?® adopted the multiple-
plane-wave scattering theory (based on Fourier transform
theory and the plane-wave transfer function) to study the
effects of the beam width and the grating thickness on the
diffracted-beam distortion by an acoustic grating. In gen-
eral, the narrower the incident beam and the thicker the
grating, the more severe is the distortion of the diffracted
beam. However, this multiple-plane-wave scattering for-
malism was derived based on the Raman—Nath equation,
and therefore this method is restricted to the scalar dif-
fraction regime. Moreover, Skigin and Depine27 proposed
a multilayer modal analysis with PWD to analyze the
diffraction from SRGs with sinusoidal, triangular, and
rectangular profiles. Recently, Mata-Mendez and
Chavez-Rivas®® and Sumaya-Martines et al.?® applied
both Rayleigh—Sommerfeld theory and modal analysis in
conjunction with PWD to study the diffraction of a Gauss-
ian beam by a lamellar grating in both the scalar diffrac-
tion regime and the vectorial diffraction regime, respec-
tively.

In contrast to the cylindrical (2-D) Gaussian beam,
Siegman®® and Hamad and Wicksted®! applied the
Green’s function integral to solve the paraxial wave equa-
tion for studying the diffraction efficiencies of a crossed-
beam VG illuminated by a spherical (3-D) Gaussian
beam. The effects of the beam size and the incidence
angle on diffraction efficiencies were presented. Further-
more, Moharam et al.®? applied the CWA to investigate
the diffraction characteristics, including diffraction effi-
ciencies and diffracted-beam profile, as a function of grat-
ing strength for a crossed-beam VG with a spherical
Gaussian-beam incidence. Recently Wang33 proposed an
impulse-response technique in conjunction with the CWA
to study the propagation and diffraction of a spherical
Gaussian beam in a planar VG. The beam distortion could
be observed for a grating with a higher grating-thickness-
to-beam-width ratio. However, all 3-D Gaussian beams
treated in these analyses were assumed to be 3-D
Gaussian-profile plane waves, and all diffraction analyses
were restricted to the Bragg-diffraction regime. On the
other hand, Landry and Maldonado®* applied the 4 x4
matrix method in conjunction with PWD to investigate
the transmission and the reflection of a converging—
diverging spherical Gaussian beam from an anisotropic
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multilayer structure instead of from a periodic medium
(i.e., a grating).

Although a variety of numerical methods have been ap-
plied to analyze the diffraction of both cylindrical (2-D)
Gaussian beams and spherical (3-D) Gaussian beams by
gratings, they focused only on the classical diffraction ge-
ometry (i.e., the grating vector was restricted to lie in the
incident plane). To the authors’ knowledge, there is no pa-
per that treats the realistic situation of a grating illumi-
nated by a converging—diverging spherical Gaussian
beam at conical incidence. Therefore in this paper the 3-D
finite-beam (FB) RCWA derived from the conventional
3-D RCWA*!? in conjunction with PWD is applied to in-
vestigate the diffraction characteristics of a planar VG il-
luminated by a converging—diverging spherical Gaussian
beam at conical incidence. The Gaussian beam with any
incident angle, any azimuthal angle, and any linear po-
larization orientation is assumed to be focused on the in-
put surface of a planar VG. In Section 2 the numerical
method is briefly introduced. In Section 3 the numerical
results for diffraction efficiencies and beam profiles for
both unslanted VGs and slanted VGs (that are designed
for substrate-mode optical interconnects) are presented.
The two cases with linear polarizations of the central
beam of the Gaussian (E L K and H | K) are investigated.
Finally, the primary results are summarized in Section 4.

2. ANALYSIS METHOD

A. Configuration

The general configuration for 3-D diffraction by a planar
VG of thickness d is shown in Fig. 1. The VG consists of a
periodic variation in the optical frequency dielectric con-
stant with a period A and a slant angle ¢, throughout the
volume of the grating. The grating vector K is defined as
K=[K|(% sin ¢, +Z cos ¢,), where [K|=27/A and %, 2 are
the unit vectors along the x and z directions, respectively.
The optical frequency dielectric constant in the grating
region can be written as

\PE Plane of
Incidence

Plane Perpendicular to
Surface and Containing
Grating Vector

Plane Perpendicular to
Surface and Containing
Grating Surface Fringes

Plane Containing
Grating Surface
Fringe and
Wave Vector

Fig. 1. Geometry of a planar VG illuminated by a converging—
diverging spherical Gaussian beam with wave vector k at an ar-
bitrary incidence angle 6, at an arbitrary azimuthal angle ¢, and
with an arbitrary linear polarization (specified by the polariza-
tion angle Wg). The VG has period A, slant angle ¢,, and thick-
ness d. The refractive indices of the incident region, the grating,
and the substrate are nj, n,, and n,, respectively.
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e=50+2 e;cos(pK-r)+Ee;sin(pK-r), (1)
p=1 p=1

where 60=n§, is the average optical frequency dielectric

constant, €, and ¢, are the pth harmonics of the optical
frequency dielectric constant (all in the grating region),
and r is the position vector (r=xx+z2).

In addition, a converging—diverging spherical Gaussian
beam with any linear polarization orientation specified by
the polarization angle VW propagates along the z’ direc-
tion [in the beam-coordinate system (x’,y’,z’)] and is ob-
liquely incident at an arbitrary incidence angle 6 and at
an arbitrary azimuthal angle ¢ [in the VG coordinate sys-
tem (x,y,z)] from the incident region with refractive in-
dex n; upon a planar VG and then diffracts into the sub-
strate region with refractive index n, as a substrate-mode
optical interconnect. On the basis of the beam-coordinate
system (x’,y’,z’), the converging—diverging spherical
Gaussian beam (assumed to be focused on the input sur-
face of a planar VG) can be represented as

' wey |2 Wwoy 12 X! 2
EIHC= exp _
w, (2" wy(2") w,(2")
yr 2 1 er y72
+ exp) —j—k +
wy(2") 2 | Ru(2") (2"

Ry
1 z’ z'
X exp)j—| tan”!| — | + tan~!| —
2 Zoxr Zoyr

Xexp(—jkz')ée = Encg, (2)

where wg, is the beam radius at the beam waist (that is
located at z'=0) in the u' (u'=x' or u'=y’) direction, &
=kon=(2m/\g)n; is the wave number of the incident
beam, and )\ is the free-space wavelength. The beam ra-
dius w,:(z'), the radius of curvature of the phase front of
the beam R,,,, and the Rayleigh range z(, in the u’ direc-

tion are
2! 2 11/2
wur(Z,)=wOur 1+ — N (3)
Zou’

|: (zou,)2:|
R,(z')=2"| 1+ ; , (4)
z

Zou' = Woyr- (5)

In addition, é is the polarization unit vector of the central
beam given by

é=edX+ey +e,2=(cos Vg cos ¢ cos - sin Vg sin )%
+ (cos W sin ¢ cos 0+ sin Vg cos ¢)y + (cos Vg sin 6)Z.
(6)

The corresponding configuration of a converging—
diverging spherical Gaussian beam focused on the input
surface of a planar grating at an arbitrary incidence angle
and at zero azimuthal angle (¢#=0°) on the x—z plane is
shown in Fig. 2. The two cases with linear polarizations of
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Fig. 2. Configuration of a converging—diverging spherical
Gaussian beam at an arbitrary incidence angle # and at zero azi-
muthal angle ¢=0° on the x—z plane. w, is the beam radius of
the incident beam at the beam waist along the x’ direction. The
two cases with linear polarizations of the central beam of the
Gaussian of E | K and H | K corresponding to the polarization
angles V;=90° and V;=0°, respectively, are presented.

the central beam of the Gaussian of E 1K (i.e., the
electric-field vector is perpendicular to the x—z plane, and
thus V5;=90°) and H | K (i.e., the magnetic-field vector is
perpendicular to the x—z plane, and thus ¥5z=0°) investi-
gated in this paper are also presented.

B. Three-Dimensional Finite-Beam Rigorous Coupled-
Wave Analysis

The conventional 3-D RCWA1 is perhaps the most com-
mon method applied to analyze rigorously the 3-D conical
diffraction by a grating. However, this conventional 3-D
RCWA has an important assumption that the incident
beam is a plane wave. Therefore, for the rigorous analysis
of a converging—diverging spherical Gaussian beam inci-
dent upon a grating, a method referred to as the 3-D FB
RCWA is developed in this paper. The first step of 3-D FB
RCWA is to determine the plane-wave spectrum of the in-
cident beam by applying a 2-D discrete Fourier trans-
form. This step is also referred to as 2-D PWD. A discrete
transform is applied rather than an integral formalism
because the incident electric field is represented as a dis-
crete set of plane waves. Furthermore, the discrete trans-
form is much better suited for numerical implementation
on a digital computer. For each subbeam (i.e., each propa-
gating component of the plane-wave spectrum) specified
by an incident angle, an azimuthal angle, a polarization
angle, and a plane-wave spectrum coefficient, the conven-
tional 3-D RCWA provides the reflection vectors, the
transmission vectors, and diffraction efficiencies of the
various diffracted orders. Coherently combining the con-
ventional 3-D RCWA results for all subbeams can yield
the diffracted fields and diffraction efficiencies of the vari-
ous diffracted orders.

1. Two-Dimensional Plane-Wave Decomposition
Applying the 2-D discrete Fourier transform allows the
incident-field amplitude at z=0 (i.e., the interface be-
tween the grating and the incident region) to be expanded
in terms of its plane-wave spectrum as
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MJ2-1  M/2-1

DI

my=-M,/2 my=—My/2

EinC(x’y’Z =0)= F(kx,mxyky,my)

Xexp[_j(kx,mxx + ky,myy)]’ (7)

where M, is the number of sampling points over the in-
terval -L,/2<u<L,/2 and ky ,, =m,(27/L,) is the wave
vector component along the u (u=x or y) direction. As a
result, the z wave vector component for the (m,,m,) sub-
beam 1n the incident region can be written as %,,, ,

=(kgni—k2 ,, —k2 )Y2. In addition, the correspondﬁné
plane-wave spectrum coefficient F(k,, my» ky, m, ) for the
(m,,m,) subbeam can be determined by

M/2-1  Mj2-1

> 2 E™(x,,,y,,2=0)

MxMyn =-M,/2 ny =—M /2

X explj(ksm Xn + ky,m Yn); (8)

F(kx,mx’ky,m

where x,=n,L,/M, and y,=n,L,/M,. Therefore, for the
(my,m,) subbeam the 1nc1dence angle O, my and the azi-
muthal angle ¢, m, in the incident region ‘can be deter-
mined, respectlvely, by

kz,mx,my
0mx,my =cos™! . , (9)
ony
-1 ky’my
qﬁmx,my =tan p . (10)
x,m,

Since the incident Gaussian beam is assumed to be a
linearly polarized light, which can be realized by use of a
polarizer the polarization unit vector of each subbeam
em, my is located at the intersection of two planes. The first
plane is referred to as the plane of polarization and con-
sists of the polarization unit vector of the central beam é
and the wave vector of the incident beam k. The second
plane is the plane that is normal to the wave vector of the
(m,,m,) subbeam k,,_ my =kym Etkym V+k.m, mz (i.e.,
the constant-phase plane ofa spemﬁc stibbeam). Applylng
fundamental calculations in geometry, including both in-
ner product and cross product of two vectors, the polariza-
tion angle of the (m,,m,) subbeam, ¥y mm,» CAD be easily
derived as

(eTM X em my, ) k
\I}Em My = Cos 1(eTM em ,m (11)
v y |eTM X em m,, ||k|

where éry is the unit vector of Eqy (as shown in Fig. 1)
and émx,my is given by

(kX &) X ko,
b= (12)
Gh X &) X By
where k=k/|k| and /%mx,mfkmx /K|
2. Diffracted Fields and Diffraction Efficiencies
With the above procedure, the incident beam of a

converging—diverging spherical Gaussian beam has been
rewritten in terms of its plane-wave spectrum, each sub-
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beam of which is specified by an incident angle 6,, , , an
azimuthal angle ¢,, ,, , a polarization angle YE m m ,y and
a plane-wave spectrufvn coefficient F(k, ,, ,ky, m) but no
interaction with the grating has been considered. There-
fore, in order to model rigorously the interaction of a
converging—diverging spherical Gaussian beam with a
planar VG, the conventional 3-D RCWA%10 ig applied to
each subbeam. For each subbeam the conventional 3-D
RCWA solution provides both the reflection vector Rmx,m i
and the transmission vector T, s where the index 7 in-
dicates the ith diffracted order. AS a result, the reflected
electric field EE(x,y,z) in the incident region and the
transmitted electric field ET(x,y,z) in the substrate re-
gion can be respectively expressed as a coherent sum over
all subbeams and all diffracted orders as

MJ2-1  My2-1

Efxy,2) =2, > >

F(kx,mx’ky,my)Rm m,,i
i my=-M,/2 m,=-M,/2

00y

x+kym Ly+kzm o 2],

(13)

X exp[_.](kx m

ol

MJ/2-1  M/2-1

El(x,y,2)=>, > E F(kemokym )T, i

i mu=-M,/2 m,=-M/2

X exp{=Jjlkam_ i + Rym, R, i@ =},

(14)

where k., i =k, —L|K|sm ¢g and k,, i =k, . In addition,
y

the quantltles of kz Mg, i and kz g, i CALL be respectively

represented as

R
z,m,, my,L
2 2 1/2 .
- (koni - k3 myi = Rym )" for propagation
waves
= 2 2\1/2
+J (kx mei T k - kony) for evanescent
waves
(15)
T
z mx my i

+ (kan? - kf i~ k§ . ,1)1/ % for propagation

waves

2 2\1/2
- j(kZ m i TRy, myi = kin?Y? for evanescent .
waves

(16)

Furthermore, applying the Poynting theory and neglect-
ing the interference between various diffracted orders of
two different subbeams of the incident beam, the diffrac-
tion efficiency for the ith diffracted order can be easily de-
rived as
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[

i

DE! = —
PlnC

> > [Fkyp ky I Re(k,, ,, )DE. . .
e 7y 7y 7y

m, m

2 2 F sy m )P Re®L )

m, m

Y

’

y

(=R, 1), (17)

where P¢ is the power of the incident beam, Pﬁ is the
power of the ith diffracted order (/=R for backward and
[=T for forward), DEfn m.,; 1s the diffraction efficiency of
the ith backward-diffracted ({=R) order or the ith
forward-diffracted ({=T) order for the (m,,m,) subbeam
(that is determined by the conventional 3-D RCWA), and

Re() denotes the real part of a complex number.

3. RESULTS

For all the cases that are investigated in this paper, a lin-
early polarized converging—diverging spherical Gaussian
beam with beam radius wg, =wg, =2 um (at the beam
waist) for both the central-beam E 1 K polarization case
and the central-beam H | K polarization case focused on
the VG (Fig. 2) is considered. The free-space wavelength
of the incident beam is assumed to be (=850 nm (e.g., a
GaAs laser). Moreover, for all calculations in this paper,
the Gaussian beam is decomposed into 14,400 (i.e., M,
=M,=120) propagating plane waves by use of 2-D PWD
(as described in Subsection 2.B.1). On the other hand, the
VG analyzed in this paper comprises an incident region of
air with refractive index n;=1.0 and a substrate with re-
fractive index n,=1.55 (e.g., benzocyclobutane, BCB). The
grating material is a photopolymer with average dielec-
tric constant €=2.25 (ny,=1.5) (e.g.,, DuPont’s Omni-
Dex613 photopolymer). In addition, the grating thickness
is assumed to be d=10 um. Both an unslanted VG and a
slanted VG are investigated in this paper. It is noted that
the slanted VG analyzed in this paper is designed for a
substrate-mode optical interconnect, as the incident beam
is normally incident on the VG.

A. Unslanted Volume Gratings

For the case of an unslanted VG, the grating period is se-
lected as the same as the free-space wavelength A=)
=850 nm, and the slant angle is ¢,=90°. To satisfy the
first-order Bragg condition of the central subbeam of the
incident beam, the incident angle and the azimuthal
angle are designed as #=30° and ¢=0°, respectively.

1. E L K Polarization

Figure 3 shows the diffraction efficiencies of the —1st
forward-diffracted order, DETI, for the converging—
diverging spherical Gaussian beam and its corresponding
five major subbeams (including the central subbeam, the
+k,/e subbeams, and the +k,/e subbeams) as a function of
the refractive-index modulation, An;. The definitions of
the central subbeam, the +k,/e subbeams, and the +k,/e
subbeams of a converging—diverging spherical Gaussian
beam can be found in Appendix A. As shown is in Fig. 3(a),
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the period of the variation of DET1 with respect to An; is
Anf=0.08, which is close to the value determined by
Kogelnik’s analysis®:

NoVCrCs

=, 18)
d(fg-8g) (

p
Anf

where Cpr=cos O, Cg=c08 bing+(No/ng)cos ¢g/ A,  Oing
=19.47° is the incident angle inside the grating, and
rg-Sg=cos 90° =1 is the inner product of two unit polar-
ization vectors of the Oth and the —1st forward-diffracted
fields, respectively.

Comparing the diffraction efficiency of the converging—
diverging spherical Gaussian beam [Fig. 3(a)] to that of
the central subbeam corresponding to the response of a
plane-wave incidence [solid curve in Fig. 3(b)], the diffrac-
tion efficiency of the Gaussian beam increases and ap-
proaches the central-beam result. For example, for An,
=0.02, the diffraction efficiencies are DE’,=0.2802 and
DET1=O.4642 for the Gaussian beam and its correspond-
ing central beam, respectively. However, for a sufficiently
large refractive-index modulation, such as An;=0.12, the
diffraction efficiency of the converging—diverging spheri-
cal Gaussian beam is DET1=0.7814, approaching to that

0.8
0.6
0.4

0.2

Diffraction Efficiency of the -1st
Forward-Diffracted Order, DE ",

0.0 : - : ‘
000 004 008 012 0.6

Refractive-Index Modulation, An,

Central Subbeam
--  +k,/e Subbeam
-- -k /e Subbeam

Diffraction Efficiency of the -1st
Forward-Diffracted Order, DE T,

0.00 0.04 0.08 0.12 0.16
Refractive-Index Modulation, An,

Fig. 3. Diffraction efficiencies of the —1st forward-diffracted or-
der of an unslanted VG for (a) a converging—diverging spherical
Gaussian beam and (b) its corresponding five major subbeams as
a function of the refractive-index modulation for the central-
beam E | K polarization case.
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Fig. 4. (a) 3-D beam profile at z=10 um and (b) its correspond-
ing angular spectrum of the —1st forward-diffracted order of an
unslanted VG for the central-beam E | K polarization case with
grating An;=0.02.

of the central beam (DET1=O.9112). This characteristic of
the effect of An; on the diffraction efficiency of a
converging—diverging spherical Gaussian is in agreement
with that of a 2-D Gaussian-profile plane wave.'® In addi-
tion, as is shown in Fig. 3(b), for small refractive-index
modulations (An;=<0.03) the diffraction efficiencies for
both +k,/e subbeams are much smaller than those of the
central subbeam (satisfied Bragg condition), because
these two subbeams move away from the Bragg condition,
and therefore result in small diffraction efficiencies. How-
ever, as the refractive-index modulation increases, the dif-
fraction efficiencies of both +%,/e subbeams increase and
become comparable with those of the central subbeam. In
contrast to the +£,/e subbeams, the diffraction efficiencies
of both +k,/e subbeams are close to satisfying the Bragg
condition. It is also noted that the diffraction efficiencies
of the +k,/e subbeam and the -%,/e subbeam are identi-
cal. This result is expected, since these two subbeam/
grating configurations are equivalent.

Figure 4 shows the 3-D beam profile at z=10 um (i.e.,
the interface between the VG and the substrate) and its
corresponding angular spectrum of the —1st forward-
diffracted order for the central-beam E | K polarization
case as the refractive-index modulation is An;=0.02
(based on DuPont’s OmniDex613 photopolymer).?¢°" As is
shown in Fig. 4(a), the beam profile of the —1st forward-
diffracted order is no longer Gaussian; i.e., the
converging—diverging spherical Gaussian beam is dis-
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torted by the VG. On the other hand, as is shown in Fig.
4(b), the angular spectrum of the —1st forward-diffracted
order is centered at the components of the normalized
wave vector of k,_1/kon;=0.323 and k,_;/kons=0. In
other words, the diffracted angle of the —1st propagating
order in the substrate is 67,=18.82° (measured from +z
axis in a counterclockwise direction) on the x—z plane,
which is equal to the value determined by the simple
grating equation. Furthermore, the corresponding diffrac-
tion efficiency is 28.02%. It is also worth mentioning that
the subbeams with k£, ;=0 and the subbeams with &, _;
# 0 of the —1st forward-diffracted beam are linearly polar-
ized and elliptically polarized, respectively.

2. H 1 K Polarization

For the central-beam H 1 K polarization case, the diffrac-
tion efficiencies DET1 for the converging—diverging
spherical Gaussian beam and its corresponding five major
subbeams as a function of An; are presented in Fig. 5. As
is shown in Fig. 5(a), the period of the variation of DET1
with respect to An; is An{=0.10, which is close the value
determined by Kogelnik’s analysis [estimated by Eq. (18)
for 6,,,=19.47° and 7g-Sg=cos 37.64°=0.792]. Similar to
the central-beam E | K polarization case [Fig. 3(a)], the
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Fig. 5. Diffraction efficiencies of the —1st forward-diffracted or-
der of an unslanted VG for (a) a converging—diverging spherical
Gaussian beam and (b) its corresponding five major subbeams as
a function of the refractive-index modulation for central-beam
H 1 K polarization case.
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Fig. 6. (a) 3-D beam profile at z=10 um and (b) its correspond-
ing angular spectrum of the —1th forward-diffracted order of an
unslanted VG for the central-beam H 1 K polarization case with
grating An;=0.02.

diffraction efficiency of the central-beam H 1| K polariza-
tion case [Fig. 5(a)]l increases as the refractive-index
modulation increases and approaches the central-beam
result [solid curve in Fig. 5(b)]. Furthermore, the diffrac-
tion characteristics of the five major subbeams for the
central-beam H | K polarization case [Fig. 5(b)] are simi-
lar to those of the central-beam E 1 K polarization case
[Fig. 3(b)]. For small values of An;, the diffraction effi-
ciencies for both +k,/e subbeams are much smaller than
those of the central subbeam. However, the diffraction ef-
ficiencies of both +k,/e subbeams are identical to each
other and are close to those of the central subbeam.

The 3-D beam profile at z=10 um and its corresponding
angular spectrum of the —1st forward-diffracted order for
the central-beam H L K polarization case with grating
An;=0.02 are summarized in Fig. 6. Similar to the
central-beam E | K polarization case, the beam profile of
the —1st forward-diffracted order is also not a Gaussian
profile [Fig. 6(a)l, and its angular spectrum is also cen-
tered at k, _1/kon;=0.323 and &, _1/kon =0 [Fig. 6(b)]. In
addition, the subbeams of the -1st forward-diffracted
beam are linearly polarized and elliptically polarized as
k,_1=0 and &, _; #0, respectively. For An;=0.02, the cor-
responding diffraction efficiency of the central-beam
H L K polarization case is 19.23%, which is smaller than
that of the central-beam E | K polarization case that is in
agreement with the expectation of Kogelnik’s analysis.35
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B. Slanted Volume Gratings

For the case of a slanted VG, the grating period and the
slant angle are designed to provide a 45° [i.e., 0T1=45°
(with respect to the +z axis in a counterclockwise direc-
tion)] forward-diffraction angle of the —1st propagating
order to achieve multiple total internal reflections within
the substrate for a substrate-mode optical interconnect as
the incident beam is normally incident on the VG (i.e., 6
=¢=0°). Therefore, based on the first-order Bragg condi-
tion, the grating period and the slant angle of this slanted
VG are A=711.37 nm and ¢,=113.47°, respectively.

1. E LK Polarization

Figure 7 shows the diffraction efficiencies DET1 for the
converging—diverging spherical Gaussian beam and its
corresponding five major subbeams as a function of An;.
As is shown in Fig. 7(a), the period of DE”, is An£=0.07,
which is close to the value estimated by Eq. (18) for 6,
=0° and 7g-$g=1. Comparing Figs. 3 and 7, the diffrac-
tion characteristics of a slanted VG resemble those of an
unslanted VG for the central-beam E | K polarization
case. The diffraction efficiency of the central-beam E 1 K
polarization case for a slanted VG increases as the
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Fig. 7. Diffraction efficiencies of the —1st forward-diffracted or-
der of a slanted VG designed to support a substrate-mode optical
interconnect for (a) a converging—diverging spherical Gaussian
beam and (b) its corresponding five major subbeams as a function
of the refractive-index modulation for the central-beam E 1 K po-
larization case.
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Fig. 8. (a) 3-D beam profile at z=10 um and (b) its correspond-
ing angular spectrum of the —1st forward-diffracted order of a
slanted VG designed to support a substrate-mode optical inter-
connect for the central-beam E | K polarization case with grat-
ing An,=0.02.

refractive-index modulation increases [Fig. 7(a)] and ap-
proaches the central-beam result [solid curve in Fig. 7(b)].
Furthermore, as is shown in Fig. 7(b), the diffraction effi-
ciencies for both +k,/e subbeams are much smaller than
those of the central subbeam for small values of Anq, and
the diffraction efficiencies of both *k,/e subbeams are
identical to each other and are close to those of the central
subbeam.

Furthermore, Fig. 8 shows the 3-D beam profile at z
=10 um and its corresponding angular spectrum of the
—1st forward-diffracted order for the central-beam E 1 K
polarization case with grating An;=0.02. Similar to an
unslanted VG [Fig. 4(a)], the spherical Gaussian beam is
also distorted by a slanted VG [Fig. 8(a)l. On the other
hand, as is shown in Fig. 8(b), the angular spectrum of
the -1st forward-diffracted order is centered at
k. _1/kons=0.707 and k, _;/kon,=0. That is, the diffracted
angle of the —1st forward-diffracted order is 67,=45° on
the x—z plane, which satisfies the design of 45° forward-
diffraction angle to achieve the substrate-mode optical in-
terconnect. The subbeams of the —1st forward-diffracted
beam are linearly polarized and elliptically polarized for
k,_1=0 and k,_;#0, respectively, outcomes which are
consistent with the unslanted VG results. Also, the corre-
sponding coupling efficiency of the substrate-mode optical
interconnect is 22.87% for the central-beam E | K polar-
ization case. As is shown in Fig. 7(a), a higher coupling
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efficiency for the central-beam E LK polarization case
can be obtained by increasing the refractive-index modu-
lation. For example, for An;=0.1 the coupling efficiency
can achieve 62.99% for a converging—diverging spherical
Gaussian beam with a beam radius of wg, =wg, =2 um
(i.e., with a beam diameter of 4 um). However, in many
practical applications the beam diameter of a spherical
Gaussian beam might be ~10 um, and therefore the cor-
responding coupling efficiency of the central-beam E L K
polarization case for this substrate-mode optical intercon-
nect can be up to 86.62% for An,=0.1.

2. H 1 K Polarization

Similarly, the diffraction characteristics of a substrate-
mode optical interconnect for the central-beam H 1 K po-
larization case with respect to An; are presented in Fig. 9.
As is shown in Fig. 9(a), the value of Anf is 0.10 [close to
the value estimated by Eq. (18) with 6,,,=0° and 7g-Sg
=co0s 45°=0.707], and the diffraction efficiency increases
as An; increases and approaches the central-beam result,
which is consistent with both unslanted (Figs. 3 and 5)
and slanted VGs (Fig. 7). Based on An;=0.02 (i.e., Du-
Pont’s OmniDex613 photopolymer), the 3-D beam profile
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Fig. 9. Diffraction efficiencies of the —1st forward-diffracted or-
der of a slanted VG designed to support a substrate-mode optical
interconnect for (a) a converging—diverging spherical Gaussian
beam and (b) its corresponding five major subbeams as a function
of the refractive-index modulation for the central-beam H 1 K po-
larization case.
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Fig. 10. (a) 3-D beam profile at z=10 um and (b) its correspond-
ing angular spectrum of the —1st forward-diffracted order of a
slanted VG designed to support a substrate-mode optical inter-
connect for the central-beam H 1 K polarization case with grat-
ing An,=0.02.

at z=10 um and its corresponding angular spectrum of
the —1st forward-diffracted order for the central-beam
H | K polarization case are presented in Fig. 10. As is
shown in Fig. 10, the beam profile of the —1st forward-
diffracted order is no longer Gaussian; its angular spec-
trum is centered at k,_,/kon,=0.707 and k, _;/kon,=0
(i.e., the corresponding diffracted angle is 0T1=45°), and
its corresponding subbeams are linearly polarized and el-
liptically polarized for £, ;=0 and &, _; # 0, respectively.
The coupling efficiency of this substrate-mode optical in-
terconnect for the central-beam H | K polarization case is
12.45%, which is smaller than that of the central-beam
E L K polarization case (22.87%), which is in agreement
with Kogelnik’s analysis.?® Similar to the central-beam
E L K polarization case, the coupling efficiency for the
central-beam H 1 K polarization case can also increase to
a higher coupling efficiency of 63.28% as the refractive-
index modulation increases to An;=0.15. Furthermore,
for a spherical Gaussian beam with a beam diameter of
10 um, the coupling efficiency of the H 1L K polarization
case can reach 89.06% for An,=0.15.

4. SUMMARY AND DISCUSSION

A three-dimensional (3-D) finite-beam (FB) rigorous
coupled-wave analysis (RCWA) based on the conventional
3-D RCWA in conjunction with a two-dimensional (2-D)
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plane-wave decomposition (PWD) is presented to analyze
rigorously the 3-D converging—diverging spherical Gauss-
ian beam diffraction by a volume grating (VG). The dif-
fraction characteristics, including the diffraction efficien-
cies and the diffracted-beam profiles for both unslanted
VGs and slanted VGs, which are designed for substrate-
mode optical interconnects, and for two linear polariza-
tions of the central portion of the Gaussian beam for
E L K and H 1L K, are investigated. In general, the diffrac-
tion efficiencies of converging—diverging spherical Gauss-
ian beams in both the central-beam E | K polarization
case and the central-beam H 1| K polarization case dif-
fracted by both unslanted and slanted VGs increase and
approach the central-beam results as the refractive-index
modulation increases. The period of the variation of the
diffraction efficiency with respect to the refractive-index
modulation of a converging—diverging spherical Gaussian
beam is close to the value estimated by Kogelnik’s analy-
sis. In addition, according to the numerical results of dif-
fraction efficiencies for five major subbeams, including
the central subbeam, the +k,/e subbeams, and the +k,/e
subbeams, the diffraction efficiencies of both +%,/e subbe-
ams are much smaller than those of the central subbeam
for the small refractive-index modulation (An;=<0.03).
However, as the refractive-index modulation increases,
the diffraction efficiencies of both +k,/e subbeams in-
crease and become comparable with those of the central
subbeam. On the other hand, the diffraction efficiencies of
both +k,/e subbeams are identical to each other and are
close to those of the central subbeam. In general, the
diffracted-beam profiles are shown to be no longer Gauss-
ian; i.e., the diffracted beams are distorted by the VGs.
Furthermore, the subbeams of the -1st forward-
diffracted beams are linearly polarized and elliptically po-
larized as k, ;=0 and &, _; # 0, respectively.

For the application of a substrate-mode optical inter-
connect realized by a slanted VG, the coupling efficiency
for central-beam E | K polarization case increases from
22.85% to 62.99% as the refractive-index modulation in-
creases from An;=0.02 to An;=0.1 for a beam diameter of
4 pm. On the other hand, for the central-beam H | K po-
larization case, the coupling efficiency of the substrate-
mode optical interconnect increases from 12.45% to
63.28% as the refractive-index modulation increases from
An;=0.02 to An;=0.15 for a beam diameter of 4 um. How-
ever, for the practical case of a beam diameter of 10 um,
the coupling efficiency for both the central-beam E L K
polarization case and the central-beam H | K polarization
case are 86.62% for An,=0.1 and 89.06% for An;=0.15, re-
spectively. Finally, it is worth mentioning that, although
the analysis of conical diffraction for VGs in this paper
only emphasized a 3-D converging—diverging spherical
Gaussian beam [i.e., wo,/(2'=0)=wq,/(2'=0), defined in
Eq. (3)], it can be extended to a general 3-D converging—
diverging elliptical Gaussian beam of TEM,, mode [i.e.,
Wy (2" =0) #wy, (2" =0), defined in Eq. (3)] as well as of
higher orders with appropriate changes in the amplitudes
and phase factors. Furthermore, the present method of
3-D FB RCWA can be used for the diffraction analysis of a
surface-relief grating illuminated by a finite incident
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beam (such as a general 3-D converging—diverging ellip-
tical Gaussian beam) at an arbitrary incidence angle, at
an arbitrary azimuthal angle, and with any linear polar-
ization.

APPENDIX A: DEFINITIONS OF THE
CENTRAL SUBBEAM, THE =+k,/e
SUBBEAMS, AND THE +k,/e SUBBEAMS

To define the central subbeam, the +%,/e subbeams, and
the +k,/e subbeams, a normally incident beam focused on
a VG is considered, and therefore the beam-coordinate
system (x’,y’,z’) is identical to the VG coordinate system
(x,y,2) (Fig. 1). According to Egs. (2)—(5), the amplitude of
the incident filed at z=0 (i.e., the interface between the
grating and the incident region) can be expressed as

x \2 y \2
E™ = expy — (—) +(—> , (A1)
Wox wa

where w, and wg, are the beam radii of the incident
beam at the beam waist along the x and the y directions,
respectively. By application of the 2-D discrete Fourier
transform, the angular spectrum of Eq. (Al) is analytic
and is given by

2 2
inc waw0y Wox wa
F"(k, k) = yym exp —[( p kx) +<—2 ky) } ,

(A2)

where k, and k, are the components of a wave vector
along the x and y directions, respectively, for a specific
subbeam. As a result, the corresponding z wave vector
component is k2=(k%n?—ki—k32,)1/2. As shown in Eq. (A2),
the maximum value of the angular spectrum occurs at
k=0 and k,=0, which corresponds to the central sub-
beam. On the other hand, for the subbeams of £,=0, the
angular spectrum falls to 1/e of its amplitude value of the
central beam at k,=2/w,, and k,=-2/w,, which are de-
fined as the +k,/e subbeam and the -k,/e subbeam, re-
spectively. Similarly, the +k,/e subbeam and the -%,/e
subbeam correspond to k,=2/w,, and k,=-2/w,, respec-
tively, as £,=0. In summary, the wave vectors of the five
major subbeams of a normally incident Gaussian beam
can be represented for the central subbeam as

k=Fkonsz, (A3)
for the +k,/e subbeam as
9 i 9 \2]12
k=+—3%+ k%,n%-<—) 2, (A4)
Woy L Wy i
and for the +k,/e subbeams as
9 i 9 \2712
k=+x—3+ k%n?—(—) z. (A5)
wa B wa

Furthermore, for a general case of an obliquely incident
Gaussian beam at an arbitrary incidence angle # and at
an arbitrary azimuthal angle ¢ (Fig. 1), the corresponding
wave vectors, k' of the five major subbeams of an ob-
liquely incident Gaussian beam can be calculated based
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on those of a normally incident Gaussian beam according
to

K =RRk, (46)
where
cosf 0 sinf
R,=| 0 1 0 [ (A7)
—-sinf 0 cos @
cos¢ sing 0
ﬁ¢= —-sing¢g cos¢ O], (A8)
0 0o 1
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