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Three-dimensional converging–diverging Gaussian
beam diffraction by a volume grating
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The diffraction characteristics of a volume grating (VG) illuminated by a three-dimensional (3-D) converging–
diverging Gaussian beam at conical incidence are investigated by applying 3-D finite-beam (FB) rigorous
coupled-wave analysis (RCWA) based on the conventional 3-D RCWA in conjunction with two-dimensional
plane-wave decomposition. The Gaussian beam is assumed to have an arbitrary incidence angle, an arbitrary
azimuthal angle, and any linear polarization. The two cases with linear polarizations of the central beam of the
Gaussian (E'K and H'K) are investigated. The diffraction efficiencies and the diffracted beam profiles for
both unslanted VGs and slanted VGs (designed for substrate-mode optical interconnects) are presented. In
general, the diffraction efficiencies of a converging–diverging spherical Gaussian beam diffracted by both un-
slanted VGs and slanted VGs increase and approach the central-beam results as the refractive-index modula-
tion increases. © 2005 Optical Society of America
OCIS codes: 050.0050, 050.1950, 050.1960, 050.7330, 260.2110.
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. INTRODUCTION
n recent years optical interconnects have been consid-
red a promising technology capable of supporting the in-
erconnection requirements of future gigascale integra-
ion systems. For the implementation of optical
nterconnects, diffractive optics is a particularly promis-
ng technology. For example, diffractive optical elements,
uch as volume gratings (VGs) and surface-relief gratings
SRGs), can be used to couple an optical signal into (or out
f) a substrate as a substrate-mode optical interconnect1,2

nd into (or out of) a waveguide as a guided-wave optical
nterconnect.3–7 However, for practical applications the
ncident beam emitted by a single-mode optical fiber or a
ingle-mode laser closely approximates a three-
imensional (3-D) converging–diverging spherical Gauss-
an beam. In addition, the incident wave vector may not
ie in the plane perpendicular to the grating surface that
ontains the grating vector, and therefore it gives rise to
-D conical diffraction.
To analyze 3-D conical diffraction, Chuang and Kong8

rst applied the integral method by using a Green’s func-
ion approach to analyze a SRG with a small groove depth
f 0.3 of the grating period. Moharam and co-workers9,10

roposed a 3-D rigorous coupled-wave analysis (RCWA) to
tudy the diffraction efficiencies of a planar VG with re-
pect to the grating thickness and the incident angle and
he diffraction efficiencies of a binary grating with respect
o the normalized groove depth. Popov and Mashev11 ap-
lied a rigorous differential method to investigate the
onical diffraction of both a nonperfectly conducting SRG
nd a dielectric SRG. Gupta12 utilized the Rayleigh
ethod to study the characteristics of surface-plasmon

xcitation on an Ag SRG in conical diffraction with re-
pect to the grating thickness and the azimuthal angle.
epine13 and Gigli and Depine14 applied both the confor-
al mapping method and the Rayleigh method to inves-
1084-7529/05/071293-11/$15.00 © 2
igate the diffraction characteristics for a finitely conduct-
ng SRG and for a corrugated interface between an
sotropic medium and a uniaxial crystal in a conical ge-
metry, respectively. Furthermore, Abe and Koshiba15 ap-
lied a differential method to investigate the effects of
ormalized groove depth, free-space wavelength, incident
ngle, and azimuthal angle on the diffraction efficiencies
f 3-D conical diffraction by a SRG. Cornet et al.16 applied
similar differential method to analyze 3-D conical dif-

raction of a plane wave by an inclined parallel-plate grat-
ng for a variety of incident angles and azimuthal angles.

ore recently, Ohki et al.17 applied the transition-matrix
ethod to analyze electromagnetic wave diffraction from
sinusoidal SRG for arbitrary angles of incidence and po-

arization. However, in all of these analyses, the incident
eam was assumed to be a plane wave.
On the other hand, for the incidence of a Gaussian

eam, depending on the two-dimensional (2-D) (cylindri-
al) or 3-D (spherical) profile and the phase curvature of
n incident beam, the Gaussian beam can be classified
nto four categories: the 2-D Gaussian-profile plane wave
neglecting the phase curvature of the beam), the
onverging–diverging cylindrical Gaussian beam, the 3-D
aussian-profile plane wave, and the converging–
iverging spherical Gaussian beam. For the diffraction
nalysis of a grating illuminated by a 2-D Gaussian-
rofile plane wave, Moharam et al.18 applied a 2-D
oupled-wave analysis (CWA) to analyze the diffraction of
nite beams by planar VGs in the Bragg-diffraction re-
ime (i.e., only the transmitted beam and diffracted beam
ere considered). The diffraction efficiencies and the pro-
les of the transmitted beam and the diffracted beam as

unctions of the grating strength and the geometry pa-
ameter were presented. Notni and Kowarschik19 used
he same CWA to study the diffraction characteristics of
n absorption VG. Also, Boffi et al.20 investigated the dis-
005 Optical Society of America
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ortions of the transmitted beam and the diffracted beam
oth theoretically by use of the CWA and the beam propa-
ation method and experimentally by use of a LiNbO3 VG
ead out by a 1550-nm Gaussian beam.

For the converging–diverging cylindrical Gaussian
eam incident on a grating, Chu and Tamir21,22 utilized
uided-wave analysis in conjunction with plane-wave de-
omposition (PWD) to study the diffraction of Gaussian
eams by periodically modulated media for both on-Bragg
nd off-Bragg incidences in the Bragg-diffraction regime.
he beam-splitting phenomenon inside the modulated re-
ion was presented. Benlarbi et al.23,24 used both Raman–
ath analysis and the 2-D CWA in conjunction with PWD

o investigate the case of Bragg diffraction of a Gaussian
eam by an unslanted VG. In addition, Kriezis et al.25 ap-
lied the method of moments with PWD to analyze the
iffraction of a converging–diverging cylindrical Gaussian
eam from a periodic planar screen of perfectly conduct-
ng strips. McNeill and Poon26 adopted the multiple-
lane-wave scattering theory (based on Fourier transform
heory and the plane-wave transfer function) to study the
ffects of the beam width and the grating thickness on the
iffracted-beam distortion by an acoustic grating. In gen-
ral, the narrower the incident beam and the thicker the
rating, the more severe is the distortion of the diffracted
eam. However, this multiple-plane-wave scattering for-
alism was derived based on the Raman–Nath equation,

nd therefore this method is restricted to the scalar dif-
raction regime. Moreover, Skigin and Depine27 proposed

multilayer modal analysis with PWD to analyze the
iffraction from SRGs with sinusoidal, triangular, and
ectangular profiles. Recently, Mata-Mendez and
havez-Rivas28 and Sumaya-Martines et al.29 applied
oth Rayleigh–Sommerfeld theory and modal analysis in
onjunction with PWD to study the diffraction of a Gauss-
an beam by a lamellar grating in both the scalar diffrac-
ion regime and the vectorial diffraction regime, respec-
ively.

In contrast to the cylindrical (2-D) Gaussian beam,
iegman30 and Hamad and Wicksted31 applied the
reen’s function integral to solve the paraxial wave equa-

ion for studying the diffraction efficiencies of a crossed-
eam VG illuminated by a spherical (3-D) Gaussian
eam. The effects of the beam size and the incidence
ngle on diffraction efficiencies were presented. Further-
ore, Moharam et al.32 applied the CWA to investigate

he diffraction characteristics, including diffraction effi-
iencies and diffracted-beam profile, as a function of grat-
ng strength for a crossed-beam VG with a spherical
aussian-beam incidence. Recently Wang33 proposed an

mpulse-response technique in conjunction with the CWA
o study the propagation and diffraction of a spherical
aussian beam in a planar VG. The beam distortion could
e observed for a grating with a higher grating-thickness-
o-beam-width ratio. However, all 3-D Gaussian beams
reated in these analyses were assumed to be 3-D
aussian-profile plane waves, and all diffraction analyses
ere restricted to the Bragg-diffraction regime. On the

ther hand, Landry and Maldonado34 applied the 434
atrix method in conjunction with PWD to investigate

he transmission and the reflection of a converging–
iverging spherical Gaussian beam from an anisotropic
ultilayer structure instead of from a periodic medium
i.e., a grating).

Although a variety of numerical methods have been ap-
lied to analyze the diffraction of both cylindrical (2-D)
aussian beams and spherical (3-D) Gaussian beams by
ratings, they focused only on the classical diffraction ge-
metry (i.e., the grating vector was restricted to lie in the
ncident plane). To the authors’ knowledge, there is no pa-
er that treats the realistic situation of a grating illumi-
ated by a converging–diverging spherical Gaussian
eam at conical incidence. Therefore in this paper the 3-D
nite-beam (FB) RCWA derived from the conventional
-D RCWA9,10 in conjunction with PWD is applied to in-
estigate the diffraction characteristics of a planar VG il-
uminated by a converging–diverging spherical Gaussian
eam at conical incidence. The Gaussian beam with any
ncident angle, any azimuthal angle, and any linear po-
arization orientation is assumed to be focused on the in-
ut surface of a planar VG. In Section 2 the numerical
ethod is briefly introduced. In Section 3 the numerical

esults for diffraction efficiencies and beam profiles for
oth unslanted VGs and slanted VGs (that are designed
or substrate-mode optical interconnects) are presented.
he two cases with linear polarizations of the central
eam of the Gaussian (E'K and H'K) are investigated.
inally, the primary results are summarized in Section 4.

. ANALYSIS METHOD
. Configuration
he general configuration for 3-D diffraction by a planar
G of thickness d is shown in Fig. 1. The VG consists of a
eriodic variation in the optical frequency dielectric con-
tant with a period L and a slant angle fg throughout the
olume of the grating. The grating vector K is defined as
= uKusx̂ sin fg+ ẑ cos fgd, where uKu=2p /L and x̂, ẑ are

he unit vectors along the x and z directions, respectively.
he optical frequency dielectric constant in the grating
egion can be written as

ig. 1. Geometry of a planar VG illuminated by a converging–
iverging spherical Gaussian beam with wave vector k at an ar-
itrary incidence angle u, at an arbitrary azimuthal angle f, and
ith an arbitrary linear polarization (specified by the polariza-

ion angle CE). The VG has period L, slant angle fg, and thick-
ess d. The refractive indices of the incident region, the grating,
nd the substrate are n , n , and n , respectively.
I g s
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e = e0 + o
p=1

`

ep
c cosspK · rd + o

p=1

`

ep
s sinspK · rd, s1d

here e0=ng
2 is the average optical frequency dielectric

onstant, ep
c and ep

s are the pth harmonics of the optical
requency dielectric constant (all in the grating region),
nd r is the position vector sr=xx̂+zẑd.
In addition, a converging–diverging spherical Gaussian

eam with any linear polarization orientation specified by
he polarization angle CE propagates along the z8 direc-
ion [in the beam-coordinate system sx8 ,y8 ,z8d] and is ob-
iquely incident at an arbitrary incidence angle u and at
n arbitrary azimuthal angle f [in the VG coordinate sys-
em sx ,y ,zd] from the incident region with refractive in-
ex nI upon a planar VG and then diffracts into the sub-
trate region with refractive index ns as a substrate-mode
ptical interconnect. On the basis of the beam-coordinate
ystem sx8 ,y8 ,z8d, the converging–diverging spherical
aussian beam (assumed to be focused on the input sur-

ace of a planar VG) can be represented as

Einc = F w0x8

wx8sz8d
G1/2F w0y8

wy8sz8d
G1/2

expH− FS x8

wx8sz8d
D2

+ S y8

wy8sz8d
D2GJexpH− j

1

2
kF x82

Rx8sz8d
+

y82

Ry8sz8d
GJ

3 expHj
1

2
Ftan−1S z8

z0x8
D + tan−1S z8

z0y8
DGJ

3exps− jkz8dê = Eincê, s2d

here w0u8 is the beam radius at the beam waist (that is
ocated at z8=0) in the u8 (u8=x8 or u8=y8) direction, k
k0nI= s2p /l0dnI is the wave number of the incident
eam, and l0 is the free-space wavelength. The beam ra-
ius wu8sz8d, the radius of curvature of the phase front of
he beam Ru8, and the Rayleigh range z0u8 in the u8 direc-
ion are

wu8sz8d = w0u8F1 + S z8

z0u8
D2G1/2

, s3d

Ru8sz8d = z8F1 + S z0u8

z8
D2G , s4d

z0u8 =
pnI

l0
w0u8

2 . s5d

n addition, ê is the polarization unit vector of the central
eam given by

ê = exx̂ + eyŷ + ezẑ = scos CE cos f cos u − sin CE sin fdx̂

+ scos CE sin f cos u + sin CE cos fdŷ + scos CE sin udẑ.

s6d

he corresponding configuration of a converging–
iverging spherical Gaussian beam focused on the input
urface of a planar grating at an arbitrary incidence angle
nd at zero azimuthal angle sf=0° d on the x–z plane is
hown in Fig. 2. The two cases with linear polarizations of
he central beam of the Gaussian of E'K (i.e., the
lectric-field vector is perpendicular to the x–z plane, and
hus CE=90°) and H'K (i.e., the magnetic-field vector is
erpendicular to the x–z plane, and thus CE=0°) investi-
ated in this paper are also presented.

. Three-Dimensional Finite-Beam Rigorous Coupled-
ave Analysis

he conventional 3-D RCWA9,10 is perhaps the most com-
on method applied to analyze rigorously the 3-D conical

iffraction by a grating. However, this conventional 3-D
CWA has an important assumption that the incident
eam is a plane wave. Therefore, for the rigorous analysis
f a converging–diverging spherical Gaussian beam inci-
ent upon a grating, a method referred to as the 3-D FB
CWA is developed in this paper. The first step of 3-D FB
CWA is to determine the plane-wave spectrum of the in-
ident beam by applying a 2-D discrete Fourier trans-
orm. This step is also referred to as 2-D PWD. A discrete
ransform is applied rather than an integral formalism
ecause the incident electric field is represented as a dis-
rete set of plane waves. Furthermore, the discrete trans-
orm is much better suited for numerical implementation
n a digital computer. For each subbeam (i.e., each propa-
ating component of the plane-wave spectrum) specified
y an incident angle, an azimuthal angle, a polarization
ngle, and a plane-wave spectrum coefficient, the conven-
ional 3-D RCWA provides the reflection vectors, the
ransmission vectors, and diffraction efficiencies of the
arious diffracted orders. Coherently combining the con-
entional 3-D RCWA results for all subbeams can yield
he diffracted fields and diffraction efficiencies of the vari-
us diffracted orders.

. Two-Dimensional Plane-Wave Decomposition
pplying the 2-D discrete Fourier transform allows the

ncident-field amplitude at z=0 (i.e., the interface be-
ween the grating and the incident region) to be expanded
n terms of its plane-wave spectrum as

ig. 2. Configuration of a converging–diverging spherical
aussian beam at an arbitrary incidence angle u and at zero azi-
uthal angle f=0° on the x–z plane. w0x8 is the beam radius of

he incident beam at the beam waist along the x8 direction. The
wo cases with linear polarizations of the central beam of the
aussian of E'K and H'K corresponding to the polarization
ngles CE=90° and CE=0°, respectively, are presented.
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Eincsx,y,z = 0d = o
mx=−Mx/2

Mx/2−1

o
my=−My/2

My/2−1

Fskx,mx
,ky,my

d

3expf− jskx,mx
x + ky,my

ydg, s7d

here Mu is the number of sampling points over the in-
erval −Lu /2øuøLu /2 and ku,mu

=mus2p /Lud is the wave
ector component along the u (u=x or y) direction. As a
esult, the z wave vector component for the smx ,myd sub-
eam in the incident region can be written as kz,mx,my
sk0

2nI
2−kx,mx

2 −ky,my

2 d1/2. In addition, the corresponding
lane-wave spectrum coefficient Fskx,mx

,ky,my
d for the

mx ,myd subbeam can be determined by

Fskx,mx
,ky,my

d =
1

MxMy
o

nx=−Mx/2

Mx/2−1

o
ny=−My/2

My/2−1

Eincsxn,yn,z = 0d

3expfjskx,mx
xn + ky,my

yndg, s8d

here xn=nxLx /Mx and yn=nyLy /My. Therefore, for the
mx ,myd subbeam, the incidence angle umx,my

and the azi-
uthal angle fmx,my

in the incident region can be deter-
ined, respectively, by

umx,my
= cos−1Skz,mx,my

k0nI
D , s9d

fmx,my
= tan−1Sky,my

kx,mx

D . s10d

Since the incident Gaussian beam is assumed to be a
inearly polarized light, which can be realized by use of a
olarizer, the polarization unit vector of each subbeam

ˆmx,my
is located at the intersection of two planes. The first

lane is referred to as the plane of polarization and con-
ists of the polarization unit vector of the central beam ê
nd the wave vector of the incident beam k. The second
lane is the plane that is normal to the wave vector of the
mx ,myd subbeam kmx,my

=kx,mx
x̂+ky,my

ŷ+kz,mx,my
ẑ (i.e.,

he constant-phase plane of a specific subbeam). Applying
undamental calculations in geometry, including both in-
er product and cross product of two vectors, the polariza-
ion angle of the smx ,myd subbeam, CE,mx,my

, can be easily
erived as

CE,mx,my
= cos−1sêTM · êmx,my

d
sêTM 3 êmx,my

d · k

uêTM 3 êmx,my
uuku

, s11d

here êTM is the unit vector of ETM (as shown in Fig. 1)
nd êmx,my

is given by

êmx,my
=

sk̂ 3 êd 3 k̂mx,my

usk̂ 3 êd 3 k̂mx,my
u
, s12d

here k̂=k / uku and k̂mx,my
=kmx,my

/ ukmx,my
u.

. Diffracted Fields and Diffraction Efficiencies
ith the above procedure, the incident beam of a

onverging–diverging spherical Gaussian beam has been
ewritten in terms of its plane-wave spectrum, each sub-
eam of which is specified by an incident angle umx,my
, an

zimuthal angle fmx,my
, a polarization angle CE,mx,my

, and
plane-wave spectrum coefficient Fskx,mx

,ky,my
d, but no

nteraction with the grating has been considered. There-
ore, in order to model rigorously the interaction of a
onverging–diverging spherical Gaussian beam with a
lanar VG, the conventional 3-D RCWA9,10 is applied to
ach subbeam. For each subbeam the conventional 3-D
CWA solution provides both the reflection vector Rmx,my,i
nd the transmission vector Tmx,my,i, where the index i in-
icates the ith diffracted order. As a result, the reflected
lectric field ERsx ,y ,zd in the incident region and the
ransmitted electric field ETsx ,y ,zd in the substrate re-
ion can be respectively expressed as a coherent sum over
ll subbeams and all diffracted orders as

ERsx,y,zd = o
i

o
mx=−Mx/2

Mx/2−1

o
my=−Mx/2

My/2−1

Fskx,mx
,ky,my

dRmx,my,i

3expf− jskx,mx,ix + ky,my,iy + kz,mx,my,i
R zdg,

s13d

ETsx,y,zd = o
i

o
mx=−Mx/2

Mx/2−1

o
my=−My/2

My/2−1

Fskx,mx
,ky,my

dTmx,my,i

3exph− jfkx,mx,ix + ky,my,iy + kz,mx,my,i
T sz − ddgj,

s14d

here kx,mx,i=kmx
− iuKusin fg and ky,my,i=kmy

. In addition,
he quantities of kz,mx,my,i

R and kz,mx,my,i
T can be respectively

epresented as

z,mx,my,i
R

=5
− sk0

2nI
2 − kx,mx,i

2 − ky,my,i
2 d1/2 for propagation

waves

+ jskx,mx,i
2 + ky,my,i

2 − k0
2nI

2d1/2 for evanescent

waves
6 ,

s15d

z,mx,my,i
T

=5
+ sk0

2ns
2 − kx,mx,i

2 − ky,my,i
2 d1/2 for propagation

waves

− jskx,mx,i
2 + ky,my,i

2 − k0
2ns

2d1/2 for evanescent .

waves
6 .

s16d

urthermore, applying the Poynting theory and neglect-
ng the interference between various diffracted orders of
wo different subbeams of the incident beam, the diffrac-
ion efficiency for the ith diffracted order can be easily de-
ived as
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DEi
l =

Pi
l

Pinc

=

o
mx

o
my

uFskx,mx
,ky,my

du2 Reskz,mx,my

* dDEmx,my,i
l

o
mx

o
my

uFskx,mx
,ky,my

du2 Reskz,mx,my

* d
,

sl = R,Td, s17d

here Pinc is the power of the incident beam, Pi
l is the

ower of the ith diffracted order (l=R for backward and
=T for forward), DEmx,my,i

l is the diffraction efficiency of
he ith backward-diffracted sl=Rd order or the ith
orward-diffracted sl=Td order for the smx ,myd subbeam
that is determined by the conventional 3-D RCWA), and
e( ) denotes the real part of a complex number.

. RESULTS
or all the cases that are investigated in this paper, a lin-
arly polarized converging–diverging spherical Gaussian
eam with beam radius w0x8=w0y8=2 mm (at the beam
aist) for both the central-beam E'K polarization case
nd the central-beam H'K polarization case focused on
he VG (Fig. 2) is considered. The free-space wavelength
f the incident beam is assumed to be l0=850 nm (e.g., a
aAs laser). Moreover, for all calculations in this paper,

he Gaussian beam is decomposed into 14,400 (i.e., Mx
My=120) propagating plane waves by use of 2-D PWD

as described in Subsection 2.B.1). On the other hand, the
G analyzed in this paper comprises an incident region of
ir with refractive index nI=1.0 and a substrate with re-
ractive index ns=1.55 (e.g., benzocyclobutane, BCB). The
rating material is a photopolymer with average dielec-
ric constant e0=2.25 sng=1.5d (e.g., DuPont’s Omni-
ex613 photopolymer). In addition, the grating thickness

s assumed to be d=10 mm. Both an unslanted VG and a
lanted VG are investigated in this paper. It is noted that
he slanted VG analyzed in this paper is designed for a
ubstrate-mode optical interconnect, as the incident beam
s normally incident on the VG.

. Unslanted Volume Gratings
or the case of an unslanted VG, the grating period is se-

ected as the same as the free-space wavelength L=l0
850 nm, and the slant angle is fg=90°. To satisfy the
rst-order Bragg condition of the central subbeam of the

ncident beam, the incident angle and the azimuthal
ngle are designed as u=30° and f=0°, respectively.

. E'K Polarization
igure 3 shows the diffraction efficiencies of the −1st

orward-diffracted order, DE−1
T , for the converging–

iverging spherical Gaussian beam and its corresponding
ve major subbeams (including the central subbeam, the
kx /e subbeams, and the ±ky /e subbeams) as a function of
he refractive-index modulation, Dn1. The definitions of
he central subbeam, the ±kx /e subbeams, and the ±ky /e
ubbeams of a converging–diverging spherical Gaussian
eam can be found in Appendix A. As shown is in Fig. 3(a),
he period of the variation of DE−1
T with respect to Dn1 is

n1
p=0.08, which is close to the value determined by

ogelnik’s analysis35:

Dn1
p =

l0ÎCRCS

dsr̂E · ŝEd
, s18d

here CR=cos uins, CS=cos uins+ sl0 /ngdcos fg /L, uins
19.47° is the incident angle inside the grating, and

ˆE · ŝE=cos 90° =1 is the inner product of two unit polar-
zation vectors of the 0th and the −1st forward-diffracted
elds, respectively.
Comparing the diffraction efficiency of the converging–

iverging spherical Gaussian beam [Fig. 3(a)] to that of
he central subbeam corresponding to the response of a
lane-wave incidence [solid curve in Fig. 3(b)], the diffrac-
ion efficiency of the Gaussian beam increases and ap-
roaches the central-beam result. For example, for Dn1
0.02, the diffraction efficiencies are DE−1

T =0.2802 and
E−1

T =0.4642 for the Gaussian beam and its correspond-
ng central beam, respectively. However, for a sufficiently
arge refractive-index modulation, such as Dn1=0.12, the
iffraction efficiency of the converging–diverging spheri-
al Gaussian beam is DE−1

T =0.7814, approaching to that

ig. 3. Diffraction efficiencies of the −1st forward-diffracted or-
er of an unslanted VG for (a) a converging–diverging spherical
aussian beam and (b) its corresponding five major subbeams as
function of the refractive-index modulation for the central-

eam E'K polarization case.
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f the central beam sDE−1
T =0.9112d. This characteristic of

he effect of Dn1 on the diffraction efficiency of a
onverging–diverging spherical Gaussian is in agreement
ith that of a 2-D Gaussian-profile plane wave.18 In addi-

ion, as is shown in Fig. 3(b), for small refractive-index
odulations sDn1ø0.03d the diffraction efficiencies for

oth ±kx /e subbeams are much smaller than those of the
entral subbeam (satisfied Bragg condition), because
hese two subbeams move away from the Bragg condition,
nd therefore result in small diffraction efficiencies. How-
ver, as the refractive-index modulation increases, the dif-
raction efficiencies of both ±kx /e subbeams increase and
ecome comparable with those of the central subbeam. In
ontrast to the ±kx /e subbeams, the diffraction efficiencies
f both ±ky /e subbeams are close to satisfying the Bragg
ondition. It is also noted that the diffraction efficiencies
f the +ky /e subbeam and the −ky /e subbeam are identi-
al. This result is expected, since these two subbeam/
rating configurations are equivalent.

Figure 4 shows the 3-D beam profile at z=10 mm (i.e.,
he interface between the VG and the substrate) and its
orresponding angular spectrum of the −1st forward-
iffracted order for the central-beam E'K polarization
ase as the refractive-index modulation is Dn1=0.02
based on DuPont’s OmniDex613 photopolymer).36,37 As is
hown in Fig. 4(a), the beam profile of the −1st forward-
iffracted order is no longer Gaussian; i.e., the
onverging–diverging spherical Gaussian beam is dis-

ig. 4. (a) 3-D beam profile at z=10 mm and (b) its correspond-
ng angular spectrum of the −1st forward-diffracted order of an
nslanted VG for the central-beam E'K polarization case with
rating Dn1=0.02.
orted by the VG. On the other hand, as is shown in Fig.
(b), the angular spectrum of the −1st forward-diffracted
rder is centered at the components of the normalized
ave vector of kx,−1 /k0ns=0.323 and ky,−1 /k0ns=0. In
ther words, the diffracted angle of the −1st propagating
rder in the substrate is u−1

T =18.82° (measured from +z
xis in a counterclockwise direction) on the x–z plane,
hich is equal to the value determined by the simple
rating equation. Furthermore, the corresponding diffrac-
ion efficiency is 28.02%. It is also worth mentioning that
he subbeams with ky,−1=0 and the subbeams with ky,−1
0 of the −1st forward-diffracted beam are linearly polar-

zed and elliptically polarized, respectively.

. H'K Polarization
or the central-beam H'K polarization case, the diffrac-
ion efficiencies DE−1

T for the converging–diverging
pherical Gaussian beam and its corresponding five major
ubbeams as a function of Dn1 are presented in Fig. 5. As
s shown in Fig. 5(a), the period of the variation of DE−1

T

ith respect to Dn1 is Dn1
p=0.10, which is close the value

etermined by Kogelnik’s analysis [estimated by Eq. (18)
or uins=19.47° and r̂E · ŝE=cos 37.64° =0.792]. Similar to
he central-beam E'K polarization case [Fig. 3(a)], the

ig. 5. Diffraction efficiencies of the −1st forward-diffracted or-
er of an unslanted VG for (a) a converging–diverging spherical
aussian beam and (b) its corresponding five major subbeams as
function of the refractive-index modulation for central-beam
'K polarization case.
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iffraction efficiency of the central-beam H'K polariza-
ion case [Fig. 5(a)] increases as the refractive-index
odulation increases and approaches the central-beam

esult [solid curve in Fig. 5(b)]. Furthermore, the diffrac-
ion characteristics of the five major subbeams for the
entral-beam H'K polarization case [Fig. 5(b)] are simi-
ar to those of the central-beam E'K polarization case
Fig. 3(b)]. For small values of Dn1, the diffraction effi-
iencies for both ±kx /e subbeams are much smaller than
hose of the central subbeam. However, the diffraction ef-
ciencies of both ±ky /e subbeams are identical to each
ther and are close to those of the central subbeam.

The 3-D beam profile at z=10 mm and its corresponding
ngular spectrum of the −1st forward-diffracted order for
he central-beam H'K polarization case with grating
n1=0.02 are summarized in Fig. 6. Similar to the
entral-beam E'K polarization case, the beam profile of
he −1st forward-diffracted order is also not a Gaussian
rofile [Fig. 6(a)], and its angular spectrum is also cen-
ered at kx,−1 /k0ns=0.323 and ky,−1 /k0ns=0 [Fig. 6(b)]. In
ddition, the subbeams of the −1st forward-diffracted
eam are linearly polarized and elliptically polarized as
y,−1=0 and ky,−1Þ0, respectively. For Dn1=0.02, the cor-
esponding diffraction efficiency of the central-beam

'K polarization case is 19.23%, which is smaller than
hat of the central-beam E'K polarization case that is in
greement with the expectation of Kogelnik’s analysis.35

ig. 6. (a) 3-D beam profile at z=10 mm and (b) its correspond-
ng angular spectrum of the −1th forward-diffracted order of an
nslanted VG for the central-beam H'K polarization case with
rating Dn1=0.02.
. Slanted Volume Gratings
or the case of a slanted VG, the grating period and the
lant angle are designed to provide a 45° [i.e., u−1

T =45°
with respect to the +z axis in a counterclockwise direc-
ion)] forward-diffraction angle of the −1st propagating
rder to achieve multiple total internal reflections within
he substrate for a substrate-mode optical interconnect as
he incident beam is normally incident on the VG (i.e., u
f=0°). Therefore, based on the first-order Bragg condi-

ion, the grating period and the slant angle of this slanted
G are L=711.37 nm and fg=113.47°, respectively.

. E'K Polarization
igure 7 shows the diffraction efficiencies DE−1

T for the
onverging–diverging spherical Gaussian beam and its
orresponding five major subbeams as a function of Dn1.
s is shown in Fig. 7(a), the period of DE−1

T is Dn1
p=0.07,

hich is close to the value estimated by Eq. (18) for uins
0° and r̂E · ŝE=1. Comparing Figs. 3 and 7, the diffrac-

ion characteristics of a slanted VG resemble those of an
nslanted VG for the central-beam E'K polarization
ase. The diffraction efficiency of the central-beam E'K
olarization case for a slanted VG increases as the

ig. 7. Diffraction efficiencies of the −1st forward-diffracted or-
er of a slanted VG designed to support a substrate-mode optical
nterconnect for (a) a converging–diverging spherical Gaussian
eam and (b) its corresponding five major subbeams as a function
f the refractive-index modulation for the central-beam E'K po-
arization case.
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efractive-index modulation increases [Fig. 7(a)] and ap-
roaches the central-beam result [solid curve in Fig. 7(b)].
urthermore, as is shown in Fig. 7(b), the diffraction effi-
iencies for both ±kx /e subbeams are much smaller than
hose of the central subbeam for small values of Dn1, and
he diffraction efficiencies of both ±ky /e subbeams are
dentical to each other and are close to those of the central
ubbeam.

Furthermore, Fig. 8 shows the 3-D beam profile at z
10 mm and its corresponding angular spectrum of the
1st forward-diffracted order for the central-beam E'K
olarization case with grating Dn1=0.02. Similar to an
nslanted VG [Fig. 4(a)], the spherical Gaussian beam is
lso distorted by a slanted VG [Fig. 8(a)]. On the other
and, as is shown in Fig. 8(b), the angular spectrum of
he −1st forward-diffracted order is centered at
x,−1 /k0ns=0.707 and ky,−1 /k0ns=0. That is, the diffracted
ngle of the −1st forward-diffracted order is u−1

T =45° on
he x–z plane, which satisfies the design of 45° forward-
iffraction angle to achieve the substrate-mode optical in-
erconnect. The subbeams of the −1st forward-diffracted
eam are linearly polarized and elliptically polarized for
y,−1=0 and ky,−1Þ0, respectively, outcomes which are
onsistent with the unslanted VG results. Also, the corre-
ponding coupling efficiency of the substrate-mode optical
nterconnect is 22.87% for the central-beam E'K polar-
zation case. As is shown in Fig. 7(a), a higher coupling

ig. 8. (a) 3-D beam profile at z=10 mm and (b) its correspond-
ng angular spectrum of the −1st forward-diffracted order of a
lanted VG designed to support a substrate-mode optical inter-
onnect for the central-beam E'K polarization case with grat-
ng Dn1=0.02.
fficiency for the central-beam E'K polarization case
an be obtained by increasing the refractive-index modu-
ation. For example, for Dn1=0.1 the coupling efficiency
an achieve 62.99% for a converging–diverging spherical
aussian beam with a beam radius of w0x8=w0y8=2 mm

i.e., with a beam diameter of 4 mm). However, in many
ractical applications the beam diameter of a spherical
aussian beam might be ,10 mm, and therefore the cor-

esponding coupling efficiency of the central-beam E'K
olarization case for this substrate-mode optical intercon-
ect can be up to 86.62% for Dn1=0.1.

. H'K Polarization
imilarly, the diffraction characteristics of a substrate-
ode optical interconnect for the central-beam H'K po-

arization case with respect to Dn1 are presented in Fig. 9.
s is shown in Fig. 9(a), the value of Dn1

p is 0.10 [close to
he value estimated by Eq. (18) with uins=0° and r̂E · ŝE
cos 45° =0.707], and the diffraction efficiency increases
s Dn1 increases and approaches the central-beam result,
hich is consistent with both unslanted (Figs. 3 and 5)
nd slanted VGs (Fig. 7). Based on Dn1=0.02 (i.e., Du-
ont’s OmniDex613 photopolymer), the 3-D beam profile

ig. 9. Diffraction efficiencies of the −1st forward-diffracted or-
er of a slanted VG designed to support a substrate-mode optical
nterconnect for (a) a converging–diverging spherical Gaussian
eam and (b) its corresponding five major subbeams as a function
f the refractive-index modulation for the central-beam H'K po-
arization case.
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t z=10 mm and its corresponding angular spectrum of
he −1st forward-diffracted order for the central-beam

'K polarization case are presented in Fig. 10. As is
hown in Fig. 10, the beam profile of the −1st forward-
iffracted order is no longer Gaussian; its angular spec-
rum is centered at kx,−1 /k0ns=0.707 and ky,−1 /k0ns=0
i.e., the corresponding diffracted angle is u−1

T =45°), and
ts corresponding subbeams are linearly polarized and el-
iptically polarized for ky,−1=0 and ky,−1Þ0, respectively.
he coupling efficiency of this substrate-mode optical in-
erconnect for the central-beam H'K polarization case is
2.45%, which is smaller than that of the central-beam
'K polarization case (22.87%), which is in agreement
ith Kogelnik’s analysis.35 Similar to the central-beam
'K polarization case, the coupling efficiency for the

entral-beam H'K polarization case can also increase to
higher coupling efficiency of 63.28% as the refractive-

ndex modulation increases to Dn1=0.15. Furthermore,
or a spherical Gaussian beam with a beam diameter of
0 mm, the coupling efficiency of the H'K polarization
ase can reach 89.06% for Dn1=0.15.

. SUMMARY AND DISCUSSION
three-dimensional (3-D) finite-beam (FB) rigorous

oupled-wave analysis (RCWA) based on the conventional
-D RCWA in conjunction with a two-dimensional (2-D)

ig. 10. (a) 3-D beam profile at z=10 mm and (b) its correspond-
ng angular spectrum of the −1st forward-diffracted order of a
lanted VG designed to support a substrate-mode optical inter-
onnect for the central-beam H'K polarization case with grat-
ng Dn1=0.02.
lane-wave decomposition (PWD) is presented to analyze
igorously the 3-D converging–diverging spherical Gauss-
an beam diffraction by a volume grating (VG). The dif-
raction characteristics, including the diffraction efficien-
ies and the diffracted-beam profiles for both unslanted
Gs and slanted VGs, which are designed for substrate-
ode optical interconnects, and for two linear polariza-

ions of the central portion of the Gaussian beam for
'K and H'K, are investigated. In general, the diffrac-

ion efficiencies of converging–diverging spherical Gauss-
an beams in both the central-beam E'K polarization
ase and the central-beam H'K polarization case dif-
racted by both unslanted and slanted VGs increase and
pproach the central-beam results as the refractive-index
odulation increases. The period of the variation of the

iffraction efficiency with respect to the refractive-index
odulation of a converging–diverging spherical Gaussian

eam is close to the value estimated by Kogelnik’s analy-
is. In addition, according to the numerical results of dif-
raction efficiencies for five major subbeams, including
he central subbeam, the ±kx /e subbeams, and the ±ky /e
ubbeams, the diffraction efficiencies of both ±kx /e subbe-
ms are much smaller than those of the central subbeam
or the small refractive-index modulation sDn1ø0.03d.
owever, as the refractive-index modulation increases,

he diffraction efficiencies of both ±kx /e subbeams in-
rease and become comparable with those of the central
ubbeam. On the other hand, the diffraction efficiencies of
oth ±ky /e subbeams are identical to each other and are
lose to those of the central subbeam. In general, the
iffracted-beam profiles are shown to be no longer Gauss-
an; i.e., the diffracted beams are distorted by the VGs.
urthermore, the subbeams of the −1st forward-
iffracted beams are linearly polarized and elliptically po-
arized as ky,−1=0 and ky,−1Þ0, respectively.

For the application of a substrate-mode optical inter-
onnect realized by a slanted VG, the coupling efficiency
or central-beam E'K polarization case increases from
2.85% to 62.99% as the refractive-index modulation in-
reases from Dn1=0.02 to Dn1=0.1 for a beam diameter of
mm. On the other hand, for the central-beam H'K po-

arization case, the coupling efficiency of the substrate-
ode optical interconnect increases from 12.45% to

3.28% as the refractive-index modulation increases from
n1=0.02 to Dn1=0.15 for a beam diameter of 4 mm. How-
ver, for the practical case of a beam diameter of 10 mm,
he coupling efficiency for both the central-beam E'K
olarization case and the central-beam H'K polarization
ase are 86.62% for Dn1=0.1 and 89.06% for Dn1=0.15, re-
pectively. Finally, it is worth mentioning that, although
he analysis of conical diffraction for VGs in this paper
nly emphasized a 3-D converging–diverging spherical
aussian beam [i.e., w0x8sz8=0d=w0y8sz8=0d, defined in
q. (3)], it can be extended to a general 3-D converging–
iverging elliptical Gaussian beam of TEM00 mode [i.e.,
0x8sz8=0dÞw0y8sz8=0d, defined in Eq. (3)] as well as of
igher orders with appropriate changes in the amplitudes
nd phase factors. Furthermore, the present method of
-D FB RCWA can be used for the diffraction analysis of a
urface-relief grating illuminated by a finite incident
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eam (such as a general 3-D converging–diverging ellip-
ical Gaussian beam) at an arbitrary incidence angle, at
n arbitrary azimuthal angle, and with any linear polar-
zation.

PPENDIX A: DEFINITIONS OF THE
ENTRAL SUBBEAM, THE ±kx /e
UBBEAMS, AND THE ±ky /e SUBBEAMS
o define the central subbeam, the ±kx /e subbeams, and
he ±ky /e subbeams, a normally incident beam focused on

VG is considered, and therefore the beam-coordinate
ystem sx8 ,y8 ,z8d is identical to the VG coordinate system
x ,y ,zd (Fig. 1). According to Eqs. (2)–(5), the amplitude of
he incident filed at z=0 (i.e., the interface between the
rating and the incident region) can be expressed as

Einc = expH− FS x

w0x
D2

+ S y

w0y
D2GJ , sA1d

here w0x and w0y are the beam radii of the incident
eam at the beam waist along the x and the y directions,
espectively. By application of the 2-D discrete Fourier
ransform, the angular spectrum of Eq. (A1) is analytic
nd is given by

Fincskx,kyd =
w0xw0y

4p
expH− FSw0x

2
kxD2

+ Sw0y

2
kyD2GJ ,

sA2d

here kx and ky are the components of a wave vector
long the x and y directions, respectively, for a specific
ubbeam. As a result, the corresponding z wave vector
omponent is kz= sk0

2nI
2−kx

2−ky
2d1/2. As shown in Eq. (A2),

he maximum value of the angular spectrum occurs at
x=0 and ky=0, which corresponds to the central sub-
eam. On the other hand, for the subbeams of ky=0, the
ngular spectrum falls to 1/e of its amplitude value of the
entral beam at kx=2/w0x and kx=−2/w0x, which are de-
ned as the +kx /e subbeam and the −kx /e subbeam, re-
pectively. Similarly, the +ky /e subbeam and the −ky /e
ubbeam correspond to ky=2/w0y and ky=−2/w0y, respec-
ively, as kx=0. In summary, the wave vectors of the five
ajor subbeams of a normally incident Gaussian beam

an be represented for the central subbeam as

k = k0nIẑ, sA3d

or the ±kx /e subbeam as

k = ±
2

w0x
x̂ + Fk0

2nI
2 − S 2

w0x
D2G1/2

ẑ, sA4d

nd for the ±ky /e subbeams as

k = ±
2

w0y
ŷ + Fk0

2nI
2 − S 2

w0y
D2G1/2

ẑ. sA5d

urthermore, for a general case of an obliquely incident
aussian beam at an arbitrary incidence angle u and at
n arbitrary azimuthal angle f (Fig. 1), the corresponding
ave vectors, k8 of the five major subbeams of an ob-

iquely incident Gaussian beam can be calculated based
n those of a normally incident Gaussian beam according
o

k8 = R% uR% fk, sA6d

here

R% u = 3 cos u 0 sin u

0 1 0

− sin u 0 cos u
4 , sA7d

R% f = 3 cos f sin f 0

− sin f cos f 0

0 0 1
4 . sA8d
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