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Abstract 
In earlier work, (Littlewood and Rushby 2012) (henceforth LR), an analysis was 
presented of a 1-out-of-2 software-based system in which one channel was 
“possibly perfect”. It was shown that, at the aleatory level, the system pfd 
(probability of failure on demand) could be bounded above by the product of the 
pfd of channel A and the pnp (probability of non-perfection) of channel B. This 
result was presented as a way of avoiding the well-known difficulty that for two 
certainly-fallible channels, failures of the two will be dependent, i.e. the system 
pfd cannot be expressed simply as a product of the channel pfds. A price paid in 
this new approach for avoiding the issue of failure dependence is that the result 
is conservative. Furthermore, a complete analysis requires that account be taken 
of epistemic uncertainty – here concerning the numeric values of the two 
parameters pfdA and pnpB. Unfortunately this introduces a different difficult 
problem of dependence: estimating the dependence between an assessor’s 
beliefs about the parameters. The work reported here avoids this problem by 
obtaining results that require only an assessor’s marginal beliefs about the 
individual channels, i.e. they do not require knowledge of the dependence 
between these beliefs. The price paid is further conservatism in the results. 
KEY WORDS: Software reliability; fault tolerance; software perfection; 
probability of failure; epistemic uncertainty; software diversity; multi-version 
software 

 

1 Introduction 
Intellectual diversity has been used from time immemorial to improve the dependability 
of human activities. Most people believe that, for many activities, “two heads are better 
than one”: e.g. it is often better to have another person check your work than to do it 
yourself. The use of diversity to build reliable systems long pre-dates the use of 
computers. For example, the use of diverse multi-channel safety protection systems based 
on physically different variables (temperatures, pressures, flow-rates…) has for a long 
time been an attractive design approach. 
Design diversity of this kind has been applied to software-based systems for several 
decades, and there are reports of apparently successful industrial applications to critical 
systems, see, e.g., (Littlewood, Popov et al. 2002; Wood, Belles et al. 2010). For 
example, the safety-critical flight control systems of Airbus fleets (Rouquet and Traverse 
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1986) have experienced massive operational exposure (Boeing 2012) with apparently no 
critical failure. We might conclude, after the fact, that these systems are very reliable. 
However, there are serious difficulties in assessing the reliability of such systems before 
operational use. The stringent dependability requirements for safety-critical systems 
usually mean that black-box operational testing would require infeasible times on test 
(Butler and Finelli 1993; Littlewood and Strigini 1993). Furthermore, it is well-known 
that it is not possible to claim, with certainty, independence between the failures of 
multiple software-based channels of a system: see (Knight and Leveson 1986; Eckhardt, 
Caglayan et al. 1991) for experimental evidence, and (Eckhardt and Lee 1985; Littlewood 
and Miller 1989) for theoretical reasons for this assertion. So, for a 1-out-of-2 demand-
based system, the system pfd will not be a simple product of the channel pfds: it must be 
assumed that  
pfdsys > pfdA × pfdB  (1) 

because there will usually be positive association between the failures of channel A and 
those of channel B.1 In fact, statistical independence is probably a rather rare 
phenomenon in the world: see (Kruskal 1988) for an amusing but serious discussion of 
inappropriate assumptions of independence. He says: “If I have a moral, it is this: Do not 
multiply lightly.” 
If independence cannot be assumed between channel failures, the problem of assessing 
the reliability of the system becomes difficult: we need to know how dependent the 
failures of the channels are. Assessing this dependence directly seems as hard as treating 
the system as a black box and measuring its pfd directly, and as we have noted above this 
is known to be generally infeasible.  
In recent work, a way around this difficulty has been proposed for certain special 
architectures (Littlewood and Rushby 2012), henceforth LR. The idea here is that in some 
1-out-of-2 systems, one channel (say A) may be highly functional and complex, and so 
(effectively certainly) failure-prone, but the other channel (B) may be very simple and 
thus possibly perfect. By “perfect” we mean that this channel cannot fail in its entire life, 
no matter how much exposure it receives, i.e. its pfd is zero. By “possibly perfect” we 
mean that such perfection will not be known with certainty. Claims about A will be 
expressed as a probability of failure on a randomly selected demand (pfdA); claims about 
B will be expressed as a probability that it is not perfect (pnpB). See (Littlewood and 
Rushby 2012) for extensive discussion, and examples of the kinds of systems for which 
this kind of architecture may be appropriate. 
The key idea in LR is that, at the aleatory level, it can be shown that there is conditional 
independence between the events “A fails on a randomly selected demand” and “B is not 
perfect,” given that the probabilities of these events, respectively pfdA and pnpB, are 
known. It is then shown that a conservative bound for the system’s (conditional) 
probability of failure on demand is simply the product of the probabilities of these two 
events, i.e. 

                                                
1 Whilst negative association is theoretically possible (Littlewood and Miller 1989)  – thus reversing the inequality in 
(1) – we are not aware of any means of claiming this with high confidence in a particular instance. 
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pfdsys ≤ pfdA × pnpB  (2) 

where the conservatism arises by assuming that, if B is imperfect, it always fails when A 
does: see (Littlewood and Rushby 2012) for proof. An assessor can then use the right 
hand side of (2) for the probability of failure on demand of the system, and be confident 
that this is conservative. 
The new result is useful because it provides a conservative numerical bound for the 
system pfd which is simply the product of two (hopefully small) numbers, and is thus 
(hopefully) a very small number. In other words, we have a result that is similar in nature 
to the one we would use if we could assume channel failures to be independent (the 
product of two small channel pfds). 
In reality, of course, the assessor will be uncertain about the values of the parameters in 
the discussion above: such uncertainty is called epistemic, and arises from the imperfect 
knowledge of the assessor. In LR the assessor beliefs are represented formally by a 
Bayesian posterior distribution, 
F(pA, pB ) = P(pfdA < pA, pnpB < pB )  (3) 

that incorporates all the evidence that the assessor has about the unknown parameters. 
The assessor’s probability of system failure on a randomly selected demand is then 
bounded by the posterior mean of the product, from (2): 

pA × pB dF(pA, pB )
0≤pA≤1
0≤pB≤1

∫  (4) 

If F factorised, i.e. the assessor’s beliefs about the two parameters were independent, then 
(4) would simplify into the product of the means of the posterior marginal distributions of 
the parameters. Unfortunately, assessors’ beliefs are unlikely to be independent in this 
way, and this epistemic dependence poses a serious problem. 
In the current paper we propose ways around this difficulty. These new results rely solely 
upon assessors’ marginal beliefs about the individual channel parameters – pfdA, pnpB – 
and do not require epistemic dependence between them to be estimated.  
In summary, the results of LR and the results of the present paper address two difficult 
problems of dependence. In the case of LR, the basic result overcomes the problem that 
the system pfd cannot simply be assumed to be a product of the channel pfds. The results 
in this paper address the problem that an assessor’s beliefs about the parameters (pfdA, 
pnpB) of LR will not be dependent. 
There is a price paid, not surprisingly, for this latter simplification: further conservatism 
is introduced into the claims that can be made about the system pfd, over and above that 
arising from LR. 

2 Conservative bounds on mean system pfd 
We begin with the result (2). Instead of dealing with the complete bivariate distribution, 
(3), representing the assessor’s posterior beliefs about the parameters pfdA and pnpB, we 
shall assume only that the assessor can tell us something about their separate marginal 
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distributions for these parameters, which we shall call F(pA) and F(pB) in an obvious 
notation. Clearly this places upon the assessor a much less onerous requirement in 
describing their epistemic uncertainty, inasmuch as they do not need to say anything 
about the dependence in their beliefs about the parameters. 
Initially, we assume that the assessor is able to give us only a single percentile for each 
distribution, i.e. they are able to express their subjective confidence in a single bound 
(e.g. a bound that may arise from the requirements of a wider safety case): 

€ 

P(pfdA < pA ) =1−αA

P(pnpB < pB ) =1−αB

 (5) 

So pA is their 100(1-αA)% upper confidence bound for the parameter pfdA; equivalently, 
αA can be thought of as their doubt that pfdA is smaller than pA, etc. 
We have the following: 

Theorem 1 
 If  

€ 

P(pfdA < pA ) =1−αA and P(pnpB < pB ) =1−αB   
represent the assessor’s marginal posterior beliefs about the parameters, and without loss 
of generality 

€ 

αA ≤αB, 
then 

€ 

E(pfdsys ) ≤ pA × pB × (1−αB )+ pA ×αB + (1− pA )×αA (6) 

Proof 
Denote the unknown joint probability, 

€ 

P(pfdA >αA , pnpB >αB ) , i.e. of lying in BCFE in 
Figure 1, by z. Now 
pfdsys ≤ E(pfdA × pnpB )  

= pA × pB × (1−αA −αB + z)+ pA × (αB − z)+ pB × (αA − z)+ z  (7) 

= pA × pB × (1−αA −αB )+αA × pB +αB × pA + z× (1− pA − pB + pA × pB )  

€ 

≤ pA × pB × (1−αA −αB )+αA × pB +αB × pA +min(αA,αB )× (1− pA − pB + pA × pB ) 

€ 

= pA pB (1−αB )+ pAαB + (1− pA )αA 
because 

€ 

0 ≤ z ≤min(αA,αB ) =αA  
and  

€ 

1− pA − pB + pA × pB ≥ 0  
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Figure 1. The random variable (pfdA,pnpB) is defined on the unit square. Note that 
this figure has been exaggerated for clarity: in reality E would be very close to 
the origin. 

 
The result (7) can be seen as follows. Consider the four rectangles in Figure 1: DEHG, 
ABED, EFHK, BCFE. The product 

€ 

pfdA × pnpB  is a random variable which is 
everywhere smaller than 

€ 

pA × pB  within DEHG. The probability associated with DEHG 
is 

€ 

(1−αA −αB + z). Thus the contribution to 

€ 

pfdsys = E(pfdA × pnpB ) associated with 
DEHG is bounded above by the product 

€ 

pA × pB × (1−αA −αB + z). Hence the first term 
in (6). Similarly, within the rectangle ABED, the product 

€ 

pfdA × pnpB  is a random 
variable which is everywhere smaller than pA (which value it takes at the point B); and 
the probability associated with this rectangle is 

€ 

(αB − z); so the contribution to the mean 
of this rectangle is bounded by the product of these. Hence the second term in (7). Similar 
reasoning about EFHK, BCFE give the third and fourth terms of (7), respectively. 
This completes the proof. 
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Example 1 
If the assessor can provide a single percentile (i.e. a bound with associated confidence 
level) for each marginal posterior distribution (i.e. for pfdA and for pnpB) then the theorem 
provides a means of computing a conservative posterior mean of pfdsys. 
So, if the assessor is 95% confident that pfdA is smaller than 10-5, and 95% confident that 
pnpB is smaller than 10-2 we have, from (6): 

€ 

E(pfdsys ) ≤10
−5 ×10−2 × (1− 0.05)+10−5 × 0.05+ (1− 0.05)× 0.05 ≈ 0.05 (8) 

which of course is very conservative.  
If the assessor is 99% confident that pfdA is smaller than 10-3, and 99.9% confident that 
pnpB is smaller than 10-1, the bound on his posterior mean for the system pfd is about 

€ 

1.1×10−3 . 
In fact, since “doubts” will usually be considerably greater than “claims”, this way of 
bounding the assessor’s posterior pfd for the system will give a result that is 
approximately the same as the smallest of the two doubts. 
So these results are very conservative. One reason for this is that it is assumed that there 
is probability mass over the whole unit square: that is, the assessor cannot rule out the 
possibility of the parameters taking any value. This probability mass is assigned most 
pessimistically in each of the rectangles making up the unit square, e.g for the random 
variable (pfdA, pnpB) lying in the upper right rectangle, all probability is assigned to the 
point (1,1), i.e. it is assumed with this probability that channel A fails, and channel B is 
imperfect, so that the system fails with certainty. This is similar to the LR reasoning. 
Such beliefs may be too pessimistic for real assessors. We have heard safety assessors 
reason as follows: “I have confidence (1-αA) that channel A’s pfd is smaller than pA, but I 
am certain that it is smaller than pA

U, where pA<<pA
U”, with similar certainty that pnpB is 

smaller than pB
U. This is illustrated in Figure 2, where now there is non-zero probability 

mass only in the rectangle QSWG: outside this rectangle the distribution (4), 

€ 

F(pA, pB ), 
takes the value 1 everywhere. 
We can now obtain a tighter conservative bound as follows: 

Theorem 2 
If  

€ 

P(pfdA < pA ) =1−αA and P(pnpB < pB ) =1−αB  
and 

€ 

P(pfdA < pA
U ) =1 and P(pnpB < pB

U ) =1  
represent the assessor’s marginal posterior beliefs about the parameters, and without loss 
of generality 

€ 

αA ≤αB, 
then 
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€ 

E(pfdsys ) ≤ pA × pB × (1−αB )+ pA × pB
U ×αB + pB

U × (pA
U − pA )×αA  (9) 

 
 

 
 

Figure 2. As Figure 1, except that now, in addition, the assessor is certain that 
pfdA does not exceed pA

U and pnpB does not exceed pB
U. So there is zero 

probability mass outside QSWG. 

 

Proof 
This is similar to the proof of the previous theorem, in terms of the four rectangles 
making up QSWG. Once again, denote by z the unknown probability mass associated 
with RSVE. 
In DEHG, the random variable pfdApnpB is bounded above by pApB and the probability 
mass here is (1-αA-αB+z). So the contribution of DEHG to the posterior mean of the 
system pfd is bounded above by pApB(1-αA-αB+z). 
By similar reasoning, the contribution from QRED is bounded by pApB

U(αB-z); that from 
EVWH by pA

UpB(αA-z); that from RSVE by pA
UpB

Uz.  
Adding all these contributions together, and using the fact that 

€ 

0 ≤ z ≤min(αA,αB ) =αA , 
the result follows as in the previous theorem after some rearragement. 
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Notice that, as expected, (9) reduces to (6) when pA
U=pB

U=1. 

Example 2 
As Example 1 with, additionally, pA

U=10-3, pB
U=10-1. 

€ 

E(pfdsys ) ≤10
−7 × 0.95+10−4 × 0.05+ 0.05× (10−3 −10−5 )×10−1

≈ 0+ 0.5×10−5 + 0.5×10−5
 

€ 

=1×10−5  (10) 
Clearly this is better than the bound in Example 1. And it is an order of magnitude 
improvement on the very crude bound that simply multiplies the two marginal upper 
bounds, i.e. 10-4. 
 
We now obtain some conservative bounds for the system pfd for situations in which the 
assessor knows the first two moments of their marginal distributions for the parameters, 
rather than percentiles as above: 

Theorem 3 
E(pfdsys ) ≤ E(pfdA × pnpB )  

< E(pfdA )
2 +Var(pfdA )( ). E(pnpB )2 +Var(pnpB )( )!

"
#
$         (11) 

< E(pfdA )+ SD(pfdA )( ). E(pnpB )+ SD(pnpB )( )               (12) 

Proof 
By the Cauchy-Schwarz inequality 

E(pfdA.pnpB )( )2 < E(pfdA2 ).E(pnpB2 )

= E(pfdA )
2 +Var(pfdA )( ). E(pnpB )2 +Var(pnpB )( )

      

which gives (11). And 

E(pnpB )
2 +Var(pnpB )< E(pnpB )+ SD(pnpB )( )2     

with a similar expression involving pnpB, so (12) follows. 

Example 3 
The result requires knowledge of the first two moments of the marginal distributions of 
the two model parameters. In particular, the closeness of the bound to the “ideal” 
independence result (i.e. product of the marginal means of the parameters) depends on 
the relative sizes of the marginal standard deviations and marginal means. So, if  
SD(pfdA)<4.E(pfdA) and SD(pnpB)<4.E(pnpB)  
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we have  
E(pfdsys)<25. E(pfdA). E(pnpB) 
 
Another way in which (12) might be used is as follows. One way that we have heard 
assessors reason in the presence of difficult-to-assess dependence is to make a trade-off 
between “lack of independence” and “pessimism of channel claims”. The reasoning is 
something like this: “I realize I cannot simply multiply my marginal beliefs about the pfd 
of channel A and the pnp of channel B to obtain a bound for the system pfd, so I will 
instead multiply together pessimistic values for these two channel beliefs. The pessimism 
here will counteract the optimism of the independence assumption implicit in the simple 
multiplication of the numbers2.” The result (12) provides a formalism for this kind of 
reasoning. It shows how much pessimism is needed to justify such reasoning: a system 
claim made in this way will be a conservative one if each channel claim is conservative 
by an amount equal to the standard deviation of the marginal distribution.  
Finally, we present conservative bounds for the situation where an assessor’s beliefs 
about the two marginal distributions involve both means and percentiles as follows: 

Theorem 4 
If 
P(pfdA > pA ) =αA  and P(pnpB > pB ) =αB  

and 
E(pfdA ) ≤ pA  and E(pfdB ) ≤ pB  

then 
E(pfdsys ) ≤ E(pfdA × pnpB )  

           (13) 
 

≤
pA × pB
αA ×αB

                (14) 

Proof 
We require the following 
Lemma:  

                                                
2 This kind of reasoning is more common at the aleatory level. We have seen arguments in which pessimistic claims 
have been made for each channel pfd and then these have been multiplied together to obtain a figure for the system pfd. 
The trade-off here is between channel failure dependence and channel pfd pessimism.  See Bishop, P., R. Bloomfield, 
et al. (2011). "Towards a formalism for conservative claims about the dependability of software-based systems." IEEE 
Trans Software Engineering 37(5): 708-717. 

≤
E(pfdA )×E(pnpB )

αA ×αB
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If 
0≤X≤1, and P(X>p)=α, and E(X)≤p, 
then 

E(X 2 ) ≤ E(X)
2

α
≤
p2

α
 

Proof: see appendix 
From the lemma we have: 

E(pfdA
2 ) ≤ E(pfdA)

2

αA

≤
pA
2

αA

 

and 

E(pnpB
2 ) ≤ E(pnpB)

2

αB

≤
pB
2

αB

 

And by the Cauchy-Schwarz inequality: 

E(pfdA × pnpB ) ≤ E(pfdA
2 )×E(pnpB

2 )  

from which the result follows. 

Example 4 
If the assessor has a single percentile for each marginal distribution, as in Example 1: 
pA=10-5, αA=0.05, and pB=10-2, αB=0.05 
and the assessor is certain that E(pfdA)≤pA and E(pnpB)≤pB, then 

E(pfdsys ) ≤
10−5 ×10−2

0.05×0.05
= 2×10−6  

Obviously this is a tighter bound than in Example 1, using Theorem 1. In general, bounds 
(13) and (14) will be better than (6) and (9) whenever αA >> pA  and αB >> pB , which 
will generally be the case (claims will usually be much smaller numerically than doubts). 
In fact it is even tighter than the bound in Example 2. At first glance this is surprising, 
since the latter requires the assessor to know with certainty upper bounds on the 
parameters, in addition to a percentile for each. The result here, however, similarly 
depends upon the assessor being certain that the marginal means are smaller than pA, pB 
respectively. This is so even though the weaker bound of Theorem 4, (14), which is used 
in the example, does not depend on the numerical values of these marginal means.  
In summary, the assessor does not need to know both the marginal means and the 
percentiles to use the theorem. Useful bounds on system pfd can be obtained by knowing 
either 

(a) E(pfdA ),  E(pnpB ),  αA,  αB  for result (13) 

or 
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(b) pA,  pB,  αA,  αB  for result (14) 

but in each case they must be certain that, in addition, the marginal means are smaller 
than the corresponding percentiles (even if the exact values of some of these are not 
known to him). 
Of the two options, (a) gives the tighter bound and thus can be regarded as preferable in 
those cases where the assessor knows each of E(pfdA ),  E(pnpB ),  αA,  αB,  pA,  pB . In both 
cases, the bounds will be tighter for larger values of αA,  αB . But of course larger values 
of αA,  αB  are associated with smaller values of pA,  pB , and if these are too small the 
bounds on the marginal means in Theorem 4 will be violated.  
The tightest bound would occur if the assessor’s percentiles ( pA,  pB ) coincided exactly 
with their marginal means E(pfdA ),  E(pnpB )  - in which case (a) and (b) give the same 
bound.  Is it feasible that an assessor would be able to make them coincide in this way? In 
some cases an assessor may be prepared to specify a complete marginal distribution for 
each parameter (e.g. by accepting a parametric family, such as a 2-parameter Beta 
distribution, that is “fixed” by the determination of two percentiles – see Section 3). In 
that case the assessor will know E(pfdA ),  E(pnpB ) , they can choose pA, pB to coincide 
with these values, and then compute the corresponding αA,  αB  which will give the 
tightest bound. 

3 Confidence bounds for system pfd 
A different approach from the above obtains conservative confidence bounds for the 
system pfd, again without requiring estimation of the dependence of the assessor’s beliefs 
about the unknown parameters pfdA and pnpB. 
As before, we assume that the expert can provide a marginal percentile for each 
parameter, as in (5). We again use the LR result concerning aleatory uncertainty. 
Given these beliefs of the assessor concerning the individual channels of the 1-out-of-2 
system, we are interested in obtaining a confidence bound for the system pfd. That is, we 
want to evaluate the probability 

€ 

P(pfdsys < psys )   (15) 

for some value of psys. 

Theorem 5 
Given the confidence bounds in (5), i.e. 

€ 

P(pfdA < pA ) =1−αA

P(pnpB < pB ) =1−αB

 

we have 

€ 

P(pfdsys < pA × pB ) >1− (αA +αB ) (16) 
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Proof: 
From (2) 

€ 

P(pfdsys < pA × pB ) > P(pfdA × pnpB < pA × pB ) (17) 

Now 

€ 

P(pfdA × pnpB > pA × pB )
< P(pfdA > pA )+P(pnpB > pB )−P(pfdA > pA, pnpB > pB )

 (18) 

This is because the left hand side is the probability mass associated with the area above 
the hyperbola in Figure 3; this is smaller than the probability mass associated with the L-
shaped region comprising rectangles ABED, BCFE, EFKH; which in turn is equal to 
probability masses of BCKH plus ACFD minus BCFE; these three probability masses 
correspond to the three terms on the RHS of (18), in the same order. 
 

 
 

Figure 3. Essentially as Figure 1. Here the probability mass associated with the 
area below the hyperbola, pfdApnpB= pApB, corresponds to the probability on the 
right hand side of equation (13).  

 
The last term on the right hand side of (18) is (most likely) not known – it would require 
the assessor to know about dependence between beliefs about parameters. So, 
conservatively, we have 
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€ 

P(pfdA × pnpB > pA × pB ) < P(pfdA > pA )+P(pnpB > pB ) (19) 
So finally 

€ 

P(pfdsys < pA × pB ) > P(pfdA × pnpB < pA × pB )
=1−P(pfdA × pnpB > pA × pB )

 

€ 

>1−P(pfdA > pA )−P(pnpB > pB ) =1− (αA +αB ) 
which completes the proof. 
 
Informally, the theorem states that the system claim is the product of the channel claims 
(pA × pB ) , and the doubt in this system claim is simply the sum of the channel claim 
doubts (αA +αB ) . 

Example 5 
For example, if an assessor is 95% confident (5% doubt) that pfdA is smaller than 10-5, 
and 95% confident (5% doubt) that pnpB is smaller than 10-2, then they are at least 90% 
confident (5%+5%=10% doubt) that pfdsys is smaller than 10-7.  

Example 6 
If the assessor can provide two (or more) percentiles for each distribution, then multiple 
conservative percentiles can be generated for the distribution of pfdsys. So if, in addition to 
the two percentiles above, the assessor is 99% confident that pfdA is smaller than 10-3, and 
99.9% confident that pnpB is smaller than 10-1, the following conservative percentiles 
apply to their beliefs about the system pfd: 

1. Pfdsys is smaller than 10-4 with 98.9% confidence (doubt = 1.1%) 
2. Pfdsys is smaller than 10-5 with 94% confidence (doubt = 6%) 
3. Pfdsys is smaller than 10-6 with 94.9% confidence (doubt = 5.1%) 
4. Pfdsys is smaller than 10-7 with 90% confidence (doubt = 10%) 
 

Notice that the bounding confidence in 3 above is greater than that in 2, even though the 
claim in 3 is a stronger one (10-6 rather than 10-5): it should be recalled that these are 
conservative bounds, not exact values for confidence levels, and the “degree” of 
conservatism can vary. For example, an important contribution to the conservatism 
comes from ignoring the probability mass associated with the rectangle BCFE in Figure 
1, and this will vary according to the marginal claims pA, pB. 
This result can be generalized for the case where the assessor offers more than two 
percentiles for each distribution: 
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Corollary 
If the assessor offers several percentiles representing their beliefs about the parameters, 
as follows: 

€ 

P(pfdA < pA
(i) ) =1−αA

(i),  i =  1,  2,  ...,  m
P(pnpB < pB

( j ) ) =1−αB
( j) ,  j =  1,  2,  ...,  n

 (20) 

then all the following are conservative statements about the system pfd: 

€ 

P(pfdsys < psys = pA
(i) × pB

( j) ) >1− (αA
(i) +αB

( j) )  ∀(i, j)  (21) 

 
Notice that different (i,j) pairs may give the same “claim”, 

€ 

pA
(i) × pB

( j ) , for different values 
of the “doubt”, 

€ 

(αA
(i) +αB

( j) ) . Since all statements (25) are correct, it would be reasonable 
in such a case to use the smallest value of the doubt, since this will still be conservative. 
In some cases, an assessor may be prepared to provide complete distributions, FA, FB, to 
represent their marginal beliefs about the two parameters pfdA, pnpB. Typically this might 
happen when the assessor is prepared to accept some parametric family of distributions 
(e.g. Beta distributions) that approximate to their general beliefs, and they can “fix” a 
particular pair by declaring one or more percentiles for each. In that case there will be a 
continuous version of the corollary above. That is, there will be an infinite number of 
(αA,αB) pairs, each corresponding to one of an infinite number of (pA,pB) pairs. For each 
statement of the kind pfdsys< psys there will be an infinite number of conservative doubts, 
as in (21) above. It is appropriate, as above, to take the least conservative in each case, so 
we have: 

Theorem 6  
If, in a slightly extended notation, the functions  
P(pfdA > pA ) =αA (pA )  
and  
P(pnpB > pB ) =αB (pB )    
represent the assessor marginal doubts for all possible claims about the two parameters, 
there exists a bounding distribution for pfdsys: 

P(pfdsys < t) = max0<pA≤1
0, 1−αA (pA )−αB (t / pA )( )#$ %&  

Proof 
From (21) 
P(pfdsys < pA × pB )>1−αA (pA )−αB (pB )  
and  
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P(pfdsys < t)> maxpA . pB=t
0, 1−αA (pA )−αB (pB )( )"# $%= max0<pA≤1

0, 1−αA (pA )−αB (t / pA )( )"# $%  
and the result follows. 

         

                                          
                                

Figure 4 An example where the marginal distributions for pfdA and pnpB in the 
first two plots are respectively Beta(1.5, 3150) and Beta(1.5, 315). The third plot 
shows the resulting conservative (bounding) distribution for the system pfd. 

 
In the case where the marginal distributions are continuous, the function  
αA (pA )+αB (t / pA )  
has a stationary point at pA = pA

* satisfying the equation 

(pA
*)2 ⋅α 'A (pA

*) = t ⋅α 'B (t / pB
*)  
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and using this for all t we can obtain a bounding continuous distribution for pfdsys. 
Alternatively this can be found by numerical optimization. 
 
One way this result might be used is to take a particular level of doubt and propagate 
claims with this same fixed doubt throughout a case, or part of a case: 

Example 7 
Figure 4 shows a case where both of the marginal distributions for the parameters are 
Betas. In the Figure we show the percentiles corresponding to a doubt of 10% for each of 
the three distributions (the choice of 10% is purely for illustration – it is not intended to 
represent a realistic figure for real cases). At this level of doubt, claims of 1.0e-03 and 
1.0e-02 for pfdA and pnpB allow a claim of approximately 1.5e-05 to be made for the 
system pfd, and this is, of course, conservative. Readers may think that this near-product 
of the claims (1.5e-05 versus 1.0e-05), for the fixed 10% doubt, is rather a tight bound. 

Example 8 
Because complete marginal distributions for the parameters, and the distribution of the 
system pfd, are known in this case, it follows that the corresponding means are known: 
E(pfdA) = 0.000476, E(pnpB) = 0.00474 
and 
E(pfdsys) = 6.97e-06 
This compares favourably with the (unattainable) “perfect independence” case: 
E(pfdA). E(pnpB) = 2.26e-06. 
In fact, the Cauchy-Schwarz bound in this case, (11), is 3.75e-06 and is even tighter.  
However, the point of this approach, via a bounding distribution, is that it allows all 
bounding percentiles of the system pfd to be computed, not merely the mean.  

4 Discussion 
Problems concerning different kinds of dependence have dogged the assessment of 
design diverse multi-version systems since this approach was first proposed in the 1970s. 
The LR work addressed the problem of aleatory dependence between failures. It showed 
that, for a 1-out-of-2 system in which one channel is possibly perfect, the system pfd is 
bounded above by the simple product of pfdA and pnpB, so that the (presumed) 
dependence between failures of the channels is not required to be known. Pace Kruskal: 
“You can multiply”, and the resulting product will be conservative. 
In practice, of course, the parameters pfdA and pnpB will be unknown. This introduces 
another problem of dependence, namely that of epistemic dependence between an 
assessor’s beliefs about the two parameters. In the present paper we have presented two 
new ways of avoiding this problem of epistemic dependence: each depends only upon an 
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assessor’s marginal distributions for (i.e. beliefs about) the parameters. Once again, 
though, the price paid is further conservatism in the results. 
The first approach, in Section 2, obtains bounds as in LR for an assessor’s posterior mean 
system pfd. In our second approach, in Section 3, we obtain conservative confidence 
bounds for the system pfd. 
The different bounds in these sections are based upon different (marginal) beliefs that the 
assessor may have about the two channel parameters – i.e. what they know, or are 
prepared to declare. Not surprisingly, the problem is generally easier for pfd than it is for 
pnp. For example, in (Bishop, Bloomfield et al. 2011), conservative results for a 
software-based channel pfd are obtained based on observation of extensive failure-free 
working; in (Littlewood and Wright 2007) results are obtained based on evidence of 
failure-free working and evidence of successful formal verification. Although both 
papers briefly address probability of perfection, as does (Bertolino and Strigini 1998), 
this is a problem that has received comparatively little attention: it is the subject of 
current research by the authors. 
Throughout this paper, and previously in (Littlewood and Rushby 2012), it has been 
emphasised that the results are conservative. At the time that these kinds of assessment 
take place – e.g. when a decision is being made about whether a system is “good enough” 
to be allowed into service – it will not be possible to say how conservative they are (the 
true system pfd will not be available, of course, to compare with the conservative 
estimates obtained from the results here). Later, after massive operational exposure, such 
as that experienced with some aircraft types and reported in (Boeing 2012), it may be 
possible to obtain trustworthy estimates of the true pfd and so assess the degree of 
conservatism. 
The main sources of conservatism here are two-fold. Firstly, there is that which arises 
from the avoidance of failure dependence issues in the LR model, represented by 
equation (2). Secondly, there is that which arises from the avoidance of epistemic 
dependence issues (so that only marginal beliefs about the LR parameters are needed), 
represented by the theorems of this paper.  
In both cases the conservatism is intrinsic to the approach, and thus unavoidable. 
However, in cases where an assessor is able to express beliefs about the parameters in 
different ways – so making more than one bounding result available from sections 2 or 3 
– it would be reasonable to choose the least conservative one(s). 
The choice between the two approaches of sections 2 and 3 will depend upon how the 
results will be used, and in particular upon the demands of a wider safety case for which 
claims about the present 1-out-of-2 system (e.g. a protection system) are only a part.  
The motivation in the original LR work for obtaining a bound on the assessor’s posterior 
expected system pfd (as we have done here in Section 2) was that, for a Bayesian 
assessor, this is their system probability of failure on demand. It is the number they 
would give in answer to the question: “What is the probability that the system will fail on 
a randomly selected demand?” However there are some subtleties here that present 
pitfalls for the unwary. For example, the answer to the question “What is the probability 
that the system will survive the n demands it will experience in its lifetime?” is not a 
simple function of the posterior expected system pfd of section 2. That is: 
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E (1− pfdsys )
n( ) ≠ 1−E(pfdsys )( )

n  

It follows that the results of Section 2 do not provide an answer to this question, and other 
similar ones, directly. 
A different view is that the assessor is uncertain about the system pfd – their uncertainty 
being represented by their posterior distribution for this – and so they should propagate 
this uncertainty through the wider plant safety case (alongside, for example, uncertainties 
associated with other subsystems), so that any top-level plant claim will have an 
associated confidence. This is more in the spirit of the results of Section 3. However, it 
should be noted that such propagation of “complete” uncertainty throughout a complex 
wider case could be very difficult. 
Even if the results from this approach were to be very conservative, we nevertheless 
believe that it offers a useful rigour for reasoning about certain types of critical systems. 
Assuming the availability of the necessary parameters for the theorems in Sections 2 and 
34, our approach allows safety cases to be based on claims about system dependability 
that are guaranteed to be conservative. These are surely better than ones based, for 
example, upon informal claims about “degrees of dependence”: we know no way such 
claims can be justified rigorously. 
Finally, it is worth emphasising that all the results here depend critically on the basic LR 
result concerning aleatory uncertainty: that system pfd can be conservatively bounded by 
the simple product of channel A’s pfd and channel B’s pnp. None of these results can be 
applied to the case of a 1-out-of-2 system in which pfd claims must be made about both 
channels (because each is too complex for a claim of “possibly perfect”): clearly many 
systems are of this kind (e.g. some complex control or guidance systems). However, we 
maintain our belief that this special architecture is a plausible one for some important real 
systems (e.g. some protection systems, e.g. some architectures in which the second 
channel is a simple monitor) – see (Littlewood and Rushby 2012) for further discussion 
and examples.   
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Appendix 
 
Lemma:  
If 
0≤X≤1, and P(X>p)=α, and E(X)≤p, 
then 

E(X 2 ) ≤ E(X)
2

α
≤
p2

α
 

Proof:  

Let E(X) =m  and E(X 2 ) = s2   

We show that there exists a two-point discrete random variable, Y, as follows: 
P(Y = y) =1−α
P(Y = z) =α

 

where  
0 ≤ y ≤m ≤ z ≤1 

and 
E(Y ) = y× (1−α)+ z×α =m
E(Y 2 ) = y2 × (1−α)+ z2 ×α = s2

       (A1) 

From (A1) we have y = m− z×α
1−α

 and 

E(X 2 ) = E(Y 2 ) =G(z) = (m− z×α)
2

1−α
+ z2α  

If α > 0  the equation G(z) = s2  has a positive real root: 

z =m+ (s2 −m2 )×1−α
α

 

since s2 −m2 =Var(X) ≥ 0 . 

It follows that the random variable Y always exists. 
Now, if z>0, then G(z) is increasing because 
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dG(z)
dz

= −
2α(m− z×α)

1−α
+ 2zα = −2mα + 2α

2z+ 2αz− 2α 2z
1−α

=
2α(z−m)
1−α

≥ 0 ; 

and 
y≥0 implies z ≤m /α  
therefore 

E(X 2 ) = E(Y 2 ) ≤m2 /α = E(X)2 /α ≤ p2 /α   

that is 

E(X 2 ) ≤ E(X)
2

α
≤
p2

α
 

 
QED 
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