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Comparison of Cascade, Lattice, and
Parallel Filter Architectures

Rohit Patnaik, Vivek Vandrasi, Christi K. Madsen, Ali A. Eftekhar, and Ali Adibi

Abstract—We examine the use of different high-level filter
architectures (cascade, lattice, and parallel). We discuss their
advantages and disadvantages, and we present simulation results
and filter-tolerance tests. This information serves as a useful com-
parative analysis in the selection of a high-level filter architecture
for a particular problem. The sensitivity to nonlinearity is also
evaluated as resonance-enhanced power in the feedback path. For
narrowband band-pass responses, cascade architectures appear
to be more tolerant to filter parameter variations than lattice
architectures and are substantially more efficient than parallel
architectures.

Index Terms—Cascade filter, filter architecture, filter tolerance,
lattice filter, parallel filter.

I. INTRODUCTION

NE can design optical filters using different filter archi-
O tectures. Examples include the all-pass sum—difference
architecture [1] and the lattice architecture [2]. In this paper, we
analyze these and other high-level architectures (that are similar
to the ones in [3]). We discuss their advantages and disadvan-
tages in terms of ease of parameter selection. We present tol-
erance test results for variations in the filter parameters. Since
nonlinearity is an important concern in the operation of optical
filters, we also compare the expected degree of nonlinearity for
the different high-level architectures. The analysis presented in
this paper should serve as a useful tool when one is selecting a
high-level filter architecture for a particular problem.

II. THEORY

A. High-Level Digital Building Block

Our high-level digital building block is shown in Fig. 1. This
digital building block is used in all of our high-level digital filter
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Fig. 2. Optical unit cell architecture.

architectures. In Fig. 1 , there is a symmetric Mach—Zehnder
interferometer (MZI) with an all-pass filter in each arm. The
order of the digital building block M is the total number of poles
(or zeros). Both Ay (z) and Ap(z) have unity gain and are of
order M /2. Since Ay (z) and Ay, (z) are all-pass filters, they are
completely specified by their pole magnitudes and phases. The
poles of Ay, (z) are selected to be the complex conjugates of the
poles of Ay (z). This ensures that the magnitude response for the
digital building block is symmetric about the central frequency.
There are also constant phase terms  and —f in the upper and
lower arms, respectively, of the MZI. These set the zeros of the
digital building block. A constant phase term of 3 corresponds
to a transfer function, exp(—j03). The filter responses at the two
ports are given by

out (2) = —jlexp(=jB)Av(2) + exp(B)Ar(2)]/2 (1)
Hout(2) = [exp(=jP)Auv(2) — exp(iB)AL(2)]/2- ()

B. Optical Unit Cell Architecture

Fig. 2 shows our optical unit cell architecture. This optical
unit cell is used as the basic building block in all of our op-
tical filter architectures. The tunable coupler provides tuning of
the pole magnitude. The unit delay is uniquely provided by an
“APF” microdisk resonator [4], which introduces frequency-de-
pendent group delay and causes the optical response to deviate
from a constant-group-delay digital filter response.

0733-8724/$26.00 © 2010 IEEE
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4,12 Ay4(2)
4,,(2) A, (2) Ay (@) o=
0.5
A4,l.(5) o >
ut
4,42 _
K=
4,0 .
1L\Z .
. . Ay (2
- WO
0.5 0.5
Ay, (2) o ->
ut

Fig. 4. High-level cascade filter architectures: 4 unit cells X 2 stages (top) and 2

In Fig. 2, if the tunable coupler is viewed as a simple MZI,
then the two input ports (X; and X3) and the two output ports
(Y7 and Y5) are related by the equation

Y _ Hy Hig| | X1 3)
Y, Hy  Hy Xo
The transfer function of the optical unit cell is then given by

z _ Hyy — (H11H22 - H12H21)vageXP(—jwfb)HAPF
X 1 — Hyy Hyvgexp(—je ) Hapr

“4)

where H v, is the combined transfer function of the two wave-
guide connectors between the tunable coupler and the APF. For
lossless optical components, |Hy1 Hao — Hi2Ho1| = 1. For an
ideal constant group delay, Hypr = 2~ !. In our analysis, the
frequency-dependent linearly varying component of the phases
for Hyve and Hyp are included in 2z~1. (These increase the
group delay in the feedback path by approximately a constant.)
Given a high-level digital pole, poleg;, , for Ay (z) or Ar(z),
the values for ¢z and @ ¢ are given by

¢nmzr = 2arcsin(|poleg;,|) @b = —(Lpoleg, +7/2).
(%)

i.e., they are related to the magnitude |pole
/poleg;,, respectively, of the digital pole.

We assume that all optical components are lossless; this al-
lows for ease of mapping the digital parameters to the optical
parameters. If lossy optical components are considered, then
the magnitude response of the optical unit cell will exhibit fre-
quency dependence (more specifically, a notch response); in this
case, a constant magnitude response in the feedback path cannot
be assumed as is the case for the digital design.

dig| and the angle

unit cells X 4 stages (bottom).

C. High-Level Digital Filter Architectures

All of our digital filter architectures are eight-zero-eight-pole
designs. Fig. 3 shows the “baseline” architecture. In Fig. 3, each
A; u(z) or A; 1(2) is a single-zero-single-pole all-pass filter.
Of all the high-level digital filter architectures presented in this
paper, the baseline architecture has the fewest number of inde-
pendent parameters.

Fig. 4 shows the cascade filter architecture; we consider two
types of cascade filter architecture based upon the number of
unit cells in each stage and the number of stages. We denote
each architecture as the number of unit cells in each stage times
the number of stages. Thus, in Fig. 4, the architectures are la-
beled as 4 unit cells x 2 stages and 2 unit cells X 4 stages,
respectively, or 4 x 2 and 2 x 4 for simplicity. Since each stage
has a separate ( phase term, the 2 x 4 cascade architecture has
more independent parameters than the 4 x 2 cascade architec-
ture does. However, there are more unused output ports in the
2 X 4 cascade architecture than in the 4 x 2 cascade architec-
ture (four versus two). The overall filter response is obtained
by calculating the product of the filter responses of the indi-
vidual stages. The cascade architecture has the advantage that
each stage can be designed independently.

Fig. 5 shows the lattice filter architectures. There is a separate
power coupling ratio «; for each stage. Note that this «; is dif-
ferent from the  of the microdisk in Fig. 2. The 2 x 4 lattice
architecture has more  phase terms as well as x; terms than the
4 x 2 lattice architecture does. Compared to the cascade archi-
tecture, the lattice architecture has fewer unused output ports.
However, different stages of the lattice architecture cannot be
designed independently as can be done in the cascade architec-
ture, as we now discuss.

For the lattice architecture, both output ports of one stage are
coupled to both input ports of the following stage. Since the filter
response of each stage is determined by the relative contribution
of both of its inputs, the optimal parameters for stage 7+1 are de-
pendent on those for stage 7. This propagating effect means that
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Fig. 6. High-level parallel filter architecture: 2 unit cells X 4 stages.

changing the parameters of one stage significantly affects the
filter responses of all subsequent stages. Thus, the complexity
of selecting the optimal parameters for a lattice architecture sig-
nificantly increases as the number of stages is increased. In con-
trast, for the cascade architecture, the filter response, i.e., the
input to output transfer function, of one stage, does not depend
on the filter response of any previous stage. Thus, each of its
stages can be designed independently.

Fig. 6 shows the 2 x 4 parallel filter architecture. The 4 x 2
architecture is similar to the top-half of the 2 x 4 architec-
ture with Ay y(z) replaced by Ai y(z)A2u(z), Asv(2)
replaced by Az (2)Asu(z), etc. The number of «; terms
is 2(#stages) — 2. The number of unused output ports is
now 2(#stages) — 1. Thus, the parallel filter architecture has
the largest number of unused output ports. The overall filter
response is the weighted sum of the filter responses of the indi-
vidual stages. Thus, the shaping of the overall filter response is
achieved by filter averaging rather than by filter multiplication.

III. SIMULATION RESULTS

We wish to use these filter architectures as channelizers, i.e.,
to extract a narrow range of optical frequencies from a large
spectrum. (This will reduce the sampling rate needed for the
subsequent analog-to-digital converter.) Thus, we designed
each high-level digital filter architecture to produce a band-pass
response (50 MHz bandwidth out of 10 GHz) with the desired
magnitude responses in the passband and the stopband. In filter
synthesis, we constrain the maximum pole magnitude to be at

most 0.98 (i.e., smaller than one), and we optimize the values
of the pole magnitudes and phases, the constant phase term
0, and the power coupling ratios (for the lattice and parallel
architectures) to best approximate the desired magnitude filter
response. We refer to this procedure as “constrained pole
optimization.”

We now discuss our motivations to constrain the maximum
pole magnitude to 0.98. First, as noted in Section II-B, we
assume that all optical components are lossless. However, in
real optical systems, there is always some loss present, and the
loss in the feedback path sets an upper bound on the maximum
pole magnitude. Second, for adequate control of the system, the
poles should not be very close to the unit circle; otherwise, the
system can become unstable due to parameter variations. Note
that a passive system will remain stable, whereas if active gain
is present, then the system may exhibit lasing. An important
point to note is that a lossless system designed with a pole mag-
nitude constrained to some value, e.g., 0.98, is not equivalent
to a lossy system that is designed, assuming that the feedback
pack has a magnitude response, v = 0.98; this is because in a
lossy system, the magnitudes of the poles as well as the zeros
decrease by a factor .

In constrained pole optimization, we write the transfer func-
tion for each high-level digital filter architecture in terms of the
aforementioned filter parameters. We then select weights for
the relative errors in the passband and stopband, and we use
the MATLAB function finincon to perform multivariable con-
strained minimization.
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TABLE I
OPTIMIZED PARAMETERS FOR THE HIGH-LEVEL BASELINE (8 X 1) AND CASCADE FILTER ARCHITECTURES
Type ‘pl,U > LDy Paup£Pru |p3,U " Zpsy |p4,U|> Lpiy By By By Biy
8x1 0.9800, -0.0216 0.9730, 0.0345 0.9800, -0.0225 0.9698, -0.0032 1.5698
4x2 0.9800, -0.0265 0.0967, 1.6150 0.9224, 0.0113 0.9800, -0.0272  -3.1416 1.5777
2x4 0.9800, 0.0260 0.9800, 0.0260 0.9800, -0.0260 0.9800, -0.0260  -1.3915 1.7498 1.3916 1.3914
TABLE II
OPTIMIZED PARAMETERS FOR THE HIGH-LEVEL LATTICE FILTER ARCHITECTURES
Type |P1,u ’Zpl,ll |p2,u |’ épz,v |P3,U > éps,u |p4,[/ ’ZPA,U 181.1/ '82,11 ﬂ3.U ﬂA.U
4x2 0.9737, 0.0348 0.9800, -0.0226 0.9761, 0.0023 0.9800, 0.0226 0.1392  0.1402
2x4 0.9800, -0.0190 0.9800, 0.0205 0.9800, 0.0217 0.9800, 0.0216 -0.5862 -0.8438 -0.0147 1.0146
Type K, K K, Ky K,
4x2 0.5001 1.0000 0.4999
2x4 0.9217 0.4950 0.6593 0.6349 0.5329
TABLE III
OPTIMIZED PARAMETERS FOR THE HIGH-LEVEL PARALLEL FILTER ARCHITECTURES
Type ‘pw <Dy lpz_u 4 ‘p;_uL Zpsy |p4,u L LDy B Bou Biu By
4x2 0.9800, 0.0228 0.9800, -0.0228 0.9800, 0.0228 0.9800, 0.0228 0.0004 -3.0303
2x4 0.3449, 0.4177 0.4935, -0.6285 0.9800, 0.0210 0.7432,-0.6187  -2.4579 1.9302 -1.5689 1.5116
Type K\ Lin K\ 2,in Ko Lin K1 out K\ 2 0u Ko our
4x2 0.4996 0.4975
2x4 0.4601 0.0005 0.9992 0.5399 0.9995 0.0008
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Fig. 7. Magnitude responses of the baseline, cascade (C), lattice (L), and parallel (P) optical filters. The FWHM values (in megahertz) are also noted. (a) Baseline

(8 X 1).(b) 4 x 2 designs. (c) 2 X 4 designs.

Tables I-III show the values of the optimized parameters for
the different architectures (all angles are in radians). The inter-
ested user can use these data to reconstruct the overall digital
filter responses for the different architectures.

To obtain the optical filter response, the power coupling
ratio x for the microdisk was selected so that the sum of the
group delays for the components in the feedback path (i.e.,
Hy1, Hyvg, and Hppr) is the desired value of 100 ps (i.e., 1/10
GHz) at the central frequency. We assume that the mircrodisk
has a radius of 20 pm [4]; for this microdisk size, the required
value of « is 0.07. To obtain the optical filter response, we also
derived the values of the other optical parameters, as noted in
Section II-B.

Fig. 7 shows the magnitude responses of the different op-
tical filters. In Fig. 7, we note the full width at half maximum
(FWHM), i.e., the distance between the points on the graph

at which the magnitude response is 3-dB below its maximum
value. From Fig. 7, we see that apart from the 2 x 4 parallel
filter, all filters have similar FWHM values (between 70.06 and
83.42 MHz). The 2 x 4 lattice filter has the smallest FWHM
value (70.06 MHz), whereas the 2 x 4 parallel filter has the
largest FWHM value (93.98 MHz). As noted in Section II-C,
the overall filter response for the parallel filter is the weighted
sum of the filter responses of the individual stages. Thus, the
FWHM is primarily determined by the number of unit cells
in one stage. This is why the 2 x 4 parallel filter (only two
unit cells per stage) has the largest FWHM. In contrast, the 4
x 2 parallel filter (four unit cells per stage) has a noticeably
smaller FWHM. The lattice architecture appears to be promising
in terms of producing lower FWHM values, but optimizing its
design for a larger number of stages is difficult, as was discussed
in Section II-C.
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Fig. 8. Tolerance contour curves for the baseline (8 X 1) optical filter. The graphs show the expected percentage of samples for which the FWHM variations are
within the percentages noted for the range of parameter variations noted. (a) @nzi. (b) @yp. (¢) Krc.
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Fig. 9. Tolerance curves for the cascade (C), lattice (L), and parallel (P) 4 x 2 optical filters. The graphs show the expected percentage of samples for which the
FWHM is within 10% of its nominal value for the range of parameter variations noted. (a) ¢azi. (b) @yp. (€) KTc.

IV. FILTER-TOLERANCE TESTS

In this section, we examine the sensitivity of the different
filter architectures to parameter variations via computer simu-
lations. We first vary the tunable parameters of each optical unit
cell, i.e., omz1, @sp, and the s of the tunable coupler (which
we denote as k¢ ); later, we vary the fixed parameter « of each
microdisk (which we denote as kg4 ). We vary these parame-
ters by different random amounts (as a percentage of the nom-
inal value), and we measure several characteristics of the overall
filter response, specifically, the maximum passband gain and the
FWHM value; the parameters of the different optical unit cells
are varied by different amounts.

We note that another method to measure filter sensitivity is
to vary the digital pole magnitudes and phases of each unit cell.
The method we use in this paper should produce a more realistic
estimate of the filter sensitivity. We note that both x terms of
tunable coupler are varied by the same amount. This is realistic
because of their spatial proximity, which means that indepen-
dent variations are less likely to occur than would be the case
for couplers that were farther apart.

We calculate the percentage variation in the FWHM value
and set a threshold for the maximum allowable variation. The
value of this threshold is then used to calculate the tolerance
curves for the different optical filters. Since significant varia-
tions in the maximum passband gain did not occur, we did not
use this metric to obtain the tolerance curve. Fig. 8 shows the tol-
erance contour curves for the baseline optical filter; the graphs

in Fig. 8 show the expected percentage of samples for which the
FWHM variations are within the percentages noted for the range
of parameter variations noted. We now make several comments
about the data in Fig. 8. Since the tolerance contours are approx-
imately straight lines, the FWHM value variations are approxi-
mately a linear function of the parameter variations. The optical
filter is most sensitive to variations in ¢y, , then to variations
in Ko, and then to variations in ¢yzr. From (5), we see that
changing py\iz1 changes the pole magnitude, whereas changing
¢ s changes the pole phase. Thus, the optical filter is most sensi-
tive to variations in the pole phase and is least sensitive to varia-
tions in the pole magnitude. We note that changing x¢ changes
the zero locations of H,,; in (2) and only changes the magni-
tude of Gyt in (1).

We present filter-tolerance test results for the other optical
filters considering 10% as the maximum acceptable variation in
the FWHM from its nominal value. Fig. 9 shows the tolerance
curves for the 4 x 2 architectures. Fig. 10 shows the tolerance
curves for the 2 x 4 architectures. The graphs in Figs. 9 and 10
show the expected percentage of samples for which the FWHM
is within 10% of its nominal value for the range of parameter
variations noted. In Fig. 9(a), the graphs for the cascade and par-
allel optical filters are approximately at 100%, and in Fig. 10(a),
the graph for the parallel optical filter is approximately at 100%.

We first discuss the data in Fig. 9. We see that the curves for
the cascade and parallel optical filters are very similar, whereas
the curve for the lattice optical filter lies noticeably below the
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Fig. 10. Tolerance curves for the cascade (C), lattice (L), and parallel (P) 2 X 4 optical filters. The graphs show the expected percentage of samples for which the
FWHM is within 10% of its nominal value for the range of parameter variations noted. (a) ®nz1. (b) ¢f,. () K7c.
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Fig. 11. Tolerance curves for variations in k4isk disk for the baseline, cascade (C), lattice (L), and parallel (P) optical filters. The graphs show the expected
percentage of samples for which the FWHM is within 10% of its nominal value for the range of parameter variations noted. (a) Baseline. (b) 4 X 2 (c) 2 X 4.

other curves. Thus, the lattice optical filter has the worst toler-
ance to parameter variations. We next discuss the data in Fig. 10.
For variations in ¢wyz1, the parallel optical filter now has the
best tolerance, whereas for variations in ¢, and K7c, the cas-
cade optical filter generally has the best tolerance. From the
aforementioned analysis, we conclude that the cascade optical
filter generally has the best tolerance to parameter variations,
whereas the lattice optical filter generally has the worst toler-
ance to parameter variations. We note that the tolerance tests in
this paper are an indication of the tolerances of the actual optical
devices. Here, we are not concerned with numerical stability is-
sues that one may encounter in the design of digital filters where
quantization and round-off errors are of concern, especially for
fixed-point arithmetic. In such cases [5], [6], the metrics used to
measure tolerance are different, and thus, so are the conclusions.

For completeness, we now present tolerance curves for vari-
ations in kqsk in Fig. 11. Recall (see Section III) that kqisk =
0.07; this is much smaller than the 0.5 value used for xTc. We
note that decreasing (increasing) kqisk increases (decreases) the
height and sharpness of the group delay response of the feed-
back path; the resulting response for one unit cell becomes nar-
rower (wider). We now discuss the data in Fig. 11. For up to
a 10% range of parameter variations, all curves are at 100% or
close to 100%. We select a 20% range of parameter variations as
the operating point at which to compare the different filter archi-
tectures. At this operating point, the tolerance values are: base-
line (70.30%), 4 x 2 cascade (87.94%), 4 x 2 lattice (69.98%),

4 x 2 parallel (90.28%), 2 x 4 cascade (96.6%), 2 X 4 lattice
(90.14%), and 2 x 4 parallel (74.94%). The cascade optical fil-
ters again seem to have the best tolerance. There is no clear trend
for the lattice and parallel optical filters for variations in Kqjsk-

To compare the different optical filters, we also calculated the
circulating power in the microdisks using the method in [7]; the
greater the circulating power, the greater are the distortions due
to nonlinearity effects. Table IV shows the circulating power
(in milliwatt), assuming that power input to the optical filter is
1 mW. Since the circulating power in a microdisk is a func-
tion of both the pole magnitude and the power input to the cor-
responding unit cell, different microdisks with the same pole
magnitude can have very different circulating powers, e.g., for
both the cascade and lattice 2 x 4 optical filters, |p3,U =0.98,
but the values for the circulating power are 2710 and 4250 mW,
respectively.

From Table IV, we see that the 4 x 2 parallel optical filter
has the smallest value of the largest circulating power in any
microdisk (1370 mW). Thus, the 4 x 2 parallel filter architecture
is the best among the ones considered to minimize nonlinearity
effects. From Figs. 9 and 11(b), we see that the tolerance curves
for the 4 x 2 cascade and 4 X 2 parallel optical filters are very
similar. Thus, if simultaneous tolerance to parameter sensitivity
and minimization of nonlinearity effects are desired, then the 4
x 2 parallel filter architecture is the most suitable one. We note
that six out of eight microdisks for the 2 x 4 parallel optical filter
have circulating power values of at most 0.1 mW. However,
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TABLE IV
CIRCULATING POWER (IN MILLIWATT) IN THE DIFFERENT MICRODISKS OF THE VARIOUS OPTICAL FILTERS

Type 1L,U 1,L 2,U 2,L 3, U 3,L 4,U 4,L
Baseline 2730 2730 2020 2020 2730 2730 1800 1800
4x2 Cascade 2730 2730 33.5 335 683 683 2730 2730
4x2 Lattice 2070 2070 2730 2730 2280 2280 2730 2730
4x2 Parallel 1370 1370 1370 1370 1360 1360 1360 1360
2x4 Cascade 2730 2730 2720 2720 2710 2710 2690 2690
2x4 Lattice 4280 5040 3120 2350 4250 1220 2850 2610
2x4 Parallel 0.0247 0.0247 0.0302 0.0302 2730 2730 0.101 0.101

The power input to the optical filter is assumed to be 1 mW. The greater the circulating power, the greater are the distortions due to nonlinearity effects.

two of the microdisks have a circulating power value of 2730
mW. This large range of values is a result of most of the input
power being directed to the third stage (based on the selection of
the optimized « values for the lattice architecture). In general,
to minimize the effects of nonlinearity of an already designed
system, we would place the unit cells with the largest (smallest)
pole magnitudes where the input power is the smallest (largest).

We note that [7] has a method to calculate the effective non-
linear phase shift versus the phase shift of a ring resonator. For
the data presented in Table IV, there is a linear relation between
the circulating power in a silicon microdisk and the effective
nonlinear phase shift. Thus, the greater the circulating power,
the greater is the shift in the microdisk phase and thus in the mi-
crodisk center frequency.

We now make several concluding remarks. We note that with
the use of a smaller maximum pole magnitude in constrained
pole optimization, we expect the filter sensitivity to parameter
variations to decrease for all filter architectures considered;
however, for the purposes of comparing the sensitivities of dif-
ferent filter architectures, the 0.98 value of the maximum pole
magnitude should be adequate. Our choice of this 0.98 value
was discussed in Section III. We also note that we compared
cascade, lattice, and parallel filter architectures using a regular
structure, e.g., 4 X 2 or 2 x 4, i.e., with the same number of
unit cells in each stage. Our conclusions should be valid for
filter architectures with a larger number of total unit cells if this
regular structure is maintained. However, if different numbers

of unit cells are used in different stages, then our conclusions
may not be applicable.
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