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We show that the propagation effects of optical beams in three-dimensional photonic crystal structures can be
modeled using a direction-dependent effective diffractive index model. The parameters of the model (i.e., the
effective diffractive indices) can be calculated using the curvatures of the band structure of the photonic crystal
at the operation point. After finding these indices, the wave propagation inside the photonic crystal can be
analyzed using simple geometrical optics formulas. We show that the model has good accuracy for most prac-
tical applications of photonic crystals. As an example, the application of the model for diffraction compensation
in a tetragonal woodpile photonic crystal is demonstrated. © 2008 Optical Society of America

OCIS codes: 050.1940, 160.5298, 070.7345.

1. INTRODUCTION

The idea of periodic dielectric structures, known as pho-
tonic crystals (PCs), for engineering the photonic density
of states [1,2] and realizing synthetic optical materials [3]
has stimulated considerable research activity lately. Dis-
persive properties of two-dimensional (2D) PCs in planar
structures have shown attractive potential [4—6]. On the
other hand, recent advances in the fabrication of three-
dimensional (3D) PC structures, including layer-by-layer
processing [7], direct laser writing by multiphoton lithog-
raphy [8-10], and multibeam interference lithography
[11-13] have made possible the realization of such struc-
tures for practical applications. Applications including
beam shaping, dispersion control, and spectroscopy are
among a variety of possibilities in which unique disper-
sive properties of 3D PCs can be used [14,15]. However, to
design and implement these structures efficiently and
systematically, it is essential to have a basic understand-
ing of the propagation effects in 3D PCs.

The amount of memory and computation cost required
in direct space-domain simulation of 3D PC structures for
dispersion-based applications makes direct techniques
such as the finite-difference time-domain (FDTD) method
highly inefficient. A modal approach is more efficient in
this case because it reduces both the required memory
and the computation cost for large structures. The model
can be, under certain conditions, simplified to make a di-
rect intuitive connection between propagation effects in-
side PCs and those of ordinary bulk media. In particular,
it has been shown recently that the propagation of light in
2D PCs can be accurately and efficiently analyzed using
an effective diffractive index model [16]. The 2D diffrac-
tive index model has been successfully used to design and
optimize 2D PC structures for applications such as wave-
length demultiplexing [17] and diffraction compensation
[18]. Here, we report the development of a 3D diffractive
index model for efficient analysis of wave propagation in
3D PC structures. We show that the propagation of the
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electromagnetic waves (at a certain frequency, direction,
and polarization) inside such structures can be modeled
by two principal diffractive indices that describe the beam
behavior in two directions perpendicular to the direction
of propagation. We will investigate the accuracy of the
model by comparing its results for different 3D PC struc-
tures with those of direct numerical simulations.

In what follows, we will develop the diffractive index
model for 3D PC structures in Section 2. The model will
be verified and the extent of its applicability to practical
problems will be discussed in Section 3. In Section 4, the
model will be used to analyze the negative diffraction ef-
fect in 3D PC structures as an example of practical dis-
persive applications. Concluding remarks will be given in
Section 5.

2. DIFFRACTIVE INDEX MODEL FOR
THREE-DIMENSIONAL PHOTONIC
CRYSTALS

The problem of interest in most dispersive applications of
PCs is the modeling of the evolution of optical beams
propagating through the periodic structure. Recently,
some models have been suggested to describe these effects
for special cases [19,20], but a general model for 3D PCs is
still missing. To analyze these structures, modal ap-
proaches can be directly used by expanding the beam over
the modes of the PC structure. This, however, requires a
detailed mode matching process, which is a tedious task.
At the same time, in most dispersion-based applications
of PCs we are not interested in the details of the beam
profile inside the periodic structure. In most practical
cases, an accurate description of the behavior of the enve-
lope of the optical beam is the main interest. In this sec-
tion, we develop an easy to use model for the analysis of
the envelope of an optical beam as it propagates through
a 3D PC structure. This model can also provide useful in-
sight into the process of beam propagation through 3D PC
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structures. It has been shown [14] that in 2D PCs an en-
velope transfer function (ETF) (using the band structure)
can be defined to model the evolution of the special enve-
lope of the beam inside the PC structure. Here, we extend
this idea to define the amplitude transfer function for 3D
PCs. Local quadratic approximation of the band structure
at the operation point is then used to define diffractive in-
dices that describe the diffraction of optical beams inside
the PC structure at different wavelengths.

One main concept that differentiates between the 3D
and the 2D PCs is the vectorial nature of the electromag-
netic fields in the 3D case, which cannot be modeled using
scalar quantities as in the 2D case. Nevertheless, it can
be shown [21] that the polarization of the modes of 3D PC
structures in most practical cases have Bloch components
with well-defined transverse eigenstates. In addition,
these polarization states have smooth variations over the
band structure. As a result, an optical beam with limited
spatial-spectral content in a 3D PC can be locally mod-
eled using a scalar field by projecting its actual vector
field over the dominant polarization state. In what fol-
lows, such a scalar model is used to develop approximate
solutions; the validity of this assumption will be discussed
in more detail in Sections 3 and 4.

For simplicity, we consider a tetragonal woodpile 3D
PC in our derivations. The formulation can be extended
readily to other lattices, and the results are not limited to
the choice of lattice. Assume we have an optical beam
with an initial scalar (electric or magnetic) field distribu-
tion p(x,y) along z=z; (i.e., a plane normal to the z axis)
inside the PC. We can expand this distribution over the
PC modes as

1
pl(%y) = m f fA(kmky)U];(xuy’Zl)eXp(_kax _Jkyy)

xXexp(-jk,z1)dk,dk,, (1)

where each PC mode is represented by an excitation am-
plitude [i.e., A(k,,k,)], a periodic Bloch function [i.e.,
Ui(x,y,2)], and a propagation term [i.e., exp(—jkx—jky
—jk,z)], and the integration is performed over the entire
2D k,—k, plane. The periodic Bloch function can be ex-
panded as a Fourier series

U};(x’yaz) = 2 E E ﬁmnl(kx’kyakz)
m n 1

Xexp[-j(mK.x +nKyy +1K,z)], (2)
in which, K, =27/a,, K,=2m/a,, and K,=2m/a, are the re-
ciprocal lattice vectors of the PC in the £ domain (a,, a,,
and a, are the corresponding lattice constants in the x, y,

and z directions, respectively). The initial scalar field ex-
pansion, thus, can be written as

1 —
P&y = 1 f f A(kx,ky>(§ 2 ; T i ssey)

Xexp[-j(k, + mK,)x]exp[-j(k, + nK,)y]

x exp[—j(k, + ZKZ)zl])dkxdky, (3)

where ﬁmnl(kx,ky) represents the Fourier expansion coef-
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ficient of the periodic Bloch function. Note that since this
expansion corresponds to a specific operation frequency,
by fixing &, and k,, the third component of the wave vec-
tor of the PC mode, k,, will be known [i.e., &, is a function
of k, and k,, or k,=k,(k,,k,)], and this fact has been used
in Eq. (3)].

The 2D spatial Fourier transform of the field distribu-
tion, p1(x,y) can be calculated as

Py(ky,ky) = f J p1(x,y)exp(jk.x)exp(ikyy)dxdy
=2 2 D ARLEDE (k) E])
m n 1

xexp{jlk, (kL k) + K, Je }| hm5e 0 (4)
ky=k,-nK,

Py(kyky) = >, > >, Alk, — mK,,k, - nK,)
m n l

XE ik, - mK, k, — nK,)

xexp{jlk,(k, - mK,,k,—nK) +IK,]z1}. (5)

Assuming that the beam profile covers a limited spectrum
around (k,,k,)=(ky,ky0), we can extract the envelope of
the beam by filtering out the high-frequency portion of the
spectrum around (k,,%,0) and moving it to the baseband
by shifting the spectrum by -£,, and -k, in the &, and &,
directions, respectively [14]. The resulting spectrum of

the envelope, represented by Iz—’l(kx,ky), is

Pl(kx’ky) =A(kx + kx()’ky + kyO)eXp[jkz(kx + kx07ky + kyO)Zl]
% (S Bunlhy+ by + hyolesp(TK.z1) ). (6)
l

Note that all m and n+#0 in Eq. (5) correspond to the
higher spatial frequency terms corresponding to rapid
spatial variations in the length scales smaller than a PC
unit cell. For the analysis of propagation of optical beams
in a dispersive PC structure, the optical beam usually
covers multiple unit cells, and such rapid variations will
not be of interest in designing PC structures for practical
applications.

At the monitoring output plane, z=z4, the spectrum of
the envelope of the beam can be calculated as

P2(kx’ky) =A(kx + kx()ﬁky + kyO)eXp[jkz(kx + kxO’ky + kyO)ZZ]

x (2 Eouky + ks, + kw)expo'lez») .
l

If z9—2z1=2mq/K, (with g being an integer), the summa-
tion term in Eqgs. (6) and (7) will be exactly the same, re-
sulting in

PZ(kx’ky) = Pl(kxaky)exp[]kz(kx + kx()’ky + kyO)(ZZ - Zl)])
(8)

which means that the effect of propagation from z=z; to
z=z5 on the envelope of the beam is only a phase change
in the spectral domain similar to a plane-wave-type
propagation with propagation constant %,. Thus, the main
effect of propagation in 3D PCs on the beam envelope is
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the phase variations of the modes from the initial plane to
the observation plane.

Based on Eq. (8), we can define an ETF for the struc-
ture to describe the propagation from the z=z; plane to
the z=z, plane as

By(ky k)
Hky k) = ——

1 x,ky

=explj(ze —z1)k,], 9)

where k,=k,(k,+kyo,k,+ky) is related to k, and k,
through the dispersion relation of the structure at the
constant temporal frequency (w) of the beam. The ETF for
3D PCs [given by Eq. (9)] is similar to what was obtained
for 2D PC structures [14], with the main difference being
the extension of the ETF from a single-variable function
to a two-variable one. Using the analogy with propagation
in bulk media, we can extend Eq. (9) to the case of beam
propagation along the ¢ direction (normal to the constant
frequency surface at the point of operation, i.e., parallel to
Vy=Vio) as

p (kyk,)
Hikgk,)=——"

Pl §’k77)

=exp[-j({s - 51)kg(k§,k 77)], (10)

where the coordinates ¢, 7, and ¢ are defined in Fig. 1.

Equation (10) can be used readily to investigate beam
propagation effects for the most general case inside a 3D
PC. The analogy with propagation in normal bulk media
can be further utilized if we express the exponential term
of the spectral response in Eq. (9) in terms of its Taylor
expansion. Knowing that the diffraction of an optical
beam (defined by » and k) inside a PC is governed by the
curvatures of the constant frequency surface at the opera-
tion point, we need to first calculate the PC band curva-
tures at the operation point. Using the second-order ap-
proximation,

kz = kzO + a2(kx - kxO) + a3(ky - kyO) + a4(kx - kxo)z
+ a5(kx - kxO)(ky - kyO) + aG(ky - k_’yO)z, (11)
a standard method can be adopted to find these curva-

tures [22]. First, we define W as the magnitude of the gra-
dient at the operation point, given by

ks

Fig. 1. Portion of an isofrequency surface (at normalized fre-
quency w,,) of a general 3D PC in the % space is shown. The di-
rections tangent to the surface (i.e., £ and %) and the direction
normal to the surface ({) are defined in the figure.
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W=\1+aj+aj. (12)
Then, the parameters for the first fundamental form of

the surface (associated with the tangent plane) can be
found as [22]

E=(1+a)W,
F=a2a3W,
G=(1+ad)W, (13)

and those of the second fundamental form (associated
with the second-order curvatures) can be calculated as

L= 2&4,
M=Ct5,
N =2ag. (14)

Using these relations, which are coefficients of the funda-
mental forms of a quadratic surface, we can calculate the
Gaussian curvature as

LN - M?
K=Fa—m (19
and the mean curvature as
1EN -2FM + GL
— (16)

"2 EG-F*

Finally, the two principal curvatures can be calculated as

x =H+ H*-K, (17)
K2=H— VHZ—K. (18)

The principal directions, v;, can be calculated by inserting
these principal curvatures in the characteristic equation,

(L—KiE M—KiF

.= 0 | = 1 2 19
M- «F N-KiG)V‘ RS (19)
which determines the principal directions projected on
the xy plane. From these directions, we can find the two
directions at the operation point on the band structure,
which are normal to the gradient direction,

n=(-ay-asl). (20)

The two directions obtained from this process determine
the principal directions corresponding to the principal
curvatures at the operation point on the band structure.
Since these curvatures describe the diffraction of the op-
tical beam inside the structure, we will refer to these two
principal directions as the principal diffraction directions.
Without loss of generality we assume the directions of ¢
and 7 in Fig. 1 to be along the principal diffraction direc-
tions at the operation point. Note that in the special case
that the two curvatures are equal (i.e., the degenerate
case), the choice of the principal diffraction directions is
arbitrary.
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To summarize, for each mode of the 3D PC structure (at
a given w and k), there are two principal diffraction direc-
tions in the plane perpendicular to the direction of group
velocity for that mode. A principal diffractive index can be
defined for each of these directions to describe the diffrac-
tion of an optical beam along that specific direction. Based
on the analogy with bulk media, we can find the principal
diffractive indices (n4¢,n4,) at the operation point as

1

1
Ng,=-—. 21
dn k0K2 ( )

The same phenomenon of anisotropic diffraction, in prin-
ciple, occurs in ordinary anisotropic media as well, but
the extent of the contrast between the two principal dif-
fractive indices can be much larger in 3D PCs (for in-
stance they can have opposite signs), and the beam propa-
gation effects in 3D PCs can show practically significant
effects from a device point of view. Equation (21) is the fi-
nal result of our model. To implement this model for an
arbitrary 3D PC, we need to first calculate the 3D band
structure, which can be efficiently done by analyzing one
unit cell of the PC structure using a standard technique
such as plane wave expansion or FDTD. Then, we can cal-
culate the curvatures of the isofrequency surface of the
band structure at the operation point of interest. The ad-
vantage of this model is that the calculation of curvatures
is fast (much faster than the analysis of wave propagation
in even a small 3D PC). Furthermore, once the diffractive
indices are calculated, they can be readily used to study
propagation effects of optical beams for different propaga-
tion lengths and in a variety of applications of that PC
structure.

fay a,
(a)
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3. RESULTS

To verify the applicability of our approximate diffractive
index model, we investigate the propagation of a Gauss-
ian beam inside a woodpile PC structure with a tetrago-
nal unit cell [as shown in Fig. 2(a)l with f,=f,=0.3, £,
=0.5, and a,=2.4a,=2.4a,=2.4a. The relative permittivity
of the material used for fabricating the 3D PC is assumed
to be ¢,=2.5 throughout this paper, which is the typical
value in structures realized in polymer-based PCs. We as-
sume the incident wave to be a Gaussian beam coming
from a homogeneous bulk material (with ¢,=2.5) at «
=38° and ¢=0° [i.e., propagation in the xz plane in Fig.
2(b)], where « is the angle between the incident wave vec-
tor and the z axis, and ¢ is the angle between the plane of
incidence and the x axis as shown in Fig. 2(b). For this
lattice, the dominant polarizations of the PC modes are
very close to the conventional transverse electric (TE) and
transverse magnetic (TM) polarizations [21]. By direct
calculation, we can also verify that the principal diffrac-
tion directions in this case are parallel and normal to the
xz plane. Figure 3 shows the cross section of a Gaussian
beam inside this PC structure at different propagation
lengths. The beam is assumed to be at normalized fre-
quency of a/N=0.45 with TE polarization (electric field
normal to the plane of incidence) and a symmetric shape
with a beam waist of 41.2\ upon entrance to the PC struc-
ture. Results in Fig. 3(a) are calculated using a direct
modal approach based on the plane wave expansion tech-
nique as a point of reference, and those in Fig. 3(b) are
calculated using our ETF discussed in this paper. The
fluctuations on the profile of the beam for the exact
method (i.e., the direct modal approach) are caused by the
nonuniformity of the refractive index inside the PC struc-
ture. It can be observed that the approximate profile cal-
culated by the ETF is an accurate estimate for the enve-
lope of the beam for most practical purposes.

Different broadenings in the two principal directions
are also evident from the beam shapes in Fig. 3. Figure

(b)

Fig. 2. (a) Schematic of the 3D tetragonal woodpile PC considered throughout this paper is shown. Lattice constants and filling factors
in different directions of this lattice are marked in this figure. (b) The general direction of the incident beam is shown, with « being the
angle between the incident wavevector and the normal to the interface (z), and ¢ being the angle between the plane of incidence and the

xz plane.
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Calculated cross sections of an optical beam propagating through a tetragonal woodpile PC structure (with f,=£,=0.3, £,=0.5,

and a=a,=a,=a,/2.4) are shown at different propagation lengths using (a) the direct mode-matching (brute-force approach) and (b) the
ETF appr0x1mat10n The three snapshots show the calculated E, field at z=a, 200a, and 400a, respectively. The beam has a normalized
frequency of a/\=0.45 and a symmetric beam waist of 41.2\, and it is 1nc1dent upon the PC from a homogeneous material with relative

permittivity 2.5 at «=38° and ¢=0° as shown in Fig. 2.

3(c) shows the isofrequency surface of the 3D PC used in
Figs. 3(a) and 3(b) at the normalized frequency of a/\
=0.45. The deformation of the bands in the vicinity of the
edges of the Brillouin zone is responsible for the aniso-
tropic curvature resulting in the different diffraction of
the beam in the x and y directions, as shown in Figs. 3(a)
and 3(b). To get a more quantitative result, we have cal-
culated the beam widths in the two principal diffraction
directions [i.e., x and y in Fig. 2(b)] at different propaga-

tion lengths and the results are shown in Fig. 4. Agree-
ment between the beam widths obtained by the diffrac-
tive index model and the ETF technique is clear from Fig.
4. The results in Fig. 4 confirm that the beam width of the
propagating beam in the PC structure follows the same
simple geometrical optics relation predicted by the dif-
fractive index model.

The possibility of negative diffraction in PC structures
is another important property that can affect an optical
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Fig. 4. (Color online) Comparison of the beam widths along the
x and y directions for an optical beam propagating inside a 3D
PC (same parameters as defined in Fig. 3). The results obtained
using the ETF (shown by markers) are in good agreement with
the expected beam widths from a diffractive index model (shown
by solid curves).

beam propagating inside these structures. The immediate
applications of this property are diffraction compensation
[18] and beam shaping. To obtain an appropriate 3D PC
structure with negative diffraction, we can use our dif-
fractive index model and design the PC structure for the
desired diffractive indices along the two principal diffrac-
tion directions. More importantly, we can use these indi-
ces along with the well-known analytical formulas of geo-
metrical optics to analyze the propagation of the optical
beam in such a negative diffraction structure at any arbi-
trary propagation length. For this analysis, we consider
an incident Gaussian beam at the normalized frequency
of a/N\=0.57 with the symmetric beam waist of 20.6\ in-
cident at an angle «=21.75° and ¢=0° from the substrate
region on the 3D PC structure in the geometry shown in
Fig. 2(b). We choose a woodpile PC structure with a,=a,
=a, a,=2.4a, f,=£,=0.3, ,=0.5, and &,=2.5, similar to the
one in Fig. 2. The 3D isofrequency surface for this PC at
the operation normalized frequency is shown in Fig. 5(a).
The excitation point on the band structure is marked by
an arrow in Fig. 5(a), showing that the isofrequency sur-
face at this operation point has different curvatures in the
x and y directions. We assume that the beam initially
propagates a distance of L, =1960a in the substrate with
g,=2.5 (and thus, broadens to a beam spot of 2w =77\ in
each lateral direction) before entering the PC. The two
diffractive indices for this structure at the operation fre-
quency of a/A=0.57 are nq4,=-0.16 and n4,=0.90 [calcu-
lated from the band structure using Eq. (21)]. The beam
profiles normal to the direction of propagation (the z di-
rection) at two different propagation lengths inside the
PC structure are shown in Figs. 5(b) and 5(c). Perfect dif-
fraction compensation in the x direction at L=500a is ob-
served from Fig. 5(c), and the transfer-limited spot size is
retrieved. Further propagation inside the PC region be-
yond this point results in the broadening of the beam. It is
interesting to note the difference between the diffraction
effects in the x and y directions. The beam undergoes nor-
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mal diffraction in the y direction and continues to broaden
upon propagation (since ng,>0), while the diffraction ef-
fect in the x direction is opposite to that of ordinary bulk
materials (since ng,<0), and results in focusing of the
beam. Figure 5(d) compares the widths of the beam in the
x and y directions obtained from direct ETF simulations
with those obtained by fitting a Gaussian beam propaga-
tion into the calculated data based on a modal analysis.
The estimated diffractive indices in the x and y directions
from this fitting process are nq,=-0.14 and n4,=0.87, re-
spectively, which are in good agreement with direct calcu-
lations of diffractive indices from the band structure.

It is clear that choosing an appropriate 3D PC struc-
ture for diffraction compensation and confirming its effect
on the incident beam with direct simulation of propaga-
tion (using methods such as FDTD) is very time consum-
ing. This clearly shows the importance of our diffractive
index model in the analysis, design, and optimization of
3D PC structures for practical applications.

4. DISCUSSION

The applicability of the diffractive index model is mainly
determined by the accuracy of the quadratic approxima-
tion of the ETF [Egs. (10) and (11)]. Any difference be-
tween the ETF and our second-order approximation cor-
responds to diffraction effects during propagation that are
ignored in the diffractive index model. Therefore, the er-
ror in using the diffractive index model increases by in-
creasing the spatial bandwidth (i.e., range of k) of the in-
cident beam. In most practical applications of 3D PCs
(such as wavelength demultiplexing, self-guiding, and dif-
fraction compensation), the incident beam is forced to be
collimated (or have a small spatial bandwidth) by the re-
quirements of that application. For such practical cases,
the accuracy of our model is very good. Nevertheless, we
can improve the accuracy of the model by defining higher-
order diffractive indices similar to the two-dimensional
case [18] using higher-order approximations to improve
the accuracy.

Figure 6 shows beam profile of a Gaussian beam at dif-
ferent propagation lengths in the same structure as the
one described in Fig. 5, when the beam waist of the inci-
dent light is reduced by a factor of 2 (i.e., the spatial band-
width is increased by a factor of 2) compared to the inci-
dent beam used in the simulations in Fig. 5. The higher-
order diffraction effect in this case results in an
asymmetrical beam profile and appearance of sidelobes in
the output beam profile. Note that again, since the signs
of the diffractive index along the x and y directions are
different, focusing of the beam along the x direction is ob-
served as opposed to the normal beam broadening along
the y direction.

Another possible source of error in our effective diffrac-
tive index model is the deviation of the actual situation
from the assumption of scalar diffraction used in our
model. Noting that the polarization of the incident light is
usually fixed, the variation of polarization of the PC
modes in the wave-vector excitation range of interest re-
sults in reduced coupling efficiency to the PC mode of in-
terest or possibly coupling to other PC modes. However,
for almost all 3D PCs of interest for practical applications



Momeni et al.

Vol. 25, No. 5/May 2008/J. Opt. Soc. Am. B 791

04
0.35
0.3
110.25
0.2
0.15
0.1
0.05

00 200

400 600

©)

800 1000

0.25
0.2
- 0415E
= >
0.1
0.05
0
0 200 400 600 800 1000
xfa
(b)
100
— 90 L
H
£
S 80
g ‘ o ETF -y direction
s 70l . E.TF - X directiop .
g diffr. index - y direction
e —diffr. index - x direction
< 60r
£
(e}
Z 50t
+*
40 1 I I
0 200 400 600

800 1000 1200

Normalized propagation length (z/a)

Fig. 5.

(d)

(Color online) (a) Isofrequency surface of a tetragonal woodpile PC structure (with f,=f,=0.3, f.=0.5, £,=2.5, and a=a,=a,

=a,/2.4) in the 3D k space at the normalized frequency of a/\=0.57 is shown. Only the surface corresponding to the excitation polar-
ization (i.e., E,) is retained. The excitation is a Gaussian beam incident from the substrate region (s,=2.5) at an angle of a=21.75° and
$»=0°, with a symmetric beam waist of 2w,=41.2\, and is originally broadened to a beam width of 77\. Cross sections of the beam inside
the PC structure is shown at (b) z=a (i.e., upon entrance to the PC region) and (c) z=500a. (d) The evolution of the width of the beam
during propagation through the PC structure is calculated using the ETF method and our simple diffractive index model, showing good
agreement. Using Gaussian beam propagation formulas and by fitting the parameters into the calculated ETF beam widths, the diffrac-
tive indices are estimated to be n4,=-0.14 and n4,=0.87, which are in good agreement with those calculated in our simple model.

in relatively low-index-contrast materials (i.e., woodpile
structure, FCC lattice, and diamondlike structure [11] in
polymers) PC modes have almost linear polarizations
with gradual variations over the band structure [21]. As a
result, our model has a good accuracy in analyzing prac-
tical structures of interest.

It is important to note that the diffractive index model
presented here describes the spatial distribution of the
beam during propagation and cannot be used for the
analysis of reflection at the interface of 3D PCs with other
media. For analyzing the reflection and coupling effi-

ciency, a mode matching scheme can be used at the inter-
face of the PC by including both the propagating and the
evanescent modes of the structure [23]. Once the strength
of each mode inside the PC structure is found, the propa-
gation of the mode can be analyzed using the diffractive
index model.

5. CONCLUSIONS

We demonstrated here an accurate and efficient model
based on effective diffractive indices for the analysis of
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Fig. 6. (Color online) Effect of higher-order diffraction on the profile of a beam inside a tetragonal woodpile PC structure is shown, for

the same parameters as those described in Fig. 5, but with an incident beam waist of 2w,=20.6\. The cross section of the incident beam

at the input inside the PC is shown in (a). The beam profile at z=650a after

propagation through the PC with negative diffractive index

in the x direction is calculated and its intensity is plotted using (b) the effective index model and (c) the ETF approach. The appearance
of sidelobes in the output beam profile in (¢) is a result of higher-order diffraction effects that are neglected in the simple effective dif-

fractive index calculations used to find (b).

beam propagation effect inside 3D periodic structures. We
showed that two principal diffractive indices (correspond-
ing to two principal diffraction directions) can be defined
to describe the propagation of beams in an arbitrary di-
rection inside these structures. The model has good accu-
racy for the analysis of all 3D PCs of interest for practical
applications. Using this method, the beam propagation ef-
fects can be studied using simple geometrical optics for-
mulas, which significantly reduces the amount of memory
and computation cost needed for the 3D structure com-
pared to other approaches. Thus, the model enables effi-
cient analysis, design, and optimization of 3D PC struc-
tures and opens up new possibilities for practical
applications of 3D PCs by facilitating their modeling.
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