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We investigate the application of low-density parity-check (LDPC) codes in volume holographic memory
(VHM) systems. We show that a carefully designed irregular LDPC code has a very good performance
in VHM systems. We optimize high-rate LDPC codes for the nonuniform error pattern in holographic
memories to reduce the bit error rate extensively. The prior knowledge of noise distribution is used for
designing as well as decoding the LDPC codes. We show that these codes have a superior performance
to that of Reed—Solomon (RS) codes and regular LDPC counterparts. Our simulation shows that we can
increase the maximum storage capacity of holographic memories by more than 50 percent if we use
irregular LDPC codes with soft-decision decoding instead of conventionally employed RS codes with
hard-decision decoding. The performance of these LDPC codes is close to the information theoretic

capacity. © 2003 Optical Society of America

OCIS codes:

1. Introduction

Holographic memories have been of intense interest
recently due to their potentials for large storage ca-
pacity and fast data access. Recently, a lot of re-
search has been done on holographic storage systems,
and several demonstrations of holographic memory
systems have been reported.> The information in
a holographic memory system is recorded and re-
trieved in the form of two-dimensional data pages,
i.e., two-dimensional patterns of bits. During the
recording of a page, a signal beam is formed by mod-
ulating a plane wave that is generated by a spatial
light modulator. The interference of this signal
beam with a reference beam is recorded in a record-
ing medium. Several pages (at least 1000) are mul-
tiplexed in a holographic memory module by use of
distinct reference beams for distinct data pages.
Multiplexing of up to 10,000 holograms has been re-
ported.® Readout of a desired page is performed by
the reference beam corresponding to that page. The
diffraction of the reference beam off the hologram
onto a camera (CCD or complementary metal-oxide
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semiconductor) results in the retrieval of the data
page. The parallelism during recording and readout
due to the page-oriented nature of holographic mem-
ories results in large recording and readout rates.
The possibility of multiplexing several holograms in
the same volume results in considerable data storage
capacities. The recent advances in SLM and CCD
technologies play a major role in the success of holo-
graphic memories as both the storage capacity and
the data transfer rates scale linearly with the num-
ber of bits per page. Currently both SLMs and
CCDs with at least 1024 X 1024 pixels are available
resulting in 1 Mbit pages. Multiplexing 1000 of
such pages in a memory module (typical size of the
recording material: 1 cm?) results in a capacity of 1
Gbit. A modest frame rate of 1 kHz during readout
results in 1 Gbit/s data rate. With advances in both
recording materials (which allows multiplexing more
holograms) and the SLM and CCD technologies (that
allow more pixels per page and larger frame rates),
improvement by at least one order of magnitude in
both the storage capacity and the data transfer rate is
expected in the near future.

The capacity of a holographic memory system is
controlled by the number of pages and the number of
information bits per page. The number of pages (or
holograms) is usually determined by the dynamic
range of the recording materials. Multiplexing
more holograms results in weaker holograms and
lower signal-to-noise ratio(s) (SNR)(s). If M holo-
grams are multiplexed appropriately, the diffraction
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efficiency (n) of each hologram is given by m = [(M/
#)/M?, with M/# being the dynamic range parame-
ter.” Use of weak holograms (corresponding to large
number of pages) results in large raw bit error rate
(BER) (typically 10 ® — 107 3). This is much higher
than the practically required BER of 102, This
makes the use of error correcting codes inevitable.
The use of strong error correcting codes results in a
smaller number of information bits per page due to
larger number of parity bits added for error correc-
tion. However, because larger raw BERs are accept-
able for stronger codes the number of pages is
increased. Therefore, for a given error correcting
code, there is an optimum number of holograms that
results in the maximum storage capacity. This op-
timum depends on several parameters including the
noise characteristics of the systems, the dynamic
range parameter (M/#), and the error correcting
code. Read-Solomon (RS) codes and modulation
codes have been extensively used for holographic
memory systems.8-10 The detailed optimization of
the storage capacity of holographic memory systems
using RS codes has been reported.®8 Soft-decision ar-
ray decoding and parallel detection for page-oriented
optical memories have been studied also.!1.12

The noise characteristics and therefore, BER in
holographic memories is not uniform over a data
page. Typically, the probability of error is minimum
at the center of the page and increases by increasing
the distance from the center of the page® (BER is
highest at the corners of the page). Typically, the
raw BER might vary by two orders of magnitude over
a page. Therefore, we need to design a nonuniform
error protection scheme. Chou and Neifeld pro-
posed an interleaving scheme to deal with the non-
uniform error pattern arising from random and
systematic errors.® They could increase the storage
capacity by their interleaving method.

An excellent candidate for nonuniform error pro-
tection in holographic memory systems is the family
of low-density parity-check (LDPC) codes. Our focus
in this paper is to show the potentials of LDPC codes
for holographic memory systems. We compare the
performance of a typical storage system incorporat-
ing the LDPC codes with that incorporating the RS
codes. We use a holographic system similar to that
previously used for the optimization of the memory
systems with the RS codes reported in Ref. 8. We
perform the optimization for the same system with
the LDPC codes. Although we concentrate on the
LDPC codes for holographic memory systems, the
coding method presented here is general and can be
applied to other page-oriented memory systems.

In this paper we propose a method to design good
LDPC codes for volume holographic memory (VHM)
systems. In Section 2 we briefly discuss soft- and
hard-decision decoding of error-correcting codes
(ECC). In Section 3 we first explain why LDPC
codes are suitable for holographic memory systems
and then discuss the design of LDPC codes for these
systems. In Section 4 we show the results of Monte
Carlo simulation for estimating the performance of
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these codes and compare these results with that of RS
codes. Final conclusions are summarized in Section
5.

2. Error-Correcting Codes for Volume Holographic
Memory Systems

Error correcting codes (ECC) have been applied to
VHM to increase the storage capacity of the system.
Storage capacity is defined as the number of infor-
mation bits stored under the condition that the BER
is lower than a required value. The information the-
oretic capacity can be considered as an upper bound
for the storage capacity. Because the diffraction ef-
ficiency of the recorded holograms decreases with an
increase in the number of pages, the BER increases
when we increase the number of stored pages. To
increase the storage capacity, we can store more
pages and use ECC to decrease the BER to the de-
sired value. If we increase the number of stored
pages by a factor f, the capacity of the system is
increased by the factor f X R, where R is the code rate
(the ratio of the number of information bits to the
total number of bits). Thus, for a constant number
of pages, to have the highest storage capacity we need
to find a code with highest rate that provides us with
the required output BER. The optimization of the
number of pages was studied in Ref. 8. Here we first
assume a fixed number of pages and try to design
codes for VHM with R as large as possible while
keeping the BER constant. Then we change the
number of pages and try to maximize the storage
capacity.

The decoder of an ECC can be a soft-decision decoder
or a hard-decision decoder. In the hard-decision de-
coding, inputs to the decoder are binary-valued bits.
Unlike the hard-decision decoding, the inputs in the
soft-decision decoding are real numbers (in practice an
analog-to-digital converter is used to quantize the in-
put to a finite number of levels). Consider a VHM
system in which we assume all pixels are independent.
Note that in reality, pixels are not independent, how-
ever, we make this assumption to make our analysis
easier. The information theoretic capacity of this sys-
tem is equal to

C=M2 C, D

where M is the number of stored pages, N? is the
number of pixels in a page, and C; is the capacity of
the channel seen by the ith pixel. Note that C; de-
pends on M. If we have access to only hard infor-
mation of the output of the channel, then the channel
can be considered as N? parallel binary symmetric
channels (BSC). The information theoretic capacity
of this channel model is

N2 N2
C=M> C,=M> [1-Hp)l, 2)
i=1 i=1
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Fig. 1. Capacity of the BSC and the BIWAGN channel versus the bit error probability.

where p; is the probability of error of the ith bit and
H is the binary entropy function given by

H(p)=p 10g2<1) +(1 —p)log2(1> )
D 1-p

However, if we have access to the soft information in
the decoder and if we assume the additive white
Gaussian noise approximation, then the channel can
be modeled as N2 parallel binary input additive white
Gaussian noise (BIAWGN) channels for which the
capacity C, is given by!3

1
C;= — J. $i(x)logs[ d; () ]dx — 9 logy(2mea ). (4)

Here, we have

]_ B (x+1)2 B (x—1)2
2 (e 202 + e 20;2 ) 5 (5)

d;(x) =

\8ma;

where o, is the variance of the noise that affects the
ith bit. Figure 1 depicts the capacity of the BI-
AWGN and BSC channels versus the bit error prob-
ability. Obviously, the capacity of the BIAWGN
channel is higher than that of the BSC with the same
bit error probability, because in the BIAWGN chan-
nel we have more information about the output of the
channel. There exist both soft- and hard-decision
decoding algorithms for LDPC codes.’31¢ To have
the best BER performance, we choose to perform soft-
decision decoding as we explain later.

3. Low-Density Parity-Check Codes for Volume
Holographic Memory Systems

A. Background on Low-Density Parity-Check Codes

LDPC codes were first proposed by Galleger.’* Re-
cently, these codes were rediscovered and
improved.13:15-20  An LDPC code is defined as a lin-
ear block code with a sparse parity-check matrix H =
[h;], 1.e., most of the elements of H are equal to 0 and
a few of them are equal to 1. For a (k, n) binary
linear block code, the parity-check matrix has m =
n — k rows and n columns, and codewords x are
binary vectors of length n that satisfy the equation
Hx = 0. Eachrow of H corresponds to a parity-check
equation and each column corresponds to one bit of
the codewords. An LDPC code can also be repre-
sented by a bipartite graph called the Tanner
graph.2l A Tanner graph is a bipartite graph with
bipartition V and C, where V = {v4, vo, . . ., v,,} is the
set of variable (message) nodes and C = {cq, cs, . . .,
¢,,} is the set of check nodes. The nodes c¢; and v; are
adjacent (connected by an edge) if and only if ,; = 1.
The degree of a node is defined as the number of edges
incident with it. An LDPC code is called regular if
the degrees of all message nodes are equal and the
degrees of all check nodes are equal. Otherwise the
code is called irregular. As an example, Fig. 2 shows
the Tanner graph of the code defined by

110100
01101 0]. (6)
101001

H =

It is clear from Fig. 2 that the code is irregular be-
cause the variable nodes have different degrees. As
we see later, this irregularity will be exploited to
construct nonuniform ECC.
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Fig. 2. Tanner graph for an LDPC code.

LDPC codes can be decoded by iterative algorithms
called message-passing algorithms. In these algo-
rithms, messages are exchanged between variable
nodes and check nodes iteratively. In each iteration,
every check node ¢ receives messages from all its
neighbor variable nodes (two vertices are neighbors if
they are adjacent). Based on these messages, the
check node computes new messages and sends them
to its neighbors. A message that the check node ¢
sends to a variable node v is a function of the incom-
ing messages from all neighbors of ¢ except v. Sim-
ilarly, variable nodes send messages to their neighbor
check nodes. In this paper we consider a message
passing algorithm that is called the belief propaga-
tion. Therefore, to perform the decoding, we need to
know the update equations for the belief propagation
algorithm. The detail of this algorithm can be found
in Ref. 13.

Richardson et al. developed an algorithm, called
density evolution to find the densities of the messages
exchanged between variable nodes and check
nodes.!3:16 In this method, the distributions of mes-
sages from variable nodes to check nodes at two con-
secutive iterations of belief propagation are
connected by a recursive formula. They used this
method to determine the performance of LDPC codes
and to find optimum degree distributions for LDPC
codes. Here we will use similar formulas for the
nonuniform error patterns in VHMs.22

B. Low-Density Parity-Check Codes for Volume
Holographic Memory

LDPC codes are suitable for holographic memories
for a variety of reasons. First, it is shown that they
have a performance near Shannon limit.13.16.18
Therefore, we will be able to approach the informa-
tion theoretic capacity of the channel using LDPC
codes, while RS codes do not have a performance near
the information theoretic capacity for the practically
limited block length. Second, not only do we use the
prior knowledge of the noise distribution in the VHM
data page in designing the code, but also we use this
information in the decoding period. On the con-
trary, it is not easy (if not impossible) to incorporate
the prior knowledge of noise distribution into the
designing and decoding of RS codes. An interesting
method was proposed in Ref. 8 to cope with the non-
uniform noise distribution. The authors suggested
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interleaving the bits such that all message blocks
contain the same number of good bits and bad bits
(bits with low noise and bits with high noise). In
other words, the average noise power in a message
block after interleaving is independent of the location
of bits. However, we still cannot use the prior infor-
mation about noise distribution at the decoding step.

In the design of LDPC codes we use the flexibility
of these codes for choosing the degree distribution of
the Tanner graph. We choose the degree distribu-
tion such that the code performance is optimized for
the channel noise distribution. In the decoding pro-
cess, we use log-likelihood ratios that contain the
information about the noise power for a specific bit
and the information about how reliably that bit was
transmitted across the channel. Third, the decoding
of LDPC codes is fully parallelizable and very fast,
which makes these codes desirable for VHM systems.
This enables us to use a long block length and de-
crease the BER while we maintain lower redundancy.

The main drawback of LDPC codes is that they
have a slow encoder. This is not a problem in the
VHM systems because we use a high-rate LDPC code
with a systematic encoder. Therefore, we need to
encode only parity bits whose number is a small frac-
tion of the block length. Moreover, we can also use
the method described in Ref. 17 to simplify the en-
coding process.

Another problem with LDPC codes is that they
may show an error floor effect. However, not all
LDPC codes have this property. For example, for
the LDPC codes that we designed in this paper, we
did not observe any error floor down to the BER of
107°. Additionally, these codes perform close to the
Shannon capacity. An alternative technique to deal
with an error floor is to concatenate an outer code
with an LDPC code. This way, we can decrease er-
ror probability significantly, with a small loss of the
storage capacity. However, an interleaver is re-
quired to distribute the errors in an erroneous LDPC
word to several words of the outer code.

We mention that when we change the number of
pages, we need to design a new LDPC code with a
different degree distribution so that the code is opti-
mized for the new channel. However, this is not a
problem because the code is designed off-line. More-
over, this flexibility of LDPC codes enables us to op-
timize the code for each specific channel. On the
contrary, for the RS codes over GF(q)[GF(q) is the
finite field with ¢ elements], there is no need for
designing because there is no design parameter, ex-
cept the rate.

C. Design of Nonuniform Error Correcting Low-Density
Parity-Check Codes

In this section we briefly discuss the design of effi-
cient LDPC codes for holographic memories. An ir-
regular LDPC code ensemble is specified by its degree
distribution.’620 The degree sequence determines
the percentage of variable or check nodes of different
degrees. Itis shown in Ref. 13 that the performance
of a randomly chosen LDPC code from an ensemble of



LDPC codes with a given degree sequence is very
close to the average performance of the codes in the
ensemble with a high probability. The nonuniform
error pattern of holographic memories suggests using
irregular LDPC codes. One approach is to find the
average noise distribution over the page and to de-
sign a good degree sequence for the resulting channel.
However, we consider another approach that is more
suitable for nonuniform error correction. The de-
tails of this design method are described in Ref. 22.
Here, we only describe the main idea. As was shown
in Ref. 8, each page can be divided into %, regions
whose bits have a similar BER. Generally, pixels at
the corner of a data page have a higher probability of
error than those at the center of the page. Suppose
the constant BER regions are R{,R,, ... ,R,. Letn
be the block length and (x4, x,, . . . ,x,) be a codeword.
Also, let W be the set of the bits in the jth region in
the codeword, i.e., WV = {x;:x, € R;},and [W| = nW),
where |-| denotes the cardinality of a set. Roughly
speaking, instead of assuming a single degree distri-
bution for all nodes, we consider the ensemble of
graphs in which the bits from different regions may
have different degree distributions.

To optimize LDPC codes for the nonuniform error
protection, we then find the density evolution formu-
las for these codes.22 For simplicity, we can use a
Gaussian approximation method!® (if we assume
Gaussian noise). As in the uniform error protection
case, we need to have only a few nonzero coefficients
for the degree distributions of the variable nodes and
check nodes6:20.22 to find the good degree distribu-
tions. In fact, we observed that we can find good
degree distributions by the following simple scheme:
We let all the variable nodes of the same type [all bits
that lie in W] have the same degree, and the degree
distribution of the check nodes is concentrated at one
degree or at two consecutive degrees.

We now undertake some important issues about
the design of these codes. Let us consider the en-
coding problem. Because an LDPC code is used with
very large lengths, its generator matrix has large
dimensions. This requires a large number of com-
putations in the encoding algorithm. To avoid this,
we use the generator matrix G in the systematic
form. This means that if we encode a vector (u,,
Ug, ..., Uy) to a codeword (x4, xo, . .., x,,) we have
u; =x;for1 =i =k. Therefore, we need to calculate
onlyn — kbitsx, 1, %19, ..., %, Because in holo-
graphic memories, we usually use high-rate codes,
n — k is a small number that results in less compu-
tation with respect to nonsystematic encoding.

Another issue is avoiding short cycles in the Tan-
ner graph of the code. To have a good performance,
we need to avoid short cycles (cycles of four in length)
in the Tanner graph.1415 Unfortunately, the higher
the code rate is, the more difficult (if not impossible)
it is to eliminate these cycles. Because we use high-
rate codes in holographic memories, it is likely that
there exists several short cycles in the Tanner graph
representation of the code. We avoided these short
cycles as much as possible. We also maintained the

Region 2

Region 1

Fig. 3. Different regions in a typical data page in holographic
recording. Raw BER is almost constant in each region.

graph to be very sparse (less than one percent of
the elements of the parity-check matrix are one) (by
choosing a very sparse parity check matrix) to avoid
the short cycles.

We would like to point out that in Ref. 11, those
authors proposed a likelihood-based two-dimensional
equalization for extenuating interpixel interference
noise in VHM systems and combined it with the soft-
decision of the array codes. A similar scheme can be
used for LDPC codes as well to improve the perfor-
mance of the code further. The decoding algorithm
for LDPC codes in intersymbol interference channels
is described in Ref. 23.

4. Simulation Results

We implemented the LDPC codes that we designed to
examine their performance. For simulation we
chose a system similar to Ref. 8. As explained in
Ref. 8, different kinds of errors are present in the
system. The probability density function of the
noise is determined by considering the effect of all
these error sources. For simplicity, we assume that
the noise is additive white Gaussian and its variance
is a function of the pixel location. Note that the
formulas used in decoding and density evolution are
quite general and can be applied to any symmetric3
noise distribution. Therefore, our analysis can be
applied to any system with a nonuniform error pat-
tern. As mentioned before, the raw BER in volume
holographic storage depends on the position of the bit
in the data page. Figure 3 shows the different re-
gions with a constant raw BER before error correc-
tion. In each region, pixels have almost the same
probability of error.8 In our simulations we divided
a page into four regions. We assume the system has
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a raw BER approximately from 10™2 to 10~ when
2000 pages are stored. This raw BER increases
when the number of pages increases. Similar to Ref.
8, we make the following assumption: The magni-
tudes of the systematic error and the thermal noise
are assumed to remain unchanged with respect to M
(the number of pages) and SNR per pixel can be com-
puted by using the scaling law that states that the
SNR is proportional to (1/M?).824

Normally, the output BER of 102 is desirable for
the holographic storage. However, because of the
extensive computation that is involved to find the
performance of the code at 102, we are compelled to
obtain an upper bound on the BER. Because it is
computationally feasible to decode 10° bits, we per-
formed our experiments for this number of bits. For
an optimized LDPC code of a given rate we found the
maximum number of pages such that after the de-
coding of 10° bits, no error was observed. We then
concluded that the average BER was upper bounded
by 1078 We also considered RS codes of several
different lengths ranging from 15 to 511 and deter-
mined the number of pages for the output BER of
1078 We anticipate that if the actual error rate for
the LDPC code is higher than 10~ '2, we can reach the
BER of 10~ 2 by very subtle reduction in the capacity
provided we do not face an error floor problem. The
reason for this is that LDPC codes are known to have
a threshold effect.'® For a given degree of distribu-
tion, this threshold can be defined as the maximum
possible noise level, to have reliable communication.
Equivalently, we can define the SNR threshold as the
minimum SNR required for reliable communication.
If the SNR is higher than the SNR threshold, we can
achieve an arbitrary small probability of error if we
are allowed to have a high enough block length.
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However, if the SNR is lower than the SNR thresh-
old, the probability of error is bounded away from
zero by a strictly positive constant. As long as we
use these codes for a channel with an SNR higher
than the threshold, increasing the SNR by a small
value results in a drastic reduction of the BER.18
Because we use these codes just below their noise
threshold (or above the SNR threshold), we expect
that even if our codes have a BER higher than 1012,
we can reach this error rate by reducing the number
of pages slightly. The above discussion is valid if the
code does not have an error floor higher than 10712,
In a case when we cannot avoid the error floor, as we
mentioned, we can concatenate an outer code with
the LDPC code.

Figure 4 shows the storage capacity that is ob-
tained by using LDPC codes and RS codes of different
lengths and different decoding methods. For RS
codes, we used the same interleaving scheme that
was proposed in Ref. 8 to improve the performance of
the code for the nonuniform noise distribution. Only
hard-decision decoding is considered for RS codes.
The maximum storage capacity that is gained by us-
ing RS codes is 0.5609 Gbits, which is obtained when
an RS code of length 511 is used and 2802 pages are
stored. The maximum storage capacity that is ob-
tained by using LDPC codes is 0.8423 Gbits. This is
achieved when 4600 pages are stored and the soft
LDPC decoder is used. We note that this capacity is
about 50 percent higher than that of the RS codes.
This sizable increase in the capacity by the LDPC
code can be explained by use of Fig. 4. When the
number of pages is small, there is not much difference
between the RS codes and the LDPC codes. This is
because the information theoretic capacity of hard-
decision and soft-decision decoding are close to each
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other for a high SNR [or equivalently, a small number
of pages (Fig. 1)]. Moreover, RS codes have a good
performance for such SNRs. However, when the
number of pages increases and therefore SNR de-
creases, the difference between the capacity of hard-
decision and soft-decision decoding increases. More
importantly, LDPC codes maintain near the Shannon
limit of performance for the low SNR, while the per-
formance of RS codes is far from the Shannon limit in
the low SNR. For this reason, the optimum number
of pages for LDPC codes is higher than that for RS
codes. We also note that the performance of LDPC
codes with hard-decision decoding is about 25 percent
higher than the maximum capacity of the RS codes.

It is important to note that the full advantage of
LDPC codes is obtained if we choose the optimum
number of holograms (M = 4600). The number of
holograms that can be recorded in a recording mate-
rial (for example, a photorefractive crystal) is limited
by the finite dynamic range and the angular selectiv-
ity. By use of a 1-cm thick LiNbO; crystal with the
current values of M /#, it is possible to multiplex sev-
eral thousand holograms. Two reported examples
are 5000 and 10,000 holograms.625 If for any reason
(thin crystal, small M/#, large noise level, etc.) the
maximum number of holograms is below 2000, the
advantage of LDPC codes will be lost as evidenced by
Fig. 4.

Let us now specifically give one of the codes that we
found. For the rate 0.85 we divided the page into
four different regions (region one to four) each with a
different noise power. Consider the code for which
we have

d1:3,d2:4,d3:7,d4:1O,dC:40, (7)

where d; is the degree of variable nodes of the bits
from region i, and d, is the degree of check nodes.
Note that the degree distribution is very simple.
The relative SNRs in different regions are

SNR; — SNR,; = 2.80dB,
SNR, — SNR, = 3.74dB. (8)

Figure 5 shows the performance of this code when
the block length is n = 10,000 and » = 100,000. It
can be noticed from the figure that for » = 100,000 at
the BER of 10~ ? the gap from the capacity is only 0.65
dB and for n = 10,000 this gapis 1.04 dB. Moreover,
the codes do not present any error floor at least for the
BERs higher than 107°. We think that having a
degree distribution that is close to regular (bits from
the same regions have the same degree) helps to mit-
igate the error floor problem. Obviously, it is possi-
ble to find a more complicated degree sequence and
get closer to the Shannon capacity. But, in this case,
we may have an error floor problem. We see that the
simple scheme that we propose here is close enough
to the information theoretic capacity and yet does not
have the error floor problem.

Figure 6 presents the performance of the opti-
mized irregular LDPC codes in comparison with the
maximum possible rate determined by information
theory to have reliable communication on the chan-
nel (Shannon’s capacity). We see that the LDPC
code rates are close to the capacity limit. We have
chosen the code rate below the theoretic threshold
to ensure that the probability of the error is less
than 108,

In Fig. 7 we compare our irregular LDPC code with
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a regular one. We chose an irregular LDPC code of
rate 0.85 that is optimized for our system and com-
pared its performance with a regular LDPC code of
the same rate. We changed the number of pages
and computed the output BER for both codes. For
each number of pages we decoded a stream of 107 bits
and computed the average BER. The average BER
is plotted in Fig. 7. The threshold effect of LDPC
codes can be seen from Fig. 7. Here, we can define
the threshold of an LDPC code as the maximum num-
ber of pages for which the BER can be made very
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small. By this definition, the threshold of the regu-
lar code is M = 3000, while the threshold of the
irregular one is M = 4000. This indicates that we
can increase the storage capacity by 34 percent by
using the irregular LDPC code instead of a regular
one. Note that the code rate for the two codes in Fig.
7 are the same.

Figure 8 presents the error probability of the de-
signed LDPC code for different iterations in decod-
ing. We chose an irregular LDPC code of rate R =
0.9 with M = 3400. We computed the average BER

-0.1 L L
2000 3000 4000

1 1 } )
5000 6000 7000 8000

M=number of pages

Fig. 7. Comparison of the performance of irregular and regular LDPC codes.
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Fig. 8. Performance of the irregular LDPC code for different iterations.

for different iterations by decoding 107 bits. We
observed no error after the 8th iteration. This
shows that usually a few iterations are sufficient to
correct all errors and therefore, the decoding is very
fast. This is because we use LDPC codes below
their noise threshold and moreover, usually the
SNR in VHMs is high, so a small fraction of received
bits are in error.

Figure 9 presents the BER as a function of the
number of pages for different values of n (block
length) for LDPC codes of rate 0.95. We observe
that the BER decreases as n increases. This is ex-
pected, because codes with higher block lengths dem-
onstrate better performance. However, as we
increase n, the complexity of encoding and decoding
increases accordingly. Therefore, we should utilize
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Fig. 9. Performance of irregular LDPC codes with different block lengths.
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an optimum value of n with acceptable performance
and complexity.

5. Conclusion

We studied the application of LDPC codes for VHM
systems. We proposed a method to design irregular
LDPC codes for holographic memories in which the
noise is nonuniformly distributed. Our method is
based on the fact that different pixels of a page are
subject to the different noise probability density func-
tions. We used a generalized density evolution tech-
nique to design optimal irregular LDPC codes. We
compared the performance of the irregular LDPC
codes with that of the RS codes of different lengths.
We showed that we can increase the storage capacity
considerably by using an irregular LDPC code that is
optimized for the nonuniform noise distribution.
We also showed that the optimized irregular codes
have better performance than regular codes. Al-
though this is true in general, the fact that the chan-
nel noise has a nonuniform distribution strengthens
this phenomenon.

This research was supported by the Air Force Of-
fice of Scientific Research (K. Miller).
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