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ABSTRACT

A5/1 is the strong encryption algorithm which protects the air interface of the GSM 
cellular  network.   However,  in  the  Fast  Software  Encryption  Workshop  2000  two 
attacks, the biased birthday attack and the random subgraph attack against A5/1 were 
presented [1].  In this paper, we propose new security enhancements to improve A5/1 
encryption algorithm from the biased birthday attack [1] and random subgraph attack 
[3] [4] in order to be used in future mobile communication systems.  The improvements 
that make both attacks impractical are based on the clocking mechanism of the registers, 
and their key setup routine.  Furthermore, we have increased the linear complexity of 
A5/1 to make the solution of the linear equations [2] impractical in real time systems. 
Finally,  both  original  and  modified  versions of  A5/1 were  implemented easily  in  a 
CPLD device for 3rd generation mobile systems.

INTRODUCTION

Encryption in future mobile systems is essential to protect sensitive information and 
prevent  fraud.   Furthermore,  future  mobiles  phones  require  an  efficient  encryption 
algorithm which  is  secure,  small  in  size,  fast  and  easy  to  implement  in  hardware. 
Nowadays, the most efficient stream cipher is A5/1, which protects the air interface of 
the GSM cellular network.  A5/1 is fast, small in size and suitable to be implemented in 
future mobile terminals.  However, in the Fast Software Encryption Workshop 2000, the 
biased birthday attack and random subgraph attack against A5/1 were presented [1]. 
They are based on subtle flaws in the tap sequence of the registers, their noninvertible 
clocking  mechanism,  and  their  frequent  resets.  When  these  attacks  are  applied, 
cryptanalysis of A5/1 is performed on a single PC.

DESCRIPTION OF A5/1
Each conversation in GSM is sent encrypted by a new session key K  as a sequence of 
frames every 4.6 millisecond.  For each frame, K  is mixed with a frame counter nF  and 
the result serves as the initial state of A5/1 which produces 228 pseudo random bits. 
These 228 bits are used to encrypt/decrypt traffic between the mobile station and the 
base station.

According to [1] and [2] A5/1 is built from three linear feedback shift registers (LFSR) 
of lengths 19, 22, and 23 bits, which are denoted by R1, R2, and R3 respectively.  The 
taps of R1 are at bit positions 13, 16, 17, 18; the taps of R2 are at bit positions 20, 21; 
the taps of R3 are at bit positions 7, 20, 21, 22.  The three LFSR’s with number of states 

642n  are maximum length with period 1219  , 1222  , and 1223  .  Each register has 
a single clocking tap in bit 8 for R1, bit 10 for R2, and bit 10 for R3; each clock cycle, 
the  registers  whose  clocking  taps  agree  with  the  majority  bit  are  actually  clocked 



(Figure 1).  Note, that at each clock cycle two or three registers are shifted and that each 
register moves with probability 43  and stops with probability 41 .   

Figure 1 – A5/1 Encryption Algorithm

The initial state of the generator is carried out in the following way: R1, R2, and R3 are 
first zeroed and then clocked for 86 cycles ignoring the stop/go clock control.  During 
this period each bit of K  is XOR’ed in parallel into the lsbs of the three registers for the 
first 64 clock cycles.  Then nF  is XOR’ed in parallel into the lsbs of the three registers 
for the remaining 22 clock cycles.  Finally, the three registers are clocked with the stop 
and go control for 328 additional cycles.  No output is produced in the first 100 clock 
cycles.  In the next 228 clock cycles 228 bits are produced by XOR’ing the three msbs 
of R1, R2, and R3.
 

SOLUTIONS TO THE ATTACKS  
The main idea of the biased birthday attack [1] is to consider sets A and B which are not 
chosen  with  uniform  probability  distribution  among  all  the  possible  states.   The 
observation which makes this attack efficient is that in A5/1 there is a huge variance in 
the weights of various states that begin with a specific 16-bit pattern of bits named a . 
The register bits that affect clock control and the register bits that affect the output are 
unrelated  for  about  16  clock  cycles.   This  decreases  the  states  to  be  sampled  to 

481664 22*2  .  It was also found that the weight of about 85% of the states was zero 
because their trees died out before reaching depth 100.  Other weights ranged from 1 to 
more  than  26,000  [1].   As  a  result,  efficient  determination  of  initial  states  can  be 
obtained since the exact location of a  and the depth of the initial state is known.  This is 
made possible by the initial mixing of the key and frame number, which ignore the usual 
clock control, and the poor choice of the clocking taps.  

Assume that we know the state of A5/1 immediately after the key and frame counter 
were  used,  and  before  the  100 mixing  steps.   It  was  found in  [1]  that  by  running 
backwards,  the  frame  counter  can  be  eliminated  in  a  unique  way,  and  64  linear 
combinations of the 64 key bits can be obtained.  The correct key can be chosen when 
running A5/1 forward for more than 100 steps, and comparing the results with the actual 
data in the next frame.

In [1] it was also found that the majority clock control rule implies that up to 4 states 
can  converge  to  a  common  state  in  one  clock  cycle,  and  some  states  have  no 
predecessors.  Furthermore, the average number of predecessors of each node is 1, and 
thus the expected number of vertices in the first k levels of each tree grows only linearly 
in k [3]. 
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New clock control mechanism1 and key setup routine are proposed to overcome the 
above  problems  and  to  increase  the  complexity  of  the  algorithm  without  loosing 
hardware  efficiency.   In  the  new  clock  control  mechanism  each  register  has  two 
clocking taps in bits 5, 11 for R1, bits 6, 13 for R2, and bits 7, 14 for R3.  The clocking 
taps divide each register in three almost equal parts.  Every clocking tap per register is 
checked in a triangle scheme; bits 5, 13, and 7 of R1, R2, and R3 respectively; bits 11, 
6, and 14 of R1, R2, and R3 respectively as shown in Figure 2.  

 
Figure 2 – Clock Control Mechanism 

Each clock cycle, the registers whose clocking taps agree with the majority bit in both 
triangles are shifted.  For example, if A, B, and C represent the clocking taps of R1, R2, 
and R3 respectively then table 1 shows all the combinations for shifting.     

ONE CLOCK 
CYCLE

MAJORITY BIT OF

5,13,7=A,B,C
MAJORITY BIT OF

11,6,14=A,B,C
SHIFT

Case 1  A=B A=B R1, R2
Case 2 A=C A=B R1
Case 3 B=C A=B R2
Case 4 A=B A=C R1
Case 5 A=C A=C R1, R3
Case 6 B=C A=C R3
Case 7 A=B B=C R2
Case 8 A=C B=C R3
Case 9 B=C B=C R2, R3

Case 10 A=B A=B=C R1, R2,
If 7=14 then R3

Case 11 A=C A=B=C R1, R3,
If 13=6 then R2

Case 12 B=C A=B=C R2, R3,
If 5=11 then R1

Case 13 A=B=C A=B=C R1, R2, R3

Table 1 – Shifts per Clock Cycle

Note, that at each clock cycle one or/and two or/and three registers are shifted and that 
each register moves with probability 13

8 .  In this case the register bits that affect the 
clock control and the register bits that affect the output are unrelated for only 6 clock 

1 Patent Pending; Patent Application Number 0123302.2
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cycles instead of 16 in the clock control of A5/1.  This increases the number of states 
required to be sampled in A5/1 from 481664 22*2   to 58664 22*2  .

Moreover, in the new key setup routine, the key and the frame counter are mixed in the 
following way: the three registers are zeroed and clocked for 88 cycles including the 
clock control mechanism described earlier.  During this period each bit of K and nF  is 
XOR’ed (from lsb to msb) in parallel with the lsb of the three registers.  Finally, the two 
results are XOR’ed again to determine which of K or nF  will be inserted in the lsb of 

the three registers.  If the final XOR is ‘1’ then K will be inserted, otherwise, nF .  After 
the initial state, the key setup routine can follow the original procedure.  In the proposed 
routine, the session key is mixed with the frame counter in a random way which makes 
it difficult to be extracted from the initial state.

Likewise, the main idea of the random subgraph attack is to make most of the special 
states accessible by simple computations from the subset of special states which are 
actually stored in the hard disk [1].  The attack is based on a function  f  that maps 
special  states  in  an  easy  computable  way  and  Hellman’s  time-memory  tradeoff, 

TM , for block ciphers described in [4] can be used to invert it easily.  In A5/1 

the attack is applied to the subspace of 482  by the fact that it can be efficiently sampled. 
The time trade-off formula of the random subgraph attack results to 362M  and just 

242T .  This number of steps can be carried out in several minutes on a fast PC.

The clocking control mechanism proposed above makes this attack inefficient because 
states  cannot  be sampled efficiently any more.   The memory and time required are 
 362M  and  402T  respectively which is much worse than previous attacks [2] [3]. 

Furthermore, the proposed key setup routine was carried out and it was found that only 
1% of the states were zero because their trees died out before reaching depth 100.  This 
is happening because of the frequent initialisations.  In this case the biased birthday 
attack becomes very inefficient which results to an impractical random subgraph attack.

Finally, we have also increased the linear complexity of A5/1, by adding an AND gate 
to R2 and R3, from 128 to 570 in order to prevent practical attacks [1] to be applied 
efficiently.  Actually, different combinations of boolean functions can be included in the 
three registers to make A5/1 mathematically more complex [2].  In every clock cycle R2 
and  R3  are  AND’ed  and  the  result  is  XOR’ed  with  R1,  or/and  R2,  or/and  R3. 
Increasing linear complexity in a cipher with small number of states prevents attacks 
described in [2] as well as in [1]. 

The linear complexity of A5/1 is calculated in the following way:
Let ,, 21 xx and 3x  denote the element of the polynomial with highest degree in R1, R2, 
and R3 respectively.  The output y  of A5/1 is given by the following equation: 

)1(321 xxxy 

If ,, 21 LL and 3L  denote the highest degree of the primitive polynomials in R1, R2, and 
R3 respectively, then according to (1) the linear complexity of A5/1 is given by [6]: 

128232219321  LLLL



However, the linear complexity is larger in the improved version because of the AND 
gate.  Thus:  

)2(32321 xxxxxy 
According to (2) 

57050623221932321  LLLLLL

Of course, the linear complexity is even greater than 570  because of the new control 
mechanism used (Figure 2).  

IMPLEMENTATION / RESULTS

Both versions of A5/1 were implemented on a complex programmable logic device 
(CPLD) using VHSIC Hardware Description Language (VHDL).  The XC9572 Xilinx 
chip was used to implement the A5/1 encryption algorithm.  XC9572 has 72 macrocells 
and registers (about 1,600 gates) out of which 65 (90%) and 64 (88%) were used for 
both  versions  respectively.   Thus,  in  our  implementations  the  A5/1  occupied  about 
1,444  gates  in  XC9572.   The  internal  structure  of  XC9572  in  Figure  3  shows  the 
resources that were used.  The minimum clock cycle period and the maximum speed in 
the original A5/1 in XC95216 were 31.0ns and 32.2MHz respectively.

Figure 3 – Internal Structure of XC9572 chip for A5/1

In the improved version of A5/1, the size of the chip was the same (Figure 4) since only 
one AND gate was added to the original design (Figure 1).  However, the minimum 
clock cycle period and the maximum speed of the modified version were 42.0ns and 
23.8MHz respectively.   The  delay in  the  minimum clock period and the  maximum 
speed of the chip was also expected once the digital logic was increased with the key 
setup routine and the new clock control mechanism.  The total delay, as shown in Figure 
4c, is very small and it does not exceed GSM specifications where 228 bits must be 
generated within a time slot duration (i.e. 0.6ms).  

In 3rd generation mobile systems (UMTS) the length of the frame is 10ms and each time 
slot occupies 0.625ms.  Even though we increased the number of LFSRs in A5/1, which 
resulted to an increase of the key size from 64 to 128, and applied the same key setup 
routine and clock control the results obtained were very promising.  Based on the results 
the new stream cipher is fast enough to be implemented in the UMTS mobile terminals. 

A5/1 
Stream Cipher
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                                (c)

Figure 4  – (a) Original A5/1 (b) Modified A5/1 (c) Total Delay in Modified A5/1

In  the  original  A5/1  implementation,  the  initial,  mixing,  and  output  states  require 
0.02728ms, 0.05828ms, and 0.12896ms respectively (Figure 4a).  On the other hand, in 
the  modified  implementation  the  initial,  mixing,  and  output  states  need  0.03696ms, 
0.07896ms, and 0.17472ms respectively (Figure 4b).  As shown in Figure 4c, the delay 
between the two implementations  is  0.00968ms,  0.02068ms,  and 0.04576ms for  the 
initial, mixing, and output states respectively.  This delay is not so critical because in 
both GSM and UMTS specifications the limit is about 0.6ms.

CONCLUSION

A5/1 has been designed to be fast, easy to implement, and most important small in size 
according  to  the  GSM  specifications.   However,  it  has  proved  that  the  encryption 
algorithm provided by the GSM is not very secure [1] [2].  The security enhancements 
we have proposed in the new clock control mechanism increase the level of security 
from 402  to 562  steps based on current attacks and in the proposed key setup routine the 
session key can be not extracted easily.  In this paper, we have improved the level of 
security in A5/1 without  compromising size.   Even though the improved version is 
slower  the  delay  is  not  significant  and  most  important  does  not  exceed  UMTS 
specifications.  

The improved version of A5/1 prevents special states to be identified by their output 
sequences [1].  The clock control mechanism described prevents that since the register 
bits that affect the clock control and the register bits that affect the output are unrelated 
for only 6 clock cycles.  This makes the biased birthday attack and the random subgraph 
attack [1] inefficient.  Moreover, Anderson and Roe [5] have proposed an attack, in 
A5/1 that uses only 3 LFSR, based on guessing the bits of the shorter registers, and 
deriving the other bits of the longer register from the output.  However, they have to 
guess the clocking sequence and the complexity of the attack is greater than  562 . 



Finally,  in the proposed key setup routine, the session key is  mixed with the frame 
counter in a random way which makes it difficult to be extracted from the initial state.
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