View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Scholarly Materials And Research @ Georgia Tech

Detection of Conflicts and Inconsistencies in Taxonomy-based Authorization Policies

Apurva Mohan, Douglas M. Blough
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA, USA

Email: apurva@ gatech.edu, doug.blough@ece.gatech.edu

Abstract—The values of data elements stored in biomedical
databases often draw from biomedical ontologies. Authoriza-
tion rules can be defined on these ontologies to control access
to sensitive and private data elements in such databases.
Authorization rules may be specified by different authorities
at different times for various purposes, and as such policy
rules may conflict with each other, inadvertently allowing
access to sensitive information. Detecting policy conflicts is non-
trivial because it involves identification of applicable rules and
detecting conflicts among them dynamically during execution
of data access requests. It also requires dynamically verify-
ing conformance with required policies and logging relevant
information about decisions for audit. Another problem in
biomedical data protection is inference attacks, in which a
user who has legitimate access to some data elements is able to
infer information related to other data elements. This type of
inadvertent data disclosure should be prevented by ensuring
policy consistency; that is, data elements which can lead to
inference about other data elements should be protected by
the same level of authorization policies as the other data
elements. We propose two strategies; one for detecting policy
consistencies to avoid potential inference attacks and the other
for detecting policy conflicts. We have implemented these
algorithms in Java language and evaluated their execution
times experimentally.

Keywords-Authorization policy, Biomedical ontology, Infer-
ence attacks, Policy conflicts.

I. INTRODUCTION

Translational and clinical research projects often require
the collection, exchange, storage, and analysis of many
types of data, including imaging, “omics”, observational,
and electronic health record data. Because of regulatory
requirements and intellectual property concerns, sensitive
and private datasets need to be protected by appropriate
access control policies and mechanisms so that users can
only access subsets of data that they are authorized to access.
Without proper access control policies and software systems
to enforce them, effective use of biomedical data in research,
especially in collaborative research, and health care delivery
can be hindered.

Securing biomedical information presents challenges to
information systems. An increasing number of biomedical
databases make use of ontologies and semantic information;
data that reside in such databases are mapped to domain
ontologies. For instance, studies supported by the Atlanta

Tahsin Kurc, Andrew Post, Joel Saltz
Center for Comprehensive Informatics
Emory University
Atlanta, GA, USA
Email: {tkurc,arpost,jhsaliz} @emory.edu

Clinical and Translational Science Institute, which are the
main motivating applications for our work, employ a va-
riety of controlled terminologies including SNOMED-CT
(Systematized Nomenclature of Medicine - Clinical Terms)
concepts, LOINC (Logical Observation Identifiers Names
and Codes) terms, and ICD9 (International Classification of
Diseases) codes for the values of data elements. Queries
against semantic databases can return results based on
not only the values of individual data elements, but also
explicit and inferred relationships, such as class-subclass
relationships, specified in ontologies. Moreover, biomedical
databases can be accessed by a wide range of users and,
in the case of large scale collaborative studies, across mul-
tiple institutions. For instance, in the Atlanta Clinical and
Translational Science Institute, biomedical data collected in
research studies may need to be accessed by clinicians,
investigators, postdoctoral researchers, biostatisticians with
different access privileges and from partner institutions.
This requirement dictates that multiple data access control
policies be implemented and managed. Thus, the security
infrastructure for large databases of biomedical data must
(1) ensure that policies do not conflict with each other,
new policies or changes to policies do not create conflicts
that may allow unauthorized access to data, and (2) take
into account semantic information in biomedical databases,
support policies defined on concepts from ontologies, and
be able to detect conflicts in such policies.

In this work, we present strategies for conflict detec-
tion when access control policies are defined on tax-
onomies, which represent hierarchical relationships (i.e.,
class-subclass relationships) between concepts. Access con-
trol rules can be defined for any of the concepts in the
taxonomy. That is, a rule specifies whether a request on data
elements, whose values are mapped to the corresponding
concept, should be granted or denied. Access control rules
for a concept can differ from its children and they can
be in conflict. Detecting and resolving these conflicts is
non-trivial because it involves identification of applicable
rules and detecting conflicts among them dynamically during
execution of data access requests. We propose a dynamic
conflict detection and resolution strategy and we have de-
veloped an efficient algorithm to carry out this strategy. Our

https://core.ac.uk/display/16273471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

work is also concerned with attacks where a principal who
has legitimate access to some node is able to infer data
related to another node. Our approach to prevent this type of
inadvertent data disclosure is by ensuring policy consistency,
meaning that the framework ensures that a node which can
lead to inference about other nodes is protected by the same
level of authorization policies as the other nodes. We have
developed an algorithm to check policy consistency to detect
potential information inference attacks. The execution times
of these two algorithms are evaluated empirically.

The rest of the paper is organized as follows - Sec-
tion II describes the problem with current ontology-based
authorization systems. Section III describes the proposed
solutions. Section IV presents an experimental evaluation of
performance of our algorithms. SectionV discussed related
work and finally Section VI concludes the paper.

II. PROBLEM DESCRIPTION

A taxonomy can be represented as a tree, in which
different levels in the tree correspond to class-subclass
hierarchies. For example, if ‘flu’ is a class (or concept),
then the specific types of ‘flu” will be its sub-classes and
will be represented as child nodes in the hierarchy. Our
approach views a biomedical ontology as a resource tree, as
is illustrated in Figure 1. Each node in the tree corresponds
to an ontology concept and represents a resource to be
protected. Access control policies defined on a given node
(concept) specify whether access requests to data elements,
whose values are mapped to the corresponding concept, are
to be granted or denied and under what conditions. In the
figure, some tree nodes, such as ni, ne, ng, ng, and ng,
have an access control rule displayed next to them. The
effect of a rule is denoted by the letter ‘P’ or ‘D’ representing
a response of ‘Permit’ or ‘Deny’ — that is, the request is
either Permitted or Denied. The elements on the left denote
the subject, environmental, and action attributes represented
by ‘s’, ‘e’ and ‘a’. The subject (user) attribute represents a
set of attributes characterizing the user (e.g., an investigator
or a research nurse) requesting access; the action attribute
defines the possible actions (e.g., read data, write data) that
can be issued by the user and evaluated by this policy rule,
and the environmental attribute represent the environmental
characteristics (e.g., from which machines authorized access
requests can be issued) associated with access requests.

Authorization flows are always from any node towards
its children nodes as shown in Figure 1. That is, an access
policy defined on a node should be enforced for all its chil-
dren as well. For instance, assume 'flu’ has two subclasses;
’common flu’ and ’swine flu’. If a *Deny’ policy is defined
on ’flu’ — any request to retrieve data mapped to 'flu’ is
denied —, all requests to the subclasses of "flu’ should also
be denied.

Different authorization rules can be specified on different
levels of ontologies. Each node either has its own access

control rules or inherits them from its parent. Conflicts and
inconsistencies may be introduced because different granu-
larity of data are protected by different policy rules. In case
anode’s access control rules conflict with its parent, conflict
resolution should be performed. It is required that policies
on all ontological classifications (nodes on the resource
tree) in a database are synchronized. This is required to
ensure consistency in authorization decisions on multiple
paths leading to the same resource. If this is not done, then a
user may be permitted to access a resource if he selects one
access path, while he may be denied access through another
path.

In addition to conflicts, inconsistencies may arise when
there is an inference relationship between classifications
on ontologies (nodes on a resource tree). In databases
inference attacks are used to infer sensitive information
which a subject does not have access to by using sensitive
or non-sensitive information that he has access to. Inference
relations between different nodes exist when one or more
nodes can be inferred from some related node. For example,
if nodes A and B convey sufficient information about each
other, a user who has access to one of them can infer the
other with high probability or even completely. In such a
case, if A and B are protected by different policies where
some users are authorized to access only A but can infer B
form it. We treat this condition as a policy inconsistency and
refer to such a condition as inference inconsistency. In the
current research we assume that inference relations between
concepts in an ontology are pre-determined and provided
to our conflict and inconsistency detection algorithms as
input. We plan to investigate in a future work approaches
for finding inference relations between concepts.

To illustrate inference inconsistency, let us consider a
patient who is diagnosed as HIV positive. The patient’s
documents are stored in a database where the data elements
are mapped to a medical ontology. This ontology is used to
specify access control on the data elements in the database.
Since the patient’s condition is highly sensitive, access to his
diagnosis information should only be provided to individuals
with appropriate authorization such as the patient’s doctor.
Assume that a node L1 in the ontology maps to the HIV
status data elements: Ontology — Diagnoses — Infectious
and parasitic diseases — Human immunodeficiency virus
[HIV] disease. This node must be protected by a policy rule
that denies access by any user but the patient’s doctor, Dr.
Brown:

1) {(Dr. Brown), (Node L1), (Read,Write)} = Permit
2) {(*), (Node L1), (*)} = Deny

The second rule uses the wildcard * which represents
all the users other than the ones in the adjoining rule
(Rule 1). The second rule denies any other user access
to node L1. However, it is possible to infer a patient’s
HIV status from his/her laboratory tests. Consider nodes

{sy, a,e}=P

Figure 1.

L3 (Ontology — Lab Tests — Hematology — Complete
Blood Count), L4 (Ontology — Lab Tests — Hematology —
Blood Differential % — WBC Comments), LS (Ontology —
Lab Tests — Hematology — Blood Differential % — Total
Cells Counted). These nodes correspond to different types
of blood tests. The patient’s document in these categories
may have highly sensitive information which may lead to
an inference about the patient’s diagnosis. The following
policy rules allow any researcher and volunteer nurse to
access these nodes:

1) {(Any researcher), (Node L3,Node L4,Node L5),
(Read,Write)} = Permit

2) {(Any volunteer nurse), (Node L3,Node L4,Node L5),
(Read)} = Permit

In this case, these rules create an inference inconsistency,
since while the authorization system limits access to node
L1, the rules allow access to nodes L3, L4, and L5, thus
enabling an unauthorized person to deduce the patient’s
disease status. The authorization system should implement
mechanisms to detect such inconsistencies to properly pro-
tect information.

III. CONFLICT AND INCONSISTENCY DETECTION
METHODS

Our work handles two problems - i) Authorization policy
conflicts among different hierarchical levels in a resource
tree; and ii) detection of inconsistencies in authorization
policies specified for inference related nodes. We address
the former by resolving the conflicts and inform these
inconsistencies to the system administrator. In the latter case,
inference inconsistencies can be by mistake or by design
(e.g., as a result of a data collection and analysis workflow).
As such our approach does not resolve them but provides a
mechanism to detect and inform a system administrator of
the inconsistencies. The inconsistencies can be classified into
strong and weak inconsistencies and reported accordingly so

_ . {s;, a,, e} =P
® ®e O &
‘ . {s,,a;, e }=P

An example tree with data element hierarchy.

that the database administrator can handle them according
to their priority.

Policy analysis can be done in a static or dynamic manner.
In the static analysis mode, all the authorization rules for a
particular node will be compared with authorization rules
for nodes above and below it to determine if there are some
conflicts. There are two ways that conflicts can be handled.
First, when policy rules are being composed, new rules are
checked against the existing rules and an error is reported
when a conflict is detected. In this way, the system does not
allow the composition of conflicting policy rules. Second,
the system allows the composition of conflicting rules but
detects and resolves them before any access request is
received. Since the number of combinations can potentially
become very large, static analysis is generally much slower
but more comprehensive.

In the dynamic analysis mode, on the other hand, policy
checks are performed in real time when an access request is
received by the system. When an access request for a node
is received, the authorization system detects and resolves
conflicts with the parents and children of the requested node
and determines the data subset which the requesting user
can access. Dynamic analysis is faster, but analyzes only
the rules that are applicable to the current request and de-
termines conflicts in them. Dynamic analysis also considers
all the nodes above and below in hierarchy compared to the
current node, but only considers the specific combinations
of subject and environmental attributes present in the current
access request.

In our current work, we develop two novel algorithms
for conflict handling and ‘inference inconsistency’ detection
in the dynamic analysis mode, because conflict resolution
and inconsistency detection can be done quickly (as is also
shown in the experimental evaluation in Section IV). Our ap-
proach supports the principle of the least privilege through a
fine-grained and inference consistency authorization model.
That is, we allow users to access only those data sets which

they need in order to complete their tasks, while enforcing
access control. In Figure 1, for example, if a user needs data
sets n1g and n1g, then the user will get access to nio, which
contains only these data sets.

A. Conflict Handling Algorithm

We now describe the dynamic conflict analysis and han-
dling algorithm and illustrate how it works with an example.
The conflict handling algorithm is presented in Figure 2. The
algorithm performs the following steps:

The user requests all the data associated with a node
n. We create several arrays to help with data processing.
Array] contains the nodes at a level for which we have to
evaluate policy rules; Array2 contains nodes from Arrayl
which allow data access for the user; ReportArray contains
the children of node n which have a conflict with the policy
specified for node n; and FinalArray contains the leaf nodes
which are the children of node n children and are accessible
by the user.

1) An access request for node n is received with specified
subject, environment, and action attributes.

2) The request is evaluated for each parent of node n.
If the response is ‘Deny’ for any one of the parent
nodes, the final response is set to ‘Deny’ (Steps 5-9
in Figure 2). That is, the access request is denied.!

3) Node n is stored in Array2.

4) The request is evaluated for all the children of all
nodes in Array2. The child nodes which have access
decision different from node n are stored in the
ReportArray (Steps 14-15 in Figure 2).

5) The child nodes, which have a response of ‘Permit’
associated with them and are leaf nodes, are stored in
the FinalArray (Steps 16-17 in Figure 2).

6) In the previous step, non-leaf child nodes with access
decision ‘Permit’ are stored in an intermediate array
and the ones with ‘Deny’ are neglected. Others are
stored in Array2 which contains nodes whose children
will be evaluated in the next iteration (Steps 18-19 in
Figure 2).

7) We repeat steps 4 to 6 above till Array2 is empty
(Steps 23-26 in Figure 2).

8) The ReportArray is sent to the system administrator.
The data elements based on the concepts (nodes) in

'An explicit ‘Deny’ rule is set on a node to prevent holders of those
attributes from accessing any data on or below that node.

2If the decision on a node is ‘Permit’ or ‘NotApplicable’, then the more
specific rule on the child node overrides. Since the actual data is only held
on the lead nodes, we need to find all the lead nodes which are children
of node n and see if the current requester is permitted or denied access to
data on that lead node.

3This is in congruence with the two steps above. If there is an explicit
‘Deny’ on a node, the requester is prohibited from accessing data form any
of the children of that node. On the other hand, if the decision is either
‘permit’ or ‘NotApplicable’, we continue to search for rules on child nodes
which would override them.

s, e and a represent the subject, environmentand action attributes

R represents the request and Evaluate evaluatesthe access request

1 Receive request R(s,e,a) for noden

2 Create Arrayl, Array2, FinalArray, ReportArray, to hold node list
3 Variablestemp, temp1 to hold a node

4 temp=n;

5 While(temp.parentid |= NULL)

6 Evaluate[R(s,e,a), temp] -> Result

7 if(Result == ‘Deny’)

8 return ‘Deny’

9 EXIT;

10 n.children-> Arrayl

11 while(Arrayl.hasmorelements)

12 Arrayl.nextelement->templ

13 Evaluate[R(s,e,a), templ] -> tempResult
14 if(tempResult = Result)

15 templ -> ReportArray

16 if(tempResult == ‘Permit’ && temp1l == leafnode)
17 templ-> FinalArray

18 if(tempResult = ‘Deny’ and temp1 != leafnode)
19 templ -> Array2

20 Arrayl.clear

21 if(Array2.size == 0)

22 GOTO STEP 27

23 while(Array2.hasmoreelements)

24 Array2.nextelement.children -> Arrayl.add

25 DELETE Array2.nextelement

26 REPEAT STEPS 11 TO 25

27 if(ReportArray.size > 0)

28 SEND[ReportArray, node n] to admin

29 return FinalArray

30 EXIT;

Figure 2. Conflict handling algorithm.

the FinalArray are returned as the response to the user
(Steps 27-30 in Figure 2).*

Consider the ontology shown in Figure 3. Different nodes
have authorization rules as shown in Figure 4. S1, S2, S3
and S4 represent specific subject and environment attribute
combinations and nl, ... , n8 represent the nodes in the
resource tree. P and D represent the effects ‘Permit’ and
‘Deny’ respectively. Consider some example requests below:

1) If a request to access node n3 and its children from

S2 is received, the algorithm will determine that there
are no explicit ‘Deny’ rules on n3’s parent nodes (i.e.
n2 and nl). It will then evaluate authorization rules
on n3’s children. Since n4 has a ‘Permit’ for S2, only
that leaf node will be returned.

2) If a request to access node n2 and its children from

S2 is received, the algorithm checks that there is no

4The ReportArray contains the nodes which have conflicting permissions
than node n. The FinalArray contains leaf nodes whose data can be accessed
by the requester.

@ {ss}=D
@

{55,555} =P @ | . .
®» ®

{s.}=P

{s;)}=P {s.}=P {s;}=P
("}=0
Figure 3. A sample ontology with authorization rules.

Rule Combination Algorithm - Hierarchical

Rulel: Attributes—54, Resource —nl

Effect — ‘Deny’

Rule2: Attributes—S2,
Effect — ‘Permit”

Resource —n2

Rule 3: Attributes—52,53,54 Resource —n3
Effect — ‘Permit”

Rule4: Attributes—S2,
Effect — ‘Permit”

Resource —n4

Rule5: Attributes—S1,
Effect — ‘Permit”

Resource —n5

Rule6: Attributes—S2,
Effect — ‘Permit”

Resource —n8

Rule 7: Attributes—*¥, Resource —n8

Effect — ‘Deny’

Figure 4. Authorization rules defined on the resource tree in Figure 3.

explicit ‘Deny’ on nl. Node n2’s indirect descendants,
n4 and n8, are the only once with ‘Permit’ rule for S2
and hence they will be returned. Since the decision on
node n2 is ‘Permit’, nodes n6, n5 and n7 will be in
the ReportArray.

3) If a request to access node n3 and its children with
S4 is received, the algorithm will check for an explicit
‘Deny’ on n3’s parents. Node nl has an explicit ‘Deny’
for S4 and hence the request will be denied. The rule
on nl is read as Any requester who holds subject
attribute combination S4 is denied access to data
classified under nl and any of its children nodes.

B. Inference Inconsistency Detection Algorithm

The inference inconsistencies detection algorithm is
shown in Figure 5. The algorithm performs the following
steps:

1) Access request for the node n is received with speci-

fied subject, environment, and action attributes.

2) The algorithm retrieves the list of all the nodes

s, e and a represent the subject, environmentand action attributes
R represents the request and Evaluate evaluatesthe access request

1 Receive request R(s,e,a) for node n
Create Arrayl, ReportArray to hold node list
Variabletemp to hold a node

w N

4 n.Inferencenodelist-> Arrayl

5 Evaluate[R(s,e,a), noden] -> Result

6 While(Arrayl.hasnextelement)

7 A.nextelement-> temp

8 Evaluate[R(s,e,a), nodetemp] -> tempResult

9 if(tempResult = Result)
10 temp -> ReportArray
11 Send [ReportArray, node n] to admin
12 EXIT;
Figure 5. Inference inconsistencies detection algorithm.

Nin ferencenodelist Which can be inferred from the
requested node n.

3) The access policy for node n is evaluated.

4) Access policy for each node in nn ferencenodelist 15
evaluated and the ones which have access policy
responses different from that of node n are reported
to the system administrator.

Inference inconsistencies in the system can be a result of
a mistake or can be included by design (e.g., as a result
of a data collection and analysis workflow). Differentiating
between these two is a reasoning problem and as such our
approach does not resolve them but provides a mechanism
to detect them and inform a system administrator of the
inconsistencies. We assume that the system administrator
will distinguish between the two and manually resolve them.

IV. EXPERIMENTAL EVALUATION

We have implemented the algorithms described in the
previous section in Java programming language and used the
XACML policy language and Sun’s open source XACML
engine [3] for specifying authorization policies. We use
XACML’s standard request protocol, but the response proto-
col is modified so that the response contains a *Permit’ and
also a list of all the data elements which are permitted to be
accessed by the requesting user. We have implemented some
enhancements, in terms of looping access requests, caching
responses, using hierarchical relationships, implementing the
conflict detection and resolutions algorithms, in the policy
component of the open source XACML engine.

The experimental evaluation is targeted at examining the
execution time of the conflict and inconsistency detection
algorithms. We executed the experiments on a Linux server
running Ubuntu 4.4.1. The hardware platform has 8 GB of
RAM and Intel quad core Xeon(R) CPU 5150, 2.66GHz
processor with 4096KB cache on each processor. We used
the ontology provided in the i2b2 system [14] [2]. We

created synthetic policies for evaluation of performance of
the algorithms in a controlled way.

A. Execution Time to Detect and Resolve Conflicts

This set of experiments investigates how long it takes to
execute checks for policy conflicts in a hierarchical ontology.
We have created a sample ontology from the ontology
provided by i2b2 with a total of 10200 nodes (concepts). In
our test setup, the root node represents the entire ontology
and has three levels below it, where level 1 nodes are the
direct children of the root node, and level 3 nodes are the
leaf nodes.

We have measured system performance at three points
while scaling down the number of nodes at 10,000, 6,000,
and 2,000 nodes. For each level of the tree, a node is selected
at random and an access request is generated to access the
resource represented by that node. Permission to access data
elements is evaluated according to the conflict detection
algorithm. The performance results for this test case are
presented in Figures 6, 7 and 8.

Evaluation Time to Handle Policy Conflicts (with Permit rules)

soo1 10,000 Nodes
5,000 Nodes
2,000 Nodes

Execution time (in ms)

2
Level in the resource tree

Figure 6. Evaluation time to detect conflicts with permit rules.

Evaluation Time to Handle Policy Conflicts (with Deny rules)
7000

6000

5000

4000 10,000 nodes

6,000 Nodes

2000 2,000 nodes

Execution time (in ms)

. 2
Level in the resource tree

Figure 7. Evaluation time to detect conflicts with deny rules.

For these experiments, we created policies by randomly
selecting 10% of the total nodes and setting a rule with

Number of children vs. check time for a single node

—%_\91

Average time to find a single child

& g B 81 89 109
Number of children for a test node

Figure 8. Average time to find a single child node and resolve its conflict.

‘Permit’ decision for a specified combination of subject, en-
vironment and action attributes. We repeated this procedure
by setting 10% of the rules with ‘Deny’ rules.

Figure 6 shows the elapsed time to find all the authorized
nodes for an access request for 10,000, 6,000, and 2,000
nodes for each level in the resource tree hierarchy with about
10% of the total nodes containing ’permit’ authorization
rules®. According to the conflict detection algorithm, if a
parent node of the requested node has an explicit deny rule
on it, then the child nodes are not searched and the request
is denied. We show the total elapsed time as the sum of time
for searching deny rules on parent nodes and time to search
child nodes, which is the total elapsed time. We observe
that if the access query is sufficiently narrowed down such
that the resource is at level 2 or 3, then the time required
for conflict detection and resolution is under one second.
Figure 7 shows the elapsed time with the same parameters
as Figure 6, but in this case the 10% authorization rules have
the effect *deny’®.

A key observation from the results is that the total conflict
handling time for a node is directly proportional to the
number of its children in the subtrees. This result can
be attributed to the fact that the nodes closer to the root
node will have more children and will spend more time
in detecting and resolving the conflicts. The average time
to search a single child node at any level of hierarchy is
almost constant (with a range of 80-94 ms) and is plotted
in Figure 8. This time can be multiplied with the number of
children to get a rough estimate the total time to find and
resolve conflicts for a node.

B. Execution Time to Perform Consistency Check

In these experiments, we evaluate the execution time
of consistency checks on policies involving nodes with
inference relations. For example, if the requester requested
to access node A and it has inference relationships with
nodes B, C, and D st. (B,C,D) — A, then we have

SIf this authorization rule is matched, then the final effect is ‘Permit’
S1f this authorization rule is matched, then the final effect is ‘Deny’

to make sure that node A, B, C, and D have the same
level of protection. This check is required so that a user,
who can access node A with a lower level authorization
policies would not inadvertently learn about nodes B, C
and D which are protected by more stringent policies.

In the evaluation, we generate a set of nodes which
have an inference relationship with other nodes. As in the
previous example, nodes B, C or D can be inferred by node
A, ie., (B,C,D) — A. Other nodes E, F', G lead a user to
infer node A, i.e. A — (E, F,G). When an access request
for node A is received by the authorization system, it checks
whether the access control rules for node A are consistent
with nodes B, C, and D. On the other hand, if an access
request is received from nodes E, F', or GG then it checks
whether their access control rules are consistent with node
A.

Typically the number of data classifications that can be
inferred from another classification is relatively low, so we
choose the number of related classifications accordingly. We
assume that each randomly selected node can lead to an
inference of about 3, 5, 10 and 20 nodes respectively and
evaluate the time required to check the policy consistency
for all these nodes by evaluating the algorithm presented
in III-B. In Figure 9, we see that up to 10 nodes, the time
to check policy consistency is under one second.

Policy Consistency Checking Time

1801
1699

1401

1201

g

Checking Time (in ms)
g

601

3 s 10 20
Number of nodes with inference relation to the test node

Figure 9. Policy consistency checking time.

V. RELATED WORK

The problem of supporting access policies on hierarchical
data elements is studied by some researchers. Most closely
related to our research is the work by Jajodia et al. [6],
which proposes some strategies for conflict resolution and
authorization propagation. One difference of our work is that
we consider inference relations in addition to hierarchical
relations for conflict resolution. Also, Jajodia et al. only
consider static resolution of conflicts and do not consider
situations where access control rules themselves may change
during execution.

Inference attacks are common against statistical
databases [7], [12]. Results of statistical attacks can
either contain probabilistic information or information
that leads to inference with certainty. A type of inference

attack was highlighted by De Jonge in his paper on data
inference by results of queries seeking average of subsets of
data. His work shows how datasets can be varied over the
cardinality of the data to reveal valuable information using
the average [7]. K-anonymity is one of the popular methods
employed to protect databases against inference attacks. The
method uses a configurable parameter k£ to determine the
minimum number of entries which should match a query
for any result to be returned [17]. This techniques makes
sure that results to queries pointing to less than k items
will not be returned, thus protecting individual information
items. Another technique, called I-diversity, makes sure
that the £ or more data items returned as query results
have at least [different values [11]. Li et al. proposed the
concept of t-closeness in which they proposed that the [
different values should be separated at least by a parameter
t to ensure a uniform spread of the returned results [9].
All these popular methods have an assumption that a user
either has access to all the sensitive data or they have no
access to sensitive data.

Researchers have proposed various methods to reduce
an attackers access to data that is highly correlated to
protected data. Chang et al. used a Bayesian network model
to determine these inference relations and then reduce the
quality of non-sensitive information to reduce the impact of
inference attacks [4]. This protection will have less impact
in case of an attacker who has legitimate access to some
sensitive information which is highly correlated to the non-
accessible protected information. Yip et al. proposed five
strategies for building these inference relations considering
different ways in which sensitive and non-sensitive data sets
interact [20]. Association of data types is another problem
pointed out by Lunt [10]. The main idea is that two or more
data objects can be non-sensitive by themselves but may
become sensitive when they are associated in some manner.
For example, ‘employee name’ and ‘salary for a designation’
may be non-sensitive by themselves by become sensitive
upon associating them together.

Some researchers have also developed approaches for
handling inference issues during database design [5], [13],
[15], [10]. Hinke proposed the use of conceptual structures
to detect inferences in databases [5]. He used the graph
structure to represent the application and showed how data
can be inferred by traversing alternate paths between two
nodes. His design was simple and used transitivity to detect
inferences. Others proposed to detect and restrict inference
attacks during query processing [8]. Thuraisingham et al.
developed methods for detecting inference relations and
presenting them the system administrator in addition to the
above two [18].

Several projects have developed support for detecting
inferences related to duplicated data protected using incon-
sistent policies. Stoica et al. implemented a model where
their security engine would detect ontologically equivalent

XML data elements which are replicated [16]. In that work,
equivalence was established manually. Yang et al. proposed
an inference engine to semantically match replicated XML
data in large distributed databases and check inconsistency
in their security classifications [19].

Previous approaches on checking access control rules have
similarities to our approach but the main distinction is that
we check inconsistency in access control rules between
different data elements from which protected data elements
can be inferred as opposed to the other methods, which try
to detect replicated data. Another important distinction is
that our approach is not limited to XML data and considers
different types of data elements in the databases.

VI. CONCLUSIONS

Security is a critical component in making biomedical
data available for research purposes. Because of complexity
of semantic databases and the variation of user access
privileges, conflicts and inconsistencies may arise in a group
of access control policies defined on ontology concepts for a
database. Our work has investigated two algorithms designed
to support (1) detection and handling of conflicting policies
defined at different levels of a hierarchical ontology and
(2) detecting and reporting policy inconsistencies among
policies defined on inference related concepts in an on-
tology. These algorithms provide a tool for the database
administrators to better protect sensitive and private data.
Our empirical evaluation of the execution times of these
algorithms indicates that the algorithms are fast and likely
to incur little overhead to the overall execution of the
security infrastructure and database system. Our current
work assumes the inference relationships among concepts in
an ontology are provided explicitly. We plan to investigate
methods to detect such inference relationships in a future
work.

ACKNOWLEDGMENT

This research is supported in part PHS Grant
ULIRR025008 from the CTSA program, by the
National Science Foundation under Grant CNS-CT-
0716252, by R24HL085343 from the NHLBI, by Grant
RO1LMO009239 from the NLM, and by SAIC/NCI Contract
No. HHSN261200800001E from the National Cancer
Institute, NCI Contract No. NO1-CO-12400, 85983CBS43,
and 94995NBS23.

REFERENCES
[1] eXtensible Access Control Markup Language (XACML).

www.oasis-open.org/committees/xacml/.
[2] i2b2 web client. https://www.i2b2.org/webclient/.
[3] Sun XACML Policy Engine. sunxacml.sourceforge.net.

[4] L. Chang and I. Moskowitz. A bayesian network schema for
lessening database inference. In CIMCAOI, 2001.

[5] T. Hinke. Inference aggregation detection in database man-
agement systems. In IEEE Symposium on Security and
Privacy, 1988.

[6] S.Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian.
Flexible support for multiple access control policies. ACM
Transactions on Database Systems, 26:214-260, June 2001.

[7] W. D. Jonge. Compromising statistical databases responding
to queries about means. In ACM Transactions on Database
Systems, 1983.

[8] T. Keefe, M. Thuraisingham, and W. Tsai. Secure query
processing strategies. IEEE Computer, 22:63-70, 1989.

[9] N.Liand T. Li. t-closeness: Privacy beyond k-anonymity and
I-diversity. In IEEE 23rd International Conference on Data
Engineering, 2007.

[10] T. F. Lunt. Aggregation and inference: Facts and fallacies. In
IEEE Symposium on Security and Privacy, 1989.

[11] A. Machanavajjhala, J. Gehrke, and D. Kifer. 1-diversity: Pri-
vacy beyond k-anonymity. ACM Transactions on Knowledge
Discovery from Data, 1, March 2007.

[12] S. Mandujano. Inference attacks to statistical databases: Data
suppression, concealing controls and other security trends.
Aleph Zero online magazine, 23, April-May 2000.

[13] M. Morgenstern. Security and inference in multilevel database
and knowledge base systems. In ACM SIGMOD, 1987.

[14] S. Murphy, G. Weber, M. Mendis, H. Chueh, S. Churchill,
J. Glaser, and I. Kohane. Serving the enterprise and beyond
with informatics for integrating biology and the bedside
(12b2). Journal of the American Medical Informatics Associ-
ation, 17(2):124-130, March-April 2010.

[15] G. Smith. Modelling security relevant data semantics. In
IEEE Symposium on Security and Privacy, 1990.

[16] A. Stoica and C. Farkas. Ontology guided xml security
engine. Journal of Intelligent Information Systems, 23:209—
223, 2004.

[17] L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10:557-570, 5 2002.

[18] B. Thuraisingham. The use of conceptual structures for
handling the inference problem. Database Security V: Status
and Prospects, pages 214-260, 1992.

[19] L. Yang, X. Junmo, and L. Jing. Protecting xml databases
against ontology-based inference attack. In International
Conference on Computational Intelligence and Security,
2007.

[20] R. Yip and K. Levitt. Data level inference detection in
database systems. In IEEE Computer Security Foundations
Workshop, 1998.

