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Abstract—Imperfect CO2 removal mechanisms of CO2 scrub-
bers often lead to the existence of CO2 in gas inhaled by a
diver from underwater rebreathers. This may cause CO2 related
rebreather faults and subsequently would increase the risk of
human injuries. We introduce a stochastic model for three CO2
related rebreather faults: CO2 bypass, scrubber exhaustion,
and scrubber breakthrough. We establish the concept of CO2
channeling that describes the cause of the faults and present
a CO2 channeling model based on a stochastic process driven
by a Poisson counter. This helps us to investigate how CO2
flow inside the rebreather is affected by CO2 related faults.
Fault diagnosis/prognosis algorithms are developed based on the
stochastic model and are tested in simulation.

I. INTRODUCTION

Underwater breathing apparatus (UBA) are used for dive
assistance. In consideration of military use or saturation div-
ing, one of the most widely used UBA is the closed circuit
rebreather (CCR) [1]. A rebreather reuses exhaled gas from
divers by employing a scrubber to remove CO2 from the
exhaled gas. However, CO2 removal mechanisms are usually
not perfect. The phenomena of excessive CO2 in inhaled gas
and the loss of CO2 absorption capability of the scrubber are
considered as severe faults of the rebreather, which may lead
to life threatening injuries to divers due to the intake of the
excessive CO2 [2], [3], [4].

Efforts to analyze or detect possible faults of rebreathers
have been made in [4], [5], [6]. Deep Life, Ltd. published
research data on rebreathers, and their work including a
MATLAB/SIMULINK rebreather model is accessible [4]. A
computer simulation model for the chemical kinetics of CO2
absorption by a scrubber was developed in [5] to investigate
the characteristics of the scrubber. This model is utilized to
monitor the status of the scrubber by observing temperature
changes induced by chemical reactions between CO2 and the
scrubing chemicals. In addition, a fault tree was designed in
[6] to identify risks of rebreather faults.

Aside from rebreather fault modeling, the physical char-
acteristics of UBA such as gas dynamics under pressure at
various locations are modeled in [7], [8], [9]. A computer

simulation tool [7] analyzes the overall gas flow in the UBA.
The breathing dynamics of closed-circuit UBA or CCRs are
discussed in [8]. The main interest there is how to maximize
performance in terms of breathing characteristics including
work of breathing and peak to peak pressure. The authors of
[9] extended [7], [8] by applying network theory to describe
components in the breathing loop that affect gas flow.

In this paper, we focus on CO2 related faults of a rebreather
and model how CO2 flow inside the rebreather is affected by
CO2 related faults. The faults we are interested in include
CO2 bypass, scrubber exhaustion, and scrubber breakthrough.
We define a random event that a small amount of CO2
passes through the scrubber without being absorbed as CO2
channeling, which can be described by a Poisson process.
Accumulated CO2 channeling will lead to the faults. The CO2
flow will be affected by the faults and can be modeled using
stochastic differential equations.

Our approach on the stochastic representation of CO2
related rebreather faults is novel. The model captures the
stochastic nature of faults that are difficult to detect and
predict. This leads to the development of stochastic model
based fault diagnosis/prognosis algorithms for CO2 related
rebreahter faults without modeling the process of chemical re-
actions inside a scrubber which might require more computing
power. Our contribution may lead to detection and prediction
of scrubber faults in real time.

In the next section, we briefly explain terminologies and
mechanisms of rebreathers, and in Section III, we model
respiration of divers that provides the input and the output
of a rebreather. In Section IV, we simplify gas dynamics of
an oxygen rebreather to focus on CO2 related scrubber faults
and investigate the influence of the faults on CO2 flow in
the simplified rebreather by introducing a CO2 channeling
model driven by a stochastic process. The description of the
particle filter for the CO2 flow model is presented in Section V
followed by the introduction to fault diagnosis and prognosis
for CO2 related rebreather faults in Section VI. Simulation
results are shown in Section VII and conclusions are provided
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in Section VIII.

II. MECHANISMS OF A REBREATHER

As shown in Fig. 1, a typical oxygen rebreather consists
of a mouth-piece, a scrubber canister, an oxygen cylinder and
a pressure gauge. Air flow inside a rebreather is driven by a
diver’s exhalation and inhalation forming a closed breathing
loop [10]. From the viewpoint of the scrubber, the portion of
the breathing loop where gas flows from the diver through
the mouth-piece to the scrubber is named the incoming path,
and the portion of the breathing loop where gas flows out of
the scrubber back to the diver is named the outgoing path.
The direction of gas flow is regulated by one-way valves in
the mouth-piece. When a diver inhales, the valves open the
outgoing path and block the incoming path so that the gas in
the incoming path cannot be breathed back into the diver. In
contrast, when a diver exhales, the valves close the outgoing
path and direct the exhaled gas to the incoming path to prevent
it from being mixed with the gas in the outgoing path.

During the use of the rebreather, pure oxygen is injected
into the breathing loop from the oxygen cylinder. This can
be performed either actively at a constant rate, which must
satisfy the individual diver’s personal needs based on the
diver’s metabolism, or by manually adding oxygen using a
hand-operated valve. It can also be controlled based on the
difference between ambient pressure and the breathing loop
pressure. The pressure of the oxygen inside the cylinder is
checked with the pressure gauge.

Mouth-piece

Scrubber
canister

Oxygen cylinder

Pressure
gauge
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Fig. 1. A pure oxygen rebreather (Cobra).

CO2 is absorbed by the scrubber using chemicals such as so-
dalime stored in the canister [11], [12], [13]. The scrubber has
a limited life time since the reaction of the scrubbing chemicals
with CO2 is irreversible. In fact, even when sodalime is not
fully consumed, CO2 may pass through the scrubber by a large
amount, causing CO2 related faults. Thus, the status of the
scrubber consumption should be monitored in order for divers
to avoid severe injuries due to the intake of excessive CO2,
i.e., hypercapnia. However, due to their stochastic nature, these
faults are difficult to predict, and when they happen, divers

often have little time to react. One of our goals is to understand
the stochastic nature of the CO2 related faults towards better
predictions.

III. MODELING INHALATION AND EXHALATION RATES

Divers interact with rebreathers by respiration, i.e., inhala-
tion and exhalation. A rebreather can be viewed as a system
that takes exhalation as an input and produces an output for
inhalation. An advanced computer simulation model of the
human respiration is dealt with in [14] and its application
to semi-closed circuit underwater breathing equipment is dis-
cussed in [15]. For rebreather fault simulations, a simplistic
respiration model is constructed in this section in accordance
with European Standard EN14143:2003 [16].

European standard EN14143:2003 [16] requires a sinusoidal
waveform of breathing simulator and recommends CO2 ab-
sorption endurance test at ventilation rate 40 L/min and at CO2
generation rate 1.6 L/min. Moreover, the breathing simulator
should handle breathing frequency of 20/min when ventilation
rate is 40 L/min. According to these recommendations, we de-
fine the ventilation rate r and the frequency f as r = 40 [L/min]
and f = 1

3 [Hz]. Note that the period T is just 1
f such that

T = 3 [s].
In reality, respiration rates are different from person to per-

son even among people who have similar physical conditions.
We can easily see that the respiration rate is expected to
vary along with workload changes which have influence on
the heart rate. Let us define s = HR

HRref
as the heart rate ratio

where HRref is the reference heart rate and HR is the present
heart rate. Let ξ (s) be a function which affects the magnitude
of the respiration rate and χ(s) be a function which affects
the frequency of the respiration rate. Based on the above
discussion, the normalizing factor L, the inhalation rate v and
the exhalation rate u with heart rate variations are

L(s, t) =


∫ (n+ 1

2 )T
χ(s)

nT
χ(s)

sin(2π f χ(s)t)dt , t ∈ I1∫ (n+1)T
χ(s)

(n+ 1
2 )T

χ(s)

sin(2π f χ(s)t +π)dt , t ∈ I2

, (1)

v(s, t) =


rξ (s)

60 f L(s, t)
sin(2π f χ(s)t) , t ∈ I1

0 , t ∈ I2

, (2)

u(s, t) =

 0 , t ∈ I1
rξ (s)

60 f L(s, t)
sin(2π f χ(s)t +π) , t ∈ I2

(3)

where ξ (1) = 1, χ(1) = 1, I1 = [ nT
χ(s) ,

(n+ 1
2 )T

χ(s) ) and I2 =

[
(n+ 1

2 )T
χ(s) , (n+1)T

χ(s) ) for n = {0,1,2, · · ·}.
The inhalation rate and the exhalation rate are listed sep-

arately as in (2) and (3) since inhalation and exhalation do
not happen at the same time. A combination of one cycle of



inhalation and one cycle of exhalation produces a single cycle
of respiration. In other words, in the case that the heart rate
ratio s is one and the respiration rate is 1/3 Hz, then each
of inhalation and exhalation takes place in every 1.5 seconds,
leading to a cycle of respiration in every 3 seconds.
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(a) Respiration rate over time with
unit heart rate ratio

0 20 40 60
0

10

20

Time [s]

R
es

pi
ra

tio
n 

ra
te

[L
/s

]

 

 

Inhalation
Exhalation

0 20 40 60
0.95

1

1.05

Time [s]

H
ea

rt
 ra

te
 ra

tio

(b) Respiration rate along with heart
rate change

Fig. 2. In (a), the top plot shows rate of inhalation and exhalation for
each cylce, and the bottom plot shows the amount of gas ventilated
through a diver. In (b), the top plot shows the variation of the
respiration rate related to the heart rate ratio shown in the bottom
plot.

Fig. 2 demonstrates our respiration model. In the top row,
the blue and the red curves indicate inhalation and exhalation
rates, respectively. The respiration rate and the amount of gas
flow with no heart rate changes, i.e., s = 1, are shown in Fig.
2(a). The inhalation and exhalation rates when the heart rate
varies are demonstrated in Fig. 2(b).

IV. MODELING CO2 FLOW

In this section, we analyze how CO2 related faults affect
CO2 flow based on the following assumptions which simplify
gas dynamics in a rebreather: (i) when a diver breathes out,
exhaled gas flows to a scrubber canister instantly, i.e., we
ignore gas dynamics in the incoming path; (ii) elements of gas
are uniformly distributed throughout the outgoing path and the
ratio of the gas elements breathed in by a diver is identical
to the ratio of the gas elements in the outgoing path; (iii) the
amount of CO2 breathed in by a diver is breathed out later
without loss.

We first model CO2 flow in each case of inhalation and
exhalation assuming that CO2 is absorbed by an ideal CO2
scrubber. The two separate parts based on inhalation and
exhalation can later be combined. We describe CO2 related
faults following a stochastic approach and analyze how CO2
flow is affected by CO2 related faults using a stochastic
representation of the faults.

A. CO2 Flow with no Fault

The volume of CO2 in the outgoing path will be measured
using proper CO2 sensors. Let x be the volume of CO2 in the
outgoing path. We define the ratio of CO2 in the outgoing path
c1 as

c1(t) =
x(t)
VL

(4)

where VL is the volume of the total gas in the outgoing path.

During the inhalation cycle, the volume of inhaled CO2
is determined by the inhalation rate v and the ratio of CO2
in the outgoing path c1. Let us define y as the volume of
CO2 removed by a scrubber. By our assumptions, gas in the
incoming path does not flow to the outgoing path during
inhalation, so CO2 absoprtion y is zero. On the other hand,
the amount of CO2 in the outgoing path x will be reduced
due to the inhalation by a diver. Therefore, CO2 flow during
inhalation (t ∈ I1) is described as

ẋ =−c1(t) · v(t)

=−v(t)
VL
· x(t) (5)

ẏ = 0 (6)

where x(0) = 0, y(0) = 0 and I1 = [ nT
χ(s) ,

(n+ 1
2 )T

χ(s) ) for n =

{0,1,2, · · ·}.
We now consider the exhalation cycle. According to [17],

the volume of CO2 generated by a diver changes along with
the heart rate variations. However, the variations of the CO2
generation rate, which is related to O2 metabolic consumption
rate, based on workload is not easy to predict [10]. We use a
simplified model based on the heart rate ratio here. We assume
that the change in CO2 generation rate is proportional to the
heart rate ratio s. Let us define the CO2 generation ratio c2 as

c2(s) = a · s (7)

where a is a scaling factor with a typical value a = 0.04 and
s is the heart rate ratio.

In the ideal cases, the scrubber absorbs all the CO2 coming
into a scrubber during exhalation. In other words, no CO2
will flow to the outgoing path of a rebreather. The volume of
CO2 coming into a scrubber is determined by the exhalation
rate u and the CO2 generation ratio c2 Thus, x and y during
exhalation (t ∈ I2) can be described as follows.

ẋ = 0 (8)
ẏ = c2(s) ·u(t) (9)

where x(0) = 0, y(0) = 0, I2 = [
(n+ 1

2 )T
χ(s) , (n+1)T

χ(s) ) for n =

{0,1,2, · · ·} and s is the heart rate ratio. When CO2 related
faults happen, CO2 flow will change as will be discussed in
the following subsections.

B. Influence of CO2 related Faults on Respiration

Since CO2 related faults cause CO2 leaks to the outgoing
path from the incoming path without being absorbed by a
scrubber, the volume of CO2 in the outgoing path x during
exhalation is not zero anymore. Moreover, divers inhale CO2
and this affects the volume of CO2 contained in exhaled breath.
Assuming that human-beings do not consume CO2, then CO2
breathed in will remain intact in exhaled gas. Let us define δx
describing the total amount of CO2 inhaled by a diver over
one inhalation period as



δx(n) = x(nT )− x((n+
1
2
)T ) (10)

where n = {0,1,2, · · ·}. Assuming that all the CO2 inhaled
by a diver is exhaled during the next exhalation cycle without
loss, we define an additional exhalation rate u1 for this portion
of returned CO2 as follows.

u1(t,n) =

{
0 , t ∈ I1

δx(n)
L sin(2π f t +π) , t ∈ I2

(11)

where I1 = [ nT
χ(s) ,

(n+ 1
2 )T

χ(s) ) and I2 = [
(n+ 1

2 )T
χ(s) , (n+1)T

χ(s) ) for n =

{0,1,2, · · ·}.
Considering that the returned CO2 is not involved in CO2

generation, we define the volume of CO2 in exhaled breath
using u and u1 as

U (t,n) =

{
0 , t ∈ I1

c2(s)(u(t)−u1(t,n))+u1(t,n) , t ∈ I2
(12)

where s is the heart rate ratio.

C. CO2 Channeling and Stochastic Modeling

We focus on the following CO2 related rebreather faults:
CO2 bypass, scrubber exhaustion, and scrubber breakthrough.
The descriptions of the faults are as follows. (i) CO2 bypass:
Existence of CO2 beyond a safety level in the outgoing
path of the rebreather. (ii) Scrubber exhaustion: Complete
consumption of the CO2 scrubber. (iii) Scrubber breakthrough:
Loss of the CO2 absorption capability of the CO2 scrubber
before the depletion of the scrubber. We will see later that
these faults can be rigorously defined using a stochastic model.

Typically, even when a scrubber functions properly, a small
amount of CO2 will pass through the scrubber from the in-
coming path to the outgoing path. We define this phenomenon
as CO2 channeling. Each CO2 channeling event happens
randomly and is not considered as a fault. However, CO2
channeling will lead to the three CO2 related faults, and our
stochastic model will reveal the mechanism.

Considering the randomness of CO2 channeling events, an
arrival of CO2 at the outlet of a scrubber canister can be
modeled as a Poisson process. We define a Poisson counter
N(t) such that N(t) satisfies the following Poisson distribution:

P[(N(t + τ)−N(t)) = d] =
e−λτ(λτ)d

d!
(13)

where d = {0,1, · · ·} is the index of events and λ is the
expected number of events over unit length of time. Since
each CO2 channeling event happens independently, we define
dN(t) as one single CO2 channeling event over dt.

The amount of the CO2 channeling during one event can be
modeled by a scaling factor, and it is affected by two factors:
the total volume of CO2 absorbed by the scrubber y and the
volume of CO2 coming into a scrubber canister U . Then, the
scaling factor G can be described as a function of y and U
such that

G = G(y(t),U (t,n)). (14)

Since we define dN(t) as an event of CO2 channeling within
dt, the change in CO2 volume in the outgoing path due to CO2
channelings can be expressed as

dx = G(y(t),U (t,n))dN(t). (15)

The two parameters for the Poisson process, G and λ ,
need to be carefully selected to reflect the physical behavior
of the rebreather. At the beginning of the rebreather use,
CO2 channelings are very unlikely, but as the scrubber being
consumed, the probability of CO2 channeling increases. After
the scrubber is depleted, CO2 channeling will happen with
probability 1. According to this, λ of the Poisson process can
be assumed to be zero for a new scrubber but will become ∞ as
the scrubber is getting fully consumed. Suppose the amount
of CO2 absorbed by the scrubber y is zero initially and its
maximum capacity is ymax, then the rate parameter should
satisfy

λ (0) = 0, λ (ymax) = ∞ (16)

λ̇ (0) = 0, λ̇ (ymax) = 0. (17)

One possible function that satisfies the above conditions is

λ (y) =
y(t)

ymax− y(t)
(18)

where ymax is the maximum capacity of the CO2 scrubber
and y(t) is the remaining CO2 absorption capacity of the CO2
scrubber.

The function G(y,U ) will describe how much of CO2
could pass through a scrubber when a CO2 channeling event
happens. Initial possible amount of CO2 channeling can be
assumed to be zero for a new scrubber, but when a CO2
scrubber reaches its maximum capacity, all CO2 coming into
the scrubber will pass through. Let us assume that G is a
polynomial function increasing from zero to U as y(t) goes
from zero to ymax, then one possible choice of function G is

G(y,U ) =

(
y(t)
ymax

)α

U (t,n) (19)

where α > 0 is a stretching factor. We see that when y = 0,
no CO2 channeling can happen, but when y = ymax, all CO2 in
the incoming path will pass through the scrubber in a single
channeling event.

D. CO2 Flow under CO2 related Faults

In this subsection, we will specify CO2 flow dynamics in the
rebreather induced by CO2 related faults using the stochastic
CO2 channeling model with respect to x and y. Parameters and
variables of the model are summarized in table I.

By the assumption that gas in the incoming path does
not flow to the outgoing path during inhalation, CO2 related



TABLE I
VARIABLES AND PARAMETERS OF THE CO2 FLOW MODEL

Parameter Value/unit Meaning
x [L] Volume of CO2 existing in outgoing path
y [L] Volume of CO2 absorbed by CO2 scrubber
p [L] Overall CO2 flow in rebreather
U [L/min] CO2 exhalation rate
v [L/min] Inhalation rate
c1 Ratio of CO2 in the outgoing path
c2 CO2 generation ratio
s Heart rate ratio (HR/HRref

)

scrubber faults do not have influence on CO2 flow during
inhalation. Thus, (5) and (6) still hold.

However, the faults affect CO2 flow during exhalation. The
volume of CO2 in the outgoing path x is as defined in (15).
The volume of CO2 absorbed by the scrubber y is determined
by the difference between the volume of CO2 arriving at the
inlet of a scrubber canister due to exhalation and the volume
of a CO2 channeling event.

During exhalation (t ∈ I2):

dx = G(y(t),U (t,n))dN(t) (15)
dy = U (t,n)dt−dx (20)

where x(0) = 0, y(0) = 0 and I2 = [
(n+ 1

2 )T
χ(s) , (n+1)T

χ(s) ) for n =

{0,1,2, · · ·}.
We define p such that p(t) = x(t)+ y(t) which represents

the total CO2 flow in the system, i.e., how much CO2 enters
or leaves a rebreather. Then, the rebreather system can be
modeled as a stochatic system with p(t) and x(t) as state
variables.

During inhalation (t ∈ I1):

dx =−v(t)
VL
· x(t)dt (21)

d p = dx (22)

During exhalation (t ∈ I2):

dx = G(p(t)− x(t),U (t,n))dN(t) (23)
d p = U (t,n)dt (24)

where x(0) = 0, p(0) = 0, I1 = [ nT
χ(s) ,

(n+ 1
2 )T

χ(s) ) and I2 =

[
(n+ 1

2 )T
χ(s) , (n+1)T

χ(s) ) for n = {0,1,2, · · ·}.
The volume of CO2 in the outgoing path x will be measured

by a CO2 sensor. However, the total CO2 flow p is not able to
be measured. Thus, the noisy measurement m(t) for x(t) can
be modeled as an output of the stochastic systems in (21)-(24).

m(t) =
[

1 0
][ x(t)

p(t)

]
+ν(t) (25)

where ν(t) represents measurement noise.

V. PARTICLE FILTER

Since the model is driven by a Poisson process, there are
limited choices of filters for state estimation. In particular,
Kalman filter may not be very efficient. In this paper, the

particle filter is applied to estimate the states x(t) and p(t).
We first briefly introduce the particle filtering algorithm [18],
and then apply the filter to estimate the states. The particle
filter is performed by the iteration of the following four steps.

(i) Particle Creation
To initialize the filter, N samples for each x and p are randomly
generated from the initial probability distribution functions
ρ(x0) and ρ(p0). These samples are denoted as x+i (0) and
p+i (0)(i = 1, · · · ,N), respectively. The values of the mean and
the variance of the initial particles are chosen according to the
fact that the volume of CO2 is always positive and the amount
of CO2 is very small when an event of CO2 channeling occurs.
The values we empirically found are on the order of 10−8.
Since these values are very small, A scaling factor γ is used
to increase the value of particles to reduce numerical errors.
The value used for simulation is γ = 106

(ii) Prediction (Diffusion)
At each time step k, the particles are propagated to the next
time step based on the system equations:

During inhalation (kh ∈ I1):

x−i ((k+1)h) = x+i (kh)− γc1(l)v(kh)h (26)
p−i ((k+1)h) = p−i (kh)+ y−i ((k+1)h)− y−i (kh) (27)

During exhalation (kh ∈ I2):

x−i ((k+1)h) = x+i (kh)+G(kh)dN(t) (28)
p−i ((k+1)h) = p+i (kh)+U (kh,n)h (29)

where G(kh) = G(p+i (kh)− y+i (kh),U (kh,n)), i = {1, · · · ,N}
and h is the step size.

A Poisson jump dN(t) is a continuous-time process, but it
can be simulated in discrete-time as Poiss(kh). Computational
implementation of a Poisson process is introduced in [19],
[20], [21]. In this paper, a Poisson process is simulated in
the way suggested by [19]. and Poiss(kh) represents the
implementation of the Poisson counter during the time interval
(kh,(k + 1)h) where h is a small step size. If a randomly
generated number which is uniformly distributed in the interval
[0,1] is smaller than 1− e−hλ , then Poiss(kh) = 1; otherwise,
Poiss(kh) = 1. Then, we can express (28) as

x−i ((k+1)h) = x+i (kh)+G(kh)Poiss(kh). (30)

(iii) Likelihood Evaluation
We can obtain the output values using (25) as

m(kh) =
[

1 0
][ x−i (kh)

p−i (kh)

]
+ν(kh) (31)

where ν(kh)∼N (0,R).
After measuring m(kh), the conditional relative likelihood

is computed to evaluate P(m(kh)|x−i (kh), p−i (kh)). Given that
noise ν is Gaussian, for a specific measurement m∗, a relative
likelihood qi can be computed as



qi = P[(mk = m∗)|(xk = x−i (kh), pk = p−i (kh))]

= P[νk = m∗−h(x−i (kh), p−i (kh))]

∼
exp
(
−rT

i (kh)R−1ri(kh)
2

)
(2π)n/2|R|1/2 (32)

where ri(kh) = [m∗−h(x−i (kh), p−i (kh))] and n = 1. Then, in
order to ensure that the sum of all the likelihoods is equal to
one, the relative likelihoods are normalized as q̄i = qi/∑

N
j=1 q j.

(iv) Resampling
Particles are resampled by using the following two steps for
i = 1, · · · ,N.

1) Generate a uniformly distributed random number r on
[0,1].

2) If ∑
j−1
m=1 q̄m < r but ∑

j
m=1 q̄m ≥ r, then x+i (kh) = x−j (kh)

and p+i (kh) = p−j (kh).
Then, the estimates of x and p at time kh are determined by
the statistical mean of the updated particles such that[

x̃(kh)
p̃(kh)

]
=

[ 1
N ∑

N
i=1{x+i (kh)}

1
N ∑

N
i=1{p+i (kh)}

]
. (33)

VI. FAULT DIAGNOSIS AND PROGNOSIS

Our CO2 flow model helps the detection of the CO2 related
scrubber faults. Fault diagnosis and prognosis are achieved
using the particle filtering results based on the CO2 flow
model.

A. Fault Detection and Isolation for Rebreathers

1) CO2 bypass: The estimate of the volume of CO2 chan-
neling over one single period of exhalation ∆x̃ is obtained
using x̃ such that

∆x̃(n) = x̃((n+1)T )− x̃((n+
1
2
)T ), (34)

and the occurrence of CO2 bypass can be determined by
summating the volume of CO2 channelings over a finite time
window such that the decision of CO2 bypass is made based
on the following criterion:

n

∑
i=n−M+1

∆x̃(i)> H1 (35)

where M is the width of the time window, and H1 is the
threshold for detection.

Equation (35) itself is enough to detect CO2 bypass. How-
ever, a more detrimental factor induced by CO2 bypass fault
is the partial pressure of CO2, ppCO2. We assume that the
pressure inside the rebreather is the same as the ambient
pressure. Provided that the ambient pressure Pamb and the
volume of gas in the outgoing path VL are known, ppCO2
can be computed similarly to ppO2 in [10] as

ppCO2 = 100 · c1 ·Pamb =
x̃ ·Pamb

VL
(36)

Then, with a threshold value H2, we can detect CO2 bypass
by

ppCO2 > H2. (37)

The fault of CO2 bypass will be detected if either of the
two thresholds, H1 or H2, are exceeded.

2) CO2 scrubber exhaustion and CO2 scrubber break-
through: CO2 scrubber exhaustion and CO2 scrubber break-
through happen when CO2 absorption capability is lost. To
detect these faults we need to compare ∆x̃ with the volume of
CO2 exhaled over one breathing period. Let us define

∆U (n) =
∫ (n+1)T

(n+ 1
2 )T

U (τ,n)dτ (38)

where n = {0,1,2, · · ·}.
We can detect scrubber exhaustion or breakthrough by first

checking whether

∆U (n)−∆x̃(n)< H3 (39)

where H3 is a threshold value. If the threshold is exceeded,
then complete CO2 channeling events is happening. Using x̃
and p̃ obtained by (33), we can determine whether the fault
will lead to scrubber exhaustion or scrubber breakthrough. If
the scrubber does not reach its maximum absorption capac-
ity yet, complete CO2 channelings indicate scrubber break-
through. Let us define the remaining scrubber capacity (C )
as

C = 1− y(t)
ymax

= 1− p(t)− x(t)
ymax

(40)

where x is the volume of CO2 in the outgoing path, y is
the current CO2 absorption capacity of the scrubber, p is the
overall CO2 flow and ymax is the maximum absorption capacity
of the srubber. At the time of the fault occurrence, if

C̃ < H4 (41)

where H4 is a threshold on the scrubber depletion, then the
fault is identified as scrubber exhaustion, otherwise scrubber
breakthrough.

B. Prognostics and Health Management

We can use the state estimates from the Particle Filter to
predict future CO2 channeling occurrences by propagating the
state equations of the rebreather CO2 flow model forward in
time. Prognosis for the faults are implemented according to the
fault criteria in (35), (37), (39) and (41) using the predicted
values x̂ and p̂ obtained by Algorithm 1 instead of estimated
values x̃ and p̃. The fault prediction algorithm at t = kh for the
future states at t = (k+ l)h is as follows. Note that the tilde
represents the state estimate and the hat represents the state
prediction.



Algorithm 1 Fault prediction at t = kh for t = (k+ l)h

1: P̂amb = Pamb, ∆Û = ∆U
2: [x̃(kh), p̃(kh)] = ParticleFilter(x(kh), p(kh))
3: x̂(kh) = x̃(kh), p̂(kh) = p̃(kh)
4: for i = k to i = k+ l−1 do
5: x̂((i+1)h) = x̂(ih) + dx̂(ih)
6: p̂((i+1)h) = p̂(ih) + d p̂(ih)
7: end for
8: /* Check the following fault decision rules using x̂ and p̂

instead of x̃ and p̃ in the equations. */
9: if (35) or (37) is met then

10: CO2 bypass alarm
11: end if
12: if (39) is met then
13: if (41) is met then
14: CO2 exhaustion alarm
15: else
16: CO2 breakthrough alarm
17: end if
18: end if

VII. SIMULATION RESULTS

We perform simulations of the rebreather based on our
stochastic CO2 flow model at a constant depth with ambient
pressure as Pamb = 1 to demonstrate the CO2 related rebreather
faults. The parameters we used in simulations are: the number
of particles as N = 800; the capacity of the scrubber as
ymax = 10; the size of the outgoing path in the breathing loop
as VL = 30; the heart rate ratio as s = 1; the stretching factor
for the function G as α = 10−6; the window size for the
detection of the CO2 bypass fault as M = 1; and the time
step as h = 0.05.
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(a) State x under scrubber exhaus-
tion.
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(b) State x under scrubber break-
through.

Fig. 3. The amount of CO2 in the outgoing path under scrubber
exhaustion and scrubber breakthrough up to t = 370 are shown in
(a) and (b), respectively. Their patterns are almost identical except
that they happen at different times. Note the difference in values of
the state x at time t between the cases of scrubber exhaustion and
scrubber breakthrough. CO2 bypass happens due to the accumulated
CO2 in the outgoing path before the exhaustion or the breakthrough.

The CO2 flow patterns under the faults of scrubber ex-
haustion and scrubber breakthrough are described in Fig. 3.
Scrubber exhaustion happens when the scrubber is depleted
and Fig. 3(a) shows that there is a dramatic increase in CO2 in

the outgoing path after t = 330 under the scrubber exhaustion
fault. The scrubber breakthrough is intentionally made such
that the maximum capacity of the scrubber ymax under scrubber
breakthrough is reduced to 0.85 ·ymax from the beginning of the
simulation. The CO2 flow pattern under scrubber breakthrough
is similar to the scrubber exhaustion case, but when scrubber
breakthrough occurs, the increase in CO2 in the outgoing path
comes earlier as in Fig. 3(b), so there exists more CO2 in
the outgoing path in the same amount of dive time after
CO2 breakthrough occurs. CO2 bypass happens at the early
stages of scrubber exhaustion and scrubber breakthrough as
CO2 is getting accumulated in the outgoing path due to CO2
channeling events.
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(a) ∆x̃ with the threshold value as
H1 = 0.05.
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(b) Estimated ppCO2 with the
threshold value as H2 = 1.
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(c) ∆U−∆x̃ with the threshold value
as H3 = 0.04.
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(d) The remaining capacity of the
scrubber with the threshold value as
H4 = 0.05.

Fig. 4. Parameters for fault diagnosis are introduced with the
threshold values (red lines) in the case of scrubber breakthrough.
For CO2 bypass fault detection, ∆x̃ and ppCO2 are used as in (a)
and (b). Parameters for scrubber exhaustion/breakthrough detection
are presented in (c) and (d).

To demonstrate the CO2 related fault diagnosis and prog-
nosis algorithms, we implement the particle filter on our
stochastic CO2 flow model. An example of fault diagnosis for
scrubber breakthrough is presented in Fig. 4. The detection
criteria on CO2 bypass fault are shown with threshold values
in Figs. 4(a) and 4(b). The occurrence of CO2 bypass will
be determined by checking ∆x̃ and estimated ppCO2. The
criteria on the scrubber exhaustion/breakthrough are presented
in Figs. 4(c) and 4(d). By setting a threshold value for ∆U−∆x̃
as 0.04, scrubber exhaustion/breakthrough can be detected,
and the remaining capacity of the scrubber can be checked
to determine which fault between scrubber exhaustion and
scrubber breakthrough happens.

The system propagation for fault prognosis is shown in Fig.
5. We use the same criteria and threshold values as used in
previous figures. We see that the particle filter estimates are



updated before t = 280, and system propagation is performed
as the red line segments in Fig. 5. Then, a prediction for scrub-
ber exhaustion/breakthrough can be achieved using ∆U −∆x̃
in Fig. 5(a) and the remaining capacity of the scrubber as
100 ·C in Fig. 5(b). Compared with the simulation results of
fault diagnosis in Figs. 4, our model is optimistic, e.g., the
predicted time of the fault occurrence is about 30 seconds
later than the actual fault occurrence time. To improve the
accuracy of the fault prediction under scrubber breakthrough,
the change in the actual maximum capacity of a CO2 scrubber
needs to be studied as well.
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(a) ∆U−∆x̃ with the threshold value
as H3 = 0.04.
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(b) The remaining capacity of the
scrubber with the threshold value as
H4 = 0.05.

Fig. 5. State propagation after t = 280 for a scrubber breakthrough
prediction. The blue and the red curves indicate the particle filter
estimate and the system propagation, respectively. The threshold
values are introduced as green lines.

VIII. CONCLUSIONS

We have presented fault diagnosis and prognosis algorithms
for three rebreather faults: CO2 bypass, scrubber exhaustion
and scrubber breakthrough. As part of our achievements, we
have investigated the process of CO2 flow inside a rebreather
and the influence of the faults on CO2 flow. Consequently,
we have developed a stochastic model of a CO2 channeling
event whose cumulative occurences result in the rebreather
faults and a CO2 flow model using the stochastic model. We
have shown that the particle filter is applicable to obtain the
state estimates of CO2 flow, and the fault diagnosis/prognosis
algorithms are tested in simulations based on the particle filter
estimates.
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