Attenuation in waveguides on FR-4 boards due to periodic

substrate undulations

Yin-Jung Chang, Thomas K. Gaylord, and Gee-Kung Chang

The guided-mode attenuation associated with optical-interconnect-polymer waveguides fabricated on
FR-4 printed-circuit boards is quantified. The rigorous transmission-line network approach is used and
the FR-4 substrate is treated as a long-period substrate grating. A quantitative metric for an appropriate
matrix truncation is presented. The peaks of attenuation are shown to occur near the Bragg conditions
that characterize the leaky-wave stop bands. For a typical 400 pm period FR-4 substrate with an 8 pm
corrugation depth, a buffer layer thickness of about 40 pm is found to be needed to make the attenuation
negligibly small. © 2007 Optical Society of America
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1. Introduction

Board-level guided-wave optical interconnects are of
growing interest for boosting chip-to-chip transmission
data rates that are currently limited by the aspect
ratio of the metal interconnects,! frequency-dependent
dielectric loss, and signal integrity demands in multi-
gigahertz frequency range.2 Various board-level optical
interconnects using guided-wave configurations have
been proposed and extensively investigated, including
fully embedded optical interconnects,3# fully surface-
mount-technology-compatible optical-I/O package,>
on-board optical interconnects with planarized board
surfaces,® and Optochips assembled directly on an
organic card with integrated parallel waveguides.”
Among these various structure configurations, poly-
mer waveguides were either laminated inside the
printed-circuit boards3-> (PCB) or fabricated on top of
the signal plane of the board.6:7 In either case, a
buffer and/or cladding layer is necessary to separate
the polymer-based waveguide core material from the
surrounding PCB substrate and the surface undula-
tions of the FR-4 PCB.

Though no further information on the buffer or
cladding layer thickness was given for embedded and
on-board optical layers reported,3->-7 Chang et al.6 did
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address the importance of the surface planarization
for polymer waveguide fabrication on inexpensive
FR-4 PCBs. The thickness of the buffer layer report-
edé is approximately 30 um after the final curing
process. The need for a thick buffer layer is due to the
surface undulation and local surface roughness found
in FR-4 PCBs. Most FR-4 bare boards have *2 to
+4 pm undulation with period of 400 to 800 pm and
local roughness of +0.4 to 0.5 pm. The undulation
arises from the woven fiberglass buried inside the
board for reinforcement, as can be seen in the C-mode
scanning acoustic microscope (C-SAM) photography
shown in Fig. 1. A local roughness that is greater
than 25 nm will cause optical scattering losses.®
However, no further analysis and explanation re-
garding the effect of the long-period FR-4 substrate
undulations on the guided-mode(s) propagation have
been discussed.

As far as the long-period undulations are concerned,
a structure similar to the dielectric waveguide on pe-
riodic FR-4 substrate is the long-period waveguide
grating (LPWG). Since being proposed,® LPWG notch
filters with corrugations formed on the waveguide core
surface have been experimentally demonstrated.®-13
They operate by coupling the fundamental guided
mode to a particular leaky cladding mode at the wave-
length specified by the phase-matching condition814

)\0: (NO_Nm)A, (1)

where )\, is the resonance wavelength, A is the grat-
ing period, and N, and N,, are the modal indices of the
fundamental mode and the mth cladding mode, respec-
tively. In contrast to the core-corrugation configura-
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of a high-density built-up interconnect board. Copper lines, bond-
ing pads, vias, and woven glass fiber are clearly visible.

tion, Tsoi et al.'> and Perentos et al.1®6 demonstrated
another type of LPWG notch filter where the corru-
gated buffer layer and/or substrate with a channel
waveguidel® or a raised rib waveguidel® was fabri-
cated. The phase-matching condition was reported to
be satisfied in this type of structure.

Two features of a dielectric waveguide on an FR-4
PCB with long-period substrate undulations that dis-
tinguish it from the LPWGs described above are as
follows: (1) The corrugation is on the substrate sur-
face and can be retained on the buffer layer, depend-
ing on the starting structure of the FR-4 substrate.
(2) The on-board polymer waveguide is, in general,
multimode, rather than single mode. In addition, pre-
viously reported LPWGs were all treated as a pertur-

bation to a uniform waveguide. The refractive index
modulation was achieved either through a small cor-
rugation depth (usually <150 nm) (Refs. 9-12) or a
thermooptic index perturbation induced by periodic
heaters.’3 Accordingly, conventional coupled-mode
theory has been applied to analyze the transmission
spectra of LPWGs.814.17 The phase-matching condi-
tion derived from the coupled-mode theory is a special
form of the Floquet condition. Thus for a larger cor-
rugation depth and/or larger refractive index mo-
dulation, the modal indices need to be rigorously
determined within the context of the boundary-value
problem. The modal indices in the presence of such
gratings will differ from those of the unperturbed
case where the grating structures are absent.

In this paper, we analyze possible large attenua-
tions of an on-board slab waveguide resulting from
the long-period FR-4 straight (e, = 4.4-4.6) substrate
undulations. The rigorous transmission-line network
approach is applied to the long-period case for the
first time. The present research also provides a quan-
titative estimate of and physical insights to the buffer
layer thickness required to planarize the FR-4 sur-
face so that the attenuation can be made negligibly
small.

2. Method of Analysis

To address the electromagnetic problem posed by
the periodic cladding and substrate surface, the
general geometry shown in Fig. 2 is considered.
This geometry may contain an arbitrary number of
uniform and periodic dielectric layers, each of which
is labeled by the index i with a corresponding thick-
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Fig. 2. General geometry and the associated transmission-line network for the analysis of guided-mode attenuation due to long-period

substrate and cladding grating.
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ness of t;. The periodic cladding and/or substrate
surface with an arbitrary profile is treated as a stack
of one-dimensional (1D) periodic sublayers, each of
which has a stepwise varied permittivity with respect
to z. The permeability in the entire structure is as-
sumed to be the permeability of free space p, and the
time-harmonic dependence exp(jwt) is suppressed.
Also, the local coordinate associated with each layer
{0 < x; < ¢;; x; € the ith layer} is used. For a 2D ge-
ometry (9/dy = 0), the fields in the ith layer can be
decomposed into TE and TM modes. For TE modes,

EPO(x, z)= 2 VO (x)exp(—jk.q2), (2a)

HO(x, z) = En‘, -G (x)exp(—jk..2), (2b)

HOx, z) = }n‘,l,@'(x)exp(— Jk.n2). (2¢)
For TM modes,

HO(x, 2) = ; —I"(x)exp(—jk..2), (3a)

EPO(x, z)= 2 -G (x)exp(—jk.z),  (3b)

E®O(x, z)= En: V" (x)exp(—jk,z)s (3c)

where V,(x), G,(x), and I,(x) represent the transverse
field variations of the nth mode, while primed and
double primed symbols denote the fields that apply
for TE and TM modes, respectively. In the presence of
the periodic boundary, the field solutions must be of
the Floquet form?s:

2
kzn = kzO tn T7

n={0, *1, +2,...}. (@)
Here k,, is the complex propagation constant with
ko = By — ja being the fundamental longitudinal
propagation factor, n is the space harmonic order,
and A is the period of the periodic boundary. The real
part of %,, is the phase constant of the nth space
harmonic, and the imaginary part o (o« > 0) is the
attenuation constant accounting for the leakage of
guided-mode energy from the waveguide core layer.
Modal voltage V¥(x) and modal current I”(x) in the
uniform layer satisfy the transmission-line equations
that have been explained in detail in the previous
literature.18.19

Although the general field solutions in the rectan-
gular surface-relief grating region have been derived
and described extensively,'8-22 here we present in a
clear and systematic manner the formulations of the
general field solutions in the grating region by start-
ing from the differential form of the two Maxwell
curl equations, V X E = —jow,H and V X H =

Joee(z)E, in the 1D periodic layer.
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The periodic permittivity €,(z) of the ith grating
layer can be expressed as a Fourier series expan-
sion!8;

€(z) = 2 ¢S exp(j2pm/A), (5)
p

where ¢! is the Fourier coefficient for a given grating
profile. For TE modes, substituting the field expres-
sions in Egs. (2) and (5) into the Maxwell curl equa-
tions yields the following system of three coupled

equations:

VO
Tdr = el V@), (6)
KV©' (x) = wp GO’ (x), (7)
_dl(l),(x) ' i) . i i)
B +jK.GP’ (x) — jwe,CPOVD' (x) = 0. (8)

Here V7" (x), I?"(x), and G*"(x) are column vectors, k!
is a diagonal matrix with entries (k.),; = &.,9,, and
C"% is the square matrix with elements ¢, = ¢;_;, k
— [ = p, where index p is defined in Eq. (5). Substi-
tuting Eqgs. (6) and (7) into Eq. (8), a system of differ-
ential equations for the modal voltages is obtained as

_ d2y(z) ’ (x)
2

— ADOY O 9
o VO (x), 9

where

AD =ECO — (k)2 (10)
Equation (10) characterizes the coupling between all
of the space harmonics in the ith grating region. The
modal voltages V%' (x) and currents I”’(x) associated
with the ith grating layer are obtained as

VO (x) = Q@[exp(— j\;‘ﬁx)y(iw

+ exp(j\fmx)y(“)”], (11a)
IV (x) = Q® b [exp(_ TAOR) VO
— exp(j{AOx)VO' ], (11b)

where Q" is a square matrix composed of the eigen-
vectors of A”, and A" is the diagonal matrix with the
entries being the corresponding eigenvalues. Hence

(ﬁA(i)) u 18 the transverse propagation constant asso-
ciated with the £th independent mode propagating in
the x direction. For TM modes, the system of differ-
ential equations for the modal currents can be ob-
tained in a similar manner as



_dQI(z) n” (x)

I = QOIO (x), (12)

where
Q@ = COfRI - (k) CO ™ (k1)) (13)

with I being the identity matrix. The modal current
and the modal voltage column vectors are thus
given by

1(1) ” (x) — P(z)[exp(_‘]\fmx)l(z) n+

- exp(]'\s‘fmx)l(i) " 7], (14a)
iy i1l ; \F =N i
VO (x) = CO 'pDd [exp(_ J\sD@x)l(‘) "+

(1)

+ exp(jyDDx) 1O ’],

(14b)

where P% is a square matrix composed of the eigen-
vectors of Q% and D" is the diagonal matrix with
entries being the corresponding eigenvalues. The
input—output relations, including the reflectance ma-
trix at the output end (I',,,), the input impedance
matrix seen looking toward the output end at x =
x; [Z;,(x;)], and the transfer matrices of the modal

voltages [Ty(¢,)] and currents [T;(¢;)] associated with
the ith layer, can therefore be derived based on Egs.
(11) and (14).

For the guided-wave problem, the complex funda-
mental propagation constant k., is of interest. It must
be numerically obtained by solving the dispersion
relation,

det{Z,, + Z4,} =0, (15)

which is the condition for the existence of a nontrivial
solution to the boundary-value problem when the in-
cident wave is absent. Quantities Z,, and Z,, repre-
sent the input impedance seen looking upward and
downward from the reference plane, respectively.
They can be readily obtained by applying the input—
output relations layer-by-layer subject to the conti-
nuity condition on the tangential electric (modal
voltage) and the magnetic (modal current) fields at
each layer interface. Hence Z\)(x;) = Z% " (x;") holds
for every interface between adjacent layers, where
Z!)(x;) is the input impedance seen looking down-
ward at x = x; by the ith layer and Z%;"(x;) is the
output impedance seen looking downward at x = x;"
by the (i + 1)th layer. The equivalent transmission-
line network associated with either a uniform re-
gion or a grating region is characterized by its own
characteristic impedance and admittance matrices

TE, A/ﬂo = 285.71
Tsoi et al.

™, A/,lo = 285.71
Tsoi et al.

™M, a7, =0.86
- Tamir and Zhang

TE, A/,lo =50.47

TE, A/4, = 258.06
Present Work

™M, A/2 0 258.06
Present Work

Min. Normalized Fourier Component of Space Harmonics

TE, A/A_=0.86 3
Perentos et al. 0
Tamir and Zhang
1 0‘9 1 1 1 1 ] 1
0 20 40 60 80 100 120 140

No. of Space Harmonics, N

Fig. 3. Minimum normalized amplitude of space harmonics in the grating layer as a function of the number of space harmonics used in

the numerical computations.
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(Z9 =YY 1), complex propagation constant matrix [K(i)
with (K?), = (\k3e; — £2,)8,, (A", or \D”], and/or
the amplitude matrix of space harmonics (Q" or P?).
Directly applying the continuity of modal voltages and
currents based on Eqs. (11) and (14) facilitates the
cascade of transmission-line networks without intro-
ducing interface transformers when cascading a uni-
form layer to a grating layer.

3. Computational Considerations and Verifications

The electromagnetic model developed was verified by
checking the power conservation associated with the
plane-wave scattering problem,

>P +P=1, (16)

where P, and P, are the reflected and transmitted
power vectors at the air-dielectric interface, respec-
tively:

P, = Re{| V"V | Y(")}/Re(P,,),  (17a)

P, = Re(| V{™V{" | YO} /Re(P,,),  (17b)

Wlth Einc) = _F(mC)Yinc’ Y;irw) = T(inC)Yinw E(inc)
Re{ EMYMJXE’"C)} being the reflected voltage vector

(Vin9) transmitted voltage vector (VI"”), and the in-
cident power vector (P;,.) in the incident region, re-
spectively. Equation (16) must be satisfied for any
number of space harmonics used in the field expan-
sion.

Since the transmission-line network approach in-
volves matrices that are, in general, infinite, they
must be judiciously truncated for accurate numer-
ical computations. Using intuitive arguments, a
simple criterion for the truncation size N has been
proposed by retaining a number of evanescent har-
monics on each side of propagating orders.® To
establish a mathematically rigorous yet simple cri-
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| | TE,, Tamir and Zhang |
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104 | ]
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g 107 I
» TE,, Present Work
=
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9
§ L 1 1 1 1 1 | ] |
: T T T T T T T 1 T I
L 402t _
.&_. 10 : : | :
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= BN | - Lo~ —————]
'-g 0% |l S : __,__JI.’ cTTTTTT e S - .
© | I -
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=
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Fig. 4. Comparisons between the present dispersion curves for TE, mode and TM, mode and those of Tamir et al. (Ref. 19). The variable

a is the attenuation constant while \ is the operating wavelength.
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terion for the matrix truncation, the minimum nor-
malized amplitude of space harmonics is used as a
metric. Recalling that the matrices Q” and P are
composed of the amplitude of each space harmonic
in the grating region, the minimum normalized am-
plitude of space harmonics would represent the
significance of the highest order retained in the com-
putation. Figure 3 shows this metric versus the
number of space harmonics for cases having differ-
ing values of normalized period A/\,. These cases
include the structures treated by Tamir et al.
(A/No = 0.86),1° Perentos et al. (A/\, = 50.47),16 Tsoi
et al. (A/\, = 285.71),15 and the present FR-4 case
(A/Ny, = 258.06). In general, the minimum normal-
ized amplitude decreases as the number of space
harmonics increases. This indicates the contribu-
tion from higher-order space harmonics (and equiv-
alently, the independent transverse modes) to the
total fields would become less significant and can
thus be neglected. For example, for the A/\, =
0.86 case, <20 space harmonics are sufficient to
obtain a value of 10 for the minimum normalized
amplitude of space harmonics. As the A/\, value
increases to 50.47 and 258.06, the respective num-
ber of space harmonics needed becomes at least 27
and 41 for the criterion of 107°. Also, the relation
between the A/\, value and the number of space
harmonics needed follows a natural logical progres-
sion. Moreover, it appears that more space harmon-
ics are needed for TM polarization for large A/\,
values (258.06 and 285.71). Extensive effort was
made to verify the validity of the proposed trunca-
tion criterion. The results show that this approach
offers a good estimate for the starting number of the
space harmonics needed for convergence.

For guided-wave problems, the modified secant
version of the complex Newton’s method was applied
to find the complex roots of the dispersion relation

[ Im{(9F /) *F} ]

_ | -Im{@F/op)*F} )

oF\/0F\*) ~’

o (55

where B, and «, are the real and imaginary parts of
the initial value in each iteration, respectively, F rep-
resents the complex-valued function defined as F
= det(Z,, + Z,,), the asterisk denotes the complex
conjugate, and Im(§) is the imaginary part of a com-
plex number & To verify the validity and the effec-
tiveness of this modified complex Newton’s method,
we repeat the results reported by Tamir et al.1® Fig-
ure 4 illustrates the comparisons of dispersion curves
between the present computations and those in
Tamir et al.l® They are essentially identical. The
number of space harmonics employed, also known as
the truncation order, in the present work is 13 for
TE and 21 for TM for accuracy to seven significant
figures, as opposed to 27 for TE and 77 for TM with
A/Ny = 2 reported previously. This comparison
validates the model developed and the complex root-
finding algorithm for further investigations on struc-
tures involving long-period substrate gratings.

[(B - Bl)]

(a—ay)

4. Computational Results and Discussions

Before the extensive numerical computations for
the FR-4 case, comparisons were made with pub-
lished experimental results and the convergence
test of the attenuation constant against the number
of space harmonics employed for the FR-4 substrate
undulations was carried out. Figure 5 shows the
comparison of computational result with the exper-
imental data in Perentos et al.1® The structure
under investigation is a 1cm long long-period
waveguide grating with a grating depth of 0.1 pm
and a period of 80 pm fabricated on the surface of a

/H.J__’\ T ‘-Iﬁ S T
2o I..,\n/"" \ v i
e N’ /= Measured by N\
0 -4 v . /" Perentosetal. M a |
s} \ /l Ny =50.47 \
~ _6_ \ / _
y \

8 -8 g i
I~ \/
I -101 v .
=~
& 12t
%)
% -14+ Calculated (present work) for case of -
= Perentos et al.

-161 Niy=5047 -

-18_ | | | | 1 1 1 ]

1550 1560 1570 1580 1590 1600 1610 1620

Wavelength, 4 (nm)

Fig. 5. Comparison between the present computed transmittance and experimental transmittance of Perentos et al. (Ref. 16).
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Fig. 6. Variation of the normalized attenuation constant (aA/2) versus the number of space harmonics employed for the structure shown

as an inset. The inset is the simplified waveguide-on-PCB structure under investigation with n, = 1.0, n, = 1.525, n, =

1.49, n,

= 3.47,¢, = 10 pm, and ¢, = 5 pm. The convergence test is intentionally conducted for the attenuation constant in the stop band where

the normalized frequency A/\, is 264.53.

20 pm thick UV15 buffer layer. The number of
space harmonics used in the calculation was 41.
Good agreement can be seen in terms of the reso-
nance wavelength where the computational result
is 1.51% deviated from the measured resonance
peak at \, = 1585 nm. The discrepancies between the
experimental data and the theoretical analysis may
be attributed to (1) the deviation of the 2D boundary-
value problem from the 3D physical structure where
the raised-rib waveguide was treated as a slab
waveguide and (2) the assumption of an infinite pe-
riodic boundary in the mathematical formulations
given in Eq. (5).

The convergence test of the attenuation constant
normalized to the grating period, aA /2, versus the
truncation order for the FR-4 substrate undulations
is given in Fig. 6. The structure under investigation is
depicted as the inset in the figure and will be used in
the calculations of the normalized attenuation con-
stant hereafter. For simplicity, the substrate undu-

lations are approximated by a layer of rectangular
corrugations with a fill factor of 0.5. The fill factor of
0.5 was chosen to better represent the sinusoidal na-
ture of the real undulations in FR-4 buildup boards.
The FR-4 substrate grating has a period of 400 pm
and a corrugation depth of 8 wm, which is the largest
measured value for FR-4 PCBs. The bulk refractive
indices of the waveguide core (n.), buffer layer (n;),
and substrate (n,) are 1.525, 1.49, and 4.4, respec-
tively. The normalized frequency A/\, was intention-
ally chosen at 264.5284 with a buffer layer of 5 um for
obtaining the complex dispersion root in the stop
band. The number of space harmonics employed
ranges from 3 to 121 and the behavior of the normal-
ized attenuation constant of the fundamental mode is
examined. The aA/2m value settles down within a
variation of 0.03 for N > 40 and appears to converge
well as the number of space harmonics exceeds 60 at
which the minimum normalized amplitude of space

L Tlgon

—_ - N

o (@)] o

o o o
T T

Attenuation (dB/cm)
[@)]
o

FR-4 = 7, 1]
A=400um tt n,
t,=5um n, _ﬁb

4

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620
Wavelength, /. (nm)

L | L L | L
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L | L
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L | L L | L L 1 L
770 760 750

Bragg Order, pA/x

Fig. 7. Attenuation spectra of a polymer slab waveguide fabricated on bare FR-4 PCB where long-period undulations are present. The
inset is the simplified waveguide-on-PCB structure under investigation with n, = 1.0, n, = 1.525, n;, = 1.49, n, = 3.47, ¢, = 10 pm, and

t, = 5 pm.
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Fig. 8. Magnification of the dispersion curve in the vicinity of
BA/2m = 401 for the attenuation peak shown in Fig. 7. BA/2m and
aA /27w denote the normalized propagation and attenuation con-
stants, respectively. Note that the corresponding Bragg condition
BA/2w is 802.

401.2 401.4 4016

harmonics is well below 10~° in Fig. 3. Although the
convergence test involves a complicated complex root
finding process through the dispersion relation that
is structure dependent, the abrupt step shown in Fig.
6 may be physically understood as being a starting
condition where the number of terms in the Fourier
series expansion of the given rectangular corruga-
tions is large enough to better describe the abrupt
discontinuities. The attenuation constants found with
a smaller number of space harmonics (N < 41) are
thus not trustworthy. Moreover, because of the long-
period A, the space harmonics that are physically sig-
nificant are densely populated at approximately n =
0 order in the infinite range of harmonic n and thus
must be retained in the truncated matrices. As a

result, the propagation constant difference between
adjacent propagating order (space harmonic) is very
small and having sufficient coverage of significant
orders, which is structure dependent, needs a larger
number of space harmonics to be employed.

The TE, guided-mode attenuations due to the long-
period FR-4 substrate grating for various buffer layer
thicknesses are shown in Figs. 7-10. The second x
axis is the corresponding Bragg order for A =
400 pm and the wavelength range presented. To in-
vestigate the effect of the buffer layer thickness, its
thickness was varied while other geometric and ma-
terial parameters remained unchanged. The core
layer thickness (¢,) is set to 10 wm. The buffer layer
thickness (¢;) is assumed to be 5, 20, and 40 pm mea-
sured from the top of the corrugations. For the 5 pm
case, a very large attenuation may occur at A, =
1512 nm, corresponding to the Bragg order (BA/m) of
802. It should be noted that the large Bragg order is
due to the large period of FR-4 surface undulations.
Figure 8 depicts the magnification of the dispersion
curve in the vicinity of the Bragg order of 802 as a
mutual verification of the calculation shown in Fig. 7.
The vertical axes at the left- and right-hand sides
represent the normalized frequency A/\, while the
upper and lower horizontal axes denote the normal-
ized attenuation aA/2w and phase BA/2w constant,
respectively. The attenuation peak occurs at BA/2mw
= 400.9975 and is thus very close to the Bragg order
of 802. The attenuation constant aA/2m varies over
the nonvertical gap marked by the shaded strip. It
remains nonzero in the vicinity outside of the non-
vertical stop band and decreases as the BA/2w devi-
ates from 401 (or equivalently, from the Bragg order
of 802), suggesting that the leakage occurs continu-
ously before and after the near-Bragg order. The non-
vertical gap shown in Fig. 8 is therefore recognized as
a leaky-wave stop band. The FR-4 substrate grating
diffracts the fundamental mode to another leaky

4t N 5, 773 |
n | FR4 7, 1
E 3L A= 400,um tc_r n, o
- t, =20 um n, Ttb
o
5 2r A ]
S 14k 753
2 802
a1 760 1
q L— L ! J A‘—/_\—k L

1500 1520 1540 1560 1580 1600 1620

Wavelength, / (nm)
800 790 780 770 760 750

Bragg Order, pA/x

Fig. 9. Attenuation spectra of a polymer slab waveguide fabricated on bare FR-4 PCB where long-period undulations are present. The
inset is the simplified waveguide-on-PCB structure under investigation with n, = 1.0, n, = 1.525, n;, = 1.49, n, = 3.47, ¢, = 10 pm, and
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Fig. 10. Attenuation spectra of a polymer slab waveguide fabricated on bare FR-4 PCB where long-period undulations are present. The
inset is the simplified waveguide-on-PCB structure under investigation with n, = 1.0, n, = 1.525, n, = 1.49, n, = 3.47, ¢, = 10 pm, and

cladding mode (or equivalently, space harmonic)
when the Bragg condition is nearly satisfied. More
specifically, the attenuation may result from the con-
traflow interaction (coupling) between the backward-
propagating fundamental mode and the cladding
mode supported by the entire structure. Although,
intuitively, the reflection could hardly occur with a
large-period grating, it is plausible in the computa-
tion in that the substrate grating is assumed to be
infinite in extent.

While only one attenuation maximum is found for
a buffer layer of 5 pm, attenuation peaks in a few
decibel range could be found at some specific wave-
lengths in the wavelength span from 1620 to
1550 nm for a 20 pm thick buffer layer. The peaks of
attenuation also occur at the near-Bragg conditions.
The B\ values are very close to 753w, 7607, 7737, and
802, respectively, rather than exactly at those val-
ues. With a 40 pm thick buffer layer, the attenuation
becomes even smaller over the wavelength range of
interest compared with that for the 5 or 20 pm thick
buffer layer. With the increase of buffer layer thick-
ness, more leaky cladding modes can be supported by
the structure. Thus more leaky-wave stop bands
would occur at other wavelengths for the 40 wm thick
buffer layer, in addition to those for both the 5 pm
(Fig. 7) and 20 pm cases (Fig. 9). Since the perturba-
tion introduced by the periodic undulations to the
guided modes dwindles as the buffer layer thickness
increases, the decreasing attenuation constant could
be attributed to the weak grating-assisted couplings.

5. Conclusions

The guided-mode attenuation on FR-4 PCBs due to
long-period substrate undulations has been rigor-
ously analyzed and quantified as a function of the
buffer layer thickness. The rigorous transmission-
line network approach is employed to model as a 2D
boundary-value problem of a dielectric waveguide on
a long-period substrate grating. The number of space
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harmonics needed for obtaining convergent disper-
sion roots, either for the short- or long-period cases,
can be quantitatively estimated by calculating the
minimum normalized amplitude of the space har-
monics. The results show that more space harmonics
are required for long-period structures compared
with short-period ones. Further, for long-period
cases, TM polarization requires more space harmon-
ics than does TE polarization. The results show that
for a 20 pm thick buffer layer on a rectangular cor-
rugated FR-4 substrate having a period of 400 pm
and a corrugation depth of 8 um, the attenuation is
about 4 dB/cm at some specific wavelength near
1550 nm. These attenuation peaks correspond to
near-Bragg points where the leakage occurs contin-
uously in the vicinity of the Bragg points. Hence the
attenuation peak corresponds to the leaky-wave stop
band. As the buffer layer thickness increases, the
attenuation becomes negligibly small, which is attrib-
uted to the weak grating-induced perturbation to the
mode behavior. Thus a better understanding of one of
the causes of guided-mode attenuation associated
with the on-board polymer waveguide for board-level
optical interconnects has been presented.
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